1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include <linux/kernel.h>
4 #include <linux/irqflags.h>
5 #include <linux/string.h>
6 #include <linux/errno.h>
7 #include <linux/bug.h>
8 #include "printk_ringbuffer.h"
9 
10 /**
11  * DOC: printk_ringbuffer overview
12  *
13  * Data Structure
14  * --------------
15  * The printk_ringbuffer is made up of 3 internal ringbuffers:
16  *
17  *   desc_ring
18  *     A ring of descriptors and their meta data (such as sequence number,
19  *     timestamp, loglevel, etc.) as well as internal state information about
20  *     the record and logical positions specifying where in the other
21  *     ringbuffer the text strings are located.
22  *
23  *   text_data_ring
24  *     A ring of data blocks. A data block consists of an unsigned long
25  *     integer (ID) that maps to a desc_ring index followed by the text
26  *     string of the record.
27  *
28  * The internal state information of a descriptor is the key element to allow
29  * readers and writers to locklessly synchronize access to the data.
30  *
31  * Implementation
32  * --------------
33  *
34  * Descriptor Ring
35  * ~~~~~~~~~~~~~~~
36  * The descriptor ring is an array of descriptors. A descriptor contains
37  * essential meta data to track the data of a printk record using
38  * blk_lpos structs pointing to associated text data blocks (see
39  * "Data Rings" below). Each descriptor is assigned an ID that maps
40  * directly to index values of the descriptor array and has a state. The ID
41  * and the state are bitwise combined into a single descriptor field named
42  * @state_var, allowing ID and state to be synchronously and atomically
43  * updated.
44  *
45  * Descriptors have four states:
46  *
47  *   reserved
48  *     A writer is modifying the record.
49  *
50  *   committed
51  *     The record and all its data are written. A writer can reopen the
52  *     descriptor (transitioning it back to reserved), but in the committed
53  *     state the data is consistent.
54  *
55  *   finalized
56  *     The record and all its data are complete and available for reading. A
57  *     writer cannot reopen the descriptor.
58  *
59  *   reusable
60  *     The record exists, but its text and/or meta data may no longer be
61  *     available.
62  *
63  * Querying the @state_var of a record requires providing the ID of the
64  * descriptor to query. This can yield a possible fifth (pseudo) state:
65  *
66  *   miss
67  *     The descriptor being queried has an unexpected ID.
68  *
69  * The descriptor ring has a @tail_id that contains the ID of the oldest
70  * descriptor and @head_id that contains the ID of the newest descriptor.
71  *
72  * When a new descriptor should be created (and the ring is full), the tail
73  * descriptor is invalidated by first transitioning to the reusable state and
74  * then invalidating all tail data blocks up to and including the data blocks
75  * associated with the tail descriptor (for the text ring). Then
76  * @tail_id is advanced, followed by advancing @head_id. And finally the
77  * @state_var of the new descriptor is initialized to the new ID and reserved
78  * state.
79  *
80  * The @tail_id can only be advanced if the new @tail_id would be in the
81  * committed or reusable queried state. This makes it possible that a valid
82  * sequence number of the tail is always available.
83  *
84  * Descriptor Finalization
85  * ~~~~~~~~~~~~~~~~~~~~~~~
86  * When a writer calls the commit function prb_commit(), record data is
87  * fully stored and is consistent within the ringbuffer. However, a writer can
88  * reopen that record, claiming exclusive access (as with prb_reserve()), and
89  * modify that record. When finished, the writer must again commit the record.
90  *
91  * In order for a record to be made available to readers (and also become
92  * recyclable for writers), it must be finalized. A finalized record cannot be
93  * reopened and can never become "unfinalized". Record finalization can occur
94  * in three different scenarios:
95  *
96  *   1) A writer can simultaneously commit and finalize its record by calling
97  *      prb_final_commit() instead of prb_commit().
98  *
99  *   2) When a new record is reserved and the previous record has been
100  *      committed via prb_commit(), that previous record is automatically
101  *      finalized.
102  *
103  *   3) When a record is committed via prb_commit() and a newer record
104  *      already exists, the record being committed is automatically finalized.
105  *
106  * Data Ring
107  * ~~~~~~~~~
108  * The text data ring is a byte array composed of data blocks. Data blocks are
109  * referenced by blk_lpos structs that point to the logical position of the
110  * beginning of a data block and the beginning of the next adjacent data
111  * block. Logical positions are mapped directly to index values of the byte
112  * array ringbuffer.
113  *
114  * Each data block consists of an ID followed by the writer data. The ID is
115  * the identifier of a descriptor that is associated with the data block. A
116  * given data block is considered valid if all of the following conditions
117  * are met:
118  *
119  *   1) The descriptor associated with the data block is in the committed
120  *      or finalized queried state.
121  *
122  *   2) The blk_lpos struct within the descriptor associated with the data
123  *      block references back to the same data block.
124  *
125  *   3) The data block is within the head/tail logical position range.
126  *
127  * If the writer data of a data block would extend beyond the end of the
128  * byte array, only the ID of the data block is stored at the logical
129  * position and the full data block (ID and writer data) is stored at the
130  * beginning of the byte array. The referencing blk_lpos will point to the
131  * ID before the wrap and the next data block will be at the logical
132  * position adjacent the full data block after the wrap.
133  *
134  * Data rings have a @tail_lpos that points to the beginning of the oldest
135  * data block and a @head_lpos that points to the logical position of the
136  * next (not yet existing) data block.
137  *
138  * When a new data block should be created (and the ring is full), tail data
139  * blocks will first be invalidated by putting their associated descriptors
140  * into the reusable state and then pushing the @tail_lpos forward beyond
141  * them. Then the @head_lpos is pushed forward and is associated with a new
142  * descriptor. If a data block is not valid, the @tail_lpos cannot be
143  * advanced beyond it.
144  *
145  * Info Array
146  * ~~~~~~~~~~
147  * The general meta data of printk records are stored in printk_info structs,
148  * stored in an array with the same number of elements as the descriptor ring.
149  * Each info corresponds to the descriptor of the same index in the
150  * descriptor ring. Info validity is confirmed by evaluating the corresponding
151  * descriptor before and after loading the info.
152  *
153  * Usage
154  * -----
155  * Here are some simple examples demonstrating writers and readers. For the
156  * examples a global ringbuffer (test_rb) is available (which is not the
157  * actual ringbuffer used by printk)::
158  *
159  *	DEFINE_PRINTKRB(test_rb, 15, 5);
160  *
161  * This ringbuffer allows up to 32768 records (2 ^ 15) and has a size of
162  * 1 MiB (2 ^ (15 + 5)) for text data.
163  *
164  * Sample writer code::
165  *
166  *	const char *textstr = "message text";
167  *	struct prb_reserved_entry e;
168  *	struct printk_record r;
169  *
170  *	// specify how much to allocate
171  *	prb_rec_init_wr(&r, strlen(textstr) + 1);
172  *
173  *	if (prb_reserve(&e, &test_rb, &r)) {
174  *		snprintf(r.text_buf, r.text_buf_size, "%s", textstr);
175  *
176  *		r.info->text_len = strlen(textstr);
177  *		r.info->ts_nsec = local_clock();
178  *		r.info->caller_id = printk_caller_id();
179  *
180  *		// commit and finalize the record
181  *		prb_final_commit(&e);
182  *	}
183  *
184  * Note that additional writer functions are available to extend a record
185  * after it has been committed but not yet finalized. This can be done as
186  * long as no new records have been reserved and the caller is the same.
187  *
188  * Sample writer code (record extending)::
189  *
190  *		// alternate rest of previous example
191  *
192  *		r.info->text_len = strlen(textstr);
193  *		r.info->ts_nsec = local_clock();
194  *		r.info->caller_id = printk_caller_id();
195  *
196  *		// commit the record (but do not finalize yet)
197  *		prb_commit(&e);
198  *	}
199  *
200  *	...
201  *
202  *	// specify additional 5 bytes text space to extend
203  *	prb_rec_init_wr(&r, 5);
204  *
205  *	// try to extend, but only if it does not exceed 32 bytes
206  *	if (prb_reserve_in_last(&e, &test_rb, &r, printk_caller_id()), 32) {
207  *		snprintf(&r.text_buf[r.info->text_len],
208  *			 r.text_buf_size - r.info->text_len, "hello");
209  *
210  *		r.info->text_len += 5;
211  *
212  *		// commit and finalize the record
213  *		prb_final_commit(&e);
214  *	}
215  *
216  * Sample reader code::
217  *
218  *	struct printk_info info;
219  *	struct printk_record r;
220  *	char text_buf[32];
221  *	u64 seq;
222  *
223  *	prb_rec_init_rd(&r, &info, &text_buf[0], sizeof(text_buf));
224  *
225  *	prb_for_each_record(0, &test_rb, &seq, &r) {
226  *		if (info.seq != seq)
227  *			pr_warn("lost %llu records\n", info.seq - seq);
228  *
229  *		if (info.text_len > r.text_buf_size) {
230  *			pr_warn("record %llu text truncated\n", info.seq);
231  *			text_buf[r.text_buf_size - 1] = 0;
232  *		}
233  *
234  *		pr_info("%llu: %llu: %s\n", info.seq, info.ts_nsec,
235  *			&text_buf[0]);
236  *	}
237  *
238  * Note that additional less convenient reader functions are available to
239  * allow complex record access.
240  *
241  * ABA Issues
242  * ~~~~~~~~~~
243  * To help avoid ABA issues, descriptors are referenced by IDs (array index
244  * values combined with tagged bits counting array wraps) and data blocks are
245  * referenced by logical positions (array index values combined with tagged
246  * bits counting array wraps). However, on 32-bit systems the number of
247  * tagged bits is relatively small such that an ABA incident is (at least
248  * theoretically) possible. For example, if 4 million maximally sized (1KiB)
249  * printk messages were to occur in NMI context on a 32-bit system, the
250  * interrupted context would not be able to recognize that the 32-bit integer
251  * completely wrapped and thus represents a different data block than the one
252  * the interrupted context expects.
253  *
254  * To help combat this possibility, additional state checking is performed
255  * (such as using cmpxchg() even though set() would suffice). These extra
256  * checks are commented as such and will hopefully catch any ABA issue that
257  * a 32-bit system might experience.
258  *
259  * Memory Barriers
260  * ~~~~~~~~~~~~~~~
261  * Multiple memory barriers are used. To simplify proving correctness and
262  * generating litmus tests, lines of code related to memory barriers
263  * (loads, stores, and the associated memory barriers) are labeled::
264  *
265  *	LMM(function:letter)
266  *
267  * Comments reference the labels using only the "function:letter" part.
