xref: /openbmc/linux/kernel/profile.c (revision 0d456bad)
1 /*
2  *  linux/kernel/profile.c
3  *  Simple profiling. Manages a direct-mapped profile hit count buffer,
4  *  with configurable resolution, support for restricting the cpus on
5  *  which profiling is done, and switching between cpu time and
6  *  schedule() calls via kernel command line parameters passed at boot.
7  *
8  *  Scheduler profiling support, Arjan van de Ven and Ingo Molnar,
9  *	Red Hat, July 2004
10  *  Consolidation of architecture support code for profiling,
11  *	Nadia Yvette Chambers, Oracle, July 2004
12  *  Amortized hit count accounting via per-cpu open-addressed hashtables
13  *	to resolve timer interrupt livelocks, Nadia Yvette Chambers,
14  *	Oracle, 2004
15  */
16 
17 #include <linux/export.h>
18 #include <linux/profile.h>
19 #include <linux/bootmem.h>
20 #include <linux/notifier.h>
21 #include <linux/mm.h>
22 #include <linux/cpumask.h>
23 #include <linux/cpu.h>
24 #include <linux/highmem.h>
25 #include <linux/mutex.h>
26 #include <linux/slab.h>
27 #include <linux/vmalloc.h>
28 #include <asm/sections.h>
29 #include <asm/irq_regs.h>
30 #include <asm/ptrace.h>
31 
32 struct profile_hit {
33 	u32 pc, hits;
34 };
35 #define PROFILE_GRPSHIFT	3
36 #define PROFILE_GRPSZ		(1 << PROFILE_GRPSHIFT)
37 #define NR_PROFILE_HIT		(PAGE_SIZE/sizeof(struct profile_hit))
38 #define NR_PROFILE_GRP		(NR_PROFILE_HIT/PROFILE_GRPSZ)
39 
40 /* Oprofile timer tick hook */
41 static int (*timer_hook)(struct pt_regs *) __read_mostly;
42 
43 static atomic_t *prof_buffer;
44 static unsigned long prof_len, prof_shift;
45 
46 int prof_on __read_mostly;
47 EXPORT_SYMBOL_GPL(prof_on);
48 
49 static cpumask_var_t prof_cpu_mask;
50 #ifdef CONFIG_SMP
51 static DEFINE_PER_CPU(struct profile_hit *[2], cpu_profile_hits);
52 static DEFINE_PER_CPU(int, cpu_profile_flip);
53 static DEFINE_MUTEX(profile_flip_mutex);
54 #endif /* CONFIG_SMP */
55 
56 int profile_setup(char *str)
57 {
58 	static char schedstr[] = "schedule";
59 	static char sleepstr[] = "sleep";
60 	static char kvmstr[] = "kvm";
61 	int par;
62 
63 	if (!strncmp(str, sleepstr, strlen(sleepstr))) {
64 #ifdef CONFIG_SCHEDSTATS
65 		prof_on = SLEEP_PROFILING;
66 		if (str[strlen(sleepstr)] == ',')
67 			str += strlen(sleepstr) + 1;
68 		if (get_option(&str, &par))
69 			prof_shift = par;
70 		printk(KERN_INFO
71 			"kernel sleep profiling enabled (shift: %ld)\n",
72 			prof_shift);
73 #else
74 		printk(KERN_WARNING
75 			"kernel sleep profiling requires CONFIG_SCHEDSTATS\n");
76 #endif /* CONFIG_SCHEDSTATS */
77 	} else if (!strncmp(str, schedstr, strlen(schedstr))) {
78 		prof_on = SCHED_PROFILING;
79 		if (str[strlen(schedstr)] == ',')
80 			str += strlen(schedstr) + 1;
81 		if (get_option(&str, &par))
82 			prof_shift = par;
83 		printk(KERN_INFO
84 			"kernel schedule profiling enabled (shift: %ld)\n",
85 			prof_shift);
86 	} else if (!strncmp(str, kvmstr, strlen(kvmstr))) {
87 		prof_on = KVM_PROFILING;
88 		if (str[strlen(kvmstr)] == ',')
89 			str += strlen(kvmstr) + 1;
90 		if (get_option(&str, &par))
91 			prof_shift = par;
92 		printk(KERN_INFO
93 			"kernel KVM profiling enabled (shift: %ld)\n",
94 			prof_shift);
95 	} else if (get_option(&str, &par)) {
96 		prof_shift = par;
97 		prof_on = CPU_PROFILING;
98 		printk(KERN_INFO "kernel profiling enabled (shift: %ld)\n",
99 			prof_shift);
100 	}
101 	return 1;
102 }
103 __setup("profile=", profile_setup);
104 
105 
106 int __ref profile_init(void)
