1 // SPDX-License-Identifier: GPL-2.0 2 3 #include <linux/kernel.h> 4 #include <linux/irqflags.h> 5 #include <linux/string.h> 6 #include <linux/errno.h> 7 #include <linux/bug.h> 8 #include "printk_ringbuffer.h" 9 10 /** 11 * DOC: printk_ringbuffer overview 12 * 13 * Data Structure 14 * -------------- 15 * The printk_ringbuffer is made up of 3 internal ringbuffers: 16 * 17 * desc_ring 18 * A ring of descriptors and their meta data (such as sequence number, 19 * timestamp, loglevel, etc.) as well as internal state information about 20 * the record and logical positions specifying where in the other 21 * ringbuffer the text strings are located. 22 * 23 * text_data_ring 24 * A ring of data blocks. A data block consists of an unsigned long 25 * integer (ID) that maps to a desc_ring index followed by the text 26 * string of the record. 27 * 28 * The internal state information of a descriptor is the key element to allow 29 * readers and writers to locklessly synchronize access to the data. 30 * 31 * Implementation 32 * -------------- 33 * 34 * Descriptor Ring 35 * ~~~~~~~~~~~~~~~ 36 * The descriptor ring is an array of descriptors. A descriptor contains 37 * essential meta data to track the data of a printk record using 38 * blk_lpos structs pointing to associated text data blocks (see 39 * "Data Rings" below). Each descriptor is assigned an ID that maps 40 * directly to index values of the descriptor array and has a state. The ID 41 * and the state are bitwise combined into a single descriptor field named 42 * @state_var, allowing ID and state to be synchronously and atomically 43 * updated. 44 * 45 * Descriptors have four states: 46 * 47 * reserved 48 * A writer is modifying the record. 49 * 50 * committed 51 * The record and all its data are written. A writer can reopen the 52 * descriptor (transitioning it back to reserved), but in the committed 53 * state the data is consistent. 54 * 55 * finalized 56 * The record and all its data are complete and available for reading. A 57 * writer cannot reopen the descriptor. 58 * 59 * reusable 60 * The record exists, but its text and/or meta data may no longer be 61 * available. 62 * 63 * Querying the @state_var of a record requires providing the ID of the 64 * descriptor to query. This can yield a possible fifth (pseudo) state: 65 * 66 * miss 67 * The descriptor being queried has an unexpected ID. 68 * 69 * The descriptor ring has a @tail_id that contains the ID of the oldest 70 * descriptor and @head_id that contains the ID of the newest descriptor. 71 * 72 * When a new descriptor should be created (and the ring is full), the tail 73 * descriptor is invalidated by first transitioning to the reusable state and 74 * then invalidating all tail data blocks up to and including the data blocks 75 * associated with the tail descriptor (for the text ring). Then 76 * @tail_id is advanced, followed by advancing @head_id. And finally the 77 * @state_var of the new descriptor is initialized to the new ID and reserved 78 * state. 79 * 80 * The @tail_id can only be advanced if the new @tail_id would be in the 81 * committed or reusable queried state. This makes it possible that a valid 82 * sequence number of the tail is always available. 83 * 84 * Descriptor Finalization 85 * ~~~~~~~~~~~~~~~~~~~~~~~ 86 * When a writer calls the commit function prb_commit(), record data is 87 * fully stored and is consistent within the ringbuffer. However, a writer can 88 * reopen that record, claiming exclusive access (as with prb_reserve()), and 89 * modify that record. When finished, the writer must again commit the record. 90 * 91 * In order for a record to be made available to readers (and also become 92 * recyclable for writers), it must be finalized. A finalized record cannot be 93 * reopened and can never become "unfinalized". Record finalization can occur 94 * in three different scenarios: 95 * 96 * 1) A writer can simultaneously commit and finalize its record by calling 97 * prb_final_commit() instead of prb_commit(). 98 * 99 * 2) When a new record is reserved and the previous record has been 100 * committed via prb_commit(), that previous record is automatically 101 * finalized. 102 * 103 * 3) When a record is committed via prb_commit() and a newer record 104 * already exists, the record being committed is automatically finalized. 105 * 106 * Data Ring 107 * ~~~~~~~~~ 108 * The text data ring is a byte array composed of data blocks. Data blocks are 109 * referenced by blk_lpos structs that point to the logical position of the 110 * beginning of a data block and the beginning of the next adjacent data 111 * block. Logical positions are mapped directly to index values of the byte 112 * array ringbuffer. 113 * 114 * Each data block consists of an ID followed by the writer data. The ID is 115 * the identifier of a descriptor that is associated with the data block. A 116 * given data block is considered valid if all of the following conditions 117 * are met: 118 * 119 * 1) The descriptor associated with the data block is in the committed 120 * or finalized queried state. 121 * 122 * 2) The blk_lpos struct within the descriptor associated with the data 123 * block references back to the same data block. 124 * 125 * 3) The data block is within the head/tail logical position range. 126 * 127 * If the writer data of a data block would extend beyond the end of the 128 * byte array, only the ID of the data block is stored at the logical 129 * position and the full data block (ID and writer data) is stored at the 130 * beginning of the byte array. The referencing blk_lpos will point to the 131 * ID before the wrap and the next data block will be at the logical 132 * position adjacent the full data block after the wrap. 133 * 134 * Data rings have a @tail_lpos that points to the beginning of the oldest 135 * data block and a @head_lpos that points to the logical position of the 136 * next (not yet existing) data block. 137 * 138 * When a new data block should be created (and the ring is full), tail data 139 * blocks will first be invalidated by putting their associated descriptors 140 * into the reusable state and then pushing the @tail_lpos forward beyond 141 * them. Then the @head_lpos is pushed forward and is associated with a new 142 * descriptor. If a data block is not valid, the @tail_lpos cannot be 143 * advanced beyond it. 144 * 145 * Info Array 146 * ~~~~~~~~~~ 147 * The general meta data of printk records are stored in printk_info structs, 148 * stored in an array with the same number of elements as the descriptor ring. 149 * Each info corresponds to the descriptor of the same index in the 150 * descriptor ring. Info validity is confirmed by evaluating the corresponding 151 * descriptor before and after loading the info. 152 * 153 * Usage 154 * ----- 155 * Here are some simple examples demonstrating writers and readers. For the 156 * examples a global ringbuffer (test_rb) is available (which is not the 157 * actual ringbuffer used by printk):: 158 * 159 * DEFINE_PRINTKRB(test_rb, 15, 5); 160 * 161 * This ringbuffer allows up to 32768 records (2 ^ 15) and has a size of 162 * 1 MiB (2 ^ (15 + 5)) for text data. 163 * 164 * Sample writer code:: 165 * 166 * const char *textstr = "message text"; 167 * struct prb_reserved_entry e; 168 * struct printk_record r; 169 * 170 * // specify how much to allocate 171 * prb_rec_init_wr(&r, strlen(textstr) + 1); 172 * 173 * if (prb_reserve(&e, &test_rb, &r)) { 174 * snprintf(r.text_buf, r.text_buf_size, "%s", textstr); 175 * 176 * r.info->text_len = strlen(textstr); 177 * r.info->ts_nsec = local_clock(); 178 * r.info->caller_id = printk_caller_id(); 179 * 180 * // commit and finalize the record 181 * prb_final_commit(&e); 182 * } 183 * 184 * Note that additional writer functions are available to extend a record 185 * after it has been committed but not yet finalized. This can be done as 186 * long as no new records have been reserved and the caller is the same. 187 * 188 * Sample writer code (record extending):: 189 * 190 * // alternate rest of previous example 191 * 192 * r.info->text_len = strlen(textstr); 193 * r.info->ts_nsec = local_clock(); 194 * r.info->caller_id = printk_caller_id(); 195 * 196 * // commit the record (but do not finalize yet) 197 * prb_commit(&e); 198 * } 199 * 200 * ... 201 * 202 * // specify additional 5 bytes text space to extend 203 * prb_rec_init_wr(&r, 5); 204 * 205 * // try to extend, but only if it does not exceed 32 bytes 206 * if (prb_reserve_in_last(&e, &test_rb, &r, printk_caller_id()), 32) { 207 * snprintf(&r.text_buf[r.info->text_len], 208 * r.text_buf_size - r.info->text_len, "hello"); 209 * 210 * r.info->text_len += 5; 211 * 212 * // commit and finalize the record 213 * prb_final_commit(&e); 214 * } 215 * 216 * Sample reader code:: 217 * 218 * struct printk_info info; 219 * struct printk_record r; 220 * char text_buf[32]; 221 * u64 seq; 222 * 223 * prb_rec_init_rd(&r, &info, &text_buf[0], sizeof(text_buf)); 224 * 225 * prb_for_each_record(0, &test_rb, &seq, &r) { 226 * if (info.seq != seq) 227 * pr_warn("lost %llu records\n", info.seq - seq); 228 * 229 * if (info.text_len > r.text_buf_size) { 230 * pr_warn("record %llu text truncated\n", info.seq); 231 * text_buf[r.text_buf_size - 1] = 0; 232 * } 233 * 234 * pr_info("%llu: %llu: %s\n", info.seq, info.ts_nsec, 235 * &text_buf[0]); 236 * } 237 * 238 * Note that additional less convenient reader functions are available to 239 * allow complex record access. 