1 /* 2 * linux/kernel/printk.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 * 6 * Modified to make sys_syslog() more flexible: added commands to 7 * return the last 4k of kernel messages, regardless of whether 8 * they've been read or not. Added option to suppress kernel printk's 9 * to the console. Added hook for sending the console messages 10 * elsewhere, in preparation for a serial line console (someday). 11 * Ted Ts'o, 2/11/93. 12 * Modified for sysctl support, 1/8/97, Chris Horn. 13 * Fixed SMP synchronization, 08/08/99, Manfred Spraul 14 * manfred@colorfullife.com 15 * Rewrote bits to get rid of console_lock 16 * 01Mar01 Andrew Morton 17 */ 18 19 #include <linux/kernel.h> 20 #include <linux/mm.h> 21 #include <linux/tty.h> 22 #include <linux/tty_driver.h> 23 #include <linux/console.h> 24 #include <linux/init.h> 25 #include <linux/jiffies.h> 26 #include <linux/nmi.h> 27 #include <linux/module.h> 28 #include <linux/moduleparam.h> 29 #include <linux/delay.h> 30 #include <linux/smp.h> 31 #include <linux/security.h> 32 #include <linux/bootmem.h> 33 #include <linux/memblock.h> 34 #include <linux/syscalls.h> 35 #include <linux/crash_core.h> 36 #include <linux/kdb.h> 37 #include <linux/ratelimit.h> 38 #include <linux/kmsg_dump.h> 39 #include <linux/syslog.h> 40 #include <linux/cpu.h> 41 #include <linux/notifier.h> 42 #include <linux/rculist.h> 43 #include <linux/poll.h> 44 #include <linux/irq_work.h> 45 #include <linux/utsname.h> 46 #include <linux/ctype.h> 47 #include <linux/uio.h> 48 #include <linux/sched/clock.h> 49 #include <linux/sched/debug.h> 50 #include <linux/sched/task_stack.h> 51 52 #include <linux/uaccess.h> 53 #include <asm/sections.h> 54 55 #define CREATE_TRACE_POINTS 56 #include <trace/events/printk.h> 57 58 #include "console_cmdline.h" 59 #include "braille.h" 60 #include "internal.h" 61 62 int console_printk[4] = { 63 CONSOLE_LOGLEVEL_DEFAULT, /* console_loglevel */ 64 MESSAGE_LOGLEVEL_DEFAULT, /* default_message_loglevel */ 65 CONSOLE_LOGLEVEL_MIN, /* minimum_console_loglevel */ 66 CONSOLE_LOGLEVEL_DEFAULT, /* default_console_loglevel */ 67 }; 68 69 /* 70 * Low level drivers may need that to know if they can schedule in 71 * their unblank() callback or not. So let's export it. 72 */ 73 int oops_in_progress; 74 EXPORT_SYMBOL(oops_in_progress); 75 76 /* 77 * console_sem protects the console_drivers list, and also 78 * provides serialisation for access to the entire console 79 * driver system. 80 */ 81 static DEFINE_SEMAPHORE(console_sem); 82 struct console *console_drivers; 83 EXPORT_SYMBOL_GPL(console_drivers); 84 85 #ifdef CONFIG_LOCKDEP 86 static struct lockdep_map console_lock_dep_map = { 87 .name = "console_lock" 88 }; 89 #endif 90 91 enum devkmsg_log_bits { 92 __DEVKMSG_LOG_BIT_ON = 0, 93 __DEVKMSG_LOG_BIT_OFF, 94 __DEVKMSG_LOG_BIT_LOCK, 95 }; 96 97 enum devkmsg_log_masks { 98 DEVKMSG_LOG_MASK_ON = BIT(__DEVKMSG_LOG_BIT_ON), 99 DEVKMSG_LOG_MASK_OFF = BIT(__DEVKMSG_LOG_BIT_OFF), 100 DEVKMSG_LOG_MASK_LOCK = BIT(__DEVKMSG_LOG_BIT_LOCK), 101 }; 102 103 /* Keep both the 'on' and 'off' bits clear, i.e. ratelimit by default: */ 104 #define DEVKMSG_LOG_MASK_DEFAULT 0 105 106 static unsigned int __read_mostly devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT; 107 108 static int __control_devkmsg(char *str) 109 { 110 if (!str) 111 return -EINVAL; 112 113 if (!strncmp(str, "on", 2)) { 114 devkmsg_log = DEVKMSG_LOG_MASK_ON; 115 return 2; 116 } else if (!strncmp(str, "off", 3)) { 117 devkmsg_log = DEVKMSG_LOG_MASK_OFF; 118 return 3; 119 } else if (!strncmp(str, "ratelimit", 9)) { 120 devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT; 121 return 9; 122 } 123 return -EINVAL; 124 } 125 126 static int __init control_devkmsg(char *str) 127 { 128 if (__control_devkmsg(str) < 0) 129 return 1; 130 131 /* 132 * Set sysctl string accordingly: 133 */ 134 if (devkmsg_log == DEVKMSG_LOG_MASK_ON) 135 strcpy(devkmsg_log_str, "on"); 136 else if (devkmsg_log == DEVKMSG_LOG_MASK_OFF) 137 strcpy(devkmsg_log_str, "off"); 138 /* else "ratelimit" which is set by default. */ 139 140 /* 141 * Sysctl cannot change it anymore. The kernel command line setting of 142 * this parameter is to force the setting to be permanent throughout the 143 * runtime of the system. This is a precation measure against userspace 144 * trying to be a smarta** and attempting to change it up on us. 145 */ 146 devkmsg_log |= DEVKMSG_LOG_MASK_LOCK; 147 148 return 0; 149 } 150 __setup("printk.devkmsg=", control_devkmsg); 151 152 char devkmsg_log_str[DEVKMSG_STR_MAX_SIZE] = "ratelimit"; 153 154 int devkmsg_sysctl_set_loglvl(struct ctl_table *table, int write, 155 void __user *buffer, size_t *lenp, loff_t *ppos) 156 { 157 char old_str[DEVKMSG_STR_MAX_SIZE]; 158 unsigned int old; 159 int err; 160 161 if (write) { 162 if (devkmsg_log & DEVKMSG_LOG_MASK_LOCK) 163 return -EINVAL; 164 165 old = devkmsg_log; 166 strncpy(old_str, devkmsg_log_str, DEVKMSG_STR_MAX_SIZE); 167 } 168 169 err = proc_dostring(table, write, buffer, lenp, ppos); 170 if (err) 171 return err; 172 173 if (write) { 174 err = __control_devkmsg(devkmsg_log_str); 175 176 /* 177 * Do not accept an unknown string OR a known string with 178 * trailing crap... 179 */ 180 if (err < 0 || (err + 1 != *lenp)) { 181 182 /* ... and restore old setting. */ 183 devkmsg_log = old; 184 strncpy(devkmsg_log_str, old_str, DEVKMSG_STR_MAX_SIZE); 185 186 return -EINVAL; 187 } 188 } 189 190 return 0; 191 } 192 193 /* 194 * Number of registered extended console drivers. 195 * 196 * If extended consoles are present, in-kernel cont reassembly is disabled 197 * and each fragment is stored as a separate log entry with proper 198 * continuation flag so that every emitted message has full metadata. This 199 * doesn't change the result for regular consoles or /proc/kmsg. For 200 * /dev/kmsg, as long as the reader concatenates messages according to 201 * consecutive continuation flags, the end result should be the same too. 202 */ 203 static int nr_ext_console_drivers; 204 205 /* 206 * Helper macros to handle lockdep when locking/unlocking console_sem. We use 207 * macros instead of functions so that _RET_IP_ contains useful information. 208 */ 209 #define down_console_sem() do { \ 210 down(&console_sem);\ 211 mutex_acquire(&console_lock_dep_map, 0, 0, _RET_IP_);\ 212 } while (0) 213 214 static int __down_trylock_console_sem(unsigned long ip) 215 { 216 int lock_failed; 217 unsigned long flags; 218 219 /* 220 * Here and in __up_console_sem() we need to be in safe mode, 221 * because spindump/WARN/etc from under console ->lock will 222 * deadlock in printk()->down_trylock_console_sem() otherwise. 223 */ 224 printk_safe_enter_irqsave(flags); 225 lock_failed = down_trylock(&console_sem); 226 printk_safe_exit_irqrestore(flags); 227 228 if (lock_failed) 229 return 1; 230 mutex_acquire(&console_lock_dep_map, 0, 1, ip); 231 return 0; 232 } 233 #define down_trylock_console_sem() __down_trylock_console_sem(_RET_IP_) 234 235 static void __up_console_sem(unsigned long ip) 236 { 237 unsigned long flags; 238 239 mutex_release(&console_lock_dep_map, 1, ip); 240 241 printk_safe_enter_irqsave(flags); 242 up(&console_sem); 243 printk_safe_exit_irqrestore(flags); 244 } 245 #define up_console_sem() __up_console_sem(_RET_IP_) 246 247 /* 248 * This is used for debugging the mess that is the VT code by 249 * keeping track if we have the console semaphore held. It's 250 * definitely not the perfect debug tool (we don't know if _WE_ 251 * hold it and are racing, but it helps tracking those weird code 252 * paths in the console code where we end up in places I want 253 * locked without the console sempahore held). 254 */ 255 static int console_locked, console_suspended; 256 257 /* 258 * If exclusive_console is non-NULL then only this console is to be printed to. 259 */ 260 static struct console *exclusive_console; 261 262 /* 263 * Array of consoles built from command line options (console=) 264 */ 265 266 #define MAX_CMDLINECONSOLES 8 267 268 static struct console_cmdline console_cmdline[MAX_CMDLINECONSOLES]; 269 270 static int preferred_console = -1; 271 int console_set_on_cmdline; 272 EXPORT_SYMBOL(console_set_on_cmdline); 273 274 /* Flag: console code may call schedule() */ 275 static int console_may_schedule; 276 277 enum con_msg_format_flags { 278 MSG_FORMAT_DEFAULT = 0, 279 MSG_FORMAT_SYSLOG = (1 << 0), 280 }; 281 282 static int console_msg_format = MSG_FORMAT_DEFAULT; 283 284 /* 285 * The printk log buffer consists of a chain of concatenated variable 286 * length records. Every record starts with a record header, containing 287 * the overall length of the record. 288 * 289 * The heads to the first and last entry in the buffer, as well as the 290 * sequence numbers of these entries are maintained when messages are 291 * stored. 292 * 293 * If the heads indicate available messages, the length in the header 294 * tells the start next message. A length == 0 for the next message 295 * indicates a wrap-around to the beginning of the buffer. 296 * 297 * Every record carries the monotonic timestamp in microseconds, as well as 298 * the standard userspace syslog level and syslog facility. The usual 299 * kernel messages use LOG_KERN; userspace-injected messages always carry 300 * a matching syslog facility, by default LOG_USER. The origin of every 301 * message can be reliably determined that way. 302 * 303 * The human readable log message directly follows the message header. The 304 * length of the message text is stored in the header, the stored message 305 * is not terminated. 306 * 307 * Optionally, a message can carry a dictionary of properties (key/value pairs), 308 * to provide userspace with a machine-readable message context. 309 * 310 * Examples for well-defined, commonly used property names are: 311 * DEVICE=b12:8 device identifier 312 * b12:8 block dev_t 313 * c127:3 char dev_t 314 * n8 netdev ifindex 315 * +sound:card0 subsystem:devname 316 * SUBSYSTEM=pci driver-core subsystem name 317 * 318 * Valid characters in property names are [a-zA-Z0-9.-_]. The plain text value 319 * follows directly after a '=' character. Every property is terminated by 320 * a '\0' character. The last property is not terminated. 321 * 322 * Example of a message structure: 323 * 0000 ff 8f 00 00 00 00 00 00 monotonic time in nsec 324 * 0008 34 00 record is 52 bytes long 325 * 000a 0b 00 text is 11 bytes long 326 * 000c 1f 00 dictionary is 23 bytes long 327 * 000e 03 00 LOG_KERN (facility) LOG_ERR (level) 328 * 0010 69 74 27 73 20 61 20 6c "it's a l" 329 * 69 6e 65 "ine" 330 * 001b 44 45 56 49 43 "DEVIC" 331 * 45 3d 62 38 3a 32 00 44 "E=b8:2\0D" 332 * 52 49 56 45 52 3d 62 75 "RIVER=bu" 333 * 67 "g" 334 * 0032 00 00 00 padding to next message header 335 * 336 * The 'struct printk_log' buffer header must never be directly exported to 337 * userspace, it is a kernel-private implementation detail that might 338 * need to be changed in the future, when the requirements change. 339 * 340 * /dev/kmsg exports the structured data in the following line format: 341 * "<level>,<sequnum>,<timestamp>,<contflag>[,additional_values, ... ];<message text>\n" 342 * 343 * Users of the export format should ignore possible additional values 344 * separated by ',', and find the message after the ';' character. 345 * 346 * The optional key/value pairs are attached as continuation lines starting 347 * with a space character and terminated by a newline. All possible 348 * non-prinatable characters are escaped in the "\xff" notation. 349 */ 350 351 enum log_flags { 352 LOG_NOCONS = 1, /* already flushed, do not print to console */ 353 LOG_NEWLINE = 2, /* text ended with a newline */ 354 LOG_PREFIX = 4, /* text started with a prefix */ 355 LOG_CONT = 8, /* text is a fragment of a continuation line */ 356 }; 357 358 struct printk_log { 359 u64 ts_nsec; /* timestamp in nanoseconds */ 360 u16 len; /* length of entire record */ 361 u16 text_len; /* length of text buffer */ 362 u16 dict_len; /* length of dictionary buffer */ 363 u8 facility; /* syslog facility */ 364 u8 flags:5; /* internal record flags */ 365 u8 level:3; /* syslog level */ 366 } 367 #ifdef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS 368 __packed __aligned(4) 369 #endif 370 ; 371 372 /* 373 * The logbuf_lock protects kmsg buffer, indices, counters. This can be taken 374 * within the scheduler's rq lock. It must be released before calling 375 * console_unlock() or anything else that might wake up a process. 