1 /* 2 * linux/kernel/printk.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 * 6 * Modified to make sys_syslog() more flexible: added commands to 7 * return the last 4k of kernel messages, regardless of whether 8 * they've been read or not. Added option to suppress kernel printk's 9 * to the console. Added hook for sending the console messages 10 * elsewhere, in preparation for a serial line console (someday). 11 * Ted Ts'o, 2/11/93. 12 * Modified for sysctl support, 1/8/97, Chris Horn. 13 * Fixed SMP synchronization, 08/08/99, Manfred Spraul 14 * manfred@colorfullife.com 15 * Rewrote bits to get rid of console_lock 16 * 01Mar01 Andrew Morton 17 */ 18 19 #include <linux/kernel.h> 20 #include <linux/mm.h> 21 #include <linux/tty.h> 22 #include <linux/tty_driver.h> 23 #include <linux/console.h> 24 #include <linux/init.h> 25 #include <linux/jiffies.h> 26 #include <linux/nmi.h> 27 #include <linux/module.h> 28 #include <linux/moduleparam.h> 29 #include <linux/delay.h> 30 #include <linux/smp.h> 31 #include <linux/security.h> 32 #include <linux/bootmem.h> 33 #include <linux/memblock.h> 34 #include <linux/syscalls.h> 35 #include <linux/kexec.h> 36 #include <linux/kdb.h> 37 #include <linux/ratelimit.h> 38 #include <linux/kmsg_dump.h> 39 #include <linux/syslog.h> 40 #include <linux/cpu.h> 41 #include <linux/notifier.h> 42 #include <linux/rculist.h> 43 #include <linux/poll.h> 44 #include <linux/irq_work.h> 45 #include <linux/utsname.h> 46 #include <linux/ctype.h> 47 #include <linux/uio.h> 48 49 #include <linux/uaccess.h> 50 #include <asm/sections.h> 51 52 #define CREATE_TRACE_POINTS 53 #include <trace/events/printk.h> 54 55 #include "console_cmdline.h" 56 #include "braille.h" 57 #include "internal.h" 58 59 int console_printk[4] = { 60 CONSOLE_LOGLEVEL_DEFAULT, /* console_loglevel */ 61 MESSAGE_LOGLEVEL_DEFAULT, /* default_message_loglevel */ 62 CONSOLE_LOGLEVEL_MIN, /* minimum_console_loglevel */ 63 CONSOLE_LOGLEVEL_DEFAULT, /* default_console_loglevel */ 64 }; 65 66 /* 67 * Low level drivers may need that to know if they can schedule in 68 * their unblank() callback or not. So let's export it. 69 */ 70 int oops_in_progress; 71 EXPORT_SYMBOL(oops_in_progress); 72 73 /* 74 * console_sem protects the console_drivers list, and also 75 * provides serialisation for access to the entire console 76 * driver system. 77 */ 78 static DEFINE_SEMAPHORE(console_sem); 79 struct console *console_drivers; 80 EXPORT_SYMBOL_GPL(console_drivers); 81 82 #ifdef CONFIG_LOCKDEP 83 static struct lockdep_map console_lock_dep_map = { 84 .name = "console_lock" 85 }; 86 #endif 87 88 enum devkmsg_log_bits { 89 __DEVKMSG_LOG_BIT_ON = 0, 90 __DEVKMSG_LOG_BIT_OFF, 91 __DEVKMSG_LOG_BIT_LOCK, 92 }; 93 94 enum devkmsg_log_masks { 95 DEVKMSG_LOG_MASK_ON = BIT(__DEVKMSG_LOG_BIT_ON), 96 DEVKMSG_LOG_MASK_OFF = BIT(__DEVKMSG_LOG_BIT_OFF), 97 DEVKMSG_LOG_MASK_LOCK = BIT(__DEVKMSG_LOG_BIT_LOCK), 98 }; 99 100 /* Keep both the 'on' and 'off' bits clear, i.e. ratelimit by default: */ 101 #define DEVKMSG_LOG_MASK_DEFAULT 0 102 103 static unsigned int __read_mostly devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT; 104 105 static int __control_devkmsg(char *str) 106 { 107 if (!str) 108 return -EINVAL; 109 110 if (!strncmp(str, "on", 2)) { 111 devkmsg_log = DEVKMSG_LOG_MASK_ON; 112 return 2; 113 } else if (!strncmp(str, "off", 3)) { 114 devkmsg_log = DEVKMSG_LOG_MASK_OFF; 115 return 3; 116 } else if (!strncmp(str, "ratelimit", 9)) { 117 devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT; 118 return 9; 119 } 120 return -EINVAL; 121 } 122 123 static int __init control_devkmsg(char *str) 124 { 125 if (__control_devkmsg(str) < 0) 126 return 1; 127 128 /* 129 * Set sysctl string accordingly: 130 */ 131 if (devkmsg_log == DEVKMSG_LOG_MASK_ON) { 132 memset(devkmsg_log_str, 0, DEVKMSG_STR_MAX_SIZE); 133 strncpy(devkmsg_log_str, "on", 2); 134 } else if (devkmsg_log == DEVKMSG_LOG_MASK_OFF) { 135 memset(devkmsg_log_str, 0, DEVKMSG_STR_MAX_SIZE); 136 strncpy(devkmsg_log_str, "off", 3); 137 } 138 /* else "ratelimit" which is set by default. */ 139 140 /* 141 * Sysctl cannot change it anymore. The kernel command line setting of 142 * this parameter is to force the setting to be permanent throughout the 143 * runtime of the system. This is a precation measure against userspace 144 * trying to be a smarta** and attempting to change it up on us. 145 */ 146 devkmsg_log |= DEVKMSG_LOG_MASK_LOCK; 147 148 return 0; 149 } 150 __setup("printk.devkmsg=", control_devkmsg); 151 152 char devkmsg_log_str[DEVKMSG_STR_MAX_SIZE] = "ratelimit"; 153 154 int devkmsg_sysctl_set_loglvl(struct ctl_table *table, int write, 155 void __user *buffer, size_t *lenp, loff_t *ppos) 156 { 157 char old_str[DEVKMSG_STR_MAX_SIZE]; 158 unsigned int old; 159 int err; 160 161 if (write) { 162 if (devkmsg_log & DEVKMSG_LOG_MASK_LOCK) 163 return -EINVAL; 164 165 old = devkmsg_log; 166 strncpy(old_str, devkmsg_log_str, DEVKMSG_STR_MAX_SIZE); 167 } 168 169 err = proc_dostring(table, write, buffer, lenp, ppos); 170 if (err) 171 return err; 172 173 if (write) { 174 err = __control_devkmsg(devkmsg_log_str); 175 176 /* 177 * Do not accept an unknown string OR a known string with 178 * trailing crap... 179 */ 180 if (err < 0 || (err + 1 != *lenp)) { 181 182 /* ... and restore old setting. */ 183 devkmsg_log = old; 184 strncpy(devkmsg_log_str, old_str, DEVKMSG_STR_MAX_SIZE); 185 186 return -EINVAL; 187 } 188 } 189 190 return 0; 191 } 192 193 /* 194 * Number of registered extended console drivers. 195 * 196 * If extended consoles are present, in-kernel cont reassembly is disabled 197 * and each fragment is stored as a separate log entry with proper 198 * continuation flag so that every emitted message has full metadata. This 199 * doesn't change the result for regular consoles or /proc/kmsg. For 200 * /dev/kmsg, as long as the reader concatenates messages according to 201 * consecutive continuation flags, the end result should be the same too. 202 */ 203 static int nr_ext_console_drivers; 204 205 /* 206 * Helper macros to handle lockdep when locking/unlocking console_sem. We use 207 * macros instead of functions so that _RET_IP_ contains useful information. 208 */ 209 #define down_console_sem() do { \ 210 down(&console_sem);\ 211 mutex_acquire(&console_lock_dep_map, 0, 0, _RET_IP_);\ 212 } while (0) 213 214 static int __down_trylock_console_sem(unsigned long ip) 215 { 216 if (down_trylock(&console_sem)) 217 return 1; 218 mutex_acquire(&console_lock_dep_map, 0, 1, ip); 219 return 0; 220 } 221 #define down_trylock_console_sem() __down_trylock_console_sem(_RET_IP_) 222 223 #define up_console_sem() do { \ 224 mutex_release(&console_lock_dep_map, 1, _RET_IP_);\ 225 up(&console_sem);\ 226 } while (0) 227 228 /* 229 * This is used for debugging the mess that is the VT code by 230 * keeping track if we have the console semaphore held. It's 231 * definitely not the perfect debug tool (we don't know if _WE_ 232 * hold it and are racing, but it helps tracking those weird code 233 * paths in the console code where we end up in places I want 234 * locked without the console sempahore held). 235 */ 236 static int console_locked, console_suspended; 237 238 /* 239 * If exclusive_console is non-NULL then only this console is to be printed to. 240 */ 241 static struct console *exclusive_console; 242 243 /* 244 * Array of consoles built from command line options (console=) 245 */ 246 247 #define MAX_CMDLINECONSOLES 8 248 249 static struct console_cmdline console_cmdline[MAX_CMDLINECONSOLES]; 250 251 static int selected_console = -1; 252 static int preferred_console = -1; 253 int console_set_on_cmdline; 254 EXPORT_SYMBOL(console_set_on_cmdline); 255 256 /* Flag: console code may call schedule() */ 257 static int console_may_schedule; 258 259 /* 260 * The printk log buffer consists of a chain of concatenated variable 261 * length records. Every record starts with a record header, containing 262 * the overall length of the record. 263 * 264 * The heads to the first and last entry in the buffer, as well as the 265 * sequence numbers of these entries are maintained when messages are 266 * stored. 267 * 268 * If the heads indicate available messages, the length in the header 269 * tells the start next message. A length == 0 for the next message 270 * indicates a wrap-around to the beginning of the buffer. 271 * 272 * Every record carries the monotonic timestamp in microseconds, as well as 273 * the standard userspace syslog level and syslog facility. The usual 274 * kernel messages use LOG_KERN; userspace-injected messages always carry 275 * a matching syslog facility, by default LOG_USER. The origin of every 276 * message can be reliably determined that way. 277 * 278 * The human readable log message directly follows the message header. The 279 * length of the message text is stored in the header, the stored message 280 * is not terminated. 281 * 282 * Optionally, a message can carry a dictionary of properties (key/value pairs), 283 * to provide userspace with a machine-readable message context. 284 * 285 * Examples for well-defined, commonly used property names are: 286 * DEVICE=b12:8 device identifier 287 * b12:8 block dev_t 288 * c127:3 char dev_t 289 * n8 netdev ifindex 290 * +sound:card0 subsystem:devname 291 * SUBSYSTEM=pci driver-core subsystem name 292 * 293 * Valid characters in property names are [a-zA-Z0-9.-_]. The plain text value 294 * follows directly after a '=' character. Every property is terminated by 295 * a '\0' character. The last property is not terminated. 296 * 297 * Example of a message structure: 298 * 0000 ff 8f 00 00 00 00 00 00 monotonic time in nsec 299 * 0008 34 00 record is 52 bytes long 300 * 000a 0b 00 text is 11 bytes long 301 * 000c 1f 00 dictionary is 23 bytes long 302 * 000e 03 00 LOG_KERN (facility) LOG_ERR (level) 303 * 0010 69 74 27 73 20 61 20 6c "it's a l" 304 * 69 6e 65 "ine" 305 * 001b 44 45 56 49 43 "DEVIC" 306 * 45 3d 62 38 3a 32 00 44 "E=b8:2\0D" 307 * 52 49 56 45 52 3d 62 75 "RIVER=bu" 308 * 67 "g" 309 * 0032 00 00 00 padding to next message header 310 * 311 * The 'struct printk_log' buffer header must never be directly exported to 312 * userspace, it is a kernel-private implementation detail that might 313 * need to be changed in the future, when the requirements change. 314 * 315 * /dev/kmsg exports the structured data in the following line format: 316 * "<level>,<sequnum>,<timestamp>,<contflag>[,additional_values, ... ];<message text>\n" 317 * 318 * Users of the export format should ignore possible additional values 319 * separated by ',', and find the message after the ';' character. 320 * 321 * The optional key/value pairs are attached as continuation lines starting 322 * with a space character and terminated by a newline. All possible 323 * non-prinatable characters are escaped in the "\xff" notation. 324 */ 325 326 enum log_flags { 327 LOG_NOCONS = 1, /* already flushed, do not print to console */ 328 LOG_NEWLINE = 2, /* text ended with a newline */ 329 LOG_PREFIX = 4, /* text started with a prefix */ 330 LOG_CONT = 8, /* text is a fragment of a continuation line */ 331 }; 332 333 struct printk_log { 334 u64 ts_nsec; /* timestamp in nanoseconds */ 335 u16 len; /* length of entire record */ 336 u16 text_len; /* length of text buffer */ 337 u16 dict_len; /* length of dictionary buffer */ 338 u8 facility; /* syslog facility */ 339 u8 flags:5; /* internal record flags */ 340 u8 level:3; /* syslog level */ 341 } 342 #ifdef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS 343 __packed __aligned(4) 344 #endif 345 ; 346 347 /* 348 * The logbuf_lock protects kmsg buffer, indices, counters. This can be taken 349 * within the scheduler's rq lock. It must be released before calling 350 * console_unlock() or anything else that might wake up a process. 