xref: /openbmc/linux/kernel/printk/printk_safe.c (revision 4464005a12b5c79e1a364e6272ee10a83413f928)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * printk_safe.c - Safe printk for printk-deadlock-prone contexts
4  */
5 
6 #include <linux/preempt.h>
7 #include <linux/spinlock.h>
8 #include <linux/debug_locks.h>
9 #include <linux/kdb.h>
10 #include <linux/smp.h>
11 #include <linux/cpumask.h>
12 #include <linux/irq_work.h>
13 #include <linux/printk.h>
14 #include <linux/kprobes.h>
15 
16 #include "internal.h"
17 
18 /*
19  * printk() could not take logbuf_lock in NMI context. Instead,
20  * it uses an alternative implementation that temporary stores
21  * the strings into a per-CPU buffer. The content of the buffer
22  * is later flushed into the main ring buffer via IRQ work.
23  *
24  * The alternative implementation is chosen transparently
25  * by examinig current printk() context mask stored in @printk_context
26  * per-CPU variable.
27  *
28  * The implementation allows to flush the strings also from another CPU.
29  * There are situations when we want to make sure that all buffers
30  * were handled or when IRQs are blocked.
31  */
32 
33 #define SAFE_LOG_BUF_LEN ((1 << CONFIG_PRINTK_SAFE_LOG_BUF_SHIFT) -	\
34 				sizeof(atomic_t) -			\
35 				sizeof(atomic_t) -			\
36 				sizeof(struct irq_work))
37 
38 struct printk_safe_seq_buf {
39 	atomic_t		len;	/* length of written data */
40 	atomic_t		message_lost;
41 	struct irq_work		work;	/* IRQ work that flushes the buffer */
42 	unsigned char		buffer[SAFE_LOG_BUF_LEN];
43 };
44 
45 static DEFINE_PER_CPU(struct printk_safe_seq_buf, safe_print_seq);
46 static DEFINE_PER_CPU(int, printk_context);
47 
48 #ifdef CONFIG_PRINTK_NMI
49 static DEFINE_PER_CPU(struct printk_safe_seq_buf, nmi_print_seq);
50 #endif
51 
52 /* Get flushed in a more safe context. */
53 static void queue_flush_work(struct printk_safe_seq_buf *s)
54 {
55 	if (printk_percpu_data_ready())
56 		irq_work_queue(&s->work);
57 }
58 
59 /*
60  * Add a message to per-CPU context-dependent buffer. NMI and printk-safe
61  * have dedicated buffers, because otherwise printk-safe preempted by
62  * NMI-printk would have overwritten the NMI messages.
63  *
64  * The messages are flushed from irq work (or from panic()), possibly,
65  * from other CPU, concurrently with printk_safe_log_store(). Should this
66  * happen, printk_safe_log_store() will notice the buffer->len mismatch
67  * and repeat the write.
68  */
69 static __printf(2, 0) int printk_safe_log_store(struct printk_safe_seq_buf *s,
70 						const char *fmt, va_list args)
71 {
72 	int add;
73 	size_t len;
74 	va_list ap;
75 
76 again:
77 	len = atomic_read(&s->len);
78 
79 	/* The trailing '\0' is not counted into len. */
80 	if (len >= sizeof(s->buffer) - 1) {
81 		atomic_inc(&s->message_lost);
82 		queue_flush_work(s);
83 		return 0;
84 	}
85 
86 	/*
87 	 * Make sure that all old data have been read before the buffer
88 	 * was reset. This is not needed when we just append data.
89 	 */
90 	if (!len)
91 		smp_rmb();
92 
93 	va_copy(ap, args);
94 	add = vscnprintf(s->buffer + len, sizeof(s->buffer) - len, fmt, ap);
95 	va_end(ap);
96 	if (!add)
97 		return 0;
98 
99 	/*
100 	 * Do it once again if the buffer has been flushed in the meantime.
101 	 * Note that atomic_cmpxchg() is an implicit memory barrier that
102 	 * makes sure that the data were written before updating s->len.
103 	 */
104 	if (atomic_cmpxchg(&s->len, len, len + add) != len)
105 		goto again;
106 
107 	queue_flush_work(s);
108 	return add;
109 }
110 
111 static inline void printk_safe_flush_line(const char *text, int len)
112 {
113 	/*
114 	 * Avoid any console drivers calls from here, because we may be
115 	 * in NMI or printk_safe context (when in panic). The messages
116 	 * must go only into the ring buffer at this stage.  Consoles will
117 	 * get explicitly called later when a crashdump is not generated.