240 * 241 * ABA Issues 242 * ~~~~~~~~~~ 243 * To help avoid ABA issues, descriptors are referenced by IDs (array index 244 * values combined with tagged bits counting array wraps) and data blocks are 245 * referenced by logical positions (array index values combined with tagged 246 * bits counting array wraps). However, on 32-bit systems the number of 247 * tagged bits is relatively small such that an ABA incident is (at least 248 * theoretically) possible. For example, if 4 million maximally sized (1KiB) 249 * printk messages were to occur in NMI context on a 32-bit system, the 250 * interrupted context would not be able to recognize that the 32-bit integer 251 * completely wrapped and thus represents a different data block than the one 252 * the interrupted context expects. 253 * 254 * To help combat this possibility, additional state checking is performed 255 * (such as using cmpxchg() even though set() would suffice). These extra 256 * checks are commented as such and will hopefully catch any ABA issue that 257 * a 32-bit system might experience. 258 * 259 * Memory Barriers 260 * ~~~~~~~~~~~~~~~ 261 * Multiple memory barriers are used. To simplify proving correctness and 262 * generating litmus tests, lines of code related to memory barriers 263 * (loads, stores, and the associated memory barriers) are labeled:: 264 * 265 * LMM(function:letter) 266 * 267 * Comments reference the labels using only the "function:letter" part. 268 * 269 * The memory barrier pairs and their ordering are: 270 * 271 * desc_reserve:D / desc_reserve:B 272 * push descriptor tail (id), then push descriptor head (id) 273 * 274 * desc_reserve:D / data_push_tail:B 275 * push data tail (lpos), then set new descriptor reserved (state) 276 * 277 * desc_reserve:D / desc_push_tail:C 278 * push descriptor tail (id), then set new descriptor reserved (state) 279 * 280 * desc_reserve:D / prb_first_seq:C 281 * push descriptor tail (id), then set new descriptor reserved (state) 282 * 283 * desc_reserve:F / desc_read:D 284 * set new descriptor id and reserved (state), then allow writer changes 285 * 286 * data_alloc:A (or data_realloc:A) / desc_read:D 287 * set old descriptor reusable (state), then modify new data block area 288 * 289 * data_alloc:A (or data_realloc:A) / data_push_tail:B 290 * push data tail (lpos), then modify new data block area 291 * 292 * _prb_commit:B / desc_read:B 293 * store writer changes, then set new descriptor committed (state) 294 * 295 * desc_reopen_last:A / _prb_commit:B 296 * set descriptor reserved (state), then read descriptor data 297 * 298 * _prb_commit:B / desc_reserve:D 299 * set new descriptor committed (state), then check descriptor head (id) 300 * 301 * data_push_tail:D / data_push_tail:A 302 * set descriptor reusable (state), then push data tail (lpos) 303 * 304 * desc_push_tail:B / desc_reserve:D 305 * set descriptor reusable (state), then push descriptor tail (id) 306 */ 307 308 #define DATA_SIZE(data_ring) _DATA_SIZE((data_ring)->size_bits) 309 #define DATA_SIZE_MASK(data_ring) (DATA_SIZE(data_ring) - 1) 310 311 #define DESCS_COUNT(desc_ring) _DESCS_COUNT((desc_ring)->count_bits) 312 #define DESCS_COUNT_MASK(desc_ring) (DESCS_COUNT(desc_ring) - 1) 313 314 /* Determine the data array index from a logical position. */ 315 #define DATA_INDEX(data_ring, lpos) ((lpos) & DATA_SIZE_MASK(data_ring)) 316 317 /* Determine the desc array index from an ID or sequence number. */ 318 #define DESC_INDEX(desc_ring, n) ((n) & DESCS_COUNT_MASK(desc_ring)) 319 320 /* Determine how many times the data array has wrapped. */ 321 #define DATA_WRAPS(data_ring, lpos) ((lpos) >> (data_ring)->size_bits) 322 323 /* Determine if a logical position refers to a data-less block. */ 324 #define LPOS_DATALESS(lpos) ((lpos) & 1UL) 325 #define BLK_DATALESS(blk) (LPOS_DATALESS((blk)->begin) && \ 326 LPOS_DATALESS((blk)->next)) 327 328 /* Get the logical position at index 0 of the current wrap. */ 329 #define DATA_THIS_WRAP_START_LPOS(data_ring, lpos) \ 330 ((lpos) & ~DATA_SIZE_MASK(data_ring)) 331 332 /* Get the ID for the same index of the previous wrap as the given ID. */ 333 #define DESC_ID_PREV_WRAP(desc_ring, id) \ 334 DESC_ID((id) - DESCS_COUNT(desc_ring)) 335 336 /* 337 * A data block: mapped directly to the beginning of the data block area 338 * specified as a logical position within the data ring. 339 * 340 * @id: the ID of the associated descriptor 341 * @data: the writer data 342 * 343 * Note that the size of a data block is only known by its associated 344 * descriptor. 345 */ 346 struct prb_data_block { 347 unsigned long id; 348 char data[]; 349 }; 350 351 /* 352 * Return the descriptor associated with @n. @n can be either a 353 * descriptor ID or a sequence number. 354 */ 355 static struct prb_desc *to_desc(struct prb_desc_ring *desc_ring, u64 n) 356 { 357 return &desc_ring->descs[DESC_INDEX(desc_ring, n)]; 358 } 359 360 /* 361 * Return the printk_info associated with @n. @n can be either a 362 * descriptor ID or a sequence number. 363 */ 364 static struct printk_info *to_info(struct prb_desc_ring *desc_ring, u64 n) 365 { 366 return &desc_ring->infos[DESC_INDEX(desc_ring, n)]; 367 } 368 369 static struct prb_data_block *to_block(struct prb_data_ring *data_ring, 370 unsigned long begin_lpos) 371 { 372 return (void *)&data_ring->data[DATA_INDEX(data_ring, begin_lpos)]; 373 } 374 375 /* 376 * Increase the data size to account for data block meta data plus any 377 * padding so that the adjacent data block is aligned on the ID size. 378 */ 379 static unsigned int to_blk_size(unsigned int size) 380 { 381 struct prb_data_block *db = NULL; 382 383 size += sizeof(*db); 384 size = ALIGN(size, sizeof(db->id)); 385 return size; 386 } 387 388 /* 389 * Sanity checker for reserve size. The ringbuffer code assumes that a data 390 * block does not exceed the maximum possible size that could fit within the 391 * ringbuffer. This function provides that basic size check so that the 392 * assumption is safe. 393 */ 394 static bool data_check_size(struct prb_data_ring *data_ring, unsigned int size) 395 { 396 struct prb_data_block *db = NULL; 397 398 if (size == 0) 399 return true; 400 401 /* 402 * Ensure the alignment padded size could possibly fit in the data 403 * array. The largest possible data block must still leave room for 404 * at least the ID of the next block. 405 */ 406 size = to_blk_size(size); 407 if (size > DATA_SIZE(data_ring) - sizeof(db->id)) 408 return false; 409 410 return true; 411 } 412 413 /* Query the state of a descriptor. */ 414 static enum desc_state get_desc_state(unsigned long id, 415 unsigned long state_val) 416 { 417 if (id != DESC_ID(state_val)) 418 return desc_miss; 419 420 return DESC_STATE(state_val); 421 } 422 423 /* 424 * Get a copy of a specified descriptor and return its queried state. If the 425 * descriptor is in an inconsistent state (miss or reserved), the caller can 426 * only expect the descriptor's @state_var field to be valid. 427 * 428 * The sequence number and caller_id can be optionally retrieved. Like all 429 * non-state_var data, they are only valid if the descriptor is in a 430 * consistent state. 431 */ 432 static enum desc_state desc_read(struct prb_desc_ring *desc_ring, 433 unsigned long id, struct prb_desc *desc_out, 434 u64 *seq_out, u32 *caller_id_out) 435 { 436 struct printk_info *info = to_info(desc_ring, id); 437 struct prb_desc *desc = to_desc(desc_ring, id); 438 atomic_long_t *state_var = &desc->state_var; 439 enum desc_state d_state; 440 unsigned long state_val; 441 442 /* Check the descriptor state. */ 443 state_val = atomic_long_read(state_var); /* LMM(desc_read:A) */ 444 d_state = get_desc_state(id, state_val); 445 if (d_state == desc_miss || d_state == desc_reserved) { 446 /* 447 * The descriptor is in an inconsistent state. Set at least 448 * @state_var so that the caller can see the details of 449 * the inconsistent state. 450 */ 451 goto out; 452 } 453 454 /* 455 * Guarantee the state is loaded before copying the descriptor 456 * content. This avoids copying obsolete descriptor content that might 457 * not apply to the descriptor state. This pairs with _prb_commit:B. 458 * 459 * Memory barrier involvement: 460 * 461 * If desc_read:A reads from _prb_commit:B, then desc_read:C reads 462 * from _prb_commit:A. 463 * 464 * Relies on: 465 * 466 * WMB from _prb_commit:A to _prb_commit:B 467 * matching 468 * RMB from desc_read:A to desc_read:C 469 */ 470 smp_rmb(); /* LMM(desc_read:B) */ 471 472 /* 473 * Copy the descriptor data. The data is not valid until the 474 * state has been re-checked. A memcpy() for all of @desc 475 * cannot be used because of the atomic_t @state_var field. 