1 // SPDX-License-Identifier: GPL-2.0 2 3 #include <linux/kernel.h> 4 #include <linux/irqflags.h> 5 #include <linux/string.h> 6 #include <linux/errno.h> 7 #include <linux/bug.h> 8 #include "printk_ringbuffer.h" 9 10 /** 11 * DOC: printk_ringbuffer overview 12 * 13 * Data Structure 14 * -------------- 15 * The printk_ringbuffer is made up of 3 internal ringbuffers: 16 * 17 * desc_ring 18 * A ring of descriptors and their meta data (such as sequence number, 19 * timestamp, loglevel, etc.) as well as internal state information about 20 * the record and logical positions specifying where in the other 21 * ringbuffer the text strings are located. 22 * 23 * text_data_ring 24 * A ring of data blocks. A data block consists of an unsigned long 25 * integer (ID) that maps to a desc_ring index followed by the text 26 * string of the record. 27 * 28 * The internal state information of a descriptor is the key element to allow 29 * readers and writers to locklessly synchronize access to the data. 30 * 31 * Implementation 32 * -------------- 33 * 34 * Descriptor Ring 35 * ~~~~~~~~~~~~~~~ 36 * The descriptor ring is an array of descriptors. A descriptor contains 37 * essential meta data to track the data of a printk record using 38 * blk_lpos structs pointing to associated text data blocks (see 39 * "Data Rings" below). Each descriptor is assigned an ID that maps 40 * directly to index values of the descriptor array and has a state. The ID 41 * and the state are bitwise combined into a single descriptor field named 42 * @state_var, allowing ID and state to be synchronously and atomically 43 * updated. 44 * 45 * Descriptors have four states: 46 * 47 * reserved 48 * A writer is modifying the record. 49 * 50 * committed 51 * The record and all its data are written. A writer can reopen the 52 * descriptor (transitioning it back to reserved), but in the committed 53 * state the data is consistent. 54 * 55 * finalized 56 * The record and all its data are complete and available for reading. A 57 * writer cannot reopen the descriptor. 58 * 59 * reusable 60 * The record exists, but its text and/or meta data may no longer be 61 * available. 62 * 63 * Querying the @state_var of a record requires providing the ID of the 64 * descriptor to query. This can yield a possible fifth (pseudo) state: 65 * 66 * miss 67 * The descriptor being queried has an unexpected ID. 68 * 69 * The descriptor ring has a @tail_id that contains the ID of the oldest 70 * descriptor and @head_id that contains the ID of the newest descriptor. 71 * 72 * When a new descriptor should be created (and the ring is full), the tail 73 * descriptor is invalidated by first transitioning to the reusable state and 74 * then invalidating all tail data blocks up to and including the data blocks 75 * associated with the tail descriptor (for the text ring). Then 76 * @tail_id is advanced, followed by advancing @head_id. And finally the 77 * @state_var of the new descriptor is initialized to the new ID and reserved 78 * state. 79 * 80 * The @tail_id can only be advanced if the new @tail_id would be in the 81 * committed or reusable queried state. This makes it possible that a valid 82 * sequence number of the tail is always available. 83 * 84 * Descriptor Finalization 85 * ~~~~~~~~~~~~~~~~~~~~~~~ 86 * When a writer calls the commit function prb_commit(), record data is 87 * fully stored and is consistent within the ringbuffer. However, a writer can 88 * reopen that record, claiming exclusive access (as with prb_reserve()), and 89 * modify that record. When finished, the writer must again commit the record. 90 * 91 * In order for a record to be made available to readers (and also become 92 * recyclable for writers), it must be finalized. A finalized record cannot be 93 * reopened and can never become "unfinalized". Record finalization can occur 94 * in three different scenarios: 95 * 96 * 1) A writer can simultaneously commit and finalize its record by calling 97 * prb_final_commit() instead of prb_commit(). 98 * 99 * 2) When a new record is reserved and the previous record has been 100 * committed via prb_commit(), that previous record is automatically 101 * finalized. 102 * 103 * 3) When a record is committed via prb_commit() and a newer record 104 * already exists, the record being committed is automatically finalized. 105 * 106 * Data Ring 107 * ~~~~~~~~~ 108 * The text data ring is a byte array composed of data blocks. Data blocks are 109 * referenced by blk_lpos structs that point to the logical position of the 110 * beginning of a data block and the beginning of the next adjacent data 111 * block. Logical positions are mapped directly to index values of the byte 112 * array ringbuffer. 113 * 114 * Each data block consists of an ID followed by the writer data. The ID is 115 * the identifier of a descriptor that is associated with the data block. A 116 * given data block is considered valid if all of the following conditions 117 * are met: 118 * 119 * 1) The descriptor associated with the data block is in the committed 120 * or finalized queried state. 121 * 122 * 2) The blk_lpos struct within the descriptor associated with the data 123 * block references back to the same data block. 124 * 125 * 3) The data block is within the head/tail logical position range. 126 * 127 * If the writer data of a data block would extend beyond the end of the 128 * byte array, only the ID of the data block is stored at the logical 129 * position and the full data block (ID and writer data) is stored at the 130 * beginning of the byte array. The referencing blk_lpos will point to the 131 * ID before the wrap and the next data block will be at the logical 132 * position adjacent the full data block after the wrap. 133 * 134 * Data rings have a @tail_lpos that points to the beginning of the oldest 135 * data block and a @head_lpos that points to the logical position of the 136 * next (not yet existing) data block. 137 * 138 * When a new data block should be created (and the ring is full), tail data 139 * blocks will first be invalidated by putting their associated descriptors 140 * into the reusable state and then pushing the @tail_lpos forward beyond 141 * them. Then the @head_lpos is pushed forward and is associated with a new 142 * descriptor. If a data block is not valid, the @tail_lpos cannot be 143 * advanced beyond it. 144 * 145 * Info Array 146 * ~~~~~~~~~~ 147 * The general meta data of printk records are stored in printk_info structs, 148 * stored in an array with the same number of elements as the descriptor ring. 149 * Each info corresponds to the descriptor of the same index in the 150 * descriptor ring. Info validity is confirmed by evaluating the corresponding 151 * descriptor before and after loading the info. 152 * 153 * Usage 154 * ----- 155 * Here are some simple examples demonstrating writers and readers. For the 156 * examples a global ringbuffer (test_rb) is available (which is not the 157 * actual ringbuffer used by printk):: 158 * 159 * DEFINE_PRINTKRB(test_rb, 15, 5); 160 * 161 * This ringbuffer allows up to 32768 records (2 ^ 15) and has a size of 162 * 1 MiB (2 ^ (15 + 5)) for text data. 163 * 164 * Sample writer code:: 165 * 166 * const char *textstr = "message text"; 167 * struct prb_reserved_entry e; 168 * struct printk_record r; 169 * 170 * // specify how much to allocate 171 * prb_rec_init_wr(&r, strlen(textstr) + 1); 172 * 173 * if (prb_reserve(&e, &test_rb, &r)) { 174 * snprintf(r.text_buf, r.text_buf_size, "%s", textstr); 175 * 176 * r.info->text_len = strlen(textstr); 177 * r.info->ts_nsec = local_clock(); 178 * r.info->caller_id = printk_caller_id(); 179 * 180 * // commit and finalize the record 181 * prb_final_commit(&e); 182 * } 183 * 184 * Note that additional writer functions are available to extend a record 185 * after it has been committed but not yet finalized. This can be done as 186 * long as no new records have been reserved and the caller is the same. 187 * 188 * Sample writer code (record extending):: 189 * 190 * // alternate rest of previous example 191 * 192 * r.info->text_len = strlen(textstr); 193 * r.info->ts_nsec = local_clock(); 194 * r.info->caller_id = printk_caller_id(); 195 * 196 * // commit the record (but do not finalize yet) 197 * prb_commit(&e); 198 * } 199 * 200 * ... 201 * 202 * // specify additional 5 bytes text space to extend 203 * prb_rec_init_wr(&r, 5); 204 * 205 * // try to extend, but only if it does not exceed 32 bytes 206 * if (prb_reserve_in_last(&e, &test_rb, &r, printk_caller_id()), 32) { 207 * snprintf(&r.text_buf[r.info->text_len], 208 * r.text_buf_size - r.info->text_len, "hello"); 209 * 210 * r.info->text_len += 5; 211 * 212 * // commit and finalize the record 213 * prb_final_commit(&e); 214 * } 215 * 216 * Sample reader code:: 217 * 218 * struct printk_info info; 219 * struct printk_record r; 220 * char text_buf[32]; 221 * u64 seq; 222 * 223 * prb_rec_init_rd(&r, &info, &text_buf[0], sizeof(text_buf)); 224 * 225 * prb_for_each_record(0, &test_rb, &seq, &r) { 226 * if (info.seq != seq) 227 * pr_warn("lost %llu records\n", info.seq - seq); 228 * 229 * if (info.text_len > r.text_buf_size) { 230 * pr_warn("record %llu text truncated\n", info.seq); 231 * text_buf[r.text_buf_size - 1] = 0; 232 * } 233 * 234 * pr_info("%llu: %llu: %s\n", info.seq, info.ts_nsec, 235 * &text_buf[0]); 236 * } 237 * 238 * Note that additional less convenient reader functions are available to 239 * allow complex record access. 