107 {
108 	int buffer_bytes;
109 	if (!prof_on)
110 		return 0;
111 
112 	/* only text is profiled */
113 	prof_len = (_etext - _stext) >> prof_shift;
114 	buffer_bytes = prof_len*sizeof(atomic_t);
115 
116 	if (!alloc_cpumask_var(&prof_cpu_mask, GFP_KERNEL))
117 		return -ENOMEM;
118 
119 	cpumask_copy(prof_cpu_mask, cpu_possible_mask);
120 
121 	prof_buffer = kzalloc(buffer_bytes, GFP_KERNEL|__GFP_NOWARN);
122 	if (prof_buffer)
123 		return 0;
124 
125 	prof_buffer = alloc_pages_exact(buffer_bytes,
126 					GFP_KERNEL|__GFP_ZERO|__GFP_NOWARN);
127 	if (prof_buffer)
128 		return 0;
129 
130 	prof_buffer = vzalloc(buffer_bytes);
131 	if (prof_buffer)
132 		return 0;
133 
134 	free_cpumask_var(prof_cpu_mask);
135 	return -ENOMEM;
136 }
137 
138 /* Profile event notifications */
139 
140 static BLOCKING_NOTIFIER_HEAD(task_exit_notifier);
141 static ATOMIC_NOTIFIER_HEAD(task_free_notifier);
142 static BLOCKING_NOTIFIER_HEAD(munmap_notifier);
143 
144 void profile_task_exit(struct task_struct *task)
145 {
146 	blocking_notifier_call_chain(&task_exit_notifier, 0, task);
147 }
148 
149 int profile_handoff_task(struct task_struct *task)
150 {
151 	int ret;
152 	ret = atomic_notifier_call_chain(&task_free_notifier, 0, task);
153 	return (ret == NOTIFY_OK) ? 1 : 0;
154 }
155 
156 void profile_munmap(unsigned long addr)
157 {
158 	blocking_notifier_call_chain(&munmap_notifier, 0, (void *)addr);
159 }
160 
161 int task_handoff_register(struct notifier_block *n)
162 {
163 	return atomic_notifier_chain_register(&task_free_notifier, n);
164 }
165 EXPORT_SYMBOL_GPL(task_handoff_register);
166 
167 int task_handoff_unregister(struct notifier_block *n)
168 {
169 	return atomic_notifier_chain_unregister(&task_free_notifier, n);
170 }
171 EXPORT_SYMBOL_GPL(task_handoff_unregister);
172 
173 int profile_event_register(enum profile_type type, struct notifier_block *n)
174 {
175 	int err = -EINVAL;
176 
177 	switch (type) {
178 	case PROFILE_TASK_EXIT:
179 		err = blocking_notifier_chain_register(
180 				&task_exit_notifier, n);
181 		break;
182 	case PROFILE_MUNMAP:
183 		err = blocking_notifier_chain_register(
184 				&munmap_notifier, n);
185 		break;
186 	}
187 
188 	return err;
189 }
190 EXPORT_SYMBOL_GPL(profile_event_register);
191 
192 int profile_event_unregister(enum profile_type type, struct notifier_block *n)
193 {
194 	int err = -EINVAL;
195 
196 	switch (type) {
197 	case PROFILE_TASK_EXIT:
198 		err = blocking_notifier_chain_unregister(
199 				&task_exit_notifier, n);
200 		break;
201 	case PROFILE_MUNMAP:
202 		err = blocking_notifier_chain_unregister(
203 				&munmap_notifier, n);
204 		break;
205 	}
206 
207 	return err;
208 }
209 EXPORT_SYMBOL_GPL(profile_event_unregister);
210 
211 int register_timer_hook(int (*hook)(struct pt_regs *))
212 {
213 	if (timer_hook)
214 		return -EBUSY;
215 	timer_hook = hook;
216 	return 0;
217 }
218 EXPORT_SYMBOL_GPL(register_timer_hook);
219 
220 void unregister_timer_hook(int (*hook)(struct pt_regs *))
221 {
222 	WARN_ON(hook != timer_hook);
223 	timer_hook = NULL;
224 	/* make sure all CPUs see the NULL hook */
225 	synchronize_sched();  /* Allow ongoing interrupts to complete. */
226 }
227 EXPORT_SYMBOL_GPL(unregister_timer_hook);
228 
229 
230 #ifdef CONFIG_SMP
231 /*
232  * Each cpu has a pair of open-addressed hashtables for pending
233  * profile hits. read_profile() IPI's all cpus to request them
234  * to flip buffers and flushes their contents to prof_buffer itself.
