xref: /openbmc/linux/kernel/printk/printk.c (revision e6486939)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/printk.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  *
7  * Modified to make sys_syslog() more flexible: added commands to
8  * return the last 4k of kernel messages, regardless of whether
9  * they've been read or not.  Added option to suppress kernel printk's
10  * to the console.  Added hook for sending the console messages
11  * elsewhere, in preparation for a serial line console (someday).
12  * Ted Ts'o, 2/11/93.
13  * Modified for sysctl support, 1/8/97, Chris Horn.
14  * Fixed SMP synchronization, 08/08/99, Manfred Spraul
15  *     manfred@colorfullife.com
16  * Rewrote bits to get rid of console_lock
17  *	01Mar01 Andrew Morton
18  */
19 
20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
21 
22 #include <linux/kernel.h>
23 #include <linux/mm.h>
24 #include <linux/tty.h>
25 #include <linux/tty_driver.h>
26 #include <linux/console.h>
27 #include <linux/init.h>
28 #include <linux/jiffies.h>
29 #include <linux/nmi.h>
30 #include <linux/module.h>
31 #include <linux/moduleparam.h>
32 #include <linux/delay.h>
33 #include <linux/smp.h>
34 #include <linux/security.h>
35 #include <linux/memblock.h>
36 #include <linux/syscalls.h>
37 #include <linux/crash_core.h>
38 #include <linux/ratelimit.h>
39 #include <linux/kmsg_dump.h>
40 #include <linux/syslog.h>
41 #include <linux/cpu.h>
42 #include <linux/rculist.h>
43 #include <linux/poll.h>
44 #include <linux/irq_work.h>
45 #include <linux/ctype.h>
46 #include <linux/uio.h>
47 #include <linux/sched/clock.h>
48 #include <linux/sched/debug.h>
49 #include <linux/sched/task_stack.h>
50 
51 #include <linux/uaccess.h>
52 #include <asm/sections.h>
53 
54 #include <trace/events/initcall.h>
55 #define CREATE_TRACE_POINTS
56 #include <trace/events/printk.h>
57 
58 #include "printk_ringbuffer.h"
59 #include "console_cmdline.h"
60 #include "braille.h"
61 #include "internal.h"
62 
63 int console_printk[4] = {
64 	CONSOLE_LOGLEVEL_DEFAULT,	/* console_loglevel */
65 	MESSAGE_LOGLEVEL_DEFAULT,	/* default_message_loglevel */
66 	CONSOLE_LOGLEVEL_MIN,		/* minimum_console_loglevel */
67 	CONSOLE_LOGLEVEL_DEFAULT,	/* default_console_loglevel */
68 };
69 EXPORT_SYMBOL_GPL(console_printk);
70 
71 atomic_t ignore_console_lock_warning __read_mostly = ATOMIC_INIT(0);
72 EXPORT_SYMBOL(ignore_console_lock_warning);
73 
74 /*
75  * Low level drivers may need that to know if they can schedule in
76  * their unblank() callback or not. So let's export it.
77  */
78 int oops_in_progress;
79 EXPORT_SYMBOL(oops_in_progress);
80 
81 /*
82  * console_sem protects the console_drivers list, and also
83  * provides serialisation for access to the entire console
84  * driver system.
85  */
86 static DEFINE_SEMAPHORE(console_sem);
87 struct console *console_drivers;
88 EXPORT_SYMBOL_GPL(console_drivers);
89 
90 /*
91  * System may need to suppress printk message under certain
92  * circumstances, like after kernel panic happens.
93  */
94 int __read_mostly suppress_printk;
95 
96 /*
97  * During panic, heavy printk by other CPUs can delay the
98  * panic and risk deadlock on console resources.
99  */
100 static int __read_mostly suppress_panic_printk;
101 
102 #ifdef CONFIG_LOCKDEP
103 static struct lockdep_map console_lock_dep_map = {
104 	.name = "console_lock"
105 };
106 #endif
107 
108 enum devkmsg_log_bits {
109 	__DEVKMSG_LOG_BIT_ON = 0,
110 	__DEVKMSG_LOG_BIT_OFF,
111 	__DEVKMSG_LOG_BIT_LOCK,
112 };
113 
114 enum devkmsg_log_masks {
115 	DEVKMSG_LOG_MASK_ON             = BIT(__DEVKMSG_LOG_BIT_ON),
116 	DEVKMSG_LOG_MASK_OFF            = BIT(__DEVKMSG_LOG_BIT_OFF),
117 	DEVKMSG_LOG_MASK_LOCK           = BIT(__DEVKMSG_LOG_BIT_LOCK),
118 };
119 
120 /* Keep both the 'on' and 'off' bits clear, i.e. ratelimit by default: */
121 #define DEVKMSG_LOG_MASK_DEFAULT	0
122 
123 static unsigned int __read_mostly devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT;
124 
125 static int __control_devkmsg(char *str)
126 {
127 	size_t len;
128 
129 	if (!str)
130 		return -EINVAL;
131 
132 	len = str_has_prefix(str, "on");
133 	if (len) {
134 		devkmsg_log = DEVKMSG_LOG_MASK_ON;
135 		return len;
136 	}
137 
138 	len = str_has_prefix(str, "off");
139 	if (len) {
140 		devkmsg_log = DEVKMSG_LOG_MASK_OFF;
141 		return len;
142 	}
143 
144 	len = str_has_prefix(str, "ratelimit");
145 	if (len) {
146 		devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT;
147 		return len;
148 	}
149 
150 	return -EINVAL;
151 }
152 
153 static int __init control_devkmsg(char *str)
154 {
155 	if (__control_devkmsg(str) < 0) {
156 		pr_warn("printk.devkmsg: bad option string '%s'\n", str);
157 		return 1;
158 	}
159 
160 	/*
161 	 * Set sysctl string accordingly:
162 	 */
163 	if (devkmsg_log == DEVKMSG_LOG_MASK_ON)
164 		strcpy(devkmsg_log_str, "on");
165 	else if (devkmsg_log == DEVKMSG_LOG_MASK_OFF)
166 		strcpy(devkmsg_log_str, "off");
167 	/* else "ratelimit" which is set by default. */
168 
169 	/*
170 	 * Sysctl cannot change it anymore. The kernel command line setting of
171 	 * this parameter is to force the setting to be permanent throughout the
172 	 * runtime of the system. This is a precation measure against userspace
173 	 * trying to be a smarta** and attempting to change it up on us.
174 	 */
175 	devkmsg_log |= DEVKMSG_LOG_MASK_LOCK;
176 
177 	return 1;
178 }
179 __setup("printk.devkmsg=", control_devkmsg);
180 
181 char devkmsg_log_str[DEVKMSG_STR_MAX_SIZE] = "ratelimit";
182 #if defined(CONFIG_PRINTK) && defined(CONFIG_SYSCTL)
183 int devkmsg_sysctl_set_loglvl(struct ctl_table *table, int write,
184 			      void *buffer, size_t *lenp, loff_t *ppos)
185 {
186 	char old_str[DEVKMSG_STR_MAX_SIZE];
187 	unsigned int old;
188 	int err;
189 
190 	if (write) {
191 		if (devkmsg_log & DEVKMSG_LOG_MASK_LOCK)
192 			return -EINVAL;
193 
194 		old = devkmsg_log;
195 		strncpy(old_str, devkmsg_log_str, DEVKMSG_STR_MAX_SIZE);
196 	}
197 
198 	err = proc_dostring(table, write, buffer, lenp, ppos);
199 	if (err)
200 		return err;
201 
202 	if (write) {
203 		err = __control_devkmsg(devkmsg_log_str);
204 
205 		/*
206 		 * Do not accept an unknown string OR a known string with
207 		 * trailing crap...
208 		 */
209 		if (err < 0 || (err + 1 != *lenp)) {
210 
211 			/* ... and restore old setting. */
212 			devkmsg_log = old;
213 			strncpy(devkmsg_log_str, old_str, DEVKMSG_STR_MAX_SIZE);
214 
215 			return -EINVAL;
216 		}
217 	}
218 
219 	return 0;
220 }
221 #endif /* CONFIG_PRINTK && CONFIG_SYSCTL */
222 
223 /* Number of registered extended console drivers. */
224 static int nr_ext_console_drivers;
225 
226 /*
227  * Helper macros to handle lockdep when locking/unlocking console_sem. We use
228  * macros instead of functions so that _RET_IP_ contains useful information.
229  */
230 #define down_console_sem() do { \
231 	down(&console_sem);\
232 	mutex_acquire(&console_lock_dep_map, 0, 0, _RET_IP_);\
233 } while (0)
234 
235 static int __down_trylock_console_sem(unsigned long ip)
236 {
237 	int lock_failed;
238 	unsigned long flags;
239 
240 	/*
241 	 * Here and in __up_console_sem() we need to be in safe mode,
242 	 * because spindump/WARN/etc from under console ->lock will
243 	 * deadlock in printk()->down_trylock_console_sem() otherwise.
244 	 */
245 	printk_safe_enter_irqsave(flags);
246 	lock_failed = down_trylock(&console_sem);
247 	printk_safe_exit_irqrestore(flags);
248 
249 	if (lock_failed)
250 		return 1;
251 	mutex_acquire(&console_lock_dep_map, 0, 1, ip);
252 	return 0;
253 }
254 #define down_trylock_console_sem() __down_trylock_console_sem(_RET_IP_)
255 
256 static void __up_console_sem(unsigned long ip)
257 {
258 	unsigned long flags;
259 
260 	mutex_release(&console_lock_dep_map, ip);
261 
262 	printk_safe_enter_irqsave(flags);
263 	up(&console_sem);
264 	printk_safe_exit_irqrestore(flags);
265 }
266 #define up_console_sem() __up_console_sem(_RET_IP_)
267 
268 static bool panic_in_progress(void)
269 {
270 	return unlikely(atomic_read(&panic_cpu) != PANIC_CPU_INVALID);
271 }
272 
273 /*
274  * This is used for debugging the mess that is the VT code by
275  * keeping track if we have the console semaphore held. It's
276  * definitely not the perfect debug tool (we don't know if _WE_
277  * hold it and are racing, but it helps tracking those weird code
278  * paths in the console code where we end up in places I want
279  * locked without the console semaphore held).
280  */
281 static int console_locked, console_suspended;
282 
283 /*
284  * If exclusive_console is non-NULL then only this console is to be printed to.
285  */
286 static struct console *exclusive_console;
287 
288 /*
289  *	Array of consoles built from command line options (console=)
290  */
291 
292 #define MAX_CMDLINECONSOLES 8
293 
294 static struct console_cmdline console_cmdline[MAX_CMDLINECONSOLES];
295 
296 static int preferred_console = -1;
297 int console_set_on_cmdline;
298 EXPORT_SYMBOL(console_set_on_cmdline);
299 
300 /* Flag: console code may call schedule() */
301 static int console_may_schedule;
302 
303 enum con_msg_format_flags {
304 	MSG_FORMAT_DEFAULT	= 0,
305 	MSG_FORMAT_SYSLOG	= (1 << 0),
306 };
307 
308 static int console_msg_format = MSG_FORMAT_DEFAULT;
309 
310 /*
311  * The printk log buffer consists of a sequenced collection of records, each
312  * containing variable length message text. Every record also contains its
313  * own meta-data (@info).
314  *
315  * Every record meta-data carries the timestamp in microseconds, as well as
316  * the standard userspace syslog level and syslog facility. The usual kernel
317  * messages use LOG_KERN; userspace-injected messages always carry a matching
318  * syslog facility, by default LOG_USER. The origin of every message can be
319  * reliably determined that way.
320  *
321  * The human readable log message of a record is available in @text, the
322  * length of the message text in @text_len. The stored message is not
323  * terminated.
324  *
325  * Optionally, a record can carry a dictionary of properties (key/value
326  * pairs), to provide userspace with a machine-readable message context.
327  *
328  * Examples for well-defined, commonly used property names are:
329  *   DEVICE=b12:8               device identifier
330  *                                b12:8         block dev_t
331  *                                c127:3        char dev_t
332  *                                n8            netdev ifindex
333  *                                +sound:card0  subsystem:devname
334  *   SUBSYSTEM=pci              driver-core subsystem name
335  *
336  * Valid characters in property names are [a-zA-Z0-9.-_]. Property names
337  * and values are terminated by a '\0' character.
338  *
339  * Example of record values:
340  *   record.text_buf                = "it's a line" (unterminated)
341  *   record.info.seq                = 56
342  *   record.info.ts_nsec            = 36863
343  *   record.info.text_len           = 11
344  *   record.info.facility           = 0 (LOG_KERN)
345  *   record.info.flags              = 0
346  *   record.info.level              = 3 (LOG_ERR)
347  *   record.info.caller_id          = 299 (task 299)
348  *   record.info.dev_info.subsystem = "pci" (terminated)
349  *   record.info.dev_info.device    = "+pci:0000:00:01.0" (terminated)
350  *
351  * The 'struct printk_info' buffer must never be directly exported to
352  * userspace, it is a kernel-private implementation detail that might
353  * need to be changed in the future, when the requirements change.
354  *
355  * /dev/kmsg exports the structured data in the following line format:
356  *   "<level>,<sequnum>,<timestamp>,<contflag>[,additional_values, ... ];<message text>\n"
357  *
358  * Users of the export format should ignore possible additional values
359  * separated by ',', and find the message after the ';' character.
360  *
361  * The optional key/value pairs are attached as continuation lines starting
362  * with a space character and terminated by a newline. All possible
363  * non-prinatable characters are escaped in the "\xff" notation.
364  */
365 
366 /* syslog_lock protects syslog_* variables and write access to clear_seq. */
367 static DEFINE_MUTEX(syslog_lock);
368 
369 #ifdef CONFIG_PRINTK
370 DECLARE_WAIT_QUEUE_HEAD(log_wait);
371 /* All 3 protected by @syslog_lock. */
372 /* the next printk record to read by syslog(READ) or /proc/kmsg */
373 static u64 syslog_seq;
374 static size_t syslog_partial;
375 static bool syslog_time;
376 
377 /* All 3 protected by @console_sem. */
378 /* the next printk record to write to the console */
379 static u64 console_seq;
380 static u64 exclusive_console_stop_seq;
381 static unsigned long console_dropped;
382 
383 struct latched_seq {
384 	seqcount_latch_t	latch;
385 	u64			val[2];
386 };
387 
388 /*
389  * The next printk record to read after the last 'clear' command. There are
390  * two copies (updated with seqcount_latch) so that reads can locklessly
391  * access a valid value. Writers are synchronized by @syslog_lock.
392  */
393 static struct latched_seq clear_seq = {
394 	.latch		= SEQCNT_LATCH_ZERO(clear_seq.latch),
395 	.val[0]		= 0,
396 	.val[1]		= 0,
397 };
398 
399 #ifdef CONFIG_PRINTK_CALLER
400 #define PREFIX_MAX		48
401 #else
402 #define PREFIX_MAX		32
403 #endif
404 
405 /* the maximum size of a formatted record (i.e. with prefix added per line) */
406 #define CONSOLE_LOG_MAX		1024
407 
408 /* the maximum size allowed to be reserved for a record */
409 #define LOG_LINE_MAX		(CONSOLE_LOG_MAX - PREFIX_MAX)
410 
411 #define LOG_LEVEL(v)		((v) & 0x07)
412 #define LOG_FACILITY(v)		((v) >> 3 & 0xff)
413 
414 /* record buffer */
415 #define LOG_ALIGN __alignof__(unsigned long)
416 #define __LOG_BUF_LEN (1 << CONFIG_LOG_BUF_SHIFT)
417 #define LOG_BUF_LEN_MAX (u32)(1 << 31)
418 static char __log_buf[__LOG_BUF_LEN] __aligned(LOG_ALIGN);
419 static char *log_buf = __log_buf;
420 static u32 log_buf_len = __LOG_BUF_LEN;
421 
422 /*
423  * Define the average message size. This only affects the number of
424  * descriptors that will be available. Underestimating is better than
425  * overestimating (too many available descriptors is better than not enough).
426  */
427 #define PRB_AVGBITS 5	/* 32 character average length */
428 
429 #if CONFIG_LOG_BUF_SHIFT <= PRB_AVGBITS
430 #error CONFIG_LOG_BUF_SHIFT value too small.
431 #endif
432 _DEFINE_PRINTKRB(printk_rb_static, CONFIG_LOG_BUF_SHIFT - PRB_AVGBITS,
433 		 PRB_AVGBITS, &__log_buf[0]);
434 
435 static struct printk_ringbuffer printk_rb_dynamic;
436 
437 static struct printk_ringbuffer *prb = &printk_rb_static;
438 
439 /*
440  * We cannot access per-CPU data (e.g. per-CPU flush irq_work) before
441  * per_cpu_areas are initialised. This variable is set to true when
442  * it's safe to access per-CPU data.