476 */ 477 memcpy(&desc_out->text_blk_lpos, &desc->text_blk_lpos, 478 sizeof(desc_out->text_blk_lpos)); /* LMM(desc_read:C) */ 479 if (seq_out) 480 *seq_out = info->seq; /* also part of desc_read:C */ 481 if (caller_id_out) 482 *caller_id_out = info->caller_id; /* also part of desc_read:C */ 483 484 /* 485 * 1. Guarantee the descriptor content is loaded before re-checking 486 * the state. This avoids reading an obsolete descriptor state 487 * that may not apply to the copied content. This pairs with 488 * desc_reserve:F. 489 * 490 * Memory barrier involvement: 491 * 492 * If desc_read:C reads from desc_reserve:G, then desc_read:E 493 * reads from desc_reserve:F. 494 * 495 * Relies on: 496 * 497 * WMB from desc_reserve:F to desc_reserve:G 498 * matching 499 * RMB from desc_read:C to desc_read:E 500 * 501 * 2. Guarantee the record data is loaded before re-checking the 502 * state. This avoids reading an obsolete descriptor state that may 503 * not apply to the copied data. This pairs with data_alloc:A and 504 * data_realloc:A. 505 * 506 * Memory barrier involvement: 507 * 508 * If copy_data:A reads from data_alloc:B, then desc_read:E 509 * reads from desc_make_reusable:A. 510 * 511 * Relies on: 512 * 513 * MB from desc_make_reusable:A to data_alloc:B 514 * matching 515 * RMB from desc_read:C to desc_read:E 516 * 517 * Note: desc_make_reusable:A and data_alloc:B can be different 518 * CPUs. However, the data_alloc:B CPU (which performs the 519 * full memory barrier) must have previously seen 520 * desc_make_reusable:A. 521 */ 522 smp_rmb(); /* LMM(desc_read:D) */ 523 524 /* 525 * The data has been copied. Return the current descriptor state, 526 * which may have changed since the load above. 527 */ 528 state_val = atomic_long_read(state_var); /* LMM(desc_read:E) */ 529 d_state = get_desc_state(id, state_val); 530 out: 531 atomic_long_set(&desc_out->state_var, state_val); 532 return d_state; 533 } 534 535 /* 536 * Take a specified descriptor out of the finalized state by attempting 537 * the transition from finalized to reusable. Either this context or some 538 * other context will have been successful. 539 */ 540 static void desc_make_reusable(struct prb_desc_ring *desc_ring, 541 unsigned long id) 542 { 543 unsigned long val_finalized = DESC_SV(id, desc_finalized); 544 unsigned long val_reusable = DESC_SV(id, desc_reusable); 545 struct prb_desc *desc = to_desc(desc_ring, id); 546 atomic_long_t *state_var = &desc->state_var; 547 548 atomic_long_cmpxchg_relaxed(state_var, val_finalized, 549 val_reusable); /* LMM(desc_make_reusable:A) */ 550 } 551 552 /* 553 * Given the text data ring, put the associated descriptor of each 554 * data block from @lpos_begin until @lpos_end into the reusable state. 555 * 556 * If there is any problem making the associated descriptor reusable, either 557 * the descriptor has not yet been finalized or another writer context has 558 * already pushed the tail lpos past the problematic data block. Regardless, 559 * on error the caller can re-load the tail lpos to determine the situation. 560 */ 561 static bool data_make_reusable(struct printk_ringbuffer *rb, 562 unsigned long lpos_begin, 563 unsigned long lpos_end, 564 unsigned long *lpos_out) 565 { 566 567 struct prb_data_ring *data_ring = &rb->text_data_ring; 568 struct prb_desc_ring *desc_ring = &rb->desc_ring; 569 struct prb_data_block *blk; 570 enum desc_state d_state; 571 struct prb_desc desc; 572 struct prb_data_blk_lpos *blk_lpos = &desc.text_blk_lpos; 573 unsigned long id; 574 575 /* Loop until @lpos_begin has advanced to or beyond @lpos_end. */ 576 while ((lpos_end - lpos_begin) - 1 < DATA_SIZE(data_ring)) { 577 blk = to_block(data_ring, lpos_begin); 578 579 /* 580 * Load the block ID from the data block. This is a data race 581 * against a writer that may have newly reserved this data 582 * area. If the loaded value matches a valid descriptor ID, 583 * the blk_lpos of that descriptor will be checked to make 584 * sure it points back to this data block. If the check fails, 585 * the data area has been recycled by another writer. 586 */ 587 id = blk->id; /* LMM(data_make_reusable:A) */ 588 589 d_state = desc_read(desc_ring, id, &desc, 590 NULL, NULL); /* LMM(data_make_reusable:B) */ 591 592 switch (d_state) { 593 case desc_miss: 594 case desc_reserved: 595 case desc_committed: 596 return false; 597 case desc_finalized: 598 /* 599 * This data block is invalid if the descriptor 600 * does not point back to it. 601 */ 602 if (blk_lpos->begin != lpos_begin) 603 return false; 604 desc_make_reusable(desc_ring, id); 605 break; 606 case desc_reusable: 607 /* 608 * This data block is invalid if the descriptor 609 * does not point back to it. 610 */ 611 if (blk_lpos->begin != lpos_begin) 612 return false; 613 break; 614 } 615 616 /* Advance @lpos_begin to the next data block. */ 617 lpos_begin = blk_lpos->next; 618 } 619 620 *lpos_out = lpos_begin; 621 return true; 622 } 623 624 /* 625 * Advance the data ring tail to at least @lpos. This function puts 626 * descriptors into the reusable state if the tail is pushed beyond 627 * their associated data block. 628 */ 629 static bool data_push_tail(struct printk_ringbuffer *rb, unsigned long lpos) 630 { 631 struct prb_data_ring *data_ring = &rb->text_data_ring; 632 unsigned long tail_lpos_new; 633 unsigned long tail_lpos; 634 unsigned long next_lpos; 635 636 /* If @lpos is from a data-less block, there is nothing to do. */ 637 if (LPOS_DATALESS(lpos)) 638 return true; 639 640 /* 641 * Any descriptor states that have transitioned to reusable due to the 642 * data tail being pushed to this loaded value will be visible to this 643 * CPU. This pairs with data_push_tail:D. 644 * 645 * Memory barrier involvement: 646 * 647 * If data_push_tail:A reads from data_push_tail:D, then this CPU can 648 * see desc_make_reusable:A. 649 * 650 * Relies on: 651 * 652 * MB from desc_make_reusable:A to data_push_tail:D 653 * matches 654 * READFROM from data_push_tail:D to data_push_tail:A 655 * thus 656 * READFROM from desc_make_reusable:A to this CPU 657 */ 658 tail_lpos = atomic_long_read(&data_ring->tail_lpos); /* LMM(data_push_tail:A) */ 659 660 /* 661 * Loop until the tail lpos is at or beyond @lpos. This condition 662 * may already be satisfied, resulting in no full memory barrier 663 * from data_push_tail:D being performed. However, since this CPU 664 * sees the new tail lpos, any descriptor states that transitioned to 665 * the reusable state must already be visible. 666 */ 667 while ((lpos - tail_lpos) - 1 < DATA_SIZE(data_ring)) { 668 /* 669 * Make all descriptors reusable that are associated with 670 * data blocks before @lpos. 671 */ 672 if (!data_make_reusable(rb, tail_lpos, lpos, &next_lpos)) { 673 /* 674 * 1. Guarantee the block ID loaded in 675 * data_make_reusable() is performed before 676 * reloading the tail lpos. The failed 677 * data_make_reusable() may be due to a newly 678 * recycled data area causing the tail lpos to 679 * have been previously pushed. This pairs with 680 * data_alloc:A and data_realloc:A. 681 * 682 * Memory barrier involvement: 683 * 684 * If data_make_reusable:A reads from data_alloc:B, 685 * then data_push_tail:C reads from 686 * data_push_tail:D. 687 * 688 * Relies on: 689 * 690 * MB from data_push_tail:D to data_alloc:B 691 * matching 692 * RMB from data_make_reusable:A to 693 * data_push_tail:C 694 * 695 * Note: data_push_tail:D and data_alloc:B can be 696 * different CPUs. However, the data_alloc:B 697 * CPU (which performs the full memory 698 * barrier) must have previously seen 699 * data_push_tail:D. 700 * 701 * 2. Guarantee the descriptor state loaded in 702 * data_make_reusable() is performed before 703 * reloading the tail lpos. The failed 704 * data_make_reusable() may be due to a newly 705 * recycled descriptor causing the tail lpos to 706 * have been previously pushed. This pairs with 707 * desc_reserve:D. 708 * 709 * Memory barrier involvement: 710 * 711 * If data_make_reusable:B reads from 712 * desc_reserve:F, then data_push_tail:C reads 713 * from data_push_tail:D. 714 * 715 * Relies on: 716 * 717 * MB from data_push_tail:D to desc_reserve:F 718 * matching 719 * RMB from data_make_reusable:B to 720 * data_push_tail:C 721 * 722 * Note: data_push_tail:D and desc_reserve:F can 723 * be different CPUs. However, the 724 * desc_reserve:F CPU (which performs the 725 * full memory barrier) must have previously 726 * seen data_push_tail:D. 727 */ 728 smp_rmb(); /* LMM(data_push_tail:B) */ 729 730 tail_lpos_new = atomic_long_read(&data_ring->tail_lpos 731 ); /* LMM(data_push_tail:C) */ 732 if (tail_lpos_new == tail_lpos) 733 return false; 734 735 /* Another CPU pushed the tail. Try again. */ 736 tail_lpos = tail_lpos_new; 737 continue; 738 } 739 740 /* 741 * Guarantee any descriptor states that have transitioned to 742 * reusable are stored before pushing the tail lpos. A full 743 * memory barrier is needed since other CPUs may have made 744 * the descriptor states reusable. This pairs with 745 * data_push_tail:A. 746 */ 747 if (atomic_long_try_cmpxchg(&data_ring->tail_lpos, &tail_lpos, 748 next_lpos)) { /* LMM(data_push_tail:D) */ 749 break; 750 } 751 } 752 753 return true; 754 } 755 756 /* 757 * Advance the desc ring tail. This function advances the tail by one 758 * descriptor, thus invalidating the oldest descriptor. Before advancing 759 * the tail, the tail descriptor is made reusable and all data blocks up to 760 * and including the descriptor's data block are invalidated (i.e. the data 761 * ring tail is pushed past the data block of the descriptor being made 762 * reusable). 