376 */ 377 DEFINE_RAW_SPINLOCK(logbuf_lock); 378 379 /* 380 * Helper macros to lock/unlock logbuf_lock and switch between 381 * printk-safe/unsafe modes. 382 */ 383 #define logbuf_lock_irq() \ 384 do { \ 385 printk_safe_enter_irq(); \ 386 raw_spin_lock(&logbuf_lock); \ 387 } while (0) 388 389 #define logbuf_unlock_irq() \ 390 do { \ 391 raw_spin_unlock(&logbuf_lock); \ 392 printk_safe_exit_irq(); \ 393 } while (0) 394 395 #define logbuf_lock_irqsave(flags) \ 396 do { \ 397 printk_safe_enter_irqsave(flags); \ 398 raw_spin_lock(&logbuf_lock); \ 399 } while (0) 400 401 #define logbuf_unlock_irqrestore(flags) \ 402 do { \ 403 raw_spin_unlock(&logbuf_lock); \ 404 printk_safe_exit_irqrestore(flags); \ 405 } while (0) 406 407 #ifdef CONFIG_PRINTK 408 DECLARE_WAIT_QUEUE_HEAD(log_wait); 409 /* the next printk record to read by syslog(READ) or /proc/kmsg */ 410 static u64 syslog_seq; 411 static u32 syslog_idx; 412 static size_t syslog_partial; 413 414 /* index and sequence number of the first record stored in the buffer */ 415 static u64 log_first_seq; 416 static u32 log_first_idx; 417 418 /* index and sequence number of the next record to store in the buffer */ 419 static u64 log_next_seq; 420 static u32 log_next_idx; 421 422 /* the next printk record to write to the console */ 423 static u64 console_seq; 424 static u32 console_idx; 425 426 /* the next printk record to read after the last 'clear' command */ 427 static u64 clear_seq; 428 static u32 clear_idx; 429 430 #define PREFIX_MAX 32 431 #define LOG_LINE_MAX (1024 - PREFIX_MAX) 432 433 #define LOG_LEVEL(v) ((v) & 0x07) 434 #define LOG_FACILITY(v) ((v) >> 3 & 0xff) 435 436 /* record buffer */ 437 #define LOG_ALIGN __alignof__(struct printk_log) 438 #define __LOG_BUF_LEN (1 << CONFIG_LOG_BUF_SHIFT) 439 static char __log_buf[__LOG_BUF_LEN] __aligned(LOG_ALIGN); 440 static char *log_buf = __log_buf; 441 static u32 log_buf_len = __LOG_BUF_LEN; 442 443 /* Return log buffer address */ 444 char *log_buf_addr_get(void) 445 { 446 return log_buf; 447 } 448 449 /* Return log buffer size */ 450 u32 log_buf_len_get(void) 451 { 452 return log_buf_len; 453 } 454 455 /* human readable text of the record */ 456 static char *log_text(const struct printk_log *msg) 457 { 458 return (char *)msg + sizeof(struct printk_log); 459 } 460 461 /* optional key/value pair dictionary attached to the record */ 462 static char *log_dict(const struct printk_log *msg) 463 { 464 return (char *)msg + sizeof(struct printk_log) + msg->text_len; 465 } 466 467 /* get record by index; idx must point to valid msg */ 468 static struct printk_log *log_from_idx(u32 idx) 469 { 470 struct printk_log *msg = (struct printk_log *)(log_buf + idx); 471 472 /* 473 * A length == 0 record is the end of buffer marker. Wrap around and 474 * read the message at the start of the buffer. 475 */ 476 if (!msg->len) 477 return (struct printk_log *)log_buf; 478 return msg; 479 } 480 481 /* get next record; idx must point to valid msg */ 482 static u32 log_next(u32 idx) 483 { 484 struct printk_log *msg = (struct printk_log *)(log_buf + idx); 485 486 /* length == 0 indicates the end of the buffer; wrap */ 487 /* 488 * A length == 0 record is the end of buffer marker. Wrap around and 489 * read the message at the start of the buffer as *this* one, and 490 * return the one after that. 491 */ 492 if (!msg->len) { 493 msg = (struct printk_log *)log_buf; 494 return msg->len; 495 } 496 return idx + msg->len; 497 } 498 499 /* 500 * Check whether there is enough free space for the given message. 501 * 502 * The same values of first_idx and next_idx mean that the buffer 503 * is either empty or full. 504 * 505 * If the buffer is empty, we must respect the position of the indexes. 506 * They cannot be reset to the beginning of the buffer. 507 */ 508 static int logbuf_has_space(u32 msg_size, bool empty) 509 { 510 u32 free; 511 512 if (log_next_idx > log_first_idx || empty) 513 free = max(log_buf_len - log_next_idx, log_first_idx); 514 else 515 free = log_first_idx - log_next_idx; 516 517 /* 518 * We need space also for an empty header that signalizes wrapping 519 * of the buffer. 520 */ 521 return free >= msg_size + sizeof(struct printk_log); 522 } 523 524 static int log_make_free_space(u32 msg_size) 525 { 526 while (log_first_seq < log_next_seq && 527 !logbuf_has_space(msg_size, false)) { 528 /* drop old messages until we have enough contiguous space */ 529 log_first_idx = log_next(log_first_idx); 530 log_first_seq++; 531 } 532 533 if (clear_seq < log_first_seq) { 534 clear_seq = log_first_seq; 535 clear_idx = log_first_idx; 536 } 537 538 /* sequence numbers are equal, so the log buffer is empty */ 539 if (logbuf_has_space(msg_size, log_first_seq == log_next_seq)) 540 return 0; 541 542 return -ENOMEM; 543 } 544 545 /* compute the message size including the padding bytes */ 546 static u32 msg_used_size(u16 text_len, u16 dict_len, u32 *pad_len) 547 { 548 u32 size; 549 550 size = sizeof(struct printk_log) + text_len + dict_len; 551 *pad_len = (-size) & (LOG_ALIGN - 1); 552 size += *pad_len; 553 554 return size; 555 } 556 557 /* 558 * Define how much of the log buffer we could take at maximum. The value 559 * must be greater than two. Note that only half of the buffer is available 560 * when the index points to the middle. 561 */ 562 #define MAX_LOG_TAKE_PART 4 563 static const char trunc_msg[] = "<truncated>"; 564 565 static u32 truncate_msg(u16 *text_len, u16 *trunc_msg_len, 566 u16 *dict_len, u32 *pad_len) 567 { 568 /* 569 * The message should not take the whole buffer. Otherwise, it might 570 * get removed too soon. 571 */ 572 u32 max_text_len = log_buf_len / MAX_LOG_TAKE_PART; 573 if (*text_len > max_text_len) 574 *text_len = max_text_len; 575 /* enable the warning message */ 576 *trunc_msg_len = strlen(trunc_msg); 577 /* disable the "dict" completely */ 578 *dict_len = 0; 579 /* compute the size again, count also the warning message */ 580 return msg_used_size(*text_len + *trunc_msg_len, 0, pad_len); 581 } 582 583 /* insert record into the buffer, discard old ones, update heads */ 584 static int log_store(int facility, int level, 585 enum log_flags flags, u64 ts_nsec, 586 const char *dict, u16 dict_len, 587 const char *text, u16 text_len) 588 { 589 struct printk_log *msg; 590 u32 size, pad_len; 591 u16 trunc_msg_len = 0; 592 593 /* number of '\0' padding bytes to next message */ 594 size = msg_used_size(text_len, dict_len, &pad_len); 595 596 if (log_make_free_space(size)) { 597 /* truncate the message if it is too long for empty buffer */ 598 size = truncate_msg(&text_len, &trunc_msg_len, 599 &dict_len, &pad_len); 600 /* survive when the log buffer is too small for trunc_msg */ 601 if (log_make_free_space(size)) 602 return 0; 603 } 604 605 if (log_next_idx + size + sizeof(struct printk_log) > log_buf_len) { 606 /* 607 * This message + an additional empty header does not fit 608 * at the end of the buffer. Add an empty header with len == 0 609 * to signify a wrap around. 610 */ 611 memset(log_buf + log_next_idx, 0, sizeof(struct printk_log)); 612 log_next_idx = 0; 613 } 614 615 /* fill message */ 616 msg = (struct printk_log *)(log_buf + log_next_idx); 617 memcpy(log_text(msg), text, text_len); 618 msg->text_len = text_len; 619 if (trunc_msg_len) { 620 memcpy(log_text(msg) + text_len, trunc_msg, trunc_msg_len); 621 msg->text_len += trunc_msg_len; 622 } 623 memcpy(log_dict(msg), dict, dict_len); 624 msg->dict_len = dict_len; 625 msg->facility = facility; 626 msg->level = level & 7; 627 msg->flags = flags & 0x1f; 628 if (ts_nsec > 0) 629 msg->ts_nsec = ts_nsec; 630 else 631 msg->ts_nsec = local_clock(); 632 memset(log_dict(msg) + dict_len, 0, pad_len); 633 msg->len = size; 634 635 /* insert message */ 636 log_next_idx += msg->len; 637 log_next_seq++; 638 639 return msg->text_len; 640 } 641 642 int dmesg_restrict = IS_ENABLED(CONFIG_SECURITY_DMESG_RESTRICT); 643 644 static int syslog_action_restricted(int type) 645 { 646 if (dmesg_restrict) 647 return 1; 648 /* 649 * Unless restricted, we allow "read all" and "get buffer size" 650 * for everybody. 651 */ 652 return type != SYSLOG_ACTION_READ_ALL && 653 type != SYSLOG_ACTION_SIZE_BUFFER; 654 } 655 656 static int check_syslog_permissions(int type, int source) 657 { 658 /* 659 * If this is from /proc/kmsg and we've already opened it, then we've 660 * already done the capabilities checks at open time. 661 */ 662 if (source == SYSLOG_FROM_PROC && type != SYSLOG_ACTION_OPEN) 663 goto ok; 664 665 if (syslog_action_restricted(type)) { 666 if (capable(CAP_SYSLOG)) 667 goto ok; 668 /* 669 * For historical reasons, accept CAP_SYS_ADMIN too, with 670 * a warning. 671 */ 672 if (capable(CAP_SYS_ADMIN)) { 673 pr_warn_once("%s (%d): Attempt to access syslog with " 674 "CAP_SYS_ADMIN but no CAP_SYSLOG " 675 "(deprecated).\n", 676 current->comm, task_pid_nr(current)); 677 goto ok; 678 } 679 return -EPERM; 680 } 681 ok: 682 return security_syslog(type); 683 } 684 685 static void append_char(char **pp, char *e, char c) 686 { 687 if (*pp < e) 688 *(*pp)++ = c; 689 } 690 691 static ssize_t msg_print_ext_header(char *buf, size_t size, 692 struct printk_log *msg, u64 seq) 693 { 694 u64 ts_usec = msg->ts_nsec; 695 696 do_div(ts_usec, 1000); 697 698 return scnprintf(buf, size, "%u,%llu,%llu,%c;", 699 (msg->facility << 3) | msg->level, seq, ts_usec, 700 msg->flags & LOG_CONT ? 'c' : '-'); 701 } 702 703 static ssize_t msg_print_ext_body(char *buf, size_t size, 704 char *dict, size_t dict_len, 705 char *text, size_t text_len) 706 { 707 char *p = buf, *e = buf + size; 708 size_t i; 709 710 /* escape non-printable characters */ 711 for (i = 0; i < text_len; i++) { 712 unsigned char c = text[i]; 713 714 if (c < ' ' || c >= 127 || c == '\\') 715 p += scnprintf(p, e - p, "\\x%02x", c); 716 else 717 append_char(&p, e, c); 718 } 719 append_char(&p, e, '\n'); 720 721 if (dict_len) { 722 bool line = true; 723 724 for (i = 0; i < dict_len; i++) { 725 unsigned char c = dict[i]; 726 727 if (line) { 728 append_char(&p, e, ' '); 729 line = false; 730 } 731 732 if (c == '\0') { 733 append_char(&p, e, '\n'); 734 line = true; 735 continue; 736 } 737 738 if (c < ' ' || c >= 127 || c == '\\') { 739 p += scnprintf(p, e - p, "\\x%02x", c); 740 continue; 741 } 742 743 append_char(&p, e, c); 744 } 745 append_char(&p, e, '\n'); 746 } 747 748 return p - buf; 749 } 750 751 /* /dev/kmsg - userspace message inject/listen interface */ 752 struct devkmsg_user { 753 u64 seq; 754 u32 idx; 755 struct ratelimit_state rs; 756 struct mutex lock; 757 char buf[CONSOLE_EXT_LOG_MAX]; 758 }; 759 760 static ssize_t devkmsg_write(struct kiocb *iocb, struct iov_iter *from) 761 { 762 char *buf, *line; 763 int level = default_message_loglevel; 764 int facility = 1; /* LOG_USER */ 765 struct file *file = iocb->ki_filp; 766 struct devkmsg_user *user = file->private_data; 767 size_t len = iov_iter_count(from); 768 ssize_t ret = len; 769 770 if (!user || len > LOG_LINE_MAX) 771 return -EINVAL; 772 773 /* Ignore when user logging is disabled. */ 774 if (devkmsg_log & DEVKMSG_LOG_MASK_OFF) 775 return len; 776 777 /* Ratelimit when not explicitly enabled. */ 778 if (!(devkmsg_log & DEVKMSG_LOG_MASK_ON)) { 779 if (!___ratelimit(&user->rs, current->comm)) 780 return ret; 781 } 782 783 buf = kmalloc(len+1, GFP_KERNEL); 784 if (buf == NULL) 785 return -ENOMEM; 786 787 buf[len] = '\0'; 788 if (!copy_from_iter_full(buf, len, from)) { 789 kfree(buf); 790 return -EFAULT; 791 } 792 793 /* 794 * Extract and skip the syslog prefix <[0-9]*>. Coming from userspace 795 * the decimal value represents 32bit, the lower 3 bit are the log 796 * level, the rest are the log facility. 