240 * 241 * ABA Issues 242 * ~~~~~~~~~~ 243 * To help avoid ABA issues, descriptors are referenced by IDs (array index 244 * values combined with tagged bits counting array wraps) and data blocks are 245 * referenced by logical positions (array index values combined with tagged 246 * bits counting array wraps). However, on 32-bit systems the number of 247 * tagged bits is relatively small such that an ABA incident is (at least 248 * theoretically) possible. For example, if 4 million maximally sized (1KiB) 249 * printk messages were to occur in NMI context on a 32-bit system, the 250 * interrupted context would not be able to recognize that the 32-bit integer 251 * completely wrapped and thus represents a different data block than the one 252 * the interrupted context expects. 253 * 254 * To help combat this possibility, additional state checking is performed 255 * (such as using cmpxchg() even though set() would suffice). These extra 256 * checks are commented as such and will hopefully catch any ABA issue that 257 * a 32-bit system might experience. 258 * 259 * Memory Barriers 260 * ~~~~~~~~~~~~~~~ 261 * Multiple memory barriers are used. To simplify proving correctness and 262 * generating litmus tests, lines of code related to memory barriers 263 * (loads, stores, and the associated memory barriers) are labeled:: 264 * 265 * LMM(function:letter) 266 * 267 * Comments reference the labels using only the "function:letter" part. 268 * 269 * The memory barrier pairs and their ordering are: 270 * 271 * desc_reserve:D / desc_reserve:B 272 * push descriptor tail (id), then push descriptor head (id) 273 * 274 * desc_reserve:D / data_push_tail:B 275 * push data tail (lpos), then set new descriptor reserved (state) 276 * 277 * desc_reserve:D / desc_push_tail:C 278 * push descriptor tail (id), then set new descriptor reserved (state) 279 * 280 * desc_reserve:D / prb_first_seq:C 281 * push descriptor tail (id), then set new descriptor reserved (state) 282 * 283 * desc_reserve:F / desc_read:D 284 * set new descriptor id and reserved (state), then allow writer changes 285 * 286 * data_alloc:A (or data_realloc:A) / desc_read:D 287 * set old descriptor reusable (state), then modify new data block area 288 * 289 * data_alloc:A (or data_realloc:A) / data_push_tail:B 290 * push data tail (lpos), then modify new data block area 291 * 292 * _prb_commit:B / desc_read:B 293 * store writer changes, then set new descriptor committed (state) 294 * 295 * desc_reopen_last:A / _prb_commit:B 296 * set descriptor reserved (state), then read descriptor data 297 * 298 * _prb_commit:B / desc_reserve:D 299 * set new descriptor committed (state), then check descriptor head (id) 300 * 301 * data_push_tail:D / data_push_tail:A 302 * set descriptor reusable (state), then push data tail (lpos) 303 * 304 * desc_push_tail:B / desc_reserve:D 305 * set descriptor reusable (state), then push descriptor tail (id) 306 */ 307 308 #define DATA_SIZE(data_ring) _DATA_SIZE((data_ring)->size_bits) 309 #define DATA_SIZE_MASK(data_ring) (DATA_SIZE(data_ring) - 1) 310 311 #define DESCS_COUNT(desc_ring) _DESCS_COUNT((desc_ring)->count_bits) 312 #define DESCS_COUNT_MASK(desc_ring) (DESCS_COUNT(desc_ring) - 1) 313 314 /* Determine the data array index from a logical position. */ 315 #define DATA_INDEX(data_ring, lpos) ((lpos) & DATA_SIZE_MASK(data_ring)) 316 317 /* Determine the desc array index from an ID or sequence number. */ 318 #define DESC_INDEX(desc_ring, n) ((n) & DESCS_COUNT_MASK(desc_ring)) 319 320 /* Determine how many times the data array has wrapped. */ 321 #define DATA_WRAPS(data_ring, lpos) ((lpos) >> (data_ring)->size_bits) 322 323 /* Determine if a logical position refers to a data-less block. */ 324 #define LPOS_DATALESS(lpos) ((lpos) & 1UL) 325 #define BLK_DATALESS(blk) (LPOS_DATALESS((blk)->begin) && \ 326 LPOS_DATALESS((blk)->next)) 327 328 /* Get the logical position at index 0 of the current wrap. */ 329 #define DATA_THIS_WRAP_START_LPOS(data_ring, lpos) \ 330 ((lpos) & ~DATA_SIZE_MASK(data_ring)) 331 332 /* Get the ID for the same index of the previous wrap as the given ID. */ 333 #define DESC_ID_PREV_WRAP(desc_ring, id) \ 334 DESC_ID((id) - DESCS_COUNT(desc_ring)) 335 336 /* 337 * A data block: mapped directly to the beginning of the data block area 338 * specified as a logical position within the data ring. 339 * 340 * @id: the ID of the associated descriptor 341 * @data: the writer data 342 * 343 * Note that the size of a data block is only known by its associated 344 * descriptor. 345 */ 346 struct prb_data_block { 347 unsigned long id; 348 char data[0]; 349 }; 350 351 /* 352 * Return the descriptor associated with @n. @n can be either a 353 * descriptor ID or a sequence number. 354 */ 355 static struct prb_desc *to_desc(struct prb_desc_ring *desc_ring, u64 n) 356 { 357 return &desc_ring->descs[DESC_INDEX(desc_ring, n)]; 358 } 359 360 /* 361 * Return the printk_info associated with @n. @n can be either a 362 * descriptor ID or a sequence number. 363 */ 364 static struct printk_info *to_info(struct prb_desc_ring *desc_ring, u64 n) 365 { 366 return &desc_ring->infos[DESC_INDEX(desc_ring, n)]; 367 } 368 369 static struct prb_data_block *to_block(struct prb_data_ring *data_ring, 370 unsigned long begin_lpos) 371 { 372 return (void *)&data_ring->data[DATA_INDEX(data_ring, begin_lpos)]; 373 } 374 375 /* 376 * Increase the data size to account for data block meta data plus any 377 * padding so that the adjacent data block is aligned on the ID size. 378 */ 379 static unsigned int to_blk_size(unsigned int size) 380 { 381 struct prb_data_block *db = NULL; 382 383 size += sizeof(*db); 384 size = ALIGN(size, sizeof(db->id)); 385 return size; 386 } 387 388 /* 389 * Sanity checker for reserve size. The ringbuffer code assumes that a data 390 * block does not exceed the maximum possible size that could fit within the 391 * ringbuffer. This function provides that basic size check so that the 392 * assumption is safe. 393 */ 394 static bool data_check_size(struct prb_data_ring *data_ring, unsigned int size) 395 { 396 struct prb_data_block *db = NULL; 397 398 if (size == 0) 399 return true; 400 401 /* 402 * Ensure the alignment padded size could possibly fit in the data 403 * array. The largest possible data block must still leave room for 404 * at least the ID of the next block. 405 */ 406 size = to_blk_size(size); 407 if (size > DATA_SIZE(data_ring) - sizeof(db->id)) 408 return false; 409 410 return true; 411 } 412 413 /* Query the state of a descriptor. */ 414 static enum desc_state get_desc_state(unsigned long id, 415 unsigned long state_val) 416 { 417 if (id != DESC_ID(state_val)) 418 return desc_miss; 419 420 return DESC_STATE(state_val); 421 } 422 423 /* 424 * Get a copy of a specified descriptor and return its queried state. If the 425 * descriptor is in an inconsistent state (miss or reserved), the caller can 426 * only expect the descriptor's @state_var field to be valid. 427 * 428 * The sequence number and caller_id can be optionally retrieved. Like all 429 * non-state_var data, they are only valid if the descriptor is in a 430 * consistent state. 431 */ 432 static enum desc_state desc_read(struct prb_desc_ring *desc_ring, 433 unsigned long id, struct prb_desc *desc_out, 434 u64 *seq_out, u32 *caller_id_out) 435 { 436 struct printk_info *info = to_info(desc_ring, id); 437 struct prb_desc *desc = to_desc(desc_ring, id); 438 atomic_long_t *state_var = &desc->state_var; 439 enum desc_state d_state; 440 unsigned long state_val; 441 442 /* Check the descriptor state. */ 443 state_val = atomic_long_read(state_var); /* LMM(desc_read:A) */ 444 d_state = get_desc_state(id, state_val); 445 if (d_state == desc_miss || d_state == desc_reserved) { 446 /* 447 * The descriptor is in an inconsistent state. Set at least 448 * @state_var so that the caller can see the details of 449 * the inconsistent state. 450 */ 451 goto out; 452 } 453 454 /* 455 * Guarantee the state is loaded before copying the descriptor 456 * content. This avoids copying obsolete descriptor content that might 457 * not apply to the descriptor state. This pairs with _prb_commit:B. 458 * 459 * Memory barrier involvement: 460 * 461 * If desc_read:A reads from _prb_commit:B, then desc_read:C reads 462 * from _prb_commit:A. 463 * 464 * Relies on: 465 * 466 * WMB from _prb_commit:A to _prb_commit:B 467 * matching 468 * RMB from desc_read:A to desc_read:C 469 */ 470 smp_rmb(); /* LMM(desc_read:B) */ 471 472 /* 473 * Copy the descriptor data. The data is not valid until the 474 * state has been re-checked. A memcpy() for all of @desc 475 * cannot be used because of the atomic_t @state_var field. 