351 */ 352 DEFINE_RAW_SPINLOCK(logbuf_lock); 353 354 #ifdef CONFIG_PRINTK 355 DECLARE_WAIT_QUEUE_HEAD(log_wait); 356 /* the next printk record to read by syslog(READ) or /proc/kmsg */ 357 static u64 syslog_seq; 358 static u32 syslog_idx; 359 static size_t syslog_partial; 360 361 /* index and sequence number of the first record stored in the buffer */ 362 static u64 log_first_seq; 363 static u32 log_first_idx; 364 365 /* index and sequence number of the next record to store in the buffer */ 366 static u64 log_next_seq; 367 static u32 log_next_idx; 368 369 /* the next printk record to write to the console */ 370 static u64 console_seq; 371 static u32 console_idx; 372 373 /* the next printk record to read after the last 'clear' command */ 374 static u64 clear_seq; 375 static u32 clear_idx; 376 377 #define PREFIX_MAX 32 378 #define LOG_LINE_MAX (1024 - PREFIX_MAX) 379 380 #define LOG_LEVEL(v) ((v) & 0x07) 381 #define LOG_FACILITY(v) ((v) >> 3 & 0xff) 382 383 /* record buffer */ 384 #define LOG_ALIGN __alignof__(struct printk_log) 385 #define __LOG_BUF_LEN (1 << CONFIG_LOG_BUF_SHIFT) 386 static char __log_buf[__LOG_BUF_LEN] __aligned(LOG_ALIGN); 387 static char *log_buf = __log_buf; 388 static u32 log_buf_len = __LOG_BUF_LEN; 389 390 /* Return log buffer address */ 391 char *log_buf_addr_get(void) 392 { 393 return log_buf; 394 } 395 396 /* Return log buffer size */ 397 u32 log_buf_len_get(void) 398 { 399 return log_buf_len; 400 } 401 402 /* human readable text of the record */ 403 static char *log_text(const struct printk_log *msg) 404 { 405 return (char *)msg + sizeof(struct printk_log); 406 } 407 408 /* optional key/value pair dictionary attached to the record */ 409 static char *log_dict(const struct printk_log *msg) 410 { 411 return (char *)msg + sizeof(struct printk_log) + msg->text_len; 412 } 413 414 /* get record by index; idx must point to valid msg */ 415 static struct printk_log *log_from_idx(u32 idx) 416 { 417 struct printk_log *msg = (struct printk_log *)(log_buf + idx); 418 419 /* 420 * A length == 0 record is the end of buffer marker. Wrap around and 421 * read the message at the start of the buffer. 422 */ 423 if (!msg->len) 424 return (struct printk_log *)log_buf; 425 return msg; 426 } 427 428 /* get next record; idx must point to valid msg */ 429 static u32 log_next(u32 idx) 430 { 431 struct printk_log *msg = (struct printk_log *)(log_buf + idx); 432 433 /* length == 0 indicates the end of the buffer; wrap */ 434 /* 435 * A length == 0 record is the end of buffer marker. Wrap around and 436 * read the message at the start of the buffer as *this* one, and 437 * return the one after that. 438 */ 439 if (!msg->len) { 440 msg = (struct printk_log *)log_buf; 441 return msg->len; 442 } 443 return idx + msg->len; 444 } 445 446 /* 447 * Check whether there is enough free space for the given message. 448 * 449 * The same values of first_idx and next_idx mean that the buffer 450 * is either empty or full. 451 * 452 * If the buffer is empty, we must respect the position of the indexes. 453 * They cannot be reset to the beginning of the buffer. 454 */ 455 static int logbuf_has_space(u32 msg_size, bool empty) 456 { 457 u32 free; 458 459 if (log_next_idx > log_first_idx || empty) 460 free = max(log_buf_len - log_next_idx, log_first_idx); 461 else 462 free = log_first_idx - log_next_idx; 463 464 /* 465 * We need space also for an empty header that signalizes wrapping 466 * of the buffer. 467 */ 468 return free >= msg_size + sizeof(struct printk_log); 469 } 470 471 static int log_make_free_space(u32 msg_size) 472 { 473 while (log_first_seq < log_next_seq && 474 !logbuf_has_space(msg_size, false)) { 475 /* drop old messages until we have enough contiguous space */ 476 log_first_idx = log_next(log_first_idx); 477 log_first_seq++; 478 } 479 480 if (clear_seq < log_first_seq) { 481 clear_seq = log_first_seq; 482 clear_idx = log_first_idx; 483 } 484 485 /* sequence numbers are equal, so the log buffer is empty */ 486 if (logbuf_has_space(msg_size, log_first_seq == log_next_seq)) 487 return 0; 488 489 return -ENOMEM; 490 } 491 492 /* compute the message size including the padding bytes */ 493 static u32 msg_used_size(u16 text_len, u16 dict_len, u32 *pad_len) 494 { 495 u32 size; 496 497 size = sizeof(struct printk_log) + text_len + dict_len; 498 *pad_len = (-size) & (LOG_ALIGN - 1); 499 size += *pad_len; 500 501 return size; 502 } 503 504 /* 505 * Define how much of the log buffer we could take at maximum. The value 506 * must be greater than two. Note that only half of the buffer is available 507 * when the index points to the middle. 508 */ 509 #define MAX_LOG_TAKE_PART 4 510 static const char trunc_msg[] = "<truncated>"; 511 512 static u32 truncate_msg(u16 *text_len, u16 *trunc_msg_len, 513 u16 *dict_len, u32 *pad_len) 514 { 515 /* 516 * The message should not take the whole buffer. Otherwise, it might 517 * get removed too soon. 518 */ 519 u32 max_text_len = log_buf_len / MAX_LOG_TAKE_PART; 520 if (*text_len > max_text_len) 521 *text_len = max_text_len; 522 /* enable the warning message */ 523 *trunc_msg_len = strlen(trunc_msg); 524 /* disable the "dict" completely */ 525 *dict_len = 0; 526 /* compute the size again, count also the warning message */ 527 return msg_used_size(*text_len + *trunc_msg_len, 0, pad_len); 528 } 529 530 /* insert record into the buffer, discard old ones, update heads */ 531 static int log_store(int facility, int level, 532 enum log_flags flags, u64 ts_nsec, 533 const char *dict, u16 dict_len, 534 const char *text, u16 text_len) 535 { 536 struct printk_log *msg; 537 u32 size, pad_len; 538 u16 trunc_msg_len = 0; 539 540 /* number of '\0' padding bytes to next message */ 541 size = msg_used_size(text_len, dict_len, &pad_len); 542 543 if (log_make_free_space(size)) { 544 /* truncate the message if it is too long for empty buffer */ 545 size = truncate_msg(&text_len, &trunc_msg_len, 546 &dict_len, &pad_len); 547 /* survive when the log buffer is too small for trunc_msg */ 548 if (log_make_free_space(size)) 549 return 0; 550 } 551 552 if (log_next_idx + size + sizeof(struct printk_log) > log_buf_len) { 553 /* 554 * This message + an additional empty header does not fit 555 * at the end of the buffer. Add an empty header with len == 0 556 * to signify a wrap around. 557 */ 558 memset(log_buf + log_next_idx, 0, sizeof(struct printk_log)); 559 log_next_idx = 0; 560 } 561 562 /* fill message */ 563 msg = (struct printk_log *)(log_buf + log_next_idx); 564 memcpy(log_text(msg), text, text_len); 565 msg->text_len = text_len; 566 if (trunc_msg_len) { 567 memcpy(log_text(msg) + text_len, trunc_msg, trunc_msg_len); 568 msg->text_len += trunc_msg_len; 569 } 570 memcpy(log_dict(msg), dict, dict_len); 571 msg->dict_len = dict_len; 572 msg->facility = facility; 573 msg->level = level & 7; 574 msg->flags = flags & 0x1f; 575 if (ts_nsec > 0) 576 msg->ts_nsec = ts_nsec; 577 else 578 msg->ts_nsec = local_clock(); 579 memset(log_dict(msg) + dict_len, 0, pad_len); 580 msg->len = size; 581 582 /* insert message */ 583 log_next_idx += msg->len; 584 log_next_seq++; 585 586 return msg->text_len; 587 } 588 589 int dmesg_restrict = IS_ENABLED(CONFIG_SECURITY_DMESG_RESTRICT); 590 591 static int syslog_action_restricted(int type) 592 { 593 if (dmesg_restrict) 594 return 1; 595 /* 596 * Unless restricted, we allow "read all" and "get buffer size" 597 * for everybody. 598 */ 599 return type != SYSLOG_ACTION_READ_ALL && 600 type != SYSLOG_ACTION_SIZE_BUFFER; 601 } 602 603 int check_syslog_permissions(int type, int source) 604 { 605 /* 606 * If this is from /proc/kmsg and we've already opened it, then we've 607 * already done the capabilities checks at open time. 608 */ 609 if (source == SYSLOG_FROM_PROC && type != SYSLOG_ACTION_OPEN) 610 goto ok; 611 612 if (syslog_action_restricted(type)) { 613 if (capable(CAP_SYSLOG)) 614 goto ok; 615 /* 616 * For historical reasons, accept CAP_SYS_ADMIN too, with 617 * a warning. 618 */ 619 if (capable(CAP_SYS_ADMIN)) { 620 pr_warn_once("%s (%d): Attempt to access syslog with " 621 "CAP_SYS_ADMIN but no CAP_SYSLOG " 622 "(deprecated).\n", 623 current->comm, task_pid_nr(current)); 624 goto ok; 625 } 626 return -EPERM; 627 } 628 ok: 629 return security_syslog(type); 630 } 631 EXPORT_SYMBOL_GPL(check_syslog_permissions); 632 633 static void append_char(char **pp, char *e, char c) 634 { 635 if (*pp < e) 636 *(*pp)++ = c; 637 } 638 639 static ssize_t msg_print_ext_header(char *buf, size_t size, 640 struct printk_log *msg, u64 seq) 641 { 642 u64 ts_usec = msg->ts_nsec; 643 644 do_div(ts_usec, 1000); 645 646 return scnprintf(buf, size, "%u,%llu,%llu,%c;", 647 (msg->facility << 3) | msg->level, seq, ts_usec, 648 msg->flags & LOG_CONT ? 'c' : '-'); 649 } 650 651 static ssize_t msg_print_ext_body(char *buf, size_t size, 652 char *dict, size_t dict_len, 653 char *text, size_t text_len) 654 { 655 char *p = buf, *e = buf + size; 656 size_t i; 657 658 /* escape non-printable characters */ 659 for (i = 0; i < text_len; i++) { 660 unsigned char c = text[i]; 661 662 if (c < ' ' || c >= 127 || c == '\\') 663 p += scnprintf(p, e - p, "\\x%02x", c); 664 else 665 append_char(&p, e, c); 666 } 667 append_char(&p, e, '\n'); 668 669 if (dict_len) { 670 bool line = true; 671 672 for (i = 0; i < dict_len; i++) { 673 unsigned char c = dict[i]; 674 675 if (line) { 676 append_char(&p, e, ' '); 677 line = false; 678 } 679 680 if (c == '\0') { 681 append_char(&p, e, '\n'); 682 line = true; 683 continue; 684 } 685 686 if (c < ' ' || c >= 127 || c == '\\') { 687 p += scnprintf(p, e - p, "\\x%02x", c); 688 continue; 689 } 690 691 append_char(&p, e, c); 692 } 693 append_char(&p, e, '\n'); 694 } 695 696 return p - buf; 697 } 698 699 /* /dev/kmsg - userspace message inject/listen interface */ 700 struct devkmsg_user { 701 u64 seq; 702 u32 idx; 703 struct ratelimit_state rs; 704 struct mutex lock; 705 char buf[CONSOLE_EXT_LOG_MAX]; 706 }; 707 708 static ssize_t devkmsg_write(struct kiocb *iocb, struct iov_iter *from) 709 { 710 char *buf, *line; 711 int level = default_message_loglevel; 712 int facility = 1; /* LOG_USER */ 713 struct file *file = iocb->ki_filp; 714 struct devkmsg_user *user = file->private_data; 715 size_t len = iov_iter_count(from); 716 ssize_t ret = len; 717 718 if (!user || len > LOG_LINE_MAX) 719 return -EINVAL; 720 721 /* Ignore when user logging is disabled. */ 722 if (devkmsg_log & DEVKMSG_LOG_MASK_OFF) 723 return len; 724 725 /* Ratelimit when not explicitly enabled. */ 726 if (!(devkmsg_log & DEVKMSG_LOG_MASK_ON)) { 727 if (!___ratelimit(&user->rs, current->comm)) 728 return ret; 729 } 730 731 buf = kmalloc(len+1, GFP_KERNEL); 732 if (buf == NULL) 733 return -ENOMEM; 734 735 buf[len] = '\0'; 736 if (!copy_from_iter_full(buf, len, from)) { 737 kfree(buf); 738 return -EFAULT; 739 } 740 741 /* 742 * Extract and skip the syslog prefix <[0-9]*>. Coming from userspace 743 * the decimal value represents 32bit, the lower 3 bit are the log 744 * level, the rest are the log facility. 