797 * 798 * If no prefix or no userspace facility is specified, we 799 * enforce LOG_USER, to be able to reliably distinguish 800 * kernel-generated messages from userspace-injected ones. 801 */ 802 line = buf; 803 if (line[0] == '<') { 804 char *endp = NULL; 805 unsigned int u; 806 807 u = simple_strtoul(line + 1, &endp, 10); 808 if (endp && endp[0] == '>') { 809 level = LOG_LEVEL(u); 810 if (LOG_FACILITY(u) != 0) 811 facility = LOG_FACILITY(u); 812 endp++; 813 len -= endp - line; 814 line = endp; 815 } 816 } 817 818 printk_emit(facility, level, NULL, 0, "%s", line); 819 kfree(buf); 820 return ret; 821 } 822 823 static ssize_t devkmsg_read(struct file *file, char __user *buf, 824 size_t count, loff_t *ppos) 825 { 826 struct devkmsg_user *user = file->private_data; 827 struct printk_log *msg; 828 size_t len; 829 ssize_t ret; 830 831 if (!user) 832 return -EBADF; 833 834 ret = mutex_lock_interruptible(&user->lock); 835 if (ret) 836 return ret; 837 838 logbuf_lock_irq(); 839 while (user->seq == log_next_seq) { 840 if (file->f_flags & O_NONBLOCK) { 841 ret = -EAGAIN; 842 logbuf_unlock_irq(); 843 goto out; 844 } 845 846 logbuf_unlock_irq(); 847 ret = wait_event_interruptible(log_wait, 848 user->seq != log_next_seq); 849 if (ret) 850 goto out; 851 logbuf_lock_irq(); 852 } 853 854 if (user->seq < log_first_seq) { 855 /* our last seen message is gone, return error and reset */ 856 user->idx = log_first_idx; 857 user->seq = log_first_seq; 858 ret = -EPIPE; 859 logbuf_unlock_irq(); 860 goto out; 861 } 862 863 msg = log_from_idx(user->idx); 864 len = msg_print_ext_header(user->buf, sizeof(user->buf), 865 msg, user->seq); 866 len += msg_print_ext_body(user->buf + len, sizeof(user->buf) - len, 867 log_dict(msg), msg->dict_len, 868 log_text(msg), msg->text_len); 869 870 user->idx = log_next(user->idx); 871 user->seq++; 872 logbuf_unlock_irq(); 873 874 if (len > count) { 875 ret = -EINVAL; 876 goto out; 877 } 878 879 if (copy_to_user(buf, user->buf, len)) { 880 ret = -EFAULT; 881 goto out; 882 } 883 ret = len; 884 out: 885 mutex_unlock(&user->lock); 886 return ret; 887 } 888 889 static loff_t devkmsg_llseek(struct file *file, loff_t offset, int whence) 890 { 891 struct devkmsg_user *user = file->private_data; 892 loff_t ret = 0; 893 894 if (!user) 895 return -EBADF; 896 if (offset) 897 return -ESPIPE; 898 899 logbuf_lock_irq(); 900 switch (whence) { 901 case SEEK_SET: 902 /* the first record */ 903 user->idx = log_first_idx; 904 user->seq = log_first_seq; 905 break; 906 case SEEK_DATA: 907 /* 908 * The first record after the last SYSLOG_ACTION_CLEAR, 909 * like issued by 'dmesg -c'. Reading /dev/kmsg itself 910 * changes no global state, and does not clear anything. 911 */ 912 user->idx = clear_idx; 913 user->seq = clear_seq; 914 break; 915 case SEEK_END: 916 /* after the last record */ 917 user->idx = log_next_idx; 918 user->seq = log_next_seq; 919 break; 920 default: 921 ret = -EINVAL; 922 } 923 logbuf_unlock_irq(); 924 return ret; 925 } 926 927 static __poll_t devkmsg_poll(struct file *file, poll_table *wait) 928 { 929 struct devkmsg_user *user = file->private_data; 930 __poll_t ret = 0; 931 932 if (!user) 933 return EPOLLERR|EPOLLNVAL; 934 935 poll_wait(file, &log_wait, wait); 936 937 logbuf_lock_irq(); 938 if (user->seq < log_next_seq) { 939 /* return error when data has vanished underneath us */ 940 if (user->seq < log_first_seq) 941 ret = EPOLLIN|EPOLLRDNORM|EPOLLERR|EPOLLPRI; 942 else 943 ret = EPOLLIN|EPOLLRDNORM; 944 } 945 logbuf_unlock_irq(); 946 947 return ret; 948 } 949 950 static int devkmsg_open(struct inode *inode, struct file *file) 951 { 952 struct devkmsg_user *user; 953 int err; 954 955 if (devkmsg_log & DEVKMSG_LOG_MASK_OFF) 956 return -EPERM; 957 958 /* write-only does not need any file context */ 959 if ((file->f_flags & O_ACCMODE) != O_WRONLY) { 960 err = check_syslog_permissions(SYSLOG_ACTION_READ_ALL, 961 SYSLOG_FROM_READER); 962 if (err) 963 return err; 964 } 965 966 user = kmalloc(sizeof(struct devkmsg_user), GFP_KERNEL); 967 if (!user) 968 return -ENOMEM; 969 970 ratelimit_default_init(&user->rs); 971 ratelimit_set_flags(&user->rs, RATELIMIT_MSG_ON_RELEASE); 972 973 mutex_init(&user->lock); 974 975 logbuf_lock_irq(); 976 user->idx = log_first_idx; 977 user->seq = log_first_seq; 978 logbuf_unlock_irq(); 979 980 file->private_data = user; 981 return 0; 982 } 983 984 static int devkmsg_release(struct inode *inode, struct file *file) 985 { 986 struct devkmsg_user *user = file->private_data; 987 988 if (!user) 989 return 0; 990 991 ratelimit_state_exit(&user->rs); 992 993 mutex_destroy(&user->lock); 994 kfree(user); 995 return 0; 996 } 997 998 const struct file_operations kmsg_fops = { 999 .open = devkmsg_open, 1000 .read = devkmsg_read, 1001 .write_iter = devkmsg_write, 1002 .llseek = devkmsg_llseek, 1003 .poll = devkmsg_poll, 1004 .release = devkmsg_release, 1005 }; 1006 1007 #ifdef CONFIG_CRASH_CORE 1008 /* 1009 * This appends the listed symbols to /proc/vmcore 1010 * 1011 * /proc/vmcore is used by various utilities, like crash and makedumpfile to 1012 * obtain access to symbols that are otherwise very difficult to locate. These 1013 * symbols are specifically used so that utilities can access and extract the 1014 * dmesg log from a vmcore file after a crash. 1015 */ 1016 void log_buf_vmcoreinfo_setup(void) 1017 { 1018 VMCOREINFO_SYMBOL(log_buf); 1019 VMCOREINFO_SYMBOL(log_buf_len); 1020 VMCOREINFO_SYMBOL(log_first_idx); 1021 VMCOREINFO_SYMBOL(clear_idx); 1022 VMCOREINFO_SYMBOL(log_next_idx); 1023 /* 1024 * Export struct printk_log size and field offsets. User space tools can 1025 * parse it and detect any changes to structure down the line. 1026 */ 1027 VMCOREINFO_STRUCT_SIZE(printk_log); 1028 VMCOREINFO_OFFSET(printk_log, ts_nsec); 1029 VMCOREINFO_OFFSET(printk_log, len); 1030 VMCOREINFO_OFFSET(printk_log, text_len); 1031 VMCOREINFO_OFFSET(printk_log, dict_len); 1032 } 1033 #endif 1034 1035 /* requested log_buf_len from kernel cmdline */ 1036 static unsigned long __initdata new_log_buf_len; 1037 1038 /* we practice scaling the ring buffer by powers of 2 */ 1039 static void __init log_buf_len_update(unsigned size) 1040 { 1041 if (size) 1042 size = roundup_pow_of_two(size); 1043 if (size > log_buf_len) 1044 new_log_buf_len = size; 1045 } 1046 1047 /* save requested log_buf_len since it's too early to process it */ 1048 static int __init log_buf_len_setup(char *str) 1049 { 1050 unsigned size = memparse(str, &str); 1051 1052 log_buf_len_update(size); 1053 1054 return 0; 1055 } 1056 early_param("log_buf_len", log_buf_len_setup); 1057 1058 #ifdef CONFIG_SMP 1059 #define __LOG_CPU_MAX_BUF_LEN (1 << CONFIG_LOG_CPU_MAX_BUF_SHIFT) 1060 1061 static void __init log_buf_add_cpu(void) 1062 { 1063 unsigned int cpu_extra; 1064 1065 /* 1066 * archs should set up cpu_possible_bits properly with 1067 * set_cpu_possible() after setup_arch() but just in 1068 * case lets ensure this is valid. 1069 */ 1070 if (num_possible_cpus() == 1) 1071 return; 1072 1073 cpu_extra = (num_possible_cpus() - 1) * __LOG_CPU_MAX_BUF_LEN; 1074 1075 /* by default this will only continue through for large > 64 CPUs */ 1076 if (cpu_extra <= __LOG_BUF_LEN / 2) 1077 return; 1078 1079 pr_info("log_buf_len individual max cpu contribution: %d bytes\n", 1080 __LOG_CPU_MAX_BUF_LEN); 1081 pr_info("log_buf_len total cpu_extra contributions: %d bytes\n", 1082 cpu_extra); 1083 pr_info("log_buf_len min size: %d bytes\n", __LOG_BUF_LEN); 1084 1085 log_buf_len_update(cpu_extra + __LOG_BUF_LEN); 1086 } 1087 #else /* !CONFIG_SMP */ 1088 static inline void log_buf_add_cpu(void) {} 1089 #endif /* CONFIG_SMP */ 1090 1091 void __init setup_log_buf(int early) 1092 { 1093 unsigned long flags; 1094 char *new_log_buf; 1095 int free; 1096 1097 if (log_buf != __log_buf) 1098 return; 1099 1100 if (!early && !new_log_buf_len) 1101 log_buf_add_cpu(); 1102 1103 if (!new_log_buf_len) 1104 return; 1105 1106 if (early) { 1107 new_log_buf = 1108 memblock_virt_alloc(new_log_buf_len, LOG_ALIGN); 1109 } else { 1110 new_log_buf = memblock_virt_alloc_nopanic(new_log_buf_len, 1111 LOG_ALIGN); 1112 } 1113 1114 if (unlikely(!new_log_buf)) { 1115 pr_err("log_buf_len: %ld bytes not available\n", 1116 new_log_buf_len); 1117 return; 1118 } 1119 1120 logbuf_lock_irqsave(flags); 1121 log_buf_len = new_log_buf_len; 1122 log_buf = new_log_buf; 1123 new_log_buf_len = 0; 1124 free = __LOG_BUF_LEN - log_next_idx; 1125 memcpy(log_buf, __log_buf, __LOG_BUF_LEN); 1126 logbuf_unlock_irqrestore(flags); 1127 1128 pr_info("log_buf_len: %d bytes\n", log_buf_len); 1129 pr_info("early log buf free: %d(%d%%)\n", 1130 free, (free * 100) / __LOG_BUF_LEN); 1131 } 1132 1133 static bool __read_mostly ignore_loglevel; 1134 1135 static int __init ignore_loglevel_setup(char *str) 1136 { 1137 ignore_loglevel = true; 1138 pr_info("debug: ignoring loglevel setting.\n"); 1139 1140 return 0; 1141 } 1142 1143 early_param("ignore_loglevel", ignore_loglevel_setup); 1144 module_param(ignore_loglevel, bool, S_IRUGO | S_IWUSR); 1145 MODULE_PARM_DESC(ignore_loglevel, 1146 "ignore loglevel setting (prints all kernel messages to the console)"); 1147 1148 static bool suppress_message_printing(int level) 1149 { 1150 return (level >= console_loglevel && !ignore_loglevel); 1151 } 1152 1153 #ifdef CONFIG_BOOT_PRINTK_DELAY 1154 1155 static int boot_delay; /* msecs delay after each printk during bootup */ 1156 static unsigned long long loops_per_msec; /* based on boot_delay */ 1157 1158 static int __init boot_delay_setup(char *str) 1159 { 1160 unsigned long lpj; 1161 1162 lpj = preset_lpj ? preset_lpj : 1000000; /* some guess */ 1163 loops_per_msec = (unsigned long long)lpj / 1000 * HZ; 1164 1165 get_option(&str, &boot_delay); 1166 if (boot_delay > 10 * 1000) 1167 boot_delay = 0; 1168 1169 pr_debug("boot_delay: %u, preset_lpj: %ld, lpj: %lu, " 1170 "HZ: %d, loops_per_msec: %llu\n", 1171 boot_delay, preset_lpj, lpj, HZ, loops_per_msec); 1172 return 0; 1173 } 1174 early_param("boot_delay", boot_delay_setup); 1175 1176 static void boot_delay_msec(int level) 1177 { 1178 unsigned long long k; 1179 unsigned long timeout; 1180 1181 if ((boot_delay == 0 || system_state >= SYSTEM_RUNNING) 1182 || suppress_message_printing(level)) { 1183 return; 1184 } 1185 1186 k = (unsigned long long)loops_per_msec * boot_delay; 1187 1188 timeout = jiffies + msecs_to_jiffies(boot_delay); 1189 while (k) { 1190 k--; 1191 cpu_relax(); 1192 /* 1193 * use (volatile) jiffies to prevent 1194 * compiler reduction; loop termination via jiffies 1195 * is secondary and may or may not happen. 1196 */ 1197 if (time_after(jiffies, timeout)) 1198 break; 1199 touch_nmi_watchdog(); 1200 } 1201 } 1202 #else 1203 static inline void boot_delay_msec(int level) 1204 { 1205 } 1206 #endif 1207 1208 static bool printk_time = IS_ENABLED(CONFIG_PRINTK_TIME); 1209 module_param_named(time, printk_time, bool, S_IRUGO | S_IWUSR); 1210 1211 static size_t print_time(u64 ts, char *buf) 1212 { 1213 unsigned long rem_nsec; 1214 1215 if (!printk_time) 1216 return 0; 1217 1218 rem_nsec = do_div(ts, 1000000000); 1219 1220 if (!buf) 1221 return snprintf(NULL, 0, "[%5lu.000000] ", (unsigned long)ts); 1222 1223 return sprintf(buf, "[%5lu.