443  */
444 static bool __printk_percpu_data_ready __read_mostly;
445 
446 bool printk_percpu_data_ready(void)
447 {
448 	return __printk_percpu_data_ready;
449 }
450 
451 /* Must be called under syslog_lock. */
452 static void latched_seq_write(struct latched_seq *ls, u64 val)
453 {
454 	raw_write_seqcount_latch(&ls->latch);
455 	ls->val[0] = val;
456 	raw_write_seqcount_latch(&ls->latch);
457 	ls->val[1] = val;
458 }
459 
460 /* Can be called from any context. */
461 static u64 latched_seq_read_nolock(struct latched_seq *ls)
462 {
463 	unsigned int seq;
464 	unsigned int idx;
465 	u64 val;
466 
467 	do {
468 		seq = raw_read_seqcount_latch(&ls->latch);
469 		idx = seq & 0x1;
470 		val = ls->val[idx];
471 	} while (read_seqcount_latch_retry(&ls->latch, seq));
472 
473 	return val;
474 }
475 
476 /* Return log buffer address */
477 char *log_buf_addr_get(void)
478 {
479 	return log_buf;
480 }
481 
482 /* Return log buffer size */
483 u32 log_buf_len_get(void)
484 {
485 	return log_buf_len;
486 }
487 
488 /*
489  * Define how much of the log buffer we could take at maximum. The value
490  * must be greater than two. Note that only half of the buffer is available
491  * when the index points to the middle.
492  */
493 #define MAX_LOG_TAKE_PART 4
494 static const char trunc_msg[] = "<truncated>";
495 
496 static void truncate_msg(u16 *text_len, u16 *trunc_msg_len)
497 {
498 	/*
499 	 * The message should not take the whole buffer. Otherwise, it might
500 	 * get removed too soon.
501 	 */
502 	u32 max_text_len = log_buf_len / MAX_LOG_TAKE_PART;
503 
504 	if (*text_len > max_text_len)
505 		*text_len = max_text_len;
506 
507 	/* enable the warning message (if there is room) */
508 	*trunc_msg_len = strlen(trunc_msg);
509 	if (*text_len >= *trunc_msg_len)
510 		*text_len -= *trunc_msg_len;
511 	else
512 		*trunc_msg_len = 0;
513 }
514 
515 int dmesg_restrict = IS_ENABLED(CONFIG_SECURITY_DMESG_RESTRICT);
516 
517 static int syslog_action_restricted(int type)
518 {
519 	if (dmesg_restrict)
520 		return 1;
521 	/*
522 	 * Unless restricted, we allow "read all" and "get buffer size"
523 	 * for everybody.
524 	 */
525 	return type != SYSLOG_ACTION_READ_ALL &&
526 	       type != SYSLOG_ACTION_SIZE_BUFFER;
527 }
528 
529 static int check_syslog_permissions(int type, int source)
530 {
531 	/*
532 	 * If this is from /proc/kmsg and we've already opened it, then we've
533 	 * already done the capabilities checks at open time.
534 	 */
535 	if (source == SYSLOG_FROM_PROC && type != SYSLOG_ACTION_OPEN)
536 		goto ok;
537 
538 	if (syslog_action_restricted(type)) {
539 		if (capable(CAP_SYSLOG))
540 			goto ok;
541 		/*
542 		 * For historical reasons, accept CAP_SYS_ADMIN too, with
543 		 * a warning.
544 		 */
545 		if (capable(CAP_SYS_ADMIN)) {
546 			pr_warn_once("%s (%d): Attempt to access syslog with "
547 				     "CAP_SYS_ADMIN but no CAP_SYSLOG "
548 				     "(deprecated).\n",
549 				 current->comm, task_pid_nr(current));
550 			goto ok;
551 		}
552 		return -EPERM;
553 	}
554 ok:
555 	return security_syslog(type);
556 }
557 
558 static void append_char(char **pp, char *e, char c)
559 {
560 	if (*pp < e)
561 		*(*pp)++ = c;
562 }
563 
564 static ssize_t info_print_ext_header(char *buf, size_t size,
565 				     struct printk_info *info)
566 {
567 	u64 ts_usec = info->ts_nsec;
568 	char caller[20];
569 #ifdef CONFIG_PRINTK_CALLER
570 	u32 id = info->caller_id;
571 
572 	snprintf(caller, sizeof(caller), ",caller=%c%u",
573 		 id & 0x80000000 ? 'C' : 'T', id & ~0x80000000);
574 #else
575 	caller[0] = '\0';
576 #endif
577 
578 	do_div(ts_usec, 1000);
579 
580 	return scnprintf(buf, size, "%u,%llu,%llu,%c%s;",
581 			 (info->facility << 3) | info->level, info->seq,
582 			 ts_usec, info->flags & LOG_CONT ? 'c' : '-', caller);
583 }
584 
585 static ssize_t msg_add_ext_text(char *buf, size_t size,
586 				const char *text, size_t text_len,
587 				unsigned char endc)
588 {
589 	char *p = buf, *e = buf + size;
590 	size_t i;
591 
592 	/* escape non-printable characters */
593 	for (i = 0; i < text_len; i++) {
594 		unsigned char c = text[i];
595 
596 		if (c < ' ' || c >= 127 || c == '\\')
597 			p += scnprintf(p, e - p, "\\x%02x", c);
598 		else
599 			append_char(&p, e, c);
600 	}
601 	append_char(&p, e, endc);
602 
603 	return p - buf;
604 }
605 
606 static ssize_t msg_add_dict_text(char *buf, size_t size,
607 				 const char *key, const char *val)
608 {
609 	size_t val_len = strlen(val);
610 	ssize_t len;
611 
612 	if (!val_len)
613 		return 0;
614 
615 	len = msg_add_ext_text(buf, size, "", 0, ' ');	/* dict prefix */
616 	len += msg_add_ext_text(buf + len, size - len, key, strlen(key), '=');
617 	len += msg_add_ext_text(buf + len, size - len, val, val_len, '\n');
618 
619 	return len;
620 }
621 
622 static ssize_t msg_print_ext_body(char *buf, size_t size,
623 				  char *text, size_t text_len,
624 				  struct dev_printk_info *dev_info)
625 {
626 	ssize_t len;
627 
628 	len = msg_add_ext_text(buf, size, text, text_len, '\n');
629 
630 	if (!dev_info)
631 		goto out;
632 
633 	len += msg_add_dict_text(buf + len, size - len, "SUBSYSTEM",
634 				 dev_info->subsystem);
635 	len += msg_add_dict_text(buf + len, size - len, "DEVICE",
636 				 dev_info->device);
637 out:
638 	return len;
639 }
640 
641 /* /dev/kmsg - userspace message inject/listen interface */
642 struct devkmsg_user {
643 	atomic64_t seq;
644 	struct ratelimit_state rs;
645 	struct mutex lock;
646 	char buf[CONSOLE_EXT_LOG_MAX];
647 
648 	struct printk_info info;
649 	char text_buf[CONSOLE_EXT_LOG_MAX];
650 	struct printk_record record;
651 };
652 
653 static __printf(3, 4) __cold
654 int devkmsg_emit(int facility, int level, const char *fmt, ...)
655 {
656 	va_list args;
657 	int r;
658 
659 	va_start(args, fmt);
660 	r = vprintk_emit(facility, level, NULL, fmt, args);
661 	va_end(args);
662 
663 	return r;
664 }
665 
666 static ssize_t devkmsg_write(struct kiocb *iocb, struct iov_iter *from)
667 {
668 	char *buf, *line;
669 	int level = default_message_loglevel;
670 	int facility = 1;	/* LOG_USER */
671 	struct file *file = iocb->ki_filp;
672 	struct devkmsg_user *user = file->private_data;
673 	size_t len = iov_iter_count(from);
674 	ssize_t ret = len;
675 
676 	if (!user || len > LOG_LINE_MAX)
677 		return -EINVAL;
678 
679 	/* Ignore when user logging is disabled. */
680 	if (devkmsg_log & DEVKMSG_LOG_MASK_OFF)
681 		return len;
682 
683 	/* Ratelimit when not explicitly enabled. */
684 	if (!(devkmsg_log & DEVKMSG_LOG_MASK_ON)) {
685 		if (!___ratelimit(&user->rs, current->comm))
686 			return ret;
687 	}
688 
689 	buf = kmalloc(len+1, GFP_KERNEL);
690 	if (buf == NULL)
691 		return -ENOMEM;
692 
693 	buf[len] = '\0';
694 	if (!copy_from_iter_full(buf, len, from)) {
695 		kfree(buf);
696 		return -EFAULT;
697 	}
698 
699 	/*
700 	 * Extract and skip the syslog prefix <[0-9]*>. Coming from userspace
701 	 * the decimal value represents 32bit, the lower 3 bit are the log
702 	 * level, the rest are the log facility.
703 	 *
704 	 * If no prefix or no userspace facility is specified, we
705 	 * enforce LOG_USER, to be able to reliably distinguish
706 	 * kernel-generated messages from userspace-injected ones.
707 	 */
708 	line = buf;
709 	if (line[0] == '<') {
710 		char *endp = NULL;
711 		unsigned int u;
712 
713 		u = simple_strtoul(line + 1, &endp, 10);
714 		if (endp && endp[0] == '>') {
715 			level = LOG_LEVEL(u);
716 			if (LOG_FACILITY(u) != 0)
717 				facility = LOG_FACILITY(u);
718 			endp++;
719 			line = endp;
720 		}
721 	}
722 
723 	devkmsg_emit(facility, level, "%s", line);
724 	kfree(buf);
725 	return ret;
726 }
727 
728 static ssize_t devkmsg_read(struct file *file, char __user *buf,
729 			    size_t count, loff_t *ppos)
730 {
731 	struct devkmsg_user *user = file->private_data;
732 	struct printk_record *r = &user->record;
733 	size_t len;
734 	ssize_t ret;
735 
736 	if (!user)
737 		return -EBADF;
738 
739 	ret = mutex_lock_interruptible(&user->lock);
740 	if (ret)
741 		return ret;
742 
743 	if (!prb_read_valid(prb, atomic64_read(&user->seq), r)) {
744 		if (file->f_flags & O_NONBLOCK) {
745 			ret = -EAGAIN;
746 			goto out;
747 		}
748 
749 		ret = wait_event_interruptible(log_wait,
750 				prb_read_valid(prb, atomic64_read(&user->seq), r));
751 		if (ret)
752 			goto out;
753 	}
754 
755 	if (r->info->seq != atomic64_read(&user->seq)) {
756 		/* our last seen message is gone, return error and reset */
757 		atomic64_set(&user->seq, r->info->seq);
758 		ret = -EPIPE;
759 		goto out;
760 	}
761 
762 	len = info_print_ext_header(user->buf, sizeof(user->buf), r->info);
763 	len += msg_print_ext_body(user->buf + len, sizeof(user->buf) - len,
764 				  &r->text_buf[0], r->info->text_len,
765 				  &r->info->dev_info);
766 
767 	atomic64_set(&user->seq, r->info->seq + 1);
768 
769 	if (len > count) {
770 		ret = -EINVAL;
771 		goto out;
772 	}
773 
774 	if (copy_to_user(buf, user->buf, len)) {
775 		ret = -EFAULT;
776 		goto out;
777 	}
778 	ret = len;
779 out:
780 	mutex_unlock(&user->lock);
781 	return ret;
782 }
783 
784 /*
785  * Be careful when modifying this function!!!
786  *
787  * Only few operations are supported because the device works only with the
788  * entire variable length messages (records). Non-standard values are
789  * returned in the other cases and has been this way for quite some time.
790  * User space applications might depend on this behavior.
791  */
792 static loff_t devkmsg_llseek(struct file *file, loff_t offset, int whence)
793 {
794 	struct devkmsg_user *user = file->private_data;
795 	loff_t ret = 0;
796 
797 	if (!user)
798 		return -EBADF;
799 	if (offset)
800 		return -ESPIPE;
801 
802 	switch (whence) {
803 	case SEEK_SET:
804 		/* the first record */
805 		atomic64_set(&user->seq, prb_first_valid_seq(prb));
806 		break;
807 	case SEEK_DATA:
808 		/*
809 		 * The first record after the last SYSLOG_ACTION_CLEAR,
810 		 * like issued by 'dmesg -c'. Reading /dev/kmsg itself
811 		 * changes no global state, and does not clear anything.
812 		 */
813 		atomic64_set(&user->seq, latched_seq_read_nolock(&clear_seq));
814 		break;
815 	case SEEK_END:
816 		/* after the last record */
817 		atomic64_set(&user->seq, prb_next_seq(prb));
818 		break;
819 	default:
820 		ret = -EINVAL;
821 	}
822 	return ret;
823 }
824 
825 static __poll_t devkmsg_poll(struct file *file, poll_table *wait)
826 {
827 	struct devkmsg_user *user = file->private_data;
828 	struct printk_info info;
829 	__poll_t ret = 0;
830 
831 	if (!user)
832 		return EPOLLERR|EPOLLNVAL;
833 
834 	poll_wait(file, &log_wait, wait);
835 
836 	if (prb_read_valid_info(prb, atomic64_read(&user->seq), &info, NULL)) {
837 		/* return error when data has vanished underneath us */
838 		if (info.seq != atomic64_read(&user->seq))
839 			ret = EPOLLIN|EPOLLRDNORM|EPOLLERR|EPOLLPRI;
840 		else
841 			ret = EPOLLIN|EPOLLRDNORM;
842 	}
843 
844 	return ret;
845 }
846 
847 static int devkmsg_open(struct inode *inode, struct file *file)
848 {
849 	struct devkmsg_user *user;
850 	int err;
851 
852 	if (devkmsg_log & DEVKMSG_LOG_MASK_OFF)
853 		return -EPERM;
854 
855 	/* write-only does not need any file context */
856 	if ((file->f_flags & O_ACCMODE) != O_WRONLY) {
857 		err = check_syslog_permissions(SYSLOG_ACTION_READ_ALL,
858 					       SYSLOG_FROM_READER);
859 		if (err)
860 			return err;
861 	}
862 
863 	user = kvmalloc(sizeof(struct devkmsg_user), GFP_KERNEL);
864 	if (!user)
865 		return -ENOMEM;
866 
867 	ratelimit_default_init(&user->rs);
868 	ratelimit_set_flags(&user->rs, RATELIMIT_MSG_ON_RELEASE);
869 
870 	mutex_init(&user->lock);
871 
872 	prb_rec_init_rd(&user->record, &user->info,
873 			&user->text_buf[0], sizeof(user->text_buf));
874 
875 	atomic64_set(&user->seq, prb_first_valid_seq(prb));
876 
877 	file->private_data = user;
878 	return 0;
879 }
880 
881 static int devkmsg_release(struct inode *inode, struct file *file)
882 {
883 	struct devkmsg_user *user = file->private_data;
884 
885 	if (!user)
886 		return 0;
887 
888 	ratelimit_state_exit(&user->rs);
889 
890 	mutex_destroy(&user->lock);
891 	kvfree(user);
892 	return 0;
893 }
894 
895 const struct file_operations kmsg_fops = {
896 	.open = devkmsg_open,
897 	.read = devkmsg_read,
898 	.write_iter = devkmsg_write,
899 	.llseek = devkmsg_llseek,
900 	.poll = devkmsg_poll,
901 	.release = devkmsg_release,
902 };
903 
904 #ifdef CONFIG_CRASH_CORE
905 /*
906  * This appends the listed symbols to /proc/vmcore
907  *
908  * /proc/vmcore is used by various utilities, like crash and makedumpfile to
909  * obtain access to symbols that are otherwise very difficult to locate.  These
910  * symbols are specifically used so that utilities can access and extract the
911  * dmesg log from a vmcore file after a crash.
912  */
913 void log_buf_vmcoreinfo_setup(void)
914 {
915 	struct dev_printk_info *dev_info = NULL;
916 
917 	VMCOREINFO_SYMBOL(prb);
918 	VMCOREINFO_SYMBOL(printk_rb_static);
919 	VMCOREINFO_SYMBOL(clear_seq);
920 
921 	/*
922 	 * Export struct size and field offsets. User space tools can
923 	 * parse it and detect any changes to structure down the line.
