1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/printk.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 * 7 * Modified to make sys_syslog() more flexible: added commands to 8 * return the last 4k of kernel messages, regardless of whether 9 * they've been read or not. Added option to suppress kernel printk's 10 * to the console. Added hook for sending the console messages 11 * elsewhere, in preparation for a serial line console (someday). 12 * Ted Ts'o, 2/11/93. 13 * Modified for sysctl support, 1/8/97, Chris Horn. 14 * Fixed SMP synchronization, 08/08/99, Manfred Spraul 15 * manfred@colorfullife.com 16 * Rewrote bits to get rid of console_lock 17 * 01Mar01 Andrew Morton 18 */ 19 20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 21 22 #include <linux/kernel.h> 23 #include <linux/mm.h> 24 #include <linux/tty.h> 25 #include <linux/tty_driver.h> 26 #include <linux/console.h> 27 #include <linux/init.h> 28 #include <linux/jiffies.h> 29 #include <linux/nmi.h> 30 #include <linux/module.h> 31 #include <linux/moduleparam.h> 32 #include <linux/delay.h> 33 #include <linux/smp.h> 34 #include <linux/security.h> 35 #include <linux/memblock.h> 36 #include <linux/syscalls.h> 37 #include <linux/crash_core.h> 38 #include <linux/ratelimit.h> 39 #include <linux/kmsg_dump.h> 40 #include <linux/syslog.h> 41 #include <linux/cpu.h> 42 #include <linux/rculist.h> 43 #include <linux/poll.h> 44 #include <linux/irq_work.h> 45 #include <linux/ctype.h> 46 #include <linux/uio.h> 47 #include <linux/sched/clock.h> 48 #include <linux/sched/debug.h> 49 #include <linux/sched/task_stack.h> 50 51 #include <linux/uaccess.h> 52 #include <asm/sections.h> 53 54 #include <trace/events/initcall.h> 55 #define CREATE_TRACE_POINTS 56 #include <trace/events/printk.h> 57 58 #include "printk_ringbuffer.h" 59 #include "console_cmdline.h" 60 #include "braille.h" 61 #include "internal.h" 62 63 int console_printk[4] = { 64 CONSOLE_LOGLEVEL_DEFAULT, /* console_loglevel */ 65 MESSAGE_LOGLEVEL_DEFAULT, /* default_message_loglevel */ 66 CONSOLE_LOGLEVEL_MIN, /* minimum_console_loglevel */ 67 CONSOLE_LOGLEVEL_DEFAULT, /* default_console_loglevel */ 68 }; 69 EXPORT_SYMBOL_GPL(console_printk); 70 71 atomic_t ignore_console_lock_warning __read_mostly = ATOMIC_INIT(0); 72 EXPORT_SYMBOL(ignore_console_lock_warning); 73 74 /* 75 * Low level drivers may need that to know if they can schedule in 76 * their unblank() callback or not. So let's export it. 77 */ 78 int oops_in_progress; 79 EXPORT_SYMBOL(oops_in_progress); 80 81 /* 82 * console_sem protects the console_drivers list, and also 83 * provides serialisation for access to the entire console 84 * driver system. 85 */ 86 static DEFINE_SEMAPHORE(console_sem); 87 struct console *console_drivers; 88 EXPORT_SYMBOL_GPL(console_drivers); 89 90 /* 91 * System may need to suppress printk message under certain 92 * circumstances, like after kernel panic happens. 93 */ 94 int __read_mostly suppress_printk; 95 96 /* 97 * During panic, heavy printk by other CPUs can delay the 98 * panic and risk deadlock on console resources. 99 */ 100 static int __read_mostly suppress_panic_printk; 101 102 #ifdef CONFIG_LOCKDEP 103 static struct lockdep_map console_lock_dep_map = { 104 .name = "console_lock" 105 }; 106 #endif 107 108 enum devkmsg_log_bits { 109 __DEVKMSG_LOG_BIT_ON = 0, 110 __DEVKMSG_LOG_BIT_OFF, 111 __DEVKMSG_LOG_BIT_LOCK, 112 }; 113 114 enum devkmsg_log_masks { 115 DEVKMSG_LOG_MASK_ON = BIT(__DEVKMSG_LOG_BIT_ON), 116 DEVKMSG_LOG_MASK_OFF = BIT(__DEVKMSG_LOG_BIT_OFF), 117 DEVKMSG_LOG_MASK_LOCK = BIT(__DEVKMSG_LOG_BIT_LOCK), 118 }; 119 120 /* Keep both the 'on' and 'off' bits clear, i.e. ratelimit by default: */ 121 #define DEVKMSG_LOG_MASK_DEFAULT 0 122 123 static unsigned int __read_mostly devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT; 124 125 static int __control_devkmsg(char *str) 126 { 127 size_t len; 128 129 if (!str) 130 return -EINVAL; 131 132 len = str_has_prefix(str, "on"); 133 if (len) { 134 devkmsg_log = DEVKMSG_LOG_MASK_ON; 135 return len; 136 } 137 138 len = str_has_prefix(str, "off"); 139 if (len) { 140 devkmsg_log = DEVKMSG_LOG_MASK_OFF; 141 return len; 142 } 143 144 len = str_has_prefix(str, "ratelimit"); 145 if (len) { 146 devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT; 147 return len; 148 } 149 150 return -EINVAL; 151 } 152 153 static int __init control_devkmsg(char *str) 154 { 155 if (__control_devkmsg(str) < 0) { 156 pr_warn("printk.devkmsg: bad option string '%s'\n", str); 157 return 1; 158 } 159 160 /* 161 * Set sysctl string accordingly: 162 */ 163 if (devkmsg_log == DEVKMSG_LOG_MASK_ON) 164 strcpy(devkmsg_log_str, "on"); 165 else if (devkmsg_log == DEVKMSG_LOG_MASK_OFF) 166 strcpy(devkmsg_log_str, "off"); 167 /* else "ratelimit" which is set by default. */ 168 169 /* 170 * Sysctl cannot change it anymore. The kernel command line setting of 171 * this parameter is to force the setting to be permanent throughout the 172 * runtime of the system. This is a precation measure against userspace 173 * trying to be a smarta** and attempting to change it up on us. 174 */ 175 devkmsg_log |= DEVKMSG_LOG_MASK_LOCK; 176 177 return 1; 178 } 179 __setup("printk.devkmsg=", control_devkmsg); 180 181 char devkmsg_log_str[DEVKMSG_STR_MAX_SIZE] = "ratelimit"; 182 #if defined(CONFIG_PRINTK) && defined(CONFIG_SYSCTL) 183 int devkmsg_sysctl_set_loglvl(struct ctl_table *table, int write, 184 void *buffer, size_t *lenp, loff_t *ppos) 185 { 186 char old_str[DEVKMSG_STR_MAX_SIZE]; 187 unsigned int old; 188 int err; 189 190 if (write) { 191 if (devkmsg_log & DEVKMSG_LOG_MASK_LOCK) 192 return -EINVAL; 193 194 old = devkmsg_log; 195 strncpy(old_str, devkmsg_log_str, DEVKMSG_STR_MAX_SIZE); 196 } 197 198 err = proc_dostring(table, write, buffer, lenp, ppos); 199 if (err) 200 return err; 201 202 if (write) { 203 err = __control_devkmsg(devkmsg_log_str); 204 205 /* 206 * Do not accept an unknown string OR a known string with 207 * trailing crap... 208 */ 209 if (err < 0 || (err + 1 != *lenp)) { 210 211 /* ... and restore old setting. */ 212 devkmsg_log = old; 213 strncpy(devkmsg_log_str, old_str, DEVKMSG_STR_MAX_SIZE); 214 215 return -EINVAL; 216 } 217 } 218 219 return 0; 220 } 221 #endif /* CONFIG_PRINTK && CONFIG_SYSCTL */ 222 223 /* Number of registered extended console drivers. */ 224 static int nr_ext_console_drivers; 225 226 /* 227 * Helper macros to handle lockdep when locking/unlocking console_sem. We use 228 * macros instead of functions so that _RET_IP_ contains useful information. 229 */ 230 #define down_console_sem() do { \ 231 down(&console_sem);\ 232 mutex_acquire(&console_lock_dep_map, 0, 0, _RET_IP_);\ 233 } while (0) 234 235 static int __down_trylock_console_sem(unsigned long ip) 236 { 237 int lock_failed; 238 unsigned long flags; 239 240 /* 241 * Here and in __up_console_sem() we need to be in safe mode, 242 * because spindump/WARN/etc from under console ->lock will 243 * deadlock in printk()->down_trylock_console_sem() otherwise. 244 */ 245 printk_safe_enter_irqsave(flags); 246 lock_failed = down_trylock(&console_sem); 247 printk_safe_exit_irqrestore(flags); 248 249 if (lock_failed) 250 return 1; 251 mutex_acquire(&console_lock_dep_map, 0, 1, ip); 252 return 0; 253 } 254 #define down_trylock_console_sem() __down_trylock_console_sem(_RET_IP_) 255 256 static void __up_console_sem(unsigned long ip) 257 { 258 unsigned long flags; 259 260 mutex_release(&console_lock_dep_map, ip); 261 262 printk_safe_enter_irqsave(flags); 263 up(&console_sem); 264 printk_safe_exit_irqrestore(flags); 265 } 266 #define up_console_sem() __up_console_sem(_RET_IP_) 267 268 static bool panic_in_progress(void) 269 { 270 return unlikely(atomic_read(&panic_cpu) != PANIC_CPU_INVALID); 271 } 272 273 /* 274 * This is used for debugging the mess that is the VT code by 275 * keeping track if we have the console semaphore held. It's 276 * definitely not the perfect debug tool (we don't know if _WE_ 277 * hold it and are racing, but it helps tracking those weird code 278 * paths in the console code where we end up in places I want 279 * locked without the console semaphore held). 280 */ 281 static int console_locked, console_suspended; 282 283 /* 284 * If exclusive_console is non-NULL then only this console is to be printed to. 285 */ 286 static struct console *exclusive_console; 287 288 /* 289 * Array of consoles built from command line options (console=) 290 */ 291 292 #define MAX_CMDLINECONSOLES 8 293 294 static struct console_cmdline console_cmdline[MAX_CMDLINECONSOLES]; 295 296 static int preferred_console = -1; 297 int console_set_on_cmdline; 298 EXPORT_SYMBOL(console_set_on_cmdline); 299 300 /* Flag: console code may call schedule() */ 301 static int console_may_schedule; 302 303 enum con_msg_format_flags { 304 MSG_FORMAT_DEFAULT = 0, 305 MSG_FORMAT_SYSLOG = (1 << 0), 306 }; 307 308 static int console_msg_format = MSG_FORMAT_DEFAULT; 309 310 /* 311 * The printk log buffer consists of a sequenced collection of records, each 312 * containing variable length message text. Every record also contains its 313 * own meta-data (@info). 314 * 315 * Every record meta-data carries the timestamp in microseconds, as well as 316 * the standard userspace syslog level and syslog facility. The usual kernel 317 * messages use LOG_KERN; userspace-injected messages always carry a matching 318 * syslog facility, by default LOG_USER. The origin of every message can be 319 * reliably determined that way. 320 * 321 * The human readable log message of a record is available in @text, the 322 * length of the message text in @text_len. The stored message is not 323 * terminated. 324 * 325 * Optionally, a record can carry a dictionary of properties (key/value 326 * pairs), to provide userspace with a machine-readable message context. 327 * 328 * Examples for well-defined, commonly used property names are: 329 * DEVICE=b12:8 device identifier 330 * b12:8 block dev_t 331 * c127:3 char dev_t 332 * n8 netdev ifindex 333 * +sound:card0 subsystem:devname 334 * SUBSYSTEM=pci driver-core subsystem name 335 * 336 * Valid characters in property names are [a-zA-Z0-9.-_]. Property names 337 * and values are terminated by a '\0' character. 338 * 339 * Example of record values: 340 * record.text_buf = "it's a line" (unterminated) 341 * record.info.seq = 56 342 * record.info.ts_nsec = 36863 343 * record.info.text_len = 11 344 * record.info.facility = 0 (LOG_KERN) 345 * record.info.flags = 0 346 * record.info.level = 3 (LOG_ERR) 347 * record.info.caller_id = 299 (task 299) 348 * record.info.dev_info.subsystem = "pci" (terminated) 349 * record.info.dev_info.device = "+pci:0000:00:01.0" (terminated) 350 * 351 * The 'struct printk_info' buffer must never be directly exported to 352 * userspace, it is a kernel-private implementation detail that might 353 * need to be changed in the future, when the requirements change. 354 * 355 * /dev/kmsg exports the structured data in the following line format: 356 * "<level>,<sequnum>,<timestamp>,<contflag>[,additional_values, ... ];<message text>\n" 357 * 358 * Users of the export format should ignore possible additional values 359 * separated by ',', and find the message after the ';' character. 360 * 361 * The optional key/value pairs are attached as continuation lines starting 362 * with a space character and terminated by a newline. All possible 363 * non-prinatable characters are escaped in the "\xff" notation. 364 */ 365 366 /* syslog_lock protects syslog_* variables and write access to clear_seq. */ 367 static DEFINE_MUTEX(syslog_lock); 368 369 #ifdef CONFIG_PRINTK 370 DECLARE_WAIT_QUEUE_HEAD(log_wait); 371 /* All 3 protected by @syslog_lock. */ 372 /* the next printk record to read by syslog(READ) or /proc/kmsg */ 373 static u64 syslog_seq; 374 static size_t syslog_partial; 375 static bool syslog_time; 376 377 /* All 3 protected by @console_sem. */ 378 /* the next printk record to write to the console */ 379 static u64 console_seq; 380 static u64 exclusive_console_stop_seq; 381 static unsigned long console_dropped; 382 383 struct latched_seq { 384 seqcount_latch_t latch; 385 u64 val[2]; 386 }; 387 388 /* 389 * The next printk record to read after the last 'clear' command. There are 390 * two copies (updated with seqcount_latch) so that reads can locklessly 391 * access a valid value. Writers are synchronized by @syslog_lock. 392 */ 393 static struct latched_seq clear_seq = { 394 .latch = SEQCNT_LATCH_ZERO(clear_seq.latch), 395 .val[0] = 0, 396 .val[1] = 0, 397 }; 398 399 #ifdef CONFIG_PRINTK_CALLER 400 #define PREFIX_MAX 48 401 #else 402 #define PREFIX_MAX 32 403 #endif 404 405 /* the maximum size of a formatted record (i.e. with prefix added per line) */ 406 #define CONSOLE_LOG_MAX 1024 407 408 /* the maximum size allowed to be reserved for a record */ 409 #define LOG_LINE_MAX (CONSOLE_LOG_MAX - PREFIX_MAX) 410 411 #define LOG_LEVEL(v) ((v) & 0x07) 412 #define LOG_FACILITY(v) ((v) >> 3 & 0xff) 413 414 /* record buffer */ 415 #define LOG_ALIGN __alignof__(unsigned long) 416 #define __LOG_BUF_LEN (1 << CONFIG_LOG_BUF_SHIFT) 417 #define LOG_BUF_LEN_MAX (u32)(1 << 31) 418 static char __log_buf[__LOG_BUF_LEN] __aligned(LOG_ALIGN); 419 static char *log_buf = __log_buf; 420 static u32 log_buf_len = __LOG_BUF_LEN; 421 422 /* 423 * Define the average message size. This only affects the number of 424 * descriptors that will be available. Underestimating is better than 425 * overestimating (too many available descriptors is better than not enough). 426 */ 427 #define PRB_AVGBITS 5 /* 32 character average length */ 428 429 #if CONFIG_LOG_BUF_SHIFT <= PRB_AVGBITS 430 #error CONFIG_LOG_BUF_SHIFT value too small. 