476 */ 477 memcpy(&desc_out->text_blk_lpos, &desc->text_blk_lpos, 478 sizeof(desc_out->text_blk_lpos)); /* LMM(desc_read:C) */ 479 if (seq_out) 480 *seq_out = info->seq; /* also part of desc_read:C */ 481 if (caller_id_out) 482 *caller_id_out = info->caller_id; /* also part of desc_read:C */ 483 484 /* 485 * 1. Guarantee the descriptor content is loaded before re-checking 486 * the state. This avoids reading an obsolete descriptor state 487 * that may not apply to the copied content. This pairs with 488 * desc_reserve:F. 489 * 490 * Memory barrier involvement: 491 * 492 * If desc_read:C reads from desc_reserve:G, then desc_read:E 493 * reads from desc_reserve:F. 494 * 495 * Relies on: 496 * 497 * WMB from desc_reserve:F to desc_reserve:G 498 * matching 499 * RMB from desc_read:C to desc_read:E 500 * 501 * 2. Guarantee the record data is loaded before re-checking the 502 * state. This avoids reading an obsolete descriptor state that may 503 * not apply to the copied data. This pairs with data_alloc:A and 504 * data_realloc:A. 505 * 506 * Memory barrier involvement: 507 * 508 * If copy_data:A reads from data_alloc:B, then desc_read:E 509 * reads from desc_make_reusable:A. 510 * 511 * Relies on: 512 * 513 * MB from desc_make_reusable:A to data_alloc:B 514 * matching 515 * RMB from desc_read:C to desc_read:E 516 * 517 * Note: desc_make_reusable:A and data_alloc:B can be different 518 * CPUs. However, the data_alloc:B CPU (which performs the 519 * full memory barrier) must have previously seen 520 * desc_make_reusable:A. 521 */ 522 smp_rmb(); /* LMM(desc_read:D) */ 523 524 /* 525 * The data has been copied. Return the current descriptor state, 526 * which may have changed since the load above. 527 */ 528 state_val = atomic_long_read(state_var); /* LMM(desc_read:E) */ 529 d_state = get_desc_state(id, state_val); 530 out: 531 atomic_long_set(&desc_out->state_var, state_val); 532 return d_state; 533 } 534 535 /* 536 * Take a specified descriptor out of the finalized state by attempting 537 * the transition from finalized to reusable. Either this context or some 538 * other context will have been successful. 539 */ 540 static void desc_make_reusable(struct prb_desc_ring *desc_ring, 541 unsigned long id) 542 { 543 unsigned long val_finalized = DESC_SV(id, desc_finalized); 544 unsigned long val_reusable = DESC_SV(id, desc_reusable); 545 struct prb_desc *desc = to_desc(desc_ring, id); 546 atomic_long_t *state_var = &desc->state_var; 547 548 atomic_long_cmpxchg_relaxed(state_var, val_finalized, 549 val_reusable); /* LMM(desc_make_reusable:A) */ 550 } 551 552 /* 553 * Given the text data ring, put the associated descriptor of each 554 * data block from @lpos_begin until @lpos_end into the reusable state. 555 * 556 * If there is any problem making the associated descriptor reusable, either 557 * the descriptor has not yet been finalized or another writer context has 558 * already pushed the tail lpos past the problematic data block. Regardless, 559 * on error the caller can re-load the tail lpos to determine the situation. 560 */ 561 static bool data_make_reusable(struct printk_ringbuffer *rb, 562 struct prb_data_ring *data_ring, 563 unsigned long lpos_begin, 564 unsigned long lpos_end, 565 unsigned long *lpos_out) 566 { 567 struct prb_desc_ring *desc_ring = &rb->desc_ring; 568 struct prb_data_block *blk; 569 enum desc_state d_state; 570 struct prb_desc desc; 571 struct prb_data_blk_lpos *blk_lpos = &desc.text_blk_lpos; 572 unsigned long id; 573 574 /* Loop until @lpos_begin has advanced to or beyond @lpos_end. */ 575 while ((lpos_end - lpos_begin) - 1 < DATA_SIZE(data_ring)) { 576 blk = to_block(data_ring, lpos_begin); 577 578 /* 579 * Load the block ID from the data block. This is a data race 580 * against a writer that may have newly reserved this data 581 * area. If the loaded value matches a valid descriptor ID, 582 * the blk_lpos of that descriptor will be checked to make 583 * sure it points back to this data block. If the check fails, 584 * the data area has been recycled by another writer. 585 */ 586 id = blk->id; /* LMM(data_make_reusable:A) */ 587 588 d_state = desc_read(desc_ring, id, &desc, 589 NULL, NULL); /* LMM(data_make_reusable:B) */ 590 591 switch (d_state) { 592 case desc_miss: 593 case desc_reserved: 594 case desc_committed: 595 return false; 596 case desc_finalized: 597 /* 598 * This data block is invalid if the descriptor 599 * does not point back to it. 600 */ 601 if (blk_lpos->begin != lpos_begin) 602 return false; 603 desc_make_reusable(desc_ring, id); 604 break; 605 case desc_reusable: 606 /* 607 * This data block is invalid if the descriptor 608 * does not point back to it. 609 */ 610 if (blk_lpos->begin != lpos_begin) 611 return false; 612 break; 613 } 614 615 /* Advance @lpos_begin to the next data block. */ 616 lpos_begin = blk_lpos->next; 617 } 618 619 *lpos_out = lpos_begin; 620 return true; 621 } 622 623 /* 624 * Advance the data ring tail to at least @lpos. This function puts 625 * descriptors into the reusable state if the tail is pushed beyond 626 * their associated data block. 627 */ 628 static bool data_push_tail(struct printk_ringbuffer *rb, 629 struct prb_data_ring *data_ring, 630 unsigned long lpos) 631 { 632 unsigned long tail_lpos_new; 633 unsigned long tail_lpos; 634 unsigned long next_lpos; 635 636 /* If @lpos is from a data-less block, there is nothing to do. */ 637 if (LPOS_DATALESS(lpos)) 638 return true; 639 640 /* 641 * Any descriptor states that have transitioned to reusable due to the 642 * data tail being pushed to this loaded value will be visible to this 643 * CPU. This pairs with data_push_tail:D. 644 * 645 * Memory barrier involvement: 646 * 647 * If data_push_tail:A reads from data_push_tail:D, then this CPU can 648 * see desc_make_reusable:A. 649 * 650 * Relies on: 651 * 652 * MB from desc_make_reusable:A to data_push_tail:D 653 * matches 654 * READFROM from data_push_tail:D to data_push_tail:A 655 * thus 656 * READFROM from desc_make_reusable:A to this CPU 657 */ 658 tail_lpos = atomic_long_read(&data_ring->tail_lpos); /* LMM(data_push_tail:A) */ 659 660 /* 661 * Loop until the tail lpos is at or beyond @lpos. This condition 662 * may already be satisfied, resulting in no full memory barrier 663 * from data_push_tail:D being performed. However, since this CPU 664 * sees the new tail lpos, any descriptor states that transitioned to 665 * the reusable state must already be visible. 666 */ 667 while ((lpos - tail_lpos) - 1 < DATA_SIZE(data_ring)) { 668 /* 669 * Make all descriptors reusable that are associated with 670 * data blocks before @lpos. 671 */ 672 if (!data_make_reusable(rb, data_ring, tail_lpos, lpos, 673 &next_lpos)) { 674 /* 675 * 1. Guarantee the block ID loaded in 676 * data_make_reusable() is performed before 677 * reloading the tail lpos. The failed 678 * data_make_reusable() may be due to a newly 679 * recycled data area causing the tail lpos to 680 * have been previously pushed. This pairs with 681 * data_alloc:A and data_realloc:A. 682 * 683 * Memory barrier involvement: 684 * 685 * If data_make_reusable:A reads from data_alloc:B, 686 * then data_push_tail:C reads from 687 * data_push_tail:D. 688 * 689 * Relies on: 690 * 691 * MB from data_push_tail:D to data_alloc:B 692 * matching 693 * RMB from data_make_reusable:A to 694 * data_push_tail:C 695 * 696 * Note: data_push_tail:D and data_alloc:B can be 697 * different CPUs. However, the data_alloc:B 698 * CPU (which performs the full memory 699 * barrier) must have previously seen 700 * data_push_tail:D. 701 * 702 * 2. Guarantee the descriptor state loaded in 703 * data_make_reusable() is performed before 704 * reloading the tail lpos. The failed 705 * data_make_reusable() may be due to a newly 706 * recycled descriptor causing the tail lpos to 707 * have been previously pushed. This pairs with 708 * desc_reserve:D. 709 * 710 * Memory barrier involvement: 711 * 712 * If data_make_reusable:B reads from 713 * desc_reserve:F, then data_push_tail:C reads 714 * from data_push_tail:D. 715 * 716 * Relies on: 717 * 718 * MB from data_push_tail:D to desc_reserve:F 719 * matching 720 * RMB from data_make_reusable:B to 721 * data_push_tail:C 722 * 723 * Note: data_push_tail:D and desc_reserve:F can 724 * be different CPUs. However, the 725 * desc_reserve:F CPU (which performs the 726 * full memory barrier) must have previously 727 * seen data_push_tail:D. 728 */ 729 smp_rmb(); /* LMM(data_push_tail:B) */ 730 731 tail_lpos_new = atomic_long_read(&data_ring->tail_lpos 732 ); /* LMM(data_push_tail:C) */ 733 if (tail_lpos_new == tail_lpos) 734 return false; 735 736 /* Another CPU pushed the tail. Try again. */ 737 tail_lpos = tail_lpos_new; 738 continue; 739 } 740 741 /* 742 * Guarantee any descriptor states that have transitioned to 743 * reusable are stored before pushing the tail lpos. A full 744 * memory barrier is needed since other CPUs may have made 745 * the descriptor states reusable. This pairs with 746 * data_push_tail:A. 747 */ 748 if (atomic_long_try_cmpxchg(&data_ring->tail_lpos, &tail_lpos, 749 next_lpos)) { /* LMM(data_push_tail:D) */ 750 break; 751 } 752 } 753 754 return true; 755 } 756 757 /* 758 * Advance the desc ring tail. This function advances the tail by one 759 * descriptor, thus invalidating the oldest descriptor. Before advancing 760 * the tail, the tail descriptor is made reusable and all data blocks up to 761 * and including the descriptor's data block are invalidated (i.e. the data 762 * ring tail is pushed past the data block of the descriptor being made 763 * reusable). 