268  *
269  * The memory barrier pairs and their ordering are:
270  *
271  *   desc_reserve:D / desc_reserve:B
272  *     push descriptor tail (id), then push descriptor head (id)
273  *
274  *   desc_reserve:D / data_push_tail:B
275  *     push data tail (lpos), then set new descriptor reserved (state)
276  *
277  *   desc_reserve:D / desc_push_tail:C
278  *     push descriptor tail (id), then set new descriptor reserved (state)
279  *
280  *   desc_reserve:D / prb_first_seq:C
281  *     push descriptor tail (id), then set new descriptor reserved (state)
282  *
283  *   desc_reserve:F / desc_read:D
284  *     set new descriptor id and reserved (state), then allow writer changes
285  *
286  *   data_alloc:A (or data_realloc:A) / desc_read:D
287  *     set old descriptor reusable (state), then modify new data block area
288  *
289  *   data_alloc:A (or data_realloc:A) / data_push_tail:B
290  *     push data tail (lpos), then modify new data block area
291  *
292  *   _prb_commit:B / desc_read:B
293  *     store writer changes, then set new descriptor committed (state)
294  *
295  *   desc_reopen_last:A / _prb_commit:B
296  *     set descriptor reserved (state), then read descriptor data
297  *
298  *   _prb_commit:B / desc_reserve:D
299  *     set new descriptor committed (state), then check descriptor head (id)
300  *
301  *   data_push_tail:D / data_push_tail:A
302  *     set descriptor reusable (state), then push data tail (lpos)
303  *
304  *   desc_push_tail:B / desc_reserve:D
305  *     set descriptor reusable (state), then push descriptor tail (id)
306  */
307 
308 #define DATA_SIZE(data_ring)		_DATA_SIZE((data_ring)->size_bits)
309 #define DATA_SIZE_MASK(data_ring)	(DATA_SIZE(data_ring) - 1)
310 
311 #define DESCS_COUNT(desc_ring)		_DESCS_COUNT((desc_ring)->count_bits)
312 #define DESCS_COUNT_MASK(desc_ring)	(DESCS_COUNT(desc_ring) - 1)
313 
314 /* Determine the data array index from a logical position. */
315 #define DATA_INDEX(data_ring, lpos)	((lpos) & DATA_SIZE_MASK(data_ring))
316 
317 /* Determine the desc array index from an ID or sequence number. */
318 #define DESC_INDEX(desc_ring, n)	((n) & DESCS_COUNT_MASK(desc_ring))
319 
320 /* Determine how many times the data array has wrapped. */
321 #define DATA_WRAPS(data_ring, lpos)	((lpos) >> (data_ring)->size_bits)
322 
323 /* Determine if a logical position refers to a data-less block. */
324 #define LPOS_DATALESS(lpos)		((lpos) & 1UL)
325 #define BLK_DATALESS(blk)		(LPOS_DATALESS((blk)->begin) && \
326 					 LPOS_DATALESS((blk)->next))
327 
328 /* Get the logical position at index 0 of the current wrap. */
329 #define DATA_THIS_WRAP_START_LPOS(data_ring, lpos) \
330 ((lpos) & ~DATA_SIZE_MASK(data_ring))
331 
332 /* Get the ID for the same index of the previous wrap as the given ID. */
333 #define DESC_ID_PREV_WRAP(desc_ring, id) \
334 DESC_ID((id) - DESCS_COUNT(desc_ring))
335 
336 /*
337  * A data block: mapped directly to the beginning of the data block area
338  * specified as a logical position within the data ring.
339  *
340  * @id:   the ID of the associated descriptor
341  * @data: the writer data
342  *
343  * Note that the size of a data block is only known by its associated
344  * descriptor.
345  */
346 struct prb_data_block {
347 	unsigned long	id;
348 	char		data[];
349 };
350 
351 /*
352  * Return the descriptor associated with @n. @n can be either a
353  * descriptor ID or a sequence number.
354  */
355 static struct prb_desc *to_desc(struct prb_desc_ring *desc_ring, u64 n)
356 {
357 	return &desc_ring->descs[DESC_INDEX(desc_ring, n)];
358 }
359 
360 /*
361  * Return the printk_info associated with @n. @n can be either a
362  * descriptor ID or a sequence number.
363  */
364 static struct printk_info *to_info(struct prb_desc_ring *desc_ring, u64 n)
365 {
366 	return &desc_ring->infos[DESC_INDEX(desc_ring, n)];
367 }
368 
369 static struct prb_data_block *to_block(struct prb_data_ring *data_ring,
370 				       unsigned long begin_lpos)
371 {
372 	return (void *)&data_ring->data[DATA_INDEX(data_ring, begin_lpos)];
373 }
374 
375 /*
376  * Increase the data size to account for data block meta data plus any
377  * padding so that the adjacent data block is aligned on the ID size.
378  */
379 static unsigned int to_blk_size(unsigned int size)
380 {
381 	struct prb_data_block *db = NULL;
382 
383 	size += sizeof(*db);
384 	size = ALIGN(size, sizeof(db->id));
385 	return size;
386 }
387 
388 /*
389  * Sanity checker for reserve size. The ringbuffer code assumes that a data
390  * block does not exceed the maximum possible size that could fit within the
391  * ringbuffer. This function provides that basic size check so that the
392  * assumption is safe.
393  */
394 static bool data_check_size(struct prb_data_ring *data_ring, unsigned int size)
395 {
396 	struct prb_data_block *db = NULL;
397 
398 	if (size == 0)
399 		return true;
400 
401 	/*
402 	 * Ensure the alignment padded size could possibly fit in the data
403 	 * array. The largest possible data block must still leave room for
404 	 * at least the ID of the next block.
405 	 */
406 	size = to_blk_size(size);
407 	if (size > DATA_SIZE(data_ring) - sizeof(db->id))
408 		return false;
409 
410 	return true;
411 }
412 
413 /* Query the state of a descriptor. */
414 static enum desc_state get_desc_state(unsigned long id,
415 				      unsigned long state_val)
416 {
417 	if (id != DESC_ID(state_val))
418 		return desc_miss;
419 
420 	return DESC_STATE(state_val);
421 }
422 
423 /*
424  * Get a copy of a specified descriptor and return its queried state. If the
425  * descriptor is in an inconsistent state (miss or reserved), the caller can
426  * only expect the descriptor's @state_var field to be valid.
427  *
428  * The sequence number and caller_id can be optionally retrieved. Like all
429  * non-state_var data, they are only valid if the descriptor is in a
430  * consistent state.
431  */
432 static enum desc_state desc_read(struct prb_desc_ring *desc_ring,
433 				 unsigned long id, struct prb_desc *desc_out,
434 				 u64 *seq_out, u32 *caller_id_out)
435 {
436 	struct printk_info *info = to_info(desc_ring, id);
437 	struct prb_desc *desc = to_desc(desc_ring, id);
438 	atomic_long_t *state_var = &desc->state_var;
439 	enum desc_state d_state;
440 	unsigned long state_val;
441 
442 	/* Check the descriptor state. */
443 	state_val = atomic_long_read(state_var); /* LMM(desc_read:A) */
444 	d_state = get_desc_state(id, state_val);
445 	if (d_state == desc_miss || d_state == desc_reserved) {
446 		/*
447 		 * The descriptor is in an inconsistent state. Set at least
448 		 * @state_var so that the caller can see the details of
449 		 * the inconsistent state.
450 		 */
451 		goto out;
452 	}
453 
454 	/*
455 	 * Guarantee the state is loaded before copying the descriptor
456 	 * content. This avoids copying obsolete descriptor content that might
457 	 * not apply to the descriptor state. This pairs with _prb_commit:B.
458 	 *
459 	 * Memory barrier involvement:
460 	 *
461 	 * If desc_read:A reads from _prb_commit:B, then desc_read:C reads
462 	 * from _prb_commit:A.
463 	 *
464 	 * Relies on:
465 	 *
466 	 * WMB from _prb_commit:A to _prb_commit:B
467 	 *    matching
468 	 * RMB from desc_read:A to desc_read:C
469 	 */
470 	smp_rmb(); /* LMM(desc_read:B) */
471 
472 	/*
473 	 * Copy the descriptor data. The data is not valid until the
474 	 * state has been re-checked. A memcpy() for all of @desc
475 	 * cannot be used because of the atomic_t @state_var field.
476 	 */
477 	memcpy(&desc_out->text_blk_lpos, &desc->text_blk_lpos,
478 	       sizeof(desc_out->text_blk_lpos)); /* LMM(desc_read:C) */
479 	if (seq_out)
480 		*seq_out = info->seq; /* also part of desc_read:C */
481 	if (caller_id_out)
482 		*caller_id_out = info->caller_id; /* also part of desc_read:C */
483 
484 	/*
485 	 * 1. Guarantee the descriptor content is loaded before re-checking
486 	 *    the state. This avoids reading an obsolete descriptor state
487 	 *    that may not apply to the copied content. This pairs with
488 	 *    desc_reserve:F.
489 	 *
490 	 *    Memory barrier involvement:
491 	 *
492 	 *    If desc_read:C reads from desc_reserve:G, then desc_read:E
493 	 *    reads from desc_reserve:F.
494 	 *
495 	 *    Relies on:
496 	 *
497 	 *    WMB from desc_reserve:F to desc_reserve:G
498 	 *       matching
499 	 *    RMB from desc_read:C to desc_read:E
500 	 *
501 	 * 2. Guarantee the record data is loaded before re-checking the
502 	 *    state. This avoids reading an obsolete descriptor state that may
503 	 *    not apply to the copied data. This pairs with data_alloc:A and
504 	 *    data_realloc:A.
505 	 *
506 	 *    Memory barrier involvement:
507 	 *
508 	 *    If copy_data:A reads from data_alloc:B, then desc_read:E
509 	 *    reads from desc_make_reusable:A.
510 	 *
511 	 *    Relies on:
512 	 *
513 	 *    MB from desc_make_reusable:A to data_alloc:B
514 	 *       matching
515 	 *    RMB from desc_read:C to desc_read:E
516 	 *
517 	 *    Note: desc_make_reusable:A and data_alloc:B can be different
518 	 *          CPUs. However, the data_alloc:B CPU (which performs the
519 	 *          full memory barrier) must have previously seen
520 	 *          desc_make_reusable:A.
521 	 */
522 	smp_rmb(); /* LMM(desc_read:D) */
523 
524 	/*
525 	 * The data has been copied. Return the current descriptor state,
526 	 * which may have changed since the load above.