%06lu] ", 1224 (unsigned long)ts, rem_nsec / 1000); 1225 } 1226 1227 static size_t print_prefix(const struct printk_log *msg, bool syslog, char *buf) 1228 { 1229 size_t len = 0; 1230 unsigned int prefix = (msg->facility << 3) | msg->level; 1231 1232 if (syslog) { 1233 if (buf) { 1234 len += sprintf(buf, "<%u>", prefix); 1235 } else { 1236 len += 3; 1237 if (prefix > 999) 1238 len += 3; 1239 else if (prefix > 99) 1240 len += 2; 1241 else if (prefix > 9) 1242 len++; 1243 } 1244 } 1245 1246 len += print_time(msg->ts_nsec, buf ? buf + len : NULL); 1247 return len; 1248 } 1249 1250 static size_t msg_print_text(const struct printk_log *msg, bool syslog, char *buf, size_t size) 1251 { 1252 const char *text = log_text(msg); 1253 size_t text_size = msg->text_len; 1254 size_t len = 0; 1255 1256 do { 1257 const char *next = memchr(text, '\n', text_size); 1258 size_t text_len; 1259 1260 if (next) { 1261 text_len = next - text; 1262 next++; 1263 text_size -= next - text; 1264 } else { 1265 text_len = text_size; 1266 } 1267 1268 if (buf) { 1269 if (print_prefix(msg, syslog, NULL) + 1270 text_len + 1 >= size - len) 1271 break; 1272 1273 len += print_prefix(msg, syslog, buf + len); 1274 memcpy(buf + len, text, text_len); 1275 len += text_len; 1276 buf[len++] = '\n'; 1277 } else { 1278 /* SYSLOG_ACTION_* buffer size only calculation */ 1279 len += print_prefix(msg, syslog, NULL); 1280 len += text_len; 1281 len++; 1282 } 1283 1284 text = next; 1285 } while (text); 1286 1287 return len; 1288 } 1289 1290 static int syslog_print(char __user *buf, int size) 1291 { 1292 char *text; 1293 struct printk_log *msg; 1294 int len = 0; 1295 1296 text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL); 1297 if (!text) 1298 return -ENOMEM; 1299 1300 while (size > 0) { 1301 size_t n; 1302 size_t skip; 1303 1304 logbuf_lock_irq(); 1305 if (syslog_seq < log_first_seq) { 1306 /* messages are gone, move to first one */ 1307 syslog_seq = log_first_seq; 1308 syslog_idx = log_first_idx; 1309 syslog_partial = 0; 1310 } 1311 if (syslog_seq == log_next_seq) { 1312 logbuf_unlock_irq(); 1313 break; 1314 } 1315 1316 skip = syslog_partial; 1317 msg = log_from_idx(syslog_idx); 1318 n = msg_print_text(msg, true, text, LOG_LINE_MAX + PREFIX_MAX); 1319 if (n - syslog_partial <= size) { 1320 /* message fits into buffer, move forward */ 1321 syslog_idx = log_next(syslog_idx); 1322 syslog_seq++; 1323 n -= syslog_partial; 1324 syslog_partial = 0; 1325 } else if (!len){ 1326 /* partial read(), remember position */ 1327 n = size; 1328 syslog_partial += n; 1329 } else 1330 n = 0; 1331 logbuf_unlock_irq(); 1332 1333 if (!n) 1334 break; 1335 1336 if (copy_to_user(buf, text + skip, n)) { 1337 if (!len) 1338 len = -EFAULT; 1339 break; 1340 } 1341 1342 len += n; 1343 size -= n; 1344 buf += n; 1345 } 1346 1347 kfree(text); 1348 return len; 1349 } 1350 1351 static int syslog_print_all(char __user *buf, int size, bool clear) 1352 { 1353 char *text; 1354 int len = 0; 1355 1356 text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL); 1357 if (!text) 1358 return -ENOMEM; 1359 1360 logbuf_lock_irq(); 1361 if (buf) { 1362 u64 next_seq; 1363 u64 seq; 1364 u32 idx; 1365 1366 /* 1367 * Find first record that fits, including all following records, 1368 * into the user-provided buffer for this dump. 1369 */ 1370 seq = clear_seq; 1371 idx = clear_idx; 1372 while (seq < log_next_seq) { 1373 struct printk_log *msg = log_from_idx(idx); 1374 1375 len += msg_print_text(msg, true, NULL, 0); 1376 idx = log_next(idx); 1377 seq++; 1378 } 1379 1380 /* move first record forward until length fits into the buffer */ 1381 seq = clear_seq; 1382 idx = clear_idx; 1383 while (len > size && seq < log_next_seq) { 1384 struct printk_log *msg = log_from_idx(idx); 1385 1386 len -= msg_print_text(msg, true, NULL, 0); 1387 idx = log_next(idx); 1388 seq++; 1389 } 1390 1391 /* last message fitting into this dump */ 1392 next_seq = log_next_seq; 1393 1394 len = 0; 1395 while (len >= 0 && seq < next_seq) { 1396 struct printk_log *msg = log_from_idx(idx); 1397 int textlen; 1398 1399 textlen = msg_print_text(msg, true, text, 1400 LOG_LINE_MAX + PREFIX_MAX); 1401 if (textlen < 0) { 1402 len = textlen; 1403 break; 1404 } 1405 idx = log_next(idx); 1406 seq++; 1407 1408 logbuf_unlock_irq(); 1409 if (copy_to_user(buf + len, text, textlen)) 1410 len = -EFAULT; 1411 else 1412 len += textlen; 1413 logbuf_lock_irq(); 1414 1415 if (seq < log_first_seq) { 1416 /* messages are gone, move to next one */ 1417 seq = log_first_seq; 1418 idx = log_first_idx; 1419 } 1420 } 1421 } 1422 1423 if (clear) { 1424 clear_seq = log_next_seq; 1425 clear_idx = log_next_idx; 1426 } 1427 logbuf_unlock_irq(); 1428 1429 kfree(text); 1430 return len; 1431 } 1432 1433 int do_syslog(int type, char __user *buf, int len, int source) 1434 { 1435 bool clear = false; 1436 static int saved_console_loglevel = LOGLEVEL_DEFAULT; 1437 int error; 1438 1439 error = check_syslog_permissions(type, source); 1440 if (error) 1441 return error; 1442 1443 switch (type) { 1444 case SYSLOG_ACTION_CLOSE: /* Close log */ 1445 break; 1446 case SYSLOG_ACTION_OPEN: /* Open log */ 1447 break; 1448 case SYSLOG_ACTION_READ: /* Read from log */ 1449 if (!buf || len < 0) 1450 return -EINVAL; 1451 if (!len) 1452 return 0; 1453 if (!access_ok(VERIFY_WRITE, buf, len)) 1454 return -EFAULT; 1455 error = wait_event_interruptible(log_wait, 1456 syslog_seq != log_next_seq); 1457 if (error) 1458 return error; 1459 error = syslog_print(buf, len); 1460 break; 1461 /* Read/clear last kernel messages */ 1462 case SYSLOG_ACTION_READ_CLEAR: 1463 clear = true; 1464 /* FALL THRU */ 1465 /* Read last kernel messages */ 1466 case SYSLOG_ACTION_READ_ALL: 1467 if (!buf || len < 0) 1468 return -EINVAL; 1469 if (!len) 1470 return 0; 1471 if (!access_ok(VERIFY_WRITE, buf, len)) 1472 return -EFAULT; 1473 error = syslog_print_all(buf, len, clear); 1474 break; 1475 /* Clear ring buffer */ 1476 case SYSLOG_ACTION_CLEAR: 1477 syslog_print_all(NULL, 0, true); 1478 break; 1479 /* Disable logging to console */ 1480 case SYSLOG_ACTION_CONSOLE_OFF: 1481 if (saved_console_loglevel == LOGLEVEL_DEFAULT) 1482 saved_console_loglevel = console_loglevel; 1483 console_loglevel = minimum_console_loglevel; 1484 break; 1485 /* Enable logging to console */ 1486 case SYSLOG_ACTION_CONSOLE_ON: 1487 if (saved_console_loglevel != LOGLEVEL_DEFAULT) { 1488 console_loglevel = saved_console_loglevel; 1489 saved_console_loglevel = LOGLEVEL_DEFAULT; 1490 } 1491 break; 1492 /* Set level of messages printed to console */ 1493 case SYSLOG_ACTION_CONSOLE_LEVEL: 1494 if (len < 1 || len > 8) 1495 return -EINVAL; 1496 if (len < minimum_console_loglevel) 1497 len = minimum_console_loglevel; 1498 console_loglevel = len; 1499 /* Implicitly re-enable logging to console */ 1500 saved_console_loglevel = LOGLEVEL_DEFAULT; 1501 break; 1502 /* Number of chars in the log buffer */ 1503 case SYSLOG_ACTION_SIZE_UNREAD: 1504 logbuf_lock_irq(); 1505 if (syslog_seq < log_first_seq) { 1506 /* messages are gone, move to first one */ 1507 syslog_seq = log_first_seq; 1508 syslog_idx = log_first_idx; 1509 syslog_partial = 0; 1510 } 1511 if (source == SYSLOG_FROM_PROC) { 1512 /* 1513 * Short-cut for poll(/"proc/kmsg") which simply checks 1514 * for pending data, not the size; return the count of 1515 * records, not the length. 1516 */ 1517 error = log_next_seq - syslog_seq; 1518 } else { 1519 u64 seq = syslog_seq; 1520 u32 idx = syslog_idx; 1521 1522 while (seq < log_next_seq) { 1523 struct printk_log *msg = log_from_idx(idx); 1524 1525 error += msg_print_text(msg, true, NULL, 0); 1526 idx = log_next(idx); 1527 seq++; 1528 } 1529 error -= syslog_partial; 1530 } 1531 logbuf_unlock_irq(); 1532 break; 1533 /* Size of the log buffer */ 1534 case SYSLOG_ACTION_SIZE_BUFFER: 1535 error = log_buf_len; 1536 break; 1537 default: 1538 error = -EINVAL; 1539 break; 1540 } 1541 1542 return error; 1543 } 1544 1545 SYSCALL_DEFINE3(syslog, int, type, char __user *, buf, int, len) 1546 { 1547 return do_syslog(type, buf, len, SYSLOG_FROM_READER); 1548 } 1549 1550 /* 1551 * Special console_lock variants that help to reduce the risk of soft-lockups. 1552 * They allow to pass console_lock to another printk() call using a busy wait. 1553 */ 1554 1555 #ifdef CONFIG_LOCKDEP 1556 static struct lockdep_map console_owner_dep_map = { 1557 .name = "console_owner" 1558 }; 1559 #endif 1560 1561 static DEFINE_RAW_SPINLOCK(console_owner_lock); 1562 static struct task_struct *console_owner; 1563 static bool console_waiter; 1564 1565 /** 1566 * console_lock_spinning_enable - mark beginning of code where another 1567 * thread might safely busy wait 1568 * 1569 * This basically converts console_lock into a spinlock. This marks 1570 * the section where the console_lock owner can not sleep, because 1571 * there may be a waiter spinning (like a spinlock). Also it must be 1572 * ready to hand over the lock at the end of the section. 1573 */ 1574 static void console_lock_spinning_enable(void) 1575 { 1576 raw_spin_lock(&console_owner_lock); 1577 console_owner = current; 1578 raw_spin_unlock(&console_owner_lock); 1579 1580 /* The waiter may spin on us after setting console_owner */ 1581 spin_acquire(&console_owner_dep_map, 0, 0, _THIS_IP_); 1582 } 1583 1584 /** 1585 * console_lock_spinning_disable_and_check - mark end of code where another 1586 * thread was able to busy wait and check if there is a waiter 1587 * 1588 * This is called at the end of the section where spinning is allowed. 1589 * It has two functions. First, it is a signal that it is no longer 1590 * safe to start busy waiting for the lock. Second, it checks if 1591 * there is a busy waiter and passes the lock rights to her. 1592 * 1593 * Important: Callers lose the lock if there was a busy waiter. 1594 * They must not touch items synchronized by console_lock 1595 * in this case. 1596 * 1597 * Return: 1 if the lock rights were passed, 0 otherwise. 1598 */ 1599 static int console_lock_spinning_disable_and_check(void) 1600 { 1601 int waiter; 1602 1603 raw_spin_lock(&console_owner_lock); 1604 waiter = READ_ONCE(console_waiter); 1605 console_owner = NULL; 1606 raw_spin_unlock(&console_owner_lock); 1607 1608 if (!waiter) { 1609 spin_release(&console_owner_dep_map, 1, _THIS_IP_); 1610 return 0; 1611 } 1612 1613 /* The waiter is now free to continue */ 1614 WRITE_ONCE(console_waiter, false); 1615 1616 spin_release(&console_owner_dep_map, 1, _THIS_IP_); 1617 1618 /* 1619 * Hand off console_lock to waiter. The waiter will perform 1620 * the up(). After this, the waiter is the console_lock owner. 1621 */ 1622 mutex_release(&console_lock_dep_map, 1, _THIS_IP_); 1623 return 1; 1624 } 1625 1626 /** 1627 * console_trylock_spinning - try to get console_lock by busy waiting 1628 * 1629 * This allows to busy wait for the console_lock when the current 1630 * owner is running in specially marked sections. It means that 1631 * the current owner is running and cannot reschedule until it 1632 * is ready to lose the lock. 1633 * 1634 * Return: 1 if we got the lock, 0 othrewise 1635 */ 1636 static int console_trylock_spinning(void) 1637 { 1638 struct task_struct *owner = NULL; 1639 bool waiter; 1640 bool spin = false; 1641 unsigned long flags; 1642 1643 if (console_trylock()) 1644 return 1; 1645 1646 printk_safe_enter_irqsave(flags); 1647 1648 raw_spin_lock(&console_owner_lock); 1649 owner = READ_ONCE(console_owner); 1650 waiter = READ_ONCE(console_waiter); 1651 if (!waiter && owner && owner != current) { 1652 WRITE_ONCE(console_waiter, true); 1653 spin = true; 1654 } 1655 raw_spin_unlock(&console_owner_lock); 1656 1657 /* 1658 * If there is an active printk() writing to the 1659 * consoles, instead of having it write our data too, 1660 * see if we can offload that load from the active 1661 * printer, and do some printing ourselves. 1662 * Go into a spin only if there isn't already a waiter 1663 * spinning, and there is an active printer, and 1664 * that active printer isn't us (recursive printk?). 1665 */ 1666 if (!spin) { 1667 printk_safe_exit_irqrestore(flags); 1668 return 0; 1669 } 1670 1671 /* We spin waiting for the owner to release us */ 1672 spin_acquire(&console_owner_dep_map, 0, 0, _THIS_IP_); 1673 /* Owner will clear console_waiter on hand off */ 1674 while (READ_ONCE(console_waiter)) 1675 cpu_relax(); 1676 spin_release(&console_owner_dep_map, 1, _THIS_IP_); 1677 1678 printk_safe_exit_irqrestore(flags); 1679 /* 1680 * The owner passed the console lock to us. 1681 * Since we did not spin on console lock, annotate 1682 * this as a trylock. Otherwise lockdep will 1683 * complain. 1684 */ 1685 mutex_acquire(&console_lock_dep_map, 0, 1, _THIS_IP_); 1686 1687 return 1; 1688 } 1689 1690 /* 1691 * Call the console drivers, asking them to write out 1692 * log_buf[start] to log_buf[end - 1]. 