xref: /openbmc/linux/kernel/printk/printk_safe.c (revision 3381df09)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * printk_safe.c - Safe printk for printk-deadlock-prone contexts
4  */
5 
6 #include <linux/preempt.h>
7 #include <linux/spinlock.h>
8 #include <linux/debug_locks.h>
9 #include <linux/smp.h>
10 #include <linux/cpumask.h>
11 #include <linux/irq_work.h>
12 #include <linux/printk.h>
13 
14 #include "internal.h"
15 
16 /*
17  * printk() could not take logbuf_lock in NMI context. Instead,
18  * it uses an alternative implementation that temporary stores
19  * the strings into a per-CPU buffer. The content of the buffer
20  * is later flushed into the main ring buffer via IRQ work.
21  *
22  * The alternative implementation is chosen transparently
23  * by examinig current printk() context mask stored in @printk_context
24  * per-CPU variable.
25  *
26  * The implementation allows to flush the strings also from another CPU.
27  * There are situations when we want to make sure that all buffers
28  * were handled or when IRQs are blocked.
29  */
30 
31 #define SAFE_LOG_BUF_LEN ((1 << CONFIG_PRINTK_SAFE_LOG_BUF_SHIFT) -	\
32 				sizeof(atomic_t) -			\
33 				sizeof(atomic_t) -			\
34 				sizeof(struct irq_work))
35 
36 struct printk_safe_seq_buf {
37 	atomic_t		len;	/* length of written data */
38 	atomic_t		message_lost;
39 	struct irq_work		work;	/* IRQ work that flushes the buffer */
40 	unsigned char		buffer[SAFE_LOG_BUF_LEN];
41 };
42 
43 static DEFINE_PER_CPU(struct printk_safe_seq_buf, safe_print_seq);
44 static DEFINE_PER_CPU(int, printk_context);
45 
46 #ifdef CONFIG_PRINTK_NMI
47 static DEFINE_PER_CPU(struct printk_safe_seq_buf, nmi_print_seq);
48 #endif
49 
50 /* Get flushed in a more safe context. */
51 static void queue_flush_work(struct printk_safe_seq_buf *s)
52 {
53 	if (printk_percpu_data_ready())
54 		irq_work_queue(&s->work);
55 }
56 
57 /*
58  * Add a message to per-CPU context-dependent buffer. NMI and printk-safe
59  * have dedicated buffers, because otherwise printk-safe preempted by
60  * NMI-printk would have overwritten the NMI messages.
61  *
62  * The messages are flushed from irq work (or from panic()), possibly,
63  * from other CPU, concurrently with printk_safe_log_store(). Should this
64  * happen, printk_safe_log_store() will notice the buffer->len mismatch
65  * and repeat the write.
66  */
67 static __printf(2, 0) int printk_safe_log_store(struct printk_safe_seq_buf *s,
68 						const char *fmt, va_list args)
69 {
70 	int add;
71 	size_t len;
72 	va_list ap;
73 
74 again:
75 	len = atomic_read(&s->len);
76 
77 	/* The trailing '\0' is not counted into len. */
78 	if (len >= sizeof(s->buffer) - 1) {
79 		atomic_inc(&s->message_lost);
80 		queue_flush_work(s);
81 		return 0;
82 	}
83 
84 	/*
85 	 * Make sure that all old data have been read before the buffer
86 	 * was reset. This is not needed when we just append data.
87 	 */
88 	if (!len)
89 		smp_rmb();
90 
91 	va_copy(ap, args);
92 	add = vscnprintf(s->buffer + len, sizeof(s->buffer) - len, fmt, ap);
93 	va_end(ap);
94 	if (!add)
95 		return 0;
96 
97 	/*
98 	 * Do it once again if the buffer has been flushed in the meantime.
99 	 * Note that atomic_cmpxchg() is an implicit memory barrier that
100 	 * makes sure that the data were written before updating s->len.
101 	 */
102 	if (atomic_cmpxchg(&s->len, len, len + add) != len)
103 		goto again;
104 
105 	queue_flush_work(s);
106 	return add;
107 }
108 
109 static inline void printk_safe_flush_line(const char *text, int len)
110 {
111 	/*
112 	 * Avoid any console drivers calls from here, because we may be
113 	 * in NMI or printk_safe context (when in panic). The messages
114 	 * must go only into the ring buffer at this stage.  Consoles will
115 	 * get explicitly called later when a crashdump is not generated.