527 	 */
528 	state_val = atomic_long_read(state_var); /* LMM(desc_read:E) */
529 	d_state = get_desc_state(id, state_val);
530 out:
531 	atomic_long_set(&desc_out->state_var, state_val);
532 	return d_state;
533 }
534 
535 /*
536  * Take a specified descriptor out of the finalized state by attempting
537  * the transition from finalized to reusable. Either this context or some
538  * other context will have been successful.
539  */
540 static void desc_make_reusable(struct prb_desc_ring *desc_ring,
541 			       unsigned long id)
542 {
543 	unsigned long val_finalized = DESC_SV(id, desc_finalized);
544 	unsigned long val_reusable = DESC_SV(id, desc_reusable);
545 	struct prb_desc *desc = to_desc(desc_ring, id);
546 	atomic_long_t *state_var = &desc->state_var;
547 
548 	atomic_long_cmpxchg_relaxed(state_var, val_finalized,
549 				    val_reusable); /* LMM(desc_make_reusable:A) */
550 }
551 
552 /*
553  * Given the text data ring, put the associated descriptor of each
554  * data block from @lpos_begin until @lpos_end into the reusable state.
555  *
556  * If there is any problem making the associated descriptor reusable, either
557  * the descriptor has not yet been finalized or another writer context has
558  * already pushed the tail lpos past the problematic data block. Regardless,
559  * on error the caller can re-load the tail lpos to determine the situation.
560  */
561 static bool data_make_reusable(struct printk_ringbuffer *rb,
562 			       unsigned long lpos_begin,
563 			       unsigned long lpos_end,
564 			       unsigned long *lpos_out)
565 {
566 
567 	struct prb_data_ring *data_ring = &rb->text_data_ring;
568 	struct prb_desc_ring *desc_ring = &rb->desc_ring;
569 	struct prb_data_block *blk;
570 	enum desc_state d_state;
571 	struct prb_desc desc;
572 	struct prb_data_blk_lpos *blk_lpos = &desc.text_blk_lpos;
573 	unsigned long id;
574 
575 	/* Loop until @lpos_begin has advanced to or beyond @lpos_end. */
576 	while ((lpos_end - lpos_begin) - 1 < DATA_SIZE(data_ring)) {
577 		blk = to_block(data_ring, lpos_begin);
578 
579 		/*
580 		 * Load the block ID from the data block. This is a data race
581 		 * against a writer that may have newly reserved this data
582 		 * area. If the loaded value matches a valid descriptor ID,
583 		 * the blk_lpos of that descriptor will be checked to make
584 		 * sure it points back to this data block. If the check fails,
585 		 * the data area has been recycled by another writer.
586 		 */
587 		id = blk->id; /* LMM(data_make_reusable:A) */
588 
589 		d_state = desc_read(desc_ring, id, &desc,
590 				    NULL, NULL); /* LMM(data_make_reusable:B) */
591 
592 		switch (d_state) {
593 		case desc_miss:
594 		case desc_reserved:
595 		case desc_committed:
596 			return false;
597 		case desc_finalized:
598 			/*
599 			 * This data block is invalid if the descriptor
600 			 * does not point back to it.
601 			 */
602 			if (blk_lpos->begin != lpos_begin)
603 				return false;
604 			desc_make_reusable(desc_ring, id);
605 			break;
606 		case desc_reusable:
607 			/*
608 			 * This data block is invalid if the descriptor
609 			 * does not point back to it.
610 			 */
611 			if (blk_lpos->begin != lpos_begin)
612 				return false;
613 			break;
614 		}
615 
616 		/* Advance @lpos_begin to the next data block. */
617 		lpos_begin = blk_lpos->next;
618 	}
619 
620 	*lpos_out = lpos_begin;
621 	return true;
622 }
623 
624 /*
625  * Advance the data ring tail to at least @lpos. This function puts
626  * descriptors into the reusable state if the tail is pushed beyond
627  * their associated data block.
628  */
629 static bool data_push_tail(struct printk_ringbuffer *rb, unsigned long lpos)
630 {
631 	struct prb_data_ring *data_ring = &rb->text_data_ring;
632 	unsigned long tail_lpos_new;
633 	unsigned long tail_lpos;
634 	unsigned long next_lpos;
635 
636 	/* If @lpos is from a data-less block, there is nothing to do. */
637 	if (LPOS_DATALESS(lpos))
638 		return true;
639 
640 	/*
641 	 * Any descriptor states that have transitioned to reusable due to the
642 	 * data tail being pushed to this loaded value will be visible to this
643 	 * CPU. This pairs with data_push_tail:D.
644 	 *
645 	 * Memory barrier involvement:
646 	 *
647 	 * If data_push_tail:A reads from data_push_tail:D, then this CPU can
648 	 * see desc_make_reusable:A.
649 	 *
650 	 * Relies on:
651 	 *
652 	 * MB from desc_make_reusable:A to data_push_tail:D
653 	 *    matches
654 	 * READFROM from data_push_tail:D to data_push_tail:A
655 	 *    thus
656 	 * READFROM from desc_make_reusable:A to this CPU
657 	 */
658 	tail_lpos = atomic_long_read(&data_ring->tail_lpos); /* LMM(data_push_tail:A) */
659 
660 	/*
661 	 * Loop until the tail lpos is at or beyond @lpos. This condition
662 	 * may already be satisfied, resulting in no full memory barrier
663 	 * from data_push_tail:D being performed. However, since this CPU
664 	 * sees the new tail lpos, any descriptor states that transitioned to
665 	 * the reusable state must already be visible.
666 	 */
667 	while ((lpos - tail_lpos) - 1 < DATA_SIZE(data_ring)) {
668 		/*
669 		 * Make all descriptors reusable that are associated with
670 		 * data blocks before @lpos.
671 		 */
672 		if (!data_make_reusable(rb, tail_lpos, lpos, &next_lpos)) {
673 			/*
674 			 * 1. Guarantee the block ID loaded in
675 			 *    data_make_reusable() is performed before
676 			 *    reloading the tail lpos. The failed
677 			 *    data_make_reusable() may be due to a newly
678 			 *    recycled data area causing the tail lpos to
679 			 *    have been previously pushed. This pairs with
680 			 *    data_alloc:A and data_realloc:A.
681 			 *
682 			 *    Memory barrier involvement:
683 			 *
684 			 *    If data_make_reusable:A reads from data_alloc:B,
685 			 *    then data_push_tail:C reads from
686 			 *    data_push_tail:D.
687 			 *
688 			 *    Relies on:
689 			 *
690 			 *    MB from data_push_tail:D to data_alloc:B
691 			 *       matching
692 			 *    RMB from data_make_reusable:A to
693 			 *    data_push_tail:C
694 			 *
695 			 *    Note: data_push_tail:D and data_alloc:B can be
696 			 *          different CPUs. However, the data_alloc:B
697 			 *          CPU (which performs the full memory
698 			 *          barrier) must have previously seen
699 			 *          data_push_tail:D.
700 			 *
701 			 * 2. Guarantee the descriptor state loaded in
702 			 *    data_make_reusable() is performed before
703 			 *    reloading the tail lpos. The failed
704 			 *    data_make_reusable() may be due to a newly
705 			 *    recycled descriptor causing the tail lpos to
706 			 *    have been previously pushed. This pairs with
707 			 *    desc_reserve:D.
708 			 *
709 			 *    Memory barrier involvement:
710 			 *
711 			 *    If data_make_reusable:B reads from
712 			 *    desc_reserve:F, then data_push_tail:C reads
713 			 *    from data_push_tail:D.
714 			 *
715 			 *    Relies on:
716 			 *
717 			 *    MB from data_push_tail:D to desc_reserve:F
718 			 *       matching
719 			 *    RMB from data_make_reusable:B to
720 			 *    data_push_tail:C
721 			 *
722 			 *    Note: data_push_tail:D and desc_reserve:F can
723 			 *          be different CPUs. However, the
724 			 *          desc_reserve:F CPU (which performs the
725 			 *          full memory barrier) must have previously
726 			 *          seen data_push_tail:D.
727 			 */
728 			smp_rmb(); /* LMM(data_push_tail:B) */
729 
730 			tail_lpos_new = atomic_long_read(&data_ring->tail_lpos
731 							); /* LMM(data_push_tail:C) */
732 			if (tail_lpos_new == tail_lpos)
733 				return false;
734 
735 			/* Another CPU pushed the tail. Try again. */
736 			tail_lpos = tail_lpos_new;
737 			continue;
738 		}
739 
740 		/*
741 		 * Guarantee any descriptor states that have transitioned to
742 		 * reusable are stored before pushing the tail lpos. A full
743 		 * memory barrier is needed since other CPUs may have made
744 		 * the descriptor states reusable. This pairs with
745 		 * data_push_tail:A.
746 		 */
747 		if (atomic_long_try_cmpxchg(&data_ring->tail_lpos, &tail_lpos,
748 					    next_lpos)) { /* LMM(data_push_tail:D) */
749 			break;
750 		}
751 	}
752 
753 	return true;
754 }
755 
756 /*
757  * Advance the desc ring tail. This function advances the tail by one
758  * descriptor, thus invalidating the oldest descriptor. Before advancing
759  * the tail, the tail descriptor is made reusable and all data blocks up to
760  * and including the descriptor's data block are invalidated (i.e. the data
761  * ring tail is pushed past the data block of the descriptor being made
762  * reusable).
763  */
764 static bool desc_push_tail(struct printk_ringbuffer *rb,
765 			   unsigned long tail_id)
766 {
767 	struct prb_desc_ring *desc_ring = &rb->desc_ring;
768 	enum desc_state d_state;
769 	struct prb_desc desc;
770 
771 	d_state = desc_read(desc_ring, tail_id, &desc, NULL, NULL);
772 
773 	switch (d_state) {
774 	case desc_miss:
775 		/*
776 		 * If the ID is exactly 1 wrap behind the expected, it is
777 		 * in the process of being reserved by another writer and
778 		 * must be considered reserved.
779 		 */
780 		if (DESC_ID(atomic_long_read(&desc.state_var)) ==
781 		    DESC_ID_PREV_WRAP(desc_ring, tail_id)) {
782 			return false;
783 		}
784 
785 		/*
786 		 * The ID has changed. Another writer must have pushed the
787 		 * tail and recycled the descriptor already. Success is
788 		 * returned because the caller is only interested in the
789 		 * specified tail being pushed, which it was.
