xref: /openbmc/linux/kernel/printk/printk_ringbuffer.c (revision e533cda12d8f0e7936354bafdc85c81741f805d2)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include <linux/kernel.h>
4 #include <linux/irqflags.h>
5 #include <linux/string.h>
6 #include <linux/errno.h>
7 #include <linux/bug.h>
8 #include "printk_ringbuffer.h"
9 
10 /**
11  * DOC: printk_ringbuffer overview
12  *
13  * Data Structure
14  * --------------
15  * The printk_ringbuffer is made up of 3 internal ringbuffers:
16  *
17  *   desc_ring
18  *     A ring of descriptors and their meta data (such as sequence number,
19  *     timestamp, loglevel, etc.) as well as internal state information about
20  *     the record and logical positions specifying where in the other
21  *     ringbuffer the text strings are located.
22  *
23  *   text_data_ring
24  *     A ring of data blocks. A data block consists of an unsigned long
25  *     integer (ID) that maps to a desc_ring index followed by the text
26  *     string of the record.
27  *
28  * The internal state information of a descriptor is the key element to allow
29  * readers and writers to locklessly synchronize access to the data.
30  *
31  * Implementation
32  * --------------
33  *
34  * Descriptor Ring
35  * ~~~~~~~~~~~~~~~
36  * The descriptor ring is an array of descriptors. A descriptor contains
37  * essential meta data to track the data of a printk record using
38  * blk_lpos structs pointing to associated text data blocks (see
39  * "Data Rings" below). Each descriptor is assigned an ID that maps
40  * directly to index values of the descriptor array and has a state. The ID
41  * and the state are bitwise combined into a single descriptor field named
42  * @state_var, allowing ID and state to be synchronously and atomically
43  * updated.
44  *
45  * Descriptors have four states:
46  *
47  *   reserved
48  *     A writer is modifying the record.
49  *
50  *   committed
51  *     The record and all its data are written. A writer can reopen the
52  *     descriptor (transitioning it back to reserved), but in the committed
53  *     state the data is consistent.
54  *
55  *   finalized
56  *     The record and all its data are complete and available for reading. A
57  *     writer cannot reopen the descriptor.
58  *
59  *   reusable
60  *     The record exists, but its text and/or meta data may no longer be
61  *     available.
62  *
63  * Querying the @state_var of a record requires providing the ID of the
64  * descriptor to query. This can yield a possible fifth (pseudo) state:
65  *
66  *   miss
67  *     The descriptor being queried has an unexpected ID.
68  *
69  * The descriptor ring has a @tail_id that contains the ID of the oldest
70  * descriptor and @head_id that contains the ID of the newest descriptor.
71  *
72  * When a new descriptor should be created (and the ring is full), the tail
73  * descriptor is invalidated by first transitioning to the reusable state and
74  * then invalidating all tail data blocks up to and including the data blocks
75  * associated with the tail descriptor (for the text ring). Then
76  * @tail_id is advanced, followed by advancing @head_id. And finally the
77  * @state_var of the new descriptor is initialized to the new ID and reserved
78  * state.
79  *
80  * The @tail_id can only be advanced if the new @tail_id would be in the
81  * committed or reusable queried state. This makes it possible that a valid
82  * sequence number of the tail is always available.
83  *
84  * Descriptor Finalization
85  * ~~~~~~~~~~~~~~~~~~~~~~~
86  * When a writer calls the commit function prb_commit(), record data is
87  * fully stored and is consistent within the ringbuffer. However, a writer can
88  * reopen that record, claiming exclusive access (as with prb_reserve()), and
89  * modify that record. When finished, the writer must again commit the record.
90  *
91  * In order for a record to be made available to readers (and also become
92  * recyclable for writers), it must be finalized. A finalized record cannot be
93  * reopened and can never become "unfinalized". Record finalization can occur
94  * in three different scenarios:
95  *
96  *   1) A writer can simultaneously commit and finalize its record by calling
97  *      prb_final_commit() instead of prb_commit().
98  *
99  *   2) When a new record is reserved and the previous record has been
100  *      committed via prb_commit(), that previous record is automatically
101  *      finalized.
102  *
103  *   3) When a record is committed via prb_commit() and a newer record
104  *      already exists, the record being committed is automatically finalized.
105  *
106  * Data Ring
107  * ~~~~~~~~~
108  * The text data ring is a byte array composed of data blocks. Data blocks are
109  * referenced by blk_lpos structs that point to the logical position of the
110  * beginning of a data block and the beginning of the next adjacent data
111  * block. Logical positions are mapped directly to index values of the byte
112  * array ringbuffer.
113  *
114  * Each data block consists of an ID followed by the writer data. The ID is
115  * the identifier of a descriptor that is associated with the data block. A
116  * given data block is considered valid if all of the following conditions
117  * are met:
118  *
119  *   1) The descriptor associated with the data block is in the committed
120  *      or finalized queried state.
121  *
122  *   2) The blk_lpos struct within the descriptor associated with the data
123  *      block references back to the same data block.
124  *
125  *   3) The data block is within the head/tail logical position range.
126  *
127  * If the writer data of a data block would extend beyond the end of the
128  * byte array, only the ID of the data block is stored at the logical
129  * position and the full data block (ID and writer data) is stored at the
130  * beginning of the byte array. The referencing blk_lpos will point to the
131  * ID before the wrap and the next data block will be at the logical
132  * position adjacent the full data block after the wrap.
133  *
134  * Data rings have a @tail_lpos that points to the beginning of the oldest
135  * data block and a @head_lpos that points to the logical position of the
136  * next (not yet existing) data block.
137  *
138  * When a new data block should be created (and the ring is full), tail data
139  * blocks will first be invalidated by putting their associated descriptors
140  * into the reusable state and then pushing the @tail_lpos forward beyond
141  * them. Then the @head_lpos is pushed forward and is associated with a new
142  * descriptor. If a data block is not valid, the @tail_lpos cannot be
143  * advanced beyond it.
144  *
145  * Info Array
146  * ~~~~~~~~~~
147  * The general meta data of printk records are stored in printk_info structs,
148  * stored in an array with the same number of elements as the descriptor ring.
149  * Each info corresponds to the descriptor of the same index in the
150  * descriptor ring. Info validity is confirmed by evaluating the corresponding
151  * descriptor before and after loading the info.
152  *
153  * Usage
154  * -----
155  * Here are some simple examples demonstrating writers and readers. For the
156  * examples a global ringbuffer (test_rb) is available (which is not the
157  * actual ringbuffer used by printk)::
158  *
159  *	DEFINE_PRINTKRB(test_rb, 15, 5);
160  *
161  * This ringbuffer allows up to 32768 records (2 ^ 15) and has a size of
162  * 1 MiB (2 ^ (15 + 5)) for text data.
163  *
164  * Sample writer code::
165  *
166  *	const char *textstr = "message text";
167  *	struct prb_reserved_entry e;
168  *	struct printk_record r;
169  *
170  *	// specify how much to allocate
171  *	prb_rec_init_wr(&r, strlen(textstr) + 1);
172  *
173  *	if (prb_reserve(&e, &test_rb, &r)) {
174  *		snprintf(r.text_buf, r.text_buf_size, "%s", textstr);
175  *
176  *		r.info->text_len = strlen(textstr);
177  *		r.info->ts_nsec = local_clock();
178  *		r.info->caller_id = printk_caller_id();
179  *
180  *		// commit and finalize the record
181  *		prb_final_commit(&e);
182  *	}
183  *
184  * Note that additional writer functions are available to extend a record
185  * after it has been committed but not yet finalized. This can be done as
186  * long as no new records have been reserved and the caller is the same.
187  *
188  * Sample writer code (record extending)::
189  *
190  *		// alternate rest of previous example
191  *
192  *		r.info->text_len = strlen(textstr);
193  *		r.info->ts_nsec = local_clock();
194  *		r.info->caller_id = printk_caller_id();
195  *
196  *		// commit the record (but do not finalize yet)
197  *		prb_commit(&e);
198  *	}
199  *
200  *	...
201  *
202  *	// specify additional 5 bytes text space to extend
203  *	prb_rec_init_wr(&r, 5);
204  *
205  *	// try to extend, but only if it does not exceed 32 bytes
206  *	if (prb_reserve_in_last(&e, &test_rb, &r, printk_caller_id()), 32) {
207  *		snprintf(&r.text_buf[r.info->text_len],
208  *			 r.text_buf_size - r.info->text_len, "hello");
209  *
210  *		r.info->text_len += 5;
211  *
212  *		// commit and finalize the record
213  *		prb_final_commit(&e);
214  *	}
215  *
216  * Sample reader code::
217  *
218  *	struct printk_info info;
219  *	struct printk_record r;
220  *	char text_buf[32];
221  *	u64 seq;
222  *
223  *	prb_rec_init_rd(&r, &info, &text_buf[0], sizeof(text_buf));
224  *
225  *	prb_for_each_record(0, &test_rb, &seq, &r) {
226  *		if (info.seq != seq)
227  *			pr_warn("lost %llu records\n", info.seq - seq);
228  *
229  *		if (info.text_len > r.text_buf_size) {
230  *			pr_warn("record %llu text truncated\n", info.seq);
231  *			text_buf[r.text_buf_size - 1] = 0;
232  *		}
233  *
234  *		pr_info("%llu: %llu: %s\n", info.seq, info.ts_nsec,
235  *			&text_buf[0]);
236  *	}
237  *
238  * Note that additional less convenient reader functions are available to
239  * allow complex record access.
240  *
241  * ABA Issues
242  * ~~~~~~~~~~
243  * To help avoid ABA issues, descriptors are referenced by IDs (array index
244  * values combined with tagged bits counting array wraps) and data blocks are
245  * referenced by logical positions (array index values combined with tagged
246  * bits counting array wraps). However, on 32-bit systems the number of
247  * tagged bits is relatively small such that an ABA incident is (at least
248  * theoretically) possible. For example, if 4 million maximally sized (1KiB)
249  * printk messages were to occur in NMI context on a 32-bit system, the
250  * interrupted context would not be able to recognize that the 32-bit integer
251  * completely wrapped and thus represents a different data block than the one
252  * the interrupted context expects.
253  *
254  * To help combat this possibility, additional state checking is performed
255  * (such as using cmpxchg() even though set() would suffice). These extra
256  * checks are commented as such and will hopefully catch any ABA issue that
257  * a 32-bit system might experience.
258  *
259  * Memory Barriers
260  * ~~~~~~~~~~~~~~~
261  * Multiple memory barriers are used. To simplify proving correctness and
262  * generating litmus tests, lines of code related to memory barriers
263  * (loads, stores, and the associated memory barriers) are labeled::
264  *
265  *	LMM(function:letter)
266  *
267  * Comments reference the labels using only the "function:letter" part.