235  * Flip requests are serialized by the profile_flip_mutex. The sole
236  * use of having a second hashtable is for avoiding cacheline
237  * contention that would otherwise happen during flushes of pending
238  * profile hits required for the accuracy of reported profile hits
239  * and so resurrect the interrupt livelock issue.
240  *
241  * The open-addressed hashtables are indexed by profile buffer slot
242  * and hold the number of pending hits to that profile buffer slot on
243  * a cpu in an entry. When the hashtable overflows, all pending hits
244  * are accounted to their corresponding profile buffer slots with
245  * atomic_add() and the hashtable emptied. As numerous pending hits
246  * may be accounted to a profile buffer slot in a hashtable entry,
247  * this amortizes a number of atomic profile buffer increments likely
248  * to be far larger than the number of entries in the hashtable,
249  * particularly given that the number of distinct profile buffer
250  * positions to which hits are accounted during short intervals (e.g.
251  * several seconds) is usually very small. Exclusion from buffer
252  * flipping is provided by interrupt disablement (note that for
253  * SCHED_PROFILING or SLEEP_PROFILING profile_hit() may be called from
254  * process context).
255  * The hash function is meant to be lightweight as opposed to strong,
256  * and was vaguely inspired by ppc64 firmware-supported inverted
257  * pagetable hash functions, but uses a full hashtable full of finite
258  * collision chains, not just pairs of them.
259  *
260  * -- nyc
261  */
262 static void __profile_flip_buffers(void *unused)
263 {
264 	int cpu = smp_processor_id();
265 
266 	per_cpu(cpu_profile_flip, cpu) = !per_cpu(cpu_profile_flip, cpu);
267 }
268 
269 static void profile_flip_buffers(void)
270 {
271 	int i, j, cpu;
272 
273 	mutex_lock(&profile_flip_mutex);
274 	j = per_cpu(cpu_profile_flip, get_cpu());
275 	put_cpu();
276 	on_each_cpu(__profile_flip_buffers, NULL, 1);
277 	for_each_online_cpu(cpu) {
278 		struct profile_hit *hits = per_cpu(cpu_profile_hits, cpu)[j];
279 		for (i = 0; i < NR_PROFILE_HIT; ++i) {
280 			if (!hits[i].hits) {
281 				if (hits[i].pc)
282 					hits[i].pc = 0;
283 				continue;
284 			}
285 			atomic_add(hits[i].hits, &prof_buffer[hits[i].pc]);
286 			hits[i].hits = hits[i].pc = 0;
287 		}
288 	}
289 	mutex_unlock(&profile_flip_mutex);
290 }
291 
292 static void profile_discard_flip_buffers(void)
293 {
294 	int i, cpu;
295 
296 	mutex_lock(&profile_flip_mutex);
297 	i = per_cpu(cpu_profile_flip, get_cpu());
298 	put_cpu();
299 	on_each_cpu(__profile_flip_buffers, NULL, 1);
300 	for_each_online_cpu(cpu) {
301 		struct profile_hit *hits = per_cpu(cpu_profile_hits, cpu)[i];
302 		memset(hits, 0, NR_PROFILE_HIT*sizeof(struct profile_hit));
303 	}
304 	mutex_unlock(&profile_flip_mutex);
305 }
306 
307 static void do_profile_hits(int type, void *__pc, unsigned int nr_hits)
308 {