763 */ 764 static bool desc_push_tail(struct printk_ringbuffer *rb, 765 unsigned long tail_id) 766 { 767 struct prb_desc_ring *desc_ring = &rb->desc_ring; 768 enum desc_state d_state; 769 struct prb_desc desc; 770 771 d_state = desc_read(desc_ring, tail_id, &desc, NULL, NULL); 772 773 switch (d_state) { 774 case desc_miss: 775 /* 776 * If the ID is exactly 1 wrap behind the expected, it is 777 * in the process of being reserved by another writer and 778 * must be considered reserved. 779 */ 780 if (DESC_ID(atomic_long_read(&desc.state_var)) == 781 DESC_ID_PREV_WRAP(desc_ring, tail_id)) { 782 return false; 783 } 784 785 /* 786 * The ID has changed. Another writer must have pushed the 787 * tail and recycled the descriptor already. Success is 788 * returned because the caller is only interested in the 789 * specified tail being pushed, which it was. 790 */ 791 return true; 792 case desc_reserved: 793 case desc_committed: 794 return false; 795 case desc_finalized: 796 desc_make_reusable(desc_ring, tail_id); 797 break; 798 case desc_reusable: 799 break; 800 } 801 802 /* 803 * Data blocks must be invalidated before their associated 804 * descriptor can be made available for recycling. Invalidating 805 * them later is not possible because there is no way to trust 806 * data blocks once their associated descriptor is gone. 807 */ 808 809 if (!data_push_tail(rb, desc.text_blk_lpos.next)) 810 return false; 811 812 /* 813 * Check the next descriptor after @tail_id before pushing the tail 814 * to it because the tail must always be in a finalized or reusable 815 * state. The implementation of prb_first_seq() relies on this. 816 * 817 * A successful read implies that the next descriptor is less than or 818 * equal to @head_id so there is no risk of pushing the tail past the 819 * head. 820 */ 821 d_state = desc_read(desc_ring, DESC_ID(tail_id + 1), &desc, 822 NULL, NULL); /* LMM(desc_push_tail:A) */ 823 824 if (d_state == desc_finalized || d_state == desc_reusable) { 825 /* 826 * Guarantee any descriptor states that have transitioned to 827 * reusable are stored before pushing the tail ID. This allows 828 * verifying the recycled descriptor state. A full memory 829 * barrier is needed since other CPUs may have made the 830 * descriptor states reusable. This pairs with desc_reserve:D. 831 */ 832 atomic_long_cmpxchg(&desc_ring->tail_id, tail_id, 833 DESC_ID(tail_id + 1)); /* LMM(desc_push_tail:B) */ 834 } else { 835 /* 836 * Guarantee the last state load from desc_read() is before 837 * reloading @tail_id in order to see a new tail ID in the 838 * case that the descriptor has been recycled. This pairs 839 * with desc_reserve:D. 840 * 841 * Memory barrier involvement: 842 * 843 * If desc_push_tail:A reads from desc_reserve:F, then 844 * desc_push_tail:D reads from desc_push_tail:B. 845 * 846 * Relies on: 847 * 848 * MB from desc_push_tail:B to desc_reserve:F 849 * matching 850 * RMB from desc_push_tail:A to desc_push_tail:D 851 * 852 * Note: desc_push_tail:B and desc_reserve:F can be different 853 * CPUs. However, the desc_reserve:F CPU (which performs 854 * the full memory barrier) must have previously seen 855 * desc_push_tail:B. 856 */ 857 smp_rmb(); /* LMM(desc_push_tail:C) */ 858 859 /* 860 * Re-check the tail ID. The descriptor following @tail_id is 861 * not in an allowed tail state. But if the tail has since 862 * been moved by another CPU, then it does not matter. 863 */ 864 if (atomic_long_read(&desc_ring->tail_id) == tail_id) /* LMM(desc_push_tail:D) */ 865 return false; 866 } 867 868 return true; 869 } 870 871 /* Reserve a new descriptor, invalidating the oldest if necessary. */ 872 static bool desc_reserve(struct printk_ringbuffer *rb, unsigned long *id_out) 873 { 874 struct prb_desc_ring *desc_ring = &rb->desc_ring; 875 unsigned long prev_state_val; 876 unsigned long id_prev_wrap; 877 struct prb_desc *desc; 878 unsigned long head_id; 879 unsigned long id; 880 881 head_id = atomic_long_read(&desc_ring->head_id); /* LMM(desc_reserve:A) */ 882 883 do { 884 id = DESC_ID(head_id + 1); 885 id_prev_wrap = DESC_ID_PREV_WRAP(desc_ring, id); 886 887 /* 888 * Guarantee the head ID is read before reading the tail ID. 889 * Since the tail ID is updated before the head ID, this 890 * guarantees that @id_prev_wrap is never ahead of the tail 891 * ID. This pairs with desc_reserve:D. 892 * 893 * Memory barrier involvement: 894 * 895 * If desc_reserve:A reads from desc_reserve:D, then 896 * desc_reserve:C reads from desc_push_tail:B. 897 * 898 * Relies on: 899 * 900 * MB from desc_push_tail:B to desc_reserve:D 901 * matching 902 * RMB from desc_reserve:A to desc_reserve:C 903 * 904 * Note: desc_push_tail:B and desc_reserve:D can be different 905 * CPUs. However, the desc_reserve:D CPU (which performs 906 * the full memory barrier) must have previously seen 907 * desc_push_tail:B. 908 */ 909 smp_rmb(); /* LMM(desc_reserve:B) */ 910 911 if (id_prev_wrap == atomic_long_read(&desc_ring->tail_id 912 )) { /* LMM(desc_reserve:C) */ 913 /* 914 * Make space for the new descriptor by 915 * advancing the tail. 916 */ 917 if (!desc_push_tail(rb, id_prev_wrap)) 918 return false; 919 } 920 921 /* 922 * 1. Guarantee the tail ID is read before validating the 923 * recycled descriptor state. A read memory barrier is 924 * sufficient for this. This pairs with desc_push_tail:B. 925 * 926 * Memory barrier involvement: 927 * 928 * If desc_reserve:C reads from desc_push_tail:B, then 929 * desc_reserve:E reads from desc_make_reusable:A. 930 * 931 * Relies on: 932 * 933 * MB from desc_make_reusable:A to desc_push_tail:B 934 * matching 935 * RMB from desc_reserve:C to desc_reserve:E 936 * 937 * Note: desc_make_reusable:A and desc_push_tail:B can be 938 * different CPUs. However, the desc_push_tail:B CPU 939 * (which performs the full memory barrier) must have 940 * previously seen desc_make_reusable:A. 941 * 942 * 2. Guarantee the tail ID is stored before storing the head 943 * ID. This pairs with desc_reserve:B. 944 * 945 * 3. Guarantee any data ring tail changes are stored before 946 * recycling the descriptor. Data ring tail changes can 947 * happen via desc_push_tail()->data_push_tail(). A full 948 * memory barrier is needed since another CPU may have 949 * pushed the data ring tails. This pairs with 950 * data_push_tail:B. 951 * 952 * 4. Guarantee a new tail ID is stored before recycling the 953 * descriptor. A full memory barrier is needed since 954 * another CPU may have pushed the tail ID. This pairs 955 * with desc_push_tail:C and this also pairs with 956 * prb_first_seq:C. 957 * 958 * 5. Guarantee the head ID is stored before trying to 959 * finalize the previous descriptor. This pairs with 960 * _prb_commit:B. 961 */ 962 } while (!atomic_long_try_cmpxchg(&desc_ring->head_id, &head_id, 963 id)); /* LMM(desc_reserve:D) */ 964 965 desc = to_desc(desc_ring, id); 966 967 /* 968 * If the descriptor has been recycled, verify the old state val. 969 * See "ABA Issues" about why this verification is performed. 970 */ 971 prev_state_val = atomic_long_read(&desc->state_var); /* LMM(desc_reserve:E) */ 972 if (prev_state_val && 973 get_desc_state(id_prev_wrap, prev_state_val) != desc_reusable) { 974 WARN_ON_ONCE(1); 975 return false; 976 } 977 978 /* 979 * Assign the descriptor a new ID and set its state to reserved. 980 * See "ABA Issues" about why cmpxchg() instead of set() is used. 981 * 982 * Guarantee the new descriptor ID and state is stored before making 983 * any other changes. A write memory barrier is sufficient for this. 984 * This pairs with desc_read:D. 985 */ 986 if (!atomic_long_try_cmpxchg(&desc->state_var, &prev_state_val, 987 DESC_SV(id, desc_reserved))) { /* LMM(desc_reserve:F) */ 988 WARN_ON_ONCE(1); 989 return false; 990 } 991 992 /* Now data in @desc can be modified: LMM(desc_reserve:G) */ 993 994 *id_out = id; 995 return true; 996 } 997 998 /* Determine the end of a data block. */ 999 static unsigned long get_next_lpos(struct prb_data_ring *data_ring, 1000 unsigned long lpos, unsigned int size) 1001 { 1002 unsigned long begin_lpos; 1003 unsigned long next_lpos; 1004 1005 begin_lpos = lpos; 1006 next_lpos = lpos + size; 1007 1008 /* First check if the data block does not wrap. */ 1009 if (DATA_WRAPS(data_ring, begin_lpos) == DATA_WRAPS(data_ring, next_lpos)) 1010 return next_lpos; 1011 1012 /* Wrapping data blocks store their data at the beginning. */ 1013 return (DATA_THIS_WRAP_START_LPOS(data_ring, next_lpos) + size); 1014 } 1015 1016 /* 1017 * Allocate a new data block, invalidating the oldest data block(s) 1018 * if necessary. This function also associates the data block with 1019 * a specified descriptor. 