924 	 */
925 
926 	VMCOREINFO_STRUCT_SIZE(printk_ringbuffer);
927 	VMCOREINFO_OFFSET(printk_ringbuffer, desc_ring);
928 	VMCOREINFO_OFFSET(printk_ringbuffer, text_data_ring);
929 	VMCOREINFO_OFFSET(printk_ringbuffer, fail);
930 
931 	VMCOREINFO_STRUCT_SIZE(prb_desc_ring);
932 	VMCOREINFO_OFFSET(prb_desc_ring, count_bits);
933 	VMCOREINFO_OFFSET(prb_desc_ring, descs);
934 	VMCOREINFO_OFFSET(prb_desc_ring, infos);
935 	VMCOREINFO_OFFSET(prb_desc_ring, head_id);
936 	VMCOREINFO_OFFSET(prb_desc_ring, tail_id);
937 
938 	VMCOREINFO_STRUCT_SIZE(prb_desc);
939 	VMCOREINFO_OFFSET(prb_desc, state_var);
940 	VMCOREINFO_OFFSET(prb_desc, text_blk_lpos);
941 
942 	VMCOREINFO_STRUCT_SIZE(prb_data_blk_lpos);
943 	VMCOREINFO_OFFSET(prb_data_blk_lpos, begin);
944 	VMCOREINFO_OFFSET(prb_data_blk_lpos, next);
945 
946 	VMCOREINFO_STRUCT_SIZE(printk_info);
947 	VMCOREINFO_OFFSET(printk_info, seq);
948 	VMCOREINFO_OFFSET(printk_info, ts_nsec);
949 	VMCOREINFO_OFFSET(printk_info, text_len);
950 	VMCOREINFO_OFFSET(printk_info, caller_id);
951 	VMCOREINFO_OFFSET(printk_info, dev_info);
952 
953 	VMCOREINFO_STRUCT_SIZE(dev_printk_info);
954 	VMCOREINFO_OFFSET(dev_printk_info, subsystem);
955 	VMCOREINFO_LENGTH(printk_info_subsystem, sizeof(dev_info->subsystem));
956 	VMCOREINFO_OFFSET(dev_printk_info, device);
957 	VMCOREINFO_LENGTH(printk_info_device, sizeof(dev_info->device));
958 
959 	VMCOREINFO_STRUCT_SIZE(prb_data_ring);
960 	VMCOREINFO_OFFSET(prb_data_ring, size_bits);
961 	VMCOREINFO_OFFSET(prb_data_ring, data);
962 	VMCOREINFO_OFFSET(prb_data_ring, head_lpos);
963 	VMCOREINFO_OFFSET(prb_data_ring, tail_lpos);
964 
965 	VMCOREINFO_SIZE(atomic_long_t);
966 	VMCOREINFO_TYPE_OFFSET(atomic_long_t, counter);
967 
968 	VMCOREINFO_STRUCT_SIZE(latched_seq);
969 	VMCOREINFO_OFFSET(latched_seq, val);
970 }
971 #endif
972 
973 /* requested log_buf_len from kernel cmdline */
974 static unsigned long __initdata new_log_buf_len;
975 
976 /* we practice scaling the ring buffer by powers of 2 */
977 static void __init log_buf_len_update(u64 size)
978 {
979 	if (size > (u64)LOG_BUF_LEN_MAX) {
980 		size = (u64)LOG_BUF_LEN_MAX;
981 		pr_err("log_buf over 2G is not supported.\n");
982 	}
983 
984 	if (size)
985 		size = roundup_pow_of_two(size);
986 	if (size > log_buf_len)
987 		new_log_buf_len = (unsigned long)size;
988 }
989 
990 /* save requested log_buf_len since it's too early to process it */
991 static int __init log_buf_len_setup(char *str)
992 {
993 	u64 size;
994 
995 	if (!str)
996 		return -EINVAL;
997 
998 	size = memparse(str, &str);
999 
1000 	log_buf_len_update(size);
1001 
1002 	return 0;
1003 }
1004 early_param("log_buf_len", log_buf_len_setup);
1005 
1006 #ifdef CONFIG_SMP
1007 #define __LOG_CPU_MAX_BUF_LEN (1 << CONFIG_LOG_CPU_MAX_BUF_SHIFT)
1008 
1009 static void __init log_buf_add_cpu(void)
1010 {
1011 	unsigned int cpu_extra;
1012 
1013 	/*
1014 	 * archs should set up cpu_possible_bits properly with
1015 	 * set_cpu_possible() after setup_arch() but just in
1016 	 * case lets ensure this is valid.
1017 	 */
1018 	if (num_possible_cpus() == 1)
1019 		return;
1020 
1021 	cpu_extra = (num_possible_cpus() - 1) * __LOG_CPU_MAX_BUF_LEN;
1022 
1023 	/* by default this will only continue through for large > 64 CPUs */
1024 	if (cpu_extra <= __LOG_BUF_LEN / 2)
1025 		return;
1026 
1027 	pr_info("log_buf_len individual max cpu contribution: %d bytes\n",
1028 		__LOG_CPU_MAX_BUF_LEN);
1029 	pr_info("log_buf_len total cpu_extra contributions: %d bytes\n",
1030 		cpu_extra);
1031 	pr_info("log_buf_len min size: %d bytes\n", __LOG_BUF_LEN);
1032 
1033 	log_buf_len_update(cpu_extra + __LOG_BUF_LEN);
1034 }
1035 #else /* !CONFIG_SMP */
1036 static inline void log_buf_add_cpu(void) {}
1037 #endif /* CONFIG_SMP */
1038 
1039 static void __init set_percpu_data_ready(void)
1040 {
1041 	__printk_percpu_data_ready = true;
1042 }
1043 
1044 static unsigned int __init add_to_rb(struct printk_ringbuffer *rb,
1045 				     struct printk_record *r)
1046 {
1047 	struct prb_reserved_entry e;
1048 	struct printk_record dest_r;
1049 
1050 	prb_rec_init_wr(&dest_r, r->info->text_len);
1051 
1052 	if (!prb_reserve(&e, rb, &dest_r))
1053 		return 0;
1054 
1055 	memcpy(&dest_r.text_buf[0], &r->text_buf[0], r->info->text_len);
1056 	dest_r.info->text_len = r->info->text_len;
1057 	dest_r.info->facility = r->info->facility;
1058 	dest_r.info->level = r->info->level;
1059 	dest_r.info->flags = r->info->flags;
1060 	dest_r.info->ts_nsec = r->info->ts_nsec;
1061 	dest_r.info->caller_id = r->info->caller_id;
1062 	memcpy(&dest_r.info->dev_info, &r->info->dev_info, sizeof(dest_r.info->dev_info));
1063 
1064 	prb_final_commit(&e);
1065 
1066 	return prb_record_text_space(&e);
1067 }
1068 
1069 static char setup_text_buf[LOG_LINE_MAX] __initdata;
1070 
1071 void __init setup_log_buf(int early)
1072 {
1073 	struct printk_info *new_infos;
1074 	unsigned int new_descs_count;
1075 	struct prb_desc *new_descs;
1076 	struct printk_info info;
1077 	struct printk_record r;
1078 	unsigned int text_size;
1079 	size_t new_descs_size;
1080 	size_t new_infos_size;
1081 	unsigned long flags;
1082 	char *new_log_buf;
1083 	unsigned int free;
1084 	u64 seq;
1085 
1086 	/*
1087 	 * Some archs call setup_log_buf() multiple times - first is very
1088 	 * early, e.g. from setup_arch(), and second - when percpu_areas
1089 	 * are initialised.
1090 	 */
1091 	if (!early)
1092 		set_percpu_data_ready();
1093 
1094 	if (log_buf != __log_buf)
1095 		return;
1096 
1097 	if (!early && !new_log_buf_len)
1098 		log_buf_add_cpu();
1099 
1100 	if (!new_log_buf_len)
1101 		return;
1102 
1103 	new_descs_count = new_log_buf_len >> PRB_AVGBITS;
1104 	if (new_descs_count == 0) {
1105 		pr_err("new_log_buf_len: %lu too small\n", new_log_buf_len);
1106 		return;
1107 	}
1108 
1109 	new_log_buf = memblock_alloc(new_log_buf_len, LOG_ALIGN);
1110 	if (unlikely(!new_log_buf)) {
1111 		pr_err("log_buf_len: %lu text bytes not available\n",
1112 		       new_log_buf_len);
1113 		return;
1114 	}
1115 
1116 	new_descs_size = new_descs_count * sizeof(struct prb_desc);
1117 	new_descs = memblock_alloc(new_descs_size, LOG_ALIGN);
1118 	if (unlikely(!new_descs)) {
1119 		pr_err("log_buf_len: %zu desc bytes not available\n",
1120 		       new_descs_size);
1121 		goto err_free_log_buf;
1122 	}
1123 
1124 	new_infos_size = new_descs_count * sizeof(struct printk_info);
1125 	new_infos = memblock_alloc(new_infos_size, LOG_ALIGN);
1126 	if (unlikely(!new_infos)) {
1127 		pr_err("log_buf_len: %zu info bytes not available\n",
1128 		       new_infos_size);
1129 		goto err_free_descs;
1130 	}
1131 
1132 	prb_rec_init_rd(&r, &info, &setup_text_buf[0], sizeof(setup_text_buf));
1133 
1134 	prb_init(&printk_rb_dynamic,
1135 		 new_log_buf, ilog2(new_log_buf_len),
1136 		 new_descs, ilog2(new_descs_count),
1137 		 new_infos);
1138 
1139 	local_irq_save(flags);
1140 
1141 	log_buf_len = new_log_buf_len;
1142 	log_buf = new_log_buf;
1143 	new_log_buf_len = 0;
1144 
1145 	free = __LOG_BUF_LEN;
1146 	prb_for_each_record(0, &printk_rb_static, seq, &r) {
1147 		text_size = add_to_rb(&printk_rb_dynamic, &r);
1148 		if (text_size > free)
1149 			free = 0;
1150 		else
1151 			free -= text_size;
1152 	}
1153 
1154 	prb = &printk_rb_dynamic;
1155 
1156 	local_irq_restore(flags);
1157 
1158 	/*
1159 	 * Copy any remaining messages that might have appeared from
1160 	 * NMI context after copying but before switching to the
1161 	 * dynamic buffer.
1162 	 */
1163 	prb_for_each_record(seq, &printk_rb_static, seq, &r) {
1164 		text_size = add_to_rb(&printk_rb_dynamic, &r);
1165 		if (text_size > free)
1166 			free = 0;
1167 		else
1168 			free -= text_size;
1169 	}
1170 
1171 	if (seq != prb_next_seq(&printk_rb_static)) {
1172 		pr_err("dropped %llu messages\n",
1173 		       prb_next_seq(&printk_rb_static) - seq);
1174 	}
1175 
1176 	pr_info("log_buf_len: %u bytes\n", log_buf_len);
1177 	pr_info("early log buf free: %u(%u%%)\n",
1178 		free, (free * 100) / __LOG_BUF_LEN);
1179 	return;
1180 
1181 err_free_descs:
1182 	memblock_free(new_descs, new_descs_size);
1183 err_free_log_buf:
1184 	memblock_free(new_log_buf, new_log_buf_len);
1185 }
1186 
1187 static bool __read_mostly ignore_loglevel;
1188 
1189 static int __init ignore_loglevel_setup(char *str)
1190 {
1191 	ignore_loglevel = true;
1192 	pr_info("debug: ignoring loglevel setting.\n");
1193 
1194 	return 0;
1195 }
1196 
1197 early_param("ignore_loglevel", ignore_loglevel_setup);
1198 module_param(ignore_loglevel, bool, S_IRUGO | S_IWUSR);
1199 MODULE_PARM_DESC(ignore_loglevel,
1200 		 "ignore loglevel setting (prints all kernel messages to the console)");
1201 
1202 static bool suppress_message_printing(int level)
1203 {
1204 	return (level >= console_loglevel && !ignore_loglevel);
1205 }
1206 
1207 #ifdef CONFIG_BOOT_PRINTK_DELAY
1208 
1209 static int boot_delay; /* msecs delay after each printk during bootup */
1210 static unsigned long long loops_per_msec;	/* based on boot_delay */
1211 
1212 static int __init boot_delay_setup(char *str)
1213 {
1214 	unsigned long lpj;
1215 
1216 	lpj = preset_lpj ? preset_lpj : 1000000;	/* some guess */
1217 	loops_per_msec = (unsigned long long)lpj / 1000 * HZ;
1218 
1219 	get_option(&str, &boot_delay);
1220 	if (boot_delay > 10 * 1000)
1221 		boot_delay = 0;
1222 
1223 	pr_debug("boot_delay: %u, preset_lpj: %ld, lpj: %lu, "
1224 		"HZ: %d, loops_per_msec: %llu\n",
1225 		boot_delay, preset_lpj, lpj, HZ, loops_per_msec);
1226 	return 0;
1227 }
1228 early_param("boot_delay", boot_delay_setup);
1229 
1230 static void boot_delay_msec(int level)
1231 {
1232 	unsigned long long k;
1233 	unsigned long timeout;
1234 
1235 	if ((boot_delay == 0 || system_state >= SYSTEM_RUNNING)
1236 		|| suppress_message_printing(level)) {
1237 		return;
1238 	}
1239 
1240 	k = (unsigned long long)loops_per_msec * boot_delay;
1241 
1242 	timeout = jiffies + msecs_to_jiffies(boot_delay);
1243 	while (k) {
1244 		k--;
1245 		cpu_relax();
1246 		/*
1247 		 * use (volatile) jiffies to prevent
1248 		 * compiler reduction; loop termination via jiffies
1249 		 * is secondary and may or may not happen.
1250 		 */
1251 		if (time_after(jiffies, timeout))
1252 			break;
1253 		touch_nmi_watchdog();
1254 	}
1255 }
1256 #else
1257 static inline void boot_delay_msec(int level)
1258 {
1259 }
1260 #endif
1261 
1262 static bool printk_time = IS_ENABLED(CONFIG_PRINTK_TIME);
1263 module_param_named(time, printk_time, bool, S_IRUGO | S_IWUSR);
1264 
1265 static size_t print_syslog(unsigned int level, char *buf)
1266 {
1267 	return sprintf(buf, "<%u>", level);
1268 }
1269 
1270 static size_t print_time(u64 ts, char *buf)
1271 {
1272 	unsigned long rem_nsec = do_div(ts, 1000000000);
1273 
1274 	return sprintf(buf, "[%5lu.%06lu]",
1275 		       (unsigned long)ts, rem_nsec / 1000);
1276 }
1277 
1278 #ifdef CONFIG_PRINTK_CALLER
1279 static size_t print_caller(u32 id, char *buf)
1280 {
1281 	char caller[12];
1282 
1283 	snprintf(caller, sizeof(caller), "%c%u",
1284 		 id & 0x80000000 ? 'C' : 'T', id & ~0x80000000);
1285 	return sprintf(buf, "[%6s]", caller);
1286 }
1287 #else
1288 #define print_caller(id, buf) 0
1289 #endif
1290 
1291 static size_t info_print_prefix(const struct printk_info  *info, bool syslog,
1292 				bool time, char *buf)
1293 {
1294 	size_t len = 0;
1295 
1296 	if (syslog)
1297 		len = print_syslog((info->facility << 3) | info->level, buf);
1298 
1299 	if (time)
1300 		len += print_time(info->ts_nsec, buf + len);
1301 
1302 	len += print_caller(info->caller_id, buf + len);
1303 
1304 	if (IS_ENABLED(CONFIG_PRINTK_CALLER) || time) {
1305 		buf[len++] = ' ';
1306 		buf[len] = '\0';
1307 	}
1308 
1309 	return len;
1310 }
1311 
1312 /*
1313  * Prepare the record for printing. The text is shifted within the given
1314  * buffer to avoid a need for another one. The following operations are
1315  * done:
1316  *
1317  *   - Add prefix for each line.
1318  *   - Drop truncated lines that no longer fit into the buffer.
1319  *   - Add the trailing newline that has been removed in vprintk_store().
1320  *   - Add a string terminator.
1321  *
1322  * Since the produced string is always terminated, the maximum possible
1323  * return value is @r->text_buf_size - 1;
1324  *
1325  * Return: The length of the updated/prepared text, including the added
1326  * prefixes and the newline. The terminator is not counted. The dropped
1327  * line(s) are not counted.
1328  */
1329 static size_t record_print_text(struct printk_record *r, bool syslog,
1330 				bool time)
1331 {
1332 	size_t text_len = r->info->text_len;
1333 	size_t buf_size = r->text_buf_size;
1334 	char *text = r->text_buf;
1335 	char prefix[PREFIX_MAX];
1336 	bool truncated = false;
1337 	size_t prefix_len;
1338 	size_t line_len;
1339 	size_t len = 0;
1340 	char *next;
1341 
1342 	/*
1343 	 * If the message was truncated because the buffer was not large
1344 	 * enough, treat the available text as if it were the full text.
1345 	 */
1346 	if (text_len > buf_size)
1347 		text_len = buf_size;
1348 
1349 	prefix_len = info_print_prefix(r->info, syslog, time, prefix);
1350 
1351 	/*
1352 	 * @text_len: bytes of unprocessed text
1353 	 * @line_len: bytes of current line _without_ newline
1354 	 * @text:     pointer to beginning of current line
1355 	 * @len:      number of bytes prepared in r->text_buf
1356 	 */
1357 	for (;;) {
1358 		next = memchr(text, '\n', text_len);
1359 		if (next) {
1360 			line_len = next - text;
1361 		} else {
1362 			/* Drop truncated line(s). */
1363 			if (truncated)
1364 				break;
1365 			line_len = text_len;
1366 		}
1367 
1368 		/*
1369 		 * Truncate the text if there is not enough space to add the
1370 		 * prefix and a trailing newline and a terminator.
1371 		 */
1372 		if (len + prefix_len + text_len + 1 + 1 > buf_size) {
1373 			/* Drop even the current line if no space. */
1374 			if (len + prefix_len + line_len + 1 + 1 > buf_size)
1375 				break;
1376 
1377 			text_len = buf_size - len - prefix_len - 1 - 1;
1378 			truncated = true;
1379 		}
1380 
1381 		memmove(text + prefix_len, text, text_len);
1382 		memcpy(text, prefix, prefix_len);
1383 
1384 		/*
1385 		 * Increment the prepared length to include the text and
1386 		 * prefix that were just moved+copied. Also increment for the
1387 		 * newline at the end of this line. If this is the last line,
1388 		 * there is no newline, but it will be added immediately below.
1389 		 */
1390 		len += prefix_len + line_len + 1;
1391 		if (text_len == line_len) {
1392 			/*
1393 			 * This is the last line. Add the trailing newline
1394 			 * removed in vprintk_store().
