xref: /openbmc/linux/kernel/printk/printk.c (revision e6dec923)
1 /*
2  *  linux/kernel/printk.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  *
6  * Modified to make sys_syslog() more flexible: added commands to
7  * return the last 4k of kernel messages, regardless of whether
8  * they've been read or not.  Added option to suppress kernel printk's
9  * to the console.  Added hook for sending the console messages
10  * elsewhere, in preparation for a serial line console (someday).
11  * Ted Ts'o, 2/11/93.
12  * Modified for sysctl support, 1/8/97, Chris Horn.
13  * Fixed SMP synchronization, 08/08/99, Manfred Spraul
14  *     manfred@colorfullife.com
15  * Rewrote bits to get rid of console_lock
16  *	01Mar01 Andrew Morton
17  */
18 
19 #include <linux/kernel.h>
20 #include <linux/mm.h>
21 #include <linux/tty.h>
22 #include <linux/tty_driver.h>
23 #include <linux/console.h>
24 #include <linux/init.h>
25 #include <linux/jiffies.h>
26 #include <linux/nmi.h>
27 #include <linux/module.h>
28 #include <linux/moduleparam.h>
29 #include <linux/delay.h>
30 #include <linux/smp.h>
31 #include <linux/security.h>
32 #include <linux/bootmem.h>
33 #include <linux/memblock.h>
34 #include <linux/syscalls.h>
35 #include <linux/crash_core.h>
36 #include <linux/kdb.h>
37 #include <linux/ratelimit.h>
38 #include <linux/kmsg_dump.h>
39 #include <linux/syslog.h>
40 #include <linux/cpu.h>
41 #include <linux/notifier.h>
42 #include <linux/rculist.h>
43 #include <linux/poll.h>
44 #include <linux/irq_work.h>
45 #include <linux/utsname.h>
46 #include <linux/ctype.h>
47 #include <linux/uio.h>
48 #include <linux/sched/clock.h>
49 #include <linux/sched/debug.h>
50 #include <linux/sched/task_stack.h>
51 
52 #include <linux/uaccess.h>
53 #include <asm/sections.h>
54 
55 #define CREATE_TRACE_POINTS
56 #include <trace/events/printk.h>
57 
58 #include "console_cmdline.h"
59 #include "braille.h"
60 #include "internal.h"
61 
62 int console_printk[4] = {
63 	CONSOLE_LOGLEVEL_DEFAULT,	/* console_loglevel */
64 	MESSAGE_LOGLEVEL_DEFAULT,	/* default_message_loglevel */
65 	CONSOLE_LOGLEVEL_MIN,		/* minimum_console_loglevel */
66 	CONSOLE_LOGLEVEL_DEFAULT,	/* default_console_loglevel */
67 };
68 
69 /*
70  * Low level drivers may need that to know if they can schedule in
71  * their unblank() callback or not. So let's export it.
72  */
73 int oops_in_progress;
74 EXPORT_SYMBOL(oops_in_progress);
75 
76 /*
77  * console_sem protects the console_drivers list, and also
78  * provides serialisation for access to the entire console
79  * driver system.
80  */
81 static DEFINE_SEMAPHORE(console_sem);
82 struct console *console_drivers;
83 EXPORT_SYMBOL_GPL(console_drivers);
84 
85 #ifdef CONFIG_LOCKDEP
86 static struct lockdep_map console_lock_dep_map = {
87 	.name = "console_lock"
88 };
89 #endif
90 
91 enum devkmsg_log_bits {
92 	__DEVKMSG_LOG_BIT_ON = 0,
93 	__DEVKMSG_LOG_BIT_OFF,
94 	__DEVKMSG_LOG_BIT_LOCK,
95 };
96 
97 enum devkmsg_log_masks {
98 	DEVKMSG_LOG_MASK_ON             = BIT(__DEVKMSG_LOG_BIT_ON),
99 	DEVKMSG_LOG_MASK_OFF            = BIT(__DEVKMSG_LOG_BIT_OFF),
100 	DEVKMSG_LOG_MASK_LOCK           = BIT(__DEVKMSG_LOG_BIT_LOCK),
101 };
102 
103 /* Keep both the 'on' and 'off' bits clear, i.e. ratelimit by default: */
104 #define DEVKMSG_LOG_MASK_DEFAULT	0
105 
106 static unsigned int __read_mostly devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT;
107 
108 static int __control_devkmsg(char *str)
109 {
110 	if (!str)
111 		return -EINVAL;
112 
113 	if (!strncmp(str, "on", 2)) {
114 		devkmsg_log = DEVKMSG_LOG_MASK_ON;
115 		return 2;
116 	} else if (!strncmp(str, "off", 3)) {
117 		devkmsg_log = DEVKMSG_LOG_MASK_OFF;
118 		return 3;
119 	} else if (!strncmp(str, "ratelimit", 9)) {
120 		devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT;
121 		return 9;
122 	}
123 	return -EINVAL;
124 }
125 
126 static int __init control_devkmsg(char *str)
127 {
128 	if (__control_devkmsg(str) < 0)
129 		return 1;
130 
131 	/*
132 	 * Set sysctl string accordingly:
133 	 */
134 	if (devkmsg_log == DEVKMSG_LOG_MASK_ON) {
135 		memset(devkmsg_log_str, 0, DEVKMSG_STR_MAX_SIZE);
136 		strncpy(devkmsg_log_str, "on", 2);
137 	} else if (devkmsg_log == DEVKMSG_LOG_MASK_OFF) {
138 		memset(devkmsg_log_str, 0, DEVKMSG_STR_MAX_SIZE);
139 		strncpy(devkmsg_log_str, "off", 3);
140 	}
141 	/* else "ratelimit" which is set by default. */
142 
143 	/*
144 	 * Sysctl cannot change it anymore. The kernel command line setting of
145 	 * this parameter is to force the setting to be permanent throughout the
146 	 * runtime of the system. This is a precation measure against userspace
147 	 * trying to be a smarta** and attempting to change it up on us.
148 	 */
149 	devkmsg_log |= DEVKMSG_LOG_MASK_LOCK;
150 
151 	return 0;
152 }
153 __setup("printk.devkmsg=", control_devkmsg);
154 
155 char devkmsg_log_str[DEVKMSG_STR_MAX_SIZE] = "ratelimit";
156 
157 int devkmsg_sysctl_set_loglvl(struct ctl_table *table, int write,
158 			      void __user *buffer, size_t *lenp, loff_t *ppos)
159 {
160 	char old_str[DEVKMSG_STR_MAX_SIZE];
161 	unsigned int old;
162 	int err;
163 
164 	if (write) {
165 		if (devkmsg_log & DEVKMSG_LOG_MASK_LOCK)
166 			return -EINVAL;
167 
168 		old = devkmsg_log;
169 		strncpy(old_str, devkmsg_log_str, DEVKMSG_STR_MAX_SIZE);
170 	}
171 
172 	err = proc_dostring(table, write, buffer, lenp, ppos);
173 	if (err)
174 		return err;
175 
176 	if (write) {
177 		err = __control_devkmsg(devkmsg_log_str);
178 
179 		/*
180 		 * Do not accept an unknown string OR a known string with
181 		 * trailing crap...
182 		 */
183 		if (err < 0 || (err + 1 != *lenp)) {
184 
185 			/* ... and restore old setting. */
186 			devkmsg_log = old;
187 			strncpy(devkmsg_log_str, old_str, DEVKMSG_STR_MAX_SIZE);
188 
189 			return -EINVAL;
190 		}
191 	}
192 
193 	return 0;
194 }
195 
196 /*
197  * Number of registered extended console drivers.
198  *
199  * If extended consoles are present, in-kernel cont reassembly is disabled
200  * and each fragment is stored as a separate log entry with proper
201  * continuation flag so that every emitted message has full metadata.  This
202  * doesn't change the result for regular consoles or /proc/kmsg.  For
203  * /dev/kmsg, as long as the reader concatenates messages according to
204  * consecutive continuation flags, the end result should be the same too.
205  */
206 static int nr_ext_console_drivers;
207 
208 /*
209  * Helper macros to handle lockdep when locking/unlocking console_sem. We use
210  * macros instead of functions so that _RET_IP_ contains useful information.
211  */
212 #define down_console_sem() do { \
213 	down(&console_sem);\
214 	mutex_acquire(&console_lock_dep_map, 0, 0, _RET_IP_);\
215 } while (0)
216 
217 static int __down_trylock_console_sem(unsigned long ip)
218 {
219 	int lock_failed;
220 	unsigned long flags;
221 
222 	/*
223 	 * Here and in __up_console_sem() we need to be in safe mode,
224 	 * because spindump/WARN/etc from under console ->lock will
225 	 * deadlock in printk()->down_trylock_console_sem() otherwise.
226 	 */
227 	printk_safe_enter_irqsave(flags);
228 	lock_failed = down_trylock(&console_sem);
229 	printk_safe_exit_irqrestore(flags);
230 
231 	if (lock_failed)
232 		return 1;
233 	mutex_acquire(&console_lock_dep_map, 0, 1, ip);
234 	return 0;
235 }
236 #define down_trylock_console_sem() __down_trylock_console_sem(_RET_IP_)
237 
238 static void __up_console_sem(unsigned long ip)
239 {
240 	unsigned long flags;
241 
242 	mutex_release(&console_lock_dep_map, 1, ip);
243 
244 	printk_safe_enter_irqsave(flags);
245 	up(&console_sem);
246 	printk_safe_exit_irqrestore(flags);
247 }
248 #define up_console_sem() __up_console_sem(_RET_IP_)
249 
250 /*
251  * This is used for debugging the mess that is the VT code by
252  * keeping track if we have the console semaphore held. It's
253  * definitely not the perfect debug tool (we don't know if _WE_
254  * hold it and are racing, but it helps tracking those weird code
255  * paths in the console code where we end up in places I want
256  * locked without the console sempahore held).
257  */
258 static int console_locked, console_suspended;
259 
260 /*
261  * If exclusive_console is non-NULL then only this console is to be printed to.
262  */
263 static struct console *exclusive_console;
264 
265 /*
266  *	Array of consoles built from command line options (console=)
267  */
268 
269 #define MAX_CMDLINECONSOLES 8
270 
271 static struct console_cmdline console_cmdline[MAX_CMDLINECONSOLES];
272 
273 static int preferred_console = -1;
274 int console_set_on_cmdline;
275 EXPORT_SYMBOL(console_set_on_cmdline);
276 
277 /* Flag: console code may call schedule() */
278 static int console_may_schedule;
279 
280 /*
281  * The printk log buffer consists of a chain of concatenated variable
282  * length records. Every record starts with a record header, containing
283  * the overall length of the record.
284  *
285  * The heads to the first and last entry in the buffer, as well as the
286  * sequence numbers of these entries are maintained when messages are
287  * stored.
288  *
289  * If the heads indicate available messages, the length in the header
290  * tells the start next message. A length == 0 for the next message
291  * indicates a wrap-around to the beginning of the buffer.
292  *
293  * Every record carries the monotonic timestamp in microseconds, as well as
294  * the standard userspace syslog level and syslog facility. The usual
295  * kernel messages use LOG_KERN; userspace-injected messages always carry
296  * a matching syslog facility, by default LOG_USER. The origin of every
297  * message can be reliably determined that way.
298  *
299  * The human readable log message directly follows the message header. The
300  * length of the message text is stored in the header, the stored message
301  * is not terminated.
302  *
303  * Optionally, a message can carry a dictionary of properties (key/value pairs),
304  * to provide userspace with a machine-readable message context.
305  *
306  * Examples for well-defined, commonly used property names are:
307  *   DEVICE=b12:8               device identifier
308  *                                b12:8         block dev_t
309  *                                c127:3        char dev_t
310  *                                n8            netdev ifindex
311  *                                +sound:card0  subsystem:devname
312  *   SUBSYSTEM=pci              driver-core subsystem name
313  *
314  * Valid characters in property names are [a-zA-Z0-9.-_]. The plain text value
315  * follows directly after a '=' character. Every property is terminated by
316  * a '\0' character. The last property is not terminated.
317  *
318  * Example of a message structure:
319  *   0000  ff 8f 00 00 00 00 00 00      monotonic time in nsec
320  *   0008  34 00                        record is 52 bytes long
321  *   000a        0b 00                  text is 11 bytes long
322  *   000c              1f 00            dictionary is 23 bytes long
323  *   000e                    03 00      LOG_KERN (facility) LOG_ERR (level)
324  *   0010  69 74 27 73 20 61 20 6c      "it's a l"
325  *         69 6e 65                     "ine"
326  *   001b           44 45 56 49 43      "DEVIC"
327  *         45 3d 62 38 3a 32 00 44      "E=b8:2\0D"
328  *         52 49 56 45 52 3d 62 75      "RIVER=bu"
329  *         67                           "g"
330  *   0032     00 00 00                  padding to next message header
331  *
332  * The 'struct printk_log' buffer header must never be directly exported to
333  * userspace, it is a kernel-private implementation detail that might
334  * need to be changed in the future, when the requirements change.
335  *
336  * /dev/kmsg exports the structured data in the following line format:
337  *   "<level>,<sequnum>,<timestamp>,<contflag>[,additional_values, ... ];<message text>\n"
338  *
339  * Users of the export format should ignore possible additional values
340  * separated by ',', and find the message after the ';' character.
341  *
342  * The optional key/value pairs are attached as continuation lines starting
343  * with a space character and terminated by a newline. All possible
344  * non-prinatable characters are escaped in the "\xff" notation.
345  */
346 
347 enum log_flags {
348 	LOG_NOCONS	= 1,	/* already flushed, do not print to console */
349 	LOG_NEWLINE	= 2,	/* text ended with a newline */
350 	LOG_PREFIX	= 4,	/* text started with a prefix */
351 	LOG_CONT	= 8,	/* text is a fragment of a continuation line */
352 };
353 
354 struct printk_log {
355 	u64 ts_nsec;		/* timestamp in nanoseconds */
356 	u16 len;		/* length of entire record */
357 	u16 text_len;		/* length of text buffer */
358 	u16 dict_len;		/* length of dictionary buffer */
359 	u8 facility;		/* syslog facility */
360 	u8 flags:5;		/* internal record flags */
361 	u8 level:3;		/* syslog level */
362 }
363 #ifdef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
364 __packed __aligned(4)
365 #endif
366 ;
367 
368 /*
369  * The logbuf_lock protects kmsg buffer, indices, counters.  This can be taken
370  * within the scheduler's rq lock. It must be released before calling
371  * console_unlock() or anything else that might wake up a process.