309 	unsigned long primary, secondary, flags, pc = (unsigned long)__pc;
310 	int i, j, cpu;
311 	struct profile_hit *hits;
312 
313 	pc = min((pc - (unsigned long)_stext) >> prof_shift, prof_len - 1);
314 	i = primary = (pc & (NR_PROFILE_GRP - 1)) << PROFILE_GRPSHIFT;
315 	secondary = (~(pc << 1) & (NR_PROFILE_GRP - 1)) << PROFILE_GRPSHIFT;
316 	cpu = get_cpu();
317 	hits = per_cpu(cpu_profile_hits, cpu)[per_cpu(cpu_profile_flip, cpu)];
318 	if (!hits) {
319 		put_cpu();
320 		return;
321 	}
322 	/*
323 	 * We buffer the global profiler buffer into a per-CPU
324 	 * queue and thus reduce the number of global (and possibly
325 	 * NUMA-alien) accesses. The write-queue is self-coalescing:
326 	 */
327 	local_irq_save(flags);
328 	do {
329 		for (j = 0; j < PROFILE_GRPSZ; ++j) {
330 			if (hits[i + j].pc == pc) {
331 				hits[i + j].hits += nr_hits;
332 				goto out;
333 			} else if (!hits[i + j].hits) {
334 				hits[i + j].pc = pc;
335 				hits[i + j].hits = nr_hits;
336 				goto out;
337 			}
338 		}
339 		i = (i + secondary) & (NR_PROFILE_HIT - 1);
340 	} while (i != primary);
341 
342 	/*
343 	 * Add the current hit(s) and flush the write-queue out
344 	 * to the global buffer:
345 	 */
346 	atomic_add(nr_hits, &prof_buffer[pc]);
347 	for (i = 0; i < NR_PROFILE_HIT; ++i) {
348 		atomic_add(hits[i].hits, &prof_buffer[hits[i].pc]);
349 		hits[i].pc = hits[i].hits = 0;
350 	}
351 out:
352 	local_irq_restore(flags);
353 	put_cpu();
354 }
355 
356 static int __cpuinit profile_cpu_callback(struct notifier_block *info,
357 					unsigned long action, void *__cpu)
358 {
359 	int node, cpu = (unsigned long)__cpu;
360 	struct page *page;
361 
362 	switch (action) {
363 	case CPU_UP_PREPARE:
364 	case CPU_UP_PREPARE_FROZEN:
365 		node = cpu_to_mem(cpu);
366 		per_cpu(cpu_profile_flip, cpu) = 0;
367 		if (!per_cpu(cpu_profile_hits, cpu)[1]) {
368 			page = alloc_pages_exact_node(node,
369 					GFP_KERNEL | __GFP_ZERO,
370 					0);
371 			if (!page)
372 				return notifier_from_errno(-ENOMEM);
373 			per_cpu(cpu_profile_hits, cpu)[1] = page_address(page);
374 		}
375 		if (!per_cpu(cpu_profile_hits, cpu)[0]) {
376 			page = alloc_pages_exact_node(node,
377 					GFP_KERNEL | __GFP_ZERO,
378 					0);
379 			if (!page)
380 				goto out_free;
381 			per_cpu(cpu_profile_hits, cpu)[0] = page_address(page);
382 		}
383 		break;
384 out_free:
385 		page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[1]);
386 		per_cpu(cpu_profile_hits, cpu)[1] = NULL;
387 		__free_page(page);
388 		return notifier_from_errno(-ENOMEM);
389 	case CPU_ONLINE:
390 	case CPU_ONLINE_FROZEN:
391 		if (prof_cpu_mask != NULL)
392 			cpumask_set_cpu(cpu, prof_cpu_mask);
393 		break;
394 	case CPU_UP_CANCELED:
395 	case CPU_UP_CANCELED_FROZEN:
396 	case CPU_DEAD:
397 	case CPU_DEAD_FROZEN:
398 		if (prof_cpu_mask != NULL)
399 			cpumask_clear_cpu(cpu, prof_cpu_mask);
400 		if (per_cpu(cpu_profile_hits, cpu)[0]) {
401 			page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[0]);