1395 			 */
1396 			text[prefix_len + line_len] = '\n';
1397 			break;
1398 		}
1399 
1400 		/*
1401 		 * Advance beyond the added prefix and the related line with
1402 		 * its newline.
1403 		 */
1404 		text += prefix_len + line_len + 1;
1405 
1406 		/*
1407 		 * The remaining text has only decreased by the line with its
1408 		 * newline.
1409 		 *
1410 		 * Note that @text_len can become zero. It happens when @text
1411 		 * ended with a newline (either due to truncation or the
1412 		 * original string ending with "\n\n"). The loop is correctly
1413 		 * repeated and (if not truncated) an empty line with a prefix
1414 		 * will be prepared.
1415 		 */
1416 		text_len -= line_len + 1;
1417 	}
1418 
1419 	/*
1420 	 * If a buffer was provided, it will be terminated. Space for the
1421 	 * string terminator is guaranteed to be available. The terminator is
1422 	 * not counted in the return value.
1423 	 */
1424 	if (buf_size > 0)
1425 		r->text_buf[len] = 0;
1426 
1427 	return len;
1428 }
1429 
1430 static size_t get_record_print_text_size(struct printk_info *info,
1431 					 unsigned int line_count,
1432 					 bool syslog, bool time)
1433 {
1434 	char prefix[PREFIX_MAX];
1435 	size_t prefix_len;
1436 
1437 	prefix_len = info_print_prefix(info, syslog, time, prefix);
1438 
1439 	/*
1440 	 * Each line will be preceded with a prefix. The intermediate
1441 	 * newlines are already within the text, but a final trailing
1442 	 * newline will be added.
1443 	 */
1444 	return ((prefix_len * line_count) + info->text_len + 1);
1445 }
1446 
1447 /*
1448  * Beginning with @start_seq, find the first record where it and all following
1449  * records up to (but not including) @max_seq fit into @size.
1450  *
1451  * @max_seq is simply an upper bound and does not need to exist. If the caller
1452  * does not require an upper bound, -1 can be used for @max_seq.
1453  */
1454 static u64 find_first_fitting_seq(u64 start_seq, u64 max_seq, size_t size,
1455 				  bool syslog, bool time)
1456 {
1457 	struct printk_info info;
1458 	unsigned int line_count;
1459 	size_t len = 0;
1460 	u64 seq;
1461 
1462 	/* Determine the size of the records up to @max_seq. */
1463 	prb_for_each_info(start_seq, prb, seq, &info, &line_count) {
1464 		if (info.seq >= max_seq)
1465 			break;
1466 		len += get_record_print_text_size(&info, line_count, syslog, time);
1467 	}
1468 
1469 	/*
1470 	 * Adjust the upper bound for the next loop to avoid subtracting
1471 	 * lengths that were never added.
1472 	 */
1473 	if (seq < max_seq)
1474 		max_seq = seq;
1475 
1476 	/*
1477 	 * Move first record forward until length fits into the buffer. Ignore
1478 	 * newest messages that were not counted in the above cycle. Messages
1479 	 * might appear and get lost in the meantime. This is a best effort
1480 	 * that prevents an infinite loop that could occur with a retry.
1481 	 */
1482 	prb_for_each_info(start_seq, prb, seq, &info, &line_count) {
1483 		if (len <= size || info.seq >= max_seq)
1484 			break;
1485 		len -= get_record_print_text_size(&info, line_count, syslog, time);
1486 	}
1487 
1488 	return seq;
1489 }
1490 
1491 /* The caller is responsible for making sure @size is greater than 0. */
1492 static int syslog_print(char __user *buf, int size)
1493 {
1494 	struct printk_info info;
1495 	struct printk_record r;
1496 	char *text;
1497 	int len = 0;
1498 	u64 seq;
1499 
1500 	text = kmalloc(CONSOLE_LOG_MAX, GFP_KERNEL);
1501 	if (!text)
1502 		return -ENOMEM;
1503 
1504 	prb_rec_init_rd(&r, &info, text, CONSOLE_LOG_MAX);
1505 
1506 	mutex_lock(&syslog_lock);
1507 
1508 	/*
1509 	 * Wait for the @syslog_seq record to be available. @syslog_seq may
1510 	 * change while waiting.
1511 	 */
1512 	do {
1513 		seq = syslog_seq;
1514 
1515 		mutex_unlock(&syslog_lock);
1516 		len = wait_event_interruptible(log_wait, prb_read_valid(prb, seq, NULL));
1517 		mutex_lock(&syslog_lock);
1518 
1519 		if (len)
1520 			goto out;
1521 	} while (syslog_seq != seq);
1522 
1523 	/*
1524 	 * Copy records that fit into the buffer. The above cycle makes sure
1525 	 * that the first record is always available.
1526 	 */
1527 	do {
1528 		size_t n;
1529 		size_t skip;
1530 		int err;
1531 
1532 		if (!prb_read_valid(prb, syslog_seq, &r))
1533 			break;
1534 
1535 		if (r.info->seq != syslog_seq) {
1536 			/* message is gone, move to next valid one */
1537 			syslog_seq = r.info->seq;
1538 			syslog_partial = 0;
1539 		}
1540 
1541 		/*
1542 		 * To keep reading/counting partial line consistent,
1543 		 * use printk_time value as of the beginning of a line.
1544 		 */
1545 		if (!syslog_partial)
1546 			syslog_time = printk_time;
1547 
1548 		skip = syslog_partial;
1549 		n = record_print_text(&r, true, syslog_time);
1550 		if (n - syslog_partial <= size) {
1551 			/* message fits into buffer, move forward */
1552 			syslog_seq = r.info->seq + 1;
1553 			n -= syslog_partial;
1554 			syslog_partial = 0;
1555 		} else if (!len){
1556 			/* partial read(), remember position */
1557 			n = size;
1558 			syslog_partial += n;
1559 		} else
1560 			n = 0;
1561 
1562 		if (!n)
1563 			break;
1564 
1565 		mutex_unlock(&syslog_lock);
1566 		err = copy_to_user(buf, text + skip, n);
1567 		mutex_lock(&syslog_lock);
1568 
1569 		if (err) {
1570 			if (!len)
1571 				len = -EFAULT;
1572 			break;
1573 		}
1574 
1575 		len += n;
1576 		size -= n;
1577 		buf += n;
1578 	} while (size);
1579 out:
1580 	mutex_unlock(&syslog_lock);
1581 	kfree(text);
1582 	return len;
1583 }
1584 
1585 static int syslog_print_all(char __user *buf, int size, bool clear)
1586 {
1587 	struct printk_info info;
1588 	struct printk_record r;
1589 	char *text;
1590 	int len = 0;
1591 	u64 seq;
1592 	bool time;
1593 
1594 	text = kmalloc(CONSOLE_LOG_MAX, GFP_KERNEL);
1595 	if (!text)
1596 		return -ENOMEM;
1597 
1598 	time = printk_time;
1599 	/*
1600 	 * Find first record that fits, including all following records,
1601 	 * into the user-provided buffer for this dump.
1602 	 */
1603 	seq = find_first_fitting_seq(latched_seq_read_nolock(&clear_seq), -1,
1604 				     size, true, time);
1605 
1606 	prb_rec_init_rd(&r, &info, text, CONSOLE_LOG_MAX);
1607 
1608 	len = 0;
1609 	prb_for_each_record(seq, prb, seq, &r) {
1610 		int textlen;
1611 
1612 		textlen = record_print_text(&r, true, time);
1613 
1614 		if (len + textlen > size) {
1615 			seq--;
1616 			break;
1617 		}
1618 
1619 		if (copy_to_user(buf + len, text, textlen))
1620 			len = -EFAULT;
1621 		else
1622 			len += textlen;
1623 
1624 		if (len < 0)
1625 			break;
1626 	}
1627 
1628 	if (clear) {
1629 		mutex_lock(&syslog_lock);
1630 		latched_seq_write(&clear_seq, seq);
1631 		mutex_unlock(&syslog_lock);
1632 	}
1633 
1634 	kfree(text);
1635 	return len;
1636 }
1637 
1638 static void syslog_clear(void)
1639 {
1640 	mutex_lock(&syslog_lock);
1641 	latched_seq_write(&clear_seq, prb_next_seq(prb));
1642 	mutex_unlock(&syslog_lock);
1643 }
1644 
1645 int do_syslog(int type, char __user *buf, int len, int source)
1646 {
1647 	struct printk_info info;
1648 	bool clear = false;
1649 	static int saved_console_loglevel = LOGLEVEL_DEFAULT;
1650 	int error;
1651 
1652 	error = check_syslog_permissions(type, source);
1653 	if (error)
1654 		return error;
1655 
1656 	switch (type) {
1657 	case SYSLOG_ACTION_CLOSE:	/* Close log */
1658 		break;
1659 	case SYSLOG_ACTION_OPEN:	/* Open log */
1660 		break;
1661 	case SYSLOG_ACTION_READ:	/* Read from log */
1662 		if (!buf || len < 0)
1663 			return -EINVAL;
1664 		if (!len)
1665 			return 0;
1666 		if (!access_ok(buf, len))
1667 			return -EFAULT;
1668 		error = syslog_print(buf, len);
1669 		break;
1670 	/* Read/clear last kernel messages */
1671 	case SYSLOG_ACTION_READ_CLEAR:
1672 		clear = true;
1673 		fallthrough;
1674 	/* Read last kernel messages */
1675 	case SYSLOG_ACTION_READ_ALL:
1676 		if (!buf || len < 0)
1677 			return -EINVAL;
1678 		if (!len)
1679 			return 0;
1680 		if (!access_ok(buf, len))
1681 			return -EFAULT;
1682 		error = syslog_print_all(buf, len, clear);
1683 		break;
1684 	/* Clear ring buffer */
1685 	case SYSLOG_ACTION_CLEAR:
1686 		syslog_clear();
1687 		break;
1688 	/* Disable logging to console */
1689 	case SYSLOG_ACTION_CONSOLE_OFF:
1690 		if (saved_console_loglevel == LOGLEVEL_DEFAULT)
1691 			saved_console_loglevel = console_loglevel;
1692 		console_loglevel = minimum_console_loglevel;
1693 		break;
1694 	/* Enable logging to console */
1695 	case SYSLOG_ACTION_CONSOLE_ON:
1696 		if (saved_console_loglevel != LOGLEVEL_DEFAULT) {
1697 			console_loglevel = saved_console_loglevel;
1698 			saved_console_loglevel = LOGLEVEL_DEFAULT;
1699 		}
1700 		break;
1701 	/* Set level of messages printed to console */
1702 	case SYSLOG_ACTION_CONSOLE_LEVEL:
1703 		if (len < 1 || len > 8)
1704 			return -EINVAL;
1705 		if (len < minimum_console_loglevel)
1706 			len = minimum_console_loglevel;
1707 		console_loglevel = len;
1708 		/* Implicitly re-enable logging to console */
1709 		saved_console_loglevel = LOGLEVEL_DEFAULT;
1710 		break;
1711 	/* Number of chars in the log buffer */
1712 	case SYSLOG_ACTION_SIZE_UNREAD:
1713 		mutex_lock(&syslog_lock);
1714 		if (!prb_read_valid_info(prb, syslog_seq, &info, NULL)) {
1715 			/* No unread messages. */
1716 			mutex_unlock(&syslog_lock);
1717 			return 0;
1718 		}
1719 		if (info.seq != syslog_seq) {
1720 			/* messages are gone, move to first one */
1721 			syslog_seq = info.seq;
1722 			syslog_partial = 0;
1723 		}
1724 		if (source == SYSLOG_FROM_PROC) {
1725 			/*
1726 			 * Short-cut for poll(/"proc/kmsg") which simply checks
1727 			 * for pending data, not the size; return the count of
1728 			 * records, not the length.
1729 			 */
1730 			error = prb_next_seq(prb) - syslog_seq;
1731 		} else {
1732 			bool time = syslog_partial ? syslog_time : printk_time;
1733 			unsigned int line_count;
1734 			u64 seq;
1735 
1736 			prb_for_each_info(syslog_seq, prb, seq, &info,
1737 					  &line_count) {
1738 				error += get_record_print_text_size(&info, line_count,
1739 								    true, time);
1740 				time = printk_time;
1741 			}
1742 			error -= syslog_partial;
1743 		}
1744 		mutex_unlock(&syslog_lock);
1745 		break;
1746 	/* Size of the log buffer */
1747 	case SYSLOG_ACTION_SIZE_BUFFER:
1748 		error = log_buf_len;
1749 		break;
1750 	default:
1751 		error = -EINVAL;
1752 		break;
1753 	}
1754 
1755 	return error;
1756 }
1757 
1758 SYSCALL_DEFINE3(syslog, int, type, char __user *, buf, int, len)
1759 {
1760 	return do_syslog(type, buf, len, SYSLOG_FROM_READER);
1761 }
1762 
1763 /*
1764  * Special console_lock variants that help to reduce the risk of soft-lockups.
1765  * They allow to pass console_lock to another printk() call using a busy wait.
1766  */
1767 
1768 #ifdef CONFIG_LOCKDEP
1769 static struct lockdep_map console_owner_dep_map = {
1770 	.name = "console_owner"
1771 };
1772 #endif
1773 
1774 static DEFINE_RAW_SPINLOCK(console_owner_lock);
1775 static struct task_struct *console_owner;
1776 static bool console_waiter;
1777 
1778 /**
1779  * console_lock_spinning_enable - mark beginning of code where another
1780  *	thread might safely busy wait
1781  *
1782  * This basically converts console_lock into a spinlock. This marks
1783  * the section where the console_lock owner can not sleep, because
1784  * there may be a waiter spinning (like a spinlock). Also it must be
1785  * ready to hand over the lock at the end of the section.
1786  */
1787 static void console_lock_spinning_enable(void)
1788 {
1789 	raw_spin_lock(&console_owner_lock);
1790 	console_owner = current;
1791 	raw_spin_unlock(&console_owner_lock);
1792 
1793 	/* The waiter may spin on us after setting console_owner */
1794 	spin_acquire(&console_owner_dep_map, 0, 0, _THIS_IP_);
1795 }
1796 
1797 /**
1798  * console_lock_spinning_disable_and_check - mark end of code where another
1799  *	thread was able to busy wait and check if there is a waiter
1800  *
1801  * This is called at the end of the section where spinning is allowed.
1802  * It has two functions. First, it is a signal that it is no longer
1803  * safe to start busy waiting for the lock. Second, it checks if
1804  * there is a busy waiter and passes the lock rights to her.
1805  *
1806  * Important: Callers lose the lock if there was a busy waiter.
1807  *	They must not touch items synchronized by console_lock
1808  *	in this case.
1809  *
1810  * Return: 1 if the lock rights were passed, 0 otherwise.
1811  */
1812 static int console_lock_spinning_disable_and_check(void)
1813 {
1814 	int waiter;
1815 
1816 	raw_spin_lock(&console_owner_lock);
1817 	waiter = READ_ONCE(console_waiter);
1818 	console_owner = NULL;
1819 	raw_spin_unlock(&console_owner_lock);
1820 
1821 	if (!waiter) {
1822 		spin_release(&console_owner_dep_map, _THIS_IP_);
1823 		return 0;
1824 	}
1825 
1826 	/* The waiter is now free to continue */
1827 	WRITE_ONCE(console_waiter, false);
1828 
1829 	spin_release(&console_owner_dep_map, _THIS_IP_);
1830 
1831 	/*
1832 	 * Hand off console_lock to waiter. The waiter will perform
1833 	 * the up(). After this, the waiter is the console_lock owner.
1834 	 */
1835 	mutex_release(&console_lock_dep_map, _THIS_IP_);
1836 	return 1;
1837 }
1838 
1839 /**
1840  * console_trylock_spinning - try to get console_lock by busy waiting
1841  *
1842  * This allows to busy wait for the console_lock when the current
1843  * owner is running in specially marked sections. It means that
1844  * the current owner is running and cannot reschedule until it
1845  * is ready to lose the lock.
1846  *
1847  * Return: 1 if we got the lock, 0 othrewise
1848  */
1849 static int console_trylock_spinning(void)
1850 {
1851 	struct task_struct *owner = NULL;
1852 	bool waiter;
1853 	bool spin = false;
1854 	unsigned long flags;
1855 
1856 	if (console_trylock())
1857 		return 1;
1858 
1859 	/*
1860 	 * It's unsafe to spin once a panic has begun. If we are the
1861 	 * panic CPU, we may have already halted the owner of the
1862 	 * console_sem. If we are not the panic CPU, then we should
1863 	 * avoid taking console_sem, so the panic CPU has a better
1864 	 * chance of cleanly acquiring it later.
1865 	 */
1866 	if (panic_in_progress())
1867 		return 0;
1868 
1869 	printk_safe_enter_irqsave(flags);
1870 
1871 	raw_spin_lock(&console_owner_lock);
1872 	owner = READ_ONCE(console_owner);
1873 	waiter = READ_ONCE(console_waiter);
1874 	if (!waiter && owner && owner != current) {
1875 		WRITE_ONCE(console_waiter, true);
1876 		spin = true;
1877 	}
1878 	raw_spin_unlock(&console_owner_lock);
1879 
1880 	/*
1881 	 * If there is an active printk() writing to the
1882 	 * consoles, instead of having it write our data too,
1883 	 * see if we can offload that load from the active
1884 	 * printer, and do some printing ourselves.