431 #endif 432 _DEFINE_PRINTKRB(printk_rb_static, CONFIG_LOG_BUF_SHIFT - PRB_AVGBITS, 433 PRB_AVGBITS, &__log_buf[0]); 434 435 static struct printk_ringbuffer printk_rb_dynamic; 436 437 static struct printk_ringbuffer *prb = &printk_rb_static; 438 439 /* 440 * We cannot access per-CPU data (e.g. per-CPU flush irq_work) before 441 * per_cpu_areas are initialised. This variable is set to true when 442 * it's safe to access per-CPU data. 443 */ 444 static bool __printk_percpu_data_ready __read_mostly; 445 446 bool printk_percpu_data_ready(void) 447 { 448 return __printk_percpu_data_ready; 449 } 450 451 /* Must be called under syslog_lock. */ 452 static void latched_seq_write(struct latched_seq *ls, u64 val) 453 { 454 raw_write_seqcount_latch(&ls->latch); 455 ls->val[0] = val; 456 raw_write_seqcount_latch(&ls->latch); 457 ls->val[1] = val; 458 } 459 460 /* Can be called from any context. */ 461 static u64 latched_seq_read_nolock(struct latched_seq *ls) 462 { 463 unsigned int seq; 464 unsigned int idx; 465 u64 val; 466 467 do { 468 seq = raw_read_seqcount_latch(&ls->latch); 469 idx = seq & 0x1; 470 val = ls->val[idx]; 471 } while (read_seqcount_latch_retry(&ls->latch, seq)); 472 473 return val; 474 } 475 476 /* Return log buffer address */ 477 char *log_buf_addr_get(void) 478 { 479 return log_buf; 480 } 481 482 /* Return log buffer size */ 483 u32 log_buf_len_get(void) 484 { 485 return log_buf_len; 486 } 487 488 /* 489 * Define how much of the log buffer we could take at maximum. The value 490 * must be greater than two. Note that only half of the buffer is available 491 * when the index points to the middle. 492 */ 493 #define MAX_LOG_TAKE_PART 4 494 static const char trunc_msg[] = "<truncated>"; 495 496 static void truncate_msg(u16 *text_len, u16 *trunc_msg_len) 497 { 498 /* 499 * The message should not take the whole buffer. Otherwise, it might 500 * get removed too soon. 501 */ 502 u32 max_text_len = log_buf_len / MAX_LOG_TAKE_PART; 503 504 if (*text_len > max_text_len) 505 *text_len = max_text_len; 506 507 /* enable the warning message (if there is room) */ 508 *trunc_msg_len = strlen(trunc_msg); 509 if (*text_len >= *trunc_msg_len) 510 *text_len -= *trunc_msg_len; 511 else 512 *trunc_msg_len = 0; 513 } 514 515 int dmesg_restrict = IS_ENABLED(CONFIG_SECURITY_DMESG_RESTRICT); 516 517 static int syslog_action_restricted(int type) 518 { 519 if (dmesg_restrict) 520 return 1; 521 /* 522 * Unless restricted, we allow "read all" and "get buffer size" 523 * for everybody. 524 */ 525 return type != SYSLOG_ACTION_READ_ALL && 526 type != SYSLOG_ACTION_SIZE_BUFFER; 527 } 528 529 static int check_syslog_permissions(int type, int source) 530 { 531 /* 532 * If this is from /proc/kmsg and we've already opened it, then we've 533 * already done the capabilities checks at open time. 534 */ 535 if (source == SYSLOG_FROM_PROC && type != SYSLOG_ACTION_OPEN) 536 goto ok; 537 538 if (syslog_action_restricted(type)) { 539 if (capable(CAP_SYSLOG)) 540 goto ok; 541 /* 542 * For historical reasons, accept CAP_SYS_ADMIN too, with 543 * a warning. 544 */ 545 if (capable(CAP_SYS_ADMIN)) { 546 pr_warn_once("%s (%d): Attempt to access syslog with " 547 "CAP_SYS_ADMIN but no CAP_SYSLOG " 548 "(deprecated).\n", 549 current->comm, task_pid_nr(current)); 550 goto ok; 551 } 552 return -EPERM; 553 } 554 ok: 555 return security_syslog(type); 556 } 557 558 static void append_char(char **pp, char *e, char c) 559 { 560 if (*pp < e) 561 *(*pp)++ = c; 562 } 563 564 static ssize_t info_print_ext_header(char *buf, size_t size, 565 struct printk_info *info) 566 { 567 u64 ts_usec = info->ts_nsec; 568 char caller[20]; 569 #ifdef CONFIG_PRINTK_CALLER 570 u32 id = info->caller_id; 571 572 snprintf(caller, sizeof(caller), ",caller=%c%u", 573 id & 0x80000000 ? 'C' : 'T', id & ~0x80000000); 574 #else 575 caller[0] = '\0'; 576 #endif 577 578 do_div(ts_usec, 1000); 579 580 return scnprintf(buf, size, "%u,%llu,%llu,%c%s;", 581 (info->facility << 3) | info->level, info->seq, 582 ts_usec, info->flags & LOG_CONT ? 'c' : '-', caller); 583 } 584 585 static ssize_t msg_add_ext_text(char *buf, size_t size, 586 const char *text, size_t text_len, 587 unsigned char endc) 588 { 589 char *p = buf, *e = buf + size; 590 size_t i; 591 592 /* escape non-printable characters */ 593 for (i = 0; i < text_len; i++) { 594 unsigned char c = text[i]; 595 596 if (c < ' ' || c >= 127 || c == '\\') 597 p += scnprintf(p, e - p, "\\x%02x", c); 598 else 599 append_char(&p, e, c); 600 } 601 append_char(&p, e, endc); 602 603 return p - buf; 604 } 605 606 static ssize_t msg_add_dict_text(char *buf, size_t size, 607 const char *key, const char *val) 608 { 609 size_t val_len = strlen(val); 610 ssize_t len; 611 612 if (!val_len) 613 return 0; 614 615 len = msg_add_ext_text(buf, size, "", 0, ' '); /* dict prefix */ 616 len += msg_add_ext_text(buf + len, size - len, key, strlen(key), '='); 617 len += msg_add_ext_text(buf + len, size - len, val, val_len, '\n'); 618 619 return len; 620 } 621 622 static ssize_t msg_print_ext_body(char *buf, size_t size, 623 char *text, size_t text_len, 624 struct dev_printk_info *dev_info) 625 { 626 ssize_t len; 627 628 len = msg_add_ext_text(buf, size, text, text_len, '\n'); 629 630 if (!dev_info) 631 goto out; 632 633 len += msg_add_dict_text(buf + len, size - len, "SUBSYSTEM", 634 dev_info->subsystem); 635 len += msg_add_dict_text(buf + len, size - len, "DEVICE", 636 dev_info->device); 637 out: 638 return len; 639 } 640 641 /* /dev/kmsg - userspace message inject/listen interface */ 642 struct devkmsg_user { 643 atomic64_t seq; 644 struct ratelimit_state rs; 645 struct mutex lock; 646 char buf[CONSOLE_EXT_LOG_MAX]; 647 648 struct printk_info info; 649 char text_buf[CONSOLE_EXT_LOG_MAX]; 650 struct printk_record record; 651 }; 652 653 static __printf(3, 4) __cold 654 int devkmsg_emit(int facility, int level, const char *fmt, ...) 655 { 656 va_list args; 657 int r; 658 659 va_start(args, fmt); 660 r = vprintk_emit(facility, level, NULL, fmt, args); 661 va_end(args); 662 663 return r; 664 } 665 666 static ssize_t devkmsg_write(struct kiocb *iocb, struct iov_iter *from) 667 { 668 char *buf, *line; 669 int level = default_message_loglevel; 670 int facility = 1; /* LOG_USER */ 671 struct file *file = iocb->ki_filp; 672 struct devkmsg_user *user = file->private_data; 673 size_t len = iov_iter_count(from); 674 ssize_t ret = len; 675 676 if (!user || len > LOG_LINE_MAX) 677 return -EINVAL; 678 679 /* Ignore when user logging is disabled. */ 680 if (devkmsg_log & DEVKMSG_LOG_MASK_OFF) 681 return len; 682 683 /* Ratelimit when not explicitly enabled. */ 684 if (!(devkmsg_log & DEVKMSG_LOG_MASK_ON)) { 685 if (!___ratelimit(&user->rs, current->comm)) 686 return ret; 687 } 688 689 buf = kmalloc(len+1, GFP_KERNEL); 690 if (buf == NULL) 691 return -ENOMEM; 692 693 buf[len] = '\0'; 694 if (!copy_from_iter_full(buf, len, from)) { 695 kfree(buf); 696 return -EFAULT; 697 } 698 699 /* 700 * Extract and skip the syslog prefix <[0-9]*>. Coming from userspace 701 * the decimal value represents 32bit, the lower 3 bit are the log 702 * level, the rest are the log facility. 703 * 704 * If no prefix or no userspace facility is specified, we 705 * enforce LOG_USER, to be able to reliably distinguish 706 * kernel-generated messages from userspace-injected ones. 707 */ 708 line = buf; 709 if (line[0] == '<') { 710 char *endp = NULL; 711 unsigned int u; 712 713 u = simple_strtoul(line + 1, &endp, 10); 714 if (endp && endp[0] == '>') { 715 level = LOG_LEVEL(u); 716 if (LOG_FACILITY(u) != 0) 717 facility = LOG_FACILITY(u); 718 endp++; 719 line = endp; 720 } 721 } 722 723 devkmsg_emit(facility, level, "%s", line); 724 kfree(buf); 725 return ret; 726 } 727 728 static ssize_t devkmsg_read(struct file *file, char __user *buf, 729 size_t count, loff_t *ppos) 730 { 731 struct devkmsg_user *user = file->private_data; 732 struct printk_record *r = &user->record; 733 size_t len; 734 ssize_t ret; 735 736 if (!user) 737 return -EBADF; 738 739 ret = mutex_lock_interruptible(&user->lock); 740 if (ret) 741 return ret; 742 743 if (!prb_read_valid(prb, atomic64_read(&user->seq), r)) { 744 if (file->f_flags & O_NONBLOCK) { 745 ret = -EAGAIN; 746 goto out; 747 } 748 749 ret = wait_event_interruptible(log_wait, 750 prb_read_valid(prb, atomic64_read(&user->seq), r)); 751 if (ret) 752 goto out; 753 } 754 755 if (r->info->seq != atomic64_read(&user->seq)) { 756 /* our last seen message is gone, return error and reset */ 757 atomic64_set(&user->seq, r->info->seq); 758 ret = -EPIPE; 759 goto out; 760 } 761 762 len = info_print_ext_header(user->buf, sizeof(user->buf), r->info); 763 len += msg_print_ext_body(user->buf + len, sizeof(user->buf) - len, 764 &r->text_buf[0], r->info->text_len, 765 &r->info->dev_info); 766 767 atomic64_set(&user->seq, r->info->seq + 1); 768 769 if (len > count) { 770 ret = -EINVAL; 771 goto out; 772 } 773 774 if (copy_to_user(buf, user->buf, len)) { 775 ret = -EFAULT; 776 goto out; 777 } 778 ret = len; 779 out: 780 mutex_unlock(&user->lock); 781 return ret; 782 } 783 784 /* 785 * Be careful when modifying this function!!! 786 * 787 * Only few operations are supported because the device works only with the 788 * entire variable length messages (records). Non-standard values are 789 * returned in the other cases and has been this way for quite some time. 790 * User space applications might depend on this behavior. 791 */ 792 static loff_t devkmsg_llseek(struct file *file, loff_t offset, int whence) 793 { 794 struct devkmsg_user *user = file->private_data; 795 loff_t ret = 0; 796 797 if (!user) 798 return -EBADF; 799 if (offset) 800 return -ESPIPE; 801 802 switch (whence) { 803 case SEEK_SET: 804 /* the first record */ 805 atomic64_set(&user->seq, prb_first_valid_seq(prb)); 806 break; 807 case SEEK_DATA: 808 /* 809 * The first record after the last SYSLOG_ACTION_CLEAR, 810 * like issued by 'dmesg -c'. Reading /dev/kmsg itself 811 * changes no global state, and does not clear anything. 812 */ 813 atomic64_set(&user->seq, latched_seq_read_nolock(&clear_seq)); 814 break; 815 case SEEK_END: 816 /* after the last record */ 817 atomic64_set(&user->seq, prb_next_seq(prb)); 818 break; 819 default: 820 ret = -EINVAL; 821 } 822 return ret; 823 } 824 825 static __poll_t devkmsg_poll(struct file *file, poll_table *wait) 826 { 827 struct devkmsg_user *user = file->private_data; 828 struct printk_info info; 829 __poll_t ret = 0; 830 831 if (!user) 832 return EPOLLERR|EPOLLNVAL; 833 834 poll_wait(file, &log_wait, wait); 835 836 if (prb_read_valid_info(prb, atomic64_read(&user->seq), &info, NULL)) { 837 /* return error when data has vanished underneath us */ 838 if (info.seq != atomic64_read(&user->seq)) 839 ret = EPOLLIN|EPOLLRDNORM|EPOLLERR|EPOLLPRI; 840 else 841 ret = EPOLLIN|EPOLLRDNORM; 842 } 843 844 return ret; 845 } 846 847 static int devkmsg_open(struct inode *inode, struct file *file) 848 { 849 struct devkmsg_user *user; 850 int err; 851 852 if (devkmsg_log & DEVKMSG_LOG_MASK_OFF) 853 return -EPERM; 854 855 /* write-only does not need any file context */ 856 if ((file->f_flags & O_ACCMODE) != O_WRONLY) { 857 err = check_syslog_permissions(SYSLOG_ACTION_READ_ALL, 858 SYSLOG_FROM_READER); 859 if (err) 860 return err; 861 } 862 863 user = kvmalloc(sizeof(struct devkmsg_user), GFP_KERNEL); 864 if (!user) 865 return -ENOMEM; 866 867 ratelimit_default_init(&user->rs); 868 ratelimit_set_flags(&user->rs, RATELIMIT_MSG_ON_RELEASE); 869 870 mutex_init(&user->lock); 871 872 prb_rec_init_rd(&user->record, &user->info, 873 &user->text_buf[0], sizeof(user->text_buf)); 874 875 atomic64_set(&user->seq, prb_first_valid_seq(prb)); 876 877 file->private_data = user; 878 return 0; 879 } 880 881 static int devkmsg_release(struct inode *inode, struct file *file) 882 { 883 struct devkmsg_user *user = file->private_data; 884 885 if (!user) 886 return 0; 887 888 ratelimit_state_exit(&user->rs); 889 890 mutex_destroy(&user->lock); 891 kvfree(user); 892 return 0; 893 } 894 895 const struct file_operations kmsg_fops = { 896 .open = devkmsg_open, 897 .read = devkmsg_read, 898 .write_iter = devkmsg_write, 899 .llseek = devkmsg_llseek, 900 .poll = devkmsg_poll, 901 .release = devkmsg_release, 902 }; 903 904 #ifdef CONFIG_CRASH_CORE 905 /* 906 * This appends the listed symbols to /proc/vmcore 907 * 908 * /proc/vmcore is used by various utilities, like crash and makedumpfile to 909 * obtain access to symbols that are otherwise very difficult to locate. These 910 * symbols are specifically used so that utilities can access and extract the 911 * dmesg log from a vmcore file after a crash. 912 */ 913 void log_buf_vmcoreinfo_setup(void) 914 { 915 struct dev_printk_info *dev_info = NULL; 916 917 VMCOREINFO_SYMBOL(prb); 918 VMCOREINFO_SYMBOL(printk_rb_static); 919 VMCOREINFO_SYMBOL(clear_seq); 920 921 /* 922 * Export struct size and field offsets. User space tools can 923 * parse it and detect any changes to structure down the line. 924 */ 925 926 VMCOREINFO_STRUCT_SIZE(printk_ringbuffer); 927 VMCOREINFO_OFFSET(printk_ringbuffer, desc_ring); 928 VMCOREINFO_OFFSET(printk_ringbuffer, text_data_ring); 929 VMCOREINFO_OFFSET(printk_ringbuffer, fail); 930 931 VMCOREINFO_STRUCT_SIZE(prb_desc_ring); 932 VMCOREINFO_OFFSET(prb_desc_ring, count_bits); 933 VMCOREINFO_OFFSET(prb_desc_ring, descs); 934 VMCOREINFO_OFFSET(prb_desc_ring, infos); 935 VMCOREINFO_OFFSET(prb_desc_ring, head_id); 936 VMCOREINFO_OFFSET(prb_desc_ring, tail_id); 937 938 VMCOREINFO_STRUCT_SIZE(prb_desc); 939 VMCOREINFO_OFFSET(prb_desc, state_var); 940 VMCOREINFO_OFFSET(prb_desc, text_blk_lpos); 941 942 VMCOREINFO_STRUCT_SIZE(prb_data_blk_lpos); 943 VMCOREINFO_OFFSET(prb_data_blk_lpos, begin); 944 VMCOREINFO_OFFSET(prb_data_blk_lpos, next); 945 946 VMCOREINFO_STRUCT_SIZE(printk_info); 947 VMCOREINFO_OFFSET(printk_info, seq); 948 VMCOREINFO_OFFSET(printk_info, ts_nsec); 949 VMCOREINFO_OFFSET(printk_info, text_len); 950 VMCOREINFO_OFFSET(printk_info, caller_id); 951 VMCOREINFO_OFFSET(printk_info, dev_info); 952 953 VMCOREINFO_STRUCT_SIZE(dev_printk_info); 954 VMCOREINFO_OFFSET(dev_printk_info, subsystem); 955 VMCOREINFO_LENGTH(printk_info_subsystem, sizeof(dev_info->subsystem)); 956 VMCOREINFO_OFFSET(dev_printk_info, device); 957 VMCOREINFO_LENGTH(printk_info_device, sizeof(dev_info->device)); 958 959 VMCOREINFO_STRUCT_SIZE(prb_data_ring); 960 VMCOREINFO_OFFSET(prb_data_ring, size_bits); 961 VMCOREINFO_OFFSET(prb_data_ring, data); 962 VMCOREINFO_OFFSET(prb_data_ring, head_lpos); 963 VMCOREINFO_OFFSET(prb_data_ring, tail_lpos); 964 965 VMCOREINFO_SIZE(atomic_long_t); 966 VMCOREINFO_TYPE_OFFSET(atomic_long_t, counter); 967 968 VMCOREINFO_STRUCT_SIZE(latched_seq); 969 VMCOREINFO_OFFSET(latched_seq, val); 970 } 971 #endif 972 973 /* requested log_buf_len from kernel cmdline */ 974 static unsigned long __initdata new_log_buf_len; 975 976 /* we practice scaling the ring buffer by powers of 2 */ 977 static void __init log_buf_len_update(u64 size) 978 { 979 if (size > (u64)LOG_BUF_LEN_MAX) { 980 size = (u64)LOG_BUF_LEN_MAX; 981 pr_err("log_buf over 2G is not supported.