268  *
269  * The memory barrier pairs and their ordering are:
270  *
271  *   desc_reserve:D / desc_reserve:B
272  *     push descriptor tail (id), then push descriptor head (id)
273  *
274  *   desc_reserve:D / data_push_tail:B
275  *     push data tail (lpos), then set new descriptor reserved (state)
276  *
277  *   desc_reserve:D / desc_push_tail:C
278  *     push descriptor tail (id), then set new descriptor reserved (state)
279  *
280  *   desc_reserve:D / prb_first_seq:C
281  *     push descriptor tail (id), then set new descriptor reserved (state)
282  *
283  *   desc_reserve:F / desc_read:D
284  *     set new descriptor id and reserved (state), then allow writer changes
285  *
286  *   data_alloc:A (or data_realloc:A) / desc_read:D
287  *     set old descriptor reusable (state), then modify new data block area
288  *
289  *   data_alloc:A (or data_realloc:A) / data_push_tail:B
290  *     push data tail (lpos), then modify new data block area
291  *
292  *   _prb_commit:B / desc_read:B
293  *     store writer changes, then set new descriptor committed (state)
294  *
295  *   desc_reopen_last:A / _prb_commit:B
296  *     set descriptor reserved (state), then read descriptor data
297  *
298  *   _prb_commit:B / desc_reserve:D
299  *     set new descriptor committed (state), then check descriptor head (id)
300  *
301  *   data_push_tail:D / data_push_tail:A
302  *     set descriptor reusable (state), then push data tail (lpos)
303  *
304  *   desc_push_tail:B / desc_reserve:D
305  *     set descriptor reusable (state), then push descriptor tail (id)
306  */
307 
308 #define DATA_SIZE(data_ring)		_DATA_SIZE((data_ring)->size_bits)
309 #define DATA_SIZE_MASK(data_ring)	(DATA_SIZE(data_ring) - 1)
310 
311 #define DESCS_COUNT(desc_ring)		_DESCS_COUNT((desc_ring)->count_bits)
312 #define DESCS_COUNT_MASK(desc_ring)	(DESCS_COUNT(desc_ring) - 1)
313 
314 /* Determine the data array index from a logical position. */
315 #define DATA_INDEX(data_ring, lpos)	((lpos) & DATA_SIZE_MASK(data_ring))
316 
317 /* Determine the desc array index from an ID or sequence number. */
318 #define DESC_INDEX(desc_ring, n)	((n) & DESCS_COUNT_MASK(desc_ring))
319 
320 /* Determine how many times the data array has wrapped. */
321 #define DATA_WRAPS(data_ring, lpos)	((lpos) >> (data_ring)->size_bits)
322 
323 /* Determine if a logical position refers to a data-less block. */
324 #define LPOS_DATALESS(lpos)		((lpos) & 1UL)
325 #define BLK_DATALESS(blk)		(LPOS_DATALESS((blk)->begin) && \
326 					 LPOS_DATALESS((blk)->next))
327 
328 /* Get the logical position at index 0 of the current wrap. */
329 #define DATA_THIS_WRAP_START_LPOS(data_ring, lpos) \
330 ((lpos) & ~DATA_SIZE_MASK(data_ring))
331 
332 /* Get the ID for the same index of the previous wrap as the given ID. */
333 #define DESC_ID_PREV_WRAP(desc_ring, id) \
334 DESC_ID((id) - DESCS_COUNT(desc_ring))
335 
336 /*
337  * A data block: mapped directly to the beginning of the data block area
338  * specified as a logical position within the data ring.
339  *
340  * @id:   the ID of the associated descriptor
341  * @data: the writer data
342  *
343  * Note that the size of a data block is only known by its associated
344  * descriptor.
345  */
346 struct prb_data_block {
347 	unsigned long	id;
348 	char		data[0];
349 };
350 
351 /*
352  * Return the descriptor associated with @n. @n can be either a
353  * descriptor ID or a sequence number.
354  */
355 static struct prb_desc *to_desc(struct prb_desc_ring *desc_ring, u64 n)
356 {
357 	return &desc_ring->descs[DESC_INDEX(desc_ring, n)];
358 }
359 
360 /*
361  * Return the printk_info associated with @n. @n can be either a
362  * descriptor ID or a sequence number.
363  */
364 static struct printk_info *to_info(struct prb_desc_ring *desc_ring, u64 n)
365 {
366 	return &desc_ring->infos[DESC_INDEX(desc_ring, n)];
367 }
368 
369 static struct prb_data_block *to_block(struct prb_data_ring *data_ring,
370 				       unsigned long begin_lpos)
371 {
372 	return (void *)&data_ring->data[DATA_INDEX(data_ring, begin_lpos)];
373 }
374 
375 /*
376  * Increase the data size to account for data block meta data plus any
377  * padding so that the adjacent data block is aligned on the ID size.
378  */
379 static unsigned int to_blk_size(unsigned int size)
380 {
381 	struct prb_data_block *db = NULL;
382 
383 	size += sizeof(*db);
384 	size = ALIGN(size, sizeof(db->id));
385 	return size;
386 }
387 
388 /*
389  * Sanity checker for reserve size. The ringbuffer code assumes that a data
390  * block does not exceed the maximum possible size that could fit within the
391  * ringbuffer. This function provides that basic size check so that the
392  * assumption is safe.
393  */
394 static bool data_check_size(struct prb_data_ring *data_ring, unsigned int size)
395 {
396 	struct prb_data_block *db = NULL;
397 
398 	if (size == 0)
399 		return true;
400 
401 	/*
402 	 * Ensure the alignment padded size could possibly fit in the data
403 	 * array. The largest possible data block must still leave room for
404 	 * at least the ID of the next block.
405 	 */
406 	size = to_blk_size(size);
407 	if (size > DATA_SIZE(data_ring) - sizeof(db->id))
408 		return false;
409 
410 	return true;
411 }
412 
413 /* Query the state of a descriptor. */
414 static enum desc_state get_desc_state(unsigned long id,
415 				      unsigned long state_val)
416 {
417 	if (id != DESC_ID(state_val))
418 		return desc_miss;
419 
420 	return DESC_STATE(state_val);
421 }
422 
423 /*
424  * Get a copy of a specified descriptor and return its queried state. If the
425  * descriptor is in an inconsistent state (miss or reserved), the caller can
426  * only expect the descriptor's @state_var field to be valid.
427  *
428  * The sequence number and caller_id can be optionally retrieved. Like all
429  * non-state_var data, they are only valid if the descriptor is in a
430  * consistent state.
431  */
432 static enum desc_state desc_read(struct prb_desc_ring *desc_ring,
433 				 unsigned long id, struct prb_desc *desc_out,
434 				 u64 *seq_out, u32 *caller_id_out)
435 {
436 	struct printk_info *info = to_info(desc_ring, id);
437 	struct prb_desc *desc = to_desc(desc_ring, id);
438 	atomic_long_t *state_var = &desc->state_var;
439 	enum desc_state d_state;
440 	unsigned long state_val;
441 
442 	/* Check the descriptor state. */
443 	state_val = atomic_long_read(state_var); /* LMM(desc_read:A) */
444 	d_state = get_desc_state(id, state_val);
445 	if (d_state == desc_miss || d_state == desc_reserved) {
446 		/*
447 		 * The descriptor is in an inconsistent state. Set at least
448 		 * @state_var so that the caller can see the details of
449 		 * the inconsistent state.
450 		 */
451 		goto out;
452 	}
453 
454 	/*
455 	 * Guarantee the state is loaded before copying the descriptor
456 	 * content. This avoids copying obsolete descriptor content that might
457 	 * not apply to the descriptor state. This pairs with _prb_commit:B.
458 	 *
459 	 * Memory barrier involvement:
460 	 *
461 	 * If desc_read:A reads from _prb_commit:B, then desc_read:C reads
462 	 * from _prb_commit:A.
463 	 *
464 	 * Relies on:
465 	 *
466 	 * WMB from _prb_commit:A to _prb_commit:B
467 	 *    matching
468 	 * RMB from desc_read:A to desc_read:C
469 	 */
470 	smp_rmb(); /* LMM(desc_read:B) */
471 
472 	/*
473 	 * Copy the descriptor data. The data is not valid until the
474 	 * state has been re-checked. A memcpy() for all of @desc
475 	 * cannot be used because of the atomic_t @state_var field.
476 	 */
477 	memcpy(&desc_out->text_blk_lpos, &desc->text_blk_lpos,
478 	       sizeof(desc_out->text_blk_lpos)); /* LMM(desc_read:C) */
479 	if (seq_out)
480 		*seq_out = info->seq; /* also part of desc_read:C */
481 	if (caller_id_out)
482 		*caller_id_out = info->caller_id; /* also part of desc_read:C */
483 
484 	/*
485 	 * 1. Guarantee the descriptor content is loaded before re-checking
486 	 *    the state. This avoids reading an obsolete descriptor state
487 	 *    that may not apply to the copied content. This pairs with
488 	 *    desc_reserve:F.
489 	 *
490 	 *    Memory barrier involvement:
491 	 *
492 	 *    If desc_read:C reads from desc_reserve:G, then desc_read:E
493 	 *    reads from desc_reserve:F.
494 	 *
495 	 *    Relies on:
496 	 *
497 	 *    WMB from desc_reserve:F to desc_reserve:G
498 	 *       matching
499 	 *    RMB from desc_read:C to desc_read:E
500 	 *
501 	 * 2. Guarantee the record data is loaded before re-checking the
502 	 *    state. This avoids reading an obsolete descriptor state that may
503 	 *    not apply to the copied data. This pairs with data_alloc:A and
504 	 *    data_realloc:A.
505 	 *
506 	 *    Memory barrier involvement:
507 	 *
508 	 *    If copy_data:A reads from data_alloc:B, then desc_read:E
509 	 *    reads from desc_make_reusable:A.
510 	 *
511 	 *    Relies on:
512 	 *
513 	 *    MB from desc_make_reusable:A to data_alloc:B
514 	 *       matching
515 	 *    RMB from desc_read:C to desc_read:E
516 	 *
517 	 *    Note: desc_make_reusable:A and data_alloc:B can be different
518 	 *          CPUs. However, the data_alloc:B CPU (which performs the
519 	 *          full memory barrier) must have previously seen
520 	 *          desc_make_reusable:A.
521 	 */
522 	smp_rmb(); /* LMM(desc_read:D) */
523 
524 	/*
525 	 * The data has been copied. Return the current descriptor state,
526 	 * which may have changed since the load above.