1885 	 * Go into a spin only if there isn't already a waiter
1886 	 * spinning, and there is an active printer, and
1887 	 * that active printer isn't us (recursive printk?).
1888 	 */
1889 	if (!spin) {
1890 		printk_safe_exit_irqrestore(flags);
1891 		return 0;
1892 	}
1893 
1894 	/* We spin waiting for the owner to release us */
1895 	spin_acquire(&console_owner_dep_map, 0, 0, _THIS_IP_);
1896 	/* Owner will clear console_waiter on hand off */
1897 	while (READ_ONCE(console_waiter))
1898 		cpu_relax();
1899 	spin_release(&console_owner_dep_map, _THIS_IP_);
1900 
1901 	printk_safe_exit_irqrestore(flags);
1902 	/*
1903 	 * The owner passed the console lock to us.
1904 	 * Since we did not spin on console lock, annotate
1905 	 * this as a trylock. Otherwise lockdep will
1906 	 * complain.
1907 	 */
1908 	mutex_acquire(&console_lock_dep_map, 0, 1, _THIS_IP_);
1909 
1910 	return 1;
1911 }
1912 
1913 /*
1914  * Call the console drivers, asking them to write out
1915  * log_buf[start] to log_buf[end - 1].
1916  * The console_lock must be held.
1917  */
1918 static void call_console_drivers(const char *ext_text, size_t ext_len,
1919 				 const char *text, size_t len)
1920 {
1921 	static char dropped_text[64];
1922 	size_t dropped_len = 0;
1923 	struct console *con;
1924 
1925 	trace_console_rcuidle(text, len);
1926 
1927 	if (!console_drivers)
1928 		return;
1929 
1930 	if (console_dropped) {
1931 		dropped_len = snprintf(dropped_text, sizeof(dropped_text),
1932 				       "** %lu printk messages dropped **\n",
1933 				       console_dropped);
1934 		console_dropped = 0;
1935 	}
1936 
1937 	for_each_console(con) {
1938 		if (exclusive_console && con != exclusive_console)
1939 			continue;
1940 		if (!(con->flags & CON_ENABLED))
1941 			continue;
1942 		if (!con->write)
1943 			continue;
1944 		if (!cpu_online(smp_processor_id()) &&
1945 		    !(con->flags & CON_ANYTIME))
1946 			continue;
1947 		if (con->flags & CON_EXTENDED)
1948 			con->write(con, ext_text, ext_len);
1949 		else {
1950 			if (dropped_len)
1951 				con->write(con, dropped_text, dropped_len);
1952 			con->write(con, text, len);
1953 		}
1954 	}
1955 }
1956 
1957 /*
1958  * Recursion is tracked separately on each CPU. If NMIs are supported, an
1959  * additional NMI context per CPU is also separately tracked. Until per-CPU
1960  * is available, a separate "early tracking" is performed.
1961  */
1962 static DEFINE_PER_CPU(u8, printk_count);
1963 static u8 printk_count_early;
1964 #ifdef CONFIG_HAVE_NMI
1965 static DEFINE_PER_CPU(u8, printk_count_nmi);
1966 static u8 printk_count_nmi_early;
1967 #endif
1968 
1969 /*
1970  * Recursion is limited to keep the output sane. printk() should not require
1971  * more than 1 level of recursion (allowing, for example, printk() to trigger
1972  * a WARN), but a higher value is used in case some printk-internal errors
1973  * exist, such as the ringbuffer validation checks failing.
1974  */
1975 #define PRINTK_MAX_RECURSION 3
1976 
1977 /*
1978  * Return a pointer to the dedicated counter for the CPU+context of the
1979  * caller.
1980  */
1981 static u8 *__printk_recursion_counter(void)
1982 {
1983 #ifdef CONFIG_HAVE_NMI
1984 	if (in_nmi()) {
1985 		if (printk_percpu_data_ready())
1986 			return this_cpu_ptr(&printk_count_nmi);
1987 		return &printk_count_nmi_early;
1988 	}
1989 #endif
1990 	if (printk_percpu_data_ready())
1991 		return this_cpu_ptr(&printk_count);
1992 	return &printk_count_early;
1993 }
1994 
1995 /*
1996  * Enter recursion tracking. Interrupts are disabled to simplify tracking.
1997  * The caller must check the boolean return value to see if the recursion is
1998  * allowed. On failure, interrupts are not disabled.
1999  *
2000  * @recursion_ptr must be a variable of type (u8 *) and is the same variable
2001  * that is passed to printk_exit_irqrestore().
2002  */
2003 #define printk_enter_irqsave(recursion_ptr, flags)	\
2004 ({							\
2005 	bool success = true;				\
2006 							\
2007 	typecheck(u8 *, recursion_ptr);			\
2008 	local_irq_save(flags);				\
2009 	(recursion_ptr) = __printk_recursion_counter();	\
2010 	if (*(recursion_ptr) > PRINTK_MAX_RECURSION) {	\
2011 		local_irq_restore(flags);		\
2012 		success = false;			\
2013 	} else {					\
2014 		(*(recursion_ptr))++;			\
2015 	}						\
2016 	success;					\
2017 })
2018 
2019 /* Exit recursion tracking, restoring interrupts. */
2020 #define printk_exit_irqrestore(recursion_ptr, flags)	\
2021 	do {						\
2022 		typecheck(u8 *, recursion_ptr);		\
2023 		(*(recursion_ptr))--;			\
2024 		local_irq_restore(flags);		\
2025 	} while (0)
2026 
2027 int printk_delay_msec __read_mostly;
2028 
2029 static inline void printk_delay(void)
2030 {
2031 	if (unlikely(printk_delay_msec)) {
2032 		int m = printk_delay_msec;
2033 
2034 		while (m--) {
2035 			mdelay(1);
2036 			touch_nmi_watchdog();
2037 		}
2038 	}
2039 }
2040 
2041 static inline u32 printk_caller_id(void)
2042 {
2043 	return in_task() ? task_pid_nr(current) :
2044 		0x80000000 + raw_smp_processor_id();
2045 }
2046 
2047 /**
2048  * printk_parse_prefix - Parse level and control flags.
2049  *
2050  * @text:     The terminated text message.
2051  * @level:    A pointer to the current level value, will be updated.
2052  * @flags:    A pointer to the current printk_info flags, will be updated.
2053  *
2054  * @level may be NULL if the caller is not interested in the parsed value.
2055  * Otherwise the variable pointed to by @level must be set to
2056  * LOGLEVEL_DEFAULT in order to be updated with the parsed value.
2057  *
2058  * @flags may be NULL if the caller is not interested in the parsed value.
2059  * Otherwise the variable pointed to by @flags will be OR'd with the parsed
2060  * value.
2061  *
2062  * Return: The length of the parsed level and control flags.
2063  */
2064 u16 printk_parse_prefix(const char *text, int *level,
2065 			enum printk_info_flags *flags)
2066 {
2067 	u16 prefix_len = 0;
2068 	int kern_level;
2069 
2070 	while (*text) {
2071 		kern_level = printk_get_level(text);
2072 		if (!kern_level)
2073 			break;
2074 
2075 		switch (kern_level) {
2076 		case '0' ... '7':
2077 			if (level && *level == LOGLEVEL_DEFAULT)
2078 				*level = kern_level - '0';
2079 			break;
2080 		case 'c':	/* KERN_CONT */
2081 			if (flags)
2082 				*flags |= LOG_CONT;
2083 		}
2084 
2085 		prefix_len += 2;
2086 		text += 2;
2087 	}
2088 
2089 	return prefix_len;
2090 }
2091 
2092 __printf(5, 0)
2093 static u16 printk_sprint(char *text, u16 size, int facility,
2094 			 enum printk_info_flags *flags, const char *fmt,
2095 			 va_list args)
2096 {
2097 	u16 text_len;
2098 
2099 	text_len = vscnprintf(text, size, fmt, args);
2100 
2101 	/* Mark and strip a trailing newline. */
2102 	if (text_len && text[text_len - 1] == '\n') {
2103 		text_len--;
2104 		*flags |= LOG_NEWLINE;
2105 	}
2106 
2107 	/* Strip log level and control flags. */
2108 	if (facility == 0) {
2109 		u16 prefix_len;
2110 
2111 		prefix_len = printk_parse_prefix(text, NULL, NULL);
2112 		if (prefix_len) {
2113 			text_len -= prefix_len;
2114 			memmove(text, text + prefix_len, text_len);
2115 		}
2116 	}
2117 
2118 	return text_len;
2119 }
2120 
2121 __printf(4, 0)
2122 int vprintk_store(int facility, int level,
2123 		  const struct dev_printk_info *dev_info,
2124 		  const char *fmt, va_list args)
2125 {
2126 	const u32 caller_id = printk_caller_id();
2127 	struct prb_reserved_entry e;
2128 	enum printk_info_flags flags = 0;
2129 	struct printk_record r;
2130 	unsigned long irqflags;
2131 	u16 trunc_msg_len = 0;
2132 	char prefix_buf[8];
2133 	u8 *recursion_ptr;
2134 	u16 reserve_size;
2135 	va_list args2;
2136 	u16 text_len;
2137 	int ret = 0;
2138 	u64 ts_nsec;
2139 
2140 	/*
2141 	 * Since the duration of printk() can vary depending on the message
2142 	 * and state of the ringbuffer, grab the timestamp now so that it is
2143 	 * close to the call of printk(). This provides a more deterministic
2144 	 * timestamp with respect to the caller.
2145 	 */
2146 	ts_nsec = local_clock();
2147 
2148 	if (!printk_enter_irqsave(recursion_ptr, irqflags))
2149 		return 0;
2150 
2151 	/*
2152 	 * The sprintf needs to come first since the syslog prefix might be
2153 	 * passed in as a parameter. An extra byte must be reserved so that
2154 	 * later the vscnprintf() into the reserved buffer has room for the
2155 	 * terminating '\0', which is not counted by vsnprintf().
2156 	 */
2157 	va_copy(args2, args);
2158 	reserve_size = vsnprintf(&prefix_buf[0], sizeof(prefix_buf), fmt, args2) + 1;
2159 	va_end(args2);
2160 
2161 	if (reserve_size > LOG_LINE_MAX)
2162 		reserve_size = LOG_LINE_MAX;
2163 
2164 	/* Extract log level or control flags. */
2165 	if (facility == 0)
2166 		printk_parse_prefix(&prefix_buf[0], &level, &flags);
2167 
2168 	if (level == LOGLEVEL_DEFAULT)
2169 		level = default_message_loglevel;
2170 
2171 	if (dev_info)
2172 		flags |= LOG_NEWLINE;
2173 
2174 	if (flags & LOG_CONT) {
2175 		prb_rec_init_wr(&r, reserve_size);
2176 		if (prb_reserve_in_last(&e, prb, &r, caller_id, LOG_LINE_MAX)) {
2177 			text_len = printk_sprint(&r.text_buf[r.info->text_len], reserve_size,
2178 						 facility, &flags, fmt, args);
2179 			r.info->text_len += text_len;
2180 
2181 			if (flags & LOG_NEWLINE) {
2182 				r.info->flags |= LOG_NEWLINE;
2183 				prb_final_commit(&e);
2184 			} else {
2185 				prb_commit(&e);
2186 			}
2187 
2188 			ret = text_len;
2189 			goto out;
2190 		}
2191 	}
2192 
2193 	/*
2194 	 * Explicitly initialize the record before every prb_reserve() call.
2195 	 * prb_reserve_in_last() and prb_reserve() purposely invalidate the
2196 	 * structure when they fail.
2197 	 */
2198 	prb_rec_init_wr(&r, reserve_size);
2199 	if (!prb_reserve(&e, prb, &r)) {
2200 		/* truncate the message if it is too long for empty buffer */
2201 		truncate_msg(&reserve_size, &trunc_msg_len);
2202 
2203 		prb_rec_init_wr(&r, reserve_size + trunc_msg_len);
2204 		if (!prb_reserve(&e, prb, &r))
2205 			goto out;
2206 	}
2207 
2208 	/* fill message */
2209 	text_len = printk_sprint(&r.text_buf[0], reserve_size, facility, &flags, fmt, args);
2210 	if (trunc_msg_len)
2211 		memcpy(&r.text_buf[text_len], trunc_msg, trunc_msg_len);
2212 	r.info->text_len = text_len + trunc_msg_len;
2213 	r.info->facility = facility;
2214 	r.info->level = level & 7;
2215 	r.info->flags = flags & 0x1f;
2216 	r.info->ts_nsec = ts_nsec;
2217 	r.info->caller_id = caller_id;
2218 	if (dev_info)
2219 		memcpy(&r.info->dev_info, dev_info, sizeof(r.info->dev_info));
2220 
2221 	/* A message without a trailing newline can be continued. */
2222 	if (!(flags & LOG_NEWLINE))
2223 		prb_commit(&e);
2224 	else
2225 		prb_final_commit(&e);
2226 
2227 	ret = text_len + trunc_msg_len;
2228 out:
2229 	printk_exit_irqrestore(recursion_ptr, irqflags);
2230 	return ret;
2231 }
2232 
2233 asmlinkage int vprintk_emit(int facility, int level,
2234 			    const struct dev_printk_info *dev_info,
2235 			    const char *fmt, va_list args)
2236 {
2237 	int printed_len;
2238 	bool in_sched = false;
2239 
2240 	/* Suppress unimportant messages after panic happens */
2241 	if (unlikely(suppress_printk))
2242 		return 0;
2243 
2244 	if (unlikely(suppress_panic_printk) &&
2245 	    atomic_read(&panic_cpu) != raw_smp_processor_id())
2246 		return 0;
2247 
2248 	if (level == LOGLEVEL_SCHED) {
2249 		level = LOGLEVEL_DEFAULT;
2250 		in_sched = true;
2251 	}
2252 
2253 	boot_delay_msec(level);
2254 	printk_delay();
2255 
2256 	printed_len = vprintk_store(facility, level, dev_info, fmt, args);
2257 
2258 	/* If called from the scheduler, we can not call up(). */
2259 	if (!in_sched) {
2260 		/*
2261 		 * Disable preemption to avoid being preempted while holding
2262 		 * console_sem which would prevent anyone from printing to
2263 		 * console
2264 		 */
2265 		preempt_disable();
2266 		/*
2267 		 * Try to acquire and then immediately release the console
2268 		 * semaphore.  The release will print out buffers and wake up
2269 		 * /dev/kmsg and syslog() users.
2270 		 */
2271 		if (console_trylock_spinning())
2272 			console_unlock();
2273 		preempt_enable();
2274 	}
2275 
2276 	wake_up_klogd();
2277 	return printed_len;
2278 }
2279 EXPORT_SYMBOL(vprintk_emit);
2280 
2281 int vprintk_default(const char *fmt, va_list args)
2282 {
2283 	return vprintk_emit(0, LOGLEVEL_DEFAULT, NULL, fmt, args);
2284 }
2285 EXPORT_SYMBOL_GPL(vprintk_default);
2286 
2287 asmlinkage __visible int _printk(const char *fmt, ...)
2288 {
2289 	va_list args;
2290 	int r;
2291 
2292 	va_start(args, fmt);
2293 	r = vprintk(fmt, args);
2294 	va_end(args);
2295 
2296 	return r;
2297 }
2298 EXPORT_SYMBOL(_printk);
2299 
2300 #else /* CONFIG_PRINTK */
2301 
2302 #define CONSOLE_LOG_MAX		0
2303 #define printk_time		false
2304 
2305 #define prb_read_valid(rb, seq, r)	false
2306 #define prb_first_valid_seq(rb)		0
2307 
2308 static u64 syslog_seq;
2309 static u64 console_seq;
2310 static u64 exclusive_console_stop_seq;
2311 static unsigned long console_dropped;
2312 
2313 static size_t record_print_text(const struct printk_record *r,
2314 				bool syslog, bool time)
2315 {
2316 	return 0;
2317 }
2318 static ssize_t info_print_ext_header(char *buf, size_t size,
2319 				     struct printk_info *info)
2320 {
2321 	return 0;
2322 }
2323 static ssize_t msg_print_ext_body(char *buf, size_t size,
2324 				  char *text, size_t text_len,
2325 				  struct dev_printk_info *dev_info) { return 0; }
2326 static void console_lock_spinning_enable(void) { }
2327 static int console_lock_spinning_disable_and_check(void) { return 0; }
2328 static void call_console_drivers(const char *ext_text, size_t ext_len,
2329 				 const char *text, size_t len) {}
2330 static bool suppress_message_printing(int level) { return false; }
2331 
2332 #endif /* CONFIG_PRINTK */
2333 
2334 #ifdef CONFIG_EARLY_PRINTK
2335 struct console *early_console;
2336 
2337 asmlinkage __visible void early_printk(const char *fmt, ...)