790 		 */
791 		return true;
792 	case desc_reserved:
793 	case desc_committed:
794 		return false;
795 	case desc_finalized:
796 		desc_make_reusable(desc_ring, tail_id);
797 		break;
798 	case desc_reusable:
799 		break;
800 	}
801 
802 	/*
803 	 * Data blocks must be invalidated before their associated
804 	 * descriptor can be made available for recycling. Invalidating
805 	 * them later is not possible because there is no way to trust
806 	 * data blocks once their associated descriptor is gone.
807 	 */
808 
809 	if (!data_push_tail(rb, desc.text_blk_lpos.next))
810 		return false;
811 
812 	/*
813 	 * Check the next descriptor after @tail_id before pushing the tail
814 	 * to it because the tail must always be in a finalized or reusable
815 	 * state. The implementation of prb_first_seq() relies on this.
816 	 *
817 	 * A successful read implies that the next descriptor is less than or
818 	 * equal to @head_id so there is no risk of pushing the tail past the
819 	 * head.
820 	 */
821 	d_state = desc_read(desc_ring, DESC_ID(tail_id + 1), &desc,
822 			    NULL, NULL); /* LMM(desc_push_tail:A) */
823 
824 	if (d_state == desc_finalized || d_state == desc_reusable) {
825 		/*
826 		 * Guarantee any descriptor states that have transitioned to
827 		 * reusable are stored before pushing the tail ID. This allows
828 		 * verifying the recycled descriptor state. A full memory
829 		 * barrier is needed since other CPUs may have made the
830 		 * descriptor states reusable. This pairs with desc_reserve:D.
831 		 */
832 		atomic_long_cmpxchg(&desc_ring->tail_id, tail_id,
833 				    DESC_ID(tail_id + 1)); /* LMM(desc_push_tail:B) */
834 	} else {
835 		/*
836 		 * Guarantee the last state load from desc_read() is before
837 		 * reloading @tail_id in order to see a new tail ID in the
838 		 * case that the descriptor has been recycled. This pairs
839 		 * with desc_reserve:D.
840 		 *
841 		 * Memory barrier involvement:
842 		 *
843 		 * If desc_push_tail:A reads from desc_reserve:F, then
844 		 * desc_push_tail:D reads from desc_push_tail:B.
845 		 *
846 		 * Relies on:
847 		 *
848 		 * MB from desc_push_tail:B to desc_reserve:F
849 		 *    matching
850 		 * RMB from desc_push_tail:A to desc_push_tail:D
851 		 *
852 		 * Note: desc_push_tail:B and desc_reserve:F can be different
853 		 *       CPUs. However, the desc_reserve:F CPU (which performs
854 		 *       the full memory barrier) must have previously seen
855 		 *       desc_push_tail:B.
856 		 */
857 		smp_rmb(); /* LMM(desc_push_tail:C) */
858 
859 		/*
860 		 * Re-check the tail ID. The descriptor following @tail_id is
861 		 * not in an allowed tail state. But if the tail has since
862 		 * been moved by another CPU, then it does not matter.
863 		 */
864 		if (atomic_long_read(&desc_ring->tail_id) == tail_id) /* LMM(desc_push_tail:D) */
865 			return false;
866 	}
867 
868 	return true;
869 }
870 
871 /* Reserve a new descriptor, invalidating the oldest if necessary. */
872 static bool desc_reserve(struct printk_ringbuffer *rb, unsigned long *id_out)
873 {
874 	struct prb_desc_ring *desc_ring = &rb->desc_ring;
875 	unsigned long prev_state_val;
876 	unsigned long id_prev_wrap;
877 	struct prb_desc *desc;
878 	unsigned long head_id;
879 	unsigned long id;
880 
881 	head_id = atomic_long_read(&desc_ring->head_id); /* LMM(desc_reserve:A) */
882 
883 	do {
884 		id = DESC_ID(head_id + 1);
885 		id_prev_wrap = DESC_ID_PREV_WRAP(desc_ring, id);
886 
887 		/*
888 		 * Guarantee the head ID is read before reading the tail ID.
889 		 * Since the tail ID is updated before the head ID, this
890 		 * guarantees that @id_prev_wrap is never ahead of the tail
891 		 * ID. This pairs with desc_reserve:D.
892 		 *
893 		 * Memory barrier involvement:
894 		 *
895 		 * If desc_reserve:A reads from desc_reserve:D, then
896 		 * desc_reserve:C reads from desc_push_tail:B.
897 		 *
898 		 * Relies on:
899 		 *
900 		 * MB from desc_push_tail:B to desc_reserve:D
901 		 *    matching
902 		 * RMB from desc_reserve:A to desc_reserve:C
903 		 *
904 		 * Note: desc_push_tail:B and desc_reserve:D can be different
905 		 *       CPUs. However, the desc_reserve:D CPU (which performs
906 		 *       the full memory barrier) must have previously seen
907 		 *       desc_push_tail:B.
908 		 */
909 		smp_rmb(); /* LMM(desc_reserve:B) */
910 
911 		if (id_prev_wrap == atomic_long_read(&desc_ring->tail_id
912 						    )) { /* LMM(desc_reserve:C) */
913 			/*
914 			 * Make space for the new descriptor by
915 			 * advancing the tail.
916 			 */
917 			if (!desc_push_tail(rb, id_prev_wrap))
918 				return false;
919 		}
920 
921 		/*
922 		 * 1. Guarantee the tail ID is read before validating the
923 		 *    recycled descriptor state. A read memory barrier is
924 		 *    sufficient for this. This pairs with desc_push_tail:B.
925 		 *
926 		 *    Memory barrier involvement:
927 		 *
928 		 *    If desc_reserve:C reads from desc_push_tail:B, then
929 		 *    desc_reserve:E reads from desc_make_reusable:A.
930 		 *
931 		 *    Relies on:
932 		 *
933 		 *    MB from desc_make_reusable:A to desc_push_tail:B
934 		 *       matching
935 		 *    RMB from desc_reserve:C to desc_reserve:E
936 		 *
937 		 *    Note: desc_make_reusable:A and desc_push_tail:B can be
938 		 *          different CPUs. However, the desc_push_tail:B CPU
939 		 *          (which performs the full memory barrier) must have
940 		 *          previously seen desc_make_reusable:A.
941 		 *
942 		 * 2. Guarantee the tail ID is stored before storing the head
943 		 *    ID. This pairs with desc_reserve:B.
944 		 *
945 		 * 3. Guarantee any data ring tail changes are stored before
946 		 *    recycling the descriptor. Data ring tail changes can
947 		 *    happen via desc_push_tail()->data_push_tail(). A full
948 		 *    memory barrier is needed since another CPU may have
949 		 *    pushed the data ring tails. This pairs with
950 		 *    data_push_tail:B.
951 		 *
952 		 * 4. Guarantee a new tail ID is stored before recycling the
953 		 *    descriptor. A full memory barrier is needed since
954 		 *    another CPU may have pushed the tail ID. This pairs
955 		 *    with desc_push_tail:C and this also pairs with
956 		 *    prb_first_seq:C.
957 		 *
958 		 * 5. Guarantee the head ID is stored before trying to
959 		 *    finalize the previous descriptor. This pairs with
960 		 *    _prb_commit:B.
961 		 */
962 	} while (!atomic_long_try_cmpxchg(&desc_ring->head_id, &head_id,
963 					  id)); /* LMM(desc_reserve:D) */
964 
965 	desc = to_desc(desc_ring, id);
966 
967 	/*
968 	 * If the descriptor has been recycled, verify the old state val.
969 	 * See "ABA Issues" about why this verification is performed.
970 	 */
971 	prev_state_val = atomic_long_read(&desc->state_var); /* LMM(desc_reserve:E) */
972 	if (prev_state_val &&
973 	    get_desc_state(id_prev_wrap, prev_state_val) != desc_reusable) {
974 		WARN_ON_ONCE(1);
975 		return false;
976 	}
977 
978 	/*
979 	 * Assign the descriptor a new ID and set its state to reserved.
980 	 * See "ABA Issues" about why cmpxchg() instead of set() is used.
981 	 *
982 	 * Guarantee the new descriptor ID and state is stored before making
983 	 * any other changes. A write memory barrier is sufficient for this.
984 	 * This pairs with desc_read:D.
985 	 */
986 	if (!atomic_long_try_cmpxchg(&desc->state_var, &prev_state_val,
987 			DESC_SV(id, desc_reserved))) { /* LMM(desc_reserve:F) */
988 		WARN_ON_ONCE(1);
989 		return false;
990 	}
991 
992 	/* Now data in @desc can be modified: LMM(desc_reserve:G) */
993 
994 	*id_out = id;
995 	return true;
996 }
997 
998 /* Determine the end of a data block. */
999 static unsigned long get_next_lpos(struct prb_data_ring *data_ring,
1000 				   unsigned long lpos, unsigned int size)
1001 {
1002 	unsigned long begin_lpos;
1003 	unsigned long next_lpos;
1004 
1005 	begin_lpos = lpos;
1006 	next_lpos = lpos + size;
1007 
1008 	/* First check if the data block does not wrap. */
1009 	if (DATA_WRAPS(data_ring, begin_lpos) == DATA_WRAPS(data_ring, next_lpos))
1010 		return next_lpos;
1011 
1012 	/* Wrapping data blocks store their data at the beginning. */
1013 	return (DATA_THIS_WRAP_START_LPOS(data_ring, next_lpos) + size);
1014 }
1015 
1016 /*
1017  * Allocate a new data block, invalidating the oldest data block(s)
1018  * if necessary. This function also associates the data block with
1019  * a specified descriptor.
1020  */
1021 static char *data_alloc(struct printk_ringbuffer *rb, unsigned int size,
1022 			struct prb_data_blk_lpos *blk_lpos, unsigned long id)
1023 {
1024 	struct prb_data_ring *data_ring = &rb->text_data_ring;
1025 	struct prb_data_block *blk;
1026 	unsigned long begin_lpos;
1027 	unsigned long next_lpos;
1028 
1029 	if (size == 0) {
1030 		/* Specify a data-less block. */
1031 		blk_lpos->begin = NO_LPOS;
1032 		blk_lpos->next = NO_LPOS;
1033 		return NULL;
1034 	}
1035 
1036 	size = to_blk_size(size);
1037 
1038 	begin_lpos = atomic_long_read(&data_ring->head_lpos);
1039 
1040 	do {
1041 		next_lpos = get_next_lpos(data_ring, begin_lpos, size);
1042 
1043 		if (!data_push_tail(rb, next_lpos - DATA_SIZE(data_ring))) {
1044 			/* Failed to allocate, specify a data-less block. */
1045 			blk_lpos->begin = FAILED_LPOS;
1046 			blk_lpos->next = FAILED_LPOS;
1047 			return NULL;
1048 		}
1049 
1050 		/*
1051 		 * 1. Guarantee any descriptor states that have transitioned
1052 		 *    to reusable are stored before modifying the newly
1053 		 *    allocated data area. A full memory barrier is needed
1054 		 *    since other CPUs may have made the descriptor states
1055 		 *    reusable. See data_push_tail:A about why the reusable
1056 		 *    states are visible. This pairs with desc_read:D.