402 			per_cpu(cpu_profile_hits, cpu)[0] = NULL;
403 			__free_page(page);
404 		}
405 		if (per_cpu(cpu_profile_hits, cpu)[1]) {
406 			page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[1]);
407 			per_cpu(cpu_profile_hits, cpu)[1] = NULL;
408 			__free_page(page);
409 		}
410 		break;
411 	}
412 	return NOTIFY_OK;
413 }
414 #else /* !CONFIG_SMP */
415 #define profile_flip_buffers()		do { } while (0)
416 #define profile_discard_flip_buffers()	do { } while (0)
417 #define profile_cpu_callback		NULL
418 
419 static void do_profile_hits(int type, void *__pc, unsigned int nr_hits)
420 {
421 	unsigned long pc;
422 	pc = ((unsigned long)__pc - (unsigned long)_stext) >> prof_shift;
423 	atomic_add(nr_hits, &prof_buffer[min(pc, prof_len - 1)]);
424 }
425 #endif /* !CONFIG_SMP */
426 
427 void profile_hits(int type, void *__pc, unsigned int nr_hits)
428 {
429 	if (prof_on != type || !prof_buffer)
430 		return;
431 	do_profile_hits(type, __pc, nr_hits);
432 }
433 EXPORT_SYMBOL_GPL(profile_hits);
434 
435 void profile_tick(int type)
436 {
437 	struct pt_regs *regs = get_irq_regs();
438 
439 	if (type == CPU_PROFILING && timer_hook)
440 		timer_hook(regs);
441 	if (!user_mode(regs) && prof_cpu_mask != NULL &&
442 	    cpumask_test_cpu(smp_processor_id(), prof_cpu_mask))
443 		profile_hit(type, (void *)profile_pc(regs));
444 }
445 
446 #ifdef CONFIG_PROC_FS
447 #include <linux/proc_fs.h>
448 #include <linux/seq_file.h>
449 #include <asm/uaccess.h>
450 
451 static int prof_cpu_mask_proc_show(struct seq_file *m, void *v)
452 {
453 	seq_cpumask(m, prof_cpu_mask);
454 	seq_putc(m, '\n');
455 	return 0;
456 }
457 
458 static int prof_cpu_mask_proc_open(struct inode *inode, struct file *file)
459 {
460 	return single_open(file, prof_cpu_mask_proc_show, NULL);
461 }
462 
463 static ssize_t prof_cpu_mask_proc_write(struct file *file,
464 	const char __user *buffer, size_t count, loff_t *pos)
465 {
466 	cpumask_var_t new_value;
467 	int err;
468 
469 	if (!alloc_cpumask_var(&new_value, GFP_KERNEL))
470 		return -ENOMEM;
471 
472 	err = cpumask_parse_user(buffer, count, new_value);
473 	if (!err) {
474 		cpumask_copy(prof_cpu_mask, new_value);
475 		err = count;
476 	}
477 	free_cpumask_var(new_value);
478 	return err;
479 }
480 
481 static const struct file_operations prof_cpu_mask_proc_fops = {
482 	.open		= prof_cpu_mask_proc_open,
483 	.read		= seq_read,
484 	.llseek		= seq_lseek,
485 	.release	= single_release,
486 	.write		= prof_cpu_mask_proc_write,
487 };
488 
489 void create_prof_cpu_mask(struct proc_dir_entry *root_irq_dir)
490 {
491 	/* create /proc/irq/prof_cpu_mask */
492 	proc_create("prof_cpu_mask", 0600, root_irq_dir, &prof_cpu_mask_proc_fops);
493 }
494 
495 /*
496  * This function accesses profiling information. The returned data is
497  * binary: the sampling step and the actual contents of the profile
498  * buffer. Use of the program readprofile is recommended in order to
499  * get meaningful info out of these data.