372  */
373 DEFINE_RAW_SPINLOCK(logbuf_lock);
374 
375 /*
376  * Helper macros to lock/unlock logbuf_lock and switch between
377  * printk-safe/unsafe modes.
378  */
379 #define logbuf_lock_irq()				\
380 	do {						\
381 		printk_safe_enter_irq();		\
382 		raw_spin_lock(&logbuf_lock);		\
383 	} while (0)
384 
385 #define logbuf_unlock_irq()				\
386 	do {						\
387 		raw_spin_unlock(&logbuf_lock);		\
388 		printk_safe_exit_irq();			\
389 	} while (0)
390 
391 #define logbuf_lock_irqsave(flags)			\
392 	do {						\
393 		printk_safe_enter_irqsave(flags);	\
394 		raw_spin_lock(&logbuf_lock);		\
395 	} while (0)
396 
397 #define logbuf_unlock_irqrestore(flags)		\
398 	do {						\
399 		raw_spin_unlock(&logbuf_lock);		\
400 		printk_safe_exit_irqrestore(flags);	\
401 	} while (0)
402 
403 #ifdef CONFIG_PRINTK
404 DECLARE_WAIT_QUEUE_HEAD(log_wait);
405 /* the next printk record to read by syslog(READ) or /proc/kmsg */
406 static u64 syslog_seq;
407 static u32 syslog_idx;
408 static size_t syslog_partial;
409 
410 /* index and sequence number of the first record stored in the buffer */
411 static u64 log_first_seq;
412 static u32 log_first_idx;
413 
414 /* index and sequence number of the next record to store in the buffer */
415 static u64 log_next_seq;
416 static u32 log_next_idx;
417 
418 /* the next printk record to write to the console */
419 static u64 console_seq;
420 static u32 console_idx;
421 
422 /* the next printk record to read after the last 'clear' command */
423 static u64 clear_seq;
424 static u32 clear_idx;
425 
426 #define PREFIX_MAX		32
427 #define LOG_LINE_MAX		(1024 - PREFIX_MAX)
428 
429 #define LOG_LEVEL(v)		((v) & 0x07)
430 #define LOG_FACILITY(v)		((v) >> 3 & 0xff)
431 
432 /* record buffer */
433 #define LOG_ALIGN __alignof__(struct printk_log)
434 #define __LOG_BUF_LEN (1 << CONFIG_LOG_BUF_SHIFT)
435 static char __log_buf[__LOG_BUF_LEN] __aligned(LOG_ALIGN);
436 static char *log_buf = __log_buf;
437 static u32 log_buf_len = __LOG_BUF_LEN;
438 
439 /* Return log buffer address */
440 char *log_buf_addr_get(void)
441 {
442 	return log_buf;
443 }
444 
445 /* Return log buffer size */
446 u32 log_buf_len_get(void)
447 {
448 	return log_buf_len;
449 }
450 
451 /* human readable text of the record */
452 static char *log_text(const struct printk_log *msg)
453 {
454 	return (char *)msg + sizeof(struct printk_log);
455 }
456 
457 /* optional key/value pair dictionary attached to the record */
458 static char *log_dict(const struct printk_log *msg)
459 {
460 	return (char *)msg + sizeof(struct printk_log) + msg->text_len;
461 }
462 
463 /* get record by index; idx must point to valid msg */
464 static struct printk_log *log_from_idx(u32 idx)
465 {
466 	struct printk_log *msg = (struct printk_log *)(log_buf + idx);
467 
468 	/*
469 	 * A length == 0 record is the end of buffer marker. Wrap around and
470 	 * read the message at the start of the buffer.
471 	 */
472 	if (!msg->len)
473 		return (struct printk_log *)log_buf;
474 	return msg;
475 }
476 
477 /* get next record; idx must point to valid msg */
478 static u32 log_next(u32 idx)
479 {
480 	struct printk_log *msg = (struct printk_log *)(log_buf + idx);
481 
482 	/* length == 0 indicates the end of the buffer; wrap */
483 	/*
484 	 * A length == 0 record is the end of buffer marker. Wrap around and
485 	 * read the message at the start of the buffer as *this* one, and
486 	 * return the one after that.
487 	 */
488 	if (!msg->len) {
489 		msg = (struct printk_log *)log_buf;
490 		return msg->len;
491 	}
492 	return idx + msg->len;
493 }
494 
495 /*
496  * Check whether there is enough free space for the given message.
497  *
498  * The same values of first_idx and next_idx mean that the buffer
499  * is either empty or full.
500  *
501  * If the buffer is empty, we must respect the position of the indexes.
502  * They cannot be reset to the beginning of the buffer.
503  */
504 static int logbuf_has_space(u32 msg_size, bool empty)
505 {
506 	u32 free;
507 
508 	if (log_next_idx > log_first_idx || empty)
509 		free = max(log_buf_len - log_next_idx, log_first_idx);
510 	else
511 		free = log_first_idx - log_next_idx;
512 
513 	/*
514 	 * We need space also for an empty header that signalizes wrapping
515 	 * of the buffer.
516 	 */
517 	return free >= msg_size + sizeof(struct printk_log);
518 }
519 
520 static int log_make_free_space(u32 msg_size)
521 {
522 	while (log_first_seq < log_next_seq &&
523 	       !logbuf_has_space(msg_size, false)) {
524 		/* drop old messages until we have enough contiguous space */
525 		log_first_idx = log_next(log_first_idx);
526 		log_first_seq++;
527 	}
528 
529 	if (clear_seq < log_first_seq) {
530 		clear_seq = log_first_seq;
531 		clear_idx = log_first_idx;
532 	}
533 
534 	/* sequence numbers are equal, so the log buffer is empty */
535 	if (logbuf_has_space(msg_size, log_first_seq == log_next_seq))
536 		return 0;
537 
538 	return -ENOMEM;
539 }
540 
541 /* compute the message size including the padding bytes */
542 static u32 msg_used_size(u16 text_len, u16 dict_len, u32 *pad_len)
543 {
544 	u32 size;
545 
546 	size = sizeof(struct printk_log) + text_len + dict_len;
547 	*pad_len = (-size) & (LOG_ALIGN - 1);
548 	size += *pad_len;
549 
550 	return size;
551 }
552 
553 /*
554  * Define how much of the log buffer we could take at maximum. The value
555  * must be greater than two. Note that only half of the buffer is available
556  * when the index points to the middle.
557  */
558 #define MAX_LOG_TAKE_PART 4
559 static const char trunc_msg[] = "<truncated>";
560 
561 static u32 truncate_msg(u16 *text_len, u16 *trunc_msg_len,
562 			u16 *dict_len, u32 *pad_len)
563 {
564 	/*
565 	 * The message should not take the whole buffer. Otherwise, it might
566 	 * get removed too soon.
567 	 */
568 	u32 max_text_len = log_buf_len / MAX_LOG_TAKE_PART;
569 	if (*text_len > max_text_len)
570 		*text_len = max_text_len;
571 	/* enable the warning message */
572 	*trunc_msg_len = strlen(trunc_msg);
573 	/* disable the "dict" completely */
574 	*dict_len = 0;
575 	/* compute the size again, count also the warning message */
576 	return msg_used_size(*text_len + *trunc_msg_len, 0, pad_len);
577 }
578 
579 /* insert record into the buffer, discard old ones, update heads */
580 static int log_store(int facility, int level,
581 		     enum log_flags flags, u64 ts_nsec,
582 		     const char *dict, u16 dict_len,
583 		     const char *text, u16 text_len)
584 {
585 	struct printk_log *msg;
586 	u32 size, pad_len;
587 	u16 trunc_msg_len = 0;
588 
589 	/* number of '\0' padding bytes to next message */
590 	size = msg_used_size(text_len, dict_len, &pad_len);
591 
592 	if (log_make_free_space(size)) {
593 		/* truncate the message if it is too long for empty buffer */
594 		size = truncate_msg(&text_len, &trunc_msg_len,
595 				    &dict_len, &pad_len);
596 		/* survive when the log buffer is too small for trunc_msg */
597 		if (log_make_free_space(size))
598 			return 0;
599 	}
600 
601 	if (log_next_idx + size + sizeof(struct printk_log) > log_buf_len) {
602 		/*
603 		 * This message + an additional empty header does not fit
604 		 * at the end of the buffer. Add an empty header with len == 0
605 		 * to signify a wrap around.
606 		 */
607 		memset(log_buf + log_next_idx, 0, sizeof(struct printk_log));
608 		log_next_idx = 0;
609 	}
610 
611 	/* fill message */
612 	msg = (struct printk_log *)(log_buf + log_next_idx);
613 	memcpy(log_text(msg), text, text_len);
614 	msg->text_len = text_len;
615 	if (trunc_msg_len) {
616 		memcpy(log_text(msg) + text_len, trunc_msg, trunc_msg_len);
617 		msg->text_len += trunc_msg_len;
618 	}
619 	memcpy(log_dict(msg), dict, dict_len);
620 	msg->dict_len = dict_len;
621 	msg->facility = facility;
622 	msg->level = level & 7;
623 	msg->flags = flags & 0x1f;
624 	if (ts_nsec > 0)
625 		msg->ts_nsec = ts_nsec;
626 	else
627 		msg->ts_nsec = local_clock();
628 	memset(log_dict(msg) + dict_len, 0, pad_len);
629 	msg->len = size;
630 
631 	/* insert message */
632 	log_next_idx += msg->len;
633 	log_next_seq++;
634 
635 	return msg->text_len;
636 }
637 
638 int dmesg_restrict = IS_ENABLED(CONFIG_SECURITY_DMESG_RESTRICT);
639 
640 static int syslog_action_restricted(int type)
641 {
642 	if (dmesg_restrict)
643 		return 1;
644 	/*
645 	 * Unless restricted, we allow "read all" and "get buffer size"
646 	 * for everybody.
647 	 */
648 	return type != SYSLOG_ACTION_READ_ALL &&
649 	       type != SYSLOG_ACTION_SIZE_BUFFER;
650 }
651 
652 int check_syslog_permissions(int type, int source)
653 {
654 	/*
655 	 * If this is from /proc/kmsg and we've already opened it, then we've
656 	 * already done the capabilities checks at open time.
657 	 */
658 	if (source == SYSLOG_FROM_PROC && type != SYSLOG_ACTION_OPEN)
659 		goto ok;
660 
661 	if (syslog_action_restricted(type)) {
662 		if (capable(CAP_SYSLOG))
663 			goto ok;
664 		/*
665 		 * For historical reasons, accept CAP_SYS_ADMIN too, with
666 		 * a warning.
667 		 */
668 		if (capable(CAP_SYS_ADMIN)) {
669 			pr_warn_once("%s (%d): Attempt to access syslog with "
670 				     "CAP_SYS_ADMIN but no CAP_SYSLOG "
671 				     "(deprecated).\n",
672 				 current->comm, task_pid_nr(current));
673 			goto ok;
674 		}
675 		return -EPERM;
676 	}
677 ok:
678 	return security_syslog(type);
679 }
680 EXPORT_SYMBOL_GPL(check_syslog_permissions);
681 
682 static void append_char(char **pp, char *e, char c)
683 {
684 	if (*pp < e)
685 		*(*pp)++ = c;
686 }
687 
688 static ssize_t msg_print_ext_header(char *buf, size_t size,
689 				    struct printk_log *msg, u64 seq)
690 {
691 	u64 ts_usec = msg->ts_nsec;
692 
693 	do_div(ts_usec, 1000);
694 
695 	return scnprintf(buf, size, "%u,%llu,%llu,%c;",
696 		       (msg->facility << 3) | msg->level, seq, ts_usec,
697 		       msg->flags & LOG_CONT ? 'c' : '-');
698 }
699 
700 static ssize_t msg_print_ext_body(char *buf, size_t size,
701 				  char *dict, size_t dict_len,
702 				  char *text, size_t text_len)
703 {
704 	char *p = buf, *e = buf + size;
705 	size_t i;
706 
707 	/* escape non-printable characters */
708 	for (i = 0; i < text_len; i++) {
709 		unsigned char c = text[i];
710 
711 		if (c < ' ' || c >= 127 || c == '\\')
712 			p += scnprintf(p, e - p, "\\x%02x", c);
713 		else
714 			append_char(&p, e, c);
715 	}
716 	append_char(&p, e, '\n');
717 
718 	if (dict_len) {
719 		bool line = true;
720 
721 		for (i = 0; i < dict_len; i++) {
722 			unsigned char c = dict[i];
723 
724 			if (line) {
725 				append_char(&p, e, ' ');
726 				line = false;
727 			}
728 
729 			if (c == '\0') {
730 				append_char(&p, e, '\n');
731 				line = true;
732 				continue;
733 			}
734 
735 			if (c < ' ' || c >= 127 || c == '\\') {
736 				p += scnprintf(p, e - p, "\\x%02x", c);
737 				continue;
738 			}
739 
740 			append_char(&p, e, c);
741 		}
742 		append_char(&p, e, '\n');
743 	}
744 
745 	return p - buf;
746 }
747 
748 /* /dev/kmsg - userspace message inject/listen interface */
749 struct devkmsg_user {
750 	u64 seq;
751 	u32 idx;
752 	struct ratelimit_state rs;
753 	struct mutex lock;
754 	char buf[CONSOLE_EXT_LOG_MAX];
755 };
756 
757 static ssize_t devkmsg_write(struct kiocb *iocb, struct iov_iter *from)
758 {
759 	char *buf, *line;
760 	int level = default_message_loglevel;
761 	int facility = 1;	/* LOG_USER */
762 	struct file *file = iocb->ki_filp;
763 	struct devkmsg_user *user = file->private_data;
764 	size_t len = iov_iter_count(from);
765 	ssize_t ret = len;
766 
767 	if (!user || len > LOG_LINE_MAX)
768 		return -EINVAL;
769 
770 	/* Ignore when user logging is disabled. */
771 	if (devkmsg_log & DEVKMSG_LOG_MASK_OFF)
772 		return len;
773 
774 	/* Ratelimit when not explicitly enabled. */
775 	if (!(devkmsg_log & DEVKMSG_LOG_MASK_ON)) {
776 		if (!___ratelimit(&user->rs, current->comm))
777 			return ret;
778 	}
779 
780 	buf = kmalloc(len+1, GFP_KERNEL);
781 	if (buf == NULL)
782 		return -ENOMEM;
783 
784 	buf[len] = '\0';
785 	if (!copy_from_iter_full(buf, len, from)) {
786 		kfree(buf);
787 		return -EFAULT;
788 	}
789 
790 	/*
791 	 * Extract and skip the syslog prefix <[0-9]*>. Coming from userspace
792 	 * the decimal value represents 32bit, the lower 3 bit are the log
793 	 * level, the rest are the log facility.