1057 		 *
1058 		 * 2. Guarantee any updated tail lpos is stored before
1059 		 *    modifying the newly allocated data area. Another CPU may
1060 		 *    be in data_make_reusable() and is reading a block ID
1061 		 *    from this area. data_make_reusable() can handle reading
1062 		 *    a garbage block ID value, but then it must be able to
1063 		 *    load a new tail lpos. A full memory barrier is needed
1064 		 *    since other CPUs may have updated the tail lpos. This
1065 		 *    pairs with data_push_tail:B.
1066 		 */
1067 	} while (!atomic_long_try_cmpxchg(&data_ring->head_lpos, &begin_lpos,
1068 					  next_lpos)); /* LMM(data_alloc:A) */
1069 
1070 	blk = to_block(data_ring, begin_lpos);
1071 	blk->id = id; /* LMM(data_alloc:B) */
1072 
1073 	if (DATA_WRAPS(data_ring, begin_lpos) != DATA_WRAPS(data_ring, next_lpos)) {
1074 		/* Wrapping data blocks store their data at the beginning. */
1075 		blk = to_block(data_ring, 0);
1076 
1077 		/*
1078 		 * Store the ID on the wrapped block for consistency.
1079 		 * The printk_ringbuffer does not actually use it.
1080 		 */
1081 		blk->id = id;
1082 	}
1083 
1084 	blk_lpos->begin = begin_lpos;
1085 	blk_lpos->next = next_lpos;
1086 
1087 	return &blk->data[0];
1088 }
1089 
1090 /*
1091  * Try to resize an existing data block associated with the descriptor
1092  * specified by @id. If the resized data block should become wrapped, it
1093  * copies the old data to the new data block. If @size yields a data block
1094  * with the same or less size, the data block is left as is.
1095  *
1096  * Fail if this is not the last allocated data block or if there is not
1097  * enough space or it is not possible make enough space.
1098  *
1099  * Return a pointer to the beginning of the entire data buffer or NULL on
1100  * failure.
1101  */
1102 static char *data_realloc(struct printk_ringbuffer *rb, unsigned int size,
1103 			  struct prb_data_blk_lpos *blk_lpos, unsigned long id)
1104 {
1105 	struct prb_data_ring *data_ring = &rb->text_data_ring;
1106 	struct prb_data_block *blk;
1107 	unsigned long head_lpos;
1108 	unsigned long next_lpos;
1109 	bool wrapped;
1110 
1111 	/* Reallocation only works if @blk_lpos is the newest data block. */
1112 	head_lpos = atomic_long_read(&data_ring->head_lpos);
1113 	if (head_lpos != blk_lpos->next)
1114 		return NULL;
1115 
1116 	/* Keep track if @blk_lpos was a wrapping data block. */
1117 	wrapped = (DATA_WRAPS(data_ring, blk_lpos->begin) != DATA_WRAPS(data_ring, blk_lpos->next));
1118 
1119 	size = to_blk_size(size);
1120 
1121 	next_lpos = get_next_lpos(data_ring, blk_lpos->begin, size);
1122 
1123 	/* If the data block does not increase, there is nothing to do. */
1124 	if (head_lpos - next_lpos < DATA_SIZE(data_ring)) {
1125 		if (wrapped)
1126 			blk = to_block(data_ring, 0);
1127 		else
1128 			blk = to_block(data_ring, blk_lpos->begin);
1129 		return &blk->data[0];
1130 	}
1131 
1132 	if (!data_push_tail(rb, next_lpos - DATA_SIZE(data_ring)))
1133 		return NULL;
1134 
1135 	/* The memory barrier involvement is the same as data_alloc:A. */
1136 	if (!atomic_long_try_cmpxchg(&data_ring->head_lpos, &head_lpos,
1137 				     next_lpos)) { /* LMM(data_realloc:A) */
1138 		return NULL;
1139 	}
1140 
1141 	blk = to_block(data_ring, blk_lpos->begin);
1142 
1143 	if (DATA_WRAPS(data_ring, blk_lpos->begin) != DATA_WRAPS(data_ring, next_lpos)) {
1144 		struct prb_data_block *old_blk = blk;
1145 
1146 		/* Wrapping data blocks store their data at the beginning. */
1147 		blk = to_block(data_ring, 0);
1148 
1149 		/*
1150 		 * Store the ID on the wrapped block for consistency.
1151 		 * The printk_ringbuffer does not actually use it.
1152 		 */
1153 		blk->id = id;
1154 
1155 		if (!wrapped) {
1156 			/*
1157 			 * Since the allocated space is now in the newly
1158 			 * created wrapping data block, copy the content
1159 			 * from the old data block.
1160 			 */
1161 			memcpy(&blk->data[0], &old_blk->data[0],
1162 			       (blk_lpos->next - blk_lpos->begin) - sizeof(blk->id));
1163 		}
1164 	}
1165 
1166 	blk_lpos->next = next_lpos;
1167 
1168 	return &blk->data[0];
1169 }
1170 
1171 /* Return the number of bytes used by a data block. */
1172 static unsigned int space_used(struct prb_data_ring *data_ring,
1173 			       struct prb_data_blk_lpos *blk_lpos)
1174 {
1175 	/* Data-less blocks take no space. */
1176 	if (BLK_DATALESS(blk_lpos))
1177 		return 0;
1178 
1179 	if (DATA_WRAPS(data_ring, blk_lpos->begin) == DATA_WRAPS(data_ring, blk_lpos->next)) {
1180 		/* Data block does not wrap. */
1181 		return (DATA_INDEX(data_ring, blk_lpos->next) -
1182 			DATA_INDEX(data_ring, blk_lpos->begin));
1183 	}
1184 
1185 	/*
1186 	 * For wrapping data blocks, the trailing (wasted) space is
1187 	 * also counted.
1188 	 */
1189 	return (DATA_INDEX(data_ring, blk_lpos->next) +
1190 		DATA_SIZE(data_ring) - DATA_INDEX(data_ring, blk_lpos->begin));
1191 }
1192 
1193 /*
1194  * Given @blk_lpos, return a pointer to the writer data from the data block
1195  * and calculate the size of the data part. A NULL pointer is returned if
1196  * @blk_lpos specifies values that could never be legal.
1197  *
1198  * This function (used by readers) performs strict validation on the lpos
1199  * values to possibly detect bugs in the writer code. A WARN_ON_ONCE() is
1200  * triggered if an internal error is detected.
1201  */
1202 static const char *get_data(struct prb_data_ring *data_ring,
1203 			    struct prb_data_blk_lpos *blk_lpos,
1204 			    unsigned int *data_size)
1205 {
1206 	struct prb_data_block *db;
1207 
1208 	/* Data-less data block description. */
1209 	if (BLK_DATALESS(blk_lpos)) {
1210 		if (blk_lpos->begin == NO_LPOS && blk_lpos->next == NO_LPOS) {
1211 			*data_size = 0;
1212 			return "";
1213 		}
1214 		return NULL;
1215 	}
1216 
1217 	/* Regular data block: @begin less than @next and in same wrap. */
1218 	if (DATA_WRAPS(data_ring, blk_lpos->begin) == DATA_WRAPS(data_ring, blk_lpos->next) &&
1219 	    blk_lpos->begin < blk_lpos->next) {
1220 		db = to_block(data_ring, blk_lpos->begin);
1221 		*data_size = blk_lpos->next - blk_lpos->begin;
1222 
1223 	/* Wrapping data block: @begin is one wrap behind @next. */
1224 	} else if (DATA_WRAPS(data_ring, blk_lpos->begin + DATA_SIZE(data_ring)) ==
1225 		   DATA_WRAPS(data_ring, blk_lpos->next)) {
1226 		db = to_block(data_ring, 0);
1227 		*data_size = DATA_INDEX(data_ring, blk_lpos->next);
1228 
1229 	/* Illegal block description. */
1230 	} else {
1231 		WARN_ON_ONCE(1);
1232 		return NULL;
1233 	}
1234 
1235 	/* A valid data block will always be aligned to the ID size. */
1236 	if (WARN_ON_ONCE(blk_lpos->begin != ALIGN(blk_lpos->begin, sizeof(db->id))) ||
1237 	    WARN_ON_ONCE(blk_lpos->next != ALIGN(blk_lpos->next, sizeof(db->id)))) {
1238 		return NULL;
1239 	}
1240 
1241 	/* A valid data block will always have at least an ID. */
1242 	if (WARN_ON_ONCE(*data_size < sizeof(db->id)))
1243 		return NULL;
1244 
1245 	/* Subtract block ID space from size to reflect data size. */
1246 	*data_size -= sizeof(db->id);
1247 
1248 	return &db->data[0];
1249 }
1250 
1251 /*
1252  * Attempt to transition the newest descriptor from committed back to reserved
1253  * so that the record can be modified by a writer again. This is only possible
1254  * if the descriptor is not yet finalized and the provided @caller_id matches.
1255  */
1256 static struct prb_desc *desc_reopen_last(struct prb_desc_ring *desc_ring,
1257 					 u32 caller_id, unsigned long *id_out)
1258 {
1259 	unsigned long prev_state_val;
1260 	enum desc_state d_state;
1261 	struct prb_desc desc;
1262 	struct prb_desc *d;
1263 	unsigned long id;
1264 	u32 cid;
1265 
1266 	id = atomic_long_read(&desc_ring->head_id);
1267 
1268 	/*
1269 	 * To reduce unnecessarily reopening, first check if the descriptor
1270 	 * state and caller ID are correct.
1271 	 */
1272 	d_state = desc_read(desc_ring, id, &desc, NULL, &cid);
1273 	if (d_state != desc_committed || cid != caller_id)
1274 		return NULL;
1275 
1276 	d = to_desc(desc_ring, id);
1277 
1278 	prev_state_val = DESC_SV(id, desc_committed);
1279 
1280 	/*
1281 	 * Guarantee the reserved state is stored before reading any
1282 	 * record data. A full memory barrier is needed because @state_var
1283 	 * modification is followed by reading. This pairs with _prb_commit:B.