118 	 */
119 	printk_deferred("%.*s", len, text);
120 }
121 
122 /* printk part of the temporary buffer line by line */
123 static int printk_safe_flush_buffer(const char *start, size_t len)
124 {
125 	const char *c, *end;
126 	bool header;
127 
128 	c = start;
129 	end = start + len;
130 	header = true;
131 
132 	/* Print line by line. */
133 	while (c < end) {
134 		if (*c == '\n') {
135 			printk_safe_flush_line(start, c - start + 1);
136 			start = ++c;
137 			header = true;
138 			continue;
139 		}
140 
141 		/* Handle continuous lines or missing new line. */
142 		if ((c + 1 < end) && printk_get_level(c)) {
143 			if (header) {
144 				c = printk_skip_level(c);
145 				continue;
146 			}
147 
148 			printk_safe_flush_line(start, c - start);
149 			start = c++;
150 			header = true;
151 			continue;
152 		}
153 
154 		header = false;
155 		c++;
156 	}
157 
158 	/* Check if there was a partial line. Ignore pure header. */
159 	if (start < end && !header) {
160 		static const char newline[] = KERN_CONT "\n";
161 
162 		printk_safe_flush_line(start, end - start);
163 		printk_safe_flush_line(newline, strlen(newline));
164 	}
165 
166 	return len;
167 }
168 
169 static void report_message_lost(struct printk_safe_seq_buf *s)
170 {
171 	int lost = atomic_xchg(&s->message_lost, 0);
172 
173 	if (lost)
174 		printk_deferred("Lost %d message(s)!\n", lost);
175 }
176 
177 /*
178  * Flush data from the associated per-CPU buffer. The function
179  * can be called either via IRQ work or independently.
180  */
181 static void __printk_safe_flush(struct irq_work *work)
182 {
183 	static raw_spinlock_t read_lock =
184 		__RAW_SPIN_LOCK_INITIALIZER(read_lock);
185 	struct printk_safe_seq_buf *s =
186 		container_of(work, struct printk_safe_seq_buf, work);
187 	unsigned long flags;
188 	size_t len;
189 	int i;
190 
191 	/*
192 	 * The lock has two functions. First, one reader has to flush all
193 	 * available message to make the lockless synchronization with
194 	 * writers easier. Second, we do not want to mix messages from
195 	 * different CPUs. This is especially important when printing
196 	 * a backtrace.
197 	 */
198 	raw_spin_lock_irqsave(&read_lock, flags);
199 
200 	i = 0;
201 more:
202 	len = atomic_read(&s->len);
203 
204 	/*
205 	 * This is just a paranoid check that nobody has manipulated
206 	 * the buffer an unexpected way. If we printed something then
207 	 * @len must only increase. Also it should never overflow the
208 	 * buffer size.
209 	 */
210 	if ((i && i >= len) || len > sizeof(s->buffer)) {
211 		const char *msg = "printk_safe_flush: internal error\n";
212 
213 		printk_safe_flush_line(msg, strlen(msg));
214 		len = 0;
215 	}
216 
217 	if (!len)
218 		goto out; /* Someone else has already flushed the buffer. */
219 
220 	/* Make sure that data has been written up to the @len */
221 	smp_rmb();
222 	i += printk_safe_flush_buffer(s->buffer + i, len - i);
223 
224 	/*
225 	 * Check that nothing has got added in the meantime and truncate
226 	 * the buffer. Note that atomic_cmpxchg() is an implicit memory
227 	 * barrier that makes sure that the data were copied before
228 	 * updating s->len.
229 	 */
230 	if (atomic_cmpxchg(&s->len, len, 0) != len)
231 		goto more;
232 
233 out:
234 	report_message_lost(s);
235 	raw_spin_unlock_irqrestore(&read_lock, flags);
236 }
237 
238 /**
239  * printk_safe_flush - flush all per-cpu nmi buffers.
240  *
241  * The buffers are flushed automatically via IRQ work. This function
242  * is useful only when someone wants to be sure that all buffers have
243  * been flushed at some point.
244  */
245 void printk_safe_flush(void)
246 {
247 	int cpu;
248 
249 	for_each_possible_cpu(cpu) {
250 #ifdef CONFIG_PRINTK_NMI
251 		__printk_safe_flush(&per_cpu(nmi_print_seq, cpu).work);
252 #endif
253 		__printk_safe_flush(&per_cpu(safe_print_seq, cpu).work);
254 	}
255 }
256 
257 /**
258  * printk_safe_flush_on_panic - flush all per-cpu nmi buffers when the system
259  *	goes down.
260  *
261  * Similar to printk_safe_flush() but it can be called even in NMI context when
262  * the system goes down. It does the best effort to get NMI messages into
263  * the main ring buffer.
264  *
265  * Note that it could try harder when there is only one CPU online.
266  */
267 void printk_safe_flush_on_panic(void)
268 {
269 	/*
270 	 * Make sure that we could access the main ring buffer.
271 	 * Do not risk a double release when more CPUs are up.
272 	 */
273 	if (raw_spin_is_locked(&logbuf_lock)) {
274 		if (num_online_cpus() > 1)
275 			return;
276 
277 		debug_locks_off();
278 		raw_spin_lock_init(&logbuf_lock);
279 	}
280 
281 	printk_safe_flush();
282 }
283 
284 #ifdef CONFIG_PRINTK_NMI
285 /*
286  * Safe printk() for NMI context. It uses a per-CPU buffer to
287  * store the message. NMIs are not nested, so there is always only
288  * one writer running. But the buffer might get flushed from another
289  * CPU, so we need to be careful.