527 	 */
528 	state_val = atomic_long_read(state_var); /* LMM(desc_read:E) */
529 	d_state = get_desc_state(id, state_val);
530 out:
531 	atomic_long_set(&desc_out->state_var, state_val);
532 	return d_state;
533 }
534 
535 /*
536  * Take a specified descriptor out of the finalized state by attempting
537  * the transition from finalized to reusable. Either this context or some
538  * other context will have been successful.
539  */
540 static void desc_make_reusable(struct prb_desc_ring *desc_ring,
541 			       unsigned long id)
542 {
543 	unsigned long val_finalized = DESC_SV(id, desc_finalized);
544 	unsigned long val_reusable = DESC_SV(id, desc_reusable);
545 	struct prb_desc *desc = to_desc(desc_ring, id);
546 	atomic_long_t *state_var = &desc->state_var;
547 
548 	atomic_long_cmpxchg_relaxed(state_var, val_finalized,
549 				    val_reusable); /* LMM(desc_make_reusable:A) */
550 }
551 
552 /*
553  * Given the text data ring, put the associated descriptor of each
554  * data block from @lpos_begin until @lpos_end into the reusable state.
555  *
556  * If there is any problem making the associated descriptor reusable, either
557  * the descriptor has not yet been finalized or another writer context has
558  * already pushed the tail lpos past the problematic data block. Regardless,
559  * on error the caller can re-load the tail lpos to determine the situation.
560  */
561 static bool data_make_reusable(struct printk_ringbuffer *rb,
562 			       struct prb_data_ring *data_ring,
563 			       unsigned long lpos_begin,
564 			       unsigned long lpos_end,
565 			       unsigned long *lpos_out)
566 {
567 	struct prb_desc_ring *desc_ring = &rb->desc_ring;
568 	struct prb_data_block *blk;
569 	enum desc_state d_state;
570 	struct prb_desc desc;
571 	struct prb_data_blk_lpos *blk_lpos = &desc.text_blk_lpos;
572 	unsigned long id;
573 
574 	/* Loop until @lpos_begin has advanced to or beyond @lpos_end. */
575 	while ((lpos_end - lpos_begin) - 1 < DATA_SIZE(data_ring)) {
576 		blk = to_block(data_ring, lpos_begin);
577 
578 		/*
579 		 * Load the block ID from the data block. This is a data race
580 		 * against a writer that may have newly reserved this data
581 		 * area. If the loaded value matches a valid descriptor ID,
582 		 * the blk_lpos of that descriptor will be checked to make
583 		 * sure it points back to this data block. If the check fails,
584 		 * the data area has been recycled by another writer.
585 		 */
586 		id = blk->id; /* LMM(data_make_reusable:A) */
587 
588 		d_state = desc_read(desc_ring, id, &desc,
589 				    NULL, NULL); /* LMM(data_make_reusable:B) */
590 
591 		switch (d_state) {
592 		case desc_miss:
593 		case desc_reserved:
594 		case desc_committed:
595 			return false;
596 		case desc_finalized:
597 			/*
598 			 * This data block is invalid if the descriptor
599 			 * does not point back to it.
600 			 */
601 			if (blk_lpos->begin != lpos_begin)
602 				return false;
603 			desc_make_reusable(desc_ring, id);
604 			break;
605 		case desc_reusable:
606 			/*
607 			 * This data block is invalid if the descriptor
608 			 * does not point back to it.
609 			 */
610 			if (blk_lpos->begin != lpos_begin)
611 				return false;
612 			break;
613 		}
614 
615 		/* Advance @lpos_begin to the next data block. */
616 		lpos_begin = blk_lpos->next;
617 	}
618 
619 	*lpos_out = lpos_begin;
620 	return true;
621 }
622 
623 /*
624  * Advance the data ring tail to at least @lpos. This function puts
625  * descriptors into the reusable state if the tail is pushed beyond
626  * their associated data block.
627  */
628 static bool data_push_tail(struct printk_ringbuffer *rb,
629 			   struct prb_data_ring *data_ring,
630 			   unsigned long lpos)
631 {
632 	unsigned long tail_lpos_new;
633 	unsigned long tail_lpos;
634 	unsigned long next_lpos;
635 
636 	/* If @lpos is from a data-less block, there is nothing to do. */
637 	if (LPOS_DATALESS(lpos))
638 		return true;
639 
640 	/*
641 	 * Any descriptor states that have transitioned to reusable due to the
642 	 * data tail being pushed to this loaded value will be visible to this
643 	 * CPU. This pairs with data_push_tail:D.
644 	 *
645 	 * Memory barrier involvement:
646 	 *
647 	 * If data_push_tail:A reads from data_push_tail:D, then this CPU can
648 	 * see desc_make_reusable:A.
649 	 *
650 	 * Relies on:
651 	 *
652 	 * MB from desc_make_reusable:A to data_push_tail:D
653 	 *    matches
654 	 * READFROM from data_push_tail:D to data_push_tail:A
655 	 *    thus
656 	 * READFROM from desc_make_reusable:A to this CPU
657 	 */
658 	tail_lpos = atomic_long_read(&data_ring->tail_lpos); /* LMM(data_push_tail:A) */
659 
660 	/*
661 	 * Loop until the tail lpos is at or beyond @lpos. This condition
662 	 * may already be satisfied, resulting in no full memory barrier
663 	 * from data_push_tail:D being performed. However, since this CPU
664 	 * sees the new tail lpos, any descriptor states that transitioned to
665 	 * the reusable state must already be visible.
666 	 */
667 	while ((lpos - tail_lpos) - 1 < DATA_SIZE(data_ring)) {
668 		/*
669 		 * Make all descriptors reusable that are associated with
670 		 * data blocks before @lpos.
671 		 */
672 		if (!data_make_reusable(rb, data_ring, tail_lpos, lpos,
673 					&next_lpos)) {
674 			/*
675 			 * 1. Guarantee the block ID loaded in
676 			 *    data_make_reusable() is performed before
677 			 *    reloading the tail lpos. The failed
678 			 *    data_make_reusable() may be due to a newly
679 			 *    recycled data area causing the tail lpos to
680 			 *    have been previously pushed. This pairs with
681 			 *    data_alloc:A and data_realloc:A.
682 			 *
683 			 *    Memory barrier involvement:
684 			 *
685 			 *    If data_make_reusable:A reads from data_alloc:B,
686 			 *    then data_push_tail:C reads from
687 			 *    data_push_tail:D.
688 			 *
689 			 *    Relies on:
690 			 *
691 			 *    MB from data_push_tail:D to data_alloc:B
692 			 *       matching
693 			 *    RMB from data_make_reusable:A to
694 			 *    data_push_tail:C
695 			 *
696 			 *    Note: data_push_tail:D and data_alloc:B can be
697 			 *          different CPUs. However, the data_alloc:B
698 			 *          CPU (which performs the full memory
699 			 *          barrier) must have previously seen
700 			 *          data_push_tail:D.
701 			 *
702 			 * 2. Guarantee the descriptor state loaded in
703 			 *    data_make_reusable() is performed before
704 			 *    reloading the tail lpos. The failed
705 			 *    data_make_reusable() may be due to a newly
706 			 *    recycled descriptor causing the tail lpos to
707 			 *    have been previously pushed. This pairs with
708 			 *    desc_reserve:D.
709 			 *
710 			 *    Memory barrier involvement:
711 			 *
712 			 *    If data_make_reusable:B reads from
713 			 *    desc_reserve:F, then data_push_tail:C reads
714 			 *    from data_push_tail:D.
715 			 *
716 			 *    Relies on:
717 			 *
718 			 *    MB from data_push_tail:D to desc_reserve:F
719 			 *       matching
720 			 *    RMB from data_make_reusable:B to
721 			 *    data_push_tail:C
722 			 *
723 			 *    Note: data_push_tail:D and desc_reserve:F can
724 			 *          be different CPUs. However, the
725 			 *          desc_reserve:F CPU (which performs the
726 			 *          full memory barrier) must have previously
727 			 *          seen data_push_tail:D.
728 			 */
729 			smp_rmb(); /* LMM(data_push_tail:B) */
730 
731 			tail_lpos_new = atomic_long_read(&data_ring->tail_lpos
732 							); /* LMM(data_push_tail:C) */
733 			if (tail_lpos_new == tail_lpos)
734 				return false;
735 
736 			/* Another CPU pushed the tail. Try again. */
737 			tail_lpos = tail_lpos_new;
738 			continue;
739 		}
740 
741 		/*
742 		 * Guarantee any descriptor states that have transitioned to
743 		 * reusable are stored before pushing the tail lpos. A full
744 		 * memory barrier is needed since other CPUs may have made
745 		 * the descriptor states reusable. This pairs with
746 		 * data_push_tail:A.
747 		 */
748 		if (atomic_long_try_cmpxchg(&data_ring->tail_lpos, &tail_lpos,
749 					    next_lpos)) { /* LMM(data_push_tail:D) */
750 			break;
751 		}
752 	}
753 
754 	return true;
755 }
756 
757 /*
758  * Advance the desc ring tail. This function advances the tail by one
759  * descriptor, thus invalidating the oldest descriptor. Before advancing
760  * the tail, the tail descriptor is made reusable and all data blocks up to
761  * and including the descriptor's data block are invalidated (i.e. the data
762  * ring tail is pushed past the data block of the descriptor being made
763  * reusable).
764  */
765 static bool desc_push_tail(struct printk_ringbuffer *rb,
766 			   unsigned long tail_id)
767 {
768 	struct prb_desc_ring *desc_ring = &rb->desc_ring;
769 	enum desc_state d_state;
770 	struct prb_desc desc;
771 
772 	d_state = desc_read(desc_ring, tail_id, &desc, NULL, NULL);
773 
774 	switch (d_state) {
775 	case desc_miss:
776 		/*
777 		 * If the ID is exactly 1 wrap behind the expected, it is
778 		 * in the process of being reserved by another writer and
779 		 * must be considered reserved.
780 		 */
781 		if (DESC_ID(atomic_long_read(&desc.state_var)) ==
782 		    DESC_ID_PREV_WRAP(desc_ring, tail_id)) {
783 			return false;
784 		}
785 
786 		/*
787 		 * The ID has changed. Another writer must have pushed the
788 		 * tail and recycled the descriptor already. Success is
789 		 * returned because the caller is only interested in the
790 		 * specified tail being pushed, which it was.