\n"); 982 } 983 984 if (size) 985 size = roundup_pow_of_two(size); 986 if (size > log_buf_len) 987 new_log_buf_len = (unsigned long)size; 988 } 989 990 /* save requested log_buf_len since it's too early to process it */ 991 static int __init log_buf_len_setup(char *str) 992 { 993 u64 size; 994 995 if (!str) 996 return -EINVAL; 997 998 size = memparse(str, &str); 999 1000 log_buf_len_update(size); 1001 1002 return 0; 1003 } 1004 early_param("log_buf_len", log_buf_len_setup); 1005 1006 #ifdef CONFIG_SMP 1007 #define __LOG_CPU_MAX_BUF_LEN (1 << CONFIG_LOG_CPU_MAX_BUF_SHIFT) 1008 1009 static void __init log_buf_add_cpu(void) 1010 { 1011 unsigned int cpu_extra; 1012 1013 /* 1014 * archs should set up cpu_possible_bits properly with 1015 * set_cpu_possible() after setup_arch() but just in 1016 * case lets ensure this is valid. 1017 */ 1018 if (num_possible_cpus() == 1) 1019 return; 1020 1021 cpu_extra = (num_possible_cpus() - 1) * __LOG_CPU_MAX_BUF_LEN; 1022 1023 /* by default this will only continue through for large > 64 CPUs */ 1024 if (cpu_extra <= __LOG_BUF_LEN / 2) 1025 return; 1026 1027 pr_info("log_buf_len individual max cpu contribution: %d bytes\n", 1028 __LOG_CPU_MAX_BUF_LEN); 1029 pr_info("log_buf_len total cpu_extra contributions: %d bytes\n", 1030 cpu_extra); 1031 pr_info("log_buf_len min size: %d bytes\n", __LOG_BUF_LEN); 1032 1033 log_buf_len_update(cpu_extra + __LOG_BUF_LEN); 1034 } 1035 #else /* !CONFIG_SMP */ 1036 static inline void log_buf_add_cpu(void) {} 1037 #endif /* CONFIG_SMP */ 1038 1039 static void __init set_percpu_data_ready(void) 1040 { 1041 __printk_percpu_data_ready = true; 1042 } 1043 1044 static unsigned int __init add_to_rb(struct printk_ringbuffer *rb, 1045 struct printk_record *r) 1046 { 1047 struct prb_reserved_entry e; 1048 struct printk_record dest_r; 1049 1050 prb_rec_init_wr(&dest_r, r->info->text_len); 1051 1052 if (!prb_reserve(&e, rb, &dest_r)) 1053 return 0; 1054 1055 memcpy(&dest_r.text_buf[0], &r->text_buf[0], r->info->text_len); 1056 dest_r.info->text_len = r->info->text_len; 1057 dest_r.info->facility = r->info->facility; 1058 dest_r.info->level = r->info->level; 1059 dest_r.info->flags = r->info->flags; 1060 dest_r.info->ts_nsec = r->info->ts_nsec; 1061 dest_r.info->caller_id = r->info->caller_id; 1062 memcpy(&dest_r.info->dev_info, &r->info->dev_info, sizeof(dest_r.info->dev_info)); 1063 1064 prb_final_commit(&e); 1065 1066 return prb_record_text_space(&e); 1067 } 1068 1069 static char setup_text_buf[LOG_LINE_MAX] __initdata; 1070 1071 void __init setup_log_buf(int early) 1072 { 1073 struct printk_info *new_infos; 1074 unsigned int new_descs_count; 1075 struct prb_desc *new_descs; 1076 struct printk_info info; 1077 struct printk_record r; 1078 unsigned int text_size; 1079 size_t new_descs_size; 1080 size_t new_infos_size; 1081 unsigned long flags; 1082 char *new_log_buf; 1083 unsigned int free; 1084 u64 seq; 1085 1086 /* 1087 * Some archs call setup_log_buf() multiple times - first is very 1088 * early, e.g. from setup_arch(), and second - when percpu_areas 1089 * are initialised. 1090 */ 1091 if (!early) 1092 set_percpu_data_ready(); 1093 1094 if (log_buf != __log_buf) 1095 return; 1096 1097 if (!early && !new_log_buf_len) 1098 log_buf_add_cpu(); 1099 1100 if (!new_log_buf_len) 1101 return; 1102 1103 new_descs_count = new_log_buf_len >> PRB_AVGBITS; 1104 if (new_descs_count == 0) { 1105 pr_err("new_log_buf_len: %lu too small\n", new_log_buf_len); 1106 return; 1107 } 1108 1109 new_log_buf = memblock_alloc(new_log_buf_len, LOG_ALIGN); 1110 if (unlikely(!new_log_buf)) { 1111 pr_err("log_buf_len: %lu text bytes not available\n", 1112 new_log_buf_len); 1113 return; 1114 } 1115 1116 new_descs_size = new_descs_count * sizeof(struct prb_desc); 1117 new_descs = memblock_alloc(new_descs_size, LOG_ALIGN); 1118 if (unlikely(!new_descs)) { 1119 pr_err("log_buf_len: %zu desc bytes not available\n", 1120 new_descs_size); 1121 goto err_free_log_buf; 1122 } 1123 1124 new_infos_size = new_descs_count * sizeof(struct printk_info); 1125 new_infos = memblock_alloc(new_infos_size, LOG_ALIGN); 1126 if (unlikely(!new_infos)) { 1127 pr_err("log_buf_len: %zu info bytes not available\n", 1128 new_infos_size); 1129 goto err_free_descs; 1130 } 1131 1132 prb_rec_init_rd(&r, &info, &setup_text_buf[0], sizeof(setup_text_buf)); 1133 1134 prb_init(&printk_rb_dynamic, 1135 new_log_buf, ilog2(new_log_buf_len), 1136 new_descs, ilog2(new_descs_count), 1137 new_infos); 1138 1139 local_irq_save(flags); 1140 1141 log_buf_len = new_log_buf_len; 1142 log_buf = new_log_buf; 1143 new_log_buf_len = 0; 1144 1145 free = __LOG_BUF_LEN; 1146 prb_for_each_record(0, &printk_rb_static, seq, &r) { 1147 text_size = add_to_rb(&printk_rb_dynamic, &r); 1148 if (text_size > free) 1149 free = 0; 1150 else 1151 free -= text_size; 1152 } 1153 1154 prb = &printk_rb_dynamic; 1155 1156 local_irq_restore(flags); 1157 1158 /* 1159 * Copy any remaining messages that might have appeared from 1160 * NMI context after copying but before switching to the 1161 * dynamic buffer. 1162 */ 1163 prb_for_each_record(seq, &printk_rb_static, seq, &r) { 1164 text_size = add_to_rb(&printk_rb_dynamic, &r); 1165 if (text_size > free) 1166 free = 0; 1167 else 1168 free -= text_size; 1169 } 1170 1171 if (seq != prb_next_seq(&printk_rb_static)) { 1172 pr_err("dropped %llu messages\n", 1173 prb_next_seq(&printk_rb_static) - seq); 1174 } 1175 1176 pr_info("log_buf_len: %u bytes\n", log_buf_len); 1177 pr_info("early log buf free: %u(%u%%)\n", 1178 free, (free * 100) / __LOG_BUF_LEN); 1179 return; 1180 1181 err_free_descs: 1182 memblock_free(new_descs, new_descs_size); 1183 err_free_log_buf: 1184 memblock_free(new_log_buf, new_log_buf_len); 1185 } 1186 1187 static bool __read_mostly ignore_loglevel; 1188 1189 static int __init ignore_loglevel_setup(char *str) 1190 { 1191 ignore_loglevel = true; 1192 pr_info("debug: ignoring loglevel setting.\n"); 1193 1194 return 0; 1195 } 1196 1197 early_param("ignore_loglevel", ignore_loglevel_setup); 1198 module_param(ignore_loglevel, bool, S_IRUGO | S_IWUSR); 1199 MODULE_PARM_DESC(ignore_loglevel, 1200 "ignore loglevel setting (prints all kernel messages to the console)"); 1201 1202 static bool suppress_message_printing(int level) 1203 { 1204 return (level >= console_loglevel && !ignore_loglevel); 1205 } 1206 1207 #ifdef CONFIG_BOOT_PRINTK_DELAY 1208 1209 static int boot_delay; /* msecs delay after each printk during bootup */ 1210 static unsigned long long loops_per_msec; /* based on boot_delay */ 1211 1212 static int __init boot_delay_setup(char *str) 1213 { 1214 unsigned long lpj; 1215 1216 lpj = preset_lpj ? preset_lpj : 1000000; /* some guess */ 1217 loops_per_msec = (unsigned long long)lpj / 1000 * HZ; 1218 1219 get_option(&str, &boot_delay); 1220 if (boot_delay > 10 * 1000) 1221 boot_delay = 0; 1222 1223 pr_debug("boot_delay: %u, preset_lpj: %ld, lpj: %lu, " 1224 "HZ: %d, loops_per_msec: %llu\n", 1225 boot_delay, preset_lpj, lpj, HZ, loops_per_msec); 1226 return 0; 1227 } 1228 early_param("boot_delay", boot_delay_setup); 1229 1230 static void boot_delay_msec(int level) 1231 { 1232 unsigned long long k; 1233 unsigned long timeout; 1234 1235 if ((boot_delay == 0 || system_state >= SYSTEM_RUNNING) 1236 || suppress_message_printing(level)) { 1237 return; 1238 } 1239 1240 k = (unsigned long long)loops_per_msec * boot_delay; 1241 1242 timeout = jiffies + msecs_to_jiffies(boot_delay); 1243 while (k) { 1244 k--; 1245 cpu_relax(); 1246 /* 1247 * use (volatile) jiffies to prevent 1248 * compiler reduction; loop termination via jiffies 1249 * is secondary and may or may not happen. 1250 */ 1251 if (time_after(jiffies, timeout)) 1252 break; 1253 touch_nmi_watchdog(); 1254 } 1255 } 1256 #else 1257 static inline void boot_delay_msec(int level) 1258 { 1259 } 1260 #endif 1261 1262 static bool printk_time = IS_ENABLED(CONFIG_PRINTK_TIME); 1263 module_param_named(time, printk_time, bool, S_IRUGO | S_IWUSR); 1264 1265 static size_t print_syslog(unsigned int level, char *buf) 1266 { 1267 return sprintf(buf, "<%u>", level); 1268 } 1269 1270 static size_t print_time(u64 ts, char *buf) 1271 { 1272 unsigned long rem_nsec = do_div(ts, 1000000000); 1273 1274 return sprintf(buf, "[%5lu.%06lu]", 1275 (unsigned long)ts, rem_nsec / 1000); 1276 } 1277 1278 #ifdef CONFIG_PRINTK_CALLER 1279 static size_t print_caller(u32 id, char *buf) 1280 { 1281 char caller[12]; 1282 1283 snprintf(caller, sizeof(caller), "%c%u", 1284 id & 0x80000000 ? 'C' : 'T', id & ~0x80000000); 1285 return sprintf(buf, "[%6s]", caller); 1286 } 1287 #else 1288 #define print_caller(id, buf) 0 1289 #endif 1290 1291 static size_t info_print_prefix(const struct printk_info *info, bool syslog, 1292 bool time, char *buf) 1293 { 1294 size_t len = 0; 1295 1296 if (syslog) 1297 len = print_syslog((info->facility << 3) | info->level, buf); 1298 1299 if (time) 1300 len += print_time(info->ts_nsec, buf + len); 1301 1302 len += print_caller(info->caller_id, buf + len); 1303 1304 if (IS_ENABLED(CONFIG_PRINTK_CALLER) || time) { 1305 buf[len++] = ' '; 1306 buf[len] = '\0'; 1307 } 1308 1309 return len; 1310 } 1311 1312 /* 1313 * Prepare the record for printing. The text is shifted within the given 1314 * buffer to avoid a need for another one. The following operations are 1315 * done: 1316 * 1317 * - Add prefix for each line. 1318 * - Drop truncated lines that no longer fit into the buffer. 1319 * - Add the trailing newline that has been removed in vprintk_store(). 1320 * - Add a string terminator. 1321 * 1322 * Since the produced string is always terminated, the maximum possible 1323 * return value is @r->text_buf_size - 1; 1324 * 1325 * Return: The length of the updated/prepared text, including the added 1326 * prefixes and the newline. The terminator is not counted. The dropped 1327 * line(s) are not counted. 1328 */ 1329 static size_t record_print_text(struct printk_record *r, bool syslog, 1330 bool time) 1331 { 1332 size_t text_len = r->info->text_len; 1333 size_t buf_size = r->text_buf_size; 1334 char *text = r->text_buf; 1335 char prefix[PREFIX_MAX]; 1336 bool truncated = false; 1337 size_t prefix_len; 1338 size_t line_len; 1339 size_t len = 0; 1340 char *next; 1341 1342 /* 1343 * If the message was truncated because the buffer was not large 1344 * enough, treat the available text as if it were the full text. 1345 */ 1346 if (text_len > buf_size) 1347 text_len = buf_size; 1348 1349 prefix_len = info_print_prefix(r->info, syslog, time, prefix); 1350 1351 /* 1352 * @text_len: bytes of unprocessed text 1353 * @line_len: bytes of current line _without_ newline 1354 * @text: pointer to beginning of current line 1355 * @len: number of bytes prepared in r->text_buf 1356 */ 1357 for (;;) { 1358 next = memchr(text, '\n', text_len); 1359 if (next) { 1360 line_len = next - text; 1361 } else { 1362 /* Drop truncated line(s). */ 1363 if (truncated) 1364 break; 1365 line_len = text_len; 1366 } 1367 1368 /* 1369 * Truncate the text if there is not enough space to add the 1370 * prefix and a trailing newline and a terminator. 1371 */ 1372 if (len + prefix_len + text_len + 1 + 1 > buf_size) { 1373 /* Drop even the current line if no space. */ 1374 if (len + prefix_len + line_len + 1 + 1 > buf_size) 1375 break; 1376 1377 text_len = buf_size - len - prefix_len - 1 - 1; 1378 truncated = true; 1379 } 1380 1381 memmove(text + prefix_len, text, text_len); 1382 memcpy(text, prefix, prefix_len); 1383 1384 /* 1385 * Increment the prepared length to include the text and 1386 * prefix that were just moved+copied. Also increment for the 1387 * newline at the end of this line. If this is the last line, 1388 * there is no newline, but it will be added immediately below. 1389 */ 1390 len += prefix_len + line_len + 1; 1391 if (text_len == line_len) { 1392 /* 1393 * This is the last line. Add the trailing newline 1394 * removed in vprintk_store(). 1395 */ 1396 text[prefix_len + line_len] = '\n'; 1397 break; 1398 } 1399 1400 /* 1401 * Advance beyond the added prefix and the related line with 1402 * its newline. 1403 */ 1404 text += prefix_len + line_len + 1; 1405 1406 /* 1407 * The remaining text has only decreased by the line with its 1408 * newline. 1409 * 1410 * Note that @text_len can become zero. It happens when @text 1411 * ended with a newline (either due to truncation or the 1412 * original string ending with "\n\n"). The loop is correctly 1413 * repeated and (if not truncated) an empty line with a prefix 1414 * will be prepared. 1415 */ 1416 text_len -= line_len + 1; 1417 } 1418 1419 /* 1420 * If a buffer was provided, it will be terminated. Space for the 1421 * string terminator is guaranteed to be available. The terminator is 1422 * not counted in the return value. 