2338 {
2339 	va_list ap;
2340 	char buf[512];
2341 	int n;
2342 
2343 	if (!early_console)
2344 		return;
2345 
2346 	va_start(ap, fmt);
2347 	n = vscnprintf(buf, sizeof(buf), fmt, ap);
2348 	va_end(ap);
2349 
2350 	early_console->write(early_console, buf, n);
2351 }
2352 #endif
2353 
2354 static void set_user_specified(struct console_cmdline *c, bool user_specified)
2355 {
2356 	if (!user_specified)
2357 		return;
2358 
2359 	/*
2360 	 * @c console was defined by the user on the command line.
2361 	 * Do not clear when added twice also by SPCR or the device tree.
2362 	 */
2363 	c->user_specified = true;
2364 	/* At least one console defined by the user on the command line. */
2365 	console_set_on_cmdline = 1;
2366 }
2367 
2368 static int __add_preferred_console(char *name, int idx, char *options,
2369 				   char *brl_options, bool user_specified)
2370 {
2371 	struct console_cmdline *c;
2372 	int i;
2373 
2374 	/*
2375 	 *	See if this tty is not yet registered, and
2376 	 *	if we have a slot free.
2377 	 */
2378 	for (i = 0, c = console_cmdline;
2379 	     i < MAX_CMDLINECONSOLES && c->name[0];
2380 	     i++, c++) {
2381 		if (strcmp(c->name, name) == 0 && c->index == idx) {
2382 			if (!brl_options)
2383 				preferred_console = i;
2384 			set_user_specified(c, user_specified);
2385 			return 0;
2386 		}
2387 	}
2388 	if (i == MAX_CMDLINECONSOLES)
2389 		return -E2BIG;
2390 	if (!brl_options)
2391 		preferred_console = i;
2392 	strlcpy(c->name, name, sizeof(c->name));
2393 	c->options = options;
2394 	set_user_specified(c, user_specified);
2395 	braille_set_options(c, brl_options);
2396 
2397 	c->index = idx;
2398 	return 0;
2399 }
2400 
2401 static int __init console_msg_format_setup(char *str)
2402 {
2403 	if (!strcmp(str, "syslog"))
2404 		console_msg_format = MSG_FORMAT_SYSLOG;
2405 	if (!strcmp(str, "default"))
2406 		console_msg_format = MSG_FORMAT_DEFAULT;
2407 	return 1;
2408 }
2409 __setup("console_msg_format=", console_msg_format_setup);
2410 
2411 /*
2412  * Set up a console.  Called via do_early_param() in init/main.c
2413  * for each "console=" parameter in the boot command line.
2414  */
2415 static int __init console_setup(char *str)
2416 {
2417 	char buf[sizeof(console_cmdline[0].name) + 4]; /* 4 for "ttyS" */
2418 	char *s, *options, *brl_options = NULL;
2419 	int idx;
2420 
2421 	/*
2422 	 * console="" or console=null have been suggested as a way to
2423 	 * disable console output. Use ttynull that has been created
2424 	 * for exactly this purpose.
2425 	 */
2426 	if (str[0] == 0 || strcmp(str, "null") == 0) {
2427 		__add_preferred_console("ttynull", 0, NULL, NULL, true);
2428 		return 1;
2429 	}
2430 
2431 	if (_braille_console_setup(&str, &brl_options))
2432 		return 1;
2433 
2434 	/*
2435 	 * Decode str into name, index, options.
2436 	 */
2437 	if (str[0] >= '0' && str[0] <= '9') {
2438 		strcpy(buf, "ttyS");
2439 		strncpy(buf + 4, str, sizeof(buf) - 5);
2440 	} else {
2441 		strncpy(buf, str, sizeof(buf) - 1);
2442 	}
2443 	buf[sizeof(buf) - 1] = 0;
2444 	options = strchr(str, ',');
2445 	if (options)
2446 		*(options++) = 0;
2447 #ifdef __sparc__
2448 	if (!strcmp(str, "ttya"))
2449 		strcpy(buf, "ttyS0");
2450 	if (!strcmp(str, "ttyb"))
2451 		strcpy(buf, "ttyS1");
2452 #endif
2453 	for (s = buf; *s; s++)
2454 		if (isdigit(*s) || *s == ',')
2455 			break;
2456 	idx = simple_strtoul(s, NULL, 10);
2457 	*s = 0;
2458 
2459 	__add_preferred_console(buf, idx, options, brl_options, true);
2460 	return 1;
2461 }
2462 __setup("console=", console_setup);
2463 
2464 /**
2465  * add_preferred_console - add a device to the list of preferred consoles.
2466  * @name: device name
2467  * @idx: device index
2468  * @options: options for this console
2469  *
2470  * The last preferred console added will be used for kernel messages
2471  * and stdin/out/err for init.  Normally this is used by console_setup
2472  * above to handle user-supplied console arguments; however it can also
2473  * be used by arch-specific code either to override the user or more
2474  * commonly to provide a default console (ie from PROM variables) when
2475  * the user has not supplied one.
2476  */
2477 int add_preferred_console(char *name, int idx, char *options)
2478 {
2479 	return __add_preferred_console(name, idx, options, NULL, false);
2480 }
2481 
2482 bool console_suspend_enabled = true;
2483 EXPORT_SYMBOL(console_suspend_enabled);
2484 
2485 static int __init console_suspend_disable(char *str)
2486 {
2487 	console_suspend_enabled = false;
2488 	return 1;
2489 }
2490 __setup("no_console_suspend", console_suspend_disable);
2491 module_param_named(console_suspend, console_suspend_enabled,
2492 		bool, S_IRUGO | S_IWUSR);
2493 MODULE_PARM_DESC(console_suspend, "suspend console during suspend"
2494 	" and hibernate operations");
2495 
2496 static bool printk_console_no_auto_verbose;
2497 
2498 void console_verbose(void)
2499 {
2500 	if (console_loglevel && !printk_console_no_auto_verbose)
2501 		console_loglevel = CONSOLE_LOGLEVEL_MOTORMOUTH;
2502 }
2503 EXPORT_SYMBOL_GPL(console_verbose);
2504 
2505 module_param_named(console_no_auto_verbose, printk_console_no_auto_verbose, bool, 0644);
2506 MODULE_PARM_DESC(console_no_auto_verbose, "Disable console loglevel raise to highest on oops/panic/etc");
2507 
2508 /**
2509  * suspend_console - suspend the console subsystem
2510  *
2511  * This disables printk() while we go into suspend states
2512  */
2513 void suspend_console(void)
2514 {
2515 	if (!console_suspend_enabled)
2516 		return;
2517 	pr_info("Suspending console(s) (use no_console_suspend to debug)\n");
2518 	console_lock();
2519 	console_suspended = 1;
2520 	up_console_sem();
2521 }
2522 
2523 void resume_console(void)
2524 {
2525 	if (!console_suspend_enabled)
2526 		return;
2527 	down_console_sem();
2528 	console_suspended = 0;
2529 	console_unlock();
2530 }
2531 
2532 /**
2533  * console_cpu_notify - print deferred console messages after CPU hotplug
2534  * @cpu: unused
2535  *
2536  * If printk() is called from a CPU that is not online yet, the messages
2537  * will be printed on the console only if there are CON_ANYTIME consoles.
2538  * This function is called when a new CPU comes online (or fails to come
2539  * up) or goes offline.
2540  */
2541 static int console_cpu_notify(unsigned int cpu)
2542 {
2543 	if (!cpuhp_tasks_frozen) {
2544 		/* If trylock fails, someone else is doing the printing */
2545 		if (console_trylock())
2546 			console_unlock();
2547 	}
2548 	return 0;
2549 }
2550 
2551 /**
2552  * console_lock - lock the console system for exclusive use.
2553  *
2554  * Acquires a lock which guarantees that the caller has
2555  * exclusive access to the console system and the console_drivers list.
2556  *
2557  * Can sleep, returns nothing.
2558  */
2559 void console_lock(void)
2560 {
2561 	might_sleep();
2562 
2563 	down_console_sem();
2564 	if (console_suspended)
2565 		return;
2566 	console_locked = 1;
2567 	console_may_schedule = 1;
2568 }
2569 EXPORT_SYMBOL(console_lock);
2570 
2571 /**
2572  * console_trylock - try to lock the console system for exclusive use.
2573  *
2574  * Try to acquire a lock which guarantees that the caller has exclusive
2575  * access to the console system and the console_drivers list.
2576  *
2577  * returns 1 on success, and 0 on failure to acquire the lock.
2578  */
2579 int console_trylock(void)
2580 {
2581 	if (down_trylock_console_sem())
2582 		return 0;
2583 	if (console_suspended) {
2584 		up_console_sem();
2585 		return 0;
2586 	}
2587 	console_locked = 1;
2588 	console_may_schedule = 0;
2589 	return 1;
2590 }
2591 EXPORT_SYMBOL(console_trylock);
2592 
2593 int is_console_locked(void)
2594 {
2595 	return console_locked;
2596 }
2597 EXPORT_SYMBOL(is_console_locked);
2598 
2599 /*
2600  * Check if we have any console that is capable of printing while cpu is
2601  * booting or shutting down. Requires console_sem.
2602  */
2603 static int have_callable_console(void)
2604 {
2605 	struct console *con;
2606 
2607 	for_each_console(con)
2608 		if ((con->flags & CON_ENABLED) &&
2609 				(con->flags & CON_ANYTIME))
2610 			return 1;
2611 
2612 	return 0;
2613 }
2614 
2615 /*
2616  * Return true when this CPU should unlock console_sem without pushing all
2617  * messages to the console. This reduces the chance that the console is
2618  * locked when the panic CPU tries to use it.
2619  */
2620 static bool abandon_console_lock_in_panic(void)
2621 {
2622 	if (!panic_in_progress())
2623 		return false;
2624 
2625 	/*
2626 	 * We can use raw_smp_processor_id() here because it is impossible for
2627 	 * the task to be migrated to the panic_cpu, or away from it. If
2628 	 * panic_cpu has already been set, and we're not currently executing on
2629 	 * that CPU, then we never will be.
2630 	 */
2631 	return atomic_read(&panic_cpu) != raw_smp_processor_id();
2632 }
2633 
2634 /*
2635  * Can we actually use the console at this time on this cpu?
2636  *
2637  * Console drivers may assume that per-cpu resources have been allocated. So
2638  * unless they're explicitly marked as being able to cope (CON_ANYTIME) don't
2639  * call them until this CPU is officially up.
2640  */
2641 static inline int can_use_console(void)
2642 {
2643 	return cpu_online(raw_smp_processor_id()) || have_callable_console();
2644 }
2645 
2646 /**
2647  * console_unlock - unlock the console system
2648  *
2649  * Releases the console_lock which the caller holds on the console system
2650  * and the console driver list.
2651  *
2652  * While the console_lock was held, console output may have been buffered
2653  * by printk().  If this is the case, console_unlock(); emits
2654  * the output prior to releasing the lock.
2655  *
2656  * If there is output waiting, we wake /dev/kmsg and syslog() users.
2657  *
2658  * console_unlock(); may be called from any context.
2659  */
2660 void console_unlock(void)
2661 {
2662 	static char ext_text[CONSOLE_EXT_LOG_MAX];
2663 	static char text[CONSOLE_LOG_MAX];
2664 	static int panic_console_dropped;
2665 	unsigned long flags;
2666 	bool do_cond_resched, retry;
2667 	struct printk_info info;
2668 	struct printk_record r;
2669 	u64 __maybe_unused next_seq;
2670 
2671 	if (console_suspended) {
2672 		up_console_sem();
2673 		return;
2674 	}
2675 
2676 	prb_rec_init_rd(&r, &info, text, sizeof(text));
2677 
2678 	/*
2679 	 * Console drivers are called with interrupts disabled, so
2680 	 * @console_may_schedule should be cleared before; however, we may
2681 	 * end up dumping a lot of lines, for example, if called from
2682 	 * console registration path, and should invoke cond_resched()
2683 	 * between lines if allowable.  Not doing so can cause a very long
2684 	 * scheduling stall on a slow console leading to RCU stall and
2685 	 * softlockup warnings which exacerbate the issue with more
2686 	 * messages practically incapacitating the system.
2687 	 *
2688 	 * console_trylock() is not able to detect the preemptive
2689 	 * context reliably. Therefore the value must be stored before
2690 	 * and cleared after the "again" goto label.
2691 	 */
2692 	do_cond_resched = console_may_schedule;
2693 again:
2694 	console_may_schedule = 0;
2695 
2696 	/*
2697 	 * We released the console_sem lock, so we need to recheck if
2698 	 * cpu is online and (if not) is there at least one CON_ANYTIME
2699 	 * console.
2700 	 */
2701 	if (!can_use_console()) {
2702 		console_locked = 0;
2703 		up_console_sem();
2704 		return;
2705 	}
2706 
2707 	for (;;) {
2708 		size_t ext_len = 0;
2709 		int handover;
2710 		size_t len;
2711 
2712 skip:
2713 		if (!prb_read_valid(prb, console_seq, &r))
2714 			break;
2715 
2716 		if (console_seq != r.info->seq) {
2717 			console_dropped += r.info->seq - console_seq;
2718 			console_seq = r.info->seq;
2719 			if (panic_in_progress() && panic_console_dropped++ > 10) {
2720 				suppress_panic_printk = 1;
2721 				pr_warn_once("Too many dropped messages. Suppress messages on non-panic CPUs to prevent livelock.\n");
2722 			}
2723 		}
2724 
2725 		if (suppress_message_printing(r.info->level)) {
2726 			/*
2727 			 * Skip record we have buffered and already printed
2728 			 * directly to the console when we received it, and
2729 			 * record that has level above the console loglevel.
2730 			 */
2731 			console_seq++;
2732 			goto skip;
2733 		}
2734 
2735 		/* Output to all consoles once old messages replayed. */
2736 		if (unlikely(exclusive_console &&
2737 			     console_seq >= exclusive_console_stop_seq)) {
2738 			exclusive_console = NULL;
2739 		}
2740 
2741 		/*
2742 		 * Handle extended console text first because later
2743 		 * record_print_text() will modify the record buffer in-place.
2744 		 */
2745 		if (nr_ext_console_drivers) {
2746 			ext_len = info_print_ext_header(ext_text,
2747 						sizeof(ext_text),
2748 						r.info);
2749 			ext_len += msg_print_ext_body(ext_text + ext_len,
2750 						sizeof(ext_text) - ext_len,
2751 						&r.text_buf[0],
2752 						r.info->text_len,
2753 						&r.info->dev_info);
2754 		}
2755 		len = record_print_text(&r,
2756 				console_msg_format & MSG_FORMAT_SYSLOG,
2757 				printk_time);
2758 		console_seq++;
2759 
2760 		/*
2761 		 * While actively printing out messages, if another printk()
2762 		 * were to occur on another CPU, it may wait for this one to
2763 		 * finish. This task can not be preempted if there is a
2764 		 * waiter waiting to take over.
2765 		 *
2766 		 * Interrupts are disabled because the hand over to a waiter
2767 		 * must not be interrupted until the hand over is completed
2768 		 * (@console_waiter is cleared).
2769 		 */
2770 		printk_safe_enter_irqsave(flags);
2771 		console_lock_spinning_enable();
2772 
2773 		stop_critical_timings();	/* don't trace print latency */
2774 		call_console_drivers(ext_text, ext_len, text, len);
2775 		start_critical_timings();
2776 
2777 		handover = console_lock_spinning_disable_and_check();
2778 		printk_safe_exit_irqrestore(flags);
2779 		if (handover)
2780 			return;
2781 
2782 		/* Allow panic_cpu to take over the consoles safely */
2783 		if (abandon_console_lock_in_panic())
2784 			break;
2785 
2786 		if (do_cond_resched)
2787 			cond_resched();
2788 	}
2789 
2790 	/* Get consistent value of the next-to-be-used sequence number. */
2791 	next_seq = console_seq;
2792 
2793 	console_locked = 0;
2794 	up_console_sem();
2795 
2796 	/*
2797 	 * Someone could have filled up the buffer again, so re-check if there's
2798 	 * something to flush. In case we cannot trylock the console_sem again,
2799 	 * there's a new owner and the console_unlock() from them will do the
2800 	 * flush, no worries.
2801 	 */
2802 	retry = prb_read_valid(prb, next_seq, NULL);
2803 	if (retry && !abandon_console_lock_in_panic() && console_trylock())
2804 		goto again;
2805 }
2806 EXPORT_SYMBOL(console_unlock);
2807 
2808 /**
2809  * console_conditional_schedule - yield the CPU if required
2810  *
2811  * If the console code is currently allowed to sleep, and
2812  * if this CPU should yield the CPU to another task, do
2813  * so here.
2814  *
2815  * Must be called within console_lock();.
2816  */
2817 void __sched console_conditional_schedule(void)
2818 {
2819 	if (console_may_schedule)
2820 		cond_resched();
2821 }
2822 EXPORT_SYMBOL(console_conditional_schedule);
2823 
2824 void console_unblank(void)
2825 {
2826 	struct console *c;
2827 
2828 	/*
2829 	 * console_unblank can no longer be called in interrupt context unless
2830 	 * oops_in_progress is set to 1..