1693 * The console_lock must be held. 1694 */ 1695 static void call_console_drivers(const char *ext_text, size_t ext_len, 1696 const char *text, size_t len) 1697 { 1698 struct console *con; 1699 1700 trace_console_rcuidle(text, len); 1701 1702 if (!console_drivers) 1703 return; 1704 1705 for_each_console(con) { 1706 if (exclusive_console && con != exclusive_console) 1707 continue; 1708 if (!(con->flags & CON_ENABLED)) 1709 continue; 1710 if (!con->write) 1711 continue; 1712 if (!cpu_online(smp_processor_id()) && 1713 !(con->flags & CON_ANYTIME)) 1714 continue; 1715 if (con->flags & CON_EXTENDED) 1716 con->write(con, ext_text, ext_len); 1717 else 1718 con->write(con, text, len); 1719 } 1720 } 1721 1722 int printk_delay_msec __read_mostly; 1723 1724 static inline void printk_delay(void) 1725 { 1726 if (unlikely(printk_delay_msec)) { 1727 int m = printk_delay_msec; 1728 1729 while (m--) { 1730 mdelay(1); 1731 touch_nmi_watchdog(); 1732 } 1733 } 1734 } 1735 1736 /* 1737 * Continuation lines are buffered, and not committed to the record buffer 1738 * until the line is complete, or a race forces it. The line fragments 1739 * though, are printed immediately to the consoles to ensure everything has 1740 * reached the console in case of a kernel crash. 1741 */ 1742 static struct cont { 1743 char buf[LOG_LINE_MAX]; 1744 size_t len; /* length == 0 means unused buffer */ 1745 struct task_struct *owner; /* task of first print*/ 1746 u64 ts_nsec; /* time of first print */ 1747 u8 level; /* log level of first message */ 1748 u8 facility; /* log facility of first message */ 1749 enum log_flags flags; /* prefix, newline flags */ 1750 } cont; 1751 1752 static void cont_flush(void) 1753 { 1754 if (cont.len == 0) 1755 return; 1756 1757 log_store(cont.facility, cont.level, cont.flags, cont.ts_nsec, 1758 NULL, 0, cont.buf, cont.len); 1759 cont.len = 0; 1760 } 1761 1762 static bool cont_add(int facility, int level, enum log_flags flags, const char *text, size_t len) 1763 { 1764 /* 1765 * If ext consoles are present, flush and skip in-kernel 1766 * continuation. See nr_ext_console_drivers definition. Also, if 1767 * the line gets too long, split it up in separate records. 1768 */ 1769 if (nr_ext_console_drivers || cont.len + len > sizeof(cont.buf)) { 1770 cont_flush(); 1771 return false; 1772 } 1773 1774 if (!cont.len) { 1775 cont.facility = facility; 1776 cont.level = level; 1777 cont.owner = current; 1778 cont.ts_nsec = local_clock(); 1779 cont.flags = flags; 1780 } 1781 1782 memcpy(cont.buf + cont.len, text, len); 1783 cont.len += len; 1784 1785 // The original flags come from the first line, 1786 // but later continuations can add a newline. 1787 if (flags & LOG_NEWLINE) { 1788 cont.flags |= LOG_NEWLINE; 1789 cont_flush(); 1790 } 1791 1792 if (cont.len > (sizeof(cont.buf) * 80) / 100) 1793 cont_flush(); 1794 1795 return true; 1796 } 1797 1798 static size_t log_output(int facility, int level, enum log_flags lflags, const char *dict, size_t dictlen, char *text, size_t text_len) 1799 { 1800 /* 1801 * If an earlier line was buffered, and we're a continuation 1802 * write from the same process, try to add it to the buffer. 1803 */ 1804 if (cont.len) { 1805 if (cont.owner == current && (lflags & LOG_CONT)) { 1806 if (cont_add(facility, level, lflags, text, text_len)) 1807 return text_len; 1808 } 1809 /* Otherwise, make sure it's flushed */ 1810 cont_flush(); 1811 } 1812 1813 /* Skip empty continuation lines that couldn't be added - they just flush */ 1814 if (!text_len && (lflags & LOG_CONT)) 1815 return 0; 1816 1817 /* If it doesn't end in a newline, try to buffer the current line */ 1818 if (!(lflags & LOG_NEWLINE)) { 1819 if (cont_add(facility, level, lflags, text, text_len)) 1820 return text_len; 1821 } 1822 1823 /* Store it in the record log */ 1824 return log_store(facility, level, lflags, 0, dict, dictlen, text, text_len); 1825 } 1826 1827 asmlinkage int vprintk_emit(int facility, int level, 1828 const char *dict, size_t dictlen, 1829 const char *fmt, va_list args) 1830 { 1831 static char textbuf[LOG_LINE_MAX]; 1832 char *text = textbuf; 1833 size_t text_len; 1834 enum log_flags lflags = 0; 1835 unsigned long flags; 1836 int printed_len; 1837 bool in_sched = false; 1838 1839 if (level == LOGLEVEL_SCHED) { 1840 level = LOGLEVEL_DEFAULT; 1841 in_sched = true; 1842 } 1843 1844 boot_delay_msec(level); 1845 printk_delay(); 1846 1847 /* This stops the holder of console_sem just where we want him */ 1848 logbuf_lock_irqsave(flags); 1849 /* 1850 * The printf needs to come first; we need the syslog 1851 * prefix which might be passed-in as a parameter. 1852 */ 1853 text_len = vscnprintf(text, sizeof(textbuf), fmt, args); 1854 1855 /* mark and strip a trailing newline */ 1856 if (text_len && text[text_len-1] == '\n') { 1857 text_len--; 1858 lflags |= LOG_NEWLINE; 1859 } 1860 1861 /* strip kernel syslog prefix and extract log level or control flags */ 1862 if (facility == 0) { 1863 int kern_level; 1864 1865 while ((kern_level = printk_get_level(text)) != 0) { 1866 switch (kern_level) { 1867 case '0' ... '7': 1868 if (level == LOGLEVEL_DEFAULT) 1869 level = kern_level - '0'; 1870 /* fallthrough */ 1871 case 'd': /* KERN_DEFAULT */ 1872 lflags |= LOG_PREFIX; 1873 break; 1874 case 'c': /* KERN_CONT */ 1875 lflags |= LOG_CONT; 1876 } 1877 1878 text_len -= 2; 1879 text += 2; 1880 } 1881 } 1882 1883 if (level == LOGLEVEL_DEFAULT) 1884 level = default_message_loglevel; 1885 1886 if (dict) 1887 lflags |= LOG_PREFIX|LOG_NEWLINE; 1888 1889 printed_len = log_output(facility, level, lflags, dict, dictlen, text, text_len); 1890 1891 logbuf_unlock_irqrestore(flags); 1892 1893 /* If called from the scheduler, we can not call up(). */ 1894 if (!in_sched) { 1895 /* 1896 * Disable preemption to avoid being preempted while holding 1897 * console_sem which would prevent anyone from printing to 1898 * console 1899 */ 1900 preempt_disable(); 1901 /* 1902 * Try to acquire and then immediately release the console 1903 * semaphore. The release will print out buffers and wake up 1904 * /dev/kmsg and syslog() users. 1905 */ 1906 if (console_trylock_spinning()) 1907 console_unlock(); 1908 preempt_enable(); 1909 } 1910 1911 return printed_len; 1912 } 1913 EXPORT_SYMBOL(vprintk_emit); 1914 1915 asmlinkage int vprintk(const char *fmt, va_list args) 1916 { 1917 return vprintk_func(fmt, args); 1918 } 1919 EXPORT_SYMBOL(vprintk); 1920 1921 asmlinkage int printk_emit(int facility, int level, 1922 const char *dict, size_t dictlen, 1923 const char *fmt, ...) 1924 { 1925 va_list args; 1926 int r; 1927 1928 va_start(args, fmt); 1929 r = vprintk_emit(facility, level, dict, dictlen, fmt, args); 1930 va_end(args); 1931 1932 return r; 1933 } 1934 EXPORT_SYMBOL(printk_emit); 1935 1936 int vprintk_default(const char *fmt, va_list args) 1937 { 1938 int r; 1939 1940 #ifdef CONFIG_KGDB_KDB 1941 /* Allow to pass printk() to kdb but avoid a recursion. */ 1942 if (unlikely(kdb_trap_printk && kdb_printf_cpu < 0)) { 1943 r = vkdb_printf(KDB_MSGSRC_PRINTK, fmt, args); 1944 return r; 1945 } 1946 #endif 1947 r = vprintk_emit(0, LOGLEVEL_DEFAULT, NULL, 0, fmt, args); 1948 1949 return r; 1950 } 1951 EXPORT_SYMBOL_GPL(vprintk_default); 1952 1953 /** 1954 * printk - print a kernel message 1955 * @fmt: format string 1956 * 1957 * This is printk(). It can be called from any context. We want it to work. 1958 * 1959 * We try to grab the console_lock. If we succeed, it's easy - we log the 1960 * output and call the console drivers. If we fail to get the semaphore, we 1961 * place the output into the log buffer and return. The current holder of 1962 * the console_sem will notice the new output in console_unlock(); and will 1963 * send it to the consoles before releasing the lock. 1964 * 1965 * One effect of this deferred printing is that code which calls printk() and 1966 * then changes console_loglevel may break. This is because console_loglevel 1967 * is inspected when the actual printing occurs. 1968 * 1969 * See also: 1970 * printf(3) 1971 * 1972 * See the vsnprintf() documentation for format string extensions over C99. 1973 */ 1974 asmlinkage __visible int printk(const char *fmt, ...) 1975 { 1976 va_list args; 1977 int r; 1978 1979 va_start(args, fmt); 1980 r = vprintk_func(fmt, args); 1981 va_end(args); 1982 1983 return r; 1984 } 1985 EXPORT_SYMBOL(printk); 1986 1987 #else /* CONFIG_PRINTK */ 1988 1989 #define LOG_LINE_MAX 0 1990 #define PREFIX_MAX 0 1991 1992 static u64 syslog_seq; 1993 static u32 syslog_idx; 1994 static u64 console_seq; 1995 static u32 console_idx; 1996 static u64 log_first_seq; 1997 static u32 log_first_idx; 1998 static u64 log_next_seq; 1999 static char *log_text(const struct printk_log *msg) { return NULL; } 2000 static char *log_dict(const struct printk_log *msg) { return NULL; } 2001 static struct printk_log *log_from_idx(u32 idx) { return NULL; } 2002 static u32 log_next(u32 idx) { return 0; } 2003 static ssize_t msg_print_ext_header(char *buf, size_t size, 2004 struct printk_log *msg, 2005 u64 seq) { return 0; } 2006 static ssize_t msg_print_ext_body(char *buf, size_t size, 2007 char *dict, size_t dict_len, 2008 char *text, size_t text_len) { return 0; } 2009 static void console_lock_spinning_enable(void) { } 2010 static int console_lock_spinning_disable_and_check(void) { return 0; } 2011 static void call_console_drivers(const char *ext_text, size_t ext_len, 2012 const char *text, size_t len) {} 2013 static size_t msg_print_text(const struct printk_log *msg, 2014 bool syslog, char *buf, size_t size) { return 0; } 2015 static bool suppress_message_printing(int level) { return false; } 2016 2017 #endif /* CONFIG_PRINTK */ 2018 2019 #ifdef CONFIG_EARLY_PRINTK 2020 struct console *early_console; 2021 2022 asmlinkage __visible void early_printk(const char *fmt, ...) 2023 { 2024 va_list ap; 2025 char buf[512]; 2026 int n; 2027 2028 if (!early_console) 2029 return; 2030 2031 va_start(ap, fmt); 2032 n = vscnprintf(buf, sizeof(buf), fmt, ap); 2033 va_end(ap); 2034 2035 early_console->write(early_console, buf, n); 2036 } 2037 #endif 2038 2039 static int __add_preferred_console(char *name, int idx, char *options, 2040 char *brl_options) 2041 { 2042 struct console_cmdline *c; 2043 int i; 2044 2045 /* 2046 * See if this tty is not yet registered, and 2047 * if we have a slot free. 2048 */ 2049 for (i = 0, c = console_cmdline; 2050 i < MAX_CMDLINECONSOLES && c->name[0]; 2051 i++, c++) { 2052 if (strcmp(c->name, name) == 0 && c->index == idx) { 2053 if (!brl_options) 2054 preferred_console = i; 2055 return 0; 2056 } 2057 } 2058 if (i == MAX_CMDLINECONSOLES) 2059 return -E2BIG; 2060 if (!brl_options) 2061 preferred_console = i; 2062 strlcpy(c->name, name, sizeof(c->name)); 2063 c->options = options; 2064 braille_set_options(c, brl_options); 2065 2066 c->index = idx; 2067 return 0; 2068 } 2069 2070 static int __init console_msg_format_setup(char *str) 2071 { 2072 if (!strcmp(str, "syslog")) 2073 console_msg_format = MSG_FORMAT_SYSLOG; 2074 if (!strcmp(str, "default")) 2075 console_msg_format = MSG_FORMAT_DEFAULT; 2076 return 1; 2077 } 2078 __setup("console_msg_format=", console_msg_format_setup); 2079 2080 /* 2081 * Set up a console. Called via do_early_param() in init/main.c 2082 * for each "console=" parameter in the boot command line. 2083 */ 2084 static int __init console_setup(char *str) 2085 { 2086 char buf[sizeof(console_cmdline[0].name) + 4]; /* 4 for "ttyS" */ 2087 char *s, *options, *brl_options = NULL; 2088 int idx; 2089 2090 if (_braille_console_setup(&str, &brl_options)) 2091 return 1; 2092 2093 /* 2094 * Decode str into name, index, options. 2095 */ 2096 if (str[0] >= '0' && str[0] <= '9') { 2097 strcpy(buf, "ttyS"); 2098 strncpy(buf + 4, str, sizeof(buf) - 5); 2099 } else { 2100 strncpy(buf, str, sizeof(buf) - 1); 2101 } 2102 buf[sizeof(buf) - 1] = 0; 2103 options = strchr(str, ','); 2104 if (options) 2105 *(options++) = 0; 2106 #ifdef __sparc__ 2107 if (!strcmp(str, "ttya")) 2108 strcpy(buf, "ttyS0"); 2109 if (!strcmp(str, "ttyb")) 2110 strcpy(buf, "ttyS1"); 2111 #endif 2112 for (s = buf; *s; s++) 2113 if (isdigit(*s) || *s == ',') 2114 break; 2115 idx = simple_strtoul(s, NULL, 10); 2116 *s = 0; 2117 2118 __add_preferred_console(buf, idx, options, brl_options); 2119 console_set_on_cmdline = 1; 2120 return 1; 2121 } 2122 __setup("console=", console_setup); 2123 2124 /** 2125 * add_preferred_console - add a device to the list of preferred consoles. 