791 		 */
792 		return true;
793 	case desc_reserved:
794 	case desc_committed:
795 		return false;
796 	case desc_finalized:
797 		desc_make_reusable(desc_ring, tail_id);
798 		break;
799 	case desc_reusable:
800 		break;
801 	}
802 
803 	/*
804 	 * Data blocks must be invalidated before their associated
805 	 * descriptor can be made available for recycling. Invalidating
806 	 * them later is not possible because there is no way to trust
807 	 * data blocks once their associated descriptor is gone.
808 	 */
809 
810 	if (!data_push_tail(rb, &rb->text_data_ring, desc.text_blk_lpos.next))
811 		return false;
812 
813 	/*
814 	 * Check the next descriptor after @tail_id before pushing the tail
815 	 * to it because the tail must always be in a finalized or reusable
816 	 * state. The implementation of prb_first_seq() relies on this.
817 	 *
818 	 * A successful read implies that the next descriptor is less than or
819 	 * equal to @head_id so there is no risk of pushing the tail past the
820 	 * head.
821 	 */
822 	d_state = desc_read(desc_ring, DESC_ID(tail_id + 1), &desc,
823 			    NULL, NULL); /* LMM(desc_push_tail:A) */
824 
825 	if (d_state == desc_finalized || d_state == desc_reusable) {
826 		/*
827 		 * Guarantee any descriptor states that have transitioned to
828 		 * reusable are stored before pushing the tail ID. This allows
829 		 * verifying the recycled descriptor state. A full memory
830 		 * barrier is needed since other CPUs may have made the
831 		 * descriptor states reusable. This pairs with desc_reserve:D.
832 		 */
833 		atomic_long_cmpxchg(&desc_ring->tail_id, tail_id,
834 				    DESC_ID(tail_id + 1)); /* LMM(desc_push_tail:B) */
835 	} else {
836 		/*
837 		 * Guarantee the last state load from desc_read() is before
838 		 * reloading @tail_id in order to see a new tail ID in the
839 		 * case that the descriptor has been recycled. This pairs
840 		 * with desc_reserve:D.
841 		 *
842 		 * Memory barrier involvement:
843 		 *
844 		 * If desc_push_tail:A reads from desc_reserve:F, then
845 		 * desc_push_tail:D reads from desc_push_tail:B.
846 		 *
847 		 * Relies on:
848 		 *
849 		 * MB from desc_push_tail:B to desc_reserve:F
850 		 *    matching
851 		 * RMB from desc_push_tail:A to desc_push_tail:D
852 		 *
853 		 * Note: desc_push_tail:B and desc_reserve:F can be different
854 		 *       CPUs. However, the desc_reserve:F CPU (which performs
855 		 *       the full memory barrier) must have previously seen
856 		 *       desc_push_tail:B.
857 		 */
858 		smp_rmb(); /* LMM(desc_push_tail:C) */
859 
860 		/*
861 		 * Re-check the tail ID. The descriptor following @tail_id is
862 		 * not in an allowed tail state. But if the tail has since
863 		 * been moved by another CPU, then it does not matter.
864 		 */
865 		if (atomic_long_read(&desc_ring->tail_id) == tail_id) /* LMM(desc_push_tail:D) */
866 			return false;
867 	}
868 
869 	return true;
870 }
871 
872 /* Reserve a new descriptor, invalidating the oldest if necessary. */
873 static bool desc_reserve(struct printk_ringbuffer *rb, unsigned long *id_out)
874 {
875 	struct prb_desc_ring *desc_ring = &rb->desc_ring;
876 	unsigned long prev_state_val;
877 	unsigned long id_prev_wrap;
878 	struct prb_desc *desc;
879 	unsigned long head_id;
880 	unsigned long id;
881 
882 	head_id = atomic_long_read(&desc_ring->head_id); /* LMM(desc_reserve:A) */
883 
884 	do {
885 		desc = to_desc(desc_ring, head_id);
886 
887 		id = DESC_ID(head_id + 1);
888 		id_prev_wrap = DESC_ID_PREV_WRAP(desc_ring, id);
889 
890 		/*
891 		 * Guarantee the head ID is read before reading the tail ID.
892 		 * Since the tail ID is updated before the head ID, this
893 		 * guarantees that @id_prev_wrap is never ahead of the tail
894 		 * ID. This pairs with desc_reserve:D.
895 		 *
896 		 * Memory barrier involvement:
897 		 *
898 		 * If desc_reserve:A reads from desc_reserve:D, then
899 		 * desc_reserve:C reads from desc_push_tail:B.
900 		 *
901 		 * Relies on:
902 		 *
903 		 * MB from desc_push_tail:B to desc_reserve:D
904 		 *    matching
905 		 * RMB from desc_reserve:A to desc_reserve:C
906 		 *
907 		 * Note: desc_push_tail:B and desc_reserve:D can be different
908 		 *       CPUs. However, the desc_reserve:D CPU (which performs
909 		 *       the full memory barrier) must have previously seen
910 		 *       desc_push_tail:B.
911 		 */
912 		smp_rmb(); /* LMM(desc_reserve:B) */
913 
914 		if (id_prev_wrap == atomic_long_read(&desc_ring->tail_id
915 						    )) { /* LMM(desc_reserve:C) */
916 			/*
917 			 * Make space for the new descriptor by
918 			 * advancing the tail.
919 			 */
920 			if (!desc_push_tail(rb, id_prev_wrap))
921 				return false;
922 		}
923 
924 		/*
925 		 * 1. Guarantee the tail ID is read before validating the
926 		 *    recycled descriptor state. A read memory barrier is
927 		 *    sufficient for this. This pairs with desc_push_tail:B.
928 		 *
929 		 *    Memory barrier involvement:
930 		 *
931 		 *    If desc_reserve:C reads from desc_push_tail:B, then
932 		 *    desc_reserve:E reads from desc_make_reusable:A.
933 		 *
934 		 *    Relies on:
935 		 *
936 		 *    MB from desc_make_reusable:A to desc_push_tail:B
937 		 *       matching
938 		 *    RMB from desc_reserve:C to desc_reserve:E
939 		 *
940 		 *    Note: desc_make_reusable:A and desc_push_tail:B can be
941 		 *          different CPUs. However, the desc_push_tail:B CPU
942 		 *          (which performs the full memory barrier) must have
943 		 *          previously seen desc_make_reusable:A.
944 		 *
945 		 * 2. Guarantee the tail ID is stored before storing the head
946 		 *    ID. This pairs with desc_reserve:B.
947 		 *
948 		 * 3. Guarantee any data ring tail changes are stored before
949 		 *    recycling the descriptor. Data ring tail changes can
950 		 *    happen via desc_push_tail()->data_push_tail(). A full
951 		 *    memory barrier is needed since another CPU may have
952 		 *    pushed the data ring tails. This pairs with
953 		 *    data_push_tail:B.
954 		 *
955 		 * 4. Guarantee a new tail ID is stored before recycling the
956 		 *    descriptor. A full memory barrier is needed since
957 		 *    another CPU may have pushed the tail ID. This pairs
958 		 *    with desc_push_tail:C and this also pairs with
959 		 *    prb_first_seq:C.
960 		 *
961 		 * 5. Guarantee the head ID is stored before trying to
962 		 *    finalize the previous descriptor. This pairs with
963 		 *    _prb_commit:B.
964 		 */
965 	} while (!atomic_long_try_cmpxchg(&desc_ring->head_id, &head_id,
966 					  id)); /* LMM(desc_reserve:D) */
967 
968 	desc = to_desc(desc_ring, id);
969 
970 	/*
971 	 * If the descriptor has been recycled, verify the old state val.
972 	 * See "ABA Issues" about why this verification is performed.
973 	 */
974 	prev_state_val = atomic_long_read(&desc->state_var); /* LMM(desc_reserve:E) */
975 	if (prev_state_val &&
976 	    get_desc_state(id_prev_wrap, prev_state_val) != desc_reusable) {
977 		WARN_ON_ONCE(1);
978 		return false;
979 	}
980 
981 	/*
982 	 * Assign the descriptor a new ID and set its state to reserved.
983 	 * See "ABA Issues" about why cmpxchg() instead of set() is used.
984 	 *
985 	 * Guarantee the new descriptor ID and state is stored before making
986 	 * any other changes. A write memory barrier is sufficient for this.
987 	 * This pairs with desc_read:D.
988 	 */
989 	if (!atomic_long_try_cmpxchg(&desc->state_var, &prev_state_val,
990 			DESC_SV(id, desc_reserved))) { /* LMM(desc_reserve:F) */
991 		WARN_ON_ONCE(1);
992 		return false;
993 	}
994 
995 	/* Now data in @desc can be modified: LMM(desc_reserve:G) */
996 
997 	*id_out = id;
998 	return true;
999 }
1000 
1001 /* Determine the end of a data block. */
1002 static unsigned long get_next_lpos(struct prb_data_ring *data_ring,
1003 				   unsigned long lpos, unsigned int size)
1004 {
1005 	unsigned long begin_lpos;
1006 	unsigned long next_lpos;
1007 
1008 	begin_lpos = lpos;
1009 	next_lpos = lpos + size;
1010 
1011 	/* First check if the data block does not wrap. */
1012 	if (DATA_WRAPS(data_ring, begin_lpos) == DATA_WRAPS(data_ring, next_lpos))
1013 		return next_lpos;
1014 
1015 	/* Wrapping data blocks store their data at the beginning. */
1016 	return (DATA_THIS_WRAP_START_LPOS(data_ring, next_lpos) + size);
1017 }
1018 
1019 /*
1020  * Allocate a new data block, invalidating the oldest data block(s)
1021  * if necessary. This function also associates the data block with
1022  * a specified descriptor.
1023  */
1024 static char *data_alloc(struct printk_ringbuffer *rb,
1025 			struct prb_data_ring *data_ring, unsigned int size,
1026 			struct prb_data_blk_lpos *blk_lpos, unsigned long id)
1027 {
1028 	struct prb_data_block *blk;
1029 	unsigned long begin_lpos;
1030 	unsigned long next_lpos;
1031 
1032 	if (size == 0) {
1033 		/* Specify a data-less block. */
1034 		blk_lpos->begin = NO_LPOS;
1035 		blk_lpos->next = NO_LPOS;
1036 		return NULL;
1037 	}
1038 
1039 	size = to_blk_size(size);
1040 
1041 	begin_lpos = atomic_long_read(&data_ring->head_lpos);
1042 
1043 	do {
1044 		next_lpos = get_next_lpos(data_ring, begin_lpos, size);
1045 
1046 		if (!data_push_tail(rb, data_ring, next_lpos - DATA_SIZE(data_ring))) {
1047 			/* Failed to allocate, specify a data-less block. */
1048 			blk_lpos->begin = FAILED_LPOS;
1049 			blk_lpos->next = FAILED_LPOS;
1050 			return NULL;
1051 		}
1052 
1053 		/*
1054 		 * 1. Guarantee any descriptor states that have transitioned
1055 		 *    to reusable are stored before modifying the newly
1056 		 *    allocated data area. A full memory barrier is needed
1057 		 *    since other CPUs may have made the descriptor states
1058 		 *    reusable. See data_push_tail:A about why the reusable
1059 		 *    states are visible. This pairs with desc_read:D.