764 */ 765 static bool desc_push_tail(struct printk_ringbuffer *rb, 766 unsigned long tail_id) 767 { 768 struct prb_desc_ring *desc_ring = &rb->desc_ring; 769 enum desc_state d_state; 770 struct prb_desc desc; 771 772 d_state = desc_read(desc_ring, tail_id, &desc, NULL, NULL); 773 774 switch (d_state) { 775 case desc_miss: 776 /* 777 * If the ID is exactly 1 wrap behind the expected, it is 778 * in the process of being reserved by another writer and 779 * must be considered reserved. 780 */ 781 if (DESC_ID(atomic_long_read(&desc.state_var)) == 782 DESC_ID_PREV_WRAP(desc_ring, tail_id)) { 783 return false; 784 } 785 786 /* 787 * The ID has changed. Another writer must have pushed the 788 * tail and recycled the descriptor already. Success is 789 * returned because the caller is only interested in the 790 * specified tail being pushed, which it was. 791 */ 792 return true; 793 case desc_reserved: 794 case desc_committed: 795 return false; 796 case desc_finalized: 797 desc_make_reusable(desc_ring, tail_id); 798 break; 799 case desc_reusable: 800 break; 801 } 802 803 /* 804 * Data blocks must be invalidated before their associated 805 * descriptor can be made available for recycling. Invalidating 806 * them later is not possible because there is no way to trust 807 * data blocks once their associated descriptor is gone. 808 */ 809 810 if (!data_push_tail(rb, &rb->text_data_ring, desc.text_blk_lpos.next)) 811 return false; 812 813 /* 814 * Check the next descriptor after @tail_id before pushing the tail 815 * to it because the tail must always be in a finalized or reusable 816 * state. The implementation of prb_first_seq() relies on this. 817 * 818 * A successful read implies that the next descriptor is less than or 819 * equal to @head_id so there is no risk of pushing the tail past the 820 * head. 821 */ 822 d_state = desc_read(desc_ring, DESC_ID(tail_id + 1), &desc, 823 NULL, NULL); /* LMM(desc_push_tail:A) */ 824 825 if (d_state == desc_finalized || d_state == desc_reusable) { 826 /* 827 * Guarantee any descriptor states that have transitioned to 828 * reusable are stored before pushing the tail ID. This allows 829 * verifying the recycled descriptor state. A full memory 830 * barrier is needed since other CPUs may have made the 831 * descriptor states reusable. This pairs with desc_reserve:D. 832 */ 833 atomic_long_cmpxchg(&desc_ring->tail_id, tail_id, 834 DESC_ID(tail_id + 1)); /* LMM(desc_push_tail:B) */ 835 } else { 836 /* 837 * Guarantee the last state load from desc_read() is before 838 * reloading @tail_id in order to see a new tail ID in the 839 * case that the descriptor has been recycled. This pairs 840 * with desc_reserve:D. 841 * 842 * Memory barrier involvement: 843 * 844 * If desc_push_tail:A reads from desc_reserve:F, then 845 * desc_push_tail:D reads from desc_push_tail:B. 846 * 847 * Relies on: 848 * 849 * MB from desc_push_tail:B to desc_reserve:F 850 * matching 851 * RMB from desc_push_tail:A to desc_push_tail:D 852 * 853 * Note: desc_push_tail:B and desc_reserve:F can be different 854 * CPUs. However, the desc_reserve:F CPU (which performs 855 * the full memory barrier) must have previously seen 856 * desc_push_tail:B. 857 */ 858 smp_rmb(); /* LMM(desc_push_tail:C) */ 859 860 /* 861 * Re-check the tail ID. The descriptor following @tail_id is 862 * not in an allowed tail state. But if the tail has since 863 * been moved by another CPU, then it does not matter. 864 */ 865 if (atomic_long_read(&desc_ring->tail_id) == tail_id) /* LMM(desc_push_tail:D) */ 866 return false; 867 } 868 869 return true; 870 } 871 872 /* Reserve a new descriptor, invalidating the oldest if necessary. */ 873 static bool desc_reserve(struct printk_ringbuffer *rb, unsigned long *id_out) 874 { 875 struct prb_desc_ring *desc_ring = &rb->desc_ring; 876 unsigned long prev_state_val; 877 unsigned long id_prev_wrap; 878 struct prb_desc *desc; 879 unsigned long head_id; 880 unsigned long id; 881 882 head_id = atomic_long_read(&desc_ring->head_id); /* LMM(desc_reserve:A) */ 883 884 do { 885 desc = to_desc(desc_ring, head_id); 886 887 id = DESC_ID(head_id + 1); 888 id_prev_wrap = DESC_ID_PREV_WRAP(desc_ring, id); 889 890 /* 891 * Guarantee the head ID is read before reading the tail ID. 892 * Since the tail ID is updated before the head ID, this 893 * guarantees that @id_prev_wrap is never ahead of the tail 894 * ID. This pairs with desc_reserve:D. 895 * 896 * Memory barrier involvement: 897 * 898 * If desc_reserve:A reads from desc_reserve:D, then 899 * desc_reserve:C reads from desc_push_tail:B. 900 * 901 * Relies on: 902 * 903 * MB from desc_push_tail:B to desc_reserve:D 904 * matching 905 * RMB from desc_reserve:A to desc_reserve:C 906 * 907 * Note: desc_push_tail:B and desc_reserve:D can be different 908 * CPUs. However, the desc_reserve:D CPU (which performs 909 * the full memory barrier) must have previously seen 910 * desc_push_tail:B. 911 */ 912 smp_rmb(); /* LMM(desc_reserve:B) */ 913 914 if (id_prev_wrap == atomic_long_read(&desc_ring->tail_id 915 )) { /* LMM(desc_reserve:C) */ 916 /* 917 * Make space for the new descriptor by 918 * advancing the tail. 919 */ 920 if (!desc_push_tail(rb, id_prev_wrap)) 921 return false; 922 } 923 924 /* 925 * 1. Guarantee the tail ID is read before validating the 926 * recycled descriptor state. A read memory barrier is 927 * sufficient for this. This pairs with desc_push_tail:B. 928 * 929 * Memory barrier involvement: 930 * 931 * If desc_reserve:C reads from desc_push_tail:B, then 932 * desc_reserve:E reads from desc_make_reusable:A. 933 * 934 * Relies on: 935 * 936 * MB from desc_make_reusable:A to desc_push_tail:B 937 * matching 938 * RMB from desc_reserve:C to desc_reserve:E 939 * 940 * Note: desc_make_reusable:A and desc_push_tail:B can be 941 * different CPUs. However, the desc_push_tail:B CPU 942 * (which performs the full memory barrier) must have 943 * previously seen desc_make_reusable:A. 944 * 945 * 2. Guarantee the tail ID is stored before storing the head 946 * ID. This pairs with desc_reserve:B. 947 * 948 * 3. Guarantee any data ring tail changes are stored before 949 * recycling the descriptor. Data ring tail changes can 950 * happen via desc_push_tail()->data_push_tail(). A full 951 * memory barrier is needed since another CPU may have 952 * pushed the data ring tails. This pairs with 953 * data_push_tail:B. 954 * 955 * 4. Guarantee a new tail ID is stored before recycling the 956 * descriptor. A full memory barrier is needed since 957 * another CPU may have pushed the tail ID. This pairs 958 * with desc_push_tail:C and this also pairs with 959 * prb_first_seq:C. 960 * 961 * 5. Guarantee the head ID is stored before trying to 962 * finalize the previous descriptor. This pairs with 963 * _prb_commit:B. 964 */ 965 } while (!atomic_long_try_cmpxchg(&desc_ring->head_id, &head_id, 966 id)); /* LMM(desc_reserve:D) */ 967 968 desc = to_desc(desc_ring, id); 969 970 /* 971 * If the descriptor has been recycled, verify the old state val. 972 * See "ABA Issues" about why this verification is performed. 973 */ 974 prev_state_val = atomic_long_read(&desc->state_var); /* LMM(desc_reserve:E) */ 975 if (prev_state_val && 976 get_desc_state(id_prev_wrap, prev_state_val) != desc_reusable) { 977 WARN_ON_ONCE(1); 978 return false; 979 } 980 981 /* 982 * Assign the descriptor a new ID and set its state to reserved. 983 * See "ABA Issues" about why cmpxchg() instead of set() is used. 984 * 985 * Guarantee the new descriptor ID and state is stored before making 986 * any other changes. A write memory barrier is sufficient for this. 987 * This pairs with desc_read:D. 988 */ 989 if (!atomic_long_try_cmpxchg(&desc->state_var, &prev_state_val, 990 DESC_SV(id, desc_reserved))) { /* LMM(desc_reserve:F) */ 991 WARN_ON_ONCE(1); 992 return false; 993 } 994 995 /* Now data in @desc can be modified: LMM(desc_reserve:G) */ 996 997 *id_out = id; 998 return true; 999 } 1000 1001 /* Determine the end of a data block. */ 1002 static unsigned long get_next_lpos(struct prb_data_ring *data_ring, 1003 unsigned long lpos, unsigned int size) 1004 { 1005 unsigned long begin_lpos; 1006 unsigned long next_lpos; 1007 1008 begin_lpos = lpos; 1009 next_lpos = lpos + size; 1010 1011 /* First check if the data block does not wrap. */ 1012 if (DATA_WRAPS(data_ring, begin_lpos) == DATA_WRAPS(data_ring, next_lpos)) 1013 return next_lpos; 1014 1015 /* Wrapping data blocks store their data at the beginning. */ 1016 return (DATA_THIS_WRAP_START_LPOS(data_ring, next_lpos) + size); 1017 } 1018 1019 /* 1020 * Allocate a new data block, invalidating the oldest data block(s) 1021 * if necessary. This function also associates the data block with 1022 * a specified descriptor. 