794 	 *
795 	 * If no prefix or no userspace facility is specified, we
796 	 * enforce LOG_USER, to be able to reliably distinguish
797 	 * kernel-generated messages from userspace-injected ones.
798 	 */
799 	line = buf;
800 	if (line[0] == '<') {
801 		char *endp = NULL;
802 		unsigned int u;
803 
804 		u = simple_strtoul(line + 1, &endp, 10);
805 		if (endp && endp[0] == '>') {
806 			level = LOG_LEVEL(u);
807 			if (LOG_FACILITY(u) != 0)
808 				facility = LOG_FACILITY(u);
809 			endp++;
810 			len -= endp - line;
811 			line = endp;
812 		}
813 	}
814 
815 	printk_emit(facility, level, NULL, 0, "%s", line);
816 	kfree(buf);
817 	return ret;
818 }
819 
820 static ssize_t devkmsg_read(struct file *file, char __user *buf,
821 			    size_t count, loff_t *ppos)
822 {
823 	struct devkmsg_user *user = file->private_data;
824 	struct printk_log *msg;
825 	size_t len;
826 	ssize_t ret;
827 
828 	if (!user)
829 		return -EBADF;
830 
831 	ret = mutex_lock_interruptible(&user->lock);
832 	if (ret)
833 		return ret;
834 
835 	logbuf_lock_irq();
836 	while (user->seq == log_next_seq) {
837 		if (file->f_flags & O_NONBLOCK) {
838 			ret = -EAGAIN;
839 			logbuf_unlock_irq();
840 			goto out;
841 		}
842 
843 		logbuf_unlock_irq();
844 		ret = wait_event_interruptible(log_wait,
845 					       user->seq != log_next_seq);
846 		if (ret)
847 			goto out;
848 		logbuf_lock_irq();
849 	}
850 
851 	if (user->seq < log_first_seq) {
852 		/* our last seen message is gone, return error and reset */
853 		user->idx = log_first_idx;
854 		user->seq = log_first_seq;
855 		ret = -EPIPE;
856 		logbuf_unlock_irq();
857 		goto out;
858 	}
859 
860 	msg = log_from_idx(user->idx);
861 	len = msg_print_ext_header(user->buf, sizeof(user->buf),
862 				   msg, user->seq);
863 	len += msg_print_ext_body(user->buf + len, sizeof(user->buf) - len,
864 				  log_dict(msg), msg->dict_len,
865 				  log_text(msg), msg->text_len);
866 
867 	user->idx = log_next(user->idx);
868 	user->seq++;
869 	logbuf_unlock_irq();
870 
871 	if (len > count) {
872 		ret = -EINVAL;
873 		goto out;
874 	}
875 
876 	if (copy_to_user(buf, user->buf, len)) {
877 		ret = -EFAULT;
878 		goto out;
879 	}
880 	ret = len;
881 out:
882 	mutex_unlock(&user->lock);
883 	return ret;
884 }
885 
886 static loff_t devkmsg_llseek(struct file *file, loff_t offset, int whence)
887 {
888 	struct devkmsg_user *user = file->private_data;
889 	loff_t ret = 0;
890 
891 	if (!user)
892 		return -EBADF;
893 	if (offset)
894 		return -ESPIPE;
895 
896 	logbuf_lock_irq();
897 	switch (whence) {
898 	case SEEK_SET:
899 		/* the first record */
900 		user->idx = log_first_idx;
901 		user->seq = log_first_seq;
902 		break;
903 	case SEEK_DATA:
904 		/*
905 		 * The first record after the last SYSLOG_ACTION_CLEAR,
906 		 * like issued by 'dmesg -c'. Reading /dev/kmsg itself
907 		 * changes no global state, and does not clear anything.
908 		 */
909 		user->idx = clear_idx;
910 		user->seq = clear_seq;
911 		break;
912 	case SEEK_END:
913 		/* after the last record */
914 		user->idx = log_next_idx;
915 		user->seq = log_next_seq;
916 		break;
917 	default:
918 		ret = -EINVAL;
919 	}
920 	logbuf_unlock_irq();
921 	return ret;
922 }
923 
924 static unsigned int devkmsg_poll(struct file *file, poll_table *wait)
925 {
926 	struct devkmsg_user *user = file->private_data;
927 	int ret = 0;
928 
929 	if (!user)
930 		return POLLERR|POLLNVAL;
931 
932 	poll_wait(file, &log_wait, wait);
933 
934 	logbuf_lock_irq();
935 	if (user->seq < log_next_seq) {
936 		/* return error when data has vanished underneath us */
937 		if (user->seq < log_first_seq)
938 			ret = POLLIN|POLLRDNORM|POLLERR|POLLPRI;
939 		else
940 			ret = POLLIN|POLLRDNORM;
941 	}
942 	logbuf_unlock_irq();
943 
944 	return ret;
945 }
946 
947 static int devkmsg_open(struct inode *inode, struct file *file)
948 {
949 	struct devkmsg_user *user;
950 	int err;
951 
952 	if (devkmsg_log & DEVKMSG_LOG_MASK_OFF)
953 		return -EPERM;
954 
955 	/* write-only does not need any file context */
956 	if ((file->f_flags & O_ACCMODE) != O_WRONLY) {
957 		err = check_syslog_permissions(SYSLOG_ACTION_READ_ALL,
958 					       SYSLOG_FROM_READER);
959 		if (err)
960 			return err;
961 	}
962 
963 	user = kmalloc(sizeof(struct devkmsg_user), GFP_KERNEL);
964 	if (!user)
965 		return -ENOMEM;
966 
967 	ratelimit_default_init(&user->rs);
968 	ratelimit_set_flags(&user->rs, RATELIMIT_MSG_ON_RELEASE);
969 
970 	mutex_init(&user->lock);
971 
972 	logbuf_lock_irq();
973 	user->idx = log_first_idx;
974 	user->seq = log_first_seq;
975 	logbuf_unlock_irq();
976 
977 	file->private_data = user;
978 	return 0;
979 }
980 
981 static int devkmsg_release(struct inode *inode, struct file *file)
982 {
983 	struct devkmsg_user *user = file->private_data;
984 
985 	if (!user)
986 		return 0;
987 
988 	ratelimit_state_exit(&user->rs);
989 
990 	mutex_destroy(&user->lock);
991 	kfree(user);
992 	return 0;
993 }
994 
995 const struct file_operations kmsg_fops = {
996 	.open = devkmsg_open,
997 	.read = devkmsg_read,
998 	.write_iter = devkmsg_write,
999 	.llseek = devkmsg_llseek,
1000 	.poll = devkmsg_poll,
1001 	.release = devkmsg_release,
1002 };
1003 
1004 #ifdef CONFIG_CRASH_CORE
1005 /*
1006  * This appends the listed symbols to /proc/vmcore
1007  *
1008  * /proc/vmcore is used by various utilities, like crash and makedumpfile to
1009  * obtain access to symbols that are otherwise very difficult to locate.  These
1010  * symbols are specifically used so that utilities can access and extract the
1011  * dmesg log from a vmcore file after a crash.
1012  */
1013 void log_buf_vmcoreinfo_setup(void)
1014 {
1015 	VMCOREINFO_SYMBOL(log_buf);
1016 	VMCOREINFO_SYMBOL(log_buf_len);
1017 	VMCOREINFO_SYMBOL(log_first_idx);
1018 	VMCOREINFO_SYMBOL(clear_idx);
1019 	VMCOREINFO_SYMBOL(log_next_idx);
1020 	/*
1021 	 * Export struct printk_log size and field offsets. User space tools can
1022 	 * parse it and detect any changes to structure down the line.
1023 	 */
1024 	VMCOREINFO_STRUCT_SIZE(printk_log);
1025 	VMCOREINFO_OFFSET(printk_log, ts_nsec);
1026 	VMCOREINFO_OFFSET(printk_log, len);
1027 	VMCOREINFO_OFFSET(printk_log, text_len);
1028 	VMCOREINFO_OFFSET(printk_log, dict_len);
1029 }
1030 #endif
1031 
1032 /* requested log_buf_len from kernel cmdline */
1033 static unsigned long __initdata new_log_buf_len;
1034 
1035 /* we practice scaling the ring buffer by powers of 2 */
1036 static void __init log_buf_len_update(unsigned size)
1037 {
1038 	if (size)
1039 		size = roundup_pow_of_two(size);
1040 	if (size > log_buf_len)
1041 		new_log_buf_len = size;
1042 }
1043 
1044 /* save requested log_buf_len since it's too early to process it */
1045 static int __init log_buf_len_setup(char *str)
1046 {
1047 	unsigned size = memparse(str, &str);
1048 
1049 	log_buf_len_update(size);
1050 
1051 	return 0;
1052 }
1053 early_param("log_buf_len", log_buf_len_setup);
1054 
1055 #ifdef CONFIG_SMP
1056 #define __LOG_CPU_MAX_BUF_LEN (1 << CONFIG_LOG_CPU_MAX_BUF_SHIFT)
1057 
1058 static void __init log_buf_add_cpu(void)
1059 {
1060 	unsigned int cpu_extra;
1061 
1062 	/*
1063 	 * archs should set up cpu_possible_bits properly with
1064 	 * set_cpu_possible() after setup_arch() but just in
1065 	 * case lets ensure this is valid.
1066 	 */
1067 	if (num_possible_cpus() == 1)
1068 		return;
1069 
1070 	cpu_extra = (num_possible_cpus() - 1) * __LOG_CPU_MAX_BUF_LEN;
1071 
1072 	/* by default this will only continue through for large > 64 CPUs */
1073 	if (cpu_extra <= __LOG_BUF_LEN / 2)
1074 		return;
1075 
1076 	pr_info("log_buf_len individual max cpu contribution: %d bytes\n",
1077 		__LOG_CPU_MAX_BUF_LEN);
1078 	pr_info("log_buf_len total cpu_extra contributions: %d bytes\n",
1079 		cpu_extra);
1080 	pr_info("log_buf_len min size: %d bytes\n", __LOG_BUF_LEN);
1081 
1082 	log_buf_len_update(cpu_extra + __LOG_BUF_LEN);
1083 }
1084 #else /* !CONFIG_SMP */
1085 static inline void log_buf_add_cpu(void) {}
1086 #endif /* CONFIG_SMP */
1087 
1088 void __init setup_log_buf(int early)
1089 {
1090 	unsigned long flags;
1091 	char *new_log_buf;
1092 	int free;
1093 
1094 	if (log_buf != __log_buf)
1095 		return;
1096 
1097 	if (!early && !new_log_buf_len)
1098 		log_buf_add_cpu();
1099 
1100 	if (!new_log_buf_len)
1101 		return;
1102 
1103 	if (early) {
1104 		new_log_buf =
1105 			memblock_virt_alloc(new_log_buf_len, LOG_ALIGN);
1106 	} else {
1107 		new_log_buf = memblock_virt_alloc_nopanic(new_log_buf_len,
1108 							  LOG_ALIGN);
1109 	}
1110 
1111 	if (unlikely(!new_log_buf)) {
1112 		pr_err("log_buf_len: %ld bytes not available\n",
1113 			new_log_buf_len);
1114 		return;
1115 	}
1116 
1117 	logbuf_lock_irqsave(flags);
1118 	log_buf_len = new_log_buf_len;
1119 	log_buf = new_log_buf;
1120 	new_log_buf_len = 0;
1121 	free = __LOG_BUF_LEN - log_next_idx;
1122 	memcpy(log_buf, __log_buf, __LOG_BUF_LEN);
1123 	logbuf_unlock_irqrestore(flags);
1124 
1125 	pr_info("log_buf_len: %d bytes\n", log_buf_len);
1126 	pr_info("early log buf free: %d(%d%%)\n",
1127 		free, (free * 100) / __LOG_BUF_LEN);
1128 }
1129 
1130 static bool __read_mostly ignore_loglevel;
1131 
1132 static int __init ignore_loglevel_setup(char *str)
1133 {
1134 	ignore_loglevel = true;
1135 	pr_info("debug: ignoring loglevel setting.\n");
1136 
1137 	return 0;
1138 }
1139 
1140 early_param("ignore_loglevel", ignore_loglevel_setup);
1141 module_param(ignore_loglevel, bool, S_IRUGO | S_IWUSR);
1142 MODULE_PARM_DESC(ignore_loglevel,
1143 		 "ignore loglevel setting (prints all kernel messages to the console)");
1144 
1145 static bool suppress_message_printing(int level)
1146 {
1147 	return (level >= console_loglevel && !ignore_loglevel);
1148 }
1149 
1150 #ifdef CONFIG_BOOT_PRINTK_DELAY
1151 
1152 static int boot_delay; /* msecs delay after each printk during bootup */
1153 static unsigned long long loops_per_msec;	/* based on boot_delay */
1154 
1155 static int __init boot_delay_setup(char *str)
1156 {
1157 	unsigned long lpj;
1158 
1159 	lpj = preset_lpj ? preset_lpj : 1000000;	/* some guess */
1160 	loops_per_msec = (unsigned long long)lpj / 1000 * HZ;
1161 
1162 	get_option(&str, &boot_delay);
1163 	if (boot_delay > 10 * 1000)
1164 		boot_delay = 0;
1165 
1166 	pr_debug("boot_delay: %u, preset_lpj: %ld, lpj: %lu, "
1167 		"HZ: %d, loops_per_msec: %llu\n",
1168 		boot_delay, preset_lpj, lpj, HZ, loops_per_msec);
1169 	return 0;
1170 }
1171 early_param("boot_delay", boot_delay_setup);
1172 
1173 static void boot_delay_msec(int level)
1174 {
1175 	unsigned long long k;
1176 	unsigned long timeout;
1177 
1178 	if ((boot_delay == 0 || system_state >= SYSTEM_RUNNING)
1179 		|| suppress_message_printing(level)) {
1180 		return;
1181 	}
1182 
1183 	k = (unsigned long long)loops_per_msec * boot_delay;
1184 
1185 	timeout = jiffies + msecs_to_jiffies(boot_delay);
1186 	while (k) {
1187 		k--;
1188 		cpu_relax();
1189 		/*
1190 		 * use (volatile) jiffies to prevent
1191 		 * compiler reduction; loop termination via jiffies
1192 		 * is secondary and may or may not happen.