1020 */ 1021 static char *data_alloc(struct printk_ringbuffer *rb, unsigned int size, 1022 struct prb_data_blk_lpos *blk_lpos, unsigned long id) 1023 { 1024 struct prb_data_ring *data_ring = &rb->text_data_ring; 1025 struct prb_data_block *blk; 1026 unsigned long begin_lpos; 1027 unsigned long next_lpos; 1028 1029 if (size == 0) { 1030 /* Specify a data-less block. */ 1031 blk_lpos->begin = NO_LPOS; 1032 blk_lpos->next = NO_LPOS; 1033 return NULL; 1034 } 1035 1036 size = to_blk_size(size); 1037 1038 begin_lpos = atomic_long_read(&data_ring->head_lpos); 1039 1040 do { 1041 next_lpos = get_next_lpos(data_ring, begin_lpos, size); 1042 1043 if (!data_push_tail(rb, next_lpos - DATA_SIZE(data_ring))) { 1044 /* Failed to allocate, specify a data-less block. */ 1045 blk_lpos->begin = FAILED_LPOS; 1046 blk_lpos->next = FAILED_LPOS; 1047 return NULL; 1048 } 1049 1050 /* 1051 * 1. Guarantee any descriptor states that have transitioned 1052 * to reusable are stored before modifying the newly 1053 * allocated data area. A full memory barrier is needed 1054 * since other CPUs may have made the descriptor states 1055 * reusable. See data_push_tail:A about why the reusable 1056 * states are visible. This pairs with desc_read:D. 1057 * 1058 * 2. Guarantee any updated tail lpos is stored before 1059 * modifying the newly allocated data area. Another CPU may 1060 * be in data_make_reusable() and is reading a block ID 1061 * from this area. data_make_reusable() can handle reading 1062 * a garbage block ID value, but then it must be able to 1063 * load a new tail lpos. A full memory barrier is needed 1064 * since other CPUs may have updated the tail lpos. This 1065 * pairs with data_push_tail:B. 1066 */ 1067 } while (!atomic_long_try_cmpxchg(&data_ring->head_lpos, &begin_lpos, 1068 next_lpos)); /* LMM(data_alloc:A) */ 1069 1070 blk = to_block(data_ring, begin_lpos); 1071 blk->id = id; /* LMM(data_alloc:B) */ 1072 1073 if (DATA_WRAPS(data_ring, begin_lpos) != DATA_WRAPS(data_ring, next_lpos)) { 1074 /* Wrapping data blocks store their data at the beginning. */ 1075 blk = to_block(data_ring, 0); 1076 1077 /* 1078 * Store the ID on the wrapped block for consistency. 1079 * The printk_ringbuffer does not actually use it. 1080 */ 1081 blk->id = id; 1082 } 1083 1084 blk_lpos->begin = begin_lpos; 1085 blk_lpos->next = next_lpos; 1086 1087 return &blk->data[0]; 1088 } 1089 1090 /* 1091 * Try to resize an existing data block associated with the descriptor 1092 * specified by @id. If the resized data block should become wrapped, it 1093 * copies the old data to the new data block. If @size yields a data block 1094 * with the same or less size, the data block is left as is. 1095 * 1096 * Fail if this is not the last allocated data block or if there is not 1097 * enough space or it is not possible make enough space. 1098 * 1099 * Return a pointer to the beginning of the entire data buffer or NULL on 1100 * failure. 1101 */ 1102 static char *data_realloc(struct printk_ringbuffer *rb, unsigned int size, 1103 struct prb_data_blk_lpos *blk_lpos, unsigned long id) 1104 { 1105 struct prb_data_ring *data_ring = &rb->text_data_ring; 1106 struct prb_data_block *blk; 1107 unsigned long head_lpos; 1108 unsigned long next_lpos; 1109 bool wrapped; 1110 1111 /* Reallocation only works if @blk_lpos is the newest data block. */ 1112 head_lpos = atomic_long_read(&data_ring->head_lpos); 1113 if (head_lpos != blk_lpos->next) 1114 return NULL; 1115 1116 /* Keep track if @blk_lpos was a wrapping data block. */ 1117 wrapped = (DATA_WRAPS(data_ring, blk_lpos->begin) != DATA_WRAPS(data_ring, blk_lpos->next)); 1118 1119 size = to_blk_size(size); 1120 1121 next_lpos = get_next_lpos(data_ring, blk_lpos->begin, size); 1122 1123 /* If the data block does not increase, there is nothing to do. */ 1124 if (head_lpos - next_lpos < DATA_SIZE(data_ring)) { 1125 if (wrapped) 1126 blk = to_block(data_ring, 0); 1127 else 1128 blk = to_block(data_ring, blk_lpos->begin); 1129 return &blk->data[0]; 1130 } 1131 1132 if (!data_push_tail(rb, next_lpos - DATA_SIZE(data_ring))) 1133 return NULL; 1134 1135 /* The memory barrier involvement is the same as data_alloc:A. */ 1136 if (!atomic_long_try_cmpxchg(&data_ring->head_lpos, &head_lpos, 1137 next_lpos)) { /* LMM(data_realloc:A) */ 1138 return NULL; 1139 } 1140 1141 blk = to_block(data_ring, blk_lpos->begin); 1142 1143 if (DATA_WRAPS(data_ring, blk_lpos->begin) != DATA_WRAPS(data_ring, next_lpos)) { 1144 struct prb_data_block *old_blk = blk; 1145 1146 /* Wrapping data blocks store their data at the beginning. */ 1147 blk = to_block(data_ring, 0); 1148 1149 /* 1150 * Store the ID on the wrapped block for consistency. 1151 * The printk_ringbuffer does not actually use it. 1152 */ 1153 blk->id = id; 1154 1155 if (!wrapped) { 1156 /* 1157 * Since the allocated space is now in the newly 1158 * created wrapping data block, copy the content 1159 * from the old data block. 1160 */ 1161 memcpy(&blk->data[0], &old_blk->data[0], 1162 (blk_lpos->next - blk_lpos->begin) - sizeof(blk->id)); 1163 } 1164 } 1165 1166 blk_lpos->next = next_lpos; 1167 1168 return &blk->data[0]; 1169 } 1170 1171 /* Return the number of bytes used by a data block. */ 1172 static unsigned int space_used(struct prb_data_ring *data_ring, 1173 struct prb_data_blk_lpos *blk_lpos) 1174 { 1175 /* Data-less blocks take no space. */ 1176 if (BLK_DATALESS(blk_lpos)) 1177 return 0; 1178 1179 if (DATA_WRAPS(data_ring, blk_lpos->begin) == DATA_WRAPS(data_ring, blk_lpos->next)) { 1180 /* Data block does not wrap. */ 1181 return (DATA_INDEX(data_ring, blk_lpos->next) - 1182 DATA_INDEX(data_ring, blk_lpos->begin)); 1183 } 1184 1185 /* 1186 * For wrapping data blocks, the trailing (wasted) space is 1187 * also counted. 1188 */ 1189 return (DATA_INDEX(data_ring, blk_lpos->next) + 1190 DATA_SIZE(data_ring) - DATA_INDEX(data_ring, blk_lpos->begin)); 1191 } 1192 1193 /* 1194 * Given @blk_lpos, return a pointer to the writer data from the data block 1195 * and calculate the size of the data part. A NULL pointer is returned if 1196 * @blk_lpos specifies values that could never be legal. 1197 * 1198 * This function (used by readers) performs strict validation on the lpos 1199 * values to possibly detect bugs in the writer code. A WARN_ON_ONCE() is 1200 * triggered if an internal error is detected. 1201 */ 1202 static const char *get_data(struct prb_data_ring *data_ring, 1203 struct prb_data_blk_lpos *blk_lpos, 1204 unsigned int *data_size) 1205 { 1206 struct prb_data_block *db; 1207 1208 /* Data-less data block description. */ 1209 if (BLK_DATALESS(blk_lpos)) { 1210 if (blk_lpos->begin == NO_LPOS && blk_lpos->next == NO_LPOS) { 1211 *data_size = 0; 1212 return ""; 1213 } 1214 return NULL; 1215 } 1216 1217 /* Regular data block: @begin less than @next and in same wrap. */ 1218 if (DATA_WRAPS(data_ring, blk_lpos->begin) == DATA_WRAPS(data_ring, blk_lpos->next) && 1219 blk_lpos->begin < blk_lpos->next) { 1220 db = to_block(data_ring, blk_lpos->begin); 1221 *data_size = blk_lpos->next - blk_lpos->begin; 1222 1223 /* Wrapping data block: @begin is one wrap behind @next. */ 1224 } else if (DATA_WRAPS(data_ring, blk_lpos->begin + DATA_SIZE(data_ring)) == 1225 DATA_WRAPS(data_ring, blk_lpos->next)) { 1226 db = to_block(data_ring, 0); 1227 *data_size = DATA_INDEX(data_ring, blk_lpos->next); 1228 1229 /* Illegal block description. */ 1230 } else { 1231 WARN_ON_ONCE(1); 1232 return NULL; 1233 } 1234 1235 /* A valid data block will always be aligned to the ID size. */ 1236 if (WARN_ON_ONCE(blk_lpos->begin != ALIGN(blk_lpos->begin, sizeof(db->id))) || 1237 WARN_ON_ONCE(blk_lpos->next != ALIGN(blk_lpos->next, sizeof(db->id)))) { 1238 return NULL; 1239 } 1240 1241 /* A valid data block will always have at least an ID. */ 1242 if (WARN_ON_ONCE(*data_size < sizeof(db->id))) 1243 return NULL; 1244 1245 /* Subtract block ID space from size to reflect data size. */ 1246 *data_size -= sizeof(db->id); 1247 1248 return &db->data[0]; 1249 } 1250 1251 /* 1252 * Attempt to transition the newest descriptor from committed back to reserved 1253 * so that the record can be modified by a writer again. This is only possible 1254 * if the descriptor is not yet finalized and the provided @caller_id matches. 1255 */ 1256 static struct prb_desc *desc_reopen_last(struct prb_desc_ring *desc_ring, 1257 u32 caller_id, unsigned long *id_out) 1258 { 1259 unsigned long prev_state_val; 1260 enum desc_state d_state; 1261 struct prb_desc desc; 1262 struct prb_desc *d; 1263 unsigned long id; 1264 u32 cid; 1265 1266 id = atomic_long_read(&desc_ring->head_id); 1267 1268 /* 1269 * To reduce unnecessarily reopening, first check if the descriptor 1270 * state and caller ID are correct. 