745 * 746 * If no prefix or no userspace facility is specified, we 747 * enforce LOG_USER, to be able to reliably distinguish 748 * kernel-generated messages from userspace-injected ones. 749 */ 750 line = buf; 751 if (line[0] == '<') { 752 char *endp = NULL; 753 unsigned int u; 754 755 u = simple_strtoul(line + 1, &endp, 10); 756 if (endp && endp[0] == '>') { 757 level = LOG_LEVEL(u); 758 if (LOG_FACILITY(u) != 0) 759 facility = LOG_FACILITY(u); 760 endp++; 761 len -= endp - line; 762 line = endp; 763 } 764 } 765 766 printk_emit(facility, level, NULL, 0, "%s", line); 767 kfree(buf); 768 return ret; 769 } 770 771 static ssize_t devkmsg_read(struct file *file, char __user *buf, 772 size_t count, loff_t *ppos) 773 { 774 struct devkmsg_user *user = file->private_data; 775 struct printk_log *msg; 776 size_t len; 777 ssize_t ret; 778 779 if (!user) 780 return -EBADF; 781 782 ret = mutex_lock_interruptible(&user->lock); 783 if (ret) 784 return ret; 785 raw_spin_lock_irq(&logbuf_lock); 786 while (user->seq == log_next_seq) { 787 if (file->f_flags & O_NONBLOCK) { 788 ret = -EAGAIN; 789 raw_spin_unlock_irq(&logbuf_lock); 790 goto out; 791 } 792 793 raw_spin_unlock_irq(&logbuf_lock); 794 ret = wait_event_interruptible(log_wait, 795 user->seq != log_next_seq); 796 if (ret) 797 goto out; 798 raw_spin_lock_irq(&logbuf_lock); 799 } 800 801 if (user->seq < log_first_seq) { 802 /* our last seen message is gone, return error and reset */ 803 user->idx = log_first_idx; 804 user->seq = log_first_seq; 805 ret = -EPIPE; 806 raw_spin_unlock_irq(&logbuf_lock); 807 goto out; 808 } 809 810 msg = log_from_idx(user->idx); 811 len = msg_print_ext_header(user->buf, sizeof(user->buf), 812 msg, user->seq); 813 len += msg_print_ext_body(user->buf + len, sizeof(user->buf) - len, 814 log_dict(msg), msg->dict_len, 815 log_text(msg), msg->text_len); 816 817 user->idx = log_next(user->idx); 818 user->seq++; 819 raw_spin_unlock_irq(&logbuf_lock); 820 821 if (len > count) { 822 ret = -EINVAL; 823 goto out; 824 } 825 826 if (copy_to_user(buf, user->buf, len)) { 827 ret = -EFAULT; 828 goto out; 829 } 830 ret = len; 831 out: 832 mutex_unlock(&user->lock); 833 return ret; 834 } 835 836 static loff_t devkmsg_llseek(struct file *file, loff_t offset, int whence) 837 { 838 struct devkmsg_user *user = file->private_data; 839 loff_t ret = 0; 840 841 if (!user) 842 return -EBADF; 843 if (offset) 844 return -ESPIPE; 845 846 raw_spin_lock_irq(&logbuf_lock); 847 switch (whence) { 848 case SEEK_SET: 849 /* the first record */ 850 user->idx = log_first_idx; 851 user->seq = log_first_seq; 852 break; 853 case SEEK_DATA: 854 /* 855 * The first record after the last SYSLOG_ACTION_CLEAR, 856 * like issued by 'dmesg -c'. Reading /dev/kmsg itself 857 * changes no global state, and does not clear anything. 858 */ 859 user->idx = clear_idx; 860 user->seq = clear_seq; 861 break; 862 case SEEK_END: 863 /* after the last record */ 864 user->idx = log_next_idx; 865 user->seq = log_next_seq; 866 break; 867 default: 868 ret = -EINVAL; 869 } 870 raw_spin_unlock_irq(&logbuf_lock); 871 return ret; 872 } 873 874 static unsigned int devkmsg_poll(struct file *file, poll_table *wait) 875 { 876 struct devkmsg_user *user = file->private_data; 877 int ret = 0; 878 879 if (!user) 880 return POLLERR|POLLNVAL; 881 882 poll_wait(file, &log_wait, wait); 883 884 raw_spin_lock_irq(&logbuf_lock); 885 if (user->seq < log_next_seq) { 886 /* return error when data has vanished underneath us */ 887 if (user->seq < log_first_seq) 888 ret = POLLIN|POLLRDNORM|POLLERR|POLLPRI; 889 else 890 ret = POLLIN|POLLRDNORM; 891 } 892 raw_spin_unlock_irq(&logbuf_lock); 893 894 return ret; 895 } 896 897 static int devkmsg_open(struct inode *inode, struct file *file) 898 { 899 struct devkmsg_user *user; 900 int err; 901 902 if (devkmsg_log & DEVKMSG_LOG_MASK_OFF) 903 return -EPERM; 904 905 /* write-only does not need any file context */ 906 if ((file->f_flags & O_ACCMODE) != O_WRONLY) { 907 err = check_syslog_permissions(SYSLOG_ACTION_READ_ALL, 908 SYSLOG_FROM_READER); 909 if (err) 910 return err; 911 } 912 913 user = kmalloc(sizeof(struct devkmsg_user), GFP_KERNEL); 914 if (!user) 915 return -ENOMEM; 916 917 ratelimit_default_init(&user->rs); 918 ratelimit_set_flags(&user->rs, RATELIMIT_MSG_ON_RELEASE); 919 920 mutex_init(&user->lock); 921 922 raw_spin_lock_irq(&logbuf_lock); 923 user->idx = log_first_idx; 924 user->seq = log_first_seq; 925 raw_spin_unlock_irq(&logbuf_lock); 926 927 file->private_data = user; 928 return 0; 929 } 930 931 static int devkmsg_release(struct inode *inode, struct file *file) 932 { 933 struct devkmsg_user *user = file->private_data; 934 935 if (!user) 936 return 0; 937 938 ratelimit_state_exit(&user->rs); 939 940 mutex_destroy(&user->lock); 941 kfree(user); 942 return 0; 943 } 944 945 const struct file_operations kmsg_fops = { 946 .open = devkmsg_open, 947 .read = devkmsg_read, 948 .write_iter = devkmsg_write, 949 .llseek = devkmsg_llseek, 950 .poll = devkmsg_poll, 951 .release = devkmsg_release, 952 }; 953 954 #ifdef CONFIG_KEXEC_CORE 955 /* 956 * This appends the listed symbols to /proc/vmcore 957 * 958 * /proc/vmcore is used by various utilities, like crash and makedumpfile to 959 * obtain access to symbols that are otherwise very difficult to locate. These 960 * symbols are specifically used so that utilities can access and extract the 961 * dmesg log from a vmcore file after a crash. 962 */ 963 void log_buf_kexec_setup(void) 964 { 965 VMCOREINFO_SYMBOL(log_buf); 966 VMCOREINFO_SYMBOL(log_buf_len); 967 VMCOREINFO_SYMBOL(log_first_idx); 968 VMCOREINFO_SYMBOL(clear_idx); 969 VMCOREINFO_SYMBOL(log_next_idx); 970 /* 971 * Export struct printk_log size and field offsets. User space tools can 972 * parse it and detect any changes to structure down the line. 973 */ 974 VMCOREINFO_STRUCT_SIZE(printk_log); 975 VMCOREINFO_OFFSET(printk_log, ts_nsec); 976 VMCOREINFO_OFFSET(printk_log, len); 977 VMCOREINFO_OFFSET(printk_log, text_len); 978 VMCOREINFO_OFFSET(printk_log, dict_len); 979 } 980 #endif 981 982 /* requested log_buf_len from kernel cmdline */ 983 static unsigned long __initdata new_log_buf_len; 984 985 /* we practice scaling the ring buffer by powers of 2 */ 986 static void __init log_buf_len_update(unsigned size) 987 { 988 if (size) 989 size = roundup_pow_of_two(size); 990 if (size > log_buf_len) 991 new_log_buf_len = size; 992 } 993 994 /* save requested log_buf_len since it's too early to process it */ 995 static int __init log_buf_len_setup(char *str) 996 { 997 unsigned size = memparse(str, &str); 998 999 log_buf_len_update(size); 1000 1001 return 0; 1002 } 1003 early_param("log_buf_len", log_buf_len_setup); 1004 1005 #ifdef CONFIG_SMP 1006 #define __LOG_CPU_MAX_BUF_LEN (1 << CONFIG_LOG_CPU_MAX_BUF_SHIFT) 1007 1008 static void __init log_buf_add_cpu(void) 1009 { 1010 unsigned int cpu_extra; 1011 1012 /* 1013 * archs should set up cpu_possible_bits properly with 1014 * set_cpu_possible() after setup_arch() but just in 1015 * case lets ensure this is valid. 1016 */ 1017 if (num_possible_cpus() == 1) 1018 return; 1019 1020 cpu_extra = (num_possible_cpus() - 1) * __LOG_CPU_MAX_BUF_LEN; 1021 1022 /* by default this will only continue through for large > 64 CPUs */ 1023 if (cpu_extra <= __LOG_BUF_LEN / 2) 1024 return; 1025 1026 pr_info("log_buf_len individual max cpu contribution: %d bytes\n", 1027 __LOG_CPU_MAX_BUF_LEN); 1028 pr_info("log_buf_len total cpu_extra contributions: %d bytes\n", 1029 cpu_extra); 1030 pr_info("log_buf_len min size: %d bytes\n", __LOG_BUF_LEN); 1031 1032 log_buf_len_update(cpu_extra + __LOG_BUF_LEN); 1033 } 1034 #else /* !CONFIG_SMP */ 1035 static inline void log_buf_add_cpu(void) {} 1036 #endif /* CONFIG_SMP */ 1037 1038 void __init setup_log_buf(int early) 1039 { 1040 unsigned long flags; 1041 char *new_log_buf; 1042 int free; 1043 1044 if (log_buf != __log_buf) 1045 return; 1046 1047 if (!early && !new_log_buf_len) 1048 log_buf_add_cpu(); 1049 1050 if (!new_log_buf_len) 1051 return; 1052 1053 if (early) { 1054 new_log_buf = 1055 memblock_virt_alloc(new_log_buf_len, LOG_ALIGN); 1056 } else { 1057 new_log_buf = memblock_virt_alloc_nopanic(new_log_buf_len, 1058 LOG_ALIGN); 1059 } 1060 1061 if (unlikely(!new_log_buf)) { 1062 pr_err("log_buf_len: %ld bytes not available\n", 1063 new_log_buf_len); 1064 return; 1065 } 1066 1067 raw_spin_lock_irqsave(&logbuf_lock, flags); 1068 log_buf_len = new_log_buf_len; 1069 log_buf = new_log_buf; 1070 new_log_buf_len = 0; 1071 free = __LOG_BUF_LEN - log_next_idx; 1072 memcpy(log_buf, __log_buf, __LOG_BUF_LEN); 1073 raw_spin_unlock_irqrestore(&logbuf_lock, flags); 1074 1075 pr_info("log_buf_len: %d bytes\n", log_buf_len); 1076 pr_info("early log buf free: %d(%d%%)\n", 1077 free, (free * 100) / __LOG_BUF_LEN); 1078 } 1079 1080 static bool __read_mostly ignore_loglevel; 1081 1082 static int __init ignore_loglevel_setup(char *str) 1083 { 1084 ignore_loglevel = true; 1085 pr_info("debug: ignoring loglevel setting.\n"); 1086 1087 return 0; 1088 } 1089 1090 early_param("ignore_loglevel", ignore_loglevel_setup); 1091 module_param(ignore_loglevel, bool, S_IRUGO | S_IWUSR); 1092 MODULE_PARM_DESC(ignore_loglevel, 1093 "ignore loglevel setting (prints all kernel messages to the console)"); 1094 1095 static bool suppress_message_printing(int level) 1096 { 1097 return (level >= console_loglevel && !ignore_loglevel); 1098 } 1099 1100 #ifdef CONFIG_BOOT_PRINTK_DELAY 1101 1102 static int boot_delay; /* msecs delay after each printk during bootup */ 1103 static unsigned long long loops_per_msec; /* based on boot_delay */ 1104 1105 static int __init boot_delay_setup(char *str) 1106 { 1107 unsigned long lpj; 1108 1109 lpj = preset_lpj ? preset_lpj : 1000000; /* some guess */ 1110 loops_per_msec = (unsigned long long)lpj / 1000 * HZ; 1111 1112 get_option(&str, &boot_delay); 1113 if (boot_delay > 10 * 1000) 1114 boot_delay = 0; 1115 1116 pr_debug("boot_delay: %u, preset_lpj: %ld, lpj: %lu, " 1117 "HZ: %d, loops_per_msec: %llu\n", 1118 boot_delay, preset_lpj, lpj, HZ, loops_per_msec); 1119 return 0; 1120 } 1121 early_param("boot_delay", boot_delay_setup); 1122 1123 static void boot_delay_msec(int level) 1124 { 1125 unsigned long long k; 1126 unsigned long timeout; 1127 1128 if ((boot_delay == 0 || system_state != SYSTEM_BOOTING) 1129 || suppress_message_printing(level)) { 1130 return; 1131 } 1132 1133 k = (unsigned long long)loops_per_msec * boot_delay; 1134 1135 timeout = jiffies + msecs_to_jiffies(boot_delay); 1136 while (k) { 1137 k--; 1138 cpu_relax(); 1139 /* 1140 * use (volatile) jiffies to prevent 1141 * compiler reduction; loop termination via jiffies 1142 * is secondary and may or may not happen. 1143 */ 1144 if (time_after(jiffies, timeout)) 1145 break; 1146 touch_nmi_watchdog(); 1147 } 1148 } 1149 #else 1150 static inline void boot_delay_msec(int level) 1151 { 1152 } 1153 #endif 1154 1155 static bool printk_time = IS_ENABLED(CONFIG_PRINTK_TIME); 1156 module_param_named(time, printk_time, bool, S_IRUGO | S_IWUSR); 1157 1158 static size_t print_time(u64 ts, char *buf) 1159 { 1160 unsigned long rem_nsec; 1161 1162 if (!printk_time) 1163 return 0; 1164 1165 rem_nsec = do_div(ts, 1000000000); 1166 1167 if (!buf) 1168 return snprintf(NULL, 0, "[%5lu.000000] ", (unsigned long)ts); 1169 1170 return sprintf(buf, "[%5lu.