290  */
291 static __printf(1, 0) int vprintk_nmi(const char *fmt, va_list args)
292 {
293 	struct printk_safe_seq_buf *s = this_cpu_ptr(&nmi_print_seq);
294 
295 	return printk_safe_log_store(s, fmt, args);
296 }
297 
298 void noinstr printk_nmi_enter(void)
299 {
300 	this_cpu_add(printk_context, PRINTK_NMI_CONTEXT_OFFSET);
301 }
302 
303 void noinstr printk_nmi_exit(void)
304 {
305 	this_cpu_sub(printk_context, PRINTK_NMI_CONTEXT_OFFSET);
306 }
307 
308 /*
309  * Marks a code that might produce many messages in NMI context
310  * and the risk of losing them is more critical than eventual
311  * reordering.
312  *
313  * It has effect only when called in NMI context. Then printk()
314  * will try to store the messages into the main logbuf directly
315  * and use the per-CPU buffers only as a fallback when the lock
316  * is not available.
317  */
318 void printk_nmi_direct_enter(void)
319 {
320 	if (this_cpu_read(printk_context) & PRINTK_NMI_CONTEXT_MASK)
321 		this_cpu_or(printk_context, PRINTK_NMI_DIRECT_CONTEXT_MASK);
322 }
323 
324 void printk_nmi_direct_exit(void)
325 {
326 	this_cpu_and(printk_context, ~PRINTK_NMI_DIRECT_CONTEXT_MASK);
327 }
328 
329 #else
330 
331 static __printf(1, 0) int vprintk_nmi(const char *fmt, va_list args)
332 {
333 	return 0;
334 }
335 
336 #endif /* CONFIG_PRINTK_NMI */
337 
338 /*
339  * Lock-less printk(), to avoid deadlocks should the printk() recurse
340  * into itself. It uses a per-CPU buffer to store the message, just like
341  * NMI.
342  */
343 static __printf(1, 0) int vprintk_safe(const char *fmt, va_list args)
344 {
345 	struct printk_safe_seq_buf *s = this_cpu_ptr(&safe_print_seq);
346 
347 	return printk_safe_log_store(s, fmt, args);
348 }
349 
350 /* Can be preempted by NMI. */
351 void __printk_safe_enter(void)
352 {
353 	this_cpu_inc(printk_context);
354 }
355 
356 /* Can be preempted by NMI. */
357 void __printk_safe_exit(void)
358 {
359 	this_cpu_dec(printk_context);
360 }
361 
362 __printf(1, 0) int vprintk_func(const char *fmt, va_list args)
363 {
364 #ifdef CONFIG_KGDB_KDB
365 	/* Allow to pass printk() to kdb but avoid a recursion. */
366 	if (unlikely(kdb_trap_printk && kdb_printf_cpu < 0))
367 		return vkdb_printf(KDB_MSGSRC_PRINTK, fmt, args);
368 #endif
369 
370 	/*
371 	 * Try to use the main logbuf even in NMI. But avoid calling console
372 	 * drivers that might have their own locks.
373 	 */
374 	if ((this_cpu_read(printk_context) & PRINTK_NMI_DIRECT_CONTEXT_MASK) &&
375 	    raw_spin_trylock(&logbuf_lock)) {
376 		int len;
377 
378 		len = vprintk_store(0, LOGLEVEL_DEFAULT, NULL, 0, fmt, args);
379 		raw_spin_unlock(&logbuf_lock);
380 		defer_console_output();
381 		return len;
382 	}
383 
384 	/* Use extra buffer in NMI when logbuf_lock is taken or in safe mode. */
385 	if (this_cpu_read(printk_context) & PRINTK_NMI_CONTEXT_MASK)
386 		return vprintk_nmi(fmt, args);
387 
388 	/* Use extra buffer to prevent a recursion deadlock in safe mode. */
389 	if (this_cpu_read(printk_context) & PRINTK_SAFE_CONTEXT_MASK)
390 		return vprintk_safe(fmt, args);
391 
392 	/* No obstacles. */
393 	return vprintk_default(fmt, args);
394 }
395 
396 void __init printk_safe_init(void)
397 {
398 	int cpu;
399 
400 	for_each_possible_cpu(cpu) {
401 		struct printk_safe_seq_buf *s;
402 
403 		s = &per_cpu(safe_print_seq, cpu);
404 		init_irq_work(&s->work, __printk_safe_flush);
405 
406 #ifdef CONFIG_PRINTK_NMI
407 		s = &per_cpu(nmi_print_seq, cpu);
408 		init_irq_work(&s->work, __printk_safe_flush);
409 #endif
410 	}
411 
412 	/* Flush pending messages that did not have scheduled IRQ works. */
413 	printk_safe_flush();
414 }
415