1423 */ 1424 if (buf_size > 0) 1425 r->text_buf[len] = 0; 1426 1427 return len; 1428 } 1429 1430 static size_t get_record_print_text_size(struct printk_info *info, 1431 unsigned int line_count, 1432 bool syslog, bool time) 1433 { 1434 char prefix[PREFIX_MAX]; 1435 size_t prefix_len; 1436 1437 prefix_len = info_print_prefix(info, syslog, time, prefix); 1438 1439 /* 1440 * Each line will be preceded with a prefix. The intermediate 1441 * newlines are already within the text, but a final trailing 1442 * newline will be added. 1443 */ 1444 return ((prefix_len * line_count) + info->text_len + 1); 1445 } 1446 1447 /* 1448 * Beginning with @start_seq, find the first record where it and all following 1449 * records up to (but not including) @max_seq fit into @size. 1450 * 1451 * @max_seq is simply an upper bound and does not need to exist. If the caller 1452 * does not require an upper bound, -1 can be used for @max_seq. 1453 */ 1454 static u64 find_first_fitting_seq(u64 start_seq, u64 max_seq, size_t size, 1455 bool syslog, bool time) 1456 { 1457 struct printk_info info; 1458 unsigned int line_count; 1459 size_t len = 0; 1460 u64 seq; 1461 1462 /* Determine the size of the records up to @max_seq. */ 1463 prb_for_each_info(start_seq, prb, seq, &info, &line_count) { 1464 if (info.seq >= max_seq) 1465 break; 1466 len += get_record_print_text_size(&info, line_count, syslog, time); 1467 } 1468 1469 /* 1470 * Adjust the upper bound for the next loop to avoid subtracting 1471 * lengths that were never added. 1472 */ 1473 if (seq < max_seq) 1474 max_seq = seq; 1475 1476 /* 1477 * Move first record forward until length fits into the buffer. Ignore 1478 * newest messages that were not counted in the above cycle. Messages 1479 * might appear and get lost in the meantime. This is a best effort 1480 * that prevents an infinite loop that could occur with a retry. 1481 */ 1482 prb_for_each_info(start_seq, prb, seq, &info, &line_count) { 1483 if (len <= size || info.seq >= max_seq) 1484 break; 1485 len -= get_record_print_text_size(&info, line_count, syslog, time); 1486 } 1487 1488 return seq; 1489 } 1490 1491 /* The caller is responsible for making sure @size is greater than 0. */ 1492 static int syslog_print(char __user *buf, int size) 1493 { 1494 struct printk_info info; 1495 struct printk_record r; 1496 char *text; 1497 int len = 0; 1498 u64 seq; 1499 1500 text = kmalloc(CONSOLE_LOG_MAX, GFP_KERNEL); 1501 if (!text) 1502 return -ENOMEM; 1503 1504 prb_rec_init_rd(&r, &info, text, CONSOLE_LOG_MAX); 1505 1506 mutex_lock(&syslog_lock); 1507 1508 /* 1509 * Wait for the @syslog_seq record to be available. @syslog_seq may 1510 * change while waiting. 1511 */ 1512 do { 1513 seq = syslog_seq; 1514 1515 mutex_unlock(&syslog_lock); 1516 len = wait_event_interruptible(log_wait, prb_read_valid(prb, seq, NULL)); 1517 mutex_lock(&syslog_lock); 1518 1519 if (len) 1520 goto out; 1521 } while (syslog_seq != seq); 1522 1523 /* 1524 * Copy records that fit into the buffer. The above cycle makes sure 1525 * that the first record is always available. 1526 */ 1527 do { 1528 size_t n; 1529 size_t skip; 1530 int err; 1531 1532 if (!prb_read_valid(prb, syslog_seq, &r)) 1533 break; 1534 1535 if (r.info->seq != syslog_seq) { 1536 /* message is gone, move to next valid one */ 1537 syslog_seq = r.info->seq; 1538 syslog_partial = 0; 1539 } 1540 1541 /* 1542 * To keep reading/counting partial line consistent, 1543 * use printk_time value as of the beginning of a line. 1544 */ 1545 if (!syslog_partial) 1546 syslog_time = printk_time; 1547 1548 skip = syslog_partial; 1549 n = record_print_text(&r, true, syslog_time); 1550 if (n - syslog_partial <= size) { 1551 /* message fits into buffer, move forward */ 1552 syslog_seq = r.info->seq + 1; 1553 n -= syslog_partial; 1554 syslog_partial = 0; 1555 } else if (!len){ 1556 /* partial read(), remember position */ 1557 n = size; 1558 syslog_partial += n; 1559 } else 1560 n = 0; 1561 1562 if (!n) 1563 break; 1564 1565 mutex_unlock(&syslog_lock); 1566 err = copy_to_user(buf, text + skip, n); 1567 mutex_lock(&syslog_lock); 1568 1569 if (err) { 1570 if (!len) 1571 len = -EFAULT; 1572 break; 1573 } 1574 1575 len += n; 1576 size -= n; 1577 buf += n; 1578 } while (size); 1579 out: 1580 mutex_unlock(&syslog_lock); 1581 kfree(text); 1582 return len; 1583 } 1584 1585 static int syslog_print_all(char __user *buf, int size, bool clear) 1586 { 1587 struct printk_info info; 1588 struct printk_record r; 1589 char *text; 1590 int len = 0; 1591 u64 seq; 1592 bool time; 1593 1594 text = kmalloc(CONSOLE_LOG_MAX, GFP_KERNEL); 1595 if (!text) 1596 return -ENOMEM; 1597 1598 time = printk_time; 1599 /* 1600 * Find first record that fits, including all following records, 1601 * into the user-provided buffer for this dump. 1602 */ 1603 seq = find_first_fitting_seq(latched_seq_read_nolock(&clear_seq), -1, 1604 size, true, time); 1605 1606 prb_rec_init_rd(&r, &info, text, CONSOLE_LOG_MAX); 1607 1608 len = 0; 1609 prb_for_each_record(seq, prb, seq, &r) { 1610 int textlen; 1611 1612 textlen = record_print_text(&r, true, time); 1613 1614 if (len + textlen > size) { 1615 seq--; 1616 break; 1617 } 1618 1619 if (copy_to_user(buf + len, text, textlen)) 1620 len = -EFAULT; 1621 else 1622 len += textlen; 1623 1624 if (len < 0) 1625 break; 1626 } 1627 1628 if (clear) { 1629 mutex_lock(&syslog_lock); 1630 latched_seq_write(&clear_seq, seq); 1631 mutex_unlock(&syslog_lock); 1632 } 1633 1634 kfree(text); 1635 return len; 1636 } 1637 1638 static void syslog_clear(void) 1639 { 1640 mutex_lock(&syslog_lock); 1641 latched_seq_write(&clear_seq, prb_next_seq(prb)); 1642 mutex_unlock(&syslog_lock); 1643 } 1644 1645 int do_syslog(int type, char __user *buf, int len, int source) 1646 { 1647 struct printk_info info; 1648 bool clear = false; 1649 static int saved_console_loglevel = LOGLEVEL_DEFAULT; 1650 int error; 1651 1652 error = check_syslog_permissions(type, source); 1653 if (error) 1654 return error; 1655 1656 switch (type) { 1657 case SYSLOG_ACTION_CLOSE: /* Close log */ 1658 break; 1659 case SYSLOG_ACTION_OPEN: /* Open log */ 1660 break; 1661 case SYSLOG_ACTION_READ: /* Read from log */ 1662 if (!buf || len < 0) 1663 return -EINVAL; 1664 if (!len) 1665 return 0; 1666 if (!access_ok(buf, len)) 1667 return -EFAULT; 1668 error = syslog_print(buf, len); 1669 break; 1670 /* Read/clear last kernel messages */ 1671 case SYSLOG_ACTION_READ_CLEAR: 1672 clear = true; 1673 fallthrough; 1674 /* Read last kernel messages */ 1675 case SYSLOG_ACTION_READ_ALL: 1676 if (!buf || len < 0) 1677 return -EINVAL; 1678 if (!len) 1679 return 0; 1680 if (!access_ok(buf, len)) 1681 return -EFAULT; 1682 error = syslog_print_all(buf, len, clear); 1683 break; 1684 /* Clear ring buffer */ 1685 case SYSLOG_ACTION_CLEAR: 1686 syslog_clear(); 1687 break; 1688 /* Disable logging to console */ 1689 case SYSLOG_ACTION_CONSOLE_OFF: 1690 if (saved_console_loglevel == LOGLEVEL_DEFAULT) 1691 saved_console_loglevel = console_loglevel; 1692 console_loglevel = minimum_console_loglevel; 1693 break; 1694 /* Enable logging to console */ 1695 case SYSLOG_ACTION_CONSOLE_ON: 1696 if (saved_console_loglevel != LOGLEVEL_DEFAULT) { 1697 console_loglevel = saved_console_loglevel; 1698 saved_console_loglevel = LOGLEVEL_DEFAULT; 1699 } 1700 break; 1701 /* Set level of messages printed to console */ 1702 case SYSLOG_ACTION_CONSOLE_LEVEL: 1703 if (len < 1 || len > 8) 1704 return -EINVAL; 1705 if (len < minimum_console_loglevel) 1706 len = minimum_console_loglevel; 1707 console_loglevel = len; 1708 /* Implicitly re-enable logging to console */ 1709 saved_console_loglevel = LOGLEVEL_DEFAULT; 1710 break; 1711 /* Number of chars in the log buffer */ 1712 case SYSLOG_ACTION_SIZE_UNREAD: 1713 mutex_lock(&syslog_lock); 1714 if (!prb_read_valid_info(prb, syslog_seq, &info, NULL)) { 1715 /* No unread messages. */ 1716 mutex_unlock(&syslog_lock); 1717 return 0; 1718 } 1719 if (info.seq != syslog_seq) { 1720 /* messages are gone, move to first one */ 1721 syslog_seq = info.seq; 1722 syslog_partial = 0; 1723 } 1724 if (source == SYSLOG_FROM_PROC) { 1725 /* 1726 * Short-cut for poll(/"proc/kmsg") which simply checks 1727 * for pending data, not the size; return the count of 1728 * records, not the length. 1729 */ 1730 error = prb_next_seq(prb) - syslog_seq; 1731 } else { 1732 bool time = syslog_partial ? syslog_time : printk_time; 1733 unsigned int line_count; 1734 u64 seq; 1735 1736 prb_for_each_info(syslog_seq, prb, seq, &info, 1737 &line_count) { 1738 error += get_record_print_text_size(&info, line_count, 1739 true, time); 1740 time = printk_time; 1741 } 1742 error -= syslog_partial; 1743 } 1744 mutex_unlock(&syslog_lock); 1745 break; 1746 /* Size of the log buffer */ 1747 case SYSLOG_ACTION_SIZE_BUFFER: 1748 error = log_buf_len; 1749 break; 1750 default: 1751 error = -EINVAL; 1752 break; 1753 } 1754 1755 return error; 1756 } 1757 1758 SYSCALL_DEFINE3(syslog, int, type, char __user *, buf, int, len) 1759 { 1760 return do_syslog(type, buf, len, SYSLOG_FROM_READER); 1761 } 1762 1763 /* 1764 * Special console_lock variants that help to reduce the risk of soft-lockups. 1765 * They allow to pass console_lock to another printk() call using a busy wait. 1766 */ 1767 1768 #ifdef CONFIG_LOCKDEP 1769 static struct lockdep_map console_owner_dep_map = { 1770 .name = "console_owner" 1771 }; 1772 #endif 1773 1774 static DEFINE_RAW_SPINLOCK(console_owner_lock); 1775 static struct task_struct *console_owner; 1776 static bool console_waiter; 1777 1778 /** 1779 * console_lock_spinning_enable - mark beginning of code where another 1780 * thread might safely busy wait 1781 * 1782 * This basically converts console_lock into a spinlock. This marks 1783 * the section where the console_lock owner can not sleep, because 1784 * there may be a waiter spinning (like a spinlock). Also it must be 1785 * ready to hand over the lock at the end of the section. 1786 */ 1787 static void console_lock_spinning_enable(void) 1788 { 1789 raw_spin_lock(&console_owner_lock); 1790 console_owner = current; 1791 raw_spin_unlock(&console_owner_lock); 1792 1793 /* The waiter may spin on us after setting console_owner */ 1794 spin_acquire(&console_owner_dep_map, 0, 0, _THIS_IP_); 1795 } 1796 1797 /** 1798 * console_lock_spinning_disable_and_check - mark end of code where another 1799 * thread was able to busy wait and check if there is a waiter 1800 * 1801 * This is called at the end of the section where spinning is allowed. 1802 * It has two functions. First, it is a signal that it is no longer 1803 * safe to start busy waiting for the lock. Second, it checks if 1804 * there is a busy waiter and passes the lock rights to her. 1805 * 1806 * Important: Callers lose the lock if there was a busy waiter. 1807 * They must not touch items synchronized by console_lock 1808 * in this case. 1809 * 1810 * Return: 1 if the lock rights were passed, 0 otherwise. 1811 */ 1812 static int console_lock_spinning_disable_and_check(void) 1813 { 1814 int waiter; 1815 1816 raw_spin_lock(&console_owner_lock); 1817 waiter = READ_ONCE(console_waiter); 1818 console_owner = NULL; 1819 raw_spin_unlock(&console_owner_lock); 1820 1821 if (!waiter) { 1822 spin_release(&console_owner_dep_map, _THIS_IP_); 1823 return 0; 1824 } 1825 1826 /* The waiter is now free to continue */ 1827 WRITE_ONCE(console_waiter, false); 1828 1829 spin_release(&console_owner_dep_map, _THIS_IP_); 1830 1831 /* 1832 * Hand off console_lock to waiter. The waiter will perform 1833 * the up(). After this, the waiter is the console_lock owner. 1834 */ 1835 mutex_release(&console_lock_dep_map, _THIS_IP_); 1836 return 1; 1837 } 1838 1839 /** 1840 * console_trylock_spinning - try to get console_lock by busy waiting 1841 * 1842 * This allows to busy wait for the console_lock when the current 1843 * owner is running in specially marked sections. It means that 1844 * the current owner is running and cannot reschedule until it 1845 * is ready to lose the lock. 1846 * 1847 * Return: 1 if we got the lock, 0 othrewise 1848 */ 1849 static int console_trylock_spinning(void) 1850 { 1851 struct task_struct *owner = NULL; 1852 bool waiter; 1853 bool spin = false; 1854 unsigned long flags; 1855 1856 if (console_trylock()) 1857 return 1; 1858 1859 /* 1860 * It's unsafe to spin once a panic has begun. If we are the 1861 * panic CPU, we may have already halted the owner of the 1862 * console_sem. If we are not the panic CPU, then we should 1863 * avoid taking console_sem, so the panic CPU has a better 1864 * chance of cleanly acquiring it later. 1865 */ 1866 if (panic_in_progress()) 1867 return 0; 1868 1869 printk_safe_enter_irqsave(flags); 1870 1871 raw_spin_lock(&console_owner_lock); 1872 owner = READ_ONCE(console_owner); 1873 waiter = READ_ONCE(console_waiter); 1874 if (!waiter && owner && owner != current) { 1875 WRITE_ONCE(console_waiter, true); 1876 spin = true; 1877 } 1878 raw_spin_unlock(&console_owner_lock); 1879 1880 /* 1881 * If there is an active printk() writing to the 1882 * consoles, instead of having it write our data too, 1883 * see if we can offload that load from the active 1884 * printer, and do some printing ourselves. 1885 * Go into a spin only if there isn't already a waiter 1886 * spinning, and there is an active printer, and 1887 * that active printer isn't us (recursive printk?). 1888 */ 1889 if (!spin) { 1890 printk_safe_exit_irqrestore(flags); 1891 return 0; 1892 } 1893 1894 /* We spin waiting for the owner to release us */ 1895 spin_acquire(&console_owner_dep_map, 0, 0, _THIS_IP_); 1896 /* Owner will clear console_waiter on hand off */ 1897 while (READ_ONCE(console_waiter)) 1898 cpu_relax(); 1899 spin_release(&console_owner_dep_map, _THIS_IP_); 1900 1901 printk_safe_exit_irqrestore(flags); 1902 /* 1903 * The owner passed the console lock to us. 1904 * Since we did not spin on console lock, annotate 1905 * this as a trylock. Otherwise lockdep will 1906 * complain. 1907 */ 1908 mutex_acquire(&console_lock_dep_map, 0, 1, _THIS_IP_); 1909 1910 return 1; 1911 } 1912 1913 /* 1914 * Call the console drivers, asking them to write out 1915 * log_buf[start] to log_buf[end - 1]. 