1271 */ 1272 d_state = desc_read(desc_ring, id, &desc, NULL, &cid); 1273 if (d_state != desc_committed || cid != caller_id) 1274 return NULL; 1275 1276 d = to_desc(desc_ring, id); 1277 1278 prev_state_val = DESC_SV(id, desc_committed); 1279 1280 /* 1281 * Guarantee the reserved state is stored before reading any 1282 * record data. A full memory barrier is needed because @state_var 1283 * modification is followed by reading. This pairs with _prb_commit:B. 1284 * 1285 * Memory barrier involvement: 1286 * 1287 * If desc_reopen_last:A reads from _prb_commit:B, then 1288 * prb_reserve_in_last:A reads from _prb_commit:A. 1289 * 1290 * Relies on: 1291 * 1292 * WMB from _prb_commit:A to _prb_commit:B 1293 * matching 1294 * MB If desc_reopen_last:A to prb_reserve_in_last:A 1295 */ 1296 if (!atomic_long_try_cmpxchg(&d->state_var, &prev_state_val, 1297 DESC_SV(id, desc_reserved))) { /* LMM(desc_reopen_last:A) */ 1298 return NULL; 1299 } 1300 1301 *id_out = id; 1302 return d; 1303 } 1304 1305 /** 1306 * prb_reserve_in_last() - Re-reserve and extend the space in the ringbuffer 1307 * used by the newest record. 1308 * 1309 * @e: The entry structure to setup. 1310 * @rb: The ringbuffer to re-reserve and extend data in. 1311 * @r: The record structure to allocate buffers for. 1312 * @caller_id: The caller ID of the caller (reserving writer). 1313 * @max_size: Fail if the extended size would be greater than this. 1314 * 1315 * This is the public function available to writers to re-reserve and extend 1316 * data. 1317 * 1318 * The writer specifies the text size to extend (not the new total size) by 1319 * setting the @text_buf_size field of @r. To ensure proper initialization 1320 * of @r, prb_rec_init_wr() should be used. 1321 * 1322 * This function will fail if @caller_id does not match the caller ID of the 1323 * newest record. In that case the caller must reserve new data using 1324 * prb_reserve(). 1325 * 1326 * Context: Any context. Disables local interrupts on success. 1327 * Return: true if text data could be extended, otherwise false. 1328 * 1329 * On success: 1330 * 1331 * - @r->text_buf points to the beginning of the entire text buffer. 1332 * 1333 * - @r->text_buf_size is set to the new total size of the buffer. 1334 * 1335 * - @r->info is not touched so that @r->info->text_len could be used 1336 * to append the text. 1337 * 1338 * - prb_record_text_space() can be used on @e to query the new 1339 * actually used space. 1340 * 1341 * Important: All @r->info fields will already be set with the current values 1342 * for the record. I.e. @r->info->text_len will be less than 1343 * @text_buf_size. Writers can use @r->info->text_len to know 1344 * where concatenation begins and writers should update 1345 * @r->info->text_len after concatenating. 1346 */ 1347 bool prb_reserve_in_last(struct prb_reserved_entry *e, struct printk_ringbuffer *rb, 1348 struct printk_record *r, u32 caller_id, unsigned int max_size) 1349 { 1350 struct prb_desc_ring *desc_ring = &rb->desc_ring; 1351 struct printk_info *info; 1352 unsigned int data_size; 1353 struct prb_desc *d; 1354 unsigned long id; 1355 1356 local_irq_save(e->irqflags); 1357 1358 /* Transition the newest descriptor back to the reserved state. */ 1359 d = desc_reopen_last(desc_ring, caller_id, &id); 1360 if (!d) { 1361 local_irq_restore(e->irqflags); 1362 goto fail_reopen; 1363 } 1364 1365 /* Now the writer has exclusive access: LMM(prb_reserve_in_last:A) */ 1366 1367 info = to_info(desc_ring, id); 1368 1369 /* 1370 * Set the @e fields here so that prb_commit() can be used if 1371 * anything fails from now on. 1372 */ 1373 e->rb = rb; 1374 e->id = id; 1375 1376 /* 1377 * desc_reopen_last() checked the caller_id, but there was no 1378 * exclusive access at that point. The descriptor may have 1379 * changed since then. 1380 */ 1381 if (caller_id != info->caller_id) 1382 goto fail; 1383 1384 if (BLK_DATALESS(&d->text_blk_lpos)) { 1385 if (WARN_ON_ONCE(info->text_len != 0)) { 1386 pr_warn_once("wrong text_len value (%hu, expecting 0)\n", 1387 info->text_len); 1388 info->text_len = 0; 1389 } 1390 1391 if (!data_check_size(&rb->text_data_ring, r->text_buf_size)) 1392 goto fail; 1393 1394 if (r->text_buf_size > max_size) 1395 goto fail; 1396 1397 r->text_buf = data_alloc(rb, r->text_buf_size, 1398 &d->text_blk_lpos, id); 1399 } else { 1400 if (!get_data(&rb->text_data_ring, &d->text_blk_lpos, &data_size)) 1401 goto fail; 1402 1403 /* 1404 * Increase the buffer size to include the original size. If 1405 * the meta data (@text_len) is not sane, use the full data 1406 * block size. 1407 */ 1408 if (WARN_ON_ONCE(info->text_len > data_size)) { 1409 pr_warn_once("wrong text_len value (%hu, expecting <=%u)\n", 1410 info->text_len, data_size); 1411 info->text_len = data_size; 1412 } 1413 r->text_buf_size += info->text_len; 1414 1415 if (!data_check_size(&rb->text_data_ring, r->text_buf_size)) 1416 goto fail; 1417 1418 if (r->text_buf_size > max_size) 1419 goto fail; 1420 1421 r->text_buf = data_realloc(rb, r->text_buf_size, 1422 &d->text_blk_lpos, id); 1423 } 1424 if (r->text_buf_size && !r->text_buf) 1425 goto fail; 1426 1427 r->info = info; 1428 1429 e->text_space = space_used(&rb->text_data_ring, &d->text_blk_lpos); 1430 1431 return true; 1432 fail: 1433 prb_commit(e); 1434 /* prb_commit() re-enabled interrupts. */ 1435 fail_reopen: 1436 /* Make it clear to the caller that the re-reserve failed. */ 1437 memset(r, 0, sizeof(*r)); 1438 return false; 1439 } 1440 1441 /* 1442 * Attempt to finalize a specified descriptor. If this fails, the descriptor 1443 * is either already final or it will finalize itself when the writer commits. 1444 */ 1445 static void desc_make_final(struct prb_desc_ring *desc_ring, unsigned long id) 1446 { 1447 unsigned long prev_state_val = DESC_SV(id, desc_committed); 1448 struct prb_desc *d = to_desc(desc_ring, id); 1449 1450 atomic_long_cmpxchg_relaxed(&d->state_var, prev_state_val, 1451 DESC_SV(id, desc_finalized)); /* LMM(desc_make_final:A) */ 1452 } 1453 1454 /** 1455 * prb_reserve() - Reserve space in the ringbuffer. 1456 * 1457 * @e: The entry structure to setup. 1458 * @rb: The ringbuffer to reserve data in. 1459 * @r: The record structure to allocate buffers for. 1460 * 1461 * This is the public function available to writers to reserve data. 1462 * 1463 * The writer specifies the text size to reserve by setting the 1464 * @text_buf_size field of @r. To ensure proper initialization of @r, 1465 * prb_rec_init_wr() should be used. 1466 * 1467 * Context: Any context. Disables local interrupts on success. 1468 * Return: true if at least text data could be allocated, otherwise false. 1469 * 1470 * On success, the fields @info and @text_buf of @r will be set by this 1471 * function and should be filled in by the writer before committing. Also 1472 * on success, prb_record_text_space() can be used on @e to query the actual 1473 * space used for the text data block. 1474 * 1475 * Important: @info->text_len needs to be set correctly by the writer in 1476 * order for data to be readable and/or extended. Its value 1477 * is initialized to 0. 1478 */ 1479 bool prb_reserve(struct prb_reserved_entry *e, struct printk_ringbuffer *rb, 1480 struct printk_record *r) 1481 { 1482 struct prb_desc_ring *desc_ring = &rb->desc_ring; 1483 struct printk_info *info; 1484 struct prb_desc *d; 1485 unsigned long id; 1486 u64 seq; 1487 1488 if (!data_check_size(&rb->text_data_ring, r->text_buf_size)) 1489 goto fail; 1490 1491 /* 1492 * Descriptors in the reserved state act as blockers to all further 1493 * reservations once the desc_ring has fully wrapped. Disable 1494 * interrupts during the reserve/commit window in order to minimize 1495 * the likelihood of this happening. 1496 */ 1497 local_irq_save(e->irqflags); 1498 1499 if (!desc_reserve(rb, &id)) { 1500 /* Descriptor reservation failures are tracked. */ 1501 atomic_long_inc(&rb->fail); 1502 local_irq_restore(e->irqflags); 1503 goto fail; 1504 } 1505 1506 d = to_desc(desc_ring, id); 1507 info = to_info(desc_ring, id); 1508 1509 /* 1510 * All @info fields (except @seq) are cleared and must be filled in 1511 * by the writer. Save @seq before clearing because it is used to 1512 * determine the new sequence number. 1513 */ 1514 seq = info->seq; 1515 memset(info, 0, sizeof(*info)); 1516 1517 /* 1518 * Set the @e fields here so that prb_commit() can be used if 1519 * text data allocation fails. 1520 */ 1521 e->rb = rb; 1522 e->id = id; 1523 1524 /* 1525 * Initialize the sequence number if it has "never been set". 1526 * Otherwise just increment it by a full wrap. 1527 * 1528 * @seq is considered "never been set" if it has a value of 0, 1529 * _except_ for @infos[0], which was specially setup by the ringbuffer 1530 * initializer and therefore is always considered as set. 1531 * 1532 * See the "Bootstrap" comment block in printk_ringbuffer.h for 1533 * details about how the initializer bootstraps the descriptors. 1534 */ 1535 if (seq == 0 && DESC_INDEX(desc_ring, id) != 0) 1536 info->seq = DESC_INDEX(desc_ring, id); 1537 else 1538 info->seq = seq + DESCS_COUNT(desc_ring); 1539 1540 /* 1541 * New data is about to be reserved. Once that happens, previous 1542 * descriptors are no longer able to be extended. Finalize the 1543 * previous descriptor now so that it can be made available to 1544 * readers. (For seq==0 there is no previous descriptor.) 