%06lu] ", 1171 (unsigned long)ts, rem_nsec / 1000); 1172 } 1173 1174 static size_t print_prefix(const struct printk_log *msg, bool syslog, char *buf) 1175 { 1176 size_t len = 0; 1177 unsigned int prefix = (msg->facility << 3) | msg->level; 1178 1179 if (syslog) { 1180 if (buf) { 1181 len += sprintf(buf, "<%u>", prefix); 1182 } else { 1183 len += 3; 1184 if (prefix > 999) 1185 len += 3; 1186 else if (prefix > 99) 1187 len += 2; 1188 else if (prefix > 9) 1189 len++; 1190 } 1191 } 1192 1193 len += print_time(msg->ts_nsec, buf ? buf + len : NULL); 1194 return len; 1195 } 1196 1197 static size_t msg_print_text(const struct printk_log *msg, bool syslog, char *buf, size_t size) 1198 { 1199 const char *text = log_text(msg); 1200 size_t text_size = msg->text_len; 1201 size_t len = 0; 1202 1203 do { 1204 const char *next = memchr(text, '\n', text_size); 1205 size_t text_len; 1206 1207 if (next) { 1208 text_len = next - text; 1209 next++; 1210 text_size -= next - text; 1211 } else { 1212 text_len = text_size; 1213 } 1214 1215 if (buf) { 1216 if (print_prefix(msg, syslog, NULL) + 1217 text_len + 1 >= size - len) 1218 break; 1219 1220 len += print_prefix(msg, syslog, buf + len); 1221 memcpy(buf + len, text, text_len); 1222 len += text_len; 1223 buf[len++] = '\n'; 1224 } else { 1225 /* SYSLOG_ACTION_* buffer size only calculation */ 1226 len += print_prefix(msg, syslog, NULL); 1227 len += text_len; 1228 len++; 1229 } 1230 1231 text = next; 1232 } while (text); 1233 1234 return len; 1235 } 1236 1237 static int syslog_print(char __user *buf, int size) 1238 { 1239 char *text; 1240 struct printk_log *msg; 1241 int len = 0; 1242 1243 text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL); 1244 if (!text) 1245 return -ENOMEM; 1246 1247 while (size > 0) { 1248 size_t n; 1249 size_t skip; 1250 1251 raw_spin_lock_irq(&logbuf_lock); 1252 if (syslog_seq < log_first_seq) { 1253 /* messages are gone, move to first one */ 1254 syslog_seq = log_first_seq; 1255 syslog_idx = log_first_idx; 1256 syslog_partial = 0; 1257 } 1258 if (syslog_seq == log_next_seq) { 1259 raw_spin_unlock_irq(&logbuf_lock); 1260 break; 1261 } 1262 1263 skip = syslog_partial; 1264 msg = log_from_idx(syslog_idx); 1265 n = msg_print_text(msg, true, text, LOG_LINE_MAX + PREFIX_MAX); 1266 if (n - syslog_partial <= size) { 1267 /* message fits into buffer, move forward */ 1268 syslog_idx = log_next(syslog_idx); 1269 syslog_seq++; 1270 n -= syslog_partial; 1271 syslog_partial = 0; 1272 } else if (!len){ 1273 /* partial read(), remember position */ 1274 n = size; 1275 syslog_partial += n; 1276 } else 1277 n = 0; 1278 raw_spin_unlock_irq(&logbuf_lock); 1279 1280 if (!n) 1281 break; 1282 1283 if (copy_to_user(buf, text + skip, n)) { 1284 if (!len) 1285 len = -EFAULT; 1286 break; 1287 } 1288 1289 len += n; 1290 size -= n; 1291 buf += n; 1292 } 1293 1294 kfree(text); 1295 return len; 1296 } 1297 1298 static int syslog_print_all(char __user *buf, int size, bool clear) 1299 { 1300 char *text; 1301 int len = 0; 1302 1303 text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL); 1304 if (!text) 1305 return -ENOMEM; 1306 1307 raw_spin_lock_irq(&logbuf_lock); 1308 if (buf) { 1309 u64 next_seq; 1310 u64 seq; 1311 u32 idx; 1312 1313 /* 1314 * Find first record that fits, including all following records, 1315 * into the user-provided buffer for this dump. 1316 */ 1317 seq = clear_seq; 1318 idx = clear_idx; 1319 while (seq < log_next_seq) { 1320 struct printk_log *msg = log_from_idx(idx); 1321 1322 len += msg_print_text(msg, true, NULL, 0); 1323 idx = log_next(idx); 1324 seq++; 1325 } 1326 1327 /* move first record forward until length fits into the buffer */ 1328 seq = clear_seq; 1329 idx = clear_idx; 1330 while (len > size && seq < log_next_seq) { 1331 struct printk_log *msg = log_from_idx(idx); 1332 1333 len -= msg_print_text(msg, true, NULL, 0); 1334 idx = log_next(idx); 1335 seq++; 1336 } 1337 1338 /* last message fitting into this dump */ 1339 next_seq = log_next_seq; 1340 1341 len = 0; 1342 while (len >= 0 && seq < next_seq) { 1343 struct printk_log *msg = log_from_idx(idx); 1344 int textlen; 1345 1346 textlen = msg_print_text(msg, true, text, 1347 LOG_LINE_MAX + PREFIX_MAX); 1348 if (textlen < 0) { 1349 len = textlen; 1350 break; 1351 } 1352 idx = log_next(idx); 1353 seq++; 1354 1355 raw_spin_unlock_irq(&logbuf_lock); 1356 if (copy_to_user(buf + len, text, textlen)) 1357 len = -EFAULT; 1358 else 1359 len += textlen; 1360 raw_spin_lock_irq(&logbuf_lock); 1361 1362 if (seq < log_first_seq) { 1363 /* messages are gone, move to next one */ 1364 seq = log_first_seq; 1365 idx = log_first_idx; 1366 } 1367 } 1368 } 1369 1370 if (clear) { 1371 clear_seq = log_next_seq; 1372 clear_idx = log_next_idx; 1373 } 1374 raw_spin_unlock_irq(&logbuf_lock); 1375 1376 kfree(text); 1377 return len; 1378 } 1379 1380 int do_syslog(int type, char __user *buf, int len, int source) 1381 { 1382 bool clear = false; 1383 static int saved_console_loglevel = LOGLEVEL_DEFAULT; 1384 int error; 1385 1386 error = check_syslog_permissions(type, source); 1387 if (error) 1388 goto out; 1389 1390 switch (type) { 1391 case SYSLOG_ACTION_CLOSE: /* Close log */ 1392 break; 1393 case SYSLOG_ACTION_OPEN: /* Open log */ 1394 break; 1395 case SYSLOG_ACTION_READ: /* Read from log */ 1396 error = -EINVAL; 1397 if (!buf || len < 0) 1398 goto out; 1399 error = 0; 1400 if (!len) 1401 goto out; 1402 if (!access_ok(VERIFY_WRITE, buf, len)) { 1403 error = -EFAULT; 1404 goto out; 1405 } 1406 error = wait_event_interruptible(log_wait, 1407 syslog_seq != log_next_seq); 1408 if (error) 1409 goto out; 1410 error = syslog_print(buf, len); 1411 break; 1412 /* Read/clear last kernel messages */ 1413 case SYSLOG_ACTION_READ_CLEAR: 1414 clear = true; 1415 /* FALL THRU */ 1416 /* Read last kernel messages */ 1417 case SYSLOG_ACTION_READ_ALL: 1418 error = -EINVAL; 1419 if (!buf || len < 0) 1420 goto out; 1421 error = 0; 1422 if (!len) 1423 goto out; 1424 if (!access_ok(VERIFY_WRITE, buf, len)) { 1425 error = -EFAULT; 1426 goto out; 1427 } 1428 error = syslog_print_all(buf, len, clear); 1429 break; 1430 /* Clear ring buffer */ 1431 case SYSLOG_ACTION_CLEAR: 1432 syslog_print_all(NULL, 0, true); 1433 break; 1434 /* Disable logging to console */ 1435 case SYSLOG_ACTION_CONSOLE_OFF: 1436 if (saved_console_loglevel == LOGLEVEL_DEFAULT) 1437 saved_console_loglevel = console_loglevel; 1438 console_loglevel = minimum_console_loglevel; 1439 break; 1440 /* Enable logging to console */ 1441 case SYSLOG_ACTION_CONSOLE_ON: 1442 if (saved_console_loglevel != LOGLEVEL_DEFAULT) { 1443 console_loglevel = saved_console_loglevel; 1444 saved_console_loglevel = LOGLEVEL_DEFAULT; 1445 } 1446 break; 1447 /* Set level of messages printed to console */ 1448 case SYSLOG_ACTION_CONSOLE_LEVEL: 1449 error = -EINVAL; 1450 if (len < 1 || len > 8) 1451 goto out; 1452 if (len < minimum_console_loglevel) 1453 len = minimum_console_loglevel; 1454 console_loglevel = len; 1455 /* Implicitly re-enable logging to console */ 1456 saved_console_loglevel = LOGLEVEL_DEFAULT; 1457 error = 0; 1458 break; 1459 /* Number of chars in the log buffer */ 1460 case SYSLOG_ACTION_SIZE_UNREAD: 1461 raw_spin_lock_irq(&logbuf_lock); 1462 if (syslog_seq < log_first_seq) { 1463 /* messages are gone, move to first one */ 1464 syslog_seq = log_first_seq; 1465 syslog_idx = log_first_idx; 1466 syslog_partial = 0; 1467 } 1468 if (source == SYSLOG_FROM_PROC) { 1469 /* 1470 * Short-cut for poll(/"proc/kmsg") which simply checks 1471 * for pending data, not the size; return the count of 1472 * records, not the length. 1473 */ 1474 error = log_next_seq - syslog_seq; 1475 } else { 1476 u64 seq = syslog_seq; 1477 u32 idx = syslog_idx; 1478 1479 error = 0; 1480 while (seq < log_next_seq) { 1481 struct printk_log *msg = log_from_idx(idx); 1482 1483 error += msg_print_text(msg, true, NULL, 0); 1484 idx = log_next(idx); 1485 seq++; 1486 } 1487 error -= syslog_partial; 1488 } 1489 raw_spin_unlock_irq(&logbuf_lock); 1490 break; 1491 /* Size of the log buffer */ 1492 case SYSLOG_ACTION_SIZE_BUFFER: 1493 error = log_buf_len; 1494 break; 1495 default: 1496 error = -EINVAL; 1497 break; 1498 } 1499 out: 1500 return error; 1501 } 1502 1503 SYSCALL_DEFINE3(syslog, int, type, char __user *, buf, int, len) 1504 { 1505 return do_syslog(type, buf, len, SYSLOG_FROM_READER); 1506 } 1507 1508 /* 1509 * Call the console drivers, asking them to write out 1510 * log_buf[start] to log_buf[end - 1]. 1511 * The console_lock must be held. 1512 */ 1513 static void call_console_drivers(int level, 1514 const char *ext_text, size_t ext_len, 1515 const char *text, size_t len) 1516 { 1517 struct console *con; 1518 1519 trace_console(text, len); 1520 1521 if (!console_drivers) 1522 return; 1523 1524 for_each_console(con) { 1525 if (exclusive_console && con != exclusive_console) 1526 continue; 1527 if (!(con->flags & CON_ENABLED)) 1528 continue; 1529 if (!con->write) 1530 continue; 1531 if (!cpu_online(smp_processor_id()) && 1532 !(con->flags & CON_ANYTIME)) 1533 continue; 1534 if (con->flags & CON_EXTENDED) 1535 con->write(con, ext_text, ext_len); 1536 else 1537 con->write(con, text, len); 1538 } 1539 } 1540 1541 /* 1542 * Zap console related locks when oopsing. 1543 * To leave time for slow consoles to print a full oops, 1544 * only zap at most once every 30 seconds. 1545 */ 1546 static void zap_locks(void) 1547 { 1548 static unsigned long oops_timestamp; 1549 1550 if (time_after_eq(jiffies, oops_timestamp) && 1551 !time_after(jiffies, oops_timestamp + 30 * HZ)) 1552 return; 1553 1554 oops_timestamp = jiffies; 1555 1556 debug_locks_off(); 1557 /* If a crash is occurring, make sure we can't deadlock */ 1558 raw_spin_lock_init(&logbuf_lock); 1559 /* And make sure that we print immediately */ 1560 sema_init(&console_sem, 1); 1561 } 1562 1563 int printk_delay_msec __read_mostly; 1564 1565 static inline void printk_delay(void) 1566 { 1567 if (unlikely(printk_delay_msec)) { 1568 int m = printk_delay_msec; 1569 1570 while (m--) { 1571 mdelay(1); 1572 touch_nmi_watchdog(); 1573 } 1574 } 1575 } 1576 1577 /* 1578 * Continuation lines are buffered, and not committed to the record buffer 1579 * until the line is complete, or a race forces it. The line fragments 1580 * though, are printed immediately to the consoles to ensure everything has 1581 * reached the console in case of a kernel crash. 1582 */ 1583 static struct cont { 1584 char buf[LOG_LINE_MAX]; 1585 size_t len; /* length == 0 means unused buffer */ 1586 struct task_struct *owner; /* task of first print*/ 1587 u64 ts_nsec; /* time of first print */ 1588 u8 level; /* log level of first message */ 1589 u8 facility; /* log facility of first message */ 1590 enum log_flags flags; /* prefix, newline flags */ 1591 } cont; 1592 1593 static void cont_flush(void) 1594 { 1595 if (cont.len == 0) 1596 return; 1597 1598 log_store(cont.facility, cont.level, cont.flags, cont.ts_nsec, 1599 NULL, 0, cont.buf, cont.len); 1600 cont.len = 0; 1601 } 1602 1603 static bool cont_add(int facility, int level, enum log_flags flags, const char *text, size_t len) 1604 { 1605 /* 1606 * If ext consoles are present, flush and skip in-kernel 1607 * continuation. See nr_ext_console_drivers definition. Also, if 1608 * the line gets too long, split it up in separate records. 1609 */ 1610 if (nr_ext_console_drivers || cont.len + len > sizeof(cont.buf)) { 1611 cont_flush(); 1612 return false; 1613 } 1614 1615 if (!cont.len) { 1616 cont.facility = facility; 1617 cont.level = level; 1618 cont.owner = current; 1619 cont.ts_nsec = local_clock(); 1620 cont.flags = flags; 1621 } 1622 1623 memcpy(cont.buf + cont.len, text, len); 1624 cont.len += len; 1625 1626 // The original flags come from the first line, 1627 // but later continuations can add a newline. 