1060 		 *
1061 		 * 2. Guarantee any updated tail lpos is stored before
1062 		 *    modifying the newly allocated data area. Another CPU may
1063 		 *    be in data_make_reusable() and is reading a block ID
1064 		 *    from this area. data_make_reusable() can handle reading
1065 		 *    a garbage block ID value, but then it must be able to
1066 		 *    load a new tail lpos. A full memory barrier is needed
1067 		 *    since other CPUs may have updated the tail lpos. This
1068 		 *    pairs with data_push_tail:B.
1069 		 */
1070 	} while (!atomic_long_try_cmpxchg(&data_ring->head_lpos, &begin_lpos,
1071 					  next_lpos)); /* LMM(data_alloc:A) */
1072 
1073 	blk = to_block(data_ring, begin_lpos);
1074 	blk->id = id; /* LMM(data_alloc:B) */
1075 
1076 	if (DATA_WRAPS(data_ring, begin_lpos) != DATA_WRAPS(data_ring, next_lpos)) {
1077 		/* Wrapping data blocks store their data at the beginning. */
1078 		blk = to_block(data_ring, 0);
1079 
1080 		/*
1081 		 * Store the ID on the wrapped block for consistency.
1082 		 * The printk_ringbuffer does not actually use it.
1083 		 */
1084 		blk->id = id;
1085 	}
1086 
1087 	blk_lpos->begin = begin_lpos;
1088 	blk_lpos->next = next_lpos;
1089 
1090 	return &blk->data[0];
1091 }
1092 
1093 /*
1094  * Try to resize an existing data block associated with the descriptor
1095  * specified by @id. If the resized data block should become wrapped, it
1096  * copies the old data to the new data block. If @size yields a data block
1097  * with the same or less size, the data block is left as is.
1098  *
1099  * Fail if this is not the last allocated data block or if there is not
1100  * enough space or it is not possible make enough space.
1101  *
1102  * Return a pointer to the beginning of the entire data buffer or NULL on
1103  * failure.
1104  */
1105 static char *data_realloc(struct printk_ringbuffer *rb,
1106 			  struct prb_data_ring *data_ring, unsigned int size,
1107 			  struct prb_data_blk_lpos *blk_lpos, unsigned long id)
1108 {
1109 	struct prb_data_block *blk;
1110 	unsigned long head_lpos;
1111 	unsigned long next_lpos;
1112 	bool wrapped;
1113 
1114 	/* Reallocation only works if @blk_lpos is the newest data block. */
1115 	head_lpos = atomic_long_read(&data_ring->head_lpos);
1116 	if (head_lpos != blk_lpos->next)
1117 		return NULL;
1118 
1119 	/* Keep track if @blk_lpos was a wrapping data block. */
1120 	wrapped = (DATA_WRAPS(data_ring, blk_lpos->begin) != DATA_WRAPS(data_ring, blk_lpos->next));
1121 
1122 	size = to_blk_size(size);
1123 
1124 	next_lpos = get_next_lpos(data_ring, blk_lpos->begin, size);
1125 
1126 	/* If the data block does not increase, there is nothing to do. */
1127 	if (head_lpos - next_lpos < DATA_SIZE(data_ring)) {
1128 		if (wrapped)
1129 			blk = to_block(data_ring, 0);
1130 		else
1131 			blk = to_block(data_ring, blk_lpos->begin);
1132 		return &blk->data[0];
1133 	}
1134 
1135 	if (!data_push_tail(rb, data_ring, next_lpos - DATA_SIZE(data_ring)))
1136 		return NULL;
1137 
1138 	/* The memory barrier involvement is the same as data_alloc:A. */
1139 	if (!atomic_long_try_cmpxchg(&data_ring->head_lpos, &head_lpos,
1140 				     next_lpos)) { /* LMM(data_realloc:A) */
1141 		return NULL;
1142 	}
1143 
1144 	blk = to_block(data_ring, blk_lpos->begin);
1145 
1146 	if (DATA_WRAPS(data_ring, blk_lpos->begin) != DATA_WRAPS(data_ring, next_lpos)) {
1147 		struct prb_data_block *old_blk = blk;
1148 
1149 		/* Wrapping data blocks store their data at the beginning. */
1150 		blk = to_block(data_ring, 0);
1151 
1152 		/*
1153 		 * Store the ID on the wrapped block for consistency.
1154 		 * The printk_ringbuffer does not actually use it.
1155 		 */
1156 		blk->id = id;
1157 
1158 		if (!wrapped) {
1159 			/*
1160 			 * Since the allocated space is now in the newly
1161 			 * created wrapping data block, copy the content
1162 			 * from the old data block.
1163 			 */
1164 			memcpy(&blk->data[0], &old_blk->data[0],
1165 			       (blk_lpos->next - blk_lpos->begin) - sizeof(blk->id));
1166 		}
1167 	}
1168 
1169 	blk_lpos->next = next_lpos;
1170 
1171 	return &blk->data[0];
1172 }
1173 
1174 /* Return the number of bytes used by a data block. */
1175 static unsigned int space_used(struct prb_data_ring *data_ring,
1176 			       struct prb_data_blk_lpos *blk_lpos)
1177 {
1178 	/* Data-less blocks take no space. */
1179 	if (BLK_DATALESS(blk_lpos))
1180 		return 0;
1181 
1182 	if (DATA_WRAPS(data_ring, blk_lpos->begin) == DATA_WRAPS(data_ring, blk_lpos->next)) {
1183 		/* Data block does not wrap. */
1184 		return (DATA_INDEX(data_ring, blk_lpos->next) -
1185 			DATA_INDEX(data_ring, blk_lpos->begin));
1186 	}
1187 
1188 	/*
1189 	 * For wrapping data blocks, the trailing (wasted) space is
1190 	 * also counted.
1191 	 */
1192 	return (DATA_INDEX(data_ring, blk_lpos->next) +
1193 		DATA_SIZE(data_ring) - DATA_INDEX(data_ring, blk_lpos->begin));
1194 }
1195 
1196 /*
1197  * Given @blk_lpos, return a pointer to the writer data from the data block
1198  * and calculate the size of the data part. A NULL pointer is returned if
1199  * @blk_lpos specifies values that could never be legal.
1200  *
1201  * This function (used by readers) performs strict validation on the lpos
1202  * values to possibly detect bugs in the writer code. A WARN_ON_ONCE() is
1203  * triggered if an internal error is detected.
1204  */
1205 static const char *get_data(struct prb_data_ring *data_ring,
1206 			    struct prb_data_blk_lpos *blk_lpos,
1207 			    unsigned int *data_size)
1208 {
1209 	struct prb_data_block *db;
1210 
1211 	/* Data-less data block description. */
1212 	if (BLK_DATALESS(blk_lpos)) {
1213 		if (blk_lpos->begin == NO_LPOS && blk_lpos->next == NO_LPOS) {
1214 			*data_size = 0;
1215 			return "";
1216 		}
1217 		return NULL;
1218 	}
1219 
1220 	/* Regular data block: @begin less than @next and in same wrap. */
1221 	if (DATA_WRAPS(data_ring, blk_lpos->begin) == DATA_WRAPS(data_ring, blk_lpos->next) &&
1222 	    blk_lpos->begin < blk_lpos->next) {
1223 		db = to_block(data_ring, blk_lpos->begin);
1224 		*data_size = blk_lpos->next - blk_lpos->begin;
1225 
1226 	/* Wrapping data block: @begin is one wrap behind @next. */
1227 	} else if (DATA_WRAPS(data_ring, blk_lpos->begin + DATA_SIZE(data_ring)) ==
1228 		   DATA_WRAPS(data_ring, blk_lpos->next)) {
1229 		db = to_block(data_ring, 0);
1230 		*data_size = DATA_INDEX(data_ring, blk_lpos->next);
1231 
1232 	/* Illegal block description. */
1233 	} else {
1234 		WARN_ON_ONCE(1);
1235 		return NULL;
1236 	}
1237 
1238 	/* A valid data block will always be aligned to the ID size. */
1239 	if (WARN_ON_ONCE(blk_lpos->begin != ALIGN(blk_lpos->begin, sizeof(db->id))) ||
1240 	    WARN_ON_ONCE(blk_lpos->next != ALIGN(blk_lpos->next, sizeof(db->id)))) {
1241 		return NULL;
1242 	}
1243 
1244 	/* A valid data block will always have at least an ID. */
1245 	if (WARN_ON_ONCE(*data_size < sizeof(db->id)))
1246 		return NULL;
1247 
1248 	/* Subtract block ID space from size to reflect data size. */
1249 	*data_size -= sizeof(db->id);
1250 
1251 	return &db->data[0];
1252 }
1253 
1254 /*
1255  * Attempt to transition the newest descriptor from committed back to reserved
1256  * so that the record can be modified by a writer again. This is only possible
1257  * if the descriptor is not yet finalized and the provided @caller_id matches.
1258  */
1259 static struct prb_desc *desc_reopen_last(struct prb_desc_ring *desc_ring,
1260 					 u32 caller_id, unsigned long *id_out)
1261 {
1262 	unsigned long prev_state_val;
1263 	enum desc_state d_state;
1264 	struct prb_desc desc;
1265 	struct prb_desc *d;
1266 	unsigned long id;
1267 	u32 cid;
1268 
1269 	id = atomic_long_read(&desc_ring->head_id);
1270 
1271 	/*
1272 	 * To reduce unnecessarily reopening, first check if the descriptor
1273 	 * state and caller ID are correct.
1274 	 */
1275 	d_state = desc_read(desc_ring, id, &desc, NULL, &cid);
1276 	if (d_state != desc_committed || cid != caller_id)
1277 		return NULL;
1278 
1279 	d = to_desc(desc_ring, id);
1280 
1281 	prev_state_val = DESC_SV(id, desc_committed);
1282 
1283 	/*
1284 	 * Guarantee the reserved state is stored before reading any
1285 	 * record data. A full memory barrier is needed because @state_var
1286 	 * modification is followed by reading. This pairs with _prb_commit:B.