1545 */ 1546 if (info->seq > 0) 1547 desc_make_final(desc_ring, DESC_ID(id - 1)); 1548 1549 r->text_buf = data_alloc(rb, r->text_buf_size, &d->text_blk_lpos, id); 1550 /* If text data allocation fails, a data-less record is committed. */ 1551 if (r->text_buf_size && !r->text_buf) { 1552 prb_commit(e); 1553 /* prb_commit() re-enabled interrupts. */ 1554 goto fail; 1555 } 1556 1557 r->info = info; 1558 1559 /* Record full text space used by record. */ 1560 e->text_space = space_used(&rb->text_data_ring, &d->text_blk_lpos); 1561 1562 return true; 1563 fail: 1564 /* Make it clear to the caller that the reserve failed. */ 1565 memset(r, 0, sizeof(*r)); 1566 return false; 1567 } 1568 1569 /* Commit the data (possibly finalizing it) and restore interrupts. */ 1570 static void _prb_commit(struct prb_reserved_entry *e, unsigned long state_val) 1571 { 1572 struct prb_desc_ring *desc_ring = &e->rb->desc_ring; 1573 struct prb_desc *d = to_desc(desc_ring, e->id); 1574 unsigned long prev_state_val = DESC_SV(e->id, desc_reserved); 1575 1576 /* Now the writer has finished all writing: LMM(_prb_commit:A) */ 1577 1578 /* 1579 * Set the descriptor as committed. See "ABA Issues" about why 1580 * cmpxchg() instead of set() is used. 1581 * 1582 * 1 Guarantee all record data is stored before the descriptor state 1583 * is stored as committed. A write memory barrier is sufficient 1584 * for this. This pairs with desc_read:B and desc_reopen_last:A. 1585 * 1586 * 2. Guarantee the descriptor state is stored as committed before 1587 * re-checking the head ID in order to possibly finalize this 1588 * descriptor. This pairs with desc_reserve:D. 1589 * 1590 * Memory barrier involvement: 1591 * 1592 * If prb_commit:A reads from desc_reserve:D, then 1593 * desc_make_final:A reads from _prb_commit:B. 1594 * 1595 * Relies on: 1596 * 1597 * MB _prb_commit:B to prb_commit:A 1598 * matching 1599 * MB desc_reserve:D to desc_make_final:A 1600 */ 1601 if (!atomic_long_try_cmpxchg(&d->state_var, &prev_state_val, 1602 DESC_SV(e->id, state_val))) { /* LMM(_prb_commit:B) */ 1603 WARN_ON_ONCE(1); 1604 } 1605 1606 /* Restore interrupts, the reserve/commit window is finished. */ 1607 local_irq_restore(e->irqflags); 1608 } 1609 1610 /** 1611 * prb_commit() - Commit (previously reserved) data to the ringbuffer. 1612 * 1613 * @e: The entry containing the reserved data information. 1614 * 1615 * This is the public function available to writers to commit data. 1616 * 1617 * Note that the data is not yet available to readers until it is finalized. 1618 * Finalizing happens automatically when space for the next record is 1619 * reserved. 1620 * 1621 * See prb_final_commit() for a version of this function that finalizes 1622 * immediately. 1623 * 1624 * Context: Any context. Enables local interrupts. 1625 */ 1626 void prb_commit(struct prb_reserved_entry *e) 1627 { 1628 struct prb_desc_ring *desc_ring = &e->rb->desc_ring; 1629 unsigned long head_id; 1630 1631 _prb_commit(e, desc_committed); 1632 1633 /* 1634 * If this descriptor is no longer the head (i.e. a new record has 1635 * been allocated), extending the data for this record is no longer 1636 * allowed and therefore it must be finalized. 1637 */ 1638 head_id = atomic_long_read(&desc_ring->head_id); /* LMM(prb_commit:A) */ 1639 if (head_id != e->id) 1640 desc_make_final(desc_ring, e->id); 1641 } 1642 1643 /** 1644 * prb_final_commit() - Commit and finalize (previously reserved) data to 1645 * the ringbuffer. 1646 * 1647 * @e: The entry containing the reserved data information. 1648 * 1649 * This is the public function available to writers to commit+finalize data. 1650 * 1651 * By finalizing, the data is made immediately available to readers. 1652 * 1653 * This function should only be used if there are no intentions of extending 1654 * this data using prb_reserve_in_last(). 1655 * 1656 * Context: Any context. Enables local interrupts. 1657 */ 1658 void prb_final_commit(struct prb_reserved_entry *e) 1659 { 1660 _prb_commit(e, desc_finalized); 1661 } 1662 1663 /* 1664 * Count the number of lines in provided text. All text has at least 1 line 1665 * (even if @text_size is 0). Each '\n' processed is counted as an additional 1666 * line. 1667 */ 1668 static unsigned int count_lines(const char *text, unsigned int text_size) 1669 { 1670 unsigned int next_size = text_size; 1671 unsigned int line_count = 1; 1672 const char *next = text; 1673 1674 while (next_size) { 1675 next = memchr(next, '\n', next_size); 1676 if (!next) 1677 break; 1678 line_count++; 1679 next++; 1680 next_size = text_size - (next - text); 1681 } 1682 1683 return line_count; 1684 } 1685 1686 /* 1687 * Given @blk_lpos, copy an expected @len of data into the provided buffer. 1688 * If @line_count is provided, count the number of lines in the data. 1689 * 1690 * This function (used by readers) performs strict validation on the data 1691 * size to possibly detect bugs in the writer code. A WARN_ON_ONCE() is 1692 * triggered if an internal error is detected. 1693 */ 1694 static bool copy_data(struct prb_data_ring *data_ring, 1695 struct prb_data_blk_lpos *blk_lpos, u16 len, char *buf, 1696 unsigned int buf_size, unsigned int *line_count) 1697 { 1698 unsigned int data_size; 1699 const char *data; 1700 1701 /* Caller might not want any data. */ 1702 if ((!buf || !buf_size) && !line_count) 1703 return true; 1704 1705 data = get_data(data_ring, blk_lpos, &data_size); 1706 if (!data) 1707 return false; 1708 1709 /* 1710 * Actual cannot be less than expected. It can be more than expected 1711 * because of the trailing alignment padding. 1712 * 1713 * Note that invalid @len values can occur because the caller loads 1714 * the value during an allowed data race. 1715 */ 1716 if (data_size < (unsigned int)len) 1717 return false; 1718 1719 /* Caller interested in the line count? */ 1720 if (line_count) 1721 *line_count = count_lines(data, len); 1722 1723 /* Caller interested in the data content? */ 1724 if (!buf || !buf_size) 1725 return true; 1726 1727 data_size = min_t(u16, buf_size, len); 1728 1729 memcpy(&buf[0], data, data_size); /* LMM(copy_data:A) */ 1730 return true; 1731 } 1732 1733 /* 1734 * This is an extended version of desc_read(). It gets a copy of a specified 1735 * descriptor. However, it also verifies that the record is finalized and has 1736 * the sequence number @seq. On success, 0 is returned. 1737 * 1738 * Error return values: 1739 * -EINVAL: A finalized record with sequence number @seq does not exist. 1740 * -ENOENT: A finalized record with sequence number @seq exists, but its data 1741 * is not available. This is a valid record, so readers should 1742 * continue with the next record. 1743 */ 1744 static int desc_read_finalized_seq(struct prb_desc_ring *desc_ring, 1745 unsigned long id, u64 seq, 1746 struct prb_desc *desc_out) 1747 { 1748 struct prb_data_blk_lpos *blk_lpos = &desc_out->text_blk_lpos; 1749 enum desc_state d_state; 1750 u64 s; 1751 1752 d_state = desc_read(desc_ring, id, desc_out, &s, NULL); 1753 1754 /* 1755 * An unexpected @id (desc_miss) or @seq mismatch means the record 1756 * does not exist. A descriptor in the reserved or committed state 1757 * means the record does not yet exist for the reader. 1758 */ 1759 if (d_state == desc_miss || 1760 d_state == desc_reserved || 1761 d_state == desc_committed || 1762 s != seq) { 1763 return -EINVAL; 1764 } 1765 1766 /* 1767 * A descriptor in the reusable state may no longer have its data 1768 * available; report it as existing but with lost data. Or the record 1769 * may actually be a record with lost data. 1770 */ 1771 if (d_state == desc_reusable || 1772 (blk_lpos->begin == FAILED_LPOS && blk_lpos->next == FAILED_LPOS)) { 1773 return -ENOENT; 1774 } 1775 1776 return 0; 1777 } 1778 1779 /* 1780 * Copy the ringbuffer data from the record with @seq to the provided 1781 * @r buffer. On success, 0 is returned. 1782 * 1783 * See desc_read_finalized_seq() for error return values. 1784 */ 1785 static int prb_read(struct printk_ringbuffer *rb, u64 seq, 1786 struct printk_record *r, unsigned int *line_count) 1787 { 1788 struct prb_desc_ring *desc_ring = &rb->desc_ring; 1789 struct printk_info *info = to_info(desc_ring, seq); 1790 struct prb_desc *rdesc = to_desc(desc_ring, seq); 1791 atomic_long_t *state_var = &rdesc->state_var; 1792 struct prb_desc desc; 1793 unsigned long id; 1794 int err; 1795 1796 /* Extract the ID, used to specify the descriptor to read. */ 1797 id = DESC_ID(atomic_long_read(state_var)); 1798 1799 /* Get a local copy of the correct descriptor (if available). */ 1800 err = desc_read_finalized_seq(desc_ring, id, seq, &desc); 1801 1802 /* 1803 * If @r is NULL, the caller is only interested in the availability 1804 * of the record. 