1916 * The console_lock must be held. 1917 */ 1918 static void call_console_drivers(const char *ext_text, size_t ext_len, 1919 const char *text, size_t len) 1920 { 1921 static char dropped_text[64]; 1922 size_t dropped_len = 0; 1923 struct console *con; 1924 1925 trace_console_rcuidle(text, len); 1926 1927 if (!console_drivers) 1928 return; 1929 1930 if (console_dropped) { 1931 dropped_len = snprintf(dropped_text, sizeof(dropped_text), 1932 "** %lu printk messages dropped **\n", 1933 console_dropped); 1934 console_dropped = 0; 1935 } 1936 1937 for_each_console(con) { 1938 if (exclusive_console && con != exclusive_console) 1939 continue; 1940 if (!(con->flags & CON_ENABLED)) 1941 continue; 1942 if (!con->write) 1943 continue; 1944 if (!cpu_online(smp_processor_id()) && 1945 !(con->flags & CON_ANYTIME)) 1946 continue; 1947 if (con->flags & CON_EXTENDED) 1948 con->write(con, ext_text, ext_len); 1949 else { 1950 if (dropped_len) 1951 con->write(con, dropped_text, dropped_len); 1952 con->write(con, text, len); 1953 } 1954 } 1955 } 1956 1957 /* 1958 * Recursion is tracked separately on each CPU. If NMIs are supported, an 1959 * additional NMI context per CPU is also separately tracked. Until per-CPU 1960 * is available, a separate "early tracking" is performed. 1961 */ 1962 static DEFINE_PER_CPU(u8, printk_count); 1963 static u8 printk_count_early; 1964 #ifdef CONFIG_HAVE_NMI 1965 static DEFINE_PER_CPU(u8, printk_count_nmi); 1966 static u8 printk_count_nmi_early; 1967 #endif 1968 1969 /* 1970 * Recursion is limited to keep the output sane. printk() should not require 1971 * more than 1 level of recursion (allowing, for example, printk() to trigger 1972 * a WARN), but a higher value is used in case some printk-internal errors 1973 * exist, such as the ringbuffer validation checks failing. 1974 */ 1975 #define PRINTK_MAX_RECURSION 3 1976 1977 /* 1978 * Return a pointer to the dedicated counter for the CPU+context of the 1979 * caller. 1980 */ 1981 static u8 *__printk_recursion_counter(void) 1982 { 1983 #ifdef CONFIG_HAVE_NMI 1984 if (in_nmi()) { 1985 if (printk_percpu_data_ready()) 1986 return this_cpu_ptr(&printk_count_nmi); 1987 return &printk_count_nmi_early; 1988 } 1989 #endif 1990 if (printk_percpu_data_ready()) 1991 return this_cpu_ptr(&printk_count); 1992 return &printk_count_early; 1993 } 1994 1995 /* 1996 * Enter recursion tracking. Interrupts are disabled to simplify tracking. 1997 * The caller must check the boolean return value to see if the recursion is 1998 * allowed. On failure, interrupts are not disabled. 1999 * 2000 * @recursion_ptr must be a variable of type (u8 *) and is the same variable 2001 * that is passed to printk_exit_irqrestore(). 2002 */ 2003 #define printk_enter_irqsave(recursion_ptr, flags) \ 2004 ({ \ 2005 bool success = true; \ 2006 \ 2007 typecheck(u8 *, recursion_ptr); \ 2008 local_irq_save(flags); \ 2009 (recursion_ptr) = __printk_recursion_counter(); \ 2010 if (*(recursion_ptr) > PRINTK_MAX_RECURSION) { \ 2011 local_irq_restore(flags); \ 2012 success = false; \ 2013 } else { \ 2014 (*(recursion_ptr))++; \ 2015 } \ 2016 success; \ 2017 }) 2018 2019 /* Exit recursion tracking, restoring interrupts. */ 2020 #define printk_exit_irqrestore(recursion_ptr, flags) \ 2021 do { \ 2022 typecheck(u8 *, recursion_ptr); \ 2023 (*(recursion_ptr))--; \ 2024 local_irq_restore(flags); \ 2025 } while (0) 2026 2027 int printk_delay_msec __read_mostly; 2028 2029 static inline void printk_delay(void) 2030 { 2031 if (unlikely(printk_delay_msec)) { 2032 int m = printk_delay_msec; 2033 2034 while (m--) { 2035 mdelay(1); 2036 touch_nmi_watchdog(); 2037 } 2038 } 2039 } 2040 2041 static inline u32 printk_caller_id(void) 2042 { 2043 return in_task() ? task_pid_nr(current) : 2044 0x80000000 + raw_smp_processor_id(); 2045 } 2046 2047 /** 2048 * printk_parse_prefix - Parse level and control flags. 2049 * 2050 * @text: The terminated text message. 2051 * @level: A pointer to the current level value, will be updated. 2052 * @flags: A pointer to the current printk_info flags, will be updated. 2053 * 2054 * @level may be NULL if the caller is not interested in the parsed value. 2055 * Otherwise the variable pointed to by @level must be set to 2056 * LOGLEVEL_DEFAULT in order to be updated with the parsed value. 2057 * 2058 * @flags may be NULL if the caller is not interested in the parsed value. 2059 * Otherwise the variable pointed to by @flags will be OR'd with the parsed 2060 * value. 2061 * 2062 * Return: The length of the parsed level and control flags. 2063 */ 2064 u16 printk_parse_prefix(const char *text, int *level, 2065 enum printk_info_flags *flags) 2066 { 2067 u16 prefix_len = 0; 2068 int kern_level; 2069 2070 while (*text) { 2071 kern_level = printk_get_level(text); 2072 if (!kern_level) 2073 break; 2074 2075 switch (kern_level) { 2076 case '0' ... '7': 2077 if (level && *level == LOGLEVEL_DEFAULT) 2078 *level = kern_level - '0'; 2079 break; 2080 case 'c': /* KERN_CONT */ 2081 if (flags) 2082 *flags |= LOG_CONT; 2083 } 2084 2085 prefix_len += 2; 2086 text += 2; 2087 } 2088 2089 return prefix_len; 2090 } 2091 2092 __printf(5, 0) 2093 static u16 printk_sprint(char *text, u16 size, int facility, 2094 enum printk_info_flags *flags, const char *fmt, 2095 va_list args) 2096 { 2097 u16 text_len; 2098 2099 text_len = vscnprintf(text, size, fmt, args); 2100 2101 /* Mark and strip a trailing newline. */ 2102 if (text_len && text[text_len - 1] == '\n') { 2103 text_len--; 2104 *flags |= LOG_NEWLINE; 2105 } 2106 2107 /* Strip log level and control flags. */ 2108 if (facility == 0) { 2109 u16 prefix_len; 2110 2111 prefix_len = printk_parse_prefix(text, NULL, NULL); 2112 if (prefix_len) { 2113 text_len -= prefix_len; 2114 memmove(text, text + prefix_len, text_len); 2115 } 2116 } 2117 2118 return text_len; 2119 } 2120 2121 __printf(4, 0) 2122 int vprintk_store(int facility, int level, 2123 const struct dev_printk_info *dev_info, 2124 const char *fmt, va_list args) 2125 { 2126 const u32 caller_id = printk_caller_id(); 2127 struct prb_reserved_entry e; 2128 enum printk_info_flags flags = 0; 2129 struct printk_record r; 2130 unsigned long irqflags; 2131 u16 trunc_msg_len = 0; 2132 char prefix_buf[8]; 2133 u8 *recursion_ptr; 2134 u16 reserve_size; 2135 va_list args2; 2136 u16 text_len; 2137 int ret = 0; 2138 u64 ts_nsec; 2139 2140 /* 2141 * Since the duration of printk() can vary depending on the message 2142 * and state of the ringbuffer, grab the timestamp now so that it is 2143 * close to the call of printk(). This provides a more deterministic 2144 * timestamp with respect to the caller. 2145 */ 2146 ts_nsec = local_clock(); 2147 2148 if (!printk_enter_irqsave(recursion_ptr, irqflags)) 2149 return 0; 2150 2151 /* 2152 * The sprintf needs to come first since the syslog prefix might be 2153 * passed in as a parameter. An extra byte must be reserved so that 2154 * later the vscnprintf() into the reserved buffer has room for the 2155 * terminating '\0', which is not counted by vsnprintf(). 2156 */ 2157 va_copy(args2, args); 2158 reserve_size = vsnprintf(&prefix_buf[0], sizeof(prefix_buf), fmt, args2) + 1; 2159 va_end(args2); 2160 2161 if (reserve_size > LOG_LINE_MAX) 2162 reserve_size = LOG_LINE_MAX; 2163 2164 /* Extract log level or control flags. */ 2165 if (facility == 0) 2166 printk_parse_prefix(&prefix_buf[0], &level, &flags); 2167 2168 if (level == LOGLEVEL_DEFAULT) 2169 level = default_message_loglevel; 2170 2171 if (dev_info) 2172 flags |= LOG_NEWLINE; 2173 2174 if (flags & LOG_CONT) { 2175 prb_rec_init_wr(&r, reserve_size); 2176 if (prb_reserve_in_last(&e, prb, &r, caller_id, LOG_LINE_MAX)) { 2177 text_len = printk_sprint(&r.text_buf[r.info->text_len], reserve_size, 2178 facility, &flags, fmt, args); 2179 r.info->text_len += text_len; 2180 2181 if (flags & LOG_NEWLINE) { 2182 r.info->flags |= LOG_NEWLINE; 2183 prb_final_commit(&e); 2184 } else { 2185 prb_commit(&e); 2186 } 2187 2188 ret = text_len; 2189 goto out; 2190 } 2191 } 2192 2193 /* 2194 * Explicitly initialize the record before every prb_reserve() call. 2195 * prb_reserve_in_last() and prb_reserve() purposely invalidate the 2196 * structure when they fail. 2197 */ 2198 prb_rec_init_wr(&r, reserve_size); 2199 if (!prb_reserve(&e, prb, &r)) { 2200 /* truncate the message if it is too long for empty buffer */ 2201 truncate_msg(&reserve_size, &trunc_msg_len); 2202 2203 prb_rec_init_wr(&r, reserve_size + trunc_msg_len); 2204 if (!prb_reserve(&e, prb, &r)) 2205 goto out; 2206 } 2207 2208 /* fill message */ 2209 text_len = printk_sprint(&r.text_buf[0], reserve_size, facility, &flags, fmt, args); 2210 if (trunc_msg_len) 2211 memcpy(&r.text_buf[text_len], trunc_msg, trunc_msg_len); 2212 r.info->text_len = text_len + trunc_msg_len; 2213 r.info->facility = facility; 2214 r.info->level = level & 7; 2215 r.info->flags = flags & 0x1f; 2216 r.info->ts_nsec = ts_nsec; 2217 r.info->caller_id = caller_id; 2218 if (dev_info) 2219 memcpy(&r.info->dev_info, dev_info, sizeof(r.info->dev_info)); 2220 2221 /* A message without a trailing newline can be continued. */ 2222 if (!(flags & LOG_NEWLINE)) 2223 prb_commit(&e); 2224 else 2225 prb_final_commit(&e); 2226 2227 ret = text_len + trunc_msg_len; 2228 out: 2229 printk_exit_irqrestore(recursion_ptr, irqflags); 2230 return ret; 2231 } 2232 2233 asmlinkage int vprintk_emit(int facility, int level, 2234 const struct dev_printk_info *dev_info, 2235 const char *fmt, va_list args) 2236 { 2237 int printed_len; 2238 bool in_sched = false; 2239 2240 /* Suppress unimportant messages after panic happens */ 2241 if (unlikely(suppress_printk)) 2242 return 0; 2243 2244 if (unlikely(suppress_panic_printk) && 2245 atomic_read(&panic_cpu) != raw_smp_processor_id()) 2246 return 0; 2247 2248 if (level == LOGLEVEL_SCHED) { 2249 level = LOGLEVEL_DEFAULT; 2250 in_sched = true; 2251 } 2252 2253 boot_delay_msec(level); 2254 printk_delay(); 2255 2256 printed_len = vprintk_store(facility, level, dev_info, fmt, args); 2257 2258 /* If called from the scheduler, we can not call up(). */ 2259 if (!in_sched) { 2260 /* 2261 * Disable preemption to avoid being preempted while holding 2262 * console_sem which would prevent anyone from printing to 2263 * console 2264 */ 2265 preempt_disable(); 2266 /* 2267 * Try to acquire and then immediately release the console 2268 * semaphore. The release will print out buffers and wake up 2269 * /dev/kmsg and syslog() users. 2270 */ 2271 if (console_trylock_spinning()) 2272 console_unlock(); 2273 preempt_enable(); 2274 } 2275 2276 wake_up_klogd(); 2277 return printed_len; 2278 } 2279 EXPORT_SYMBOL(vprintk_emit); 2280 2281 int vprintk_default(const char *fmt, va_list args) 2282 { 2283 return vprintk_emit(0, LOGLEVEL_DEFAULT, NULL, fmt, args); 2284 } 2285 EXPORT_SYMBOL_GPL(vprintk_default); 2286 2287 asmlinkage __visible int _printk(const char *fmt, ...) 2288 { 2289 va_list args; 2290 int r; 2291 2292 va_start(args, fmt); 2293 r = vprintk(fmt, args); 2294 va_end(args); 2295 2296 return r; 2297 } 2298 EXPORT_SYMBOL(_printk); 2299 2300 #else /* CONFIG_PRINTK */ 2301 2302 #define CONSOLE_LOG_MAX 0 2303 #define printk_time false 2304 2305 #define prb_read_valid(rb, seq, r) false 2306 #define prb_first_valid_seq(rb) 0 2307 2308 static u64 syslog_seq; 2309 static u64 console_seq; 2310 static u64 exclusive_console_stop_seq; 2311 static unsigned long console_dropped; 2312 2313 static size_t record_print_text(const struct printk_record *r, 2314 bool syslog, bool time) 2315 { 2316 return 0; 2317 } 2318 static ssize_t info_print_ext_header(char *buf, size_t size, 2319 struct printk_info *info) 2320 { 2321 return 0; 2322 } 2323 static ssize_t msg_print_ext_body(char *buf, size_t size, 2324 char *text, size_t text_len, 2325 struct dev_printk_info *dev_info) { return 0; } 2326 static void console_lock_spinning_enable(void) { } 2327 static int console_lock_spinning_disable_and_check(void) { return 0; } 2328 static void call_console_drivers(const char *ext_text, size_t ext_len, 2329 const char *text, size_t len) {} 2330 static bool suppress_message_printing(int level) { return false; } 2331 2332 #endif /* CONFIG_PRINTK */ 2333 2334 #ifdef CONFIG_EARLY_PRINTK 2335 struct console *early_console; 2336 2337 asmlinkage __visible void early_printk(const char *fmt, ...) 2338 { 2339 va_list ap; 2340 char buf[512]; 2341 int n; 2342 2343 if (!early_console) 2344 return; 2345 2346 va_start(ap, fmt); 2347 n = vscnprintf(buf, sizeof(buf), fmt, ap); 2348 va_end(ap); 2349 2350 early_console->write(early_console, buf, n); 2351 } 2352 #endif 2353 2354 static void set_user_specified(struct console_cmdline *c, bool user_specified) 2355 { 2356 if (!user_specified) 2357 return; 2358 2359 /* 2360 * @c console was defined by the user on the command line. 2361 * Do not clear when added twice also by SPCR or the device tree. 2362 */ 2363 c->user_specified = true; 2364 /* At least one console defined by the user on the command line. */ 2365 console_set_on_cmdline = 1; 2366 } 2367 2368 static int __add_preferred_console(char *name, int idx, char *options, 2369 char *brl_options, bool user_specified) 2370 { 2371 struct console_cmdline *c; 2372 int i; 2373 2374 /* 2375 * See if this tty is not yet registered, and 2376 * if we have a slot free. 2377 */ 2378 for (i = 0, c = console_cmdline; 2379 i < MAX_CMDLINECONSOLES && c->name[0]; 2380 i++, c++) { 2381 if (strcmp(c->name, name) == 0 && c->index == idx) { 2382 if (!brl_options) 2383 preferred_console = i; 2384 set_user_specified(c, user_specified); 2385 return 0; 2386 } 2387 } 2388 if (i == MAX_CMDLINECONSOLES) 2389 return -E2BIG; 2390 if (!brl_options) 2391 preferred_console = i; 2392 strlcpy(c->name, name, sizeof(c->name)); 2393 c->options = options; 2394 set_user_specified(c, user_specified); 2395 braille_set_options(c, brl_options); 2396 2397 c->index = idx; 2398 return 0; 2399 } 2400 2401 static int __init console_msg_format_setup(char *str) 2402 { 2403 if (!strcmp(str, "syslog")) 2404 console_msg_format = MSG_FORMAT_SYSLOG; 2405 if (!strcmp(str, "default")) 2406 console_msg_format = MSG_FORMAT_DEFAULT; 2407 return 1; 2408 } 2409 __setup("console_msg_format=", console_msg_format_setup); 2410 2411 /* 2412 * Set up a console. Called via do_early_param() in init/main.c 2413 * for each "console=" parameter in the boot command line. 2414 */ 2415 static int __init console_setup(char *str) 2416 { 2417 char buf[sizeof(console_cmdline[0].name) + 4]; /* 4 for "ttyS" */ 2418 char *s, *options, *brl_options = NULL; 2419 int idx; 2420 2421 /* 2422 * console="" or console=null have been suggested as a way to 2423 * disable console output. Use ttynull that has been created 2424 * for exactly this purpose. 