2126 * @name: device name 2127 * @idx: device index 2128 * @options: options for this console 2129 * 2130 * The last preferred console added will be used for kernel messages 2131 * and stdin/out/err for init. Normally this is used by console_setup 2132 * above to handle user-supplied console arguments; however it can also 2133 * be used by arch-specific code either to override the user or more 2134 * commonly to provide a default console (ie from PROM variables) when 2135 * the user has not supplied one. 2136 */ 2137 int add_preferred_console(char *name, int idx, char *options) 2138 { 2139 return __add_preferred_console(name, idx, options, NULL); 2140 } 2141 2142 bool console_suspend_enabled = true; 2143 EXPORT_SYMBOL(console_suspend_enabled); 2144 2145 static int __init console_suspend_disable(char *str) 2146 { 2147 console_suspend_enabled = false; 2148 return 1; 2149 } 2150 __setup("no_console_suspend", console_suspend_disable); 2151 module_param_named(console_suspend, console_suspend_enabled, 2152 bool, S_IRUGO | S_IWUSR); 2153 MODULE_PARM_DESC(console_suspend, "suspend console during suspend" 2154 " and hibernate operations"); 2155 2156 /** 2157 * suspend_console - suspend the console subsystem 2158 * 2159 * This disables printk() while we go into suspend states 2160 */ 2161 void suspend_console(void) 2162 { 2163 if (!console_suspend_enabled) 2164 return; 2165 printk("Suspending console(s) (use no_console_suspend to debug)\n"); 2166 console_lock(); 2167 console_suspended = 1; 2168 up_console_sem(); 2169 } 2170 2171 void resume_console(void) 2172 { 2173 if (!console_suspend_enabled) 2174 return; 2175 down_console_sem(); 2176 console_suspended = 0; 2177 console_unlock(); 2178 } 2179 2180 /** 2181 * console_cpu_notify - print deferred console messages after CPU hotplug 2182 * @cpu: unused 2183 * 2184 * If printk() is called from a CPU that is not online yet, the messages 2185 * will be printed on the console only if there are CON_ANYTIME consoles. 2186 * This function is called when a new CPU comes online (or fails to come 2187 * up) or goes offline. 2188 */ 2189 static int console_cpu_notify(unsigned int cpu) 2190 { 2191 if (!cpuhp_tasks_frozen) { 2192 /* If trylock fails, someone else is doing the printing */ 2193 if (console_trylock()) 2194 console_unlock(); 2195 } 2196 return 0; 2197 } 2198 2199 /** 2200 * console_lock - lock the console system for exclusive use. 2201 * 2202 * Acquires a lock which guarantees that the caller has 2203 * exclusive access to the console system and the console_drivers list. 2204 * 2205 * Can sleep, returns nothing. 2206 */ 2207 void console_lock(void) 2208 { 2209 might_sleep(); 2210 2211 down_console_sem(); 2212 if (console_suspended) 2213 return; 2214 console_locked = 1; 2215 console_may_schedule = 1; 2216 } 2217 EXPORT_SYMBOL(console_lock); 2218 2219 /** 2220 * console_trylock - try to lock the console system for exclusive use. 2221 * 2222 * Try to acquire a lock which guarantees that the caller has exclusive 2223 * access to the console system and the console_drivers list. 2224 * 2225 * returns 1 on success, and 0 on failure to acquire the lock. 2226 */ 2227 int console_trylock(void) 2228 { 2229 if (down_trylock_console_sem()) 2230 return 0; 2231 if (console_suspended) { 2232 up_console_sem(); 2233 return 0; 2234 } 2235 console_locked = 1; 2236 console_may_schedule = 0; 2237 return 1; 2238 } 2239 EXPORT_SYMBOL(console_trylock); 2240 2241 int is_console_locked(void) 2242 { 2243 return console_locked; 2244 } 2245 2246 /* 2247 * Check if we have any console that is capable of printing while cpu is 2248 * booting or shutting down. Requires console_sem. 2249 */ 2250 static int have_callable_console(void) 2251 { 2252 struct console *con; 2253 2254 for_each_console(con) 2255 if ((con->flags & CON_ENABLED) && 2256 (con->flags & CON_ANYTIME)) 2257 return 1; 2258 2259 return 0; 2260 } 2261 2262 /* 2263 * Can we actually use the console at this time on this cpu? 2264 * 2265 * Console drivers may assume that per-cpu resources have been allocated. So 2266 * unless they're explicitly marked as being able to cope (CON_ANYTIME) don't 2267 * call them until this CPU is officially up. 2268 */ 2269 static inline int can_use_console(void) 2270 { 2271 return cpu_online(raw_smp_processor_id()) || have_callable_console(); 2272 } 2273 2274 /** 2275 * console_unlock - unlock the console system 2276 * 2277 * Releases the console_lock which the caller holds on the console system 2278 * and the console driver list. 2279 * 2280 * While the console_lock was held, console output may have been buffered 2281 * by printk(). If this is the case, console_unlock(); emits 2282 * the output prior to releasing the lock. 2283 * 2284 * If there is output waiting, we wake /dev/kmsg and syslog() users. 2285 * 2286 * console_unlock(); may be called from any context. 2287 */ 2288 void console_unlock(void) 2289 { 2290 static char ext_text[CONSOLE_EXT_LOG_MAX]; 2291 static char text[LOG_LINE_MAX + PREFIX_MAX]; 2292 static u64 seen_seq; 2293 unsigned long flags; 2294 bool wake_klogd = false; 2295 bool do_cond_resched, retry; 2296 2297 if (console_suspended) { 2298 up_console_sem(); 2299 return; 2300 } 2301 2302 /* 2303 * Console drivers are called with interrupts disabled, so 2304 * @console_may_schedule should be cleared before; however, we may 2305 * end up dumping a lot of lines, for example, if called from 2306 * console registration path, and should invoke cond_resched() 2307 * between lines if allowable. Not doing so can cause a very long 2308 * scheduling stall on a slow console leading to RCU stall and 2309 * softlockup warnings which exacerbate the issue with more 2310 * messages practically incapacitating the system. 2311 * 2312 * console_trylock() is not able to detect the preemptive 2313 * context reliably. Therefore the value must be stored before 2314 * and cleared after the the "again" goto label. 2315 */ 2316 do_cond_resched = console_may_schedule; 2317 again: 2318 console_may_schedule = 0; 2319 2320 /* 2321 * We released the console_sem lock, so we need to recheck if 2322 * cpu is online and (if not) is there at least one CON_ANYTIME 2323 * console. 2324 */ 2325 if (!can_use_console()) { 2326 console_locked = 0; 2327 up_console_sem(); 2328 return; 2329 } 2330 2331 for (;;) { 2332 struct printk_log *msg; 2333 size_t ext_len = 0; 2334 size_t len; 2335 2336 printk_safe_enter_irqsave(flags); 2337 raw_spin_lock(&logbuf_lock); 2338 if (seen_seq != log_next_seq) { 2339 wake_klogd = true; 2340 seen_seq = log_next_seq; 2341 } 2342 2343 if (console_seq < log_first_seq) { 2344 len = sprintf(text, "** %u printk messages dropped **\n", 2345 (unsigned)(log_first_seq - console_seq)); 2346 2347 /* messages are gone, move to first one */ 2348 console_seq = log_first_seq; 2349 console_idx = log_first_idx; 2350 } else { 2351 len = 0; 2352 } 2353 skip: 2354 if (console_seq == log_next_seq) 2355 break; 2356 2357 msg = log_from_idx(console_idx); 2358 if (suppress_message_printing(msg->level)) { 2359 /* 2360 * Skip record we have buffered and already printed 2361 * directly to the console when we received it, and 2362 * record that has level above the console loglevel. 2363 */ 2364 console_idx = log_next(console_idx); 2365 console_seq++; 2366 goto skip; 2367 } 2368 2369 len += msg_print_text(msg, 2370 console_msg_format & MSG_FORMAT_SYSLOG, 2371 text + len, 2372 sizeof(text) - len); 2373 if (nr_ext_console_drivers) { 2374 ext_len = msg_print_ext_header(ext_text, 2375 sizeof(ext_text), 2376 msg, console_seq); 2377 ext_len += msg_print_ext_body(ext_text + ext_len, 2378 sizeof(ext_text) - ext_len, 2379 log_dict(msg), msg->dict_len, 2380 log_text(msg), msg->text_len); 2381 } 2382 console_idx = log_next(console_idx); 2383 console_seq++; 2384 raw_spin_unlock(&logbuf_lock); 2385 2386 /* 2387 * While actively printing out messages, if another printk() 2388 * were to occur on another CPU, it may wait for this one to 2389 * finish. This task can not be preempted if there is a 2390 * waiter waiting to take over. 2391 */ 2392 console_lock_spinning_enable(); 2393 2394 stop_critical_timings(); /* don't trace print latency */ 2395 call_console_drivers(ext_text, ext_len, text, len); 2396 start_critical_timings(); 2397 2398 if (console_lock_spinning_disable_and_check()) { 2399 printk_safe_exit_irqrestore(flags); 2400 goto out; 2401 } 2402 2403 printk_safe_exit_irqrestore(flags); 2404 2405 if (do_cond_resched) 2406 cond_resched(); 2407 } 2408 2409 console_locked = 0; 2410 2411 /* Release the exclusive_console once it is used */ 2412 if (unlikely(exclusive_console)) 2413 exclusive_console = NULL; 2414 2415 raw_spin_unlock(&logbuf_lock); 2416 2417 up_console_sem(); 2418 2419 /* 2420 * Someone could have filled up the buffer again, so re-check if there's 2421 * something to flush. In case we cannot trylock the console_sem again, 2422 * there's a new owner and the console_unlock() from them will do the 2423 * flush, no worries. 2424 */ 2425 raw_spin_lock(&logbuf_lock); 2426 retry = console_seq != log_next_seq; 2427 raw_spin_unlock(&logbuf_lock); 2428 printk_safe_exit_irqrestore(flags); 2429 2430 if (retry && console_trylock()) 2431 goto again; 2432 2433 out: 2434 if (wake_klogd) 2435 wake_up_klogd(); 2436 } 2437 EXPORT_SYMBOL(console_unlock); 2438 2439 /** 2440 * console_conditional_schedule - yield the CPU if required 2441 * 2442 * If the console code is currently allowed to sleep, and 2443 * if this CPU should yield the CPU to another task, do 2444 * so here. 2445 * 2446 * Must be called within console_lock();. 2447 */ 2448 void __sched console_conditional_schedule(void) 2449 { 2450 if (console_may_schedule) 2451 cond_resched(); 2452 } 2453 EXPORT_SYMBOL(console_conditional_schedule); 2454 2455 void console_unblank(void) 2456 { 2457 struct console *c; 2458 2459 /* 2460 * console_unblank can no longer be called in interrupt context unless 2461 * oops_in_progress is set to 1.. 2462 */ 2463 if (oops_in_progress) { 2464 if (down_trylock_console_sem() != 0) 2465 return; 2466 } else 2467 console_lock(); 2468 2469 console_locked = 1; 2470 console_may_schedule = 0; 2471 for_each_console(c) 2472 if ((c->flags & CON_ENABLED) && c->unblank) 2473 c->unblank(); 2474 console_unlock(); 2475 } 2476 2477 /** 2478 * console_flush_on_panic - flush console content on panic 2479 * 2480 * Immediately output all pending messages no matter what. 2481 */ 2482 void console_flush_on_panic(void) 2483 { 2484 /* 2485 * If someone else is holding the console lock, trylock will fail 2486 * and may_schedule may be set. Ignore and proceed to unlock so 2487 * that messages are flushed out. As this can be called from any 2488 * context and we don't want to get preempted while flushing, 2489 * ensure may_schedule is cleared. 2490 */ 2491 console_trylock(); 2492 console_may_schedule = 0; 2493 console_unlock(); 2494 } 2495 2496 /* 2497 * Return the console tty driver structure and its associated index 2498 */ 2499 struct tty_driver *console_device(int *index) 2500 { 2501 struct console *c; 2502 struct tty_driver *driver = NULL; 2503 2504 console_lock(); 2505 for_each_console(c) { 2506 if (!c->device) 2507 continue; 2508 driver = c->device(c, index); 2509 if (driver) 2510 break; 2511 } 2512 console_unlock(); 2513 return driver; 2514 } 2515 2516 /* 2517 * Prevent further output on the passed console device so that (for example) 2518 * serial drivers can disable console output before suspending a port, and can 2519 * re-enable output afterwards. 