1023 */ 1024 static char *data_alloc(struct printk_ringbuffer *rb, 1025 struct prb_data_ring *data_ring, unsigned int size, 1026 struct prb_data_blk_lpos *blk_lpos, unsigned long id) 1027 { 1028 struct prb_data_block *blk; 1029 unsigned long begin_lpos; 1030 unsigned long next_lpos; 1031 1032 if (size == 0) { 1033 /* Specify a data-less block. */ 1034 blk_lpos->begin = NO_LPOS; 1035 blk_lpos->next = NO_LPOS; 1036 return NULL; 1037 } 1038 1039 size = to_blk_size(size); 1040 1041 begin_lpos = atomic_long_read(&data_ring->head_lpos); 1042 1043 do { 1044 next_lpos = get_next_lpos(data_ring, begin_lpos, size); 1045 1046 if (!data_push_tail(rb, data_ring, next_lpos - DATA_SIZE(data_ring))) { 1047 /* Failed to allocate, specify a data-less block. */ 1048 blk_lpos->begin = FAILED_LPOS; 1049 blk_lpos->next = FAILED_LPOS; 1050 return NULL; 1051 } 1052 1053 /* 1054 * 1. Guarantee any descriptor states that have transitioned 1055 * to reusable are stored before modifying the newly 1056 * allocated data area. A full memory barrier is needed 1057 * since other CPUs may have made the descriptor states 1058 * reusable. See data_push_tail:A about why the reusable 1059 * states are visible. This pairs with desc_read:D. 1060 * 1061 * 2. Guarantee any updated tail lpos is stored before 1062 * modifying the newly allocated data area. Another CPU may 1063 * be in data_make_reusable() and is reading a block ID 1064 * from this area. data_make_reusable() can handle reading 1065 * a garbage block ID value, but then it must be able to 1066 * load a new tail lpos. A full memory barrier is needed 1067 * since other CPUs may have updated the tail lpos. This 1068 * pairs with data_push_tail:B. 1069 */ 1070 } while (!atomic_long_try_cmpxchg(&data_ring->head_lpos, &begin_lpos, 1071 next_lpos)); /* LMM(data_alloc:A) */ 1072 1073 blk = to_block(data_ring, begin_lpos); 1074 blk->id = id; /* LMM(data_alloc:B) */ 1075 1076 if (DATA_WRAPS(data_ring, begin_lpos) != DATA_WRAPS(data_ring, next_lpos)) { 1077 /* Wrapping data blocks store their data at the beginning. */ 1078 blk = to_block(data_ring, 0); 1079 1080 /* 1081 * Store the ID on the wrapped block for consistency. 1082 * The printk_ringbuffer does not actually use it. 1083 */ 1084 blk->id = id; 1085 } 1086 1087 blk_lpos->begin = begin_lpos; 1088 blk_lpos->next = next_lpos; 1089 1090 return &blk->data[0]; 1091 } 1092 1093 /* 1094 * Try to resize an existing data block associated with the descriptor 1095 * specified by @id. If the resized data block should become wrapped, it 1096 * copies the old data to the new data block. If @size yields a data block 1097 * with the same or less size, the data block is left as is. 1098 * 1099 * Fail if this is not the last allocated data block or if there is not 1100 * enough space or it is not possible make enough space. 1101 * 1102 * Return a pointer to the beginning of the entire data buffer or NULL on 1103 * failure. 1104 */ 1105 static char *data_realloc(struct printk_ringbuffer *rb, 1106 struct prb_data_ring *data_ring, unsigned int size, 1107 struct prb_data_blk_lpos *blk_lpos, unsigned long id) 1108 { 1109 struct prb_data_block *blk; 1110 unsigned long head_lpos; 1111 unsigned long next_lpos; 1112 bool wrapped; 1113 1114 /* Reallocation only works if @blk_lpos is the newest data block. */ 1115 head_lpos = atomic_long_read(&data_ring->head_lpos); 1116 if (head_lpos != blk_lpos->next) 1117 return NULL; 1118 1119 /* Keep track if @blk_lpos was a wrapping data block. */ 1120 wrapped = (DATA_WRAPS(data_ring, blk_lpos->begin) != DATA_WRAPS(data_ring, blk_lpos->next)); 1121 1122 size = to_blk_size(size); 1123 1124 next_lpos = get_next_lpos(data_ring, blk_lpos->begin, size); 1125 1126 /* If the data block does not increase, there is nothing to do. */ 1127 if (head_lpos - next_lpos < DATA_SIZE(data_ring)) { 1128 if (wrapped) 1129 blk = to_block(data_ring, 0); 1130 else 1131 blk = to_block(data_ring, blk_lpos->begin); 1132 return &blk->data[0]; 1133 } 1134 1135 if (!data_push_tail(rb, data_ring, next_lpos - DATA_SIZE(data_ring))) 1136 return NULL; 1137 1138 /* The memory barrier involvement is the same as data_alloc:A. */ 1139 if (!atomic_long_try_cmpxchg(&data_ring->head_lpos, &head_lpos, 1140 next_lpos)) { /* LMM(data_realloc:A) */ 1141 return NULL; 1142 } 1143 1144 blk = to_block(data_ring, blk_lpos->begin); 1145 1146 if (DATA_WRAPS(data_ring, blk_lpos->begin) != DATA_WRAPS(data_ring, next_lpos)) { 1147 struct prb_data_block *old_blk = blk; 1148 1149 /* Wrapping data blocks store their data at the beginning. */ 1150 blk = to_block(data_ring, 0); 1151 1152 /* 1153 * Store the ID on the wrapped block for consistency. 1154 * The printk_ringbuffer does not actually use it. 1155 */ 1156 blk->id = id; 1157 1158 if (!wrapped) { 1159 /* 1160 * Since the allocated space is now in the newly 1161 * created wrapping data block, copy the content 1162 * from the old data block. 1163 */ 1164 memcpy(&blk->data[0], &old_blk->data[0], 1165 (blk_lpos->next - blk_lpos->begin) - sizeof(blk->id)); 1166 } 1167 } 1168 1169 blk_lpos->next = next_lpos; 1170 1171 return &blk->data[0]; 1172 } 1173 1174 /* Return the number of bytes used by a data block. */ 1175 static unsigned int space_used(struct prb_data_ring *data_ring, 1176 struct prb_data_blk_lpos *blk_lpos) 1177 { 1178 /* Data-less blocks take no space. */ 1179 if (BLK_DATALESS(blk_lpos)) 1180 return 0; 1181 1182 if (DATA_WRAPS(data_ring, blk_lpos->begin) == DATA_WRAPS(data_ring, blk_lpos->next)) { 1183 /* Data block does not wrap. */ 1184 return (DATA_INDEX(data_ring, blk_lpos->next) - 1185 DATA_INDEX(data_ring, blk_lpos->begin)); 1186 } 1187 1188 /* 1189 * For wrapping data blocks, the trailing (wasted) space is 1190 * also counted. 1191 */ 1192 return (DATA_INDEX(data_ring, blk_lpos->next) + 1193 DATA_SIZE(data_ring) - DATA_INDEX(data_ring, blk_lpos->begin)); 1194 } 1195 1196 /* 1197 * Given @blk_lpos, return a pointer to the writer data from the data block 1198 * and calculate the size of the data part. A NULL pointer is returned if 1199 * @blk_lpos specifies values that could never be legal. 1200 * 1201 * This function (used by readers) performs strict validation on the lpos 1202 * values to possibly detect bugs in the writer code. A WARN_ON_ONCE() is 1203 * triggered if an internal error is detected. 1204 */ 1205 static const char *get_data(struct prb_data_ring *data_ring, 1206 struct prb_data_blk_lpos *blk_lpos, 1207 unsigned int *data_size) 1208 { 1209 struct prb_data_block *db; 1210 1211 /* Data-less data block description. */ 1212 if (BLK_DATALESS(blk_lpos)) { 1213 if (blk_lpos->begin == NO_LPOS && blk_lpos->next == NO_LPOS) { 1214 *data_size = 0; 1215 return ""; 1216 } 1217 return NULL; 1218 } 1219 1220 /* Regular data block: @begin less than @next and in same wrap. */ 1221 if (DATA_WRAPS(data_ring, blk_lpos->begin) == DATA_WRAPS(data_ring, blk_lpos->next) && 1222 blk_lpos->begin < blk_lpos->next) { 1223 db = to_block(data_ring, blk_lpos->begin); 1224 *data_size = blk_lpos->next - blk_lpos->begin; 1225 1226 /* Wrapping data block: @begin is one wrap behind @next. */ 1227 } else if (DATA_WRAPS(data_ring, blk_lpos->begin + DATA_SIZE(data_ring)) == 1228 DATA_WRAPS(data_ring, blk_lpos->next)) { 1229 db = to_block(data_ring, 0); 1230 *data_size = DATA_INDEX(data_ring, blk_lpos->next); 1231 1232 /* Illegal block description. */ 1233 } else { 1234 WARN_ON_ONCE(1); 1235 return NULL; 1236 } 1237 1238 /* A valid data block will always be aligned to the ID size. */ 1239 if (WARN_ON_ONCE(blk_lpos->begin != ALIGN(blk_lpos->begin, sizeof(db->id))) || 1240 WARN_ON_ONCE(blk_lpos->next != ALIGN(blk_lpos->next, sizeof(db->id)))) { 1241 return NULL; 1242 } 1243 1244 /* A valid data block will always have at least an ID. */ 1245 if (WARN_ON_ONCE(*data_size < sizeof(db->id))) 1246 return NULL; 1247 1248 /* Subtract block ID space from size to reflect data size. */ 1249 *data_size -= sizeof(db->id); 1250 1251 return &db->data[0]; 1252 } 1253 1254 /* 1255 * Attempt to transition the newest descriptor from committed back to reserved 1256 * so that the record can be modified by a writer again. This is only possible 1257 * if the descriptor is not yet finalized and the provided @caller_id matches. 1258 */ 1259 static struct prb_desc *desc_reopen_last(struct prb_desc_ring *desc_ring, 1260 u32 caller_id, unsigned long *id_out) 1261 { 1262 unsigned long prev_state_val; 1263 enum desc_state d_state; 1264 struct prb_desc desc; 1265 struct prb_desc *d; 1266 unsigned long id; 1267 u32 cid; 1268 1269 id = atomic_long_read(&desc_ring->head_id); 1270 1271 /* 1272 * To reduce unnecessarily reopening, first check if the descriptor 1273 * state and caller ID are correct. 