1628 if (flags & LOG_NEWLINE) { 1629 cont.flags |= LOG_NEWLINE; 1630 cont_flush(); 1631 } 1632 1633 if (cont.len > (sizeof(cont.buf) * 80) / 100) 1634 cont_flush(); 1635 1636 return true; 1637 } 1638 1639 static size_t log_output(int facility, int level, enum log_flags lflags, const char *dict, size_t dictlen, char *text, size_t text_len) 1640 { 1641 /* 1642 * If an earlier line was buffered, and we're a continuation 1643 * write from the same process, try to add it to the buffer. 1644 */ 1645 if (cont.len) { 1646 if (cont.owner == current && (lflags & LOG_CONT)) { 1647 if (cont_add(facility, level, lflags, text, text_len)) 1648 return text_len; 1649 } 1650 /* Otherwise, make sure it's flushed */ 1651 cont_flush(); 1652 } 1653 1654 /* Skip empty continuation lines that couldn't be added - they just flush */ 1655 if (!text_len && (lflags & LOG_CONT)) 1656 return 0; 1657 1658 /* If it doesn't end in a newline, try to buffer the current line */ 1659 if (!(lflags & LOG_NEWLINE)) { 1660 if (cont_add(facility, level, lflags, text, text_len)) 1661 return text_len; 1662 } 1663 1664 /* Store it in the record log */ 1665 return log_store(facility, level, lflags, 0, dict, dictlen, text, text_len); 1666 } 1667 1668 asmlinkage int vprintk_emit(int facility, int level, 1669 const char *dict, size_t dictlen, 1670 const char *fmt, va_list args) 1671 { 1672 static bool recursion_bug; 1673 static char textbuf[LOG_LINE_MAX]; 1674 char *text = textbuf; 1675 size_t text_len = 0; 1676 enum log_flags lflags = 0; 1677 unsigned long flags; 1678 int this_cpu; 1679 int printed_len = 0; 1680 int nmi_message_lost; 1681 bool in_sched = false; 1682 /* cpu currently holding logbuf_lock in this function */ 1683 static unsigned int logbuf_cpu = UINT_MAX; 1684 1685 if (level == LOGLEVEL_SCHED) { 1686 level = LOGLEVEL_DEFAULT; 1687 in_sched = true; 1688 } 1689 1690 boot_delay_msec(level); 1691 printk_delay(); 1692 1693 local_irq_save(flags); 1694 this_cpu = smp_processor_id(); 1695 1696 /* 1697 * Ouch, printk recursed into itself! 1698 */ 1699 if (unlikely(logbuf_cpu == this_cpu)) { 1700 /* 1701 * If a crash is occurring during printk() on this CPU, 1702 * then try to get the crash message out but make sure 1703 * we can't deadlock. Otherwise just return to avoid the 1704 * recursion and return - but flag the recursion so that 1705 * it can be printed at the next appropriate moment: 1706 */ 1707 if (!oops_in_progress && !lockdep_recursing(current)) { 1708 recursion_bug = true; 1709 local_irq_restore(flags); 1710 return 0; 1711 } 1712 zap_locks(); 1713 } 1714 1715 lockdep_off(); 1716 /* This stops the holder of console_sem just where we want him */ 1717 raw_spin_lock(&logbuf_lock); 1718 logbuf_cpu = this_cpu; 1719 1720 if (unlikely(recursion_bug)) { 1721 static const char recursion_msg[] = 1722 "BUG: recent printk recursion!"; 1723 1724 recursion_bug = false; 1725 /* emit KERN_CRIT message */ 1726 printed_len += log_store(0, 2, LOG_PREFIX|LOG_NEWLINE, 0, 1727 NULL, 0, recursion_msg, 1728 strlen(recursion_msg)); 1729 } 1730 1731 nmi_message_lost = get_nmi_message_lost(); 1732 if (unlikely(nmi_message_lost)) { 1733 text_len = scnprintf(textbuf, sizeof(textbuf), 1734 "BAD LUCK: lost %d message(s) from NMI context!", 1735 nmi_message_lost); 1736 printed_len += log_store(0, 2, LOG_PREFIX|LOG_NEWLINE, 0, 1737 NULL, 0, textbuf, text_len); 1738 } 1739 1740 /* 1741 * The printf needs to come first; we need the syslog 1742 * prefix which might be passed-in as a parameter. 1743 */ 1744 text_len = vscnprintf(text, sizeof(textbuf), fmt, args); 1745 1746 /* mark and strip a trailing newline */ 1747 if (text_len && text[text_len-1] == '\n') { 1748 text_len--; 1749 lflags |= LOG_NEWLINE; 1750 } 1751 1752 /* strip kernel syslog prefix and extract log level or control flags */ 1753 if (facility == 0) { 1754 int kern_level; 1755 1756 while ((kern_level = printk_get_level(text)) != 0) { 1757 switch (kern_level) { 1758 case '0' ... '7': 1759 if (level == LOGLEVEL_DEFAULT) 1760 level = kern_level - '0'; 1761 /* fallthrough */ 1762 case 'd': /* KERN_DEFAULT */ 1763 lflags |= LOG_PREFIX; 1764 break; 1765 case 'c': /* KERN_CONT */ 1766 lflags |= LOG_CONT; 1767 } 1768 1769 text_len -= 2; 1770 text += 2; 1771 } 1772 } 1773 1774 if (level == LOGLEVEL_DEFAULT) 1775 level = default_message_loglevel; 1776 1777 if (dict) 1778 lflags |= LOG_PREFIX|LOG_NEWLINE; 1779 1780 printed_len += log_output(facility, level, lflags, dict, dictlen, text, text_len); 1781 1782 logbuf_cpu = UINT_MAX; 1783 raw_spin_unlock(&logbuf_lock); 1784 lockdep_on(); 1785 local_irq_restore(flags); 1786 1787 /* If called from the scheduler, we can not call up(). */ 1788 if (!in_sched) { 1789 lockdep_off(); 1790 /* 1791 * Try to acquire and then immediately release the console 1792 * semaphore. The release will print out buffers and wake up 1793 * /dev/kmsg and syslog() users. 1794 */ 1795 if (console_trylock()) 1796 console_unlock(); 1797 lockdep_on(); 1798 } 1799 1800 return printed_len; 1801 } 1802 EXPORT_SYMBOL(vprintk_emit); 1803 1804 asmlinkage int vprintk(const char *fmt, va_list args) 1805 { 1806 return vprintk_emit(0, LOGLEVEL_DEFAULT, NULL, 0, fmt, args); 1807 } 1808 EXPORT_SYMBOL(vprintk); 1809 1810 asmlinkage int printk_emit(int facility, int level, 1811 const char *dict, size_t dictlen, 1812 const char *fmt, ...) 1813 { 1814 va_list args; 1815 int r; 1816 1817 va_start(args, fmt); 1818 r = vprintk_emit(facility, level, dict, dictlen, fmt, args); 1819 va_end(args); 1820 1821 return r; 1822 } 1823 EXPORT_SYMBOL(printk_emit); 1824 1825 int vprintk_default(const char *fmt, va_list args) 1826 { 1827 int r; 1828 1829 #ifdef CONFIG_KGDB_KDB 1830 /* Allow to pass printk() to kdb but avoid a recursion. */ 1831 if (unlikely(kdb_trap_printk && kdb_printf_cpu < 0)) { 1832 r = vkdb_printf(KDB_MSGSRC_PRINTK, fmt, args); 1833 return r; 1834 } 1835 #endif 1836 r = vprintk_emit(0, LOGLEVEL_DEFAULT, NULL, 0, fmt, args); 1837 1838 return r; 1839 } 1840 EXPORT_SYMBOL_GPL(vprintk_default); 1841 1842 /** 1843 * printk - print a kernel message 1844 * @fmt: format string 1845 * 1846 * This is printk(). It can be called from any context. We want it to work. 1847 * 1848 * We try to grab the console_lock. If we succeed, it's easy - we log the 1849 * output and call the console drivers. If we fail to get the semaphore, we 1850 * place the output into the log buffer and return. The current holder of 1851 * the console_sem will notice the new output in console_unlock(); and will 1852 * send it to the consoles before releasing the lock. 1853 * 1854 * One effect of this deferred printing is that code which calls printk() and 1855 * then changes console_loglevel may break. This is because console_loglevel 1856 * is inspected when the actual printing occurs. 1857 * 1858 * See also: 1859 * printf(3) 1860 * 1861 * See the vsnprintf() documentation for format string extensions over C99. 1862 */ 1863 asmlinkage __visible int printk(const char *fmt, ...) 1864 { 1865 va_list args; 1866 int r; 1867 1868 va_start(args, fmt); 1869 r = vprintk_func(fmt, args); 1870 va_end(args); 1871 1872 return r; 1873 } 1874 EXPORT_SYMBOL(printk); 1875 1876 #else /* CONFIG_PRINTK */ 1877 1878 #define LOG_LINE_MAX 0 1879 #define PREFIX_MAX 0 1880 1881 static u64 syslog_seq; 1882 static u32 syslog_idx; 1883 static u64 console_seq; 1884 static u32 console_idx; 1885 static u64 log_first_seq; 1886 static u32 log_first_idx; 1887 static u64 log_next_seq; 1888 static char *log_text(const struct printk_log *msg) { return NULL; } 1889 static char *log_dict(const struct printk_log *msg) { return NULL; } 1890 static struct printk_log *log_from_idx(u32 idx) { return NULL; } 1891 static u32 log_next(u32 idx) { return 0; } 1892 static ssize_t msg_print_ext_header(char *buf, size_t size, 1893 struct printk_log *msg, 1894 u64 seq) { return 0; } 1895 static ssize_t msg_print_ext_body(char *buf, size_t size, 1896 char *dict, size_t dict_len, 1897 char *text, size_t text_len) { return 0; } 1898 static void call_console_drivers(int level, 1899 const char *ext_text, size_t ext_len, 1900 const char *text, size_t len) {} 1901 static size_t msg_print_text(const struct printk_log *msg, 1902 bool syslog, char *buf, size_t size) { return 0; } 1903 static bool suppress_message_printing(int level) { return false; } 1904 1905 /* Still needs to be defined for users */ 1906 DEFINE_PER_CPU(printk_func_t, printk_func); 1907 1908 #endif /* CONFIG_PRINTK */ 1909 1910 #ifdef CONFIG_EARLY_PRINTK 1911 struct console *early_console; 1912 1913 asmlinkage __visible void early_printk(const char *fmt, ...) 1914 { 1915 va_list ap; 1916 char buf[512]; 1917 int n; 1918 1919 if (!early_console) 1920 return; 1921 1922 va_start(ap, fmt); 1923 n = vscnprintf(buf, sizeof(buf), fmt, ap); 1924 va_end(ap); 1925 1926 early_console->write(early_console, buf, n); 1927 } 1928 #endif 1929 1930 static int __add_preferred_console(char *name, int idx, char *options, 1931 char *brl_options) 1932 { 1933 struct console_cmdline *c; 1934 int i; 1935 1936 /* 1937 * See if this tty is not yet registered, and 1938 * if we have a slot free. 1939 */ 1940 for (i = 0, c = console_cmdline; 1941 i < MAX_CMDLINECONSOLES && c->name[0]; 1942 i++, c++) { 1943 if (strcmp(c->name, name) == 0 && c->index == idx) { 1944 if (!brl_options) 1945 selected_console = i; 1946 return 0; 1947 } 1948 } 1949 if (i == MAX_CMDLINECONSOLES) 1950 return -E2BIG; 1951 if (!brl_options) 1952 selected_console = i; 1953 strlcpy(c->name, name, sizeof(c->name)); 1954 c->options = options; 1955 braille_set_options(c, brl_options); 1956 1957 c->index = idx; 1958 return 0; 1959 } 1960 /* 1961 * Set up a console. Called via do_early_param() in init/main.c 1962 * for each "console=" parameter in the boot command line. 1963 */ 1964 static int __init console_setup(char *str) 1965 { 1966 char buf[sizeof(console_cmdline[0].name) + 4]; /* 4 for "ttyS" */ 1967 char *s, *options, *brl_options = NULL; 1968 int idx; 1969 1970 if (_braille_console_setup(&str, &brl_options)) 1971 return 1; 1972 1973 /* 1974 * Decode str into name, index, options. 1975 */ 1976 if (str[0] >= '0' && str[0] <= '9') { 1977 strcpy(buf, "ttyS"); 1978 strncpy(buf + 4, str, sizeof(buf) - 5); 1979 } else { 1980 strncpy(buf, str, sizeof(buf) - 1); 1981 } 1982 buf[sizeof(buf) - 1] = 0; 1983 options = strchr(str, ','); 1984 if (options) 1985 *(options++) = 0; 1986 #ifdef __sparc__ 1987 if (!strcmp(str, "ttya")) 1988 strcpy(buf, "ttyS0"); 1989 if (!strcmp(str, "ttyb")) 1990 strcpy(buf, "ttyS1"); 1991 #endif 1992 for (s = buf; *s; s++) 1993 if (isdigit(*s) || *s == ',') 1994 break; 1995 idx = simple_strtoul(s, NULL, 10); 1996 *s = 0; 1997 1998 __add_preferred_console(buf, idx, options, brl_options); 1999 console_set_on_cmdline = 1; 2000 return 1; 2001 } 2002 __setup("console=", console_setup); 2003 2004 /** 2005 * add_preferred_console - add a device to the list of preferred consoles. 