1287 	 *
1288 	 * Memory barrier involvement:
1289 	 *
1290 	 * If desc_reopen_last:A reads from _prb_commit:B, then
1291 	 * prb_reserve_in_last:A reads from _prb_commit:A.
1292 	 *
1293 	 * Relies on:
1294 	 *
1295 	 * WMB from _prb_commit:A to _prb_commit:B
1296 	 *    matching
1297 	 * MB If desc_reopen_last:A to prb_reserve_in_last:A
1298 	 */
1299 	if (!atomic_long_try_cmpxchg(&d->state_var, &prev_state_val,
1300 			DESC_SV(id, desc_reserved))) { /* LMM(desc_reopen_last:A) */
1301 		return NULL;
1302 	}
1303 
1304 	*id_out = id;
1305 	return d;
1306 }
1307 
1308 /**
1309  * prb_reserve_in_last() - Re-reserve and extend the space in the ringbuffer
1310  *                         used by the newest record.
1311  *
1312  * @e:         The entry structure to setup.
1313  * @rb:        The ringbuffer to re-reserve and extend data in.
1314  * @r:         The record structure to allocate buffers for.
1315  * @caller_id: The caller ID of the caller (reserving writer).
1316  * @max_size:  Fail if the extended size would be greater than this.
1317  *
1318  * This is the public function available to writers to re-reserve and extend
1319  * data.
1320  *
1321  * The writer specifies the text size to extend (not the new total size) by
1322  * setting the @text_buf_size field of @r. To ensure proper initialization
1323  * of @r, prb_rec_init_wr() should be used.
1324  *
1325  * This function will fail if @caller_id does not match the caller ID of the
1326  * newest record. In that case the caller must reserve new data using
1327  * prb_reserve().
1328  *
1329  * Context: Any context. Disables local interrupts on success.
1330  * Return: true if text data could be extended, otherwise false.
1331  *
1332  * On success:
1333  *
1334  *   - @r->text_buf points to the beginning of the entire text buffer.
1335  *
1336  *   - @r->text_buf_size is set to the new total size of the buffer.
1337  *
1338  *   - @r->info is not touched so that @r->info->text_len could be used
1339  *     to append the text.
1340  *
1341  *   - prb_record_text_space() can be used on @e to query the new
1342  *     actually used space.
1343  *
1344  * Important: All @r->info fields will already be set with the current values
1345  *            for the record. I.e. @r->info->text_len will be less than
1346  *            @text_buf_size. Writers can use @r->info->text_len to know
1347  *            where concatenation begins and writers should update
1348  *            @r->info->text_len after concatenating.
1349  */
1350 bool prb_reserve_in_last(struct prb_reserved_entry *e, struct printk_ringbuffer *rb,
1351 			 struct printk_record *r, u32 caller_id, unsigned int max_size)
1352 {
1353 	struct prb_desc_ring *desc_ring = &rb->desc_ring;
1354 	struct printk_info *info;
1355 	unsigned int data_size;
1356 	struct prb_desc *d;
1357 	unsigned long id;
1358 
1359 	local_irq_save(e->irqflags);
1360 
1361 	/* Transition the newest descriptor back to the reserved state. */
1362 	d = desc_reopen_last(desc_ring, caller_id, &id);
1363 	if (!d) {
1364 		local_irq_restore(e->irqflags);
1365 		goto fail_reopen;
1366 	}
1367 
1368 	/* Now the writer has exclusive access: LMM(prb_reserve_in_last:A) */
1369 
1370 	info = to_info(desc_ring, id);
1371 
1372 	/*
1373 	 * Set the @e fields here so that prb_commit() can be used if
1374 	 * anything fails from now on.
1375 	 */
1376 	e->rb = rb;
1377 	e->id = id;
1378 
1379 	/*
1380 	 * desc_reopen_last() checked the caller_id, but there was no
1381 	 * exclusive access at that point. The descriptor may have
1382 	 * changed since then.
1383 	 */
1384 	if (caller_id != info->caller_id)
1385 		goto fail;
1386 
1387 	if (BLK_DATALESS(&d->text_blk_lpos)) {
1388 		if (WARN_ON_ONCE(info->text_len != 0)) {
1389 			pr_warn_once("wrong text_len value (%hu, expecting 0)\n",
1390 				     info->text_len);
1391 			info->text_len = 0;
1392 		}
1393 
1394 		if (!data_check_size(&rb->text_data_ring, r->text_buf_size))
1395 			goto fail;
1396 
1397 		if (r->text_buf_size > max_size)
1398 			goto fail;
1399 
1400 		r->text_buf = data_alloc(rb, &rb->text_data_ring, r->text_buf_size,
1401 					 &d->text_blk_lpos, id);
1402 	} else {
1403 		if (!get_data(&rb->text_data_ring, &d->text_blk_lpos, &data_size))
1404 			goto fail;
1405 
1406 		/*
1407 		 * Increase the buffer size to include the original size. If
1408 		 * the meta data (@text_len) is not sane, use the full data
1409 		 * block size.
1410 		 */
1411 		if (WARN_ON_ONCE(info->text_len > data_size)) {
1412 			pr_warn_once("wrong text_len value (%hu, expecting <=%u)\n",
1413 				     info->text_len, data_size);
1414 			info->text_len = data_size;
1415 		}
1416 		r->text_buf_size += info->text_len;
1417 
1418 		if (!data_check_size(&rb->text_data_ring, r->text_buf_size))
1419 			goto fail;
1420 
1421 		if (r->text_buf_size > max_size)
1422 			goto fail;
1423 
1424 		r->text_buf = data_realloc(rb, &rb->text_data_ring, r->text_buf_size,
1425 					   &d->text_blk_lpos, id);
1426 	}
1427 	if (r->text_buf_size && !r->text_buf)
1428 		goto fail;
1429 
1430 	r->info = info;
1431 
1432 	e->text_space = space_used(&rb->text_data_ring, &d->text_blk_lpos);
1433 
1434 	return true;
1435 fail:
1436 	prb_commit(e);
1437 	/* prb_commit() re-enabled interrupts. */
1438 fail_reopen:
1439 	/* Make it clear to the caller that the re-reserve failed. */
1440 	memset(r, 0, sizeof(*r));
1441 	return false;
1442 }
1443 
1444 /*
1445  * Attempt to finalize a specified descriptor. If this fails, the descriptor
1446  * is either already final or it will finalize itself when the writer commits.
1447  */
1448 static void desc_make_final(struct prb_desc_ring *desc_ring, unsigned long id)
1449 {
1450 	unsigned long prev_state_val = DESC_SV(id, desc_committed);
1451 	struct prb_desc *d = to_desc(desc_ring, id);
1452 
1453 	atomic_long_cmpxchg_relaxed(&d->state_var, prev_state_val,
1454 			DESC_SV(id, desc_finalized)); /* LMM(desc_make_final:A) */
1455 }
1456 
1457 /**
1458  * prb_reserve() - Reserve space in the ringbuffer.
1459  *
1460  * @e:  The entry structure to setup.
1461  * @rb: The ringbuffer to reserve data in.
1462  * @r:  The record structure to allocate buffers for.
1463  *
1464  * This is the public function available to writers to reserve data.
1465  *
1466  * The writer specifies the text size to reserve by setting the
1467  * @text_buf_size field of @r. To ensure proper initialization of @r,
1468  * prb_rec_init_wr() should be used.
1469  *
1470  * Context: Any context. Disables local interrupts on success.
1471  * Return: true if at least text data could be allocated, otherwise false.
1472  *
1473  * On success, the fields @info and @text_buf of @r will be set by this
1474  * function and should be filled in by the writer before committing. Also
1475  * on success, prb_record_text_space() can be used on @e to query the actual
1476  * space used for the text data block.
1477  *
1478  * Important: @info->text_len needs to be set correctly by the writer in
1479  *            order for data to be readable and/or extended. Its value
1480  *            is initialized to 0.
1481  */
1482 bool prb_reserve(struct prb_reserved_entry *e, struct printk_ringbuffer *rb,
1483 		 struct printk_record *r)
1484 {
1485 	struct prb_desc_ring *desc_ring = &rb->desc_ring;
1486 	struct printk_info *info;
1487 	struct prb_desc *d;
1488 	unsigned long id;
1489 	u64 seq;
1490 
1491 	if (!data_check_size(&rb->text_data_ring, r->text_buf_size))
1492 		goto fail;
1493 
1494 	/*
1495 	 * Descriptors in the reserved state act as blockers to all further
1496 	 * reservations once the desc_ring has fully wrapped. Disable
1497 	 * interrupts during the reserve/commit window in order to minimize
1498 	 * the likelihood of this happening.
1499 	 */
1500 	local_irq_save(e->irqflags);
1501 
1502 	if (!desc_reserve(rb, &id)) {
1503 		/* Descriptor reservation failures are tracked. */
1504 		atomic_long_inc(&rb->fail);
1505 		local_irq_restore(e->irqflags);
1506 		goto fail;
1507 	}
1508 
1509 	d = to_desc(desc_ring, id);
1510 	info = to_info(desc_ring, id);
1511 
1512 	/*
1513 	 * All @info fields (except @seq) are cleared and must be filled in
1514 	 * by the writer. Save @seq before clearing because it is used to
1515 	 * determine the new sequence number.
1516 	 */
1517 	seq = info->seq;
1518 	memset(info, 0, sizeof(*info));
1519 
1520 	/*
1521 	 * Set the @e fields here so that prb_commit() can be used if
1522 	 * text data allocation fails.
1523 	 */
1524 	e->rb = rb;
1525 	e->id = id;
1526 
1527 	/*
1528 	 * Initialize the sequence number if it has "never been set".
1529 	 * Otherwise just increment it by a full wrap.
1530 	 *
1531 	 * @seq is considered "never been set" if it has a value of 0,
1532 	 * _except_ for @infos[0], which was specially setup by the ringbuffer
1533 	 * initializer and therefore is always considered as set.
1534 	 *
1535 	 * See the "Bootstrap" comment block in printk_ringbuffer.h for
1536 	 * details about how the initializer bootstraps the descriptors.
1537 	 */
1538 	if (seq == 0 && DESC_INDEX(desc_ring, id) != 0)
1539 		info->seq = DESC_INDEX(desc_ring, id);
1540 	else
1541 		info->seq = seq + DESCS_COUNT(desc_ring);
1542 
1543 	/*
1544 	 * New data is about to be reserved. Once that happens, previous
1545 	 * descriptors are no longer able to be extended. Finalize the
1546 	 * previous descriptor now so that it can be made available to
1547 	 * readers. (For seq==0 there is no previous descriptor.)