116 	 */
117 	printk_deferred("%.*s", len, text);
118 }
119 
120 /* printk part of the temporary buffer line by line */
121 static int printk_safe_flush_buffer(const char *start, size_t len)
122 {
123 	const char *c, *end;
124 	bool header;
125 
126 	c = start;
127 	end = start + len;
128 	header = true;
129 
130 	/* Print line by line. */
131 	while (c < end) {
132 		if (*c == '\n') {
133 			printk_safe_flush_line(start, c - start + 1);
134 			start = ++c;
135 			header = true;
136 			continue;
137 		}
138 
139 		/* Handle continuous lines or missing new line. */
140 		if ((c + 1 < end) && printk_get_level(c)) {
141 			if (header) {
142 				c = printk_skip_level(c);
143 				continue;
144 			}
145 
146 			printk_safe_flush_line(start, c - start);
147 			start = c++;
148 			header = true;
149 			continue;
150 		}
151 
152 		header = false;
153 		c++;
154 	}
155 
156 	/* Check if there was a partial line. Ignore pure header. */
157 	if (start < end && !header) {
158 		static const char newline[] = KERN_CONT "\n";
159 
160 		printk_safe_flush_line(start, end - start);
161 		printk_safe_flush_line(newline, strlen(newline));
162 	}
163 
164 	return len;
165 }
166 
167 static void report_message_lost(struct printk_safe_seq_buf *s)
168 {
169 	int lost = atomic_xchg(&s->message_lost, 0);
170 
171 	if (lost)
172 		printk_deferred("Lost %d message(s)!\n", lost);
173 }
174 
175 /*
176  * Flush data from the associated per-CPU buffer. The function
177  * can be called either via IRQ work or independently.
178  */
179 static void __printk_safe_flush(struct irq_work *work)
180 {
181 	static raw_spinlock_t read_lock =
182 		__RAW_SPIN_LOCK_INITIALIZER(read_lock);
183 	struct printk_safe_seq_buf *s =
184 		container_of(work, struct printk_safe_seq_buf, work);
185 	unsigned long flags;
186 	size_t len;
187 	int i;
188 
189 	/*
190 	 * The lock has two functions. First, one reader has to flush all
191 	 * available message to make the lockless synchronization with
192 	 * writers easier. Second, we do not want to mix messages from
193 	 * different CPUs. This is especially important when printing
194 	 * a backtrace.
195 	 */
196 	raw_spin_lock_irqsave(&read_lock, flags);
197 
198 	i = 0;
199 more:
200 	len = atomic_read(&s->len);
201 
202 	/*
203 	 * This is just a paranoid check that nobody has manipulated
204 	 * the buffer an unexpected way. If we printed something then
205 	 * @len must only increase. Also it should never overflow the
206 	 * buffer size.
207 	 */
208 	if ((i && i >= len) || len > sizeof(s->buffer)) {
209 		const char *msg = "printk_safe_flush: internal error\n";
210 
211 		printk_safe_flush_line(msg, strlen(msg));
212 		len = 0;
213 	}
214 
215 	if (!len)
216 		goto out; /* Someone else has already flushed the buffer. */
217 
218 	/* Make sure that data has been written up to the @len */
219 	smp_rmb();
220 	i += printk_safe_flush_buffer(s->buffer + i, len - i);
221 
222 	/*
223 	 * Check that nothing has got added in the meantime and truncate
224 	 * the buffer. Note that atomic_cmpxchg() is an implicit memory
225 	 * barrier that makes sure that the data were copied before
226 	 * updating s->len.
227 	 */
228 	if (atomic_cmpxchg(&s->len, len, 0) != len)
229 		goto more;
230 
231 out:
232 	report_message_lost(s);
233 	raw_spin_unlock_irqrestore(&read_lock, flags);
234 }
235 
236 /**
237  * printk_safe_flush - flush all per-cpu nmi buffers.
238  *
239  * The buffers are flushed automatically via IRQ work. This function
240  * is useful only when someone wants to be sure that all buffers have
241  * been flushed at some point.
242  */
243 void printk_safe_flush(void)
244 {
245 	int cpu;
246 
247 	for_each_possible_cpu(cpu) {
248 #ifdef CONFIG_PRINTK_NMI
249 		__printk_safe_flush(&per_cpu(nmi_print_seq, cpu).work);
250 #endif
251 		__printk_safe_flush(&per_cpu(safe_print_seq, cpu).work);
252 	}
253 }
254 
255 /**
256  * printk_safe_flush_on_panic - flush all per-cpu nmi buffers when the system
257  *	goes down.
258  *
259  * Similar to printk_safe_flush() but it can be called even in NMI context when
260  * the system goes down. It does the best effort to get NMI messages into
261  * the main ring buffer.
262  *
263  * Note that it could try harder when there is only one CPU online.
264  */
265 void printk_safe_flush_on_panic(void)
266 {
267 	/*
268 	 * Make sure that we could access the main ring buffer.
269 	 * Do not risk a double release when more CPUs are up.