1284 	 *
1285 	 * Memory barrier involvement:
1286 	 *
1287 	 * If desc_reopen_last:A reads from _prb_commit:B, then
1288 	 * prb_reserve_in_last:A reads from _prb_commit:A.
1289 	 *
1290 	 * Relies on:
1291 	 *
1292 	 * WMB from _prb_commit:A to _prb_commit:B
1293 	 *    matching
1294 	 * MB If desc_reopen_last:A to prb_reserve_in_last:A
1295 	 */
1296 	if (!atomic_long_try_cmpxchg(&d->state_var, &prev_state_val,
1297 			DESC_SV(id, desc_reserved))) { /* LMM(desc_reopen_last:A) */
1298 		return NULL;
1299 	}
1300 
1301 	*id_out = id;
1302 	return d;
1303 }
1304 
1305 /**
1306  * prb_reserve_in_last() - Re-reserve and extend the space in the ringbuffer
1307  *                         used by the newest record.
1308  *
1309  * @e:         The entry structure to setup.
1310  * @rb:        The ringbuffer to re-reserve and extend data in.
1311  * @r:         The record structure to allocate buffers for.
1312  * @caller_id: The caller ID of the caller (reserving writer).
1313  * @max_size:  Fail if the extended size would be greater than this.
1314  *
1315  * This is the public function available to writers to re-reserve and extend
1316  * data.
1317  *
1318  * The writer specifies the text size to extend (not the new total size) by
1319  * setting the @text_buf_size field of @r. To ensure proper initialization
1320  * of @r, prb_rec_init_wr() should be used.
1321  *
1322  * This function will fail if @caller_id does not match the caller ID of the
1323  * newest record. In that case the caller must reserve new data using
1324  * prb_reserve().
1325  *
1326  * Context: Any context. Disables local interrupts on success.
1327  * Return: true if text data could be extended, otherwise false.
1328  *
1329  * On success:
1330  *
1331  *   - @r->text_buf points to the beginning of the entire text buffer.
1332  *
1333  *   - @r->text_buf_size is set to the new total size of the buffer.
1334  *
1335  *   - @r->info is not touched so that @r->info->text_len could be used
1336  *     to append the text.
1337  *
1338  *   - prb_record_text_space() can be used on @e to query the new
1339  *     actually used space.
1340  *
1341  * Important: All @r->info fields will already be set with the current values
1342  *            for the record. I.e. @r->info->text_len will be less than
1343  *            @text_buf_size. Writers can use @r->info->text_len to know
1344  *            where concatenation begins and writers should update
1345  *            @r->info->text_len after concatenating.
1346  */
1347 bool prb_reserve_in_last(struct prb_reserved_entry *e, struct printk_ringbuffer *rb,
1348 			 struct printk_record *r, u32 caller_id, unsigned int max_size)
1349 {
1350 	struct prb_desc_ring *desc_ring = &rb->desc_ring;
1351 	struct printk_info *info;
1352 	unsigned int data_size;
1353 	struct prb_desc *d;
1354 	unsigned long id;
1355 
1356 	local_irq_save(e->irqflags);
1357 
1358 	/* Transition the newest descriptor back to the reserved state. */
1359 	d = desc_reopen_last(desc_ring, caller_id, &id);
1360 	if (!d) {
1361 		local_irq_restore(e->irqflags);
1362 		goto fail_reopen;
1363 	}
1364 
1365 	/* Now the writer has exclusive access: LMM(prb_reserve_in_last:A) */
1366 
1367 	info = to_info(desc_ring, id);
1368 
1369 	/*
1370 	 * Set the @e fields here so that prb_commit() can be used if
1371 	 * anything fails from now on.
1372 	 */
1373 	e->rb = rb;
1374 	e->id = id;
1375 
1376 	/*
1377 	 * desc_reopen_last() checked the caller_id, but there was no
1378 	 * exclusive access at that point. The descriptor may have
1379 	 * changed since then.
1380 	 */
1381 	if (caller_id != info->caller_id)
1382 		goto fail;
1383 
1384 	if (BLK_DATALESS(&d->text_blk_lpos)) {
1385 		if (WARN_ON_ONCE(info->text_len != 0)) {
1386 			pr_warn_once("wrong text_len value (%hu, expecting 0)\n",
1387 				     info->text_len);
1388 			info->text_len = 0;
1389 		}
1390 
1391 		if (!data_check_size(&rb->text_data_ring, r->text_buf_size))
1392 			goto fail;
1393 
1394 		if (r->text_buf_size > max_size)
1395 			goto fail;
1396 
1397 		r->text_buf = data_alloc(rb, r->text_buf_size,
1398 					 &d->text_blk_lpos, id);
1399 	} else {
1400 		if (!get_data(&rb->text_data_ring, &d->text_blk_lpos, &data_size))
1401 			goto fail;
1402 
1403 		/*
1404 		 * Increase the buffer size to include the original size. If
1405 		 * the meta data (@text_len) is not sane, use the full data
1406 		 * block size.
1407 		 */
1408 		if (WARN_ON_ONCE(info->text_len > data_size)) {
1409 			pr_warn_once("wrong text_len value (%hu, expecting <=%u)\n",
1410 				     info->text_len, data_size);
1411 			info->text_len = data_size;
1412 		}
1413 		r->text_buf_size += info->text_len;
1414 
1415 		if (!data_check_size(&rb->text_data_ring, r->text_buf_size))
1416 			goto fail;
1417 
1418 		if (r->text_buf_size > max_size)
1419 			goto fail;
1420 
1421 		r->text_buf = data_realloc(rb, r->text_buf_size,
1422 					   &d->text_blk_lpos, id);
1423 	}
1424 	if (r->text_buf_size && !r->text_buf)
1425 		goto fail;
1426 
1427 	r->info = info;
1428 
1429 	e->text_space = space_used(&rb->text_data_ring, &d->text_blk_lpos);
1430 
1431 	return true;
1432 fail:
1433 	prb_commit(e);
1434 	/* prb_commit() re-enabled interrupts. */
1435 fail_reopen:
1436 	/* Make it clear to the caller that the re-reserve failed. */
1437 	memset(r, 0, sizeof(*r));
1438 	return false;
1439 }
1440 
1441 /*
1442  * Attempt to finalize a specified descriptor. If this fails, the descriptor
1443  * is either already final or it will finalize itself when the writer commits.
1444  */
1445 static void desc_make_final(struct prb_desc_ring *desc_ring, unsigned long id)
1446 {
1447 	unsigned long prev_state_val = DESC_SV(id, desc_committed);
1448 	struct prb_desc *d = to_desc(desc_ring, id);
1449 
1450 	atomic_long_cmpxchg_relaxed(&d->state_var, prev_state_val,
1451 			DESC_SV(id, desc_finalized)); /* LMM(desc_make_final:A) */
1452 }
1453 
1454 /**
1455  * prb_reserve() - Reserve space in the ringbuffer.
1456  *
1457  * @e:  The entry structure to setup.
1458  * @rb: The ringbuffer to reserve data in.
1459  * @r:  The record structure to allocate buffers for.
1460  *
1461  * This is the public function available to writers to reserve data.
1462  *
1463  * The writer specifies the text size to reserve by setting the
1464  * @text_buf_size field of @r. To ensure proper initialization of @r,
1465  * prb_rec_init_wr() should be used.
1466  *
1467  * Context: Any context. Disables local interrupts on success.
1468  * Return: true if at least text data could be allocated, otherwise false.
1469  *
1470  * On success, the fields @info and @text_buf of @r will be set by this
1471  * function and should be filled in by the writer before committing. Also
1472  * on success, prb_record_text_space() can be used on @e to query the actual
1473  * space used for the text data block.
1474  *
1475  * Important: @info->text_len needs to be set correctly by the writer in
1476  *            order for data to be readable and/or extended. Its value
1477  *            is initialized to 0.
1478  */
1479 bool prb_reserve(struct prb_reserved_entry *e, struct printk_ringbuffer *rb,
1480 		 struct printk_record *r)
1481 {
1482 	struct prb_desc_ring *desc_ring = &rb->desc_ring;
1483 	struct printk_info *info;
1484 	struct prb_desc *d;
1485 	unsigned long id;
1486 	u64 seq;
1487 
1488 	if (!data_check_size(&rb->text_data_ring, r->text_buf_size))
1489 		goto fail;
1490 
1491 	/*
1492 	 * Descriptors in the reserved state act as blockers to all further
1493 	 * reservations once the desc_ring has fully wrapped. Disable
1494 	 * interrupts during the reserve/commit window in order to minimize
1495 	 * the likelihood of this happening.
1496 	 */
1497 	local_irq_save(e->irqflags);
1498 
1499 	if (!desc_reserve(rb, &id)) {
1500 		/* Descriptor reservation failures are tracked. */
1501 		atomic_long_inc(&rb->fail);
1502 		local_irq_restore(e->irqflags);
1503 		goto fail;
1504 	}
1505 
1506 	d = to_desc(desc_ring, id);
1507 	info = to_info(desc_ring, id);
1508 
1509 	/*
1510 	 * All @info fields (except @seq) are cleared and must be filled in
1511 	 * by the writer. Save @seq before clearing because it is used to
1512 	 * determine the new sequence number.
1513 	 */
1514 	seq = info->seq;
1515 	memset(info, 0, sizeof(*info));
1516 
1517 	/*
1518 	 * Set the @e fields here so that prb_commit() can be used if
1519 	 * text data allocation fails.
1520 	 */
1521 	e->rb = rb;
1522 	e->id = id;
1523 
1524 	/*
1525 	 * Initialize the sequence number if it has "never been set".
1526 	 * Otherwise just increment it by a full wrap.
1527 	 *
1528 	 * @seq is considered "never been set" if it has a value of 0,
1529 	 * _except_ for @infos[0], which was specially setup by the ringbuffer
1530 	 * initializer and therefore is always considered as set.
1531 	 *
1532 	 * See the "Bootstrap" comment block in printk_ringbuffer.h for
1533 	 * details about how the initializer bootstraps the descriptors.
1534 	 */
1535 	if (seq == 0 && DESC_INDEX(desc_ring, id) != 0)
1536 		info->seq = DESC_INDEX(desc_ring, id);
1537 	else
1538 		info->seq = seq + DESCS_COUNT(desc_ring);
1539 
1540 	/*
1541 	 * New data is about to be reserved. Once that happens, previous
1542 	 * descriptors are no longer able to be extended. Finalize the
1543 	 * previous descriptor now so that it can be made available to
1544 	 * readers. (For seq==0 there is no previous descriptor.)