2006 * @name: device name 2007 * @idx: device index 2008 * @options: options for this console 2009 * 2010 * The last preferred console added will be used for kernel messages 2011 * and stdin/out/err for init. Normally this is used by console_setup 2012 * above to handle user-supplied console arguments; however it can also 2013 * be used by arch-specific code either to override the user or more 2014 * commonly to provide a default console (ie from PROM variables) when 2015 * the user has not supplied one. 2016 */ 2017 int add_preferred_console(char *name, int idx, char *options) 2018 { 2019 return __add_preferred_console(name, idx, options, NULL); 2020 } 2021 2022 bool console_suspend_enabled = true; 2023 EXPORT_SYMBOL(console_suspend_enabled); 2024 2025 static int __init console_suspend_disable(char *str) 2026 { 2027 console_suspend_enabled = false; 2028 return 1; 2029 } 2030 __setup("no_console_suspend", console_suspend_disable); 2031 module_param_named(console_suspend, console_suspend_enabled, 2032 bool, S_IRUGO | S_IWUSR); 2033 MODULE_PARM_DESC(console_suspend, "suspend console during suspend" 2034 " and hibernate operations"); 2035 2036 /** 2037 * suspend_console - suspend the console subsystem 2038 * 2039 * This disables printk() while we go into suspend states 2040 */ 2041 void suspend_console(void) 2042 { 2043 if (!console_suspend_enabled) 2044 return; 2045 printk("Suspending console(s) (use no_console_suspend to debug)\n"); 2046 console_lock(); 2047 console_suspended = 1; 2048 up_console_sem(); 2049 } 2050 2051 void resume_console(void) 2052 { 2053 if (!console_suspend_enabled) 2054 return; 2055 down_console_sem(); 2056 console_suspended = 0; 2057 console_unlock(); 2058 } 2059 2060 /** 2061 * console_cpu_notify - print deferred console messages after CPU hotplug 2062 * @cpu: unused 2063 * 2064 * If printk() is called from a CPU that is not online yet, the messages 2065 * will be spooled but will not show up on the console. This function is 2066 * called when a new CPU comes online (or fails to come up), and ensures 2067 * that any such output gets printed. 2068 */ 2069 static int console_cpu_notify(unsigned int cpu) 2070 { 2071 if (!cpuhp_tasks_frozen) { 2072 console_lock(); 2073 console_unlock(); 2074 } 2075 return 0; 2076 } 2077 2078 /** 2079 * console_lock - lock the console system for exclusive use. 2080 * 2081 * Acquires a lock which guarantees that the caller has 2082 * exclusive access to the console system and the console_drivers list. 2083 * 2084 * Can sleep, returns nothing. 2085 */ 2086 void console_lock(void) 2087 { 2088 might_sleep(); 2089 2090 down_console_sem(); 2091 if (console_suspended) 2092 return; 2093 console_locked = 1; 2094 console_may_schedule = 1; 2095 } 2096 EXPORT_SYMBOL(console_lock); 2097 2098 /** 2099 * console_trylock - try to lock the console system for exclusive use. 2100 * 2101 * Try to acquire a lock which guarantees that the caller has exclusive 2102 * access to the console system and the console_drivers list. 2103 * 2104 * returns 1 on success, and 0 on failure to acquire the lock. 2105 */ 2106 int console_trylock(void) 2107 { 2108 if (down_trylock_console_sem()) 2109 return 0; 2110 if (console_suspended) { 2111 up_console_sem(); 2112 return 0; 2113 } 2114 console_locked = 1; 2115 /* 2116 * When PREEMPT_COUNT disabled we can't reliably detect if it's 2117 * safe to schedule (e.g. calling printk while holding a spin_lock), 2118 * because preempt_disable()/preempt_enable() are just barriers there 2119 * and preempt_count() is always 0. 2120 * 2121 * RCU read sections have a separate preemption counter when 2122 * PREEMPT_RCU enabled thus we must take extra care and check 2123 * rcu_preempt_depth(), otherwise RCU read sections modify 2124 * preempt_count(). 2125 */ 2126 console_may_schedule = !oops_in_progress && 2127 preemptible() && 2128 !rcu_preempt_depth(); 2129 return 1; 2130 } 2131 EXPORT_SYMBOL(console_trylock); 2132 2133 int is_console_locked(void) 2134 { 2135 return console_locked; 2136 } 2137 2138 /* 2139 * Check if we have any console that is capable of printing while cpu is 2140 * booting or shutting down. Requires console_sem. 2141 */ 2142 static int have_callable_console(void) 2143 { 2144 struct console *con; 2145 2146 for_each_console(con) 2147 if ((con->flags & CON_ENABLED) && 2148 (con->flags & CON_ANYTIME)) 2149 return 1; 2150 2151 return 0; 2152 } 2153 2154 /* 2155 * Can we actually use the console at this time on this cpu? 2156 * 2157 * Console drivers may assume that per-cpu resources have been allocated. So 2158 * unless they're explicitly marked as being able to cope (CON_ANYTIME) don't 2159 * call them until this CPU is officially up. 2160 */ 2161 static inline int can_use_console(void) 2162 { 2163 return cpu_online(raw_smp_processor_id()) || have_callable_console(); 2164 } 2165 2166 /** 2167 * console_unlock - unlock the console system 2168 * 2169 * Releases the console_lock which the caller holds on the console system 2170 * and the console driver list. 2171 * 2172 * While the console_lock was held, console output may have been buffered 2173 * by printk(). If this is the case, console_unlock(); emits 2174 * the output prior to releasing the lock. 2175 * 2176 * If there is output waiting, we wake /dev/kmsg and syslog() users. 2177 * 2178 * console_unlock(); may be called from any context. 2179 */ 2180 void console_unlock(void) 2181 { 2182 static char ext_text[CONSOLE_EXT_LOG_MAX]; 2183 static char text[LOG_LINE_MAX + PREFIX_MAX]; 2184 static u64 seen_seq; 2185 unsigned long flags; 2186 bool wake_klogd = false; 2187 bool do_cond_resched, retry; 2188 2189 if (console_suspended) { 2190 up_console_sem(); 2191 return; 2192 } 2193 2194 /* 2195 * Console drivers are called under logbuf_lock, so 2196 * @console_may_schedule should be cleared before; however, we may 2197 * end up dumping a lot of lines, for example, if called from 2198 * console registration path, and should invoke cond_resched() 2199 * between lines if allowable. Not doing so can cause a very long 2200 * scheduling stall on a slow console leading to RCU stall and 2201 * softlockup warnings which exacerbate the issue with more 2202 * messages practically incapacitating the system. 2203 */ 2204 do_cond_resched = console_may_schedule; 2205 console_may_schedule = 0; 2206 2207 again: 2208 /* 2209 * We released the console_sem lock, so we need to recheck if 2210 * cpu is online and (if not) is there at least one CON_ANYTIME 2211 * console. 2212 */ 2213 if (!can_use_console()) { 2214 console_locked = 0; 2215 up_console_sem(); 2216 return; 2217 } 2218 2219 for (;;) { 2220 struct printk_log *msg; 2221 size_t ext_len = 0; 2222 size_t len; 2223 int level; 2224 2225 raw_spin_lock_irqsave(&logbuf_lock, flags); 2226 if (seen_seq != log_next_seq) { 2227 wake_klogd = true; 2228 seen_seq = log_next_seq; 2229 } 2230 2231 if (console_seq < log_first_seq) { 2232 len = sprintf(text, "** %u printk messages dropped ** ", 2233 (unsigned)(log_first_seq - console_seq)); 2234 2235 /* messages are gone, move to first one */ 2236 console_seq = log_first_seq; 2237 console_idx = log_first_idx; 2238 } else { 2239 len = 0; 2240 } 2241 skip: 2242 if (console_seq == log_next_seq) 2243 break; 2244 2245 msg = log_from_idx(console_idx); 2246 level = msg->level; 2247 if (suppress_message_printing(level)) { 2248 /* 2249 * Skip record we have buffered and already printed 2250 * directly to the console when we received it, and 2251 * record that has level above the console loglevel. 2252 */ 2253 console_idx = log_next(console_idx); 2254 console_seq++; 2255 goto skip; 2256 } 2257 2258 len += msg_print_text(msg, false, text + len, sizeof(text) - len); 2259 if (nr_ext_console_drivers) { 2260 ext_len = msg_print_ext_header(ext_text, 2261 sizeof(ext_text), 2262 msg, console_seq); 2263 ext_len += msg_print_ext_body(ext_text + ext_len, 2264 sizeof(ext_text) - ext_len, 2265 log_dict(msg), msg->dict_len, 2266 log_text(msg), msg->text_len); 2267 } 2268 console_idx = log_next(console_idx); 2269 console_seq++; 2270 raw_spin_unlock(&logbuf_lock); 2271 2272 stop_critical_timings(); /* don't trace print latency */ 2273 call_console_drivers(level, ext_text, ext_len, text, len); 2274 start_critical_timings(); 2275 local_irq_restore(flags); 2276 2277 if (do_cond_resched) 2278 cond_resched(); 2279 } 2280 console_locked = 0; 2281 2282 /* Release the exclusive_console once it is used */ 2283 if (unlikely(exclusive_console)) 2284 exclusive_console = NULL; 2285 2286 raw_spin_unlock(&logbuf_lock); 2287 2288 up_console_sem(); 2289 2290 /* 2291 * Someone could have filled up the buffer again, so re-check if there's 2292 * something to flush. In case we cannot trylock the console_sem again, 2293 * there's a new owner and the console_unlock() from them will do the 2294 * flush, no worries. 2295 */ 2296 raw_spin_lock(&logbuf_lock); 2297 retry = console_seq != log_next_seq; 2298 raw_spin_unlock_irqrestore(&logbuf_lock, flags); 2299 2300 if (retry && console_trylock()) 2301 goto again; 2302 2303 if (wake_klogd) 2304 wake_up_klogd(); 2305 } 2306 EXPORT_SYMBOL(console_unlock); 2307 2308 /** 2309 * console_conditional_schedule - yield the CPU if required 2310 * 2311 * If the console code is currently allowed to sleep, and 2312 * if this CPU should yield the CPU to another task, do 2313 * so here. 2314 * 2315 * Must be called within console_lock();. 2316 */ 2317 void __sched console_conditional_schedule(void) 2318 { 2319 if (console_may_schedule) 2320 cond_resched(); 2321 } 2322 EXPORT_SYMBOL(console_conditional_schedule); 2323 2324 void console_unblank(void) 2325 { 2326 struct console *c; 2327 2328 /* 2329 * console_unblank can no longer be called in interrupt context unless 2330 * oops_in_progress is set to 1.. 2331 */ 2332 if (oops_in_progress) { 2333 if (down_trylock_console_sem() != 0) 2334 return; 2335 } else 2336 console_lock(); 2337 2338 console_locked = 1; 2339 console_may_schedule = 0; 2340 for_each_console(c) 2341 if ((c->flags & CON_ENABLED) && c->unblank) 2342 c->unblank(); 2343 console_unlock(); 2344 } 2345 2346 /** 2347 * console_flush_on_panic - flush console content on panic 2348 * 2349 * Immediately output all pending messages no matter what. 2350 */ 2351 void console_flush_on_panic(void) 2352 { 2353 /* 2354 * If someone else is holding the console lock, trylock will fail 2355 * and may_schedule may be set. Ignore and proceed to unlock so 2356 * that messages are flushed out. As this can be called from any 2357 * context and we don't want to get preempted while flushing, 2358 * ensure may_schedule is cleared. 2359 */ 2360 console_trylock(); 2361 console_may_schedule = 0; 2362 console_unlock(); 2363 } 2364 2365 /* 2366 * Return the console tty driver structure and its associated index 2367 */ 2368 struct tty_driver *console_device(int *index) 2369 { 2370 struct console *c; 2371 struct tty_driver *driver = NULL; 2372 2373 console_lock(); 2374 for_each_console(c) { 2375 if (!c->device) 2376 continue; 2377 driver = c->device(c, index); 2378 if (driver) 2379 break; 2380 } 2381 console_unlock(); 2382 return driver; 2383 } 2384 2385 /* 2386 * Prevent further output on the passed console device so that (for example) 2387 * serial drivers can disable console output before suspending a port, and can 2388 * re-enable output afterwards. 2389 */ 2390 void console_stop(struct console *console) 2391 { 2392 console_lock(); 2393 console->flags &= ~CON_ENABLED; 2394 console_unlock(); 2395 } 2396 EXPORT_SYMBOL(console_stop); 2397 2398 void console_start(struct console *console) 2399 { 2400 console_lock(); 2401 console->flags |= CON_ENABLED; 2402 console_unlock(); 2403 } 2404 EXPORT_SYMBOL(console_start); 2405 2406 static int __read_mostly keep_bootcon; 2407 2408 static int __init keep_bootcon_setup(char *str) 2409 { 2410 keep_bootcon = 1; 2411 pr_info("debug: skip boot console de-registration.