1548 	 */
1549 	if (info->seq > 0)
1550 		desc_make_final(desc_ring, DESC_ID(id - 1));
1551 
1552 	r->text_buf = data_alloc(rb, &rb->text_data_ring, r->text_buf_size,
1553 				 &d->text_blk_lpos, id);
1554 	/* If text data allocation fails, a data-less record is committed. */
1555 	if (r->text_buf_size && !r->text_buf) {
1556 		prb_commit(e);
1557 		/* prb_commit() re-enabled interrupts. */
1558 		goto fail;
1559 	}
1560 
1561 	r->info = info;
1562 
1563 	/* Record full text space used by record. */
1564 	e->text_space = space_used(&rb->text_data_ring, &d->text_blk_lpos);
1565 
1566 	return true;
1567 fail:
1568 	/* Make it clear to the caller that the reserve failed. */
1569 	memset(r, 0, sizeof(*r));
1570 	return false;
1571 }
1572 
1573 /* Commit the data (possibly finalizing it) and restore interrupts. */
1574 static void _prb_commit(struct prb_reserved_entry *e, unsigned long state_val)
1575 {
1576 	struct prb_desc_ring *desc_ring = &e->rb->desc_ring;
1577 	struct prb_desc *d = to_desc(desc_ring, e->id);
1578 	unsigned long prev_state_val = DESC_SV(e->id, desc_reserved);
1579 
1580 	/* Now the writer has finished all writing: LMM(_prb_commit:A) */
1581 
1582 	/*
1583 	 * Set the descriptor as committed. See "ABA Issues" about why
1584 	 * cmpxchg() instead of set() is used.
1585 	 *
1586 	 * 1  Guarantee all record data is stored before the descriptor state
1587 	 *    is stored as committed. A write memory barrier is sufficient
1588 	 *    for this. This pairs with desc_read:B and desc_reopen_last:A.
1589 	 *
1590 	 * 2. Guarantee the descriptor state is stored as committed before
1591 	 *    re-checking the head ID in order to possibly finalize this
1592 	 *    descriptor. This pairs with desc_reserve:D.
1593 	 *
1594 	 *    Memory barrier involvement:
1595 	 *
1596 	 *    If prb_commit:A reads from desc_reserve:D, then
1597 	 *    desc_make_final:A reads from _prb_commit:B.
1598 	 *
1599 	 *    Relies on:
1600 	 *
1601 	 *    MB _prb_commit:B to prb_commit:A
1602 	 *       matching
1603 	 *    MB desc_reserve:D to desc_make_final:A
1604 	 */
1605 	if (!atomic_long_try_cmpxchg(&d->state_var, &prev_state_val,
1606 			DESC_SV(e->id, state_val))) { /* LMM(_prb_commit:B) */
1607 		WARN_ON_ONCE(1);
1608 	}
1609 
1610 	/* Restore interrupts, the reserve/commit window is finished. */
1611 	local_irq_restore(e->irqflags);
1612 }
1613 
1614 /**
1615  * prb_commit() - Commit (previously reserved) data to the ringbuffer.
1616  *
1617  * @e: The entry containing the reserved data information.
1618  *
1619  * This is the public function available to writers to commit data.
1620  *
1621  * Note that the data is not yet available to readers until it is finalized.
1622  * Finalizing happens automatically when space for the next record is
1623  * reserved.
1624  *
1625  * See prb_final_commit() for a version of this function that finalizes
1626  * immediately.
1627  *
1628  * Context: Any context. Enables local interrupts.
1629  */
1630 void prb_commit(struct prb_reserved_entry *e)
1631 {
1632 	struct prb_desc_ring *desc_ring = &e->rb->desc_ring;
1633 	unsigned long head_id;
1634 
1635 	_prb_commit(e, desc_committed);
1636 
1637 	/*
1638 	 * If this descriptor is no longer the head (i.e. a new record has
1639 	 * been allocated), extending the data for this record is no longer
1640 	 * allowed and therefore it must be finalized.
1641 	 */
1642 	head_id = atomic_long_read(&desc_ring->head_id); /* LMM(prb_commit:A) */
1643 	if (head_id != e->id)
1644 		desc_make_final(desc_ring, e->id);
1645 }
1646 
1647 /**
1648  * prb_final_commit() - Commit and finalize (previously reserved) data to
1649  *                      the ringbuffer.
1650  *
1651  * @e: The entry containing the reserved data information.
1652  *
1653  * This is the public function available to writers to commit+finalize data.
1654  *
1655  * By finalizing, the data is made immediately available to readers.
1656  *
1657  * This function should only be used if there are no intentions of extending
1658  * this data using prb_reserve_in_last().
1659  *
1660  * Context: Any context. Enables local interrupts.
1661  */
1662 void prb_final_commit(struct prb_reserved_entry *e)
1663 {
1664 	_prb_commit(e, desc_finalized);
1665 }
1666 
1667 /*
1668  * Count the number of lines in provided text. All text has at least 1 line
1669  * (even if @text_size is 0). Each '\n' processed is counted as an additional
1670  * line.
1671  */
1672 static unsigned int count_lines(const char *text, unsigned int text_size)
1673 {
1674 	unsigned int next_size = text_size;
1675 	unsigned int line_count = 1;
1676 	const char *next = text;
1677 
1678 	while (next_size) {
1679 		next = memchr(next, '\n', next_size);
1680 		if (!next)
1681 			break;
1682 		line_count++;
1683 		next++;
1684 		next_size = text_size - (next - text);
1685 	}
1686 
1687 	return line_count;
1688 }
1689 
1690 /*
1691  * Given @blk_lpos, copy an expected @len of data into the provided buffer.
1692  * If @line_count is provided, count the number of lines in the data.
1693  *
1694  * This function (used by readers) performs strict validation on the data
1695  * size to possibly detect bugs in the writer code. A WARN_ON_ONCE() is
1696  * triggered if an internal error is detected.
1697  */
1698 static bool copy_data(struct prb_data_ring *data_ring,
1699 		      struct prb_data_blk_lpos *blk_lpos, u16 len, char *buf,
1700 		      unsigned int buf_size, unsigned int *line_count)
1701 {
1702 	unsigned int data_size;
1703 	const char *data;
1704 
1705 	/* Caller might not want any data. */
1706 	if ((!buf || !buf_size) && !line_count)
1707 		return true;
1708 
1709 	data = get_data(data_ring, blk_lpos, &data_size);
1710 	if (!data)
1711 		return false;
1712 
1713 	/*
1714 	 * Actual cannot be less than expected. It can be more than expected
1715 	 * because of the trailing alignment padding.
1716 	 *
1717 	 * Note that invalid @len values can occur because the caller loads
1718 	 * the value during an allowed data race.
1719 	 */
1720 	if (data_size < (unsigned int)len)
1721 		return false;
1722 
1723 	/* Caller interested in the line count? */
1724 	if (line_count)
1725 		*line_count = count_lines(data, data_size);
1726 
1727 	/* Caller interested in the data content? */
1728 	if (!buf || !buf_size)
1729 		return true;
1730 
1731 	data_size = min_t(u16, buf_size, len);
1732 
1733 	memcpy(&buf[0], data, data_size); /* LMM(copy_data:A) */
1734 	return true;
1735 }
1736 
1737 /*
1738  * This is an extended version of desc_read(). It gets a copy of a specified
1739  * descriptor. However, it also verifies that the record is finalized and has
1740  * the sequence number @seq. On success, 0 is returned.
1741  *
1742  * Error return values:
1743  * -EINVAL: A finalized record with sequence number @seq does not exist.
1744  * -ENOENT: A finalized record with sequence number @seq exists, but its data
1745  *          is not available. This is a valid record, so readers should
1746  *          continue with the next record.
1747  */
1748 static int desc_read_finalized_seq(struct prb_desc_ring *desc_ring,
1749 				   unsigned long id, u64 seq,
1750 				   struct prb_desc *desc_out)
1751 {
1752 	struct prb_data_blk_lpos *blk_lpos = &desc_out->text_blk_lpos;
1753 	enum desc_state d_state;
1754 	u64 s;
1755 
1756 	d_state = desc_read(desc_ring, id, desc_out, &s, NULL);
1757 
1758 	/*
1759 	 * An unexpected @id (desc_miss) or @seq mismatch means the record
1760 	 * does not exist. A descriptor in the reserved or committed state
1761 	 * means the record does not yet exist for the reader.
1762 	 */
1763 	if (d_state == desc_miss ||
1764 	    d_state == desc_reserved ||
1765 	    d_state == desc_committed ||
1766 	    s != seq) {
1767 		return -EINVAL;
1768 	}
1769 
1770 	/*
1771 	 * A descriptor in the reusable state may no longer have its data
1772 	 * available; report it as existing but with lost data. Or the record
1773 	 * may actually be a record with lost data.
1774 	 */
1775 	if (d_state == desc_reusable ||
1776 	    (blk_lpos->begin == FAILED_LPOS && blk_lpos->next == FAILED_LPOS)) {
1777 		return -ENOENT;
1778 	}
1779 
1780 	return 0;
1781 }
1782 
1783 /*
1784  * Copy the ringbuffer data from the record with @seq to the provided
1785  * @r buffer. On success, 0 is returned.
1786  *
1787  * See desc_read_finalized_seq() for error return values.
1788  */
1789 static int prb_read(struct printk_ringbuffer *rb, u64 seq,
1790 		    struct printk_record *r, unsigned int *line_count)
1791 {
1792 	struct prb_desc_ring *desc_ring = &rb->desc_ring;
1793 	struct printk_info *info = to_info(desc_ring, seq);
1794 	struct prb_desc *rdesc = to_desc(desc_ring, seq);
1795 	atomic_long_t *state_var = &rdesc->state_var;
1796 	struct prb_desc desc;
1797 	unsigned long id;
1798 	int err;
1799 
1800 	/* Extract the ID, used to specify the descriptor to read. */
1801 	id = DESC_ID(atomic_long_read(state_var));
1802 
1803 	/* Get a local copy of the correct descriptor (if available). */
1804 	err = desc_read_finalized_seq(desc_ring, id, seq, &desc);
1805 
1806 	/*
1807 	 * If @r is NULL, the caller is only interested in the availability
1808 	 * of the record.