1193 		 */
1194 		if (time_after(jiffies, timeout))
1195 			break;
1196 		touch_nmi_watchdog();
1197 	}
1198 }
1199 #else
1200 static inline void boot_delay_msec(int level)
1201 {
1202 }
1203 #endif
1204 
1205 static bool printk_time = IS_ENABLED(CONFIG_PRINTK_TIME);
1206 module_param_named(time, printk_time, bool, S_IRUGO | S_IWUSR);
1207 
1208 static size_t print_time(u64 ts, char *buf)
1209 {
1210 	unsigned long rem_nsec;
1211 
1212 	if (!printk_time)
1213 		return 0;
1214 
1215 	rem_nsec = do_div(ts, 1000000000);
1216 
1217 	if (!buf)
1218 		return snprintf(NULL, 0, "[%5lu.000000] ", (unsigned long)ts);
1219 
1220 	return sprintf(buf, "[%5lu.%06lu] ",
1221 		       (unsigned long)ts, rem_nsec / 1000);
1222 }
1223 
1224 static size_t print_prefix(const struct printk_log *msg, bool syslog, char *buf)
1225 {
1226 	size_t len = 0;
1227 	unsigned int prefix = (msg->facility << 3) | msg->level;
1228 
1229 	if (syslog) {
1230 		if (buf) {
1231 			len += sprintf(buf, "<%u>", prefix);
1232 		} else {
1233 			len += 3;
1234 			if (prefix > 999)
1235 				len += 3;
1236 			else if (prefix > 99)
1237 				len += 2;
1238 			else if (prefix > 9)
1239 				len++;
1240 		}
1241 	}
1242 
1243 	len += print_time(msg->ts_nsec, buf ? buf + len : NULL);
1244 	return len;
1245 }
1246 
1247 static size_t msg_print_text(const struct printk_log *msg, bool syslog, char *buf, size_t size)
1248 {
1249 	const char *text = log_text(msg);
1250 	size_t text_size = msg->text_len;
1251 	size_t len = 0;
1252 
1253 	do {
1254 		const char *next = memchr(text, '\n', text_size);
1255 		size_t text_len;
1256 
1257 		if (next) {
1258 			text_len = next - text;
1259 			next++;
1260 			text_size -= next - text;
1261 		} else {
1262 			text_len = text_size;
1263 		}
1264 
1265 		if (buf) {
1266 			if (print_prefix(msg, syslog, NULL) +
1267 			    text_len + 1 >= size - len)
1268 				break;
1269 
1270 			len += print_prefix(msg, syslog, buf + len);
1271 			memcpy(buf + len, text, text_len);
1272 			len += text_len;
1273 			buf[len++] = '\n';
1274 		} else {
1275 			/* SYSLOG_ACTION_* buffer size only calculation */
1276 			len += print_prefix(msg, syslog, NULL);
1277 			len += text_len;
1278 			len++;
1279 		}
1280 
1281 		text = next;
1282 	} while (text);
1283 
1284 	return len;
1285 }
1286 
1287 static int syslog_print(char __user *buf, int size)
1288 {
1289 	char *text;
1290 	struct printk_log *msg;
1291 	int len = 0;
1292 
1293 	text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
1294 	if (!text)
1295 		return -ENOMEM;
1296 
1297 	while (size > 0) {
1298 		size_t n;
1299 		size_t skip;
1300 
1301 		logbuf_lock_irq();
1302 		if (syslog_seq < log_first_seq) {
1303 			/* messages are gone, move to first one */
1304 			syslog_seq = log_first_seq;
1305 			syslog_idx = log_first_idx;
1306 			syslog_partial = 0;
1307 		}
1308 		if (syslog_seq == log_next_seq) {
1309 			logbuf_unlock_irq();
1310 			break;
1311 		}
1312 
1313 		skip = syslog_partial;
1314 		msg = log_from_idx(syslog_idx);
1315 		n = msg_print_text(msg, true, text, LOG_LINE_MAX + PREFIX_MAX);
1316 		if (n - syslog_partial <= size) {
1317 			/* message fits into buffer, move forward */
1318 			syslog_idx = log_next(syslog_idx);
1319 			syslog_seq++;
1320 			n -= syslog_partial;
1321 			syslog_partial = 0;
1322 		} else if (!len){
1323 			/* partial read(), remember position */
1324 			n = size;
1325 			syslog_partial += n;
1326 		} else
1327 			n = 0;
1328 		logbuf_unlock_irq();
1329 
1330 		if (!n)
1331 			break;
1332 
1333 		if (copy_to_user(buf, text + skip, n)) {
1334 			if (!len)
1335 				len = -EFAULT;
1336 			break;
1337 		}
1338 
1339 		len += n;
1340 		size -= n;
1341 		buf += n;
1342 	}
1343 
1344 	kfree(text);
1345 	return len;
1346 }
1347 
1348 static int syslog_print_all(char __user *buf, int size, bool clear)
1349 {
1350 	char *text;
1351 	int len = 0;
1352 
1353 	text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
1354 	if (!text)
1355 		return -ENOMEM;
1356 
1357 	logbuf_lock_irq();
1358 	if (buf) {
1359 		u64 next_seq;
1360 		u64 seq;
1361 		u32 idx;
1362 
1363 		/*
1364 		 * Find first record that fits, including all following records,
1365 		 * into the user-provided buffer for this dump.
1366 		 */
1367 		seq = clear_seq;
1368 		idx = clear_idx;
1369 		while (seq < log_next_seq) {
1370 			struct printk_log *msg = log_from_idx(idx);
1371 
1372 			len += msg_print_text(msg, true, NULL, 0);
1373 			idx = log_next(idx);
1374 			seq++;
1375 		}
1376 
1377 		/* move first record forward until length fits into the buffer */
1378 		seq = clear_seq;
1379 		idx = clear_idx;
1380 		while (len > size && seq < log_next_seq) {
1381 			struct printk_log *msg = log_from_idx(idx);
1382 
1383 			len -= msg_print_text(msg, true, NULL, 0);
1384 			idx = log_next(idx);
1385 			seq++;
1386 		}
1387 
1388 		/* last message fitting into this dump */
1389 		next_seq = log_next_seq;
1390 
1391 		len = 0;
1392 		while (len >= 0 && seq < next_seq) {
1393 			struct printk_log *msg = log_from_idx(idx);
1394 			int textlen;
1395 
1396 			textlen = msg_print_text(msg, true, text,
1397 						 LOG_LINE_MAX + PREFIX_MAX);
1398 			if (textlen < 0) {
1399 				len = textlen;
1400 				break;
1401 			}
1402 			idx = log_next(idx);
1403 			seq++;
1404 
1405 			logbuf_unlock_irq();
1406 			if (copy_to_user(buf + len, text, textlen))
1407 				len = -EFAULT;
1408 			else
1409 				len += textlen;
1410 			logbuf_lock_irq();
1411 
1412 			if (seq < log_first_seq) {
1413 				/* messages are gone, move to next one */
1414 				seq = log_first_seq;
1415 				idx = log_first_idx;
1416 			}
1417 		}
1418 	}
1419 
1420 	if (clear) {
1421 		clear_seq = log_next_seq;
1422 		clear_idx = log_next_idx;
1423 	}
1424 	logbuf_unlock_irq();
1425 
1426 	kfree(text);
1427 	return len;
1428 }
1429 
1430 int do_syslog(int type, char __user *buf, int len, int source)
1431 {
1432 	bool clear = false;
1433 	static int saved_console_loglevel = LOGLEVEL_DEFAULT;
1434 	int error;
1435 
1436 	error = check_syslog_permissions(type, source);
1437 	if (error)
1438 		goto out;
1439 
1440 	switch (type) {
1441 	case SYSLOG_ACTION_CLOSE:	/* Close log */
1442 		break;
1443 	case SYSLOG_ACTION_OPEN:	/* Open log */
1444 		break;
1445 	case SYSLOG_ACTION_READ:	/* Read from log */
1446 		error = -EINVAL;
1447 		if (!buf || len < 0)
1448 			goto out;
1449 		error = 0;
1450 		if (!len)
1451 			goto out;
1452 		if (!access_ok(VERIFY_WRITE, buf, len)) {
1453 			error = -EFAULT;
1454 			goto out;
1455 		}
1456 		error = wait_event_interruptible(log_wait,
1457 						 syslog_seq != log_next_seq);
1458 		if (error)
1459 			goto out;
1460 		error = syslog_print(buf, len);
1461 		break;
1462 	/* Read/clear last kernel messages */
1463 	case SYSLOG_ACTION_READ_CLEAR:
1464 		clear = true;
1465 		/* FALL THRU */
1466 	/* Read last kernel messages */
1467 	case SYSLOG_ACTION_READ_ALL:
1468 		error = -EINVAL;
1469 		if (!buf || len < 0)
1470 			goto out;
1471 		error = 0;
1472 		if (!len)
1473 			goto out;
1474 		if (!access_ok(VERIFY_WRITE, buf, len)) {
1475 			error = -EFAULT;
1476 			goto out;
1477 		}
1478 		error = syslog_print_all(buf, len, clear);
1479 		break;
1480 	/* Clear ring buffer */
1481 	case SYSLOG_ACTION_CLEAR:
1482 		syslog_print_all(NULL, 0, true);
1483 		break;
1484 	/* Disable logging to console */
1485 	case SYSLOG_ACTION_CONSOLE_OFF:
1486 		if (saved_console_loglevel == LOGLEVEL_DEFAULT)
1487 			saved_console_loglevel = console_loglevel;
1488 		console_loglevel = minimum_console_loglevel;
1489 		break;
1490 	/* Enable logging to console */
1491 	case SYSLOG_ACTION_CONSOLE_ON:
1492 		if (saved_console_loglevel != LOGLEVEL_DEFAULT) {
1493 			console_loglevel = saved_console_loglevel;
1494 			saved_console_loglevel = LOGLEVEL_DEFAULT;
1495 		}
1496 		break;
1497 	/* Set level of messages printed to console */
1498 	case SYSLOG_ACTION_CONSOLE_LEVEL:
1499 		error = -EINVAL;
1500 		if (len < 1 || len > 8)
1501 			goto out;
1502 		if (len < minimum_console_loglevel)
1503 			len = minimum_console_loglevel;
1504 		console_loglevel = len;
1505 		/* Implicitly re-enable logging to console */
1506 		saved_console_loglevel = LOGLEVEL_DEFAULT;
1507 		error = 0;
1508 		break;
1509 	/* Number of chars in the log buffer */
1510 	case SYSLOG_ACTION_SIZE_UNREAD:
1511 		logbuf_lock_irq();
1512 		if (syslog_seq < log_first_seq) {
1513 			/* messages are gone, move to first one */
1514 			syslog_seq = log_first_seq;
1515 			syslog_idx = log_first_idx;
1516 			syslog_partial = 0;
1517 		}
1518 		if (source == SYSLOG_FROM_PROC) {
1519 			/*
1520 			 * Short-cut for poll(/"proc/kmsg") which simply checks
1521 			 * for pending data, not the size; return the count of
1522 			 * records, not the length.
1523 			 */
1524 			error = log_next_seq - syslog_seq;
1525 		} else {
1526 			u64 seq = syslog_seq;
1527 			u32 idx = syslog_idx;
1528 
1529 			error = 0;
1530 			while (seq < log_next_seq) {
1531 				struct printk_log *msg = log_from_idx(idx);
1532 
1533 				error += msg_print_text(msg, true, NULL, 0);
1534 				idx = log_next(idx);
1535 				seq++;
1536 			}
1537 			error -= syslog_partial;
1538 		}
1539 		logbuf_unlock_irq();
1540 		break;
1541 	/* Size of the log buffer */
1542 	case SYSLOG_ACTION_SIZE_BUFFER:
1543 		error = log_buf_len;
1544 		break;
1545 	default:
1546 		error = -EINVAL;
1547 		break;
1548 	}
1549 out:
1550 	return error;
1551 }
1552 
1553 SYSCALL_DEFINE3(syslog, int, type, char __user *, buf, int, len)
1554 {
1555 	return do_syslog(type, buf, len, SYSLOG_FROM_READER);
1556 }
1557 
1558 /*
1559  * Call the console drivers, asking them to write out
1560  * log_buf[start] to log_buf[end - 1].
1561  * The console_lock must be held.
1562  */
1563 static void call_console_drivers(const char *ext_text, size_t ext_len,
1564 				 const char *text, size_t len)
1565 {
1566 	struct console *con;
1567 
1568 	trace_console_rcuidle(text, len);
1569 
1570 	if (!console_drivers)
1571 		return;
1572 
1573 	for_each_console(con) {
1574 		if (exclusive_console && con != exclusive_console)
1575 			continue;
1576 		if (!(con->flags & CON_ENABLED))
1577 			continue;
1578 		if (!con->write)
1579 			continue;
1580 		if (!cpu_online(smp_processor_id()) &&
1581 		    !(con->flags & CON_ANYTIME))
1582 			continue;
1583 		if (con->flags & CON_EXTENDED)
1584 			con->write(con, ext_text, ext_len);
1585 		else
1586 			con->write(con, text, len);
1587 	}
1588 }
1589 
1590 int printk_delay_msec __read_mostly;
1591 
1592 static inline void printk_delay(void)
1593 {
1594 	if (unlikely(printk_delay_msec)) {
1595 		int m = printk_delay_msec;
1596 
1597 		while (m--) {
1598 			mdelay(1);
1599 			touch_nmi_watchdog();
1600 		}
1601 	}
1602 }
1603 
1604 /*
1605  * Continuation lines are buffered, and not committed to the record buffer
1606  * until the line is complete, or a race forces it. The line fragments
1607  * though, are printed immediately to the consoles to ensure everything has
1608  * reached the console in case of a kernel crash.