2520 */ 2521 void console_stop(struct console *console) 2522 { 2523 console_lock(); 2524 console->flags &= ~CON_ENABLED; 2525 console_unlock(); 2526 } 2527 EXPORT_SYMBOL(console_stop); 2528 2529 void console_start(struct console *console) 2530 { 2531 console_lock(); 2532 console->flags |= CON_ENABLED; 2533 console_unlock(); 2534 } 2535 EXPORT_SYMBOL(console_start); 2536 2537 static int __read_mostly keep_bootcon; 2538 2539 static int __init keep_bootcon_setup(char *str) 2540 { 2541 keep_bootcon = 1; 2542 pr_info("debug: skip boot console de-registration.\n"); 2543 2544 return 0; 2545 } 2546 2547 early_param("keep_bootcon", keep_bootcon_setup); 2548 2549 /* 2550 * The console driver calls this routine during kernel initialization 2551 * to register the console printing procedure with printk() and to 2552 * print any messages that were printed by the kernel before the 2553 * console driver was initialized. 2554 * 2555 * This can happen pretty early during the boot process (because of 2556 * early_printk) - sometimes before setup_arch() completes - be careful 2557 * of what kernel features are used - they may not be initialised yet. 2558 * 2559 * There are two types of consoles - bootconsoles (early_printk) and 2560 * "real" consoles (everything which is not a bootconsole) which are 2561 * handled differently. 2562 * - Any number of bootconsoles can be registered at any time. 2563 * - As soon as a "real" console is registered, all bootconsoles 2564 * will be unregistered automatically. 2565 * - Once a "real" console is registered, any attempt to register a 2566 * bootconsoles will be rejected 2567 */ 2568 void register_console(struct console *newcon) 2569 { 2570 int i; 2571 unsigned long flags; 2572 struct console *bcon = NULL; 2573 struct console_cmdline *c; 2574 static bool has_preferred; 2575 2576 if (console_drivers) 2577 for_each_console(bcon) 2578 if (WARN(bcon == newcon, 2579 "console '%s%d' already registered\n", 2580 bcon->name, bcon->index)) 2581 return; 2582 2583 /* 2584 * before we register a new CON_BOOT console, make sure we don't 2585 * already have a valid console 2586 */ 2587 if (console_drivers && newcon->flags & CON_BOOT) { 2588 /* find the last or real console */ 2589 for_each_console(bcon) { 2590 if (!(bcon->flags & CON_BOOT)) { 2591 pr_info("Too late to register bootconsole %s%d\n", 2592 newcon->name, newcon->index); 2593 return; 2594 } 2595 } 2596 } 2597 2598 if (console_drivers && console_drivers->flags & CON_BOOT) 2599 bcon = console_drivers; 2600 2601 if (!has_preferred || bcon || !console_drivers) 2602 has_preferred = preferred_console >= 0; 2603 2604 /* 2605 * See if we want to use this console driver. If we 2606 * didn't select a console we take the first one 2607 * that registers here. 2608 */ 2609 if (!has_preferred) { 2610 if (newcon->index < 0) 2611 newcon->index = 0; 2612 if (newcon->setup == NULL || 2613 newcon->setup(newcon, NULL) == 0) { 2614 newcon->flags |= CON_ENABLED; 2615 if (newcon->device) { 2616 newcon->flags |= CON_CONSDEV; 2617 has_preferred = true; 2618 } 2619 } 2620 } 2621 2622 /* 2623 * See if this console matches one we selected on 2624 * the command line. 2625 */ 2626 for (i = 0, c = console_cmdline; 2627 i < MAX_CMDLINECONSOLES && c->name[0]; 2628 i++, c++) { 2629 if (!newcon->match || 2630 newcon->match(newcon, c->name, c->index, c->options) != 0) { 2631 /* default matching */ 2632 BUILD_BUG_ON(sizeof(c->name) != sizeof(newcon->name)); 2633 if (strcmp(c->name, newcon->name) != 0) 2634 continue; 2635 if (newcon->index >= 0 && 2636 newcon->index != c->index) 2637 continue; 2638 if (newcon->index < 0) 2639 newcon->index = c->index; 2640 2641 if (_braille_register_console(newcon, c)) 2642 return; 2643 2644 if (newcon->setup && 2645 newcon->setup(newcon, c->options) != 0) 2646 break; 2647 } 2648 2649 newcon->flags |= CON_ENABLED; 2650 if (i == preferred_console) { 2651 newcon->flags |= CON_CONSDEV; 2652 has_preferred = true; 2653 } 2654 break; 2655 } 2656 2657 if (!(newcon->flags & CON_ENABLED)) 2658 return; 2659 2660 /* 2661 * If we have a bootconsole, and are switching to a real console, 2662 * don't print everything out again, since when the boot console, and 2663 * the real console are the same physical device, it's annoying to 2664 * see the beginning boot messages twice 2665 */ 2666 if (bcon && ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV)) 2667 newcon->flags &= ~CON_PRINTBUFFER; 2668 2669 /* 2670 * Put this console in the list - keep the 2671 * preferred driver at the head of the list. 2672 */ 2673 console_lock(); 2674 if ((newcon->flags & CON_CONSDEV) || console_drivers == NULL) { 2675 newcon->next = console_drivers; 2676 console_drivers = newcon; 2677 if (newcon->next) 2678 newcon->next->flags &= ~CON_CONSDEV; 2679 } else { 2680 newcon->next = console_drivers->next; 2681 console_drivers->next = newcon; 2682 } 2683 2684 if (newcon->flags & CON_EXTENDED) 2685 if (!nr_ext_console_drivers++) 2686 pr_info("printk: continuation disabled due to ext consoles, expect more fragments in /dev/kmsg\n"); 2687 2688 if (newcon->flags & CON_PRINTBUFFER) { 2689 /* 2690 * console_unlock(); will print out the buffered messages 2691 * for us. 2692 */ 2693 logbuf_lock_irqsave(flags); 2694 console_seq = syslog_seq; 2695 console_idx = syslog_idx; 2696 logbuf_unlock_irqrestore(flags); 2697 /* 2698 * We're about to replay the log buffer. Only do this to the 2699 * just-registered console to avoid excessive message spam to 2700 * the already-registered consoles. 2701 */ 2702 exclusive_console = newcon; 2703 } 2704 console_unlock(); 2705 console_sysfs_notify(); 2706 2707 /* 2708 * By unregistering the bootconsoles after we enable the real console 2709 * we get the "console xxx enabled" message on all the consoles - 2710 * boot consoles, real consoles, etc - this is to ensure that end 2711 * users know there might be something in the kernel's log buffer that 2712 * went to the bootconsole (that they do not see on the real console) 2713 */ 2714 pr_info("%sconsole [%s%d] enabled\n", 2715 (newcon->flags & CON_BOOT) ? "boot" : "" , 2716 newcon->name, newcon->index); 2717 if (bcon && 2718 ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV) && 2719 !keep_bootcon) { 2720 /* We need to iterate through all boot consoles, to make 2721 * sure we print everything out, before we unregister them. 2722 */ 2723 for_each_console(bcon) 2724 if (bcon->flags & CON_BOOT) 2725 unregister_console(bcon); 2726 } 2727 } 2728 EXPORT_SYMBOL(register_console); 2729 2730 int unregister_console(struct console *console) 2731 { 2732 struct console *a, *b; 2733 int res; 2734 2735 pr_info("%sconsole [%s%d] disabled\n", 2736 (console->flags & CON_BOOT) ? "boot" : "" , 2737 console->name, console->index); 2738 2739 res = _braille_unregister_console(console); 2740 if (res) 2741 return res; 2742 2743 res = 1; 2744 console_lock(); 2745 if (console_drivers == console) { 2746 console_drivers=console->next; 2747 res = 0; 2748 } else if (console_drivers) { 2749 for (a=console_drivers->next, b=console_drivers ; 2750 a; b=a, a=b->next) { 2751 if (a == console) { 2752 b->next = a->next; 2753 res = 0; 2754 break; 2755 } 2756 } 2757 } 2758 2759 if (!res && (console->flags & CON_EXTENDED)) 2760 nr_ext_console_drivers--; 2761 2762 /* 2763 * If this isn't the last console and it has CON_CONSDEV set, we 2764 * need to set it on the next preferred console. 2765 */ 2766 if (console_drivers != NULL && console->flags & CON_CONSDEV) 2767 console_drivers->flags |= CON_CONSDEV; 2768 2769 console->flags &= ~CON_ENABLED; 2770 console_unlock(); 2771 console_sysfs_notify(); 2772 return res; 2773 } 2774 EXPORT_SYMBOL(unregister_console); 2775 2776 /* 2777 * Initialize the console device. This is called *early*, so 2778 * we can't necessarily depend on lots of kernel help here. 2779 * Just do some early initializations, and do the complex setup 2780 * later. 2781 */ 2782 void __init console_init(void) 2783 { 2784 initcall_t *call; 2785 2786 /* Setup the default TTY line discipline. */ 2787 n_tty_init(); 2788 2789 /* 2790 * set up the console device so that later boot sequences can 2791 * inform about problems etc.. 2792 */ 2793 call = __con_initcall_start; 2794 while (call < __con_initcall_end) { 2795 (*call)(); 2796 call++; 2797 } 2798 } 2799 2800 /* 2801 * Some boot consoles access data that is in the init section and which will 2802 * be discarded after the initcalls have been run. To make sure that no code 2803 * will access this data, unregister the boot consoles in a late initcall. 2804 * 2805 * If for some reason, such as deferred probe or the driver being a loadable 2806 * module, the real console hasn't registered yet at this point, there will 2807 * be a brief interval in which no messages are logged to the console, which 2808 * makes it difficult to diagnose problems that occur during this time. 2809 * 2810 * To mitigate this problem somewhat, only unregister consoles whose memory 2811 * intersects with the init section. Note that all other boot consoles will 2812 * get unregistred when the real preferred console is registered. 2813 */ 2814 static int __init printk_late_init(void) 2815 { 2816 struct console *con; 2817 int ret; 2818 2819 for_each_console(con) { 2820 if (!(con->flags & CON_BOOT)) 2821 continue; 2822 2823 /* Check addresses that might be used for enabled consoles. */ 2824 if (init_section_intersects(con, sizeof(*con)) || 2825 init_section_contains(con->write, 0) || 2826 init_section_contains(con->read, 0) || 2827 init_section_contains(con->device, 0) || 2828 init_section_contains(con->unblank, 0) || 2829 init_section_contains(con->data, 0)) { 2830 /* 2831 * Please, consider moving the reported consoles out 2832 * of the init section. 2833 */ 2834 pr_warn("bootconsole [%s%d] uses init memory and must be disabled even before the real one is ready\n", 2835 con->name, con->index); 2836 unregister_console(con); 2837 } 2838 } 2839 ret = cpuhp_setup_state_nocalls(CPUHP_PRINTK_DEAD, "printk:dead", NULL, 2840 console_cpu_notify); 2841 WARN_ON(ret < 0); 2842 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "printk:online", 2843 console_cpu_notify, NULL); 2844 WARN_ON(ret < 0); 2845 return 0; 2846 } 2847 late_initcall(printk_late_init); 2848 2849 #if defined CONFIG_PRINTK 2850 /* 2851 * Delayed printk version, for scheduler-internal messages: 2852 */ 2853 #define PRINTK_PENDING_WAKEUP 0x01 2854 #define PRINTK_PENDING_OUTPUT 0x02 2855 2856 static DEFINE_PER_CPU(int, printk_pending); 2857 2858 static void wake_up_klogd_work_func(struct irq_work *irq_work) 2859 { 2860 int pending = __this_cpu_xchg(printk_pending, 0); 2861 2862 if (pending & PRINTK_PENDING_OUTPUT) { 2863 /* If trylock fails, someone else is doing the printing */ 2864 if (console_trylock()) 2865 console_unlock(); 2866 } 2867 2868 if (pending & PRINTK_PENDING_WAKEUP) 2869 wake_up_interruptible(&log_wait); 2870 } 2871 2872 static DEFINE_PER_CPU(struct irq_work, wake_up_klogd_work) = { 2873 .func = wake_up_klogd_work_func, 2874 .flags = IRQ_WORK_LAZY, 2875 }; 2876 2877 void wake_up_klogd(void) 2878 { 2879 preempt_disable(); 2880 if (waitqueue_active(&log_wait)) { 2881 this_cpu_or(printk_pending, PRINTK_PENDING_WAKEUP); 2882 irq_work_queue(this_cpu_ptr(&wake_up_klogd_work)); 2883 } 2884 preempt_enable(); 2885 } 2886 2887 int vprintk_deferred(const char *fmt, va_list args) 2888 { 2889 int r; 2890 2891 r = vprintk_emit(0, LOGLEVEL_SCHED, NULL, 0, fmt, args); 2892 2893 preempt_disable(); 2894 __this_cpu_or(printk_pending, PRINTK_PENDING_OUTPUT); 2895 irq_work_queue(this_cpu_ptr(&wake_up_klogd_work)); 2896 preempt_enable(); 2897 2898 return r; 2899 } 2900 2901 int printk_deferred(const char *fmt, ...) 2902 { 2903 va_list args; 2904 int r; 2905 2906 va_start(args, fmt); 2907 r = vprintk_deferred(fmt, args); 2908 va_end(args); 2909 2910 return r; 2911 } 2912 2913 /* 2914 * printk rate limiting, lifted from the networking subsystem. 2915 * 2916 * This enforces a rate limit: not more than 10 kernel messages 2917 * every 5s to make a denial-of-service attack impossible. 