\n"); 2412 2413 return 0; 2414 } 2415 2416 early_param("keep_bootcon", keep_bootcon_setup); 2417 2418 /* 2419 * The console driver calls this routine during kernel initialization 2420 * to register the console printing procedure with printk() and to 2421 * print any messages that were printed by the kernel before the 2422 * console driver was initialized. 2423 * 2424 * This can happen pretty early during the boot process (because of 2425 * early_printk) - sometimes before setup_arch() completes - be careful 2426 * of what kernel features are used - they may not be initialised yet. 2427 * 2428 * There are two types of consoles - bootconsoles (early_printk) and 2429 * "real" consoles (everything which is not a bootconsole) which are 2430 * handled differently. 2431 * - Any number of bootconsoles can be registered at any time. 2432 * - As soon as a "real" console is registered, all bootconsoles 2433 * will be unregistered automatically. 2434 * - Once a "real" console is registered, any attempt to register a 2435 * bootconsoles will be rejected 2436 */ 2437 void register_console(struct console *newcon) 2438 { 2439 int i; 2440 unsigned long flags; 2441 struct console *bcon = NULL; 2442 struct console_cmdline *c; 2443 2444 if (console_drivers) 2445 for_each_console(bcon) 2446 if (WARN(bcon == newcon, 2447 "console '%s%d' already registered\n", 2448 bcon->name, bcon->index)) 2449 return; 2450 2451 /* 2452 * before we register a new CON_BOOT console, make sure we don't 2453 * already have a valid console 2454 */ 2455 if (console_drivers && newcon->flags & CON_BOOT) { 2456 /* find the last or real console */ 2457 for_each_console(bcon) { 2458 if (!(bcon->flags & CON_BOOT)) { 2459 pr_info("Too late to register bootconsole %s%d\n", 2460 newcon->name, newcon->index); 2461 return; 2462 } 2463 } 2464 } 2465 2466 if (console_drivers && console_drivers->flags & CON_BOOT) 2467 bcon = console_drivers; 2468 2469 if (preferred_console < 0 || bcon || !console_drivers) 2470 preferred_console = selected_console; 2471 2472 /* 2473 * See if we want to use this console driver. If we 2474 * didn't select a console we take the first one 2475 * that registers here. 2476 */ 2477 if (preferred_console < 0) { 2478 if (newcon->index < 0) 2479 newcon->index = 0; 2480 if (newcon->setup == NULL || 2481 newcon->setup(newcon, NULL) == 0) { 2482 newcon->flags |= CON_ENABLED; 2483 if (newcon->device) { 2484 newcon->flags |= CON_CONSDEV; 2485 preferred_console = 0; 2486 } 2487 } 2488 } 2489 2490 /* 2491 * See if this console matches one we selected on 2492 * the command line. 2493 */ 2494 for (i = 0, c = console_cmdline; 2495 i < MAX_CMDLINECONSOLES && c->name[0]; 2496 i++, c++) { 2497 if (!newcon->match || 2498 newcon->match(newcon, c->name, c->index, c->options) != 0) { 2499 /* default matching */ 2500 BUILD_BUG_ON(sizeof(c->name) != sizeof(newcon->name)); 2501 if (strcmp(c->name, newcon->name) != 0) 2502 continue; 2503 if (newcon->index >= 0 && 2504 newcon->index != c->index) 2505 continue; 2506 if (newcon->index < 0) 2507 newcon->index = c->index; 2508 2509 if (_braille_register_console(newcon, c)) 2510 return; 2511 2512 if (newcon->setup && 2513 newcon->setup(newcon, c->options) != 0) 2514 break; 2515 } 2516 2517 newcon->flags |= CON_ENABLED; 2518 if (i == selected_console) { 2519 newcon->flags |= CON_CONSDEV; 2520 preferred_console = selected_console; 2521 } 2522 break; 2523 } 2524 2525 if (!(newcon->flags & CON_ENABLED)) 2526 return; 2527 2528 /* 2529 * If we have a bootconsole, and are switching to a real console, 2530 * don't print everything out again, since when the boot console, and 2531 * the real console are the same physical device, it's annoying to 2532 * see the beginning boot messages twice 2533 */ 2534 if (bcon && ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV)) 2535 newcon->flags &= ~CON_PRINTBUFFER; 2536 2537 /* 2538 * Put this console in the list - keep the 2539 * preferred driver at the head of the list. 2540 */ 2541 console_lock(); 2542 if ((newcon->flags & CON_CONSDEV) || console_drivers == NULL) { 2543 newcon->next = console_drivers; 2544 console_drivers = newcon; 2545 if (newcon->next) 2546 newcon->next->flags &= ~CON_CONSDEV; 2547 } else { 2548 newcon->next = console_drivers->next; 2549 console_drivers->next = newcon; 2550 } 2551 2552 if (newcon->flags & CON_EXTENDED) 2553 if (!nr_ext_console_drivers++) 2554 pr_info("printk: continuation disabled due to ext consoles, expect more fragments in /dev/kmsg\n"); 2555 2556 if (newcon->flags & CON_PRINTBUFFER) { 2557 /* 2558 * console_unlock(); will print out the buffered messages 2559 * for us. 2560 */ 2561 raw_spin_lock_irqsave(&logbuf_lock, flags); 2562 console_seq = syslog_seq; 2563 console_idx = syslog_idx; 2564 raw_spin_unlock_irqrestore(&logbuf_lock, flags); 2565 /* 2566 * We're about to replay the log buffer. Only do this to the 2567 * just-registered console to avoid excessive message spam to 2568 * the already-registered consoles. 2569 */ 2570 exclusive_console = newcon; 2571 } 2572 console_unlock(); 2573 console_sysfs_notify(); 2574 2575 /* 2576 * By unregistering the bootconsoles after we enable the real console 2577 * we get the "console xxx enabled" message on all the consoles - 2578 * boot consoles, real consoles, etc - this is to ensure that end 2579 * users know there might be something in the kernel's log buffer that 2580 * went to the bootconsole (that they do not see on the real console) 2581 */ 2582 pr_info("%sconsole [%s%d] enabled\n", 2583 (newcon->flags & CON_BOOT) ? "boot" : "" , 2584 newcon->name, newcon->index); 2585 if (bcon && 2586 ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV) && 2587 !keep_bootcon) { 2588 /* We need to iterate through all boot consoles, to make 2589 * sure we print everything out, before we unregister them. 2590 */ 2591 for_each_console(bcon) 2592 if (bcon->flags & CON_BOOT) 2593 unregister_console(bcon); 2594 } 2595 } 2596 EXPORT_SYMBOL(register_console); 2597 2598 int unregister_console(struct console *console) 2599 { 2600 struct console *a, *b; 2601 int res; 2602 2603 pr_info("%sconsole [%s%d] disabled\n", 2604 (console->flags & CON_BOOT) ? "boot" : "" , 2605 console->name, console->index); 2606 2607 res = _braille_unregister_console(console); 2608 if (res) 2609 return res; 2610 2611 res = 1; 2612 console_lock(); 2613 if (console_drivers == console) { 2614 console_drivers=console->next; 2615 res = 0; 2616 } else if (console_drivers) { 2617 for (a=console_drivers->next, b=console_drivers ; 2618 a; b=a, a=b->next) { 2619 if (a == console) { 2620 b->next = a->next; 2621 res = 0; 2622 break; 2623 } 2624 } 2625 } 2626 2627 if (!res && (console->flags & CON_EXTENDED)) 2628 nr_ext_console_drivers--; 2629 2630 /* 2631 * If this isn't the last console and it has CON_CONSDEV set, we 2632 * need to set it on the next preferred console. 2633 */ 2634 if (console_drivers != NULL && console->flags & CON_CONSDEV) 2635 console_drivers->flags |= CON_CONSDEV; 2636 2637 console->flags &= ~CON_ENABLED; 2638 console_unlock(); 2639 console_sysfs_notify(); 2640 return res; 2641 } 2642 EXPORT_SYMBOL(unregister_console); 2643 2644 /* 2645 * Some boot consoles access data that is in the init section and which will 2646 * be discarded after the initcalls have been run. To make sure that no code 2647 * will access this data, unregister the boot consoles in a late initcall. 2648 * 2649 * If for some reason, such as deferred probe or the driver being a loadable 2650 * module, the real console hasn't registered yet at this point, there will 2651 * be a brief interval in which no messages are logged to the console, which 2652 * makes it difficult to diagnose problems that occur during this time. 2653 * 2654 * To mitigate this problem somewhat, only unregister consoles whose memory 2655 * intersects with the init section. Note that code exists elsewhere to get 2656 * rid of the boot console as soon as the proper console shows up, so there 2657 * won't be side-effects from postponing the removal. 2658 */ 2659 static int __init printk_late_init(void) 2660 { 2661 struct console *con; 2662 int ret; 2663 2664 for_each_console(con) { 2665 if (!keep_bootcon && con->flags & CON_BOOT) { 2666 /* 2667 * Make sure to unregister boot consoles whose data 2668 * resides in the init section before the init section 2669 * is discarded. Boot consoles whose data will stick 2670 * around will automatically be unregistered when the 2671 * proper console replaces them. 2672 */ 2673 if (init_section_intersects(con, sizeof(*con))) 2674 unregister_console(con); 2675 } 2676 } 2677 ret = cpuhp_setup_state_nocalls(CPUHP_PRINTK_DEAD, "printk:dead", NULL, 2678 console_cpu_notify); 2679 WARN_ON(ret < 0); 2680 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "printk:online", 2681 console_cpu_notify, NULL); 2682 WARN_ON(ret < 0); 2683 return 0; 2684 } 2685 late_initcall(printk_late_init); 2686 2687 #if defined CONFIG_PRINTK 2688 /* 2689 * Delayed printk version, for scheduler-internal messages: 2690 */ 2691 #define PRINTK_PENDING_WAKEUP 0x01 2692 #define PRINTK_PENDING_OUTPUT 0x02 2693 2694 static DEFINE_PER_CPU(int, printk_pending); 2695 2696 static void wake_up_klogd_work_func(struct irq_work *irq_work) 2697 { 2698 int pending = __this_cpu_xchg(printk_pending, 0); 2699 2700 if (pending & PRINTK_PENDING_OUTPUT) { 2701 /* If trylock fails, someone else is doing the printing */ 2702 if (console_trylock()) 2703 console_unlock(); 2704 } 2705 2706 if (pending & PRINTK_PENDING_WAKEUP) 2707 wake_up_interruptible(&log_wait); 2708 } 2709 2710 static DEFINE_PER_CPU(struct irq_work, wake_up_klogd_work) = { 2711 .func = wake_up_klogd_work_func, 2712 .flags = IRQ_WORK_LAZY, 2713 }; 2714 2715 void wake_up_klogd(void) 2716 { 2717 preempt_disable(); 2718 if (waitqueue_active(&log_wait)) { 2719 this_cpu_or(printk_pending, PRINTK_PENDING_WAKEUP); 2720 irq_work_queue(this_cpu_ptr(&wake_up_klogd_work)); 2721 } 2722 preempt_enable(); 2723 } 2724 2725 int printk_deferred(const char *fmt, ...) 2726 { 2727 va_list args; 2728 int r; 2729 2730 preempt_disable(); 2731 va_start(args, fmt); 2732 r = vprintk_emit(0, LOGLEVEL_SCHED, NULL, 0, fmt, args); 2733 va_end(args); 2734 2735 __this_cpu_or(printk_pending, PRINTK_PENDING_OUTPUT); 2736 irq_work_queue(this_cpu_ptr(&wake_up_klogd_work)); 2737 preempt_enable(); 2738 2739 return r; 2740 } 2741 2742 /* 2743 * printk rate limiting, lifted from the networking subsystem. 2744 * 2745 * This enforces a rate limit: not more than 10 kernel messages 2746 * every 5s to make a denial-of-service attack impossible. 2747 */ 2748 DEFINE_RATELIMIT_STATE(printk_ratelimit_state, 5 * HZ, 10); 2749 2750 int __printk_ratelimit(const char *func) 2751 { 2752 return ___ratelimit(&printk_ratelimit_state, func); 2753 } 2754 EXPORT_SYMBOL(__printk_ratelimit); 2755 2756 /** 2757 * printk_timed_ratelimit - caller-controlled printk ratelimiting 2758 * @caller_jiffies: pointer to caller's state 2759 * @interval_msecs: minimum interval between prints 2760 * 2761 * printk_timed_ratelimit() returns true if more than @interval_msecs 2762 * milliseconds have elapsed since the last time printk_timed_ratelimit() 2763 * returned true. 2764 */ 2765 bool printk_timed_ratelimit(unsigned long *caller_jiffies, 2766 unsigned int interval_msecs) 2767 { 2768 unsigned long elapsed = jiffies - *caller_jiffies; 2769 2770 if (*caller_jiffies && elapsed <= msecs_to_jiffies(interval_msecs)) 2771 return false; 2772 2773 *caller_jiffies = jiffies; 2774 return true; 2775 } 2776 EXPORT_SYMBOL(printk_timed_ratelimit); 2777 2778 static DEFINE_SPINLOCK(dump_list_lock); 2779 static LIST_HEAD(dump_list); 2780 2781 /** 2782 * kmsg_dump_register - register a kernel log dumper. 