1805 */ 1806 if (err || !r) 1807 return err; 1808 1809 /* If requested, copy meta data. */ 1810 if (r->info) 1811 memcpy(r->info, info, sizeof(*(r->info))); 1812 1813 /* Copy text data. If it fails, this is a data-less record. */ 1814 if (!copy_data(&rb->text_data_ring, &desc.text_blk_lpos, info->text_len, 1815 r->text_buf, r->text_buf_size, line_count)) { 1816 return -ENOENT; 1817 } 1818 1819 /* Ensure the record is still finalized and has the same @seq. */ 1820 return desc_read_finalized_seq(desc_ring, id, seq, &desc); 1821 } 1822 1823 /* Get the sequence number of the tail descriptor. */ 1824 static u64 prb_first_seq(struct printk_ringbuffer *rb) 1825 { 1826 struct prb_desc_ring *desc_ring = &rb->desc_ring; 1827 enum desc_state d_state; 1828 struct prb_desc desc; 1829 unsigned long id; 1830 u64 seq; 1831 1832 for (;;) { 1833 id = atomic_long_read(&rb->desc_ring.tail_id); /* LMM(prb_first_seq:A) */ 1834 1835 d_state = desc_read(desc_ring, id, &desc, &seq, NULL); /* LMM(prb_first_seq:B) */ 1836 1837 /* 1838 * This loop will not be infinite because the tail is 1839 * _always_ in the finalized or reusable state. 1840 */ 1841 if (d_state == desc_finalized || d_state == desc_reusable) 1842 break; 1843 1844 /* 1845 * Guarantee the last state load from desc_read() is before 1846 * reloading @tail_id in order to see a new tail in the case 1847 * that the descriptor has been recycled. This pairs with 1848 * desc_reserve:D. 1849 * 1850 * Memory barrier involvement: 1851 * 1852 * If prb_first_seq:B reads from desc_reserve:F, then 1853 * prb_first_seq:A reads from desc_push_tail:B. 1854 * 1855 * Relies on: 1856 * 1857 * MB from desc_push_tail:B to desc_reserve:F 1858 * matching 1859 * RMB prb_first_seq:B to prb_first_seq:A 1860 */ 1861 smp_rmb(); /* LMM(prb_first_seq:C) */ 1862 } 1863 1864 return seq; 1865 } 1866 1867 /* 1868 * Non-blocking read of a record. Updates @seq to the last finalized record 1869 * (which may have no data available). 1870 * 1871 * See the description of prb_read_valid() and prb_read_valid_info() 1872 * for details. 1873 */ 1874 static bool _prb_read_valid(struct printk_ringbuffer *rb, u64 *seq, 1875 struct printk_record *r, unsigned int *line_count) 1876 { 1877 u64 tail_seq; 1878 int err; 1879 1880 while ((err = prb_read(rb, *seq, r, line_count))) { 1881 tail_seq = prb_first_seq(rb); 1882 1883 if (*seq < tail_seq) { 1884 /* 1885 * Behind the tail. Catch up and try again. This 1886 * can happen for -ENOENT and -EINVAL cases. 1887 */ 1888 *seq = tail_seq; 1889 1890 } else if (err == -ENOENT) { 1891 /* Record exists, but no data available. Skip. */ 1892 (*seq)++; 1893 1894 } else { 1895 /* Non-existent/non-finalized record. Must stop. */ 1896 return false; 1897 } 1898 } 1899 1900 return true; 1901 } 1902 1903 /** 1904 * prb_read_valid() - Non-blocking read of a requested record or (if gone) 1905 * the next available record. 1906 * 1907 * @rb: The ringbuffer to read from. 1908 * @seq: The sequence number of the record to read. 1909 * @r: A record data buffer to store the read record to. 1910 * 1911 * This is the public function available to readers to read a record. 1912 * 1913 * The reader provides the @info and @text_buf buffers of @r to be 1914 * filled in. Any of the buffer pointers can be set to NULL if the reader 1915 * is not interested in that data. To ensure proper initialization of @r, 1916 * prb_rec_init_rd() should be used. 1917 * 1918 * Context: Any context. 1919 * Return: true if a record was read, otherwise false. 1920 * 1921 * On success, the reader must check r->info.seq to see which record was 1922 * actually read. This allows the reader to detect dropped records. 1923 * 1924 * Failure means @seq refers to a not yet written record. 1925 */ 1926 bool prb_read_valid(struct printk_ringbuffer *rb, u64 seq, 1927 struct printk_record *r) 1928 { 1929 return _prb_read_valid(rb, &seq, r, NULL); 1930 } 1931 1932 /** 1933 * prb_read_valid_info() - Non-blocking read of meta data for a requested 1934 * record or (if gone) the next available record. 1935 * 1936 * @rb: The ringbuffer to read from. 1937 * @seq: The sequence number of the record to read. 1938 * @info: A buffer to store the read record meta data to. 1939 * @line_count: A buffer to store the number of lines in the record text. 1940 * 1941 * This is the public function available to readers to read only the 1942 * meta data of a record. 1943 * 1944 * The reader provides the @info, @line_count buffers to be filled in. 1945 * Either of the buffer pointers can be set to NULL if the reader is not 1946 * interested in that data. 1947 * 1948 * Context: Any context. 1949 * Return: true if a record's meta data was read, otherwise false. 1950 * 1951 * On success, the reader must check info->seq to see which record meta data 1952 * was actually read. This allows the reader to detect dropped records. 1953 * 1954 * Failure means @seq refers to a not yet written record. 1955 */ 1956 bool prb_read_valid_info(struct printk_ringbuffer *rb, u64 seq, 1957 struct printk_info *info, unsigned int *line_count) 1958 { 1959 struct printk_record r; 1960 1961 prb_rec_init_rd(&r, info, NULL, 0); 1962 1963 return _prb_read_valid(rb, &seq, &r, line_count); 1964 } 1965 1966 /** 1967 * prb_first_valid_seq() - Get the sequence number of the oldest available 1968 * record. 1969 * 1970 * @rb: The ringbuffer to get the sequence number from. 1971 * 1972 * This is the public function available to readers to see what the 1973 * first/oldest valid sequence number is. 1974 * 1975 * This provides readers a starting point to begin iterating the ringbuffer. 1976 * 1977 * Context: Any context. 1978 * Return: The sequence number of the first/oldest record or, if the 1979 * ringbuffer is empty, 0 is returned. 1980 */ 1981 u64 prb_first_valid_seq(struct printk_ringbuffer *rb) 1982 { 1983 u64 seq = 0; 1984 1985 if (!_prb_read_valid(rb, &seq, NULL, NULL)) 1986 return 0; 1987 1988 return seq; 1989 } 1990 1991 /** 1992 * prb_next_seq() - Get the sequence number after the last available record. 1993 * 1994 * @rb: The ringbuffer to get the sequence number from. 1995 * 1996 * This is the public function available to readers to see what the next 1997 * newest sequence number available to readers will be. 1998 * 1999 * This provides readers a sequence number to jump to if all currently 2000 * available records should be skipped. 2001 * 2002 * Context: Any context. 2003 * Return: The sequence number of the next newest (not yet available) record 2004 * for readers. 2005 */ 2006 u64 prb_next_seq(struct printk_ringbuffer *rb) 2007 { 2008 u64 seq = 0; 2009 2010 /* Search forward from the oldest descriptor. */ 2011 while (_prb_read_valid(rb, &seq, NULL, NULL)) 2012 seq++; 2013 2014 return seq; 2015 } 2016 2017 /** 2018 * prb_init() - Initialize a ringbuffer to use provided external buffers. 2019 * 2020 * @rb: The ringbuffer to initialize. 2021 * @text_buf: The data buffer for text data. 2022 * @textbits: The size of @text_buf as a power-of-2 value. 2023 * @descs: The descriptor buffer for ringbuffer records. 2024 * @descbits: The count of @descs items as a power-of-2 value. 2025 * @infos: The printk_info buffer for ringbuffer records. 2026 * 2027 * This is the public function available to writers to setup a ringbuffer 2028 * during runtime using provided buffers. 2029 * 2030 * This must match the initialization of DEFINE_PRINTKRB(). 2031 * 2032 * Context: Any context. 2033 */ 2034 void prb_init(struct printk_ringbuffer *rb, 2035 char *text_buf, unsigned int textbits, 2036 struct prb_desc *descs, unsigned int descbits, 2037 struct printk_info *infos) 2038 { 2039 memset(descs, 0, _DESCS_COUNT(descbits) * sizeof(descs[0])); 2040 memset(infos, 0, _DESCS_COUNT(descbits) * sizeof(infos[0])); 2041 2042 rb->desc_ring.count_bits = descbits; 2043 rb->desc_ring.descs = descs; 2044 rb->desc_ring.infos = infos; 2045 atomic_long_set(&rb->desc_ring.head_id, DESC0_ID(descbits)); 2046 atomic_long_set(&rb->desc_ring.tail_id, DESC0_ID(descbits)); 2047 2048 rb->text_data_ring.size_bits = textbits; 2049 rb->text_data_ring.data = text_buf; 2050 atomic_long_set(&rb->text_data_ring.head_lpos, BLK0_LPOS(textbits)); 2051 atomic_long_set(&rb->text_data_ring.tail_lpos, BLK0_LPOS(textbits)); 2052 2053 atomic_long_set(&rb->fail, 0); 2054 2055 atomic_long_set(&(descs[_DESCS_COUNT(descbits) - 1].state_var), DESC0_SV(descbits)); 2056 descs[_DESCS_COUNT(descbits) - 1].text_blk_lpos.begin = FAILED_LPOS; 2057 descs[_DESCS_COUNT(descbits) - 1].text_blk_lpos.next = FAILED_LPOS; 2058 2059 infos[0].seq = -(u64)_DESCS_COUNT(descbits); 2060 infos[_DESCS_COUNT(descbits) - 1].seq = 0; 2061 } 2062 2063 /** 2064 * prb_record_text_space() - Query the full actual used ringbuffer space for 2065 * the text data of a reserved entry. 2066 * 2067 * @e: The successfully reserved entry to query. 2068 * 2069 * This is the public function available to writers to see how much actual 2070 * space is used in the ringbuffer to store the text data of the specified 2071 * entry. 2072 * 2073 * This function is only valid if @e has been successfully reserved using 2074 * prb_reserve(). 2075 * 2076 * Context: Any context. 2077 * Return: The size in bytes used by the text data of the associated record. 2078 */ 2079 unsigned int prb_record_text_space(struct prb_reserved_entry *e) 2080 { 2081 return e->text_space; 2082 } 2083