2831 	 */
2832 	if (oops_in_progress) {
2833 		if (down_trylock_console_sem() != 0)
2834 			return;
2835 	} else
2836 		console_lock();
2837 
2838 	console_locked = 1;
2839 	console_may_schedule = 0;
2840 	for_each_console(c)
2841 		if ((c->flags & CON_ENABLED) && c->unblank)
2842 			c->unblank();
2843 	console_unlock();
2844 }
2845 
2846 /**
2847  * console_flush_on_panic - flush console content on panic
2848  * @mode: flush all messages in buffer or just the pending ones
2849  *
2850  * Immediately output all pending messages no matter what.
2851  */
2852 void console_flush_on_panic(enum con_flush_mode mode)
2853 {
2854 	/*
2855 	 * If someone else is holding the console lock, trylock will fail
2856 	 * and may_schedule may be set.  Ignore and proceed to unlock so
2857 	 * that messages are flushed out.  As this can be called from any
2858 	 * context and we don't want to get preempted while flushing,
2859 	 * ensure may_schedule is cleared.
2860 	 */
2861 	console_trylock();
2862 	console_may_schedule = 0;
2863 
2864 	if (mode == CONSOLE_REPLAY_ALL)
2865 		console_seq = prb_first_valid_seq(prb);
2866 	console_unlock();
2867 }
2868 
2869 /*
2870  * Return the console tty driver structure and its associated index
2871  */
2872 struct tty_driver *console_device(int *index)
2873 {
2874 	struct console *c;
2875 	struct tty_driver *driver = NULL;
2876 
2877 	console_lock();
2878 	for_each_console(c) {
2879 		if (!c->device)
2880 			continue;
2881 		driver = c->device(c, index);
2882 		if (driver)
2883 			break;
2884 	}
2885 	console_unlock();
2886 	return driver;
2887 }
2888 
2889 /*
2890  * Prevent further output on the passed console device so that (for example)
2891  * serial drivers can disable console output before suspending a port, and can
2892  * re-enable output afterwards.
2893  */
2894 void console_stop(struct console *console)
2895 {
2896 	console_lock();
2897 	console->flags &= ~CON_ENABLED;
2898 	console_unlock();
2899 }
2900 EXPORT_SYMBOL(console_stop);
2901 
2902 void console_start(struct console *console)
2903 {
2904 	console_lock();
2905 	console->flags |= CON_ENABLED;
2906 	console_unlock();
2907 }
2908 EXPORT_SYMBOL(console_start);
2909 
2910 static int __read_mostly keep_bootcon;
2911 
2912 static int __init keep_bootcon_setup(char *str)
2913 {
2914 	keep_bootcon = 1;
2915 	pr_info("debug: skip boot console de-registration.\n");
2916 
2917 	return 0;
2918 }
2919 
2920 early_param("keep_bootcon", keep_bootcon_setup);
2921 
2922 /*
2923  * This is called by register_console() to try to match
2924  * the newly registered console with any of the ones selected
2925  * by either the command line or add_preferred_console() and
2926  * setup/enable it.
2927  *
2928  * Care need to be taken with consoles that are statically
2929  * enabled such as netconsole
2930  */
2931 static int try_enable_preferred_console(struct console *newcon,
2932 					bool user_specified)
2933 {
2934 	struct console_cmdline *c;
2935 	int i, err;
2936 
2937 	for (i = 0, c = console_cmdline;
2938 	     i < MAX_CMDLINECONSOLES && c->name[0];
2939 	     i++, c++) {
2940 		if (c->user_specified != user_specified)
2941 			continue;
2942 		if (!newcon->match ||
2943 		    newcon->match(newcon, c->name, c->index, c->options) != 0) {
2944 			/* default matching */
2945 			BUILD_BUG_ON(sizeof(c->name) != sizeof(newcon->name));
2946 			if (strcmp(c->name, newcon->name) != 0)
2947 				continue;
2948 			if (newcon->index >= 0 &&
2949 			    newcon->index != c->index)
2950 				continue;
2951 			if (newcon->index < 0)
2952 				newcon->index = c->index;
2953 
2954 			if (_braille_register_console(newcon, c))
2955 				return 0;
2956 
2957 			if (newcon->setup &&
2958 			    (err = newcon->setup(newcon, c->options)) != 0)
2959 				return err;
2960 		}
2961 		newcon->flags |= CON_ENABLED;
2962 		if (i == preferred_console)
2963 			newcon->flags |= CON_CONSDEV;
2964 		return 0;
2965 	}
2966 
2967 	/*
2968 	 * Some consoles, such as pstore and netconsole, can be enabled even
2969 	 * without matching. Accept the pre-enabled consoles only when match()
2970 	 * and setup() had a chance to be called.
2971 	 */
2972 	if (newcon->flags & CON_ENABLED && c->user_specified ==	user_specified)
2973 		return 0;
2974 
2975 	return -ENOENT;
2976 }
2977 
2978 /* Try to enable the console unconditionally */
2979 static void try_enable_default_console(struct console *newcon)
2980 {
2981 	if (newcon->index < 0)
2982 		newcon->index = 0;
2983 
2984 	if (newcon->setup && newcon->setup(newcon, NULL) != 0)
2985 		return;
2986 
2987 	newcon->flags |= CON_ENABLED;
2988 
2989 	if (newcon->device)
2990 		newcon->flags |= CON_CONSDEV;
2991 }
2992 
2993 /*
2994  * The console driver calls this routine during kernel initialization
2995  * to register the console printing procedure with printk() and to
2996  * print any messages that were printed by the kernel before the
2997  * console driver was initialized.
2998  *
2999  * This can happen pretty early during the boot process (because of
3000  * early_printk) - sometimes before setup_arch() completes - be careful
3001  * of what kernel features are used - they may not be initialised yet.
3002  *
3003  * There are two types of consoles - bootconsoles (early_printk) and
3004  * "real" consoles (everything which is not a bootconsole) which are
3005  * handled differently.
3006  *  - Any number of bootconsoles can be registered at any time.
3007  *  - As soon as a "real" console is registered, all bootconsoles
3008  *    will be unregistered automatically.
3009  *  - Once a "real" console is registered, any attempt to register a
3010  *    bootconsoles will be rejected
3011  */
3012 void register_console(struct console *newcon)
3013 {
3014 	struct console *con;
3015 	bool bootcon_enabled = false;
3016 	bool realcon_enabled = false;
3017 	int err;
3018 
3019 	for_each_console(con) {
3020 		if (WARN(con == newcon, "console '%s%d' already registered\n",
3021 					 con->name, con->index))
3022 			return;
3023 	}
3024 
3025 	for_each_console(con) {
3026 		if (con->flags & CON_BOOT)
3027 			bootcon_enabled = true;
3028 		else
3029 			realcon_enabled = true;
3030 	}
3031 
3032 	/* Do not register boot consoles when there already is a real one. */
3033 	if (newcon->flags & CON_BOOT && realcon_enabled) {
3034 		pr_info("Too late to register bootconsole %s%d\n",
3035 			newcon->name, newcon->index);
3036 		return;
3037 	}
3038 
3039 	/*
3040 	 * See if we want to enable this console driver by default.
3041 	 *
3042 	 * Nope when a console is preferred by the command line, device
3043 	 * tree, or SPCR.
3044 	 *
3045 	 * The first real console with tty binding (driver) wins. More
3046 	 * consoles might get enabled before the right one is found.
3047 	 *
3048 	 * Note that a console with tty binding will have CON_CONSDEV
3049 	 * flag set and will be first in the list.
3050 	 */
3051 	if (preferred_console < 0) {
3052 		if (!console_drivers || !console_drivers->device ||
3053 		    console_drivers->flags & CON_BOOT) {
3054 			try_enable_default_console(newcon);
3055 		}
3056 	}
3057 
3058 	/* See if this console matches one we selected on the command line */
3059 	err = try_enable_preferred_console(newcon, true);
3060 
3061 	/* If not, try to match against the platform default(s) */
3062 	if (err == -ENOENT)
3063 		err = try_enable_preferred_console(newcon, false);
3064 
3065 	/* printk() messages are not printed to the Braille console. */
3066 	if (err || newcon->flags & CON_BRL)
3067 		return;
3068 
3069 	/*
3070 	 * If we have a bootconsole, and are switching to a real console,
3071 	 * don't print everything out again, since when the boot console, and
3072 	 * the real console are the same physical device, it's annoying to
3073 	 * see the beginning boot messages twice
3074 	 */
3075 	if (bootcon_enabled &&
3076 	    ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV)) {
3077 		newcon->flags &= ~CON_PRINTBUFFER;
3078 	}
3079 
3080 	/*
3081 	 *	Put this console in the list - keep the
3082 	 *	preferred driver at the head of the list.
3083 	 */
3084 	console_lock();
3085 	if ((newcon->flags & CON_CONSDEV) || console_drivers == NULL) {
3086 		newcon->next = console_drivers;
3087 		console_drivers = newcon;
3088 		if (newcon->next)
3089 			newcon->next->flags &= ~CON_CONSDEV;
3090 		/* Ensure this flag is always set for the head of the list */
3091 		newcon->flags |= CON_CONSDEV;
3092 	} else {
3093 		newcon->next = console_drivers->next;
3094 		console_drivers->next = newcon;
3095 	}
3096 
3097 	if (newcon->flags & CON_EXTENDED)
3098 		nr_ext_console_drivers++;
3099 
3100 	if (newcon->flags & CON_PRINTBUFFER) {
3101 		/*
3102 		 * console_unlock(); will print out the buffered messages
3103 		 * for us.
3104 		 *
3105 		 * We're about to replay the log buffer.  Only do this to the
3106 		 * just-registered console to avoid excessive message spam to
3107 		 * the already-registered consoles.
3108 		 *
3109 		 * Set exclusive_console with disabled interrupts to reduce
3110 		 * race window with eventual console_flush_on_panic() that
3111 		 * ignores console_lock.
3112 		 */
3113 		exclusive_console = newcon;
3114 		exclusive_console_stop_seq = console_seq;
3115 
3116 		/* Get a consistent copy of @syslog_seq. */
3117 		mutex_lock(&syslog_lock);
3118 		console_seq = syslog_seq;
3119 		mutex_unlock(&syslog_lock);
3120 	}
3121 	console_unlock();
3122 	console_sysfs_notify();
3123 
3124 	/*
3125 	 * By unregistering the bootconsoles after we enable the real console
3126 	 * we get the "console xxx enabled" message on all the consoles -
3127 	 * boot consoles, real consoles, etc - this is to ensure that end
3128 	 * users know there might be something in the kernel's log buffer that
3129 	 * went to the bootconsole (that they do not see on the real console)
3130 	 */
3131 	pr_info("%sconsole [%s%d] enabled\n",
3132 		(newcon->flags & CON_BOOT) ? "boot" : "" ,
3133 		newcon->name, newcon->index);
3134 	if (bootcon_enabled &&
3135 	    ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV) &&
3136 	    !keep_bootcon) {
3137 		/* We need to iterate through all boot consoles, to make
3138 		 * sure we print everything out, before we unregister them.
3139 		 */
3140 		for_each_console(con)
3141 			if (con->flags & CON_BOOT)
3142 				unregister_console(con);
3143 	}
3144 }
3145 EXPORT_SYMBOL(register_console);
3146 
3147 int unregister_console(struct console *console)
3148 {
3149 	struct console *con;
3150 	int res;
3151 
3152 	pr_info("%sconsole [%s%d] disabled\n",
3153 		(console->flags & CON_BOOT) ? "boot" : "" ,
3154 		console->name, console->index);
3155 
3156 	res = _braille_unregister_console(console);
3157 	if (res < 0)
3158 		return res;
3159 	if (res > 0)
3160 		return 0;
3161 
3162 	res = -ENODEV;
3163 	console_lock();
3164 	if (console_drivers == console) {
3165 		console_drivers=console->next;
3166 		res = 0;
3167 	} else {
3168 		for_each_console(con) {
3169 			if (con->next == console) {
3170 				con->next = console->next;
3171 				res = 0;
3172 				break;
3173 			}
3174 		}
3175 	}
3176 
3177 	if (res)
3178 		goto out_disable_unlock;
3179 
3180 	if (console->flags & CON_EXTENDED)
3181 		nr_ext_console_drivers--;
3182 
3183 	/*
3184 	 * If this isn't the last console and it has CON_CONSDEV set, we
3185 	 * need to set it on the next preferred console.
3186 	 */
3187 	if (console_drivers != NULL && console->flags & CON_CONSDEV)
3188 		console_drivers->flags |= CON_CONSDEV;
3189 
3190 	console->flags &= ~CON_ENABLED;
3191 	console_unlock();
3192 	console_sysfs_notify();
3193 
3194 	if (console->exit)
3195 		res = console->exit(console);
3196 
3197 	return res;
3198 
3199 out_disable_unlock:
3200 	console->flags &= ~CON_ENABLED;
3201 	console_unlock();
3202 
3203 	return res;
3204 }
3205 EXPORT_SYMBOL(unregister_console);
3206 
3207 /*
3208  * Initialize the console device. This is called *early*, so
3209  * we can't necessarily depend on lots of kernel help here.
3210  * Just do some early initializations, and do the complex setup
3211  * later.
3212  */
3213 void __init console_init(void)
3214 {
3215 	int ret;
3216 	initcall_t call;
3217 	initcall_entry_t *ce;
3218 
3219 	/* Setup the default TTY line discipline. */
3220 	n_tty_init();
3221 
3222 	/*
3223 	 * set up the console device so that later boot sequences can
3224 	 * inform about problems etc..
3225 	 */
3226 	ce = __con_initcall_start;
3227 	trace_initcall_level("console");
3228 	while (ce < __con_initcall_end) {
3229 		call = initcall_from_entry(ce);
3230 		trace_initcall_start(call);
3231 		ret = call();
3232 		trace_initcall_finish(call, ret);
3233 		ce++;
3234 	}
3235 }
3236 
3237 /*
3238  * Some boot consoles access data that is in the init section and which will
3239  * be discarded after the initcalls have been run. To make sure that no code
3240  * will access this data, unregister the boot consoles in a late initcall.
3241  *
3242  * If for some reason, such as deferred probe or the driver being a loadable
3243  * module, the real console hasn't registered yet at this point, there will
3244  * be a brief interval in which no messages are logged to the console, which
3245  * makes it difficult to diagnose problems that occur during this time.
3246  *
3247  * To mitigate this problem somewhat, only unregister consoles whose memory
3248  * intersects with the init section. Note that all other boot consoles will
3249  * get unregistered when the real preferred console is registered.
3250  */
3251 static int __init printk_late_init(void)
3252 {
3253 	struct console *con;
3254 	int ret;
3255 
3256 	for_each_console(con) {
3257 		if (!(con->flags & CON_BOOT))
3258 			continue;
3259 
3260 		/* Check addresses that might be used for enabled consoles. */
3261 		if (init_section_intersects(con, sizeof(*con)) ||
3262 		    init_section_contains(con->write, 0) ||
3263 		    init_section_contains(con->read, 0) ||
3264 		    init_section_contains(con->device, 0) ||
3265 		    init_section_contains(con->unblank, 0) ||
3266 		    init_section_contains(con->data, 0)) {
3267 			/*
3268 			 * Please, consider moving the reported consoles out
3269 			 * of the init section.
3270 			 */
3271 			pr_warn("bootconsole [%s%d] uses init memory and must be disabled even before the real one is ready\n",
3272 				con->name, con->index);
3273 			unregister_console(con);
3274 		}
3275 	}
3276 	ret = cpuhp_setup_state_nocalls(CPUHP_PRINTK_DEAD, "printk:dead", NULL,
3277 					console_cpu_notify);
3278 	WARN_ON(ret < 0);
3279 	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "printk:online",
3280 					console_cpu_notify, NULL);
3281 	WARN_ON(ret < 0);
3282 	printk_sysctl_init();
3283 	return 0;
3284 }
3285 late_initcall(printk_late_init);
3286 
3287 #if defined CONFIG_PRINTK
3288 /*
3289  * Delayed printk version, for scheduler-internal messages:
3290  */
3291 #define PRINTK_PENDING_WAKEUP	0x01
3292 #define PRINTK_PENDING_OUTPUT	0x02
3293 
3294 static DEFINE_PER_CPU(int, printk_pending);
3295 
3296 static void wake_up_klogd_work_func(struct irq_work *irq_work)
3297 {
3298 	int pending = this_cpu_xchg(printk_pending, 0);
3299 
3300 	if (pending & PRINTK_PENDING_OUTPUT) {
3301 		/* If trylock fails, someone else is doing the printing */
3302 		if (console_trylock())
3303 			console_unlock();
3304 	}
3305 
3306 	if (pending & PRINTK_PENDING_WAKEUP)
3307 		wake_up_interruptible(&log_wait);
3308 }
3309 
3310 static DEFINE_PER_CPU(struct irq_work, wake_up_klogd_work) =
3311 	IRQ_WORK_INIT_LAZY(wake_up_klogd_work_func);
3312 
3313 void wake_up_klogd(void)
3314 {
3315 	if (!printk_percpu_data_ready())
3316 		return;
3317 
3318 	preempt_disable();
3319 	if (waitqueue_active(&log_wait)) {
3320 		this_cpu_or(printk_pending, PRINTK_PENDING_WAKEUP);
3321 		irq_work_queue(this_cpu_ptr(&wake_up_klogd_work));
3322 	}
3323 	preempt_enable();
3324 }
3325 
3326 void defer_console_output(void)
3327 {
3328 	if (!printk_percpu_data_ready())
3329 		return;
3330 
3331 	preempt_disable();
3332 	this_cpu_or(printk_pending, PRINTK_PENDING_OUTPUT);
3333 	irq_work_queue(this_cpu_ptr(&wake_up_klogd_work));
3334 	preempt_enable();
3335 }
3336 
3337 void printk_trigger_flush(void)
3338 {
3339 	defer_console_output();
3340 }
3341 
3342 int vprintk_deferred(const char *fmt, va_list args)
3343 {
3344 	int r;
3345 
3346 	r = vprintk_emit(0, LOGLEVEL_SCHED, NULL, fmt, args);
3347 	defer_console_output();
3348 
3349 	return r;
3350 }
3351 
3352 int _printk_deferred(const char *fmt, ...)