1274 */ 1275 d_state = desc_read(desc_ring, id, &desc, NULL, &cid); 1276 if (d_state != desc_committed || cid != caller_id) 1277 return NULL; 1278 1279 d = to_desc(desc_ring, id); 1280 1281 prev_state_val = DESC_SV(id, desc_committed); 1282 1283 /* 1284 * Guarantee the reserved state is stored before reading any 1285 * record data. A full memory barrier is needed because @state_var 1286 * modification is followed by reading. This pairs with _prb_commit:B. 1287 * 1288 * Memory barrier involvement: 1289 * 1290 * If desc_reopen_last:A reads from _prb_commit:B, then 1291 * prb_reserve_in_last:A reads from _prb_commit:A. 1292 * 1293 * Relies on: 1294 * 1295 * WMB from _prb_commit:A to _prb_commit:B 1296 * matching 1297 * MB If desc_reopen_last:A to prb_reserve_in_last:A 1298 */ 1299 if (!atomic_long_try_cmpxchg(&d->state_var, &prev_state_val, 1300 DESC_SV(id, desc_reserved))) { /* LMM(desc_reopen_last:A) */ 1301 return NULL; 1302 } 1303 1304 *id_out = id; 1305 return d; 1306 } 1307 1308 /** 1309 * prb_reserve_in_last() - Re-reserve and extend the space in the ringbuffer 1310 * used by the newest record. 1311 * 1312 * @e: The entry structure to setup. 1313 * @rb: The ringbuffer to re-reserve and extend data in. 1314 * @r: The record structure to allocate buffers for. 1315 * @caller_id: The caller ID of the caller (reserving writer). 1316 * @max_size: Fail if the extended size would be greater than this. 1317 * 1318 * This is the public function available to writers to re-reserve and extend 1319 * data. 1320 * 1321 * The writer specifies the text size to extend (not the new total size) by 1322 * setting the @text_buf_size field of @r. To ensure proper initialization 1323 * of @r, prb_rec_init_wr() should be used. 1324 * 1325 * This function will fail if @caller_id does not match the caller ID of the 1326 * newest record. In that case the caller must reserve new data using 1327 * prb_reserve(). 1328 * 1329 * Context: Any context. Disables local interrupts on success. 1330 * Return: true if text data could be extended, otherwise false. 1331 * 1332 * On success: 1333 * 1334 * - @r->text_buf points to the beginning of the entire text buffer. 1335 * 1336 * - @r->text_buf_size is set to the new total size of the buffer. 1337 * 1338 * - @r->info is not touched so that @r->info->text_len could be used 1339 * to append the text. 1340 * 1341 * - prb_record_text_space() can be used on @e to query the new 1342 * actually used space. 1343 * 1344 * Important: All @r->info fields will already be set with the current values 1345 * for the record. I.e. @r->info->text_len will be less than 1346 * @text_buf_size. Writers can use @r->info->text_len to know 1347 * where concatenation begins and writers should update 1348 * @r->info->text_len after concatenating. 1349 */ 1350 bool prb_reserve_in_last(struct prb_reserved_entry *e, struct printk_ringbuffer *rb, 1351 struct printk_record *r, u32 caller_id, unsigned int max_size) 1352 { 1353 struct prb_desc_ring *desc_ring = &rb->desc_ring; 1354 struct printk_info *info; 1355 unsigned int data_size; 1356 struct prb_desc *d; 1357 unsigned long id; 1358 1359 local_irq_save(e->irqflags); 1360 1361 /* Transition the newest descriptor back to the reserved state. */ 1362 d = desc_reopen_last(desc_ring, caller_id, &id); 1363 if (!d) { 1364 local_irq_restore(e->irqflags); 1365 goto fail_reopen; 1366 } 1367 1368 /* Now the writer has exclusive access: LMM(prb_reserve_in_last:A) */ 1369 1370 info = to_info(desc_ring, id); 1371 1372 /* 1373 * Set the @e fields here so that prb_commit() can be used if 1374 * anything fails from now on. 1375 */ 1376 e->rb = rb; 1377 e->id = id; 1378 1379 /* 1380 * desc_reopen_last() checked the caller_id, but there was no 1381 * exclusive access at that point. The descriptor may have 1382 * changed since then. 1383 */ 1384 if (caller_id != info->caller_id) 1385 goto fail; 1386 1387 if (BLK_DATALESS(&d->text_blk_lpos)) { 1388 if (WARN_ON_ONCE(info->text_len != 0)) { 1389 pr_warn_once("wrong text_len value (%hu, expecting 0)\n", 1390 info->text_len); 1391 info->text_len = 0; 1392 } 1393 1394 if (!data_check_size(&rb->text_data_ring, r->text_buf_size)) 1395 goto fail; 1396 1397 if (r->text_buf_size > max_size) 1398 goto fail; 1399 1400 r->text_buf = data_alloc(rb, &rb->text_data_ring, r->text_buf_size, 1401 &d->text_blk_lpos, id); 1402 } else { 1403 if (!get_data(&rb->text_data_ring, &d->text_blk_lpos, &data_size)) 1404 goto fail; 1405 1406 /* 1407 * Increase the buffer size to include the original size. If 1408 * the meta data (@text_len) is not sane, use the full data 1409 * block size. 1410 */ 1411 if (WARN_ON_ONCE(info->text_len > data_size)) { 1412 pr_warn_once("wrong text_len value (%hu, expecting <=%u)\n", 1413 info->text_len, data_size); 1414 info->text_len = data_size; 1415 } 1416 r->text_buf_size += info->text_len; 1417 1418 if (!data_check_size(&rb->text_data_ring, r->text_buf_size)) 1419 goto fail; 1420 1421 if (r->text_buf_size > max_size) 1422 goto fail; 1423 1424 r->text_buf = data_realloc(rb, &rb->text_data_ring, r->text_buf_size, 1425 &d->text_blk_lpos, id); 1426 } 1427 if (r->text_buf_size && !r->text_buf) 1428 goto fail; 1429 1430 r->info = info; 1431 1432 e->text_space = space_used(&rb->text_data_ring, &d->text_blk_lpos); 1433 1434 return true; 1435 fail: 1436 prb_commit(e); 1437 /* prb_commit() re-enabled interrupts. */ 1438 fail_reopen: 1439 /* Make it clear to the caller that the re-reserve failed. */ 1440 memset(r, 0, sizeof(*r)); 1441 return false; 1442 } 1443 1444 /* 1445 * Attempt to finalize a specified descriptor. If this fails, the descriptor 1446 * is either already final or it will finalize itself when the writer commits. 1447 */ 1448 static void desc_make_final(struct prb_desc_ring *desc_ring, unsigned long id) 1449 { 1450 unsigned long prev_state_val = DESC_SV(id, desc_committed); 1451 struct prb_desc *d = to_desc(desc_ring, id); 1452 1453 atomic_long_cmpxchg_relaxed(&d->state_var, prev_state_val, 1454 DESC_SV(id, desc_finalized)); /* LMM(desc_make_final:A) */ 1455 } 1456 1457 /** 1458 * prb_reserve() - Reserve space in the ringbuffer. 1459 * 1460 * @e: The entry structure to setup. 1461 * @rb: The ringbuffer to reserve data in. 1462 * @r: The record structure to allocate buffers for. 1463 * 1464 * This is the public function available to writers to reserve data. 1465 * 1466 * The writer specifies the text size to reserve by setting the 1467 * @text_buf_size field of @r. To ensure proper initialization of @r, 1468 * prb_rec_init_wr() should be used. 1469 * 1470 * Context: Any context. Disables local interrupts on success. 1471 * Return: true if at least text data could be allocated, otherwise false. 1472 * 1473 * On success, the fields @info and @text_buf of @r will be set by this 1474 * function and should be filled in by the writer before committing. Also 1475 * on success, prb_record_text_space() can be used on @e to query the actual 1476 * space used for the text data block. 1477 * 1478 * Important: @info->text_len needs to be set correctly by the writer in 1479 * order for data to be readable and/or extended. Its value 1480 * is initialized to 0. 1481 */ 1482 bool prb_reserve(struct prb_reserved_entry *e, struct printk_ringbuffer *rb, 1483 struct printk_record *r) 1484 { 1485 struct prb_desc_ring *desc_ring = &rb->desc_ring; 1486 struct printk_info *info; 1487 struct prb_desc *d; 1488 unsigned long id; 1489 u64 seq; 1490 1491 if (!data_check_size(&rb->text_data_ring, r->text_buf_size)) 1492 goto fail; 1493 1494 /* 1495 * Descriptors in the reserved state act as blockers to all further 1496 * reservations once the desc_ring has fully wrapped. Disable 1497 * interrupts during the reserve/commit window in order to minimize 1498 * the likelihood of this happening. 1499 */ 1500 local_irq_save(e->irqflags); 1501 1502 if (!desc_reserve(rb, &id)) { 1503 /* Descriptor reservation failures are tracked. */ 1504 atomic_long_inc(&rb->fail); 1505 local_irq_restore(e->irqflags); 1506 goto fail; 1507 } 1508 1509 d = to_desc(desc_ring, id); 1510 info = to_info(desc_ring, id); 1511 1512 /* 1513 * All @info fields (except @seq) are cleared and must be filled in 1514 * by the writer. Save @seq before clearing because it is used to 1515 * determine the new sequence number. 1516 */ 1517 seq = info->seq; 1518 memset(info, 0, sizeof(*info)); 1519 1520 /* 1521 * Set the @e fields here so that prb_commit() can be used if 1522 * text data allocation fails. 1523 */ 1524 e->rb = rb; 1525 e->id = id; 1526 1527 /* 1528 * Initialize the sequence number if it has "never been set". 1529 * Otherwise just increment it by a full wrap. 1530 * 1531 * @seq is considered "never been set" if it has a value of 0, 1532 * _except_ for @infos[0], which was specially setup by the ringbuffer 1533 * initializer and therefore is always considered as set. 1534 * 1535 * See the "Bootstrap" comment block in printk_ringbuffer.h for 1536 * details about how the initializer bootstraps the descriptors. 1537 */ 1538 if (seq == 0 && DESC_INDEX(desc_ring, id) != 0) 1539 info->seq = DESC_INDEX(desc_ring, id); 1540 else 1541 info->seq = seq + DESCS_COUNT(desc_ring); 1542 1543 /* 1544 * New data is about to be reserved. Once that happens, previous 1545 * descriptors are no longer able to be extended. Finalize the 1546 * previous descriptor now so that it can be made available to 1547 * readers. (For seq==0 there is no previous descriptor.) 