2425 */ 2426 if (str[0] == 0 || strcmp(str, "null") == 0) { 2427 __add_preferred_console("ttynull", 0, NULL, NULL, true); 2428 return 1; 2429 } 2430 2431 if (_braille_console_setup(&str, &brl_options)) 2432 return 1; 2433 2434 /* 2435 * Decode str into name, index, options. 2436 */ 2437 if (str[0] >= '0' && str[0] <= '9') { 2438 strcpy(buf, "ttyS"); 2439 strncpy(buf + 4, str, sizeof(buf) - 5); 2440 } else { 2441 strncpy(buf, str, sizeof(buf) - 1); 2442 } 2443 buf[sizeof(buf) - 1] = 0; 2444 options = strchr(str, ','); 2445 if (options) 2446 *(options++) = 0; 2447 #ifdef __sparc__ 2448 if (!strcmp(str, "ttya")) 2449 strcpy(buf, "ttyS0"); 2450 if (!strcmp(str, "ttyb")) 2451 strcpy(buf, "ttyS1"); 2452 #endif 2453 for (s = buf; *s; s++) 2454 if (isdigit(*s) || *s == ',') 2455 break; 2456 idx = simple_strtoul(s, NULL, 10); 2457 *s = 0; 2458 2459 __add_preferred_console(buf, idx, options, brl_options, true); 2460 return 1; 2461 } 2462 __setup("console=", console_setup); 2463 2464 /** 2465 * add_preferred_console - add a device to the list of preferred consoles. 2466 * @name: device name 2467 * @idx: device index 2468 * @options: options for this console 2469 * 2470 * The last preferred console added will be used for kernel messages 2471 * and stdin/out/err for init. Normally this is used by console_setup 2472 * above to handle user-supplied console arguments; however it can also 2473 * be used by arch-specific code either to override the user or more 2474 * commonly to provide a default console (ie from PROM variables) when 2475 * the user has not supplied one. 2476 */ 2477 int add_preferred_console(char *name, int idx, char *options) 2478 { 2479 return __add_preferred_console(name, idx, options, NULL, false); 2480 } 2481 2482 bool console_suspend_enabled = true; 2483 EXPORT_SYMBOL(console_suspend_enabled); 2484 2485 static int __init console_suspend_disable(char *str) 2486 { 2487 console_suspend_enabled = false; 2488 return 1; 2489 } 2490 __setup("no_console_suspend", console_suspend_disable); 2491 module_param_named(console_suspend, console_suspend_enabled, 2492 bool, S_IRUGO | S_IWUSR); 2493 MODULE_PARM_DESC(console_suspend, "suspend console during suspend" 2494 " and hibernate operations"); 2495 2496 static bool printk_console_no_auto_verbose; 2497 2498 void console_verbose(void) 2499 { 2500 if (console_loglevel && !printk_console_no_auto_verbose) 2501 console_loglevel = CONSOLE_LOGLEVEL_MOTORMOUTH; 2502 } 2503 EXPORT_SYMBOL_GPL(console_verbose); 2504 2505 module_param_named(console_no_auto_verbose, printk_console_no_auto_verbose, bool, 0644); 2506 MODULE_PARM_DESC(console_no_auto_verbose, "Disable console loglevel raise to highest on oops/panic/etc"); 2507 2508 /** 2509 * suspend_console - suspend the console subsystem 2510 * 2511 * This disables printk() while we go into suspend states 2512 */ 2513 void suspend_console(void) 2514 { 2515 if (!console_suspend_enabled) 2516 return; 2517 pr_info("Suspending console(s) (use no_console_suspend to debug)\n"); 2518 console_lock(); 2519 console_suspended = 1; 2520 up_console_sem(); 2521 } 2522 2523 void resume_console(void) 2524 { 2525 if (!console_suspend_enabled) 2526 return; 2527 down_console_sem(); 2528 console_suspended = 0; 2529 console_unlock(); 2530 } 2531 2532 /** 2533 * console_cpu_notify - print deferred console messages after CPU hotplug 2534 * @cpu: unused 2535 * 2536 * If printk() is called from a CPU that is not online yet, the messages 2537 * will be printed on the console only if there are CON_ANYTIME consoles. 2538 * This function is called when a new CPU comes online (or fails to come 2539 * up) or goes offline. 2540 */ 2541 static int console_cpu_notify(unsigned int cpu) 2542 { 2543 if (!cpuhp_tasks_frozen) { 2544 /* If trylock fails, someone else is doing the printing */ 2545 if (console_trylock()) 2546 console_unlock(); 2547 } 2548 return 0; 2549 } 2550 2551 /** 2552 * console_lock - lock the console system for exclusive use. 2553 * 2554 * Acquires a lock which guarantees that the caller has 2555 * exclusive access to the console system and the console_drivers list. 2556 * 2557 * Can sleep, returns nothing. 2558 */ 2559 void console_lock(void) 2560 { 2561 might_sleep(); 2562 2563 down_console_sem(); 2564 if (console_suspended) 2565 return; 2566 console_locked = 1; 2567 console_may_schedule = 1; 2568 } 2569 EXPORT_SYMBOL(console_lock); 2570 2571 /** 2572 * console_trylock - try to lock the console system for exclusive use. 2573 * 2574 * Try to acquire a lock which guarantees that the caller has exclusive 2575 * access to the console system and the console_drivers list. 2576 * 2577 * returns 1 on success, and 0 on failure to acquire the lock. 2578 */ 2579 int console_trylock(void) 2580 { 2581 if (down_trylock_console_sem()) 2582 return 0; 2583 if (console_suspended) { 2584 up_console_sem(); 2585 return 0; 2586 } 2587 console_locked = 1; 2588 console_may_schedule = 0; 2589 return 1; 2590 } 2591 EXPORT_SYMBOL(console_trylock); 2592 2593 int is_console_locked(void) 2594 { 2595 return console_locked; 2596 } 2597 EXPORT_SYMBOL(is_console_locked); 2598 2599 /* 2600 * Check if we have any console that is capable of printing while cpu is 2601 * booting or shutting down. Requires console_sem. 2602 */ 2603 static int have_callable_console(void) 2604 { 2605 struct console *con; 2606 2607 for_each_console(con) 2608 if ((con->flags & CON_ENABLED) && 2609 (con->flags & CON_ANYTIME)) 2610 return 1; 2611 2612 return 0; 2613 } 2614 2615 /* 2616 * Return true when this CPU should unlock console_sem without pushing all 2617 * messages to the console. This reduces the chance that the console is 2618 * locked when the panic CPU tries to use it. 2619 */ 2620 static bool abandon_console_lock_in_panic(void) 2621 { 2622 if (!panic_in_progress()) 2623 return false; 2624 2625 /* 2626 * We can use raw_smp_processor_id() here because it is impossible for 2627 * the task to be migrated to the panic_cpu, or away from it. If 2628 * panic_cpu has already been set, and we're not currently executing on 2629 * that CPU, then we never will be. 2630 */ 2631 return atomic_read(&panic_cpu) != raw_smp_processor_id(); 2632 } 2633 2634 /* 2635 * Can we actually use the console at this time on this cpu? 2636 * 2637 * Console drivers may assume that per-cpu resources have been allocated. So 2638 * unless they're explicitly marked as being able to cope (CON_ANYTIME) don't 2639 * call them until this CPU is officially up. 2640 */ 2641 static inline int can_use_console(void) 2642 { 2643 return cpu_online(raw_smp_processor_id()) || have_callable_console(); 2644 } 2645 2646 /** 2647 * console_unlock - unlock the console system 2648 * 2649 * Releases the console_lock which the caller holds on the console system 2650 * and the console driver list. 2651 * 2652 * While the console_lock was held, console output may have been buffered 2653 * by printk(). If this is the case, console_unlock(); emits 2654 * the output prior to releasing the lock. 2655 * 2656 * If there is output waiting, we wake /dev/kmsg and syslog() users. 2657 * 2658 * console_unlock(); may be called from any context. 2659 */ 2660 void console_unlock(void) 2661 { 2662 static char ext_text[CONSOLE_EXT_LOG_MAX]; 2663 static char text[CONSOLE_LOG_MAX]; 2664 static int panic_console_dropped; 2665 unsigned long flags; 2666 bool do_cond_resched, retry; 2667 struct printk_info info; 2668 struct printk_record r; 2669 u64 __maybe_unused next_seq; 2670 2671 if (console_suspended) { 2672 up_console_sem(); 2673 return; 2674 } 2675 2676 prb_rec_init_rd(&r, &info, text, sizeof(text)); 2677 2678 /* 2679 * Console drivers are called with interrupts disabled, so 2680 * @console_may_schedule should be cleared before; however, we may 2681 * end up dumping a lot of lines, for example, if called from 2682 * console registration path, and should invoke cond_resched() 2683 * between lines if allowable. Not doing so can cause a very long 2684 * scheduling stall on a slow console leading to RCU stall and 2685 * softlockup warnings which exacerbate the issue with more 2686 * messages practically incapacitating the system. 2687 * 2688 * console_trylock() is not able to detect the preemptive 2689 * context reliably. Therefore the value must be stored before 2690 * and cleared after the "again" goto label. 2691 */ 2692 do_cond_resched = console_may_schedule; 2693 again: 2694 console_may_schedule = 0; 2695 2696 /* 2697 * We released the console_sem lock, so we need to recheck if 2698 * cpu is online and (if not) is there at least one CON_ANYTIME 2699 * console. 2700 */ 2701 if (!can_use_console()) { 2702 console_locked = 0; 2703 up_console_sem(); 2704 return; 2705 } 2706 2707 for (;;) { 2708 size_t ext_len = 0; 2709 int handover; 2710 size_t len; 2711 2712 skip: 2713 if (!prb_read_valid(prb, console_seq, &r)) 2714 break; 2715 2716 if (console_seq != r.info->seq) { 2717 console_dropped += r.info->seq - console_seq; 2718 console_seq = r.info->seq; 2719 if (panic_in_progress() && panic_console_dropped++ > 10) { 2720 suppress_panic_printk = 1; 2721 pr_warn_once("Too many dropped messages. Suppress messages on non-panic CPUs to prevent livelock.\n"); 2722 } 2723 } 2724 2725 if (suppress_message_printing(r.info->level)) { 2726 /* 2727 * Skip record we have buffered and already printed 2728 * directly to the console when we received it, and 2729 * record that has level above the console loglevel. 2730 */ 2731 console_seq++; 2732 goto skip; 2733 } 2734 2735 /* Output to all consoles once old messages replayed. */ 2736 if (unlikely(exclusive_console && 2737 console_seq >= exclusive_console_stop_seq)) { 2738 exclusive_console = NULL; 2739 } 2740 2741 /* 2742 * Handle extended console text first because later 2743 * record_print_text() will modify the record buffer in-place. 2744 */ 2745 if (nr_ext_console_drivers) { 2746 ext_len = info_print_ext_header(ext_text, 2747 sizeof(ext_text), 2748 r.info); 2749 ext_len += msg_print_ext_body(ext_text + ext_len, 2750 sizeof(ext_text) - ext_len, 2751 &r.text_buf[0], 2752 r.info->text_len, 2753 &r.info->dev_info); 2754 } 2755 len = record_print_text(&r, 2756 console_msg_format & MSG_FORMAT_SYSLOG, 2757 printk_time); 2758 console_seq++; 2759 2760 /* 2761 * While actively printing out messages, if another printk() 2762 * were to occur on another CPU, it may wait for this one to 2763 * finish. This task can not be preempted if there is a 2764 * waiter waiting to take over. 2765 * 2766 * Interrupts are disabled because the hand over to a waiter 2767 * must not be interrupted until the hand over is completed 2768 * (@console_waiter is cleared). 2769 */ 2770 printk_safe_enter_irqsave(flags); 2771 console_lock_spinning_enable(); 2772 2773 stop_critical_timings(); /* don't trace print latency */ 2774 call_console_drivers(ext_text, ext_len, text, len); 2775 start_critical_timings(); 2776 2777 handover = console_lock_spinning_disable_and_check(); 2778 printk_safe_exit_irqrestore(flags); 2779 if (handover) 2780 return; 2781 2782 /* Allow panic_cpu to take over the consoles safely */ 2783 if (abandon_console_lock_in_panic()) 2784 break; 2785 2786 if (do_cond_resched) 2787 cond_resched(); 2788 } 2789 2790 /* Get consistent value of the next-to-be-used sequence number. */ 2791 next_seq = console_seq; 2792 2793 console_locked = 0; 2794 up_console_sem(); 2795 2796 /* 2797 * Someone could have filled up the buffer again, so re-check if there's 2798 * something to flush. In case we cannot trylock the console_sem again, 2799 * there's a new owner and the console_unlock() from them will do the 2800 * flush, no worries. 2801 */ 2802 retry = prb_read_valid(prb, next_seq, NULL); 2803 if (retry && !abandon_console_lock_in_panic() && console_trylock()) 2804 goto again; 2805 } 2806 EXPORT_SYMBOL(console_unlock); 2807 2808 /** 2809 * console_conditional_schedule - yield the CPU if required 2810 * 2811 * If the console code is currently allowed to sleep, and 2812 * if this CPU should yield the CPU to another task, do 2813 * so here. 2814 * 2815 * Must be called within console_lock();. 2816 */ 2817 void __sched console_conditional_schedule(void) 2818 { 2819 if (console_may_schedule) 2820 cond_resched(); 2821 } 2822 EXPORT_SYMBOL(console_conditional_schedule); 2823 2824 void console_unblank(void) 2825 { 2826 struct console *c; 2827 2828 /* 2829 * console_unblank can no longer be called in interrupt context unless 2830 * oops_in_progress is set to 1.. 2831 */ 2832 if (oops_in_progress) { 2833 if (down_trylock_console_sem() != 0) 2834 return; 2835 } else 2836 console_lock(); 2837 2838 console_locked = 1; 2839 console_may_schedule = 0; 2840 for_each_console(c) 2841 if ((c->flags & CON_ENABLED) && c->unblank) 2842 c->unblank(); 2843 console_unlock(); 2844 } 2845 2846 /** 2847 * console_flush_on_panic - flush console content on panic 2848 * @mode: flush all messages in buffer or just the pending ones 2849 * 2850 * Immediately output all pending messages no matter what. 2851 */ 2852 void console_flush_on_panic(enum con_flush_mode mode) 2853 { 2854 /* 2855 * If someone else is holding the console lock, trylock will fail 2856 * and may_schedule may be set. Ignore and proceed to unlock so 2857 * that messages are flushed out. As this can be called from any 2858 * context and we don't want to get preempted while flushing, 2859 * ensure may_schedule is cleared. 