1545 	 */
1546 	if (info->seq > 0)
1547 		desc_make_final(desc_ring, DESC_ID(id - 1));
1548 
1549 	r->text_buf = data_alloc(rb, r->text_buf_size, &d->text_blk_lpos, id);
1550 	/* If text data allocation fails, a data-less record is committed. */
1551 	if (r->text_buf_size && !r->text_buf) {
1552 		prb_commit(e);
1553 		/* prb_commit() re-enabled interrupts. */
1554 		goto fail;
1555 	}
1556 
1557 	r->info = info;
1558 
1559 	/* Record full text space used by record. */
1560 	e->text_space = space_used(&rb->text_data_ring, &d->text_blk_lpos);
1561 
1562 	return true;
1563 fail:
1564 	/* Make it clear to the caller that the reserve failed. */
1565 	memset(r, 0, sizeof(*r));
1566 	return false;
1567 }
1568 
1569 /* Commit the data (possibly finalizing it) and restore interrupts. */
1570 static void _prb_commit(struct prb_reserved_entry *e, unsigned long state_val)
1571 {
1572 	struct prb_desc_ring *desc_ring = &e->rb->desc_ring;
1573 	struct prb_desc *d = to_desc(desc_ring, e->id);
1574 	unsigned long prev_state_val = DESC_SV(e->id, desc_reserved);
1575 
1576 	/* Now the writer has finished all writing: LMM(_prb_commit:A) */
1577 
1578 	/*
1579 	 * Set the descriptor as committed. See "ABA Issues" about why
1580 	 * cmpxchg() instead of set() is used.
1581 	 *
1582 	 * 1  Guarantee all record data is stored before the descriptor state
1583 	 *    is stored as committed. A write memory barrier is sufficient
1584 	 *    for this. This pairs with desc_read:B and desc_reopen_last:A.
1585 	 *
1586 	 * 2. Guarantee the descriptor state is stored as committed before
1587 	 *    re-checking the head ID in order to possibly finalize this
1588 	 *    descriptor. This pairs with desc_reserve:D.
1589 	 *
1590 	 *    Memory barrier involvement:
1591 	 *
1592 	 *    If prb_commit:A reads from desc_reserve:D, then
1593 	 *    desc_make_final:A reads from _prb_commit:B.
1594 	 *
1595 	 *    Relies on:
1596 	 *
1597 	 *    MB _prb_commit:B to prb_commit:A
1598 	 *       matching
1599 	 *    MB desc_reserve:D to desc_make_final:A
1600 	 */
1601 	if (!atomic_long_try_cmpxchg(&d->state_var, &prev_state_val,
1602 			DESC_SV(e->id, state_val))) { /* LMM(_prb_commit:B) */
1603 		WARN_ON_ONCE(1);
1604 	}
1605 
1606 	/* Restore interrupts, the reserve/commit window is finished. */
1607 	local_irq_restore(e->irqflags);
1608 }
1609 
1610 /**
1611  * prb_commit() - Commit (previously reserved) data to the ringbuffer.
1612  *
1613  * @e: The entry containing the reserved data information.
1614  *
1615  * This is the public function available to writers to commit data.
1616  *
1617  * Note that the data is not yet available to readers until it is finalized.
1618  * Finalizing happens automatically when space for the next record is
1619  * reserved.
1620  *
1621  * See prb_final_commit() for a version of this function that finalizes
1622  * immediately.
1623  *
1624  * Context: Any context. Enables local interrupts.
1625  */
1626 void prb_commit(struct prb_reserved_entry *e)
1627 {
1628 	struct prb_desc_ring *desc_ring = &e->rb->desc_ring;
1629 	unsigned long head_id;
1630 
1631 	_prb_commit(e, desc_committed);
1632 
1633 	/*
1634 	 * If this descriptor is no longer the head (i.e. a new record has
1635 	 * been allocated), extending the data for this record is no longer
1636 	 * allowed and therefore it must be finalized.
1637 	 */
1638 	head_id = atomic_long_read(&desc_ring->head_id); /* LMM(prb_commit:A) */
1639 	if (head_id != e->id)
1640 		desc_make_final(desc_ring, e->id);
1641 }
1642 
1643 /**
1644  * prb_final_commit() - Commit and finalize (previously reserved) data to
1645  *                      the ringbuffer.
1646  *
1647  * @e: The entry containing the reserved data information.
1648  *
1649  * This is the public function available to writers to commit+finalize data.
1650  *
1651  * By finalizing, the data is made immediately available to readers.
1652  *
1653  * This function should only be used if there are no intentions of extending
1654  * this data using prb_reserve_in_last().
1655  *
1656  * Context: Any context. Enables local interrupts.
1657  */
1658 void prb_final_commit(struct prb_reserved_entry *e)
1659 {
1660 	_prb_commit(e, desc_finalized);
1661 }
1662 
1663 /*
1664  * Count the number of lines in provided text. All text has at least 1 line
1665  * (even if @text_size is 0). Each '\n' processed is counted as an additional
1666  * line.
1667  */
1668 static unsigned int count_lines(const char *text, unsigned int text_size)
1669 {
1670 	unsigned int next_size = text_size;
1671 	unsigned int line_count = 1;
1672 	const char *next = text;
1673 
1674 	while (next_size) {
1675 		next = memchr(next, '\n', next_size);
1676 		if (!next)
1677 			break;
1678 		line_count++;
1679 		next++;
1680 		next_size = text_size - (next - text);
1681 	}
1682 
1683 	return line_count;
1684 }
1685 
1686 /*
1687  * Given @blk_lpos, copy an expected @len of data into the provided buffer.
1688  * If @line_count is provided, count the number of lines in the data.
1689  *
1690  * This function (used by readers) performs strict validation on the data
1691  * size to possibly detect bugs in the writer code. A WARN_ON_ONCE() is
1692  * triggered if an internal error is detected.
1693  */
1694 static bool copy_data(struct prb_data_ring *data_ring,
1695 		      struct prb_data_blk_lpos *blk_lpos, u16 len, char *buf,
1696 		      unsigned int buf_size, unsigned int *line_count)
1697 {
1698 	unsigned int data_size;
1699 	const char *data;
1700 
1701 	/* Caller might not want any data. */
1702 	if ((!buf || !buf_size) && !line_count)
1703 		return true;
1704 
1705 	data = get_data(data_ring, blk_lpos, &data_size);
1706 	if (!data)
1707 		return false;
1708 
1709 	/*
1710 	 * Actual cannot be less than expected. It can be more than expected
1711 	 * because of the trailing alignment padding.
1712 	 *
1713 	 * Note that invalid @len values can occur because the caller loads
1714 	 * the value during an allowed data race.
1715 	 */
1716 	if (data_size < (unsigned int)len)
1717 		return false;
1718 
1719 	/* Caller interested in the line count? */
1720 	if (line_count)
1721 		*line_count = count_lines(data, data_size);
1722 
1723 	/* Caller interested in the data content? */
1724 	if (!buf || !buf_size)
1725 		return true;
1726 
1727 	data_size = min_t(u16, buf_size, len);
1728 
1729 	memcpy(&buf[0], data, data_size); /* LMM(copy_data:A) */
1730 	return true;
1731 }
1732 
1733 /*
1734  * This is an extended version of desc_read(). It gets a copy of a specified
1735  * descriptor. However, it also verifies that the record is finalized and has
1736  * the sequence number @seq. On success, 0 is returned.
1737  *
1738  * Error return values:
1739  * -EINVAL: A finalized record with sequence number @seq does not exist.
1740  * -ENOENT: A finalized record with sequence number @seq exists, but its data
1741  *          is not available. This is a valid record, so readers should
1742  *          continue with the next record.
1743  */
1744 static int desc_read_finalized_seq(struct prb_desc_ring *desc_ring,
1745 				   unsigned long id, u64 seq,
1746 				   struct prb_desc *desc_out)
1747 {
1748 	struct prb_data_blk_lpos *blk_lpos = &desc_out->text_blk_lpos;
1749 	enum desc_state d_state;
1750 	u64 s;
1751 
1752 	d_state = desc_read(desc_ring, id, desc_out, &s, NULL);
1753 
1754 	/*
1755 	 * An unexpected @id (desc_miss) or @seq mismatch means the record
1756 	 * does not exist. A descriptor in the reserved or committed state
1757 	 * means the record does not yet exist for the reader.
1758 	 */
1759 	if (d_state == desc_miss ||
1760 	    d_state == desc_reserved ||
1761 	    d_state == desc_committed ||
1762 	    s != seq) {
1763 		return -EINVAL;
1764 	}
1765 
1766 	/*
1767 	 * A descriptor in the reusable state may no longer have its data
1768 	 * available; report it as existing but with lost data. Or the record
1769 	 * may actually be a record with lost data.
1770 	 */
1771 	if (d_state == desc_reusable ||
1772 	    (blk_lpos->begin == FAILED_LPOS && blk_lpos->next == FAILED_LPOS)) {
1773 		return -ENOENT;
1774 	}
1775 
1776 	return 0;
1777 }
1778 
1779 /*
1780  * Copy the ringbuffer data from the record with @seq to the provided
1781  * @r buffer. On success, 0 is returned.
1782  *
1783  * See desc_read_finalized_seq() for error return values.
1784  */
1785 static int prb_read(struct printk_ringbuffer *rb, u64 seq,
1786 		    struct printk_record *r, unsigned int *line_count)
1787 {
1788 	struct prb_desc_ring *desc_ring = &rb->desc_ring;
1789 	struct printk_info *info = to_info(desc_ring, seq);
1790 	struct prb_desc *rdesc = to_desc(desc_ring, seq);
1791 	atomic_long_t *state_var = &rdesc->state_var;
1792 	struct prb_desc desc;
1793 	unsigned long id;
1794 	int err;
1795 
1796 	/* Extract the ID, used to specify the descriptor to read. */
1797 	id = DESC_ID(atomic_long_read(state_var));
1798 
1799 	/* Get a local copy of the correct descriptor (if available). */
1800 	err = desc_read_finalized_seq(desc_ring, id, seq, &desc);
1801 
1802 	/*
1803 	 * If @r is NULL, the caller is only interested in the availability
1804 	 * of the record.