2918 */ 2919 DEFINE_RATELIMIT_STATE(printk_ratelimit_state, 5 * HZ, 10); 2920 2921 int __printk_ratelimit(const char *func) 2922 { 2923 return ___ratelimit(&printk_ratelimit_state, func); 2924 } 2925 EXPORT_SYMBOL(__printk_ratelimit); 2926 2927 /** 2928 * printk_timed_ratelimit - caller-controlled printk ratelimiting 2929 * @caller_jiffies: pointer to caller's state 2930 * @interval_msecs: minimum interval between prints 2931 * 2932 * printk_timed_ratelimit() returns true if more than @interval_msecs 2933 * milliseconds have elapsed since the last time printk_timed_ratelimit() 2934 * returned true. 2935 */ 2936 bool printk_timed_ratelimit(unsigned long *caller_jiffies, 2937 unsigned int interval_msecs) 2938 { 2939 unsigned long elapsed = jiffies - *caller_jiffies; 2940 2941 if (*caller_jiffies && elapsed <= msecs_to_jiffies(interval_msecs)) 2942 return false; 2943 2944 *caller_jiffies = jiffies; 2945 return true; 2946 } 2947 EXPORT_SYMBOL(printk_timed_ratelimit); 2948 2949 static DEFINE_SPINLOCK(dump_list_lock); 2950 static LIST_HEAD(dump_list); 2951 2952 /** 2953 * kmsg_dump_register - register a kernel log dumper. 2954 * @dumper: pointer to the kmsg_dumper structure 2955 * 2956 * Adds a kernel log dumper to the system. The dump callback in the 2957 * structure will be called when the kernel oopses or panics and must be 2958 * set. Returns zero on success and %-EINVAL or %-EBUSY otherwise. 2959 */ 2960 int kmsg_dump_register(struct kmsg_dumper *dumper) 2961 { 2962 unsigned long flags; 2963 int err = -EBUSY; 2964 2965 /* The dump callback needs to be set */ 2966 if (!dumper->dump) 2967 return -EINVAL; 2968 2969 spin_lock_irqsave(&dump_list_lock, flags); 2970 /* Don't allow registering multiple times */ 2971 if (!dumper->registered) { 2972 dumper->registered = 1; 2973 list_add_tail_rcu(&dumper->list, &dump_list); 2974 err = 0; 2975 } 2976 spin_unlock_irqrestore(&dump_list_lock, flags); 2977 2978 return err; 2979 } 2980 EXPORT_SYMBOL_GPL(kmsg_dump_register); 2981 2982 /** 2983 * kmsg_dump_unregister - unregister a kmsg dumper. 2984 * @dumper: pointer to the kmsg_dumper structure 2985 * 2986 * Removes a dump device from the system. Returns zero on success and 2987 * %-EINVAL otherwise. 2988 */ 2989 int kmsg_dump_unregister(struct kmsg_dumper *dumper) 2990 { 2991 unsigned long flags; 2992 int err = -EINVAL; 2993 2994 spin_lock_irqsave(&dump_list_lock, flags); 2995 if (dumper->registered) { 2996 dumper->registered = 0; 2997 list_del_rcu(&dumper->list); 2998 err = 0; 2999 } 3000 spin_unlock_irqrestore(&dump_list_lock, flags); 3001 synchronize_rcu(); 3002 3003 return err; 3004 } 3005 EXPORT_SYMBOL_GPL(kmsg_dump_unregister); 3006 3007 static bool always_kmsg_dump; 3008 module_param_named(always_kmsg_dump, always_kmsg_dump, bool, S_IRUGO | S_IWUSR); 3009 3010 /** 3011 * kmsg_dump - dump kernel log to kernel message dumpers. 3012 * @reason: the reason (oops, panic etc) for dumping 3013 * 3014 * Call each of the registered dumper's dump() callback, which can 3015 * retrieve the kmsg records with kmsg_dump_get_line() or 3016 * kmsg_dump_get_buffer(). 3017 */ 3018 void kmsg_dump(enum kmsg_dump_reason reason) 3019 { 3020 struct kmsg_dumper *dumper; 3021 unsigned long flags; 3022 3023 if ((reason > KMSG_DUMP_OOPS) && !always_kmsg_dump) 3024 return; 3025 3026 rcu_read_lock(); 3027 list_for_each_entry_rcu(dumper, &dump_list, list) { 3028 if (dumper->max_reason && reason > dumper->max_reason) 3029 continue; 3030 3031 /* initialize iterator with data about the stored records */ 3032 dumper->active = true; 3033 3034 logbuf_lock_irqsave(flags); 3035 dumper->cur_seq = clear_seq; 3036 dumper->cur_idx = clear_idx; 3037 dumper->next_seq = log_next_seq; 3038 dumper->next_idx = log_next_idx; 3039 logbuf_unlock_irqrestore(flags); 3040 3041 /* invoke dumper which will iterate over records */ 3042 dumper->dump(dumper, reason); 3043 3044 /* reset iterator */ 3045 dumper->active = false; 3046 } 3047 rcu_read_unlock(); 3048 } 3049 3050 /** 3051 * kmsg_dump_get_line_nolock - retrieve one kmsg log line (unlocked version) 3052 * @dumper: registered kmsg dumper 3053 * @syslog: include the "<4>" prefixes 3054 * @line: buffer to copy the line to 3055 * @size: maximum size of the buffer 3056 * @len: length of line placed into buffer 3057 * 3058 * Start at the beginning of the kmsg buffer, with the oldest kmsg 3059 * record, and copy one record into the provided buffer. 3060 * 3061 * Consecutive calls will return the next available record moving 3062 * towards the end of the buffer with the youngest messages. 3063 * 3064 * A return value of FALSE indicates that there are no more records to 3065 * read. 3066 * 3067 * The function is similar to kmsg_dump_get_line(), but grabs no locks. 3068 */ 3069 bool kmsg_dump_get_line_nolock(struct kmsg_dumper *dumper, bool syslog, 3070 char *line, size_t size, size_t *len) 3071 { 3072 struct printk_log *msg; 3073 size_t l = 0; 3074 bool ret = false; 3075 3076 if (!dumper->active) 3077 goto out; 3078 3079 if (dumper->cur_seq < log_first_seq) { 3080 /* messages are gone, move to first available one */ 3081 dumper->cur_seq = log_first_seq; 3082 dumper->cur_idx = log_first_idx; 3083 } 3084 3085 /* last entry */ 3086 if (dumper->cur_seq >= log_next_seq) 3087 goto out; 3088 3089 msg = log_from_idx(dumper->cur_idx); 3090 l = msg_print_text(msg, syslog, line, size); 3091 3092 dumper->cur_idx = log_next(dumper->cur_idx); 3093 dumper->cur_seq++; 3094 ret = true; 3095 out: 3096 if (len) 3097 *len = l; 3098 return ret; 3099 } 3100 3101 /** 3102 * kmsg_dump_get_line - retrieve one kmsg log line 3103 * @dumper: registered kmsg dumper 3104 * @syslog: include the "<4>" prefixes 3105 * @line: buffer to copy the line to 3106 * @size: maximum size of the buffer 3107 * @len: length of line placed into buffer 3108 * 3109 * Start at the beginning of the kmsg buffer, with the oldest kmsg 3110 * record, and copy one record into the provided buffer. 3111 * 3112 * Consecutive calls will return the next available record moving 3113 * towards the end of the buffer with the youngest messages. 3114 * 3115 * A return value of FALSE indicates that there are no more records to 3116 * read. 3117 */ 3118 bool kmsg_dump_get_line(struct kmsg_dumper *dumper, bool syslog, 3119 char *line, size_t size, size_t *len) 3120 { 3121 unsigned long flags; 3122 bool ret; 3123 3124 logbuf_lock_irqsave(flags); 3125 ret = kmsg_dump_get_line_nolock(dumper, syslog, line, size, len); 3126 logbuf_unlock_irqrestore(flags); 3127 3128 return ret; 3129 } 3130 EXPORT_SYMBOL_GPL(kmsg_dump_get_line); 3131 3132 /** 3133 * kmsg_dump_get_buffer - copy kmsg log lines 3134 * @dumper: registered kmsg dumper 3135 * @syslog: include the "<4>" prefixes 3136 * @buf: buffer to copy the line to 3137 * @size: maximum size of the buffer 3138 * @len: length of line placed into buffer 3139 * 3140 * Start at the end of the kmsg buffer and fill the provided buffer 3141 * with as many of the the *youngest* kmsg records that fit into it. 3142 * If the buffer is large enough, all available kmsg records will be 3143 * copied with a single call. 3144 * 3145 * Consecutive calls will fill the buffer with the next block of 3146 * available older records, not including the earlier retrieved ones. 3147 * 3148 * A return value of FALSE indicates that there are no more records to 3149 * read. 3150 */ 3151 bool kmsg_dump_get_buffer(struct kmsg_dumper *dumper, bool syslog, 3152 char *buf, size_t size, size_t *len) 3153 { 3154 unsigned long flags; 3155 u64 seq; 3156 u32 idx; 3157 u64 next_seq; 3158 u32 next_idx; 3159 size_t l = 0; 3160 bool ret = false; 3161 3162 if (!dumper->active) 3163 goto out; 3164 3165 logbuf_lock_irqsave(flags); 3166 if (dumper->cur_seq < log_first_seq) { 3167 /* messages are gone, move to first available one */ 3168 dumper->cur_seq = log_first_seq; 3169 dumper->cur_idx = log_first_idx; 3170 } 3171 3172 /* last entry */ 3173 if (dumper->cur_seq >= dumper->next_seq) { 3174 logbuf_unlock_irqrestore(flags); 3175 goto out; 3176 } 3177 3178 /* calculate length of entire buffer */ 3179 seq = dumper->cur_seq; 3180 idx = dumper->cur_idx; 3181 while (seq < dumper->next_seq) { 3182 struct printk_log *msg = log_from_idx(idx); 3183 3184 l += msg_print_text(msg, true, NULL, 0); 3185 idx = log_next(idx); 3186 seq++; 3187 } 3188 3189 /* move first record forward until length fits into the buffer */ 3190 seq = dumper->cur_seq; 3191 idx = dumper->cur_idx; 3192 while (l > size && seq < dumper->next_seq) { 3193 struct printk_log *msg = log_from_idx(idx); 3194 3195 l -= msg_print_text(msg, true, NULL, 0); 3196 idx = log_next(idx); 3197 seq++; 3198 } 3199 3200 /* last message in next interation */ 3201 next_seq = seq; 3202 next_idx = idx; 3203 3204 l = 0; 3205 while (seq < dumper->next_seq) { 3206 struct printk_log *msg = log_from_idx(idx); 3207 3208 l += msg_print_text(msg, syslog, buf + l, size - l); 3209 idx = log_next(idx); 3210 seq++; 3211 } 3212 3213 dumper->next_seq = next_seq; 3214 dumper->next_idx = next_idx; 3215 ret = true; 3216 logbuf_unlock_irqrestore(flags); 3217 out: 3218 if (len) 3219 *len = l; 3220 return ret; 3221 } 3222 EXPORT_SYMBOL_GPL(kmsg_dump_get_buffer); 3223 3224 /** 3225 * kmsg_dump_rewind_nolock - reset the interator (unlocked version) 3226 * @dumper: registered kmsg dumper 3227 * 3228 * Reset the dumper's iterator so that kmsg_dump_get_line() and 3229 * kmsg_dump_get_buffer() can be called again and used multiple 3230 * times within the same dumper.dump() callback. 3231 * 3232 * The function is similar to kmsg_dump_rewind(), but grabs no locks. 3233 */ 3234 void kmsg_dump_rewind_nolock(struct kmsg_dumper *dumper) 3235 { 3236 dumper->cur_seq = clear_seq; 3237 dumper->cur_idx = clear_idx; 3238 dumper->next_seq = log_next_seq; 3239 dumper->next_idx = log_next_idx; 3240 } 3241 3242 /** 3243 * kmsg_dump_rewind - reset the interator 3244 * @dumper: registered kmsg dumper 3245 * 3246 * Reset the dumper's iterator so that kmsg_dump_get_line() and 3247 * kmsg_dump_get_buffer() can be called again and used multiple 3248 * times within the same dumper.dump() callback. 3249 */ 3250 void kmsg_dump_rewind(struct kmsg_dumper *dumper) 3251 { 3252 unsigned long flags; 3253 3254 logbuf_lock_irqsave(flags); 3255 kmsg_dump_rewind_nolock(dumper); 3256 logbuf_unlock_irqrestore(flags); 3257 } 3258 EXPORT_SYMBOL_GPL(kmsg_dump_rewind); 3259 3260 static char dump_stack_arch_desc_str[128]; 3261 3262 /** 3263 * dump_stack_set_arch_desc - set arch-specific str to show with task dumps 3264 * @fmt: printf-style format string 3265 * @...: arguments for the format string 3266 * 3267 * The configured string will be printed right after utsname during task 3268 * dumps. Usually used to add arch-specific system identifiers. If an 3269 * arch wants to make use of such an ID string, it should initialize this 3270 * as soon as possible during boot. 3271 */ 3272 void __init dump_stack_set_arch_desc(const char *fmt, ...) 3273 { 3274 va_list args; 3275 3276 va_start(args, fmt); 3277 vsnprintf(dump_stack_arch_desc_str, sizeof(dump_stack_arch_desc_str), 3278 fmt, args); 3279 va_end(args); 3280 } 3281 3282 /** 3283 * dump_stack_print_info - print generic debug info for dump_stack() 3284 * @log_lvl: log level 3285 * 3286 * Arch-specific dump_stack() implementations can use this function to 3287 * print out the same debug information as the generic dump_stack(). 3288 */ 3289 void dump_stack_print_info(const char *log_lvl) 3290 { 3291 printk("%sCPU: %d PID: %d Comm: %.20s %s %s %.*s\n", 3292 log_lvl, raw_smp_processor_id(), current->pid, current->comm, 3293 print_tainted(), init_utsname()->release, 3294 (int)strcspn(init_utsname()->version, " "), 3295 init_utsname()->version); 3296 3297 if (dump_stack_arch_desc_str[0] != '\0') 3298 printk("%sHardware name: %s\n", 3299 log_lvl, dump_stack_arch_desc_str); 3300 3301 print_worker_info(log_lvl, current); 3302 } 3303 3304 /** 3305 * show_regs_print_info - print generic debug info for show_regs() 3306 * @log_lvl: log level 3307 * 3308 * show_regs() implementations can use this function to print out generic 3309 * debug information. 3310 */ 3311 void show_regs_print_info(const char *log_lvl) 3312 { 3313 dump_stack_print_info(log_lvl); 3314 } 3315 3316 #endif 3317