1809 	 */
1810 	if (err || !r)
1811 		return err;
1812 
1813 	/* If requested, copy meta data. */
1814 	if (r->info)
1815 		memcpy(r->info, info, sizeof(*(r->info)));
1816 
1817 	/* Copy text data. If it fails, this is a data-less record. */
1818 	if (!copy_data(&rb->text_data_ring, &desc.text_blk_lpos, info->text_len,
1819 		       r->text_buf, r->text_buf_size, line_count)) {
1820 		return -ENOENT;
1821 	}
1822 
1823 	/* Ensure the record is still finalized and has the same @seq. */
1824 	return desc_read_finalized_seq(desc_ring, id, seq, &desc);
1825 }
1826 
1827 /* Get the sequence number of the tail descriptor. */
1828 static u64 prb_first_seq(struct printk_ringbuffer *rb)
1829 {
1830 	struct prb_desc_ring *desc_ring = &rb->desc_ring;
1831 	enum desc_state d_state;
1832 	struct prb_desc desc;
1833 	unsigned long id;
1834 	u64 seq;
1835 
1836 	for (;;) {
1837 		id = atomic_long_read(&rb->desc_ring.tail_id); /* LMM(prb_first_seq:A) */
1838 
1839 		d_state = desc_read(desc_ring, id, &desc, &seq, NULL); /* LMM(prb_first_seq:B) */
1840 
1841 		/*
1842 		 * This loop will not be infinite because the tail is
1843 		 * _always_ in the finalized or reusable state.
1844 		 */
1845 		if (d_state == desc_finalized || d_state == desc_reusable)
1846 			break;
1847 
1848 		/*
1849 		 * Guarantee the last state load from desc_read() is before
1850 		 * reloading @tail_id in order to see a new tail in the case
1851 		 * that the descriptor has been recycled. This pairs with
1852 		 * desc_reserve:D.
1853 		 *
1854 		 * Memory barrier involvement:
1855 		 *
1856 		 * If prb_first_seq:B reads from desc_reserve:F, then
1857 		 * prb_first_seq:A reads from desc_push_tail:B.
1858 		 *
1859 		 * Relies on:
1860 		 *
1861 		 * MB from desc_push_tail:B to desc_reserve:F
1862 		 *    matching
1863 		 * RMB prb_first_seq:B to prb_first_seq:A
1864 		 */
1865 		smp_rmb(); /* LMM(prb_first_seq:C) */
1866 	}
1867 
1868 	return seq;
1869 }
1870 
1871 /*
1872  * Non-blocking read of a record. Updates @seq to the last finalized record
1873  * (which may have no data available).
1874  *
1875  * See the description of prb_read_valid() and prb_read_valid_info()
1876  * for details.
1877  */
1878 static bool _prb_read_valid(struct printk_ringbuffer *rb, u64 *seq,
1879 			    struct printk_record *r, unsigned int *line_count)
1880 {
1881 	u64 tail_seq;
1882 	int err;
1883 
1884 	while ((err = prb_read(rb, *seq, r, line_count))) {
1885 		tail_seq = prb_first_seq(rb);
1886 
1887 		if (*seq < tail_seq) {
1888 			/*
1889 			 * Behind the tail. Catch up and try again. This
1890 			 * can happen for -ENOENT and -EINVAL cases.
1891 			 */
1892 			*seq = tail_seq;
1893 
1894 		} else if (err == -ENOENT) {
1895 			/* Record exists, but no data available. Skip. */
1896 			(*seq)++;
1897 
1898 		} else {
1899 			/* Non-existent/non-finalized record. Must stop. */
1900 			return false;
1901 		}
1902 	}
1903 
1904 	return true;
1905 }
1906 
1907 /**
1908  * prb_read_valid() - Non-blocking read of a requested record or (if gone)
1909  *                    the next available record.
1910  *
1911  * @rb:  The ringbuffer to read from.
1912  * @seq: The sequence number of the record to read.
1913  * @r:   A record data buffer to store the read record to.
1914  *
1915  * This is the public function available to readers to read a record.
1916  *
1917  * The reader provides the @info and @text_buf buffers of @r to be
1918  * filled in. Any of the buffer pointers can be set to NULL if the reader
1919  * is not interested in that data. To ensure proper initialization of @r,
1920  * prb_rec_init_rd() should be used.
1921  *
1922  * Context: Any context.
1923  * Return: true if a record was read, otherwise false.
1924  *
1925  * On success, the reader must check r->info.seq to see which record was
1926  * actually read. This allows the reader to detect dropped records.
1927  *
1928  * Failure means @seq refers to a not yet written record.
1929  */
1930 bool prb_read_valid(struct printk_ringbuffer *rb, u64 seq,
1931 		    struct printk_record *r)
1932 {
1933 	return _prb_read_valid(rb, &seq, r, NULL);
1934 }
1935 
1936 /**
1937  * prb_read_valid_info() - Non-blocking read of meta data for a requested
1938  *                         record or (if gone) the next available record.
1939  *
1940  * @rb:         The ringbuffer to read from.
1941  * @seq:        The sequence number of the record to read.
1942  * @info:       A buffer to store the read record meta data to.
1943  * @line_count: A buffer to store the number of lines in the record text.
1944  *
1945  * This is the public function available to readers to read only the
1946  * meta data of a record.
1947  *
1948  * The reader provides the @info, @line_count buffers to be filled in.
1949  * Either of the buffer pointers can be set to NULL if the reader is not
1950  * interested in that data.
1951  *
1952  * Context: Any context.
1953  * Return: true if a record's meta data was read, otherwise false.
1954  *
1955  * On success, the reader must check info->seq to see which record meta data
1956  * was actually read. This allows the reader to detect dropped records.
1957  *
1958  * Failure means @seq refers to a not yet written record.
1959  */
1960 bool prb_read_valid_info(struct printk_ringbuffer *rb, u64 seq,
1961 			 struct printk_info *info, unsigned int *line_count)
1962 {
1963 	struct printk_record r;
1964 
1965 	prb_rec_init_rd(&r, info, NULL, 0);
1966 
1967 	return _prb_read_valid(rb, &seq, &r, line_count);
1968 }
1969 
1970 /**
1971  * prb_first_valid_seq() - Get the sequence number of the oldest available
1972  *                         record.
1973  *
1974  * @rb: The ringbuffer to get the sequence number from.
1975  *
1976  * This is the public function available to readers to see what the
1977  * first/oldest valid sequence number is.
1978  *
1979  * This provides readers a starting point to begin iterating the ringbuffer.
1980  *
1981  * Context: Any context.
1982  * Return: The sequence number of the first/oldest record or, if the
1983  *         ringbuffer is empty, 0 is returned.
1984  */
1985 u64 prb_first_valid_seq(struct printk_ringbuffer *rb)
1986 {
1987 	u64 seq = 0;
1988 
1989 	if (!_prb_read_valid(rb, &seq, NULL, NULL))
1990 		return 0;
1991 
1992 	return seq;
1993 }
1994 
1995 /**
1996  * prb_next_seq() - Get the sequence number after the last available record.
1997  *
1998  * @rb:  The ringbuffer to get the sequence number from.
1999  *
2000  * This is the public function available to readers to see what the next
2001  * newest sequence number available to readers will be.
2002  *
2003  * This provides readers a sequence number to jump to if all currently
2004  * available records should be skipped.
2005  *
2006  * Context: Any context.
2007  * Return: The sequence number of the next newest (not yet available) record
2008  *         for readers.
2009  */
2010 u64 prb_next_seq(struct printk_ringbuffer *rb)
2011 {
2012 	u64 seq = 0;
2013 
2014 	/* Search forward from the oldest descriptor. */
2015 	while (_prb_read_valid(rb, &seq, NULL, NULL))
2016 		seq++;
2017 
2018 	return seq;
2019 }
2020 
2021 /**
2022  * prb_init() - Initialize a ringbuffer to use provided external buffers.
2023  *
2024  * @rb:       The ringbuffer to initialize.
2025  * @text_buf: The data buffer for text data.
2026  * @textbits: The size of @text_buf as a power-of-2 value.
2027  * @descs:    The descriptor buffer for ringbuffer records.
2028  * @descbits: The count of @descs items as a power-of-2 value.
2029  * @infos:    The printk_info buffer for ringbuffer records.
2030  *
2031  * This is the public function available to writers to setup a ringbuffer
2032  * during runtime using provided buffers.
2033  *
2034  * This must match the initialization of DEFINE_PRINTKRB().
2035  *
2036  * Context: Any context.
2037  */
2038 void prb_init(struct printk_ringbuffer *rb,
2039 	      char *text_buf, unsigned int textbits,
2040 	      struct prb_desc *descs, unsigned int descbits,
2041 	      struct printk_info *infos)
2042 {
2043 	memset(descs, 0, _DESCS_COUNT(descbits) * sizeof(descs[0]));
2044 	memset(infos, 0, _DESCS_COUNT(descbits) * sizeof(infos[0]));
2045 
2046 	rb->desc_ring.count_bits = descbits;
2047 	rb->desc_ring.descs = descs;
2048 	rb->desc_ring.infos = infos;
2049 	atomic_long_set(&rb->desc_ring.head_id, DESC0_ID(descbits));
2050 	atomic_long_set(&rb->desc_ring.tail_id, DESC0_ID(descbits));
2051 
2052 	rb->text_data_ring.size_bits = textbits;
2053 	rb->text_data_ring.data = text_buf;
2054 	atomic_long_set(&rb->text_data_ring.head_lpos, BLK0_LPOS(textbits));
2055 	atomic_long_set(&rb->text_data_ring.tail_lpos, BLK0_LPOS(textbits));
2056 
2057 	atomic_long_set(&rb->fail, 0);
2058 
2059 	atomic_long_set(&(descs[_DESCS_COUNT(descbits) - 1].state_var), DESC0_SV(descbits));
2060 	descs[_DESCS_COUNT(descbits) - 1].text_blk_lpos.begin = FAILED_LPOS;
2061 	descs[_DESCS_COUNT(descbits) - 1].text_blk_lpos.next = FAILED_LPOS;
2062 
2063 	infos[0].seq = -(u64)_DESCS_COUNT(descbits);
2064 	infos[_DESCS_COUNT(descbits) - 1].seq = 0;
2065 }
2066 
2067 /**
2068  * prb_record_text_space() - Query the full actual used ringbuffer space for
2069  *                           the text data of a reserved entry.
2070  *
2071  * @e: The successfully reserved entry to query.
2072  *
2073  * This is the public function available to writers to see how much actual
2074  * space is used in the ringbuffer to store the text data of the specified
2075  * entry.
2076  *
2077  * This function is only valid if @e has been successfully reserved using
2078  * prb_reserve().
2079  *
2080  * Context: Any context.
2081  * Return: The size in bytes used by the text data of the associated record.
2082  */
2083 unsigned int prb_record_text_space(struct prb_reserved_entry *e)
2084 {
2085 	return e->text_space;
2086 }
2087