2860 */ 2861 console_trylock(); 2862 console_may_schedule = 0; 2863 2864 if (mode == CONSOLE_REPLAY_ALL) 2865 console_seq = prb_first_valid_seq(prb); 2866 console_unlock(); 2867 } 2868 2869 /* 2870 * Return the console tty driver structure and its associated index 2871 */ 2872 struct tty_driver *console_device(int *index) 2873 { 2874 struct console *c; 2875 struct tty_driver *driver = NULL; 2876 2877 console_lock(); 2878 for_each_console(c) { 2879 if (!c->device) 2880 continue; 2881 driver = c->device(c, index); 2882 if (driver) 2883 break; 2884 } 2885 console_unlock(); 2886 return driver; 2887 } 2888 2889 /* 2890 * Prevent further output on the passed console device so that (for example) 2891 * serial drivers can disable console output before suspending a port, and can 2892 * re-enable output afterwards. 2893 */ 2894 void console_stop(struct console *console) 2895 { 2896 console_lock(); 2897 console->flags &= ~CON_ENABLED; 2898 console_unlock(); 2899 } 2900 EXPORT_SYMBOL(console_stop); 2901 2902 void console_start(struct console *console) 2903 { 2904 console_lock(); 2905 console->flags |= CON_ENABLED; 2906 console_unlock(); 2907 } 2908 EXPORT_SYMBOL(console_start); 2909 2910 static int __read_mostly keep_bootcon; 2911 2912 static int __init keep_bootcon_setup(char *str) 2913 { 2914 keep_bootcon = 1; 2915 pr_info("debug: skip boot console de-registration.\n"); 2916 2917 return 0; 2918 } 2919 2920 early_param("keep_bootcon", keep_bootcon_setup); 2921 2922 /* 2923 * This is called by register_console() to try to match 2924 * the newly registered console with any of the ones selected 2925 * by either the command line or add_preferred_console() and 2926 * setup/enable it. 2927 * 2928 * Care need to be taken with consoles that are statically 2929 * enabled such as netconsole 2930 */ 2931 static int try_enable_preferred_console(struct console *newcon, 2932 bool user_specified) 2933 { 2934 struct console_cmdline *c; 2935 int i, err; 2936 2937 for (i = 0, c = console_cmdline; 2938 i < MAX_CMDLINECONSOLES && c->name[0]; 2939 i++, c++) { 2940 if (c->user_specified != user_specified) 2941 continue; 2942 if (!newcon->match || 2943 newcon->match(newcon, c->name, c->index, c->options) != 0) { 2944 /* default matching */ 2945 BUILD_BUG_ON(sizeof(c->name) != sizeof(newcon->name)); 2946 if (strcmp(c->name, newcon->name) != 0) 2947 continue; 2948 if (newcon->index >= 0 && 2949 newcon->index != c->index) 2950 continue; 2951 if (newcon->index < 0) 2952 newcon->index = c->index; 2953 2954 if (_braille_register_console(newcon, c)) 2955 return 0; 2956 2957 if (newcon->setup && 2958 (err = newcon->setup(newcon, c->options)) != 0) 2959 return err; 2960 } 2961 newcon->flags |= CON_ENABLED; 2962 if (i == preferred_console) 2963 newcon->flags |= CON_CONSDEV; 2964 return 0; 2965 } 2966 2967 /* 2968 * Some consoles, such as pstore and netconsole, can be enabled even 2969 * without matching. Accept the pre-enabled consoles only when match() 2970 * and setup() had a chance to be called. 2971 */ 2972 if (newcon->flags & CON_ENABLED && c->user_specified == user_specified) 2973 return 0; 2974 2975 return -ENOENT; 2976 } 2977 2978 /* Try to enable the console unconditionally */ 2979 static void try_enable_default_console(struct console *newcon) 2980 { 2981 if (newcon->index < 0) 2982 newcon->index = 0; 2983 2984 if (newcon->setup && newcon->setup(newcon, NULL) != 0) 2985 return; 2986 2987 newcon->flags |= CON_ENABLED; 2988 2989 if (newcon->device) 2990 newcon->flags |= CON_CONSDEV; 2991 } 2992 2993 /* 2994 * The console driver calls this routine during kernel initialization 2995 * to register the console printing procedure with printk() and to 2996 * print any messages that were printed by the kernel before the 2997 * console driver was initialized. 2998 * 2999 * This can happen pretty early during the boot process (because of 3000 * early_printk) - sometimes before setup_arch() completes - be careful 3001 * of what kernel features are used - they may not be initialised yet. 3002 * 3003 * There are two types of consoles - bootconsoles (early_printk) and 3004 * "real" consoles (everything which is not a bootconsole) which are 3005 * handled differently. 3006 * - Any number of bootconsoles can be registered at any time. 3007 * - As soon as a "real" console is registered, all bootconsoles 3008 * will be unregistered automatically. 3009 * - Once a "real" console is registered, any attempt to register a 3010 * bootconsoles will be rejected 3011 */ 3012 void register_console(struct console *newcon) 3013 { 3014 struct console *con; 3015 bool bootcon_enabled = false; 3016 bool realcon_enabled = false; 3017 int err; 3018 3019 for_each_console(con) { 3020 if (WARN(con == newcon, "console '%s%d' already registered\n", 3021 con->name, con->index)) 3022 return; 3023 } 3024 3025 for_each_console(con) { 3026 if (con->flags & CON_BOOT) 3027 bootcon_enabled = true; 3028 else 3029 realcon_enabled = true; 3030 } 3031 3032 /* Do not register boot consoles when there already is a real one. */ 3033 if (newcon->flags & CON_BOOT && realcon_enabled) { 3034 pr_info("Too late to register bootconsole %s%d\n", 3035 newcon->name, newcon->index); 3036 return; 3037 } 3038 3039 /* 3040 * See if we want to enable this console driver by default. 3041 * 3042 * Nope when a console is preferred by the command line, device 3043 * tree, or SPCR. 3044 * 3045 * The first real console with tty binding (driver) wins. More 3046 * consoles might get enabled before the right one is found. 3047 * 3048 * Note that a console with tty binding will have CON_CONSDEV 3049 * flag set and will be first in the list. 3050 */ 3051 if (preferred_console < 0) { 3052 if (!console_drivers || !console_drivers->device || 3053 console_drivers->flags & CON_BOOT) { 3054 try_enable_default_console(newcon); 3055 } 3056 } 3057 3058 /* See if this console matches one we selected on the command line */ 3059 err = try_enable_preferred_console(newcon, true); 3060 3061 /* If not, try to match against the platform default(s) */ 3062 if (err == -ENOENT) 3063 err = try_enable_preferred_console(newcon, false); 3064 3065 /* printk() messages are not printed to the Braille console. */ 3066 if (err || newcon->flags & CON_BRL) 3067 return; 3068 3069 /* 3070 * If we have a bootconsole, and are switching to a real console, 3071 * don't print everything out again, since when the boot console, and 3072 * the real console are the same physical device, it's annoying to 3073 * see the beginning boot messages twice 3074 */ 3075 if (bootcon_enabled && 3076 ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV)) { 3077 newcon->flags &= ~CON_PRINTBUFFER; 3078 } 3079 3080 /* 3081 * Put this console in the list - keep the 3082 * preferred driver at the head of the list. 3083 */ 3084 console_lock(); 3085 if ((newcon->flags & CON_CONSDEV) || console_drivers == NULL) { 3086 newcon->next = console_drivers; 3087 console_drivers = newcon; 3088 if (newcon->next) 3089 newcon->next->flags &= ~CON_CONSDEV; 3090 /* Ensure this flag is always set for the head of the list */ 3091 newcon->flags |= CON_CONSDEV; 3092 } else { 3093 newcon->next = console_drivers->next; 3094 console_drivers->next = newcon; 3095 } 3096 3097 if (newcon->flags & CON_EXTENDED) 3098 nr_ext_console_drivers++; 3099 3100 if (newcon->flags & CON_PRINTBUFFER) { 3101 /* 3102 * console_unlock(); will print out the buffered messages 3103 * for us. 3104 * 3105 * We're about to replay the log buffer. Only do this to the 3106 * just-registered console to avoid excessive message spam to 3107 * the already-registered consoles. 3108 * 3109 * Set exclusive_console with disabled interrupts to reduce 3110 * race window with eventual console_flush_on_panic() that 3111 * ignores console_lock. 3112 */ 3113 exclusive_console = newcon; 3114 exclusive_console_stop_seq = console_seq; 3115 3116 /* Get a consistent copy of @syslog_seq. */ 3117 mutex_lock(&syslog_lock); 3118 console_seq = syslog_seq; 3119 mutex_unlock(&syslog_lock); 3120 } 3121 console_unlock(); 3122 console_sysfs_notify(); 3123 3124 /* 3125 * By unregistering the bootconsoles after we enable the real console 3126 * we get the "console xxx enabled" message on all the consoles - 3127 * boot consoles, real consoles, etc - this is to ensure that end 3128 * users know there might be something in the kernel's log buffer that 3129 * went to the bootconsole (that they do not see on the real console) 3130 */ 3131 pr_info("%sconsole [%s%d] enabled\n", 3132 (newcon->flags & CON_BOOT) ? "boot" : "" , 3133 newcon->name, newcon->index); 3134 if (bootcon_enabled && 3135 ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV) && 3136 !keep_bootcon) { 3137 /* We need to iterate through all boot consoles, to make 3138 * sure we print everything out, before we unregister them. 3139 */ 3140 for_each_console(con) 3141 if (con->flags & CON_BOOT) 3142 unregister_console(con); 3143 } 3144 } 3145 EXPORT_SYMBOL(register_console); 3146 3147 int unregister_console(struct console *console) 3148 { 3149 struct console *con; 3150 int res; 3151 3152 pr_info("%sconsole [%s%d] disabled\n", 3153 (console->flags & CON_BOOT) ? "boot" : "" , 3154 console->name, console->index); 3155 3156 res = _braille_unregister_console(console); 3157 if (res < 0) 3158 return res; 3159 if (res > 0) 3160 return 0; 3161 3162 res = -ENODEV; 3163 console_lock(); 3164 if (console_drivers == console) { 3165 console_drivers=console->next; 3166 res = 0; 3167 } else { 3168 for_each_console(con) { 3169 if (con->next == console) { 3170 con->next = console->next; 3171 res = 0; 3172 break; 3173 } 3174 } 3175 } 3176 3177 if (res) 3178 goto out_disable_unlock; 3179 3180 if (console->flags & CON_EXTENDED) 3181 nr_ext_console_drivers--; 3182 3183 /* 3184 * If this isn't the last console and it has CON_CONSDEV set, we 3185 * need to set it on the next preferred console. 3186 */ 3187 if (console_drivers != NULL && console->flags & CON_CONSDEV) 3188 console_drivers->flags |= CON_CONSDEV; 3189 3190 console->flags &= ~CON_ENABLED; 3191 console_unlock(); 3192 console_sysfs_notify(); 3193 3194 if (console->exit) 3195 res = console->exit(console); 3196 3197 return res; 3198 3199 out_disable_unlock: 3200 console->flags &= ~CON_ENABLED; 3201 console_unlock(); 3202 3203 return res; 3204 } 3205 EXPORT_SYMBOL(unregister_console); 3206 3207 /* 3208 * Initialize the console device. This is called *early*, so 3209 * we can't necessarily depend on lots of kernel help here. 3210 * Just do some early initializations, and do the complex setup 3211 * later. 3212 */ 3213 void __init console_init(void) 3214 { 3215 int ret; 3216 initcall_t call; 3217 initcall_entry_t *ce; 3218 3219 /* Setup the default TTY line discipline. */ 3220 n_tty_init(); 3221 3222 /* 3223 * set up the console device so that later boot sequences can 3224 * inform about problems etc.. 3225 */ 3226 ce = __con_initcall_start; 3227 trace_initcall_level("console"); 3228 while (ce < __con_initcall_end) { 3229 call = initcall_from_entry(ce); 3230 trace_initcall_start(call); 3231 ret = call(); 3232 trace_initcall_finish(call, ret); 3233 ce++; 3234 } 3235 } 3236 3237 /* 3238 * Some boot consoles access data that is in the init section and which will 3239 * be discarded after the initcalls have been run. To make sure that no code 3240 * will access this data, unregister the boot consoles in a late initcall. 3241 * 3242 * If for some reason, such as deferred probe or the driver being a loadable 3243 * module, the real console hasn't registered yet at this point, there will 3244 * be a brief interval in which no messages are logged to the console, which 3245 * makes it difficult to diagnose problems that occur during this time. 3246 * 3247 * To mitigate this problem somewhat, only unregister consoles whose memory 3248 * intersects with the init section. Note that all other boot consoles will 3249 * get unregistered when the real preferred console is registered. 3250 */ 3251 static int __init printk_late_init(void) 3252 { 3253 struct console *con; 3254 int ret; 3255 3256 for_each_console(con) { 3257 if (!(con->flags & CON_BOOT)) 3258 continue; 3259 3260 /* Check addresses that might be used for enabled consoles. */ 3261 if (init_section_intersects(con, sizeof(*con)) || 3262 init_section_contains(con->write, 0) || 3263 init_section_contains(con->read, 0) || 3264 init_section_contains(con->device, 0) || 3265 init_section_contains(con->unblank, 0) || 3266 init_section_contains(con->data, 0)) { 3267 /* 3268 * Please, consider moving the reported consoles out 3269 * of the init section. 