1548 */ 1549 if (info->seq > 0) 1550 desc_make_final(desc_ring, DESC_ID(id - 1)); 1551 1552 r->text_buf = data_alloc(rb, &rb->text_data_ring, r->text_buf_size, 1553 &d->text_blk_lpos, id); 1554 /* If text data allocation fails, a data-less record is committed. */ 1555 if (r->text_buf_size && !r->text_buf) { 1556 prb_commit(e); 1557 /* prb_commit() re-enabled interrupts. */ 1558 goto fail; 1559 } 1560 1561 r->info = info; 1562 1563 /* Record full text space used by record. */ 1564 e->text_space = space_used(&rb->text_data_ring, &d->text_blk_lpos); 1565 1566 return true; 1567 fail: 1568 /* Make it clear to the caller that the reserve failed. */ 1569 memset(r, 0, sizeof(*r)); 1570 return false; 1571 } 1572 1573 /* Commit the data (possibly finalizing it) and restore interrupts. */ 1574 static void _prb_commit(struct prb_reserved_entry *e, unsigned long state_val) 1575 { 1576 struct prb_desc_ring *desc_ring = &e->rb->desc_ring; 1577 struct prb_desc *d = to_desc(desc_ring, e->id); 1578 unsigned long prev_state_val = DESC_SV(e->id, desc_reserved); 1579 1580 /* Now the writer has finished all writing: LMM(_prb_commit:A) */ 1581 1582 /* 1583 * Set the descriptor as committed. See "ABA Issues" about why 1584 * cmpxchg() instead of set() is used. 1585 * 1586 * 1 Guarantee all record data is stored before the descriptor state 1587 * is stored as committed. A write memory barrier is sufficient 1588 * for this. This pairs with desc_read:B and desc_reopen_last:A. 1589 * 1590 * 2. Guarantee the descriptor state is stored as committed before 1591 * re-checking the head ID in order to possibly finalize this 1592 * descriptor. This pairs with desc_reserve:D. 1593 * 1594 * Memory barrier involvement: 1595 * 1596 * If prb_commit:A reads from desc_reserve:D, then 1597 * desc_make_final:A reads from _prb_commit:B. 1598 * 1599 * Relies on: 1600 * 1601 * MB _prb_commit:B to prb_commit:A 1602 * matching 1603 * MB desc_reserve:D to desc_make_final:A 1604 */ 1605 if (!atomic_long_try_cmpxchg(&d->state_var, &prev_state_val, 1606 DESC_SV(e->id, state_val))) { /* LMM(_prb_commit:B) */ 1607 WARN_ON_ONCE(1); 1608 } 1609 1610 /* Restore interrupts, the reserve/commit window is finished. */ 1611 local_irq_restore(e->irqflags); 1612 } 1613 1614 /** 1615 * prb_commit() - Commit (previously reserved) data to the ringbuffer. 1616 * 1617 * @e: The entry containing the reserved data information. 1618 * 1619 * This is the public function available to writers to commit data. 1620 * 1621 * Note that the data is not yet available to readers until it is finalized. 1622 * Finalizing happens automatically when space for the next record is 1623 * reserved. 1624 * 1625 * See prb_final_commit() for a version of this function that finalizes 1626 * immediately. 1627 * 1628 * Context: Any context. Enables local interrupts. 1629 */ 1630 void prb_commit(struct prb_reserved_entry *e) 1631 { 1632 struct prb_desc_ring *desc_ring = &e->rb->desc_ring; 1633 unsigned long head_id; 1634 1635 _prb_commit(e, desc_committed); 1636 1637 /* 1638 * If this descriptor is no longer the head (i.e. a new record has 1639 * been allocated), extending the data for this record is no longer 1640 * allowed and therefore it must be finalized. 1641 */ 1642 head_id = atomic_long_read(&desc_ring->head_id); /* LMM(prb_commit:A) */ 1643 if (head_id != e->id) 1644 desc_make_final(desc_ring, e->id); 1645 } 1646 1647 /** 1648 * prb_final_commit() - Commit and finalize (previously reserved) data to 1649 * the ringbuffer. 1650 * 1651 * @e: The entry containing the reserved data information. 1652 * 1653 * This is the public function available to writers to commit+finalize data. 1654 * 1655 * By finalizing, the data is made immediately available to readers. 1656 * 1657 * This function should only be used if there are no intentions of extending 1658 * this data using prb_reserve_in_last(). 1659 * 1660 * Context: Any context. Enables local interrupts. 1661 */ 1662 void prb_final_commit(struct prb_reserved_entry *e) 1663 { 1664 _prb_commit(e, desc_finalized); 1665 } 1666 1667 /* 1668 * Count the number of lines in provided text. All text has at least 1 line 1669 * (even if @text_size is 0). Each '\n' processed is counted as an additional 1670 * line. 1671 */ 1672 static unsigned int count_lines(const char *text, unsigned int text_size) 1673 { 1674 unsigned int next_size = text_size; 1675 unsigned int line_count = 1; 1676 const char *next = text; 1677 1678 while (next_size) { 1679 next = memchr(next, '\n', next_size); 1680 if (!next) 1681 break; 1682 line_count++; 1683 next++; 1684 next_size = text_size - (next - text); 1685 } 1686 1687 return line_count; 1688 } 1689 1690 /* 1691 * Given @blk_lpos, copy an expected @len of data into the provided buffer. 1692 * If @line_count is provided, count the number of lines in the data. 1693 * 1694 * This function (used by readers) performs strict validation on the data 1695 * size to possibly detect bugs in the writer code. A WARN_ON_ONCE() is 1696 * triggered if an internal error is detected. 1697 */ 1698 static bool copy_data(struct prb_data_ring *data_ring, 1699 struct prb_data_blk_lpos *blk_lpos, u16 len, char *buf, 1700 unsigned int buf_size, unsigned int *line_count) 1701 { 1702 unsigned int data_size; 1703 const char *data; 1704 1705 /* Caller might not want any data. */ 1706 if ((!buf || !buf_size) && !line_count) 1707 return true; 1708 1709 data = get_data(data_ring, blk_lpos, &data_size); 1710 if (!data) 1711 return false; 1712 1713 /* 1714 * Actual cannot be less than expected. It can be more than expected 1715 * because of the trailing alignment padding. 1716 * 1717 * Note that invalid @len values can occur because the caller loads 1718 * the value during an allowed data race. 1719 */ 1720 if (data_size < (unsigned int)len) 1721 return false; 1722 1723 /* Caller interested in the line count? */ 1724 if (line_count) 1725 *line_count = count_lines(data, data_size); 1726 1727 /* Caller interested in the data content? */ 1728 if (!buf || !buf_size) 1729 return true; 1730 1731 data_size = min_t(u16, buf_size, len); 1732 1733 memcpy(&buf[0], data, data_size); /* LMM(copy_data:A) */ 1734 return true; 1735 } 1736 1737 /* 1738 * This is an extended version of desc_read(). It gets a copy of a specified 1739 * descriptor. However, it also verifies that the record is finalized and has 1740 * the sequence number @seq. On success, 0 is returned. 1741 * 1742 * Error return values: 1743 * -EINVAL: A finalized record with sequence number @seq does not exist. 1744 * -ENOENT: A finalized record with sequence number @seq exists, but its data 1745 * is not available. This is a valid record, so readers should 1746 * continue with the next record. 1747 */ 1748 static int desc_read_finalized_seq(struct prb_desc_ring *desc_ring, 1749 unsigned long id, u64 seq, 1750 struct prb_desc *desc_out) 1751 { 1752 struct prb_data_blk_lpos *blk_lpos = &desc_out->text_blk_lpos; 1753 enum desc_state d_state; 1754 u64 s; 1755 1756 d_state = desc_read(desc_ring, id, desc_out, &s, NULL); 1757 1758 /* 1759 * An unexpected @id (desc_miss) or @seq mismatch means the record 1760 * does not exist. A descriptor in the reserved or committed state 1761 * means the record does not yet exist for the reader. 1762 */ 1763 if (d_state == desc_miss || 1764 d_state == desc_reserved || 1765 d_state == desc_committed || 1766 s != seq) { 1767 return -EINVAL; 1768 } 1769 1770 /* 1771 * A descriptor in the reusable state may no longer have its data 1772 * available; report it as existing but with lost data. Or the record 1773 * may actually be a record with lost data. 1774 */ 1775 if (d_state == desc_reusable || 1776 (blk_lpos->begin == FAILED_LPOS && blk_lpos->next == FAILED_LPOS)) { 1777 return -ENOENT; 1778 } 1779 1780 return 0; 1781 } 1782 1783 /* 1784 * Copy the ringbuffer data from the record with @seq to the provided 1785 * @r buffer. On success, 0 is returned. 1786 * 1787 * See desc_read_finalized_seq() for error return values. 1788 */ 1789 static int prb_read(struct printk_ringbuffer *rb, u64 seq, 1790 struct printk_record *r, unsigned int *line_count) 1791 { 1792 struct prb_desc_ring *desc_ring = &rb->desc_ring; 1793 struct printk_info *info = to_info(desc_ring, seq); 1794 struct prb_desc *rdesc = to_desc(desc_ring, seq); 1795 atomic_long_t *state_var = &rdesc->state_var; 1796 struct prb_desc desc; 1797 unsigned long id; 1798 int err; 1799 1800 /* Extract the ID, used to specify the descriptor to read. */ 1801 id = DESC_ID(atomic_long_read(state_var)); 1802 1803 /* Get a local copy of the correct descriptor (if available). */ 1804 err = desc_read_finalized_seq(desc_ring, id, seq, &desc); 1805 1806 /* 1807 * If @r is NULL, the caller is only interested in the availability 1808 * of the record. 