500  */
501 static ssize_t
502 read_profile(struct file *file, char __user *buf, size_t count, loff_t *ppos)
503 {
504 	unsigned long p = *ppos;
505 	ssize_t read;
506 	char *pnt;
507 	unsigned int sample_step = 1 << prof_shift;
508 
509 	profile_flip_buffers();
510 	if (p >= (prof_len+1)*sizeof(unsigned int))
511 		return 0;
512 	if (count > (prof_len+1)*sizeof(unsigned int) - p)
513 		count = (prof_len+1)*sizeof(unsigned int) - p;
514 	read = 0;
515 
516 	while (p < sizeof(unsigned int) && count > 0) {
517 		if (put_user(*((char *)(&sample_step)+p), buf))
518 			return -EFAULT;
519 		buf++; p++; count--; read++;
520 	}
521 	pnt = (char *)prof_buffer + p - sizeof(atomic_t);
522 	if (copy_to_user(buf, (void *)pnt, count))
523 		return -EFAULT;
524 	read += count;
525 	*ppos += read;
526 	return read;
527 }
528 
529 /*
530  * Writing to /proc/profile resets the counters
531  *
532  * Writing a 'profiling multiplier' value into it also re-sets the profiling
533  * interrupt frequency, on architectures that support this.
534  */
535 static ssize_t write_profile(struct file *file, const char __user *buf,
536 			     size_t count, loff_t *ppos)
537 {
538 #ifdef CONFIG_SMP
539 	extern int setup_profiling_timer(unsigned int multiplier);
540 
541 	if (count == sizeof(int)) {
542 		unsigned int multiplier;
543 
544 		if (copy_from_user(&multiplier, buf, sizeof(int)))
545 			return -EFAULT;
546 
547 		if (setup_profiling_timer(multiplier))
548 			return -EINVAL;
549 	}
550 #endif
551 	profile_discard_flip_buffers();
552 	memset(prof_buffer, 0, prof_len * sizeof(atomic_t));
553 	return count;
554 }
555 
556 static const struct file_operations proc_profile_operations = {
557 	.read		= read_profile,
558 	.write		= write_profile,
559 	.llseek		= default_llseek,
560 };
561 
562 #ifdef CONFIG_SMP
563 static void profile_nop(void *unused)
564 {
565 }
566 
567 static int create_hash_tables(void)
568 {
569 	int cpu;
570 
571 	for_each_online_cpu(cpu) {
572 		int node = cpu_to_mem(cpu);
573 		struct page *page;
574 
575 		page = alloc_pages_exact_node(node,
576 				GFP_KERNEL | __GFP_ZERO | GFP_THISNODE,
577 				0);
578 		if (!page)
579 			goto out_cleanup;
580 		per_cpu(cpu_profile_hits, cpu)[1]
581 				= (struct profile_hit *)page_address(page);
582 		page = alloc_pages_exact_node(node,
583 				GFP_KERNEL | __GFP_ZERO | GFP_THISNODE,
584 				0);
585 		if (!page)
586 			goto out_cleanup;
587 		per_cpu(cpu_profile_hits, cpu)[0]
588 				= (struct profile_hit *)page_address(page);
589 	}
590 	return 0;
591 out_cleanup:
592 	prof_on = 0;
593 	smp_mb();
594 	on_each_cpu(profile_nop, NULL, 1);
595 	for_each_online_cpu(cpu) {
596 		struct page *page;
597 
598 		if (per_cpu(cpu_profile_hits, cpu)[0]) {
599 			page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[0]);
600 			per_cpu(cpu_profile_hits, cpu)[0] = NULL;
601 			__free_page(page);
602 		}
603 		if (per_cpu(cpu_profile_hits, cpu)[1]) {
604 			page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[1]);
605 			per_cpu(cpu_profile_hits, cpu)[1] = NULL;
606 			__free_page(page);
607 		}
608 	}
609 	return -1;
610 }
611 #else
612 #define create_hash_tables()			({ 0; })
613 #endif
614 
615 int __ref create_proc_profile(void) /* false positive from hotcpu_notifier */
616 {
617 	struct proc_dir_entry *entry;
618 
619 	if (!prof_on)
620 		return 0;
621 	if (create_hash_tables())
622 		return -ENOMEM;
623 	entry = proc_create("profile", S_IWUSR | S_IRUGO,
624 			    NULL, &proc_profile_operations);
625 	if (!entry)
626 		return 0;
627 	entry->size = (1+prof_len) * sizeof(atomic_t);
628 	hotcpu_notifier(profile_cpu_callback, 0);
629 	return 0;
630 }
631 module_init(create_proc_profile);
632 #endif /* CONFIG_PROC_FS */
633