3353 {
3354 	va_list args;
3355 	int r;
3356 
3357 	va_start(args, fmt);
3358 	r = vprintk_deferred(fmt, args);
3359 	va_end(args);
3360 
3361 	return r;
3362 }
3363 
3364 /*
3365  * printk rate limiting, lifted from the networking subsystem.
3366  *
3367  * This enforces a rate limit: not more than 10 kernel messages
3368  * every 5s to make a denial-of-service attack impossible.
3369  */
3370 DEFINE_RATELIMIT_STATE(printk_ratelimit_state, 5 * HZ, 10);
3371 
3372 int __printk_ratelimit(const char *func)
3373 {
3374 	return ___ratelimit(&printk_ratelimit_state, func);
3375 }
3376 EXPORT_SYMBOL(__printk_ratelimit);
3377 
3378 /**
3379  * printk_timed_ratelimit - caller-controlled printk ratelimiting
3380  * @caller_jiffies: pointer to caller's state
3381  * @interval_msecs: minimum interval between prints
3382  *
3383  * printk_timed_ratelimit() returns true if more than @interval_msecs
3384  * milliseconds have elapsed since the last time printk_timed_ratelimit()
3385  * returned true.
3386  */
3387 bool printk_timed_ratelimit(unsigned long *caller_jiffies,
3388 			unsigned int interval_msecs)
3389 {
3390 	unsigned long elapsed = jiffies - *caller_jiffies;
3391 
3392 	if (*caller_jiffies && elapsed <= msecs_to_jiffies(interval_msecs))
3393 		return false;
3394 
3395 	*caller_jiffies = jiffies;
3396 	return true;
3397 }
3398 EXPORT_SYMBOL(printk_timed_ratelimit);
3399 
3400 static DEFINE_SPINLOCK(dump_list_lock);
3401 static LIST_HEAD(dump_list);
3402 
3403 /**
3404  * kmsg_dump_register - register a kernel log dumper.
3405  * @dumper: pointer to the kmsg_dumper structure
3406  *
3407  * Adds a kernel log dumper to the system. The dump callback in the
3408  * structure will be called when the kernel oopses or panics and must be
3409  * set. Returns zero on success and %-EINVAL or %-EBUSY otherwise.
3410  */
3411 int kmsg_dump_register(struct kmsg_dumper *dumper)
3412 {
3413 	unsigned long flags;
3414 	int err = -EBUSY;
3415 
3416 	/* The dump callback needs to be set */
3417 	if (!dumper->dump)
3418 		return -EINVAL;
3419 
3420 	spin_lock_irqsave(&dump_list_lock, flags);
3421 	/* Don't allow registering multiple times */
3422 	if (!dumper->registered) {
3423 		dumper->registered = 1;
3424 		list_add_tail_rcu(&dumper->list, &dump_list);
3425 		err = 0;
3426 	}
3427 	spin_unlock_irqrestore(&dump_list_lock, flags);
3428 
3429 	return err;
3430 }
3431 EXPORT_SYMBOL_GPL(kmsg_dump_register);
3432 
3433 /**
3434  * kmsg_dump_unregister - unregister a kmsg dumper.
3435  * @dumper: pointer to the kmsg_dumper structure
3436  *
3437  * Removes a dump device from the system. Returns zero on success and
3438  * %-EINVAL otherwise.
3439  */
3440 int kmsg_dump_unregister(struct kmsg_dumper *dumper)
3441 {
3442 	unsigned long flags;
3443 	int err = -EINVAL;
3444 
3445 	spin_lock_irqsave(&dump_list_lock, flags);
3446 	if (dumper->registered) {
3447 		dumper->registered = 0;
3448 		list_del_rcu(&dumper->list);
3449 		err = 0;
3450 	}
3451 	spin_unlock_irqrestore(&dump_list_lock, flags);
3452 	synchronize_rcu();
3453 
3454 	return err;
3455 }
3456 EXPORT_SYMBOL_GPL(kmsg_dump_unregister);
3457 
3458 static bool always_kmsg_dump;
3459 module_param_named(always_kmsg_dump, always_kmsg_dump, bool, S_IRUGO | S_IWUSR);
3460 
3461 const char *kmsg_dump_reason_str(enum kmsg_dump_reason reason)
3462 {
3463 	switch (reason) {
3464 	case KMSG_DUMP_PANIC:
3465 		return "Panic";
3466 	case KMSG_DUMP_OOPS:
3467 		return "Oops";
3468 	case KMSG_DUMP_EMERG:
3469 		return "Emergency";
3470 	case KMSG_DUMP_SHUTDOWN:
3471 		return "Shutdown";
3472 	default:
3473 		return "Unknown";
3474 	}
3475 }
3476 EXPORT_SYMBOL_GPL(kmsg_dump_reason_str);
3477 
3478 /**
3479  * kmsg_dump - dump kernel log to kernel message dumpers.
3480  * @reason: the reason (oops, panic etc) for dumping
3481  *
3482  * Call each of the registered dumper's dump() callback, which can
3483  * retrieve the kmsg records with kmsg_dump_get_line() or
3484  * kmsg_dump_get_buffer().
3485  */
3486 void kmsg_dump(enum kmsg_dump_reason reason)
3487 {
3488 	struct kmsg_dumper *dumper;
3489 
3490 	rcu_read_lock();
3491 	list_for_each_entry_rcu(dumper, &dump_list, list) {
3492 		enum kmsg_dump_reason max_reason = dumper->max_reason;
3493 
3494 		/*
3495 		 * If client has not provided a specific max_reason, default
3496 		 * to KMSG_DUMP_OOPS, unless always_kmsg_dump was set.
3497 		 */
3498 		if (max_reason == KMSG_DUMP_UNDEF) {
3499 			max_reason = always_kmsg_dump ? KMSG_DUMP_MAX :
3500 							KMSG_DUMP_OOPS;
3501 		}
3502 		if (reason > max_reason)
3503 			continue;
3504 
3505 		/* invoke dumper which will iterate over records */
3506 		dumper->dump(dumper, reason);
3507 	}
3508 	rcu_read_unlock();
3509 }
3510 
3511 /**
3512  * kmsg_dump_get_line - retrieve one kmsg log line
3513  * @iter: kmsg dump iterator
3514  * @syslog: include the "<4>" prefixes
3515  * @line: buffer to copy the line to
3516  * @size: maximum size of the buffer
3517  * @len: length of line placed into buffer
3518  *
3519  * Start at the beginning of the kmsg buffer, with the oldest kmsg
3520  * record, and copy one record into the provided buffer.
3521  *
3522  * Consecutive calls will return the next available record moving
3523  * towards the end of the buffer with the youngest messages.
3524  *
3525  * A return value of FALSE indicates that there are no more records to
3526  * read.
3527  */
3528 bool kmsg_dump_get_line(struct kmsg_dump_iter *iter, bool syslog,
3529 			char *line, size_t size, size_t *len)
3530 {
3531 	u64 min_seq = latched_seq_read_nolock(&clear_seq);
3532 	struct printk_info info;
3533 	unsigned int line_count;
3534 	struct printk_record r;
3535 	size_t l = 0;
3536 	bool ret = false;
3537 
3538 	if (iter->cur_seq < min_seq)
3539 		iter->cur_seq = min_seq;
3540 
3541 	prb_rec_init_rd(&r, &info, line, size);
3542 
3543 	/* Read text or count text lines? */
3544 	if (line) {
3545 		if (!prb_read_valid(prb, iter->cur_seq, &r))
3546 			goto out;
3547 		l = record_print_text(&r, syslog, printk_time);
3548 	} else {
3549 		if (!prb_read_valid_info(prb, iter->cur_seq,
3550 					 &info, &line_count)) {
3551 			goto out;
3552 		}
3553 		l = get_record_print_text_size(&info, line_count, syslog,
3554 					       printk_time);
3555 
3556 	}
3557 
3558 	iter->cur_seq = r.info->seq + 1;
3559 	ret = true;
3560 out:
3561 	if (len)
3562 		*len = l;
3563 	return ret;
3564 }
3565 EXPORT_SYMBOL_GPL(kmsg_dump_get_line);
3566 
3567 /**
3568  * kmsg_dump_get_buffer - copy kmsg log lines
3569  * @iter: kmsg dump iterator
3570  * @syslog: include the "<4>" prefixes
3571  * @buf: buffer to copy the line to
3572  * @size: maximum size of the buffer
3573  * @len_out: length of line placed into buffer
3574  *
3575  * Start at the end of the kmsg buffer and fill the provided buffer
3576  * with as many of the *youngest* kmsg records that fit into it.
3577  * If the buffer is large enough, all available kmsg records will be
3578  * copied with a single call.
3579  *
3580  * Consecutive calls will fill the buffer with the next block of
3581  * available older records, not including the earlier retrieved ones.
3582  *
3583  * A return value of FALSE indicates that there are no more records to
3584  * read.
3585  */
3586 bool kmsg_dump_get_buffer(struct kmsg_dump_iter *iter, bool syslog,
3587 			  char *buf, size_t size, size_t *len_out)
3588 {
3589 	u64 min_seq = latched_seq_read_nolock(&clear_seq);
3590 	struct printk_info info;
3591 	struct printk_record r;
3592 	u64 seq;
3593 	u64 next_seq;
3594 	size_t len = 0;
3595 	bool ret = false;
3596 	bool time = printk_time;
3597 
3598 	if (!buf || !size)
3599 		goto out;
3600 
3601 	if (iter->cur_seq < min_seq)
3602 		iter->cur_seq = min_seq;
3603 
3604 	if (prb_read_valid_info(prb, iter->cur_seq, &info, NULL)) {
3605 		if (info.seq != iter->cur_seq) {
3606 			/* messages are gone, move to first available one */
3607 			iter->cur_seq = info.seq;
3608 		}
3609 	}
3610 
3611 	/* last entry */
3612 	if (iter->cur_seq >= iter->next_seq)
3613 		goto out;
3614 
3615 	/*
3616 	 * Find first record that fits, including all following records,
3617 	 * into the user-provided buffer for this dump. Pass in size-1
3618 	 * because this function (by way of record_print_text()) will
3619 	 * not write more than size-1 bytes of text into @buf.
3620 	 */
3621 	seq = find_first_fitting_seq(iter->cur_seq, iter->next_seq,
3622 				     size - 1, syslog, time);
3623 
3624 	/*
3625 	 * Next kmsg_dump_get_buffer() invocation will dump block of
3626 	 * older records stored right before this one.
3627 	 */
3628 	next_seq = seq;
3629 
3630 	prb_rec_init_rd(&r, &info, buf, size);
3631 
3632 	len = 0;
3633 	prb_for_each_record(seq, prb, seq, &r) {
3634 		if (r.info->seq >= iter->next_seq)
3635 			break;
3636 
3637 		len += record_print_text(&r, syslog, time);
3638 
3639 		/* Adjust record to store to remaining buffer space. */
3640 		prb_rec_init_rd(&r, &info, buf + len, size - len);
3641 	}
3642 
3643 	iter->next_seq = next_seq;
3644 	ret = true;
3645 out:
3646 	if (len_out)
3647 		*len_out = len;
3648 	return ret;
3649 }
3650 EXPORT_SYMBOL_GPL(kmsg_dump_get_buffer);
3651 
3652 /**
3653  * kmsg_dump_rewind - reset the iterator
3654  * @iter: kmsg dump iterator
3655  *
3656  * Reset the dumper's iterator so that kmsg_dump_get_line() and
3657  * kmsg_dump_get_buffer() can be called again and used multiple
3658  * times within the same dumper.dump() callback.
3659  */
3660 void kmsg_dump_rewind(struct kmsg_dump_iter *iter)
3661 {
3662 	iter->cur_seq = latched_seq_read_nolock(&clear_seq);
3663 	iter->next_seq = prb_next_seq(prb);
3664 }
3665 EXPORT_SYMBOL_GPL(kmsg_dump_rewind);
3666 
3667 #endif
3668 
3669 #ifdef CONFIG_SMP
3670 static atomic_t printk_cpulock_owner = ATOMIC_INIT(-1);
3671 static atomic_t printk_cpulock_nested = ATOMIC_INIT(0);
3672 
3673 /**
3674  * __printk_wait_on_cpu_lock() - Busy wait until the printk cpu-reentrant
3675  *                               spinning lock is not owned by any CPU.
3676  *
3677  * Context: Any context.
3678  */
3679 void __printk_wait_on_cpu_lock(void)
3680 {
3681 	do {
3682 		cpu_relax();
3683 	} while (atomic_read(&printk_cpulock_owner) != -1);
3684 }
3685 EXPORT_SYMBOL(__printk_wait_on_cpu_lock);
3686 
3687 /**
3688  * __printk_cpu_trylock() - Try to acquire the printk cpu-reentrant
3689  *                          spinning lock.
3690  *
3691  * If no processor has the lock, the calling processor takes the lock and
3692  * becomes the owner. If the calling processor is already the owner of the
3693  * lock, this function succeeds immediately.
3694  *
3695  * Context: Any context. Expects interrupts to be disabled.
3696  * Return: 1 on success, otherwise 0.
3697  */
3698 int __printk_cpu_trylock(void)
3699 {
3700 	int cpu;
3701 	int old;
3702 
3703 	cpu = smp_processor_id();
3704 
3705 	/*
3706 	 * Guarantee loads and stores from this CPU when it is the lock owner
3707 	 * are _not_ visible to the previous lock owner. This pairs with
3708 	 * __printk_cpu_unlock:B.
3709 	 *
3710 	 * Memory barrier involvement:
3711 	 *
3712 	 * If __printk_cpu_trylock:A reads from __printk_cpu_unlock:B, then
3713 	 * __printk_cpu_unlock:A can never read from __printk_cpu_trylock:B.
3714 	 *
3715 	 * Relies on:
3716 	 *
3717 	 * RELEASE from __printk_cpu_unlock:A to __printk_cpu_unlock:B
3718 	 * of the previous CPU
3719 	 *    matching
3720 	 * ACQUIRE from __printk_cpu_trylock:A to __printk_cpu_trylock:B
3721 	 * of this CPU
3722 	 */
3723 	old = atomic_cmpxchg_acquire(&printk_cpulock_owner, -1,
3724 				     cpu); /* LMM(__printk_cpu_trylock:A) */
3725 	if (old == -1) {
3726 		/*
3727 		 * This CPU is now the owner and begins loading/storing
3728 		 * data: LMM(__printk_cpu_trylock:B)
3729 		 */
3730 		return 1;
3731 
3732 	} else if (old == cpu) {
3733 		/* This CPU is already the owner. */
3734 		atomic_inc(&printk_cpulock_nested);
3735 		return 1;
3736 	}
3737 
3738 	return 0;
3739 }
3740 EXPORT_SYMBOL(__printk_cpu_trylock);
3741 
3742 /**
3743  * __printk_cpu_unlock() - Release the printk cpu-reentrant spinning lock.
3744  *
3745  * The calling processor must be the owner of the lock.
3746  *
3747  * Context: Any context. Expects interrupts to be disabled.
3748  */
3749 void __printk_cpu_unlock(void)
3750 {
3751 	if (atomic_read(&printk_cpulock_nested)) {
3752 		atomic_dec(&printk_cpulock_nested);
3753 		return;
3754 	}
3755 
3756 	/*
3757 	 * This CPU is finished loading/storing data:
3758 	 * LMM(__printk_cpu_unlock:A)
3759 	 */
3760 
3761 	/*
3762 	 * Guarantee loads and stores from this CPU when it was the
3763 	 * lock owner are visible to the next lock owner. This pairs
3764 	 * with __printk_cpu_trylock:A.
3765 	 *
3766 	 * Memory barrier involvement:
3767 	 *
3768 	 * If __printk_cpu_trylock:A reads from __printk_cpu_unlock:B,
3769 	 * then __printk_cpu_trylock:B reads from __printk_cpu_unlock:A.
3770 	 *
3771 	 * Relies on:
3772 	 *
3773 	 * RELEASE from __printk_cpu_unlock:A to __printk_cpu_unlock:B
3774 	 * of this CPU
3775 	 *    matching
3776 	 * ACQUIRE from __printk_cpu_trylock:A to __printk_cpu_trylock:B
3777 	 * of the next CPU
3778 	 */
3779 	atomic_set_release(&printk_cpulock_owner,
3780 			   -1); /* LMM(__printk_cpu_unlock:B) */
3781 }
3782 EXPORT_SYMBOL(__printk_cpu_unlock);
3783 #endif /* CONFIG_SMP */
3784