1609  */
1610 static struct cont {
1611 	char buf[LOG_LINE_MAX];
1612 	size_t len;			/* length == 0 means unused buffer */
1613 	struct task_struct *owner;	/* task of first print*/
1614 	u64 ts_nsec;			/* time of first print */
1615 	u8 level;			/* log level of first message */
1616 	u8 facility;			/* log facility of first message */
1617 	enum log_flags flags;		/* prefix, newline flags */
1618 } cont;
1619 
1620 static void cont_flush(void)
1621 {
1622 	if (cont.len == 0)
1623 		return;
1624 
1625 	log_store(cont.facility, cont.level, cont.flags, cont.ts_nsec,
1626 		  NULL, 0, cont.buf, cont.len);
1627 	cont.len = 0;
1628 }
1629 
1630 static bool cont_add(int facility, int level, enum log_flags flags, const char *text, size_t len)
1631 {
1632 	/*
1633 	 * If ext consoles are present, flush and skip in-kernel
1634 	 * continuation.  See nr_ext_console_drivers definition.  Also, if
1635 	 * the line gets too long, split it up in separate records.
1636 	 */
1637 	if (nr_ext_console_drivers || cont.len + len > sizeof(cont.buf)) {
1638 		cont_flush();
1639 		return false;
1640 	}
1641 
1642 	if (!cont.len) {
1643 		cont.facility = facility;
1644 		cont.level = level;
1645 		cont.owner = current;
1646 		cont.ts_nsec = local_clock();
1647 		cont.flags = flags;
1648 	}
1649 
1650 	memcpy(cont.buf + cont.len, text, len);
1651 	cont.len += len;
1652 
1653 	// The original flags come from the first line,
1654 	// but later continuations can add a newline.
1655 	if (flags & LOG_NEWLINE) {
1656 		cont.flags |= LOG_NEWLINE;
1657 		cont_flush();
1658 	}
1659 
1660 	if (cont.len > (sizeof(cont.buf) * 80) / 100)
1661 		cont_flush();
1662 
1663 	return true;
1664 }
1665 
1666 static size_t log_output(int facility, int level, enum log_flags lflags, const char *dict, size_t dictlen, char *text, size_t text_len)
1667 {
1668 	/*
1669 	 * If an earlier line was buffered, and we're a continuation
1670 	 * write from the same process, try to add it to the buffer.
1671 	 */
1672 	if (cont.len) {
1673 		if (cont.owner == current && (lflags & LOG_CONT)) {
1674 			if (cont_add(facility, level, lflags, text, text_len))
1675 				return text_len;
1676 		}
1677 		/* Otherwise, make sure it's flushed */
1678 		cont_flush();
1679 	}
1680 
1681 	/* Skip empty continuation lines that couldn't be added - they just flush */
1682 	if (!text_len && (lflags & LOG_CONT))
1683 		return 0;
1684 
1685 	/* If it doesn't end in a newline, try to buffer the current line */
1686 	if (!(lflags & LOG_NEWLINE)) {
1687 		if (cont_add(facility, level, lflags, text, text_len))
1688 			return text_len;
1689 	}
1690 
1691 	/* Store it in the record log */
1692 	return log_store(facility, level, lflags, 0, dict, dictlen, text, text_len);
1693 }
1694 
1695 asmlinkage int vprintk_emit(int facility, int level,
1696 			    const char *dict, size_t dictlen,
1697 			    const char *fmt, va_list args)
1698 {
1699 	static char textbuf[LOG_LINE_MAX];
1700 	char *text = textbuf;
1701 	size_t text_len = 0;
1702 	enum log_flags lflags = 0;
1703 	unsigned long flags;
1704 	int printed_len = 0;
1705 	bool in_sched = false;
1706 
1707 	if (level == LOGLEVEL_SCHED) {
1708 		level = LOGLEVEL_DEFAULT;
1709 		in_sched = true;
1710 	}
1711 
1712 	boot_delay_msec(level);
1713 	printk_delay();
1714 
1715 	/* This stops the holder of console_sem just where we want him */
1716 	logbuf_lock_irqsave(flags);
1717 	/*
1718 	 * The printf needs to come first; we need the syslog
1719 	 * prefix which might be passed-in as a parameter.
1720 	 */
1721 	text_len = vscnprintf(text, sizeof(textbuf), fmt, args);
1722 
1723 	/* mark and strip a trailing newline */
1724 	if (text_len && text[text_len-1] == '\n') {
1725 		text_len--;
1726 		lflags |= LOG_NEWLINE;
1727 	}
1728 
1729 	/* strip kernel syslog prefix and extract log level or control flags */
1730 	if (facility == 0) {
1731 		int kern_level;
1732 
1733 		while ((kern_level = printk_get_level(text)) != 0) {
1734 			switch (kern_level) {
1735 			case '0' ... '7':
1736 				if (level == LOGLEVEL_DEFAULT)
1737 					level = kern_level - '0';
1738 				/* fallthrough */
1739 			case 'd':	/* KERN_DEFAULT */
1740 				lflags |= LOG_PREFIX;
1741 				break;
1742 			case 'c':	/* KERN_CONT */
1743 				lflags |= LOG_CONT;
1744 			}
1745 
1746 			text_len -= 2;
1747 			text += 2;
1748 		}
1749 	}
1750 
1751 	if (level == LOGLEVEL_DEFAULT)
1752 		level = default_message_loglevel;
1753 
1754 	if (dict)
1755 		lflags |= LOG_PREFIX|LOG_NEWLINE;
1756 
1757 	printed_len += log_output(facility, level, lflags, dict, dictlen, text, text_len);
1758 
1759 	logbuf_unlock_irqrestore(flags);
1760 
1761 	/* If called from the scheduler, we can not call up(). */
1762 	if (!in_sched) {
1763 		/*
1764 		 * Try to acquire and then immediately release the console
1765 		 * semaphore.  The release will print out buffers and wake up
1766 		 * /dev/kmsg and syslog() users.
1767 		 */
1768 		if (console_trylock())
1769 			console_unlock();
1770 	}
1771 
1772 	return printed_len;
1773 }
1774 EXPORT_SYMBOL(vprintk_emit);
1775 
1776 asmlinkage int vprintk(const char *fmt, va_list args)
1777 {
1778 	return vprintk_func(fmt, args);
1779 }
1780 EXPORT_SYMBOL(vprintk);
1781 
1782 asmlinkage int printk_emit(int facility, int level,
1783 			   const char *dict, size_t dictlen,
1784 			   const char *fmt, ...)
1785 {
1786 	va_list args;
1787 	int r;
1788 
1789 	va_start(args, fmt);
1790 	r = vprintk_emit(facility, level, dict, dictlen, fmt, args);
1791 	va_end(args);
1792 
1793 	return r;
1794 }
1795 EXPORT_SYMBOL(printk_emit);
1796 
1797 int vprintk_default(const char *fmt, va_list args)
1798 {
1799 	int r;
1800 
1801 #ifdef CONFIG_KGDB_KDB
1802 	/* Allow to pass printk() to kdb but avoid a recursion. */
1803 	if (unlikely(kdb_trap_printk && kdb_printf_cpu < 0)) {
1804 		r = vkdb_printf(KDB_MSGSRC_PRINTK, fmt, args);
1805 		return r;
1806 	}
1807 #endif
1808 	r = vprintk_emit(0, LOGLEVEL_DEFAULT, NULL, 0, fmt, args);
1809 
1810 	return r;
1811 }
1812 EXPORT_SYMBOL_GPL(vprintk_default);
1813 
1814 /**
1815  * printk - print a kernel message
1816  * @fmt: format string
1817  *
1818  * This is printk(). It can be called from any context. We want it to work.
1819  *
1820  * We try to grab the console_lock. If we succeed, it's easy - we log the
1821  * output and call the console drivers.  If we fail to get the semaphore, we
1822  * place the output into the log buffer and return. The current holder of
1823  * the console_sem will notice the new output in console_unlock(); and will
1824  * send it to the consoles before releasing the lock.
1825  *
1826  * One effect of this deferred printing is that code which calls printk() and
1827  * then changes console_loglevel may break. This is because console_loglevel
1828  * is inspected when the actual printing occurs.
1829  *
1830  * See also:
1831  * printf(3)
1832  *
1833  * See the vsnprintf() documentation for format string extensions over C99.
1834  */
1835 asmlinkage __visible int printk(const char *fmt, ...)
1836 {
1837 	va_list args;
1838 	int r;
1839 
1840 	va_start(args, fmt);
1841 	r = vprintk_func(fmt, args);
1842 	va_end(args);
1843 
1844 	return r;
1845 }
1846 EXPORT_SYMBOL(printk);
1847 
1848 #else /* CONFIG_PRINTK */
1849 
1850 #define LOG_LINE_MAX		0
1851 #define PREFIX_MAX		0
1852 
1853 static u64 syslog_seq;
1854 static u32 syslog_idx;
1855 static u64 console_seq;
1856 static u32 console_idx;
1857 static u64 log_first_seq;
1858 static u32 log_first_idx;
1859 static u64 log_next_seq;
1860 static char *log_text(const struct printk_log *msg) { return NULL; }
1861 static char *log_dict(const struct printk_log *msg) { return NULL; }
1862 static struct printk_log *log_from_idx(u32 idx) { return NULL; }
1863 static u32 log_next(u32 idx) { return 0; }
1864 static ssize_t msg_print_ext_header(char *buf, size_t size,
1865 				    struct printk_log *msg,
1866 				    u64 seq) { return 0; }
1867 static ssize_t msg_print_ext_body(char *buf, size_t size,
1868 				  char *dict, size_t dict_len,
1869 				  char *text, size_t text_len) { return 0; }
1870 static void call_console_drivers(const char *ext_text, size_t ext_len,
1871 				 const char *text, size_t len) {}
1872 static size_t msg_print_text(const struct printk_log *msg,
1873 			     bool syslog, char *buf, size_t size) { return 0; }
1874 static bool suppress_message_printing(int level) { return false; }
1875 
1876 #endif /* CONFIG_PRINTK */
1877 
1878 #ifdef CONFIG_EARLY_PRINTK
1879 struct console *early_console;
1880 
1881 asmlinkage __visible void early_printk(const char *fmt, ...)
1882 {
1883 	va_list ap;
1884 	char buf[512];
1885 	int n;
1886 
1887 	if (!early_console)
1888 		return;
1889 
1890 	va_start(ap, fmt);
1891 	n = vscnprintf(buf, sizeof(buf), fmt, ap);
1892 	va_end(ap);
1893 
1894 	early_console->write(early_console, buf, n);
1895 }
1896 #endif
1897 
1898 static int __add_preferred_console(char *name, int idx, char *options,
1899 				   char *brl_options)
1900 {
1901 	struct console_cmdline *c;
1902 	int i;
1903 
1904 	/*
1905 	 *	See if this tty is not yet registered, and
1906 	 *	if we have a slot free.
1907 	 */
1908 	for (i = 0, c = console_cmdline;
1909 	     i < MAX_CMDLINECONSOLES && c->name[0];
1910 	     i++, c++) {
1911 		if (strcmp(c->name, name) == 0 && c->index == idx) {
1912 			if (!brl_options)
1913 				preferred_console = i;
1914 			return 0;
1915 		}
1916 	}
1917 	if (i == MAX_CMDLINECONSOLES)
1918 		return -E2BIG;
1919 	if (!brl_options)
1920 		preferred_console = i;
1921 	strlcpy(c->name, name, sizeof(c->name));
1922 	c->options = options;
1923 	braille_set_options(c, brl_options);
1924 
1925 	c->index = idx;
1926 	return 0;
1927 }
1928 /*
1929  * Set up a console.  Called via do_early_param() in init/main.c
1930  * for each "console=" parameter in the boot command line.
1931  */
1932 static int __init console_setup(char *str)
1933 {
1934 	char buf[sizeof(console_cmdline[0].name) + 4]; /* 4 for "ttyS" */
1935 	char *s, *options, *brl_options = NULL;
1936 	int idx;
1937 
1938 	if (_braille_console_setup(&str, &brl_options))
1939 		return 1;
1940 
1941 	/*
1942 	 * Decode str into name, index, options.
1943 	 */
1944 	if (str[0] >= '0' && str[0] <= '9') {
1945 		strcpy(buf, "ttyS");
1946 		strncpy(buf + 4, str, sizeof(buf) - 5);
1947 	} else {
1948 		strncpy(buf, str, sizeof(buf) - 1);
1949 	}
1950 	buf[sizeof(buf) - 1] = 0;
1951 	options = strchr(str, ',');
1952 	if (options)
1953 		*(options++) = 0;
1954 #ifdef __sparc__
1955 	if (!strcmp(str, "ttya"))
1956 		strcpy(buf, "ttyS0");
1957 	if (!strcmp(str, "ttyb"))
1958 		strcpy(buf, "ttyS1");
1959 #endif
1960 	for (s = buf; *s; s++)
1961 		if (isdigit(*s) || *s == ',')
1962 			break;
1963 	idx = simple_strtoul(s, NULL, 10);
1964 	*s = 0;
1965 
1966 	__add_preferred_console(buf, idx, options, brl_options);
1967 	console_set_on_cmdline = 1;
1968 	return 1;
1969 }
1970 __setup("console=", console_setup);
1971 
1972 /**
1973  * add_preferred_console - add a device to the list of preferred consoles.