270 	 */
271 	if (raw_spin_is_locked(&logbuf_lock)) {
272 		if (num_online_cpus() > 1)
273 			return;
274 
275 		debug_locks_off();
276 		raw_spin_lock_init(&logbuf_lock);
277 	}
278 
279 	printk_safe_flush();
280 }
281 
282 #ifdef CONFIG_PRINTK_NMI
283 /*
284  * Safe printk() for NMI context. It uses a per-CPU buffer to
285  * store the message. NMIs are not nested, so there is always only
286  * one writer running. But the buffer might get flushed from another
287  * CPU, so we need to be careful.
288  */
289 static __printf(1, 0) int vprintk_nmi(const char *fmt, va_list args)
290 {
291 	struct printk_safe_seq_buf *s = this_cpu_ptr(&nmi_print_seq);
292 
293 	return printk_safe_log_store(s, fmt, args);
294 }
295 
296 void notrace printk_nmi_enter(void)
297 {
298 	this_cpu_or(printk_context, PRINTK_NMI_CONTEXT_MASK);
299 }
300 
301 void notrace printk_nmi_exit(void)
302 {
303 	this_cpu_and(printk_context, ~PRINTK_NMI_CONTEXT_MASK);
304 }
305 
306 /*
307  * Marks a code that might produce many messages in NMI context
308  * and the risk of losing them is more critical than eventual
309  * reordering.
310  *
311  * It has effect only when called in NMI context. Then printk()
312  * will try to store the messages into the main logbuf directly
313  * and use the per-CPU buffers only as a fallback when the lock
314  * is not available.
315  */
316 void printk_nmi_direct_enter(void)
317 {
318 	if (this_cpu_read(printk_context) & PRINTK_NMI_CONTEXT_MASK)
319 		this_cpu_or(printk_context, PRINTK_NMI_DIRECT_CONTEXT_MASK);
320 }
321 
322 void printk_nmi_direct_exit(void)
323 {
324 	this_cpu_and(printk_context, ~PRINTK_NMI_DIRECT_CONTEXT_MASK);
325 }
326 
327 #else
328 
329 static __printf(1, 0) int vprintk_nmi(const char *fmt, va_list args)
330 {
331 	return 0;
332 }
333 
334 #endif /* CONFIG_PRINTK_NMI */
335 
336 /*
337  * Lock-less printk(), to avoid deadlocks should the printk() recurse
338  * into itself. It uses a per-CPU buffer to store the message, just like
339  * NMI.
340  */
341 static __printf(1, 0) int vprintk_safe(const char *fmt, va_list args)
342 {
343 	struct printk_safe_seq_buf *s = this_cpu_ptr(&safe_print_seq);
344 
345 	return printk_safe_log_store(s, fmt, args);
346 }
347 
348 /* Can be preempted by NMI. */
349 void __printk_safe_enter(void)
350 {
351 	this_cpu_inc(printk_context);
352 }
353 
354 /* Can be preempted by NMI. */
355 void __printk_safe_exit(void)
356 {
357 	this_cpu_dec(printk_context);
358 }
359 
360 __printf(1, 0) int vprintk_func(const char *fmt, va_list args)
361 {
362 	/*
363 	 * Try to use the main logbuf even in NMI. But avoid calling console
364 	 * drivers that might have their own locks.
365 	 */
366 	if ((this_cpu_read(printk_context) & PRINTK_NMI_DIRECT_CONTEXT_MASK) &&
367 	    raw_spin_trylock(&logbuf_lock)) {
368 		int len;
369 
370 		len = vprintk_store(0, LOGLEVEL_DEFAULT, NULL, 0, fmt, args);
371 		raw_spin_unlock(&logbuf_lock);
372 		defer_console_output();
373 		return len;
374 	}
375 
376 	/* Use extra buffer in NMI when logbuf_lock is taken or in safe mode. */
377 	if (this_cpu_read(printk_context) & PRINTK_NMI_CONTEXT_MASK)
378 		return vprintk_nmi(fmt, args);
379 
380 	/* Use extra buffer to prevent a recursion deadlock in safe mode. */
381 	if (this_cpu_read(printk_context) & PRINTK_SAFE_CONTEXT_MASK)
382 		return vprintk_safe(fmt, args);
383 
384 	/* No obstacles. */
385 	return vprintk_default(fmt, args);
386 }
387 
388 void __init printk_safe_init(void)
389 {
390 	int cpu;
391 
392 	for_each_possible_cpu(cpu) {
393 		struct printk_safe_seq_buf *s;
394 
395 		s = &per_cpu(safe_print_seq, cpu);
396 		init_irq_work(&s->work, __printk_safe_flush);
397 
398 #ifdef CONFIG_PRINTK_NMI
399 		s = &per_cpu(nmi_print_seq, cpu);
400 		init_irq_work(&s->work, __printk_safe_flush);
401 #endif
402 	}
403 
404 	/* Flush pending messages that did not have scheduled IRQ works. */
405 	printk_safe_flush();
406 }
407