2783 * @dumper: pointer to the kmsg_dumper structure 2784 * 2785 * Adds a kernel log dumper to the system. The dump callback in the 2786 * structure will be called when the kernel oopses or panics and must be 2787 * set. Returns zero on success and %-EINVAL or %-EBUSY otherwise. 2788 */ 2789 int kmsg_dump_register(struct kmsg_dumper *dumper) 2790 { 2791 unsigned long flags; 2792 int err = -EBUSY; 2793 2794 /* The dump callback needs to be set */ 2795 if (!dumper->dump) 2796 return -EINVAL; 2797 2798 spin_lock_irqsave(&dump_list_lock, flags); 2799 /* Don't allow registering multiple times */ 2800 if (!dumper->registered) { 2801 dumper->registered = 1; 2802 list_add_tail_rcu(&dumper->list, &dump_list); 2803 err = 0; 2804 } 2805 spin_unlock_irqrestore(&dump_list_lock, flags); 2806 2807 return err; 2808 } 2809 EXPORT_SYMBOL_GPL(kmsg_dump_register); 2810 2811 /** 2812 * kmsg_dump_unregister - unregister a kmsg dumper. 2813 * @dumper: pointer to the kmsg_dumper structure 2814 * 2815 * Removes a dump device from the system. Returns zero on success and 2816 * %-EINVAL otherwise. 2817 */ 2818 int kmsg_dump_unregister(struct kmsg_dumper *dumper) 2819 { 2820 unsigned long flags; 2821 int err = -EINVAL; 2822 2823 spin_lock_irqsave(&dump_list_lock, flags); 2824 if (dumper->registered) { 2825 dumper->registered = 0; 2826 list_del_rcu(&dumper->list); 2827 err = 0; 2828 } 2829 spin_unlock_irqrestore(&dump_list_lock, flags); 2830 synchronize_rcu(); 2831 2832 return err; 2833 } 2834 EXPORT_SYMBOL_GPL(kmsg_dump_unregister); 2835 2836 static bool always_kmsg_dump; 2837 module_param_named(always_kmsg_dump, always_kmsg_dump, bool, S_IRUGO | S_IWUSR); 2838 2839 /** 2840 * kmsg_dump - dump kernel log to kernel message dumpers. 2841 * @reason: the reason (oops, panic etc) for dumping 2842 * 2843 * Call each of the registered dumper's dump() callback, which can 2844 * retrieve the kmsg records with kmsg_dump_get_line() or 2845 * kmsg_dump_get_buffer(). 2846 */ 2847 void kmsg_dump(enum kmsg_dump_reason reason) 2848 { 2849 struct kmsg_dumper *dumper; 2850 unsigned long flags; 2851 2852 if ((reason > KMSG_DUMP_OOPS) && !always_kmsg_dump) 2853 return; 2854 2855 rcu_read_lock(); 2856 list_for_each_entry_rcu(dumper, &dump_list, list) { 2857 if (dumper->max_reason && reason > dumper->max_reason) 2858 continue; 2859 2860 /* initialize iterator with data about the stored records */ 2861 dumper->active = true; 2862 2863 raw_spin_lock_irqsave(&logbuf_lock, flags); 2864 dumper->cur_seq = clear_seq; 2865 dumper->cur_idx = clear_idx; 2866 dumper->next_seq = log_next_seq; 2867 dumper->next_idx = log_next_idx; 2868 raw_spin_unlock_irqrestore(&logbuf_lock, flags); 2869 2870 /* invoke dumper which will iterate over records */ 2871 dumper->dump(dumper, reason); 2872 2873 /* reset iterator */ 2874 dumper->active = false; 2875 } 2876 rcu_read_unlock(); 2877 } 2878 2879 /** 2880 * kmsg_dump_get_line_nolock - retrieve one kmsg log line (unlocked version) 2881 * @dumper: registered kmsg dumper 2882 * @syslog: include the "<4>" prefixes 2883 * @line: buffer to copy the line to 2884 * @size: maximum size of the buffer 2885 * @len: length of line placed into buffer 2886 * 2887 * Start at the beginning of the kmsg buffer, with the oldest kmsg 2888 * record, and copy one record into the provided buffer. 2889 * 2890 * Consecutive calls will return the next available record moving 2891 * towards the end of the buffer with the youngest messages. 2892 * 2893 * A return value of FALSE indicates that there are no more records to 2894 * read. 2895 * 2896 * The function is similar to kmsg_dump_get_line(), but grabs no locks. 2897 */ 2898 bool kmsg_dump_get_line_nolock(struct kmsg_dumper *dumper, bool syslog, 2899 char *line, size_t size, size_t *len) 2900 { 2901 struct printk_log *msg; 2902 size_t l = 0; 2903 bool ret = false; 2904 2905 if (!dumper->active) 2906 goto out; 2907 2908 if (dumper->cur_seq < log_first_seq) { 2909 /* messages are gone, move to first available one */ 2910 dumper->cur_seq = log_first_seq; 2911 dumper->cur_idx = log_first_idx; 2912 } 2913 2914 /* last entry */ 2915 if (dumper->cur_seq >= log_next_seq) 2916 goto out; 2917 2918 msg = log_from_idx(dumper->cur_idx); 2919 l = msg_print_text(msg, syslog, line, size); 2920 2921 dumper->cur_idx = log_next(dumper->cur_idx); 2922 dumper->cur_seq++; 2923 ret = true; 2924 out: 2925 if (len) 2926 *len = l; 2927 return ret; 2928 } 2929 2930 /** 2931 * kmsg_dump_get_line - retrieve one kmsg log line 2932 * @dumper: registered kmsg dumper 2933 * @syslog: include the "<4>" prefixes 2934 * @line: buffer to copy the line to 2935 * @size: maximum size of the buffer 2936 * @len: length of line placed into buffer 2937 * 2938 * Start at the beginning of the kmsg buffer, with the oldest kmsg 2939 * record, and copy one record into the provided buffer. 2940 * 2941 * Consecutive calls will return the next available record moving 2942 * towards the end of the buffer with the youngest messages. 2943 * 2944 * A return value of FALSE indicates that there are no more records to 2945 * read. 2946 */ 2947 bool kmsg_dump_get_line(struct kmsg_dumper *dumper, bool syslog, 2948 char *line, size_t size, size_t *len) 2949 { 2950 unsigned long flags; 2951 bool ret; 2952 2953 raw_spin_lock_irqsave(&logbuf_lock, flags); 2954 ret = kmsg_dump_get_line_nolock(dumper, syslog, line, size, len); 2955 raw_spin_unlock_irqrestore(&logbuf_lock, flags); 2956 2957 return ret; 2958 } 2959 EXPORT_SYMBOL_GPL(kmsg_dump_get_line); 2960 2961 /** 2962 * kmsg_dump_get_buffer - copy kmsg log lines 2963 * @dumper: registered kmsg dumper 2964 * @syslog: include the "<4>" prefixes 2965 * @buf: buffer to copy the line to 2966 * @size: maximum size of the buffer 2967 * @len: length of line placed into buffer 2968 * 2969 * Start at the end of the kmsg buffer and fill the provided buffer 2970 * with as many of the the *youngest* kmsg records that fit into it. 2971 * If the buffer is large enough, all available kmsg records will be 2972 * copied with a single call. 2973 * 2974 * Consecutive calls will fill the buffer with the next block of 2975 * available older records, not including the earlier retrieved ones. 2976 * 2977 * A return value of FALSE indicates that there are no more records to 2978 * read. 2979 */ 2980 bool kmsg_dump_get_buffer(struct kmsg_dumper *dumper, bool syslog, 2981 char *buf, size_t size, size_t *len) 2982 { 2983 unsigned long flags; 2984 u64 seq; 2985 u32 idx; 2986 u64 next_seq; 2987 u32 next_idx; 2988 size_t l = 0; 2989 bool ret = false; 2990 2991 if (!dumper->active) 2992 goto out; 2993 2994 raw_spin_lock_irqsave(&logbuf_lock, flags); 2995 if (dumper->cur_seq < log_first_seq) { 2996 /* messages are gone, move to first available one */ 2997 dumper->cur_seq = log_first_seq; 2998 dumper->cur_idx = log_first_idx; 2999 } 3000 3001 /* last entry */ 3002 if (dumper->cur_seq >= dumper->next_seq) { 3003 raw_spin_unlock_irqrestore(&logbuf_lock, flags); 3004 goto out; 3005 } 3006 3007 /* calculate length of entire buffer */ 3008 seq = dumper->cur_seq; 3009 idx = dumper->cur_idx; 3010 while (seq < dumper->next_seq) { 3011 struct printk_log *msg = log_from_idx(idx); 3012 3013 l += msg_print_text(msg, true, NULL, 0); 3014 idx = log_next(idx); 3015 seq++; 3016 } 3017 3018 /* move first record forward until length fits into the buffer */ 3019 seq = dumper->cur_seq; 3020 idx = dumper->cur_idx; 3021 while (l > size && seq < dumper->next_seq) { 3022 struct printk_log *msg = log_from_idx(idx); 3023 3024 l -= msg_print_text(msg, true, NULL, 0); 3025 idx = log_next(idx); 3026 seq++; 3027 } 3028 3029 /* last message in next interation */ 3030 next_seq = seq; 3031 next_idx = idx; 3032 3033 l = 0; 3034 while (seq < dumper->next_seq) { 3035 struct printk_log *msg = log_from_idx(idx); 3036 3037 l += msg_print_text(msg, syslog, buf + l, size - l); 3038 idx = log_next(idx); 3039 seq++; 3040 } 3041 3042 dumper->next_seq = next_seq; 3043 dumper->next_idx = next_idx; 3044 ret = true; 3045 raw_spin_unlock_irqrestore(&logbuf_lock, flags); 3046 out: 3047 if (len) 3048 *len = l; 3049 return ret; 3050 } 3051 EXPORT_SYMBOL_GPL(kmsg_dump_get_buffer); 3052 3053 /** 3054 * kmsg_dump_rewind_nolock - reset the interator (unlocked version) 3055 * @dumper: registered kmsg dumper 3056 * 3057 * Reset the dumper's iterator so that kmsg_dump_get_line() and 3058 * kmsg_dump_get_buffer() can be called again and used multiple 3059 * times within the same dumper.dump() callback. 3060 * 3061 * The function is similar to kmsg_dump_rewind(), but grabs no locks. 3062 */ 3063 void kmsg_dump_rewind_nolock(struct kmsg_dumper *dumper) 3064 { 3065 dumper->cur_seq = clear_seq; 3066 dumper->cur_idx = clear_idx; 3067 dumper->next_seq = log_next_seq; 3068 dumper->next_idx = log_next_idx; 3069 } 3070 3071 /** 3072 * kmsg_dump_rewind - reset the interator 3073 * @dumper: registered kmsg dumper 3074 * 3075 * Reset the dumper's iterator so that kmsg_dump_get_line() and 3076 * kmsg_dump_get_buffer() can be called again and used multiple 3077 * times within the same dumper.dump() callback. 3078 */ 3079 void kmsg_dump_rewind(struct kmsg_dumper *dumper) 3080 { 3081 unsigned long flags; 3082 3083 raw_spin_lock_irqsave(&logbuf_lock, flags); 3084 kmsg_dump_rewind_nolock(dumper); 3085 raw_spin_unlock_irqrestore(&logbuf_lock, flags); 3086 } 3087 EXPORT_SYMBOL_GPL(kmsg_dump_rewind); 3088 3089 static char dump_stack_arch_desc_str[128]; 3090 3091 /** 3092 * dump_stack_set_arch_desc - set arch-specific str to show with task dumps 3093 * @fmt: printf-style format string 3094 * @...: arguments for the format string 3095 * 3096 * The configured string will be printed right after utsname during task 3097 * dumps. Usually used to add arch-specific system identifiers. If an 3098 * arch wants to make use of such an ID string, it should initialize this 3099 * as soon as possible during boot. 3100 */ 3101 void __init dump_stack_set_arch_desc(const char *fmt, ...) 3102 { 3103 va_list args; 3104 3105 va_start(args, fmt); 3106 vsnprintf(dump_stack_arch_desc_str, sizeof(dump_stack_arch_desc_str), 3107 fmt, args); 3108 va_end(args); 3109 } 3110 3111 /** 3112 * dump_stack_print_info - print generic debug info for dump_stack() 3113 * @log_lvl: log level 3114 * 3115 * Arch-specific dump_stack() implementations can use this function to 3116 * print out the same debug information as the generic dump_stack(). 3117 */ 3118 void dump_stack_print_info(const char *log_lvl) 3119 { 3120 printk("%sCPU: %d PID: %d Comm: %.20s %s %s %.*s\n", 3121 log_lvl, raw_smp_processor_id(), current->pid, current->comm, 3122 print_tainted(), init_utsname()->release, 3123 (int)strcspn(init_utsname()->version, " "), 3124 init_utsname()->version); 3125 3126 if (dump_stack_arch_desc_str[0] != '\0') 3127 printk("%sHardware name: %s\n", 3128 log_lvl, dump_stack_arch_desc_str); 3129 3130 print_worker_info(log_lvl, current); 3131 } 3132 3133 /** 3134 * show_regs_print_info - print generic debug info for show_regs() 3135 * @log_lvl: log level 3136 * 3137 * show_regs() implementations can use this function to print out generic 3138 * debug information. 3139 */ 3140 void show_regs_print_info(const char *log_lvl) 3141 { 3142 dump_stack_print_info(log_lvl); 3143 3144 printk("%stask: %p task.stack: %p\n", 3145 log_lvl, current, task_stack_page(current)); 3146 } 3147 3148 #endif 3149