1974  * @name: device name
1975  * @idx: device index
1976  * @options: options for this console
1977  *
1978  * The last preferred console added will be used for kernel messages
1979  * and stdin/out/err for init.  Normally this is used by console_setup
1980  * above to handle user-supplied console arguments; however it can also
1981  * be used by arch-specific code either to override the user or more
1982  * commonly to provide a default console (ie from PROM variables) when
1983  * the user has not supplied one.
1984  */
1985 int add_preferred_console(char *name, int idx, char *options)
1986 {
1987 	return __add_preferred_console(name, idx, options, NULL);
1988 }
1989 
1990 bool console_suspend_enabled = true;
1991 EXPORT_SYMBOL(console_suspend_enabled);
1992 
1993 static int __init console_suspend_disable(char *str)
1994 {
1995 	console_suspend_enabled = false;
1996 	return 1;
1997 }
1998 __setup("no_console_suspend", console_suspend_disable);
1999 module_param_named(console_suspend, console_suspend_enabled,
2000 		bool, S_IRUGO | S_IWUSR);
2001 MODULE_PARM_DESC(console_suspend, "suspend console during suspend"
2002 	" and hibernate operations");
2003 
2004 /**
2005  * suspend_console - suspend the console subsystem
2006  *
2007  * This disables printk() while we go into suspend states
2008  */
2009 void suspend_console(void)
2010 {
2011 	if (!console_suspend_enabled)
2012 		return;
2013 	printk("Suspending console(s) (use no_console_suspend to debug)\n");
2014 	console_lock();
2015 	console_suspended = 1;
2016 	up_console_sem();
2017 }
2018 
2019 void resume_console(void)
2020 {
2021 	if (!console_suspend_enabled)
2022 		return;
2023 	down_console_sem();
2024 	console_suspended = 0;
2025 	console_unlock();
2026 }
2027 
2028 /**
2029  * console_cpu_notify - print deferred console messages after CPU hotplug
2030  * @cpu: unused
2031  *
2032  * If printk() is called from a CPU that is not online yet, the messages
2033  * will be printed on the console only if there are CON_ANYTIME consoles.
2034  * This function is called when a new CPU comes online (or fails to come
2035  * up) or goes offline.
2036  */
2037 static int console_cpu_notify(unsigned int cpu)
2038 {
2039 	if (!cpuhp_tasks_frozen) {
2040 		/* If trylock fails, someone else is doing the printing */
2041 		if (console_trylock())
2042 			console_unlock();
2043 	}
2044 	return 0;
2045 }
2046 
2047 /**
2048  * console_lock - lock the console system for exclusive use.
2049  *
2050  * Acquires a lock which guarantees that the caller has
2051  * exclusive access to the console system and the console_drivers list.
2052  *
2053  * Can sleep, returns nothing.
2054  */
2055 void console_lock(void)
2056 {
2057 	might_sleep();
2058 
2059 	down_console_sem();
2060 	if (console_suspended)
2061 		return;
2062 	console_locked = 1;
2063 	console_may_schedule = 1;
2064 }
2065 EXPORT_SYMBOL(console_lock);
2066 
2067 /**
2068  * console_trylock - try to lock the console system for exclusive use.
2069  *
2070  * Try to acquire a lock which guarantees that the caller has exclusive
2071  * access to the console system and the console_drivers list.
2072  *
2073  * returns 1 on success, and 0 on failure to acquire the lock.
2074  */
2075 int console_trylock(void)
2076 {
2077 	if (down_trylock_console_sem())
2078 		return 0;
2079 	if (console_suspended) {
2080 		up_console_sem();
2081 		return 0;
2082 	}
2083 	console_locked = 1;
2084 	/*
2085 	 * When PREEMPT_COUNT disabled we can't reliably detect if it's
2086 	 * safe to schedule (e.g. calling printk while holding a spin_lock),
2087 	 * because preempt_disable()/preempt_enable() are just barriers there
2088 	 * and preempt_count() is always 0.
2089 	 *
2090 	 * RCU read sections have a separate preemption counter when
2091 	 * PREEMPT_RCU enabled thus we must take extra care and check
2092 	 * rcu_preempt_depth(), otherwise RCU read sections modify
2093 	 * preempt_count().
2094 	 */
2095 	console_may_schedule = !oops_in_progress &&
2096 			preemptible() &&
2097 			!rcu_preempt_depth();
2098 	return 1;
2099 }
2100 EXPORT_SYMBOL(console_trylock);
2101 
2102 int is_console_locked(void)
2103 {
2104 	return console_locked;
2105 }
2106 
2107 /*
2108  * Check if we have any console that is capable of printing while cpu is
2109  * booting or shutting down. Requires console_sem.
2110  */
2111 static int have_callable_console(void)
2112 {
2113 	struct console *con;
2114 
2115 	for_each_console(con)
2116 		if ((con->flags & CON_ENABLED) &&
2117 				(con->flags & CON_ANYTIME))
2118 			return 1;
2119 
2120 	return 0;
2121 }
2122 
2123 /*
2124  * Can we actually use the console at this time on this cpu?
2125  *
2126  * Console drivers may assume that per-cpu resources have been allocated. So
2127  * unless they're explicitly marked as being able to cope (CON_ANYTIME) don't
2128  * call them until this CPU is officially up.
2129  */
2130 static inline int can_use_console(void)
2131 {
2132 	return cpu_online(raw_smp_processor_id()) || have_callable_console();
2133 }
2134 
2135 /**
2136  * console_unlock - unlock the console system
2137  *
2138  * Releases the console_lock which the caller holds on the console system
2139  * and the console driver list.
2140  *
2141  * While the console_lock was held, console output may have been buffered
2142  * by printk().  If this is the case, console_unlock(); emits
2143  * the output prior to releasing the lock.
2144  *
2145  * If there is output waiting, we wake /dev/kmsg and syslog() users.
2146  *
2147  * console_unlock(); may be called from any context.
2148  */
2149 void console_unlock(void)
2150 {
2151 	static char ext_text[CONSOLE_EXT_LOG_MAX];
2152 	static char text[LOG_LINE_MAX + PREFIX_MAX];
2153 	static u64 seen_seq;
2154 	unsigned long flags;
2155 	bool wake_klogd = false;
2156 	bool do_cond_resched, retry;
2157 
2158 	if (console_suspended) {
2159 		up_console_sem();
2160 		return;
2161 	}
2162 
2163 	/*
2164 	 * Console drivers are called with interrupts disabled, so
2165 	 * @console_may_schedule should be cleared before; however, we may
2166 	 * end up dumping a lot of lines, for example, if called from
2167 	 * console registration path, and should invoke cond_resched()
2168 	 * between lines if allowable.  Not doing so can cause a very long
2169 	 * scheduling stall on a slow console leading to RCU stall and
2170 	 * softlockup warnings which exacerbate the issue with more
2171 	 * messages practically incapacitating the system.
2172 	 *
2173 	 * console_trylock() is not able to detect the preemptive
2174 	 * context reliably. Therefore the value must be stored before
2175 	 * and cleared after the the "again" goto label.
2176 	 */
2177 	do_cond_resched = console_may_schedule;
2178 again:
2179 	console_may_schedule = 0;
2180 
2181 	/*
2182 	 * We released the console_sem lock, so we need to recheck if
2183 	 * cpu is online and (if not) is there at least one CON_ANYTIME
2184 	 * console.
2185 	 */
2186 	if (!can_use_console()) {
2187 		console_locked = 0;
2188 		up_console_sem();
2189 		return;
2190 	}
2191 
2192 	for (;;) {
2193 		struct printk_log *msg;
2194 		size_t ext_len = 0;
2195 		size_t len;
2196 
2197 		printk_safe_enter_irqsave(flags);
2198 		raw_spin_lock(&logbuf_lock);
2199 		if (seen_seq != log_next_seq) {
2200 			wake_klogd = true;
2201 			seen_seq = log_next_seq;
2202 		}
2203 
2204 		if (console_seq < log_first_seq) {
2205 			len = sprintf(text, "** %u printk messages dropped ** ",
2206 				      (unsigned)(log_first_seq - console_seq));
2207 
2208 			/* messages are gone, move to first one */
2209 			console_seq = log_first_seq;
2210 			console_idx = log_first_idx;
2211 		} else {
2212 			len = 0;
2213 		}
2214 skip:
2215 		if (console_seq == log_next_seq)
2216 			break;
2217 
2218 		msg = log_from_idx(console_idx);
2219 		if (suppress_message_printing(msg->level)) {
2220 			/*
2221 			 * Skip record we have buffered and already printed
2222 			 * directly to the console when we received it, and
2223 			 * record that has level above the console loglevel.
2224 			 */
2225 			console_idx = log_next(console_idx);
2226 			console_seq++;
2227 			goto skip;
2228 		}
2229 
2230 		len += msg_print_text(msg, false, text + len, sizeof(text) - len);
2231 		if (nr_ext_console_drivers) {
2232 			ext_len = msg_print_ext_header(ext_text,
2233 						sizeof(ext_text),
2234 						msg, console_seq);
2235 			ext_len += msg_print_ext_body(ext_text + ext_len,
2236 						sizeof(ext_text) - ext_len,
2237 						log_dict(msg), msg->dict_len,
2238 						log_text(msg), msg->text_len);
2239 		}
2240 		console_idx = log_next(console_idx);
2241 		console_seq++;
2242 		raw_spin_unlock(&logbuf_lock);
2243 
2244 		stop_critical_timings();	/* don't trace print latency */
2245 		call_console_drivers(ext_text, ext_len, text, len);
2246 		start_critical_timings();
2247 		printk_safe_exit_irqrestore(flags);
2248 
2249 		if (do_cond_resched)
2250 			cond_resched();
2251 	}
2252 	console_locked = 0;
2253 
2254 	/* Release the exclusive_console once it is used */
2255 	if (unlikely(exclusive_console))
2256 		exclusive_console = NULL;
2257 
2258 	raw_spin_unlock(&logbuf_lock);
2259 
2260 	up_console_sem();
2261 
2262 	/*
2263 	 * Someone could have filled up the buffer again, so re-check if there's
2264 	 * something to flush. In case we cannot trylock the console_sem again,
2265 	 * there's a new owner and the console_unlock() from them will do the
2266 	 * flush, no worries.
2267 	 */
2268 	raw_spin_lock(&logbuf_lock);
2269 	retry = console_seq != log_next_seq;
2270 	raw_spin_unlock(&logbuf_lock);
2271 	printk_safe_exit_irqrestore(flags);
2272 
2273 	if (retry && console_trylock())
2274 		goto again;
2275 
2276 	if (wake_klogd)
2277 		wake_up_klogd();
2278 }
2279 EXPORT_SYMBOL(console_unlock);
2280 
2281 /**
2282  * console_conditional_schedule - yield the CPU if required
2283  *
2284  * If the console code is currently allowed to sleep, and
2285  * if this CPU should yield the CPU to another task, do
2286  * so here.
2287  *
2288  * Must be called within console_lock();.
2289  */
2290 void __sched console_conditional_schedule(void)
2291 {
2292 	if (console_may_schedule)
2293 		cond_resched();
2294 }
2295 EXPORT_SYMBOL(console_conditional_schedule);
2296 
2297 void console_unblank(void)
2298 {
2299 	struct console *c;
2300 
2301 	/*
2302 	 * console_unblank can no longer be called in interrupt context unless
2303 	 * oops_in_progress is set to 1..
2304 	 */
2305 	if (oops_in_progress) {
2306 		if (down_trylock_console_sem() != 0)
2307 			return;
2308 	} else
2309 		console_lock();
2310 
2311 	console_locked = 1;
2312 	console_may_schedule = 0;
2313 	for_each_console(c)
2314 		if ((c->flags & CON_ENABLED) && c->unblank)
2315 			c->unblank();
2316 	console_unlock();
2317 }
2318 
2319 /**
2320  * console_flush_on_panic - flush console content on panic
2321  *
2322  * Immediately output all pending messages no matter what.
2323  */
2324 void console_flush_on_panic(void)
2325 {
2326 	/*
2327 	 * If someone else is holding the console lock, trylock will fail
2328 	 * and may_schedule may be set.  Ignore and proceed to unlock so
2329 	 * that messages are flushed out.  As this can be called from any
2330 	 * context and we don't want to get preempted while flushing,
2331 	 * ensure may_schedule is cleared.
2332 	 */
2333 	console_trylock();
2334 	console_may_schedule = 0;
2335 	console_unlock();
2336 }
2337 
2338 /*
2339  * Return the console tty driver structure and its associated index
2340  */
2341 struct tty_driver *console_device(int *index)
2342 {
2343 	struct console *c;
2344 	struct tty_driver *driver = NULL;
2345 
2346 	console_lock();
2347 	for_each_console(c) {
2348 		if (!c->device)
2349 			continue;
2350 		driver = c->device(c, index);
2351 		if (driver)
2352 			break;
2353 	}
2354 	console_unlock();
2355 	return driver;
2356 }
2357 
2358 /*
2359  * Prevent further output on the passed console device so that (for example)
2360  * serial drivers can disable console output before suspending a port, and can
2361  * re-enable output afterwards.
2362  */
2363 void console_stop(struct console *console)
2364 {
2365 	console_lock();
2366 	console->flags &= ~CON_ENABLED;
2367 	console_unlock();
2368 }
2369 EXPORT_SYMBOL(console_stop);
2370 
2371 void console_start(struct console *console)
2372 {
2373 	console_lock();
2374 	console->flags |= CON_ENABLED;
2375 	console_unlock();
2376 }
2377 EXPORT_SYMBOL(console_start);
2378 
2379 static int __read_mostly keep_bootcon;
2380 
2381 static int __init keep_bootcon_setup(char *str)
2382 {
2383 	keep_bootcon = 1;
2384 	pr_info("debug: skip boot console de-registration.\n");
2385 
2386 	return 0;
2387 }
2388 
2389 early_param("keep_bootcon", keep_bootcon_setup);
2390 
2391 /*
2392  * The console driver calls this routine during kernel initialization
2393  * to register the console printing procedure with printk() and to
2394  * print any messages that were printed by the kernel before the
2395  * console driver was initialized.