1805 	 */
1806 	if (err || !r)
1807 		return err;
1808 
1809 	/* If requested, copy meta data. */
1810 	if (r->info)
1811 		memcpy(r->info, info, sizeof(*(r->info)));
1812 
1813 	/* Copy text data. If it fails, this is a data-less record. */
1814 	if (!copy_data(&rb->text_data_ring, &desc.text_blk_lpos, info->text_len,
1815 		       r->text_buf, r->text_buf_size, line_count)) {
1816 		return -ENOENT;
1817 	}
1818 
1819 	/* Ensure the record is still finalized and has the same @seq. */
1820 	return desc_read_finalized_seq(desc_ring, id, seq, &desc);
1821 }
1822 
1823 /* Get the sequence number of the tail descriptor. */
1824 static u64 prb_first_seq(struct printk_ringbuffer *rb)
1825 {
1826 	struct prb_desc_ring *desc_ring = &rb->desc_ring;
1827 	enum desc_state d_state;
1828 	struct prb_desc desc;
1829 	unsigned long id;
1830 	u64 seq;
1831 
1832 	for (;;) {
1833 		id = atomic_long_read(&rb->desc_ring.tail_id); /* LMM(prb_first_seq:A) */
1834 
1835 		d_state = desc_read(desc_ring, id, &desc, &seq, NULL); /* LMM(prb_first_seq:B) */
1836 
1837 		/*
1838 		 * This loop will not be infinite because the tail is
1839 		 * _always_ in the finalized or reusable state.
1840 		 */
1841 		if (d_state == desc_finalized || d_state == desc_reusable)
1842 			break;
1843 
1844 		/*
1845 		 * Guarantee the last state load from desc_read() is before
1846 		 * reloading @tail_id in order to see a new tail in the case
1847 		 * that the descriptor has been recycled. This pairs with
1848 		 * desc_reserve:D.
1849 		 *
1850 		 * Memory barrier involvement:
1851 		 *
1852 		 * If prb_first_seq:B reads from desc_reserve:F, then
1853 		 * prb_first_seq:A reads from desc_push_tail:B.
1854 		 *
1855 		 * Relies on:
1856 		 *
1857 		 * MB from desc_push_tail:B to desc_reserve:F
1858 		 *    matching
1859 		 * RMB prb_first_seq:B to prb_first_seq:A
1860 		 */
1861 		smp_rmb(); /* LMM(prb_first_seq:C) */
1862 	}
1863 
1864 	return seq;
1865 }
1866 
1867 /*
1868  * Non-blocking read of a record. Updates @seq to the last finalized record
1869  * (which may have no data available).
1870  *
1871  * See the description of prb_read_valid() and prb_read_valid_info()
1872  * for details.
1873  */
1874 static bool _prb_read_valid(struct printk_ringbuffer *rb, u64 *seq,
1875 			    struct printk_record *r, unsigned int *line_count)
1876 {
1877 	u64 tail_seq;
1878 	int err;
1879 
1880 	while ((err = prb_read(rb, *seq, r, line_count))) {
1881 		tail_seq = prb_first_seq(rb);
1882 
1883 		if (*seq < tail_seq) {
1884 			/*
1885 			 * Behind the tail. Catch up and try again. This
1886 			 * can happen for -ENOENT and -EINVAL cases.
1887 			 */
1888 			*seq = tail_seq;
1889 
1890 		} else if (err == -ENOENT) {
1891 			/* Record exists, but no data available. Skip. */
1892 			(*seq)++;
1893 
1894 		} else {
1895 			/* Non-existent/non-finalized record. Must stop. */
1896 			return false;
1897 		}
1898 	}
1899 
1900 	return true;
1901 }
1902 
1903 /**
1904  * prb_read_valid() - Non-blocking read of a requested record or (if gone)
1905  *                    the next available record.
1906  *
1907  * @rb:  The ringbuffer to read from.
1908  * @seq: The sequence number of the record to read.
1909  * @r:   A record data buffer to store the read record to.
1910  *
1911  * This is the public function available to readers to read a record.
1912  *
1913  * The reader provides the @info and @text_buf buffers of @r to be
1914  * filled in. Any of the buffer pointers can be set to NULL if the reader
1915  * is not interested in that data. To ensure proper initialization of @r,
1916  * prb_rec_init_rd() should be used.
1917  *
1918  * Context: Any context.
1919  * Return: true if a record was read, otherwise false.
1920  *
1921  * On success, the reader must check r->info.seq to see which record was
1922  * actually read. This allows the reader to detect dropped records.
1923  *
1924  * Failure means @seq refers to a not yet written record.
1925  */
1926 bool prb_read_valid(struct printk_ringbuffer *rb, u64 seq,
1927 		    struct printk_record *r)
1928 {
1929 	return _prb_read_valid(rb, &seq, r, NULL);
1930 }
1931 
1932 /**
1933  * prb_read_valid_info() - Non-blocking read of meta data for a requested
1934  *                         record or (if gone) the next available record.
1935  *
1936  * @rb:         The ringbuffer to read from.
1937  * @seq:        The sequence number of the record to read.
1938  * @info:       A buffer to store the read record meta data to.
1939  * @line_count: A buffer to store the number of lines in the record text.
1940  *
1941  * This is the public function available to readers to read only the
1942  * meta data of a record.
1943  *
1944  * The reader provides the @info, @line_count buffers to be filled in.
1945  * Either of the buffer pointers can be set to NULL if the reader is not
1946  * interested in that data.
1947  *
1948  * Context: Any context.
1949  * Return: true if a record's meta data was read, otherwise false.
1950  *
1951  * On success, the reader must check info->seq to see which record meta data
1952  * was actually read. This allows the reader to detect dropped records.
1953  *
1954  * Failure means @seq refers to a not yet written record.
1955  */
1956 bool prb_read_valid_info(struct printk_ringbuffer *rb, u64 seq,
1957 			 struct printk_info *info, unsigned int *line_count)
1958 {
1959 	struct printk_record r;
1960 
1961 	prb_rec_init_rd(&r, info, NULL, 0);
1962 
1963 	return _prb_read_valid(rb, &seq, &r, line_count);
1964 }
1965 
1966 /**
1967  * prb_first_valid_seq() - Get the sequence number of the oldest available
1968  *                         record.
1969  *
1970  * @rb: The ringbuffer to get the sequence number from.
1971  *
1972  * This is the public function available to readers to see what the
1973  * first/oldest valid sequence number is.
1974  *
1975  * This provides readers a starting point to begin iterating the ringbuffer.
1976  *
1977  * Context: Any context.
1978  * Return: The sequence number of the first/oldest record or, if the
1979  *         ringbuffer is empty, 0 is returned.
1980  */
1981 u64 prb_first_valid_seq(struct printk_ringbuffer *rb)
1982 {
1983 	u64 seq = 0;
1984 
1985 	if (!_prb_read_valid(rb, &seq, NULL, NULL))
1986 		return 0;
1987 
1988 	return seq;
1989 }
1990 
1991 /**
1992  * prb_next_seq() - Get the sequence number after the last available record.
1993  *
1994  * @rb:  The ringbuffer to get the sequence number from.
1995  *
1996  * This is the public function available to readers to see what the next
1997  * newest sequence number available to readers will be.
1998  *
1999  * This provides readers a sequence number to jump to if all currently
2000  * available records should be skipped.
2001  *
2002  * Context: Any context.
2003  * Return: The sequence number of the next newest (not yet available) record
2004  *         for readers.
2005  */
2006 u64 prb_next_seq(struct printk_ringbuffer *rb)
2007 {
2008 	u64 seq = 0;
2009 
2010 	/* Search forward from the oldest descriptor. */
2011 	while (_prb_read_valid(rb, &seq, NULL, NULL))
2012 		seq++;
2013 
2014 	return seq;
2015 }
2016 
2017 /**
2018  * prb_init() - Initialize a ringbuffer to use provided external buffers.
2019  *
2020  * @rb:       The ringbuffer to initialize.
2021  * @text_buf: The data buffer for text data.
2022  * @textbits: The size of @text_buf as a power-of-2 value.
2023  * @descs:    The descriptor buffer for ringbuffer records.
2024  * @descbits: The count of @descs items as a power-of-2 value.
2025  * @infos:    The printk_info buffer for ringbuffer records.
2026  *
2027  * This is the public function available to writers to setup a ringbuffer
2028  * during runtime using provided buffers.
2029  *
2030  * This must match the initialization of DEFINE_PRINTKRB().
2031  *
2032  * Context: Any context.
2033  */
2034 void prb_init(struct printk_ringbuffer *rb,
2035 	      char *text_buf, unsigned int textbits,
2036 	      struct prb_desc *descs, unsigned int descbits,
2037 	      struct printk_info *infos)
2038 {
2039 	memset(descs, 0, _DESCS_COUNT(descbits) * sizeof(descs[0]));
2040 	memset(infos, 0, _DESCS_COUNT(descbits) * sizeof(infos[0]));
2041 
2042 	rb->desc_ring.count_bits = descbits;
2043 	rb->desc_ring.descs = descs;
2044 	rb->desc_ring.infos = infos;
2045 	atomic_long_set(&rb->desc_ring.head_id, DESC0_ID(descbits));
2046 	atomic_long_set(&rb->desc_ring.tail_id, DESC0_ID(descbits));
2047 
2048 	rb->text_data_ring.size_bits = textbits;
2049 	rb->text_data_ring.data = text_buf;
2050 	atomic_long_set(&rb->text_data_ring.head_lpos, BLK0_LPOS(textbits));
2051 	atomic_long_set(&rb->text_data_ring.tail_lpos, BLK0_LPOS(textbits));
2052 
2053 	atomic_long_set(&rb->fail, 0);
2054 
2055 	atomic_long_set(&(descs[_DESCS_COUNT(descbits) - 1].state_var), DESC0_SV(descbits));
2056 	descs[_DESCS_COUNT(descbits) - 1].text_blk_lpos.begin = FAILED_LPOS;
2057 	descs[_DESCS_COUNT(descbits) - 1].text_blk_lpos.next = FAILED_LPOS;
2058 
2059 	infos[0].seq = -(u64)_DESCS_COUNT(descbits);
2060 	infos[_DESCS_COUNT(descbits) - 1].seq = 0;
2061 }
2062 
2063 /**
2064  * prb_record_text_space() - Query the full actual used ringbuffer space for
2065  *                           the text data of a reserved entry.
2066  *
2067  * @e: The successfully reserved entry to query.
2068  *
2069  * This is the public function available to writers to see how much actual
2070  * space is used in the ringbuffer to store the text data of the specified
2071  * entry.
2072  *
2073  * This function is only valid if @e has been successfully reserved using
2074  * prb_reserve().
2075  *
2076  * Context: Any context.
2077  * Return: The size in bytes used by the text data of the associated record.
2078  */
2079 unsigned int prb_record_text_space(struct prb_reserved_entry *e)
2080 {
2081 	return e->text_space;
2082 }
2083