1809 */ 1810 if (err || !r) 1811 return err; 1812 1813 /* If requested, copy meta data. */ 1814 if (r->info) 1815 memcpy(r->info, info, sizeof(*(r->info))); 1816 1817 /* Copy text data. If it fails, this is a data-less record. */ 1818 if (!copy_data(&rb->text_data_ring, &desc.text_blk_lpos, info->text_len, 1819 r->text_buf, r->text_buf_size, line_count)) { 1820 return -ENOENT; 1821 } 1822 1823 /* Ensure the record is still finalized and has the same @seq. */ 1824 return desc_read_finalized_seq(desc_ring, id, seq, &desc); 1825 } 1826 1827 /* Get the sequence number of the tail descriptor. */ 1828 static u64 prb_first_seq(struct printk_ringbuffer *rb) 1829 { 1830 struct prb_desc_ring *desc_ring = &rb->desc_ring; 1831 enum desc_state d_state; 1832 struct prb_desc desc; 1833 unsigned long id; 1834 u64 seq; 1835 1836 for (;;) { 1837 id = atomic_long_read(&rb->desc_ring.tail_id); /* LMM(prb_first_seq:A) */ 1838 1839 d_state = desc_read(desc_ring, id, &desc, &seq, NULL); /* LMM(prb_first_seq:B) */ 1840 1841 /* 1842 * This loop will not be infinite because the tail is 1843 * _always_ in the finalized or reusable state. 1844 */ 1845 if (d_state == desc_finalized || d_state == desc_reusable) 1846 break; 1847 1848 /* 1849 * Guarantee the last state load from desc_read() is before 1850 * reloading @tail_id in order to see a new tail in the case 1851 * that the descriptor has been recycled. This pairs with 1852 * desc_reserve:D. 1853 * 1854 * Memory barrier involvement: 1855 * 1856 * If prb_first_seq:B reads from desc_reserve:F, then 1857 * prb_first_seq:A reads from desc_push_tail:B. 1858 * 1859 * Relies on: 1860 * 1861 * MB from desc_push_tail:B to desc_reserve:F 1862 * matching 1863 * RMB prb_first_seq:B to prb_first_seq:A 1864 */ 1865 smp_rmb(); /* LMM(prb_first_seq:C) */ 1866 } 1867 1868 return seq; 1869 } 1870 1871 /* 1872 * Non-blocking read of a record. Updates @seq to the last finalized record 1873 * (which may have no data available). 1874 * 1875 * See the description of prb_read_valid() and prb_read_valid_info() 1876 * for details. 1877 */ 1878 static bool _prb_read_valid(struct printk_ringbuffer *rb, u64 *seq, 1879 struct printk_record *r, unsigned int *line_count) 1880 { 1881 u64 tail_seq; 1882 int err; 1883 1884 while ((err = prb_read(rb, *seq, r, line_count))) { 1885 tail_seq = prb_first_seq(rb); 1886 1887 if (*seq < tail_seq) { 1888 /* 1889 * Behind the tail. Catch up and try again. This 1890 * can happen for -ENOENT and -EINVAL cases. 1891 */ 1892 *seq = tail_seq; 1893 1894 } else if (err == -ENOENT) { 1895 /* Record exists, but no data available. Skip. */ 1896 (*seq)++; 1897 1898 } else { 1899 /* Non-existent/non-finalized record. Must stop. */ 1900 return false; 1901 } 1902 } 1903 1904 return true; 1905 } 1906 1907 /** 1908 * prb_read_valid() - Non-blocking read of a requested record or (if gone) 1909 * the next available record. 1910 * 1911 * @rb: The ringbuffer to read from. 1912 * @seq: The sequence number of the record to read. 1913 * @r: A record data buffer to store the read record to. 1914 * 1915 * This is the public function available to readers to read a record. 1916 * 1917 * The reader provides the @info and @text_buf buffers of @r to be 1918 * filled in. Any of the buffer pointers can be set to NULL if the reader 1919 * is not interested in that data. To ensure proper initialization of @r, 1920 * prb_rec_init_rd() should be used. 1921 * 1922 * Context: Any context. 1923 * Return: true if a record was read, otherwise false. 1924 * 1925 * On success, the reader must check r->info.seq to see which record was 1926 * actually read. This allows the reader to detect dropped records. 1927 * 1928 * Failure means @seq refers to a not yet written record. 1929 */ 1930 bool prb_read_valid(struct printk_ringbuffer *rb, u64 seq, 1931 struct printk_record *r) 1932 { 1933 return _prb_read_valid(rb, &seq, r, NULL); 1934 } 1935 1936 /** 1937 * prb_read_valid_info() - Non-blocking read of meta data for a requested 1938 * record or (if gone) the next available record. 1939 * 1940 * @rb: The ringbuffer to read from. 1941 * @seq: The sequence number of the record to read. 1942 * @info: A buffer to store the read record meta data to. 1943 * @line_count: A buffer to store the number of lines in the record text. 1944 * 1945 * This is the public function available to readers to read only the 1946 * meta data of a record. 1947 * 1948 * The reader provides the @info, @line_count buffers to be filled in. 1949 * Either of the buffer pointers can be set to NULL if the reader is not 1950 * interested in that data. 1951 * 1952 * Context: Any context. 1953 * Return: true if a record's meta data was read, otherwise false. 1954 * 1955 * On success, the reader must check info->seq to see which record meta data 1956 * was actually read. This allows the reader to detect dropped records. 1957 * 1958 * Failure means @seq refers to a not yet written record. 1959 */ 1960 bool prb_read_valid_info(struct printk_ringbuffer *rb, u64 seq, 1961 struct printk_info *info, unsigned int *line_count) 1962 { 1963 struct printk_record r; 1964 1965 prb_rec_init_rd(&r, info, NULL, 0); 1966 1967 return _prb_read_valid(rb, &seq, &r, line_count); 1968 } 1969 1970 /** 1971 * prb_first_valid_seq() - Get the sequence number of the oldest available 1972 * record. 1973 * 1974 * @rb: The ringbuffer to get the sequence number from. 1975 * 1976 * This is the public function available to readers to see what the 1977 * first/oldest valid sequence number is. 1978 * 1979 * This provides readers a starting point to begin iterating the ringbuffer. 1980 * 1981 * Context: Any context. 1982 * Return: The sequence number of the first/oldest record or, if the 1983 * ringbuffer is empty, 0 is returned. 1984 */ 1985 u64 prb_first_valid_seq(struct printk_ringbuffer *rb) 1986 { 1987 u64 seq = 0; 1988 1989 if (!_prb_read_valid(rb, &seq, NULL, NULL)) 1990 return 0; 1991 1992 return seq; 1993 } 1994 1995 /** 1996 * prb_next_seq() - Get the sequence number after the last available record. 1997 * 1998 * @rb: The ringbuffer to get the sequence number from. 1999 * 2000 * This is the public function available to readers to see what the next 2001 * newest sequence number available to readers will be. 2002 * 2003 * This provides readers a sequence number to jump to if all currently 2004 * available records should be skipped. 2005 * 2006 * Context: Any context. 2007 * Return: The sequence number of the next newest (not yet available) record 2008 * for readers. 2009 */ 2010 u64 prb_next_seq(struct printk_ringbuffer *rb) 2011 { 2012 u64 seq = 0; 2013 2014 /* Search forward from the oldest descriptor. */ 2015 while (_prb_read_valid(rb, &seq, NULL, NULL)) 2016 seq++; 2017 2018 return seq; 2019 } 2020 2021 /** 2022 * prb_init() - Initialize a ringbuffer to use provided external buffers. 2023 * 2024 * @rb: The ringbuffer to initialize. 2025 * @text_buf: The data buffer for text data. 2026 * @textbits: The size of @text_buf as a power-of-2 value. 2027 * @descs: The descriptor buffer for ringbuffer records. 2028 * @descbits: The count of @descs items as a power-of-2 value. 2029 * @infos: The printk_info buffer for ringbuffer records. 2030 * 2031 * This is the public function available to writers to setup a ringbuffer 2032 * during runtime using provided buffers. 2033 * 2034 * This must match the initialization of DEFINE_PRINTKRB(). 2035 * 2036 * Context: Any context. 2037 */ 2038 void prb_init(struct printk_ringbuffer *rb, 2039 char *text_buf, unsigned int textbits, 2040 struct prb_desc *descs, unsigned int descbits, 2041 struct printk_info *infos) 2042 { 2043 memset(descs, 0, _DESCS_COUNT(descbits) * sizeof(descs[0])); 2044 memset(infos, 0, _DESCS_COUNT(descbits) * sizeof(infos[0])); 2045 2046 rb->desc_ring.count_bits = descbits; 2047 rb->desc_ring.descs = descs; 2048 rb->desc_ring.infos = infos; 2049 atomic_long_set(&rb->desc_ring.head_id, DESC0_ID(descbits)); 2050 atomic_long_set(&rb->desc_ring.tail_id, DESC0_ID(descbits)); 2051 2052 rb->text_data_ring.size_bits = textbits; 2053 rb->text_data_ring.data = text_buf; 2054 atomic_long_set(&rb->text_data_ring.head_lpos, BLK0_LPOS(textbits)); 2055 atomic_long_set(&rb->text_data_ring.tail_lpos, BLK0_LPOS(textbits)); 2056 2057 atomic_long_set(&rb->fail, 0); 2058 2059 atomic_long_set(&(descs[_DESCS_COUNT(descbits) - 1].state_var), DESC0_SV(descbits)); 2060 descs[_DESCS_COUNT(descbits) - 1].text_blk_lpos.begin = FAILED_LPOS; 2061 descs[_DESCS_COUNT(descbits) - 1].text_blk_lpos.next = FAILED_LPOS; 2062 2063 infos[0].seq = -(u64)_DESCS_COUNT(descbits); 2064 infos[_DESCS_COUNT(descbits) - 1].seq = 0; 2065 } 2066 2067 /** 2068 * prb_record_text_space() - Query the full actual used ringbuffer space for 2069 * the text data of a reserved entry. 2070 * 2071 * @e: The successfully reserved entry to query. 2072 * 2073 * This is the public function available to writers to see how much actual 2074 * space is used in the ringbuffer to store the text data of the specified 2075 * entry. 2076 * 2077 * This function is only valid if @e has been successfully reserved using 2078 * prb_reserve(). 2079 * 2080 * Context: Any context. 2081 * Return: The size in bytes used by the text data of the associated record. 2082 */ 2083 unsigned int prb_record_text_space(struct prb_reserved_entry *e) 2084 { 2085 return e->text_space; 2086 } 2087