2396  *
2397  * This can happen pretty early during the boot process (because of
2398  * early_printk) - sometimes before setup_arch() completes - be careful
2399  * of what kernel features are used - they may not be initialised yet.
2400  *
2401  * There are two types of consoles - bootconsoles (early_printk) and
2402  * "real" consoles (everything which is not a bootconsole) which are
2403  * handled differently.
2404  *  - Any number of bootconsoles can be registered at any time.
2405  *  - As soon as a "real" console is registered, all bootconsoles
2406  *    will be unregistered automatically.
2407  *  - Once a "real" console is registered, any attempt to register a
2408  *    bootconsoles will be rejected
2409  */
2410 void register_console(struct console *newcon)
2411 {
2412 	int i;
2413 	unsigned long flags;
2414 	struct console *bcon = NULL;
2415 	struct console_cmdline *c;
2416 	static bool has_preferred;
2417 
2418 	if (console_drivers)
2419 		for_each_console(bcon)
2420 			if (WARN(bcon == newcon,
2421 					"console '%s%d' already registered\n",
2422 					bcon->name, bcon->index))
2423 				return;
2424 
2425 	/*
2426 	 * before we register a new CON_BOOT console, make sure we don't
2427 	 * already have a valid console
2428 	 */
2429 	if (console_drivers && newcon->flags & CON_BOOT) {
2430 		/* find the last or real console */
2431 		for_each_console(bcon) {
2432 			if (!(bcon->flags & CON_BOOT)) {
2433 				pr_info("Too late to register bootconsole %s%d\n",
2434 					newcon->name, newcon->index);
2435 				return;
2436 			}
2437 		}
2438 	}
2439 
2440 	if (console_drivers && console_drivers->flags & CON_BOOT)
2441 		bcon = console_drivers;
2442 
2443 	if (!has_preferred || bcon || !console_drivers)
2444 		has_preferred = preferred_console >= 0;
2445 
2446 	/*
2447 	 *	See if we want to use this console driver. If we
2448 	 *	didn't select a console we take the first one
2449 	 *	that registers here.
2450 	 */
2451 	if (!has_preferred) {
2452 		if (newcon->index < 0)
2453 			newcon->index = 0;
2454 		if (newcon->setup == NULL ||
2455 		    newcon->setup(newcon, NULL) == 0) {
2456 			newcon->flags |= CON_ENABLED;
2457 			if (newcon->device) {
2458 				newcon->flags |= CON_CONSDEV;
2459 				has_preferred = true;
2460 			}
2461 		}
2462 	}
2463 
2464 	/*
2465 	 *	See if this console matches one we selected on
2466 	 *	the command line.
2467 	 */
2468 	for (i = 0, c = console_cmdline;
2469 	     i < MAX_CMDLINECONSOLES && c->name[0];
2470 	     i++, c++) {
2471 		if (!newcon->match ||
2472 		    newcon->match(newcon, c->name, c->index, c->options) != 0) {
2473 			/* default matching */
2474 			BUILD_BUG_ON(sizeof(c->name) != sizeof(newcon->name));
2475 			if (strcmp(c->name, newcon->name) != 0)
2476 				continue;
2477 			if (newcon->index >= 0 &&
2478 			    newcon->index != c->index)
2479 				continue;
2480 			if (newcon->index < 0)
2481 				newcon->index = c->index;
2482 
2483 			if (_braille_register_console(newcon, c))
2484 				return;
2485 
2486 			if (newcon->setup &&
2487 			    newcon->setup(newcon, c->options) != 0)
2488 				break;
2489 		}
2490 
2491 		newcon->flags |= CON_ENABLED;
2492 		if (i == preferred_console) {
2493 			newcon->flags |= CON_CONSDEV;
2494 			has_preferred = true;
2495 		}
2496 		break;
2497 	}
2498 
2499 	if (!(newcon->flags & CON_ENABLED))
2500 		return;
2501 
2502 	/*
2503 	 * If we have a bootconsole, and are switching to a real console,
2504 	 * don't print everything out again, since when the boot console, and
2505 	 * the real console are the same physical device, it's annoying to
2506 	 * see the beginning boot messages twice
2507 	 */
2508 	if (bcon && ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV))
2509 		newcon->flags &= ~CON_PRINTBUFFER;
2510 
2511 	/*
2512 	 *	Put this console in the list - keep the
2513 	 *	preferred driver at the head of the list.
2514 	 */
2515 	console_lock();
2516 	if ((newcon->flags & CON_CONSDEV) || console_drivers == NULL) {
2517 		newcon->next = console_drivers;
2518 		console_drivers = newcon;
2519 		if (newcon->next)
2520 			newcon->next->flags &= ~CON_CONSDEV;
2521 	} else {
2522 		newcon->next = console_drivers->next;
2523 		console_drivers->next = newcon;
2524 	}
2525 
2526 	if (newcon->flags & CON_EXTENDED)
2527 		if (!nr_ext_console_drivers++)
2528 			pr_info("printk: continuation disabled due to ext consoles, expect more fragments in /dev/kmsg\n");
2529 
2530 	if (newcon->flags & CON_PRINTBUFFER) {
2531 		/*
2532 		 * console_unlock(); will print out the buffered messages
2533 		 * for us.
2534 		 */
2535 		logbuf_lock_irqsave(flags);
2536 		console_seq = syslog_seq;
2537 		console_idx = syslog_idx;
2538 		logbuf_unlock_irqrestore(flags);
2539 		/*
2540 		 * We're about to replay the log buffer.  Only do this to the
2541 		 * just-registered console to avoid excessive message spam to
2542 		 * the already-registered consoles.
2543 		 */
2544 		exclusive_console = newcon;
2545 	}
2546 	console_unlock();
2547 	console_sysfs_notify();
2548 
2549 	/*
2550 	 * By unregistering the bootconsoles after we enable the real console
2551 	 * we get the "console xxx enabled" message on all the consoles -
2552 	 * boot consoles, real consoles, etc - this is to ensure that end
2553 	 * users know there might be something in the kernel's log buffer that
2554 	 * went to the bootconsole (that they do not see on the real console)
2555 	 */
2556 	pr_info("%sconsole [%s%d] enabled\n",
2557 		(newcon->flags & CON_BOOT) ? "boot" : "" ,
2558 		newcon->name, newcon->index);
2559 	if (bcon &&
2560 	    ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV) &&
2561 	    !keep_bootcon) {
2562 		/* We need to iterate through all boot consoles, to make
2563 		 * sure we print everything out, before we unregister them.
2564 		 */
2565 		for_each_console(bcon)
2566 			if (bcon->flags & CON_BOOT)
2567 				unregister_console(bcon);
2568 	}
2569 }
2570 EXPORT_SYMBOL(register_console);
2571 
2572 int unregister_console(struct console *console)
2573 {
2574         struct console *a, *b;
2575 	int res;
2576 
2577 	pr_info("%sconsole [%s%d] disabled\n",
2578 		(console->flags & CON_BOOT) ? "boot" : "" ,
2579 		console->name, console->index);
2580 
2581 	res = _braille_unregister_console(console);
2582 	if (res)
2583 		return res;
2584 
2585 	res = 1;
2586 	console_lock();
2587 	if (console_drivers == console) {
2588 		console_drivers=console->next;
2589 		res = 0;
2590 	} else if (console_drivers) {
2591 		for (a=console_drivers->next, b=console_drivers ;
2592 		     a; b=a, a=b->next) {
2593 			if (a == console) {
2594 				b->next = a->next;
2595 				res = 0;
2596 				break;
2597 			}
2598 		}
2599 	}
2600 
2601 	if (!res && (console->flags & CON_EXTENDED))
2602 		nr_ext_console_drivers--;
2603 
2604 	/*
2605 	 * If this isn't the last console and it has CON_CONSDEV set, we
2606 	 * need to set it on the next preferred console.
2607 	 */
2608 	if (console_drivers != NULL && console->flags & CON_CONSDEV)
2609 		console_drivers->flags |= CON_CONSDEV;
2610 
2611 	console->flags &= ~CON_ENABLED;
2612 	console_unlock();
2613 	console_sysfs_notify();
2614 	return res;
2615 }
2616 EXPORT_SYMBOL(unregister_console);
2617 
2618 /*
2619  * Initialize the console device. This is called *early*, so
2620  * we can't necessarily depend on lots of kernel help here.
2621  * Just do some early initializations, and do the complex setup
2622  * later.
2623  */
2624 void __init console_init(void)
2625 {
2626 	initcall_t *call;
2627 
2628 	/* Setup the default TTY line discipline. */
2629 	n_tty_init();
2630 
2631 	/*
2632 	 * set up the console device so that later boot sequences can
2633 	 * inform about problems etc..
2634 	 */
2635 	call = __con_initcall_start;
2636 	while (call < __con_initcall_end) {
2637 		(*call)();
2638 		call++;
2639 	}
2640 }
2641 
2642 /*
2643  * Some boot consoles access data that is in the init section and which will
2644  * be discarded after the initcalls have been run. To make sure that no code
2645  * will access this data, unregister the boot consoles in a late initcall.
2646  *
2647  * If for some reason, such as deferred probe or the driver being a loadable
2648  * module, the real console hasn't registered yet at this point, there will
2649  * be a brief interval in which no messages are logged to the console, which
2650  * makes it difficult to diagnose problems that occur during this time.
2651  *
2652  * To mitigate this problem somewhat, only unregister consoles whose memory
2653  * intersects with the init section. Note that code exists elsewhere to get
2654  * rid of the boot console as soon as the proper console shows up, so there
2655  * won't be side-effects from postponing the removal.
2656  */
2657 static int __init printk_late_init(void)
2658 {
2659 	struct console *con;
2660 	int ret;
2661 
2662 	for_each_console(con) {
2663 		if (!keep_bootcon && con->flags & CON_BOOT) {
2664 			/*
2665 			 * Make sure to unregister boot consoles whose data
2666 			 * resides in the init section before the init section
2667 			 * is discarded. Boot consoles whose data will stick
2668 			 * around will automatically be unregistered when the
2669 			 * proper console replaces them.
2670 			 */
2671 			if (init_section_intersects(con, sizeof(*con)))
2672 				unregister_console(con);
2673 		}
2674 	}
2675 	ret = cpuhp_setup_state_nocalls(CPUHP_PRINTK_DEAD, "printk:dead", NULL,
2676 					console_cpu_notify);
2677 	WARN_ON(ret < 0);
2678 	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "printk:online",
2679 					console_cpu_notify, NULL);
2680 	WARN_ON(ret < 0);
2681 	return 0;
2682 }
2683 late_initcall(printk_late_init);
2684 
2685 #if defined CONFIG_PRINTK
2686 /*
2687  * Delayed printk version, for scheduler-internal messages:
2688  */
2689 #define PRINTK_PENDING_WAKEUP	0x01
2690 #define PRINTK_PENDING_OUTPUT	0x02
2691 
2692 static DEFINE_PER_CPU(int, printk_pending);
2693 
2694 static void wake_up_klogd_work_func(struct irq_work *irq_work)
2695 {
2696 	int pending = __this_cpu_xchg(printk_pending, 0);
2697 
2698 	if (pending & PRINTK_PENDING_OUTPUT) {
2699 		/* If trylock fails, someone else is doing the printing */
2700 		if (console_trylock())
2701 			console_unlock();
2702 	}
2703 
2704 	if (pending & PRINTK_PENDING_WAKEUP)
2705 		wake_up_interruptible(&log_wait);
2706 }
2707 
2708 static DEFINE_PER_CPU(struct irq_work, wake_up_klogd_work) = {
2709 	.func = wake_up_klogd_work_func,
2710 	.flags = IRQ_WORK_LAZY,
2711 };
2712 
2713 void wake_up_klogd(void)
2714 {
2715 	preempt_disable();
2716 	if (waitqueue_active(&log_wait)) {
2717 		this_cpu_or(printk_pending, PRINTK_PENDING_WAKEUP);
2718 		irq_work_queue(this_cpu_ptr(&wake_up_klogd_work));
2719 	}
2720 	preempt_enable();
2721 }
2722 
2723 int vprintk_deferred(const char *fmt, va_list args)
2724 {
2725 	int r;
2726 
2727 	r = vprintk_emit(0, LOGLEVEL_SCHED, NULL, 0, fmt, args);
2728 
2729 	preempt_disable();
2730 	__this_cpu_or(printk_pending, PRINTK_PENDING_OUTPUT);
2731 	irq_work_queue(this_cpu_ptr(&wake_up_klogd_work));
2732 	preempt_enable();
2733 
2734 	return r;
2735 }
2736 
2737 int printk_deferred(const char *fmt, ...)
2738 {
2739 	va_list args;
2740 	int r;
2741 
2742 	va_start(args, fmt);
2743 	r = vprintk_deferred(fmt, args);
2744 	va_end(args);
2745 
2746 	return r;
2747 }
2748 
2749 /*
2750  * printk rate limiting, lifted from the networking subsystem.
2751  *
2752  * This enforces a rate limit: not more than 10 kernel messages
2753  * every 5s to make a denial-of-service attack impossible.
2754  */
2755 DEFINE_RATELIMIT_STATE(printk_ratelimit_state, 5 * HZ, 10);
2756 
2757 int __printk_ratelimit(const char *func)
2758 {
2759 	return ___ratelimit(&printk_ratelimit_state, func);
2760 }
2761 EXPORT_SYMBOL(__printk_ratelimit);
2762 
2763 /**
2764  * printk_timed_ratelimit - caller-controlled printk ratelimiting
2765  * @caller_jiffies: pointer to caller's state
2766  * @interval_msecs: minimum interval between prints
2767  *
2768  * printk_timed_ratelimit() returns true if more than @interval_msecs
2769  * milliseconds have elapsed since the last time printk_timed_ratelimit()
2770  * returned true.
2771  */
2772 bool printk_timed_ratelimit(unsigned long *caller_jiffies,
2773 			unsigned int interval_msecs)
2774 {
2775 	unsigned long elapsed = jiffies - *caller_jiffies;
2776 
2777 	if (*caller_jiffies && elapsed <= msecs_to_jiffies(interval_msecs))
2778 		return false;
2779 
2780 	*caller_jiffies = jiffies;
2781 	return true;
2782 }
2783 EXPORT_SYMBOL(printk_timed_ratelimit);
2784 
2785 static DEFINE_SPINLOCK(dump_list_lock);
2786 static LIST_HEAD(dump_list);
2787 
2788 /**
2789  * kmsg_dump_register - register a kernel log dumper.