3270 */ 3271 pr_warn("bootconsole [%s%d] uses init memory and must be disabled even before the real one is ready\n", 3272 con->name, con->index); 3273 unregister_console(con); 3274 } 3275 } 3276 ret = cpuhp_setup_state_nocalls(CPUHP_PRINTK_DEAD, "printk:dead", NULL, 3277 console_cpu_notify); 3278 WARN_ON(ret < 0); 3279 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "printk:online", 3280 console_cpu_notify, NULL); 3281 WARN_ON(ret < 0); 3282 printk_sysctl_init(); 3283 return 0; 3284 } 3285 late_initcall(printk_late_init); 3286 3287 #if defined CONFIG_PRINTK 3288 /* 3289 * Delayed printk version, for scheduler-internal messages: 3290 */ 3291 #define PRINTK_PENDING_WAKEUP 0x01 3292 #define PRINTK_PENDING_OUTPUT 0x02 3293 3294 static DEFINE_PER_CPU(int, printk_pending); 3295 3296 static void wake_up_klogd_work_func(struct irq_work *irq_work) 3297 { 3298 int pending = this_cpu_xchg(printk_pending, 0); 3299 3300 if (pending & PRINTK_PENDING_OUTPUT) { 3301 /* If trylock fails, someone else is doing the printing */ 3302 if (console_trylock()) 3303 console_unlock(); 3304 } 3305 3306 if (pending & PRINTK_PENDING_WAKEUP) 3307 wake_up_interruptible(&log_wait); 3308 } 3309 3310 static DEFINE_PER_CPU(struct irq_work, wake_up_klogd_work) = 3311 IRQ_WORK_INIT_LAZY(wake_up_klogd_work_func); 3312 3313 void wake_up_klogd(void) 3314 { 3315 if (!printk_percpu_data_ready()) 3316 return; 3317 3318 preempt_disable(); 3319 if (waitqueue_active(&log_wait)) { 3320 this_cpu_or(printk_pending, PRINTK_PENDING_WAKEUP); 3321 irq_work_queue(this_cpu_ptr(&wake_up_klogd_work)); 3322 } 3323 preempt_enable(); 3324 } 3325 3326 void defer_console_output(void) 3327 { 3328 if (!printk_percpu_data_ready()) 3329 return; 3330 3331 preempt_disable(); 3332 this_cpu_or(printk_pending, PRINTK_PENDING_OUTPUT); 3333 irq_work_queue(this_cpu_ptr(&wake_up_klogd_work)); 3334 preempt_enable(); 3335 } 3336 3337 void printk_trigger_flush(void) 3338 { 3339 defer_console_output(); 3340 } 3341 3342 int vprintk_deferred(const char *fmt, va_list args) 3343 { 3344 int r; 3345 3346 r = vprintk_emit(0, LOGLEVEL_SCHED, NULL, fmt, args); 3347 defer_console_output(); 3348 3349 return r; 3350 } 3351 3352 int _printk_deferred(const char *fmt, ...) 3353 { 3354 va_list args; 3355 int r; 3356 3357 va_start(args, fmt); 3358 r = vprintk_deferred(fmt, args); 3359 va_end(args); 3360 3361 return r; 3362 } 3363 3364 /* 3365 * printk rate limiting, lifted from the networking subsystem. 3366 * 3367 * This enforces a rate limit: not more than 10 kernel messages 3368 * every 5s to make a denial-of-service attack impossible. 3369 */ 3370 DEFINE_RATELIMIT_STATE(printk_ratelimit_state, 5 * HZ, 10); 3371 3372 int __printk_ratelimit(const char *func) 3373 { 3374 return ___ratelimit(&printk_ratelimit_state, func); 3375 } 3376 EXPORT_SYMBOL(__printk_ratelimit); 3377 3378 /** 3379 * printk_timed_ratelimit - caller-controlled printk ratelimiting 3380 * @caller_jiffies: pointer to caller's state 3381 * @interval_msecs: minimum interval between prints 3382 * 3383 * printk_timed_ratelimit() returns true if more than @interval_msecs 3384 * milliseconds have elapsed since the last time printk_timed_ratelimit() 3385 * returned true. 3386 */ 3387 bool printk_timed_ratelimit(unsigned long *caller_jiffies, 3388 unsigned int interval_msecs) 3389 { 3390 unsigned long elapsed = jiffies - *caller_jiffies; 3391 3392 if (*caller_jiffies && elapsed <= msecs_to_jiffies(interval_msecs)) 3393 return false; 3394 3395 *caller_jiffies = jiffies; 3396 return true; 3397 } 3398 EXPORT_SYMBOL(printk_timed_ratelimit); 3399 3400 static DEFINE_SPINLOCK(dump_list_lock); 3401 static LIST_HEAD(dump_list); 3402 3403 /** 3404 * kmsg_dump_register - register a kernel log dumper. 3405 * @dumper: pointer to the kmsg_dumper structure 3406 * 3407 * Adds a kernel log dumper to the system. The dump callback in the 3408 * structure will be called when the kernel oopses or panics and must be 3409 * set. Returns zero on success and %-EINVAL or %-EBUSY otherwise. 3410 */ 3411 int kmsg_dump_register(struct kmsg_dumper *dumper) 3412 { 3413 unsigned long flags; 3414 int err = -EBUSY; 3415 3416 /* The dump callback needs to be set */ 3417 if (!dumper->dump) 3418 return -EINVAL; 3419 3420 spin_lock_irqsave(&dump_list_lock, flags); 3421 /* Don't allow registering multiple times */ 3422 if (!dumper->registered) { 3423 dumper->registered = 1; 3424 list_add_tail_rcu(&dumper->list, &dump_list); 3425 err = 0; 3426 } 3427 spin_unlock_irqrestore(&dump_list_lock, flags); 3428 3429 return err; 3430 } 3431 EXPORT_SYMBOL_GPL(kmsg_dump_register); 3432 3433 /** 3434 * kmsg_dump_unregister - unregister a kmsg dumper. 3435 * @dumper: pointer to the kmsg_dumper structure 3436 * 3437 * Removes a dump device from the system. Returns zero on success and 3438 * %-EINVAL otherwise. 3439 */ 3440 int kmsg_dump_unregister(struct kmsg_dumper *dumper) 3441 { 3442 unsigned long flags; 3443 int err = -EINVAL; 3444 3445 spin_lock_irqsave(&dump_list_lock, flags); 3446 if (dumper->registered) { 3447 dumper->registered = 0; 3448 list_del_rcu(&dumper->list); 3449 err = 0; 3450 } 3451 spin_unlock_irqrestore(&dump_list_lock, flags); 3452 synchronize_rcu(); 3453 3454 return err; 3455 } 3456 EXPORT_SYMBOL_GPL(kmsg_dump_unregister); 3457 3458 static bool always_kmsg_dump; 3459 module_param_named(always_kmsg_dump, always_kmsg_dump, bool, S_IRUGO | S_IWUSR); 3460 3461 const char *kmsg_dump_reason_str(enum kmsg_dump_reason reason) 3462 { 3463 switch (reason) { 3464 case KMSG_DUMP_PANIC: 3465 return "Panic"; 3466 case KMSG_DUMP_OOPS: 3467 return "Oops"; 3468 case KMSG_DUMP_EMERG: 3469 return "Emergency"; 3470 case KMSG_DUMP_SHUTDOWN: 3471 return "Shutdown"; 3472 default: 3473 return "Unknown"; 3474 } 3475 } 3476 EXPORT_SYMBOL_GPL(kmsg_dump_reason_str); 3477 3478 /** 3479 * kmsg_dump - dump kernel log to kernel message dumpers. 3480 * @reason: the reason (oops, panic etc) for dumping 3481 * 3482 * Call each of the registered dumper's dump() callback, which can 3483 * retrieve the kmsg records with kmsg_dump_get_line() or 3484 * kmsg_dump_get_buffer(). 3485 */ 3486 void kmsg_dump(enum kmsg_dump_reason reason) 3487 { 3488 struct kmsg_dumper *dumper; 3489 3490 rcu_read_lock(); 3491 list_for_each_entry_rcu(dumper, &dump_list, list) { 3492 enum kmsg_dump_reason max_reason = dumper->max_reason; 3493 3494 /* 3495 * If client has not provided a specific max_reason, default 3496 * to KMSG_DUMP_OOPS, unless always_kmsg_dump was set. 3497 */ 3498 if (max_reason == KMSG_DUMP_UNDEF) { 3499 max_reason = always_kmsg_dump ? KMSG_DUMP_MAX : 3500 KMSG_DUMP_OOPS; 3501 } 3502 if (reason > max_reason) 3503 continue; 3504 3505 /* invoke dumper which will iterate over records */ 3506 dumper->dump(dumper, reason); 3507 } 3508 rcu_read_unlock(); 3509 } 3510 3511 /** 3512 * kmsg_dump_get_line - retrieve one kmsg log line 3513 * @iter: kmsg dump iterator 3514 * @syslog: include the "<4>" prefixes 3515 * @line: buffer to copy the line to 3516 * @size: maximum size of the buffer 3517 * @len: length of line placed into buffer 3518 * 3519 * Start at the beginning of the kmsg buffer, with the oldest kmsg 3520 * record, and copy one record into the provided buffer. 3521 * 3522 * Consecutive calls will return the next available record moving 3523 * towards the end of the buffer with the youngest messages. 3524 * 3525 * A return value of FALSE indicates that there are no more records to 3526 * read. 3527 */ 3528 bool kmsg_dump_get_line(struct kmsg_dump_iter *iter, bool syslog, 3529 char *line, size_t size, size_t *len) 3530 { 3531 u64 min_seq = latched_seq_read_nolock(&clear_seq); 3532 struct printk_info info; 3533 unsigned int line_count; 3534 struct printk_record r; 3535 size_t l = 0; 3536 bool ret = false; 3537 3538 if (iter->cur_seq < min_seq) 3539 iter->cur_seq = min_seq; 3540 3541 prb_rec_init_rd(&r, &info, line, size); 3542 3543 /* Read text or count text lines? */ 3544 if (line) { 3545 if (!prb_read_valid(prb, iter->cur_seq, &r)) 3546 goto out; 3547 l = record_print_text(&r, syslog, printk_time); 3548 } else { 3549 if (!prb_read_valid_info(prb, iter->cur_seq, 3550 &info, &line_count)) { 3551 goto out; 3552 } 3553 l = get_record_print_text_size(&info, line_count, syslog, 3554 printk_time); 3555 3556 } 3557 3558 iter->cur_seq = r.info->seq + 1; 3559 ret = true; 3560 out: 3561 if (len) 3562 *len = l; 3563 return ret; 3564 } 3565 EXPORT_SYMBOL_GPL(kmsg_dump_get_line); 3566 3567 /** 3568 * kmsg_dump_get_buffer - copy kmsg log lines 3569 * @iter: kmsg dump iterator 3570 * @syslog: include the "<4>" prefixes 3571 * @buf: buffer to copy the line to 3572 * @size: maximum size of the buffer 3573 * @len_out: length of line placed into buffer 3574 * 3575 * Start at the end of the kmsg buffer and fill the provided buffer 3576 * with as many of the *youngest* kmsg records that fit into it. 3577 * If the buffer is large enough, all available kmsg records will be 3578 * copied with a single call. 3579 * 3580 * Consecutive calls will fill the buffer with the next block of 3581 * available older records, not including the earlier retrieved ones. 3582 * 3583 * A return value of FALSE indicates that there are no more records to 3584 * read. 3585 */ 3586 bool kmsg_dump_get_buffer(struct kmsg_dump_iter *iter, bool syslog, 3587 char *buf, size_t size, size_t *len_out) 3588 { 3589 u64 min_seq = latched_seq_read_nolock(&clear_seq); 3590 struct printk_info info; 3591 struct printk_record r; 3592 u64 seq; 3593 u64 next_seq; 3594 size_t len = 0; 3595 bool ret = false; 3596 bool time = printk_time; 3597 3598 if (!buf || !size) 3599 goto out; 3600 3601 if (iter->cur_seq < min_seq) 3602 iter->cur_seq = min_seq; 3603 3604 if (prb_read_valid_info(prb, iter->cur_seq, &info, NULL)) { 3605 if (info.seq != iter->cur_seq) { 3606 /* messages are gone, move to first available one */ 3607 iter->cur_seq = info.seq; 3608 } 3609 } 3610 3611 /* last entry */ 3612 if (iter->cur_seq >= iter->next_seq) 3613 goto out; 3614 3615 /* 3616 * Find first record that fits, including all following records, 3617 * into the user-provided buffer for this dump. Pass in size-1 3618 * because this function (by way of record_print_text()) will 3619 * not write more than size-1 bytes of text into @buf. 3620 */ 3621 seq = find_first_fitting_seq(iter->cur_seq, iter->next_seq, 3622 size - 1, syslog, time); 3623 3624 /* 3625 * Next kmsg_dump_get_buffer() invocation will dump block of 3626 * older records stored right before this one. 3627 */ 3628 next_seq = seq; 3629 3630 prb_rec_init_rd(&r, &info, buf, size); 3631 3632 len = 0; 3633 prb_for_each_record(seq, prb, seq, &r) { 3634 if (r.info->seq >= iter->next_seq) 3635 break; 3636 3637 len += record_print_text(&r, syslog, time); 3638 3639 /* Adjust record to store to remaining buffer space. */ 3640 prb_rec_init_rd(&r, &info, buf + len, size - len); 3641 } 3642 3643 iter->next_seq = next_seq; 3644 ret = true; 3645 out: 3646 if (len_out) 3647 *len_out = len; 3648 return ret; 3649 } 3650 EXPORT_SYMBOL_GPL(kmsg_dump_get_buffer); 3651 3652 /** 3653 * kmsg_dump_rewind - reset the iterator 3654 * @iter: kmsg dump iterator 3655 * 3656 * Reset the dumper's iterator so that kmsg_dump_get_line() and 3657 * kmsg_dump_get_buffer() can be called again and used multiple 3658 * times within the same dumper.dump() callback. 3659 */ 3660 void kmsg_dump_rewind(struct kmsg_dump_iter *iter) 3661 { 3662 iter->cur_seq = latched_seq_read_nolock(&clear_seq); 3663 iter->next_seq = prb_next_seq(prb); 3664 } 3665 EXPORT_SYMBOL_GPL(kmsg_dump_rewind); 3666 3667 #endif 3668 3669 #ifdef CONFIG_SMP 3670 static atomic_t printk_cpulock_owner = ATOMIC_INIT(-1); 3671 static atomic_t printk_cpulock_nested = ATOMIC_INIT(0); 3672 3673 /** 3674 * __printk_wait_on_cpu_lock() - Busy wait until the printk cpu-reentrant 3675 * spinning lock is not owned by any CPU. 3676 * 3677 * Context: Any context. 3678 */ 3679 void __printk_wait_on_cpu_lock(void) 3680 { 3681 do { 3682 cpu_relax(); 3683 } while (atomic_read(&printk_cpulock_owner) != -1); 3684 } 3685 EXPORT_SYMBOL(__printk_wait_on_cpu_lock); 3686 3687 /** 3688 * __printk_cpu_trylock() - Try to acquire the printk cpu-reentrant 3689 * spinning lock. 3690 * 3691 * If no processor has the lock, the calling processor takes the lock and 3692 * becomes the owner. If the calling processor is already the owner of the 3693 * lock, this function succeeds immediately. 3694 * 3695 * Context: Any context. Expects interrupts to be disabled. 3696 * Return: 1 on success, otherwise 0. 3697 */ 3698 int __printk_cpu_trylock(void) 3699 { 3700 int cpu; 3701 int old; 3702 3703 cpu = smp_processor_id(); 3704 3705 /* 3706 * Guarantee loads and stores from this CPU when it is the lock owner 3707 * are _not_ visible to the previous lock owner. This pairs with 3708 * __printk_cpu_unlock:B. 3709 * 3710 * Memory barrier involvement: 3711 * 3712 * If __printk_cpu_trylock:A reads from __printk_cpu_unlock:B, then 3713 * __printk_cpu_unlock:A can never read from __printk_cpu_trylock:B. 3714 * 3715 * Relies on: 3716 * 3717 * RELEASE from __printk_cpu_unlock:A to __printk_cpu_unlock:B 3718 * of the previous CPU 3719 * matching 3720 * ACQUIRE from __printk_cpu_trylock:A to __printk_cpu_trylock:B 3721 * of this CPU 3722 */ 3723 old = atomic_cmpxchg_acquire(&printk_cpulock_owner, -1, 3724 cpu); /* LMM(__printk_cpu_trylock:A) */ 3725 if (old == -1) { 3726 /* 3727 * This CPU is now the owner and begins loading/storing 3728 * data: LMM(__printk_cpu_trylock:B) 3729 */ 3730 return 1; 3731 3732 } else if (old == cpu) { 3733 /* This CPU is already the owner. */ 3734 atomic_inc(&printk_cpulock_nested); 3735 return 1; 3736 } 3737 3738 return 0; 3739 } 3740 EXPORT_SYMBOL(__printk_cpu_trylock); 3741 3742 /** 3743 * __printk_cpu_unlock() - Release the printk cpu-reentrant spinning lock. 3744 * 3745 * The calling processor must be the owner of the lock. 3746 * 3747 * Context: Any context. Expects interrupts to be disabled. 3748 */ 3749 void __printk_cpu_unlock(void) 3750 { 3751 if (atomic_read(&printk_cpulock_nested)) { 3752 atomic_dec(&printk_cpulock_nested); 3753 return; 3754 } 3755 3756 /* 3757 * This CPU is finished loading/storing data: 3758 * LMM(__printk_cpu_unlock:A) 3759 */ 3760 3761 /* 3762 * Guarantee loads and stores from this CPU when it was the 3763 * lock owner are visible to the next lock owner. This pairs 3764 * with __printk_cpu_trylock:A. 3765 * 3766 * Memory barrier involvement: 3767 * 3768 * If __printk_cpu_trylock:A reads from __printk_cpu_unlock:B, 3769 * then __printk_cpu_trylock:B reads from __printk_cpu_unlock:A. 3770 * 3771 * Relies on: 3772 * 3773 * RELEASE from __printk_cpu_unlock:A to __printk_cpu_unlock:B 3774 * of this CPU 3775 * matching 3776 * ACQUIRE from __printk_cpu_trylock:A to __printk_cpu_trylock:B 3777 * of the next CPU 3778 */ 3779 atomic_set_release(&printk_cpulock_owner, 3780 -1); /* LMM(__printk_cpu_unlock:B) */ 3781 } 3782 EXPORT_SYMBOL(__printk_cpu_unlock); 3783 #endif /* CONFIG_SMP */ 3784