2790  * @dumper: pointer to the kmsg_dumper structure
2791  *
2792  * Adds a kernel log dumper to the system. The dump callback in the
2793  * structure will be called when the kernel oopses or panics and must be
2794  * set. Returns zero on success and %-EINVAL or %-EBUSY otherwise.
2795  */
2796 int kmsg_dump_register(struct kmsg_dumper *dumper)
2797 {
2798 	unsigned long flags;
2799 	int err = -EBUSY;
2800 
2801 	/* The dump callback needs to be set */
2802 	if (!dumper->dump)
2803 		return -EINVAL;
2804 
2805 	spin_lock_irqsave(&dump_list_lock, flags);
2806 	/* Don't allow registering multiple times */
2807 	if (!dumper->registered) {
2808 		dumper->registered = 1;
2809 		list_add_tail_rcu(&dumper->list, &dump_list);
2810 		err = 0;
2811 	}
2812 	spin_unlock_irqrestore(&dump_list_lock, flags);
2813 
2814 	return err;
2815 }
2816 EXPORT_SYMBOL_GPL(kmsg_dump_register);
2817 
2818 /**
2819  * kmsg_dump_unregister - unregister a kmsg dumper.
2820  * @dumper: pointer to the kmsg_dumper structure
2821  *
2822  * Removes a dump device from the system. Returns zero on success and
2823  * %-EINVAL otherwise.
2824  */
2825 int kmsg_dump_unregister(struct kmsg_dumper *dumper)
2826 {
2827 	unsigned long flags;
2828 	int err = -EINVAL;
2829 
2830 	spin_lock_irqsave(&dump_list_lock, flags);
2831 	if (dumper->registered) {
2832 		dumper->registered = 0;
2833 		list_del_rcu(&dumper->list);
2834 		err = 0;
2835 	}
2836 	spin_unlock_irqrestore(&dump_list_lock, flags);
2837 	synchronize_rcu();
2838 
2839 	return err;
2840 }
2841 EXPORT_SYMBOL_GPL(kmsg_dump_unregister);
2842 
2843 static bool always_kmsg_dump;
2844 module_param_named(always_kmsg_dump, always_kmsg_dump, bool, S_IRUGO | S_IWUSR);
2845 
2846 /**
2847  * kmsg_dump - dump kernel log to kernel message dumpers.
2848  * @reason: the reason (oops, panic etc) for dumping
2849  *
2850  * Call each of the registered dumper's dump() callback, which can
2851  * retrieve the kmsg records with kmsg_dump_get_line() or
2852  * kmsg_dump_get_buffer().
2853  */
2854 void kmsg_dump(enum kmsg_dump_reason reason)
2855 {
2856 	struct kmsg_dumper *dumper;
2857 	unsigned long flags;
2858 
2859 	if ((reason > KMSG_DUMP_OOPS) && !always_kmsg_dump)
2860 		return;
2861 
2862 	rcu_read_lock();
2863 	list_for_each_entry_rcu(dumper, &dump_list, list) {
2864 		if (dumper->max_reason && reason > dumper->max_reason)
2865 			continue;
2866 
2867 		/* initialize iterator with data about the stored records */
2868 		dumper->active = true;
2869 
2870 		logbuf_lock_irqsave(flags);
2871 		dumper->cur_seq = clear_seq;
2872 		dumper->cur_idx = clear_idx;
2873 		dumper->next_seq = log_next_seq;
2874 		dumper->next_idx = log_next_idx;
2875 		logbuf_unlock_irqrestore(flags);
2876 
2877 		/* invoke dumper which will iterate over records */
2878 		dumper->dump(dumper, reason);
2879 
2880 		/* reset iterator */
2881 		dumper->active = false;
2882 	}
2883 	rcu_read_unlock();
2884 }
2885 
2886 /**
2887  * kmsg_dump_get_line_nolock - retrieve one kmsg log line (unlocked version)
2888  * @dumper: registered kmsg dumper
2889  * @syslog: include the "<4>" prefixes
2890  * @line: buffer to copy the line to
2891  * @size: maximum size of the buffer
2892  * @len: length of line placed into buffer
2893  *
2894  * Start at the beginning of the kmsg buffer, with the oldest kmsg
2895  * record, and copy one record into the provided buffer.
2896  *
2897  * Consecutive calls will return the next available record moving
2898  * towards the end of the buffer with the youngest messages.
2899  *
2900  * A return value of FALSE indicates that there are no more records to
2901  * read.
2902  *
2903  * The function is similar to kmsg_dump_get_line(), but grabs no locks.
2904  */
2905 bool kmsg_dump_get_line_nolock(struct kmsg_dumper *dumper, bool syslog,
2906 			       char *line, size_t size, size_t *len)
2907 {
2908 	struct printk_log *msg;
2909 	size_t l = 0;
2910 	bool ret = false;
2911 
2912 	if (!dumper->active)
2913 		goto out;
2914 
2915 	if (dumper->cur_seq < log_first_seq) {
2916 		/* messages are gone, move to first available one */
2917 		dumper->cur_seq = log_first_seq;
2918 		dumper->cur_idx = log_first_idx;
2919 	}
2920 
2921 	/* last entry */
2922 	if (dumper->cur_seq >= log_next_seq)
2923 		goto out;
2924 
2925 	msg = log_from_idx(dumper->cur_idx);
2926 	l = msg_print_text(msg, syslog, line, size);
2927 
2928 	dumper->cur_idx = log_next(dumper->cur_idx);
2929 	dumper->cur_seq++;
2930 	ret = true;
2931 out:
2932 	if (len)
2933 		*len = l;
2934 	return ret;
2935 }
2936 
2937 /**
2938  * kmsg_dump_get_line - retrieve one kmsg log line
2939  * @dumper: registered kmsg dumper
2940  * @syslog: include the "<4>" prefixes
2941  * @line: buffer to copy the line to
2942  * @size: maximum size of the buffer
2943  * @len: length of line placed into buffer
2944  *
2945  * Start at the beginning of the kmsg buffer, with the oldest kmsg
2946  * record, and copy one record into the provided buffer.
2947  *
2948  * Consecutive calls will return the next available record moving
2949  * towards the end of the buffer with the youngest messages.
2950  *
2951  * A return value of FALSE indicates that there are no more records to
2952  * read.
2953  */
2954 bool kmsg_dump_get_line(struct kmsg_dumper *dumper, bool syslog,
2955 			char *line, size_t size, size_t *len)
2956 {
2957 	unsigned long flags;
2958 	bool ret;
2959 
2960 	logbuf_lock_irqsave(flags);
2961 	ret = kmsg_dump_get_line_nolock(dumper, syslog, line, size, len);
2962 	logbuf_unlock_irqrestore(flags);
2963 
2964 	return ret;
2965 }
2966 EXPORT_SYMBOL_GPL(kmsg_dump_get_line);
2967 
2968 /**
2969  * kmsg_dump_get_buffer - copy kmsg log lines
2970  * @dumper: registered kmsg dumper
2971  * @syslog: include the "<4>" prefixes
2972  * @buf: buffer to copy the line to
2973  * @size: maximum size of the buffer
2974  * @len: length of line placed into buffer
2975  *
2976  * Start at the end of the kmsg buffer and fill the provided buffer
2977  * with as many of the the *youngest* kmsg records that fit into it.
2978  * If the buffer is large enough, all available kmsg records will be
2979  * copied with a single call.
2980  *
2981  * Consecutive calls will fill the buffer with the next block of
2982  * available older records, not including the earlier retrieved ones.
2983  *
2984  * A return value of FALSE indicates that there are no more records to
2985  * read.
2986  */
2987 bool kmsg_dump_get_buffer(struct kmsg_dumper *dumper, bool syslog,
2988 			  char *buf, size_t size, size_t *len)
2989 {
2990 	unsigned long flags;
2991 	u64 seq;
2992 	u32 idx;
2993 	u64 next_seq;
2994 	u32 next_idx;
2995 	size_t l = 0;
2996 	bool ret = false;
2997 
2998 	if (!dumper->active)
2999 		goto out;
3000 
3001 	logbuf_lock_irqsave(flags);
3002 	if (dumper->cur_seq < log_first_seq) {
3003 		/* messages are gone, move to first available one */
3004 		dumper->cur_seq = log_first_seq;
3005 		dumper->cur_idx = log_first_idx;
3006 	}
3007 
3008 	/* last entry */
3009 	if (dumper->cur_seq >= dumper->next_seq) {
3010 		logbuf_unlock_irqrestore(flags);
3011 		goto out;
3012 	}
3013 
3014 	/* calculate length of entire buffer */
3015 	seq = dumper->cur_seq;
3016 	idx = dumper->cur_idx;
3017 	while (seq < dumper->next_seq) {
3018 		struct printk_log *msg = log_from_idx(idx);
3019 
3020 		l += msg_print_text(msg, true, NULL, 0);
3021 		idx = log_next(idx);
3022 		seq++;
3023 	}
3024 
3025 	/* move first record forward until length fits into the buffer */
3026 	seq = dumper->cur_seq;
3027 	idx = dumper->cur_idx;
3028 	while (l > size && seq < dumper->next_seq) {
3029 		struct printk_log *msg = log_from_idx(idx);
3030 
3031 		l -= msg_print_text(msg, true, NULL, 0);
3032 		idx = log_next(idx);
3033 		seq++;
3034 	}
3035 
3036 	/* last message in next interation */
3037 	next_seq = seq;
3038 	next_idx = idx;
3039 
3040 	l = 0;
3041 	while (seq < dumper->next_seq) {
3042 		struct printk_log *msg = log_from_idx(idx);
3043 
3044 		l += msg_print_text(msg, syslog, buf + l, size - l);
3045 		idx = log_next(idx);
3046 		seq++;
3047 	}
3048 
3049 	dumper->next_seq = next_seq;
3050 	dumper->next_idx = next_idx;
3051 	ret = true;
3052 	logbuf_unlock_irqrestore(flags);
3053 out:
3054 	if (len)
3055 		*len = l;
3056 	return ret;
3057 }
3058 EXPORT_SYMBOL_GPL(kmsg_dump_get_buffer);
3059 
3060 /**
3061  * kmsg_dump_rewind_nolock - reset the interator (unlocked version)
3062  * @dumper: registered kmsg dumper
3063  *
3064  * Reset the dumper's iterator so that kmsg_dump_get_line() and
3065  * kmsg_dump_get_buffer() can be called again and used multiple
3066  * times within the same dumper.dump() callback.
3067  *
3068  * The function is similar to kmsg_dump_rewind(), but grabs no locks.
3069  */
3070 void kmsg_dump_rewind_nolock(struct kmsg_dumper *dumper)
3071 {
3072 	dumper->cur_seq = clear_seq;
3073 	dumper->cur_idx = clear_idx;
3074 	dumper->next_seq = log_next_seq;
3075 	dumper->next_idx = log_next_idx;
3076 }
3077 
3078 /**
3079  * kmsg_dump_rewind - reset the interator
3080  * @dumper: registered kmsg dumper
3081  *
3082  * Reset the dumper's iterator so that kmsg_dump_get_line() and
3083  * kmsg_dump_get_buffer() can be called again and used multiple
3084  * times within the same dumper.dump() callback.
3085  */
3086 void kmsg_dump_rewind(struct kmsg_dumper *dumper)
3087 {
3088 	unsigned long flags;
3089 
3090 	logbuf_lock_irqsave(flags);
3091 	kmsg_dump_rewind_nolock(dumper);
3092 	logbuf_unlock_irqrestore(flags);
3093 }
3094 EXPORT_SYMBOL_GPL(kmsg_dump_rewind);
3095 
3096 static char dump_stack_arch_desc_str[128];
3097 
3098 /**
3099  * dump_stack_set_arch_desc - set arch-specific str to show with task dumps
3100  * @fmt: printf-style format string
3101  * @...: arguments for the format string
3102  *
3103  * The configured string will be printed right after utsname during task
3104  * dumps.  Usually used to add arch-specific system identifiers.  If an
3105  * arch wants to make use of such an ID string, it should initialize this
3106  * as soon as possible during boot.
3107  */
3108 void __init dump_stack_set_arch_desc(const char *fmt, ...)
3109 {
3110 	va_list args;
3111 
3112 	va_start(args, fmt);
3113 	vsnprintf(dump_stack_arch_desc_str, sizeof(dump_stack_arch_desc_str),
3114 		  fmt, args);
3115 	va_end(args);
3116 }
3117 
3118 /**
3119  * dump_stack_print_info - print generic debug info for dump_stack()
3120  * @log_lvl: log level
3121  *
3122  * Arch-specific dump_stack() implementations can use this function to
3123  * print out the same debug information as the generic dump_stack().
3124  */
3125 void dump_stack_print_info(const char *log_lvl)
3126 {
3127 	printk("%sCPU: %d PID: %d Comm: %.20s %s %s %.*s\n",
3128 	       log_lvl, raw_smp_processor_id(), current->pid, current->comm,
3129 	       print_tainted(), init_utsname()->release,
3130 	       (int)strcspn(init_utsname()->version, " "),
3131 	       init_utsname()->version);
3132 
3133 	if (dump_stack_arch_desc_str[0] != '\0')
3134 		printk("%sHardware name: %s\n",
3135 		       log_lvl, dump_stack_arch_desc_str);
3136 
3137 	print_worker_info(log_lvl, current);
3138 }
3139 
3140 /**
3141  * show_regs_print_info - print generic debug info for show_regs()
3142  * @log_lvl: log level
3143  *
3144  * show_regs() implementations can use this function to print out generic
3145  * debug information.
3146  */
3147 void show_regs_print_info(const char *log_lvl)
3148 {
3149 	dump_stack_print_info(log_lvl);
3150 
3151 	printk("%stask: %p task.stack: %p\n",
3152 	       log_lvl, current, task_stack_page(current));
3153 }
3154 
3155 #endif
3156