1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/printk.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 * 7 * Modified to make sys_syslog() more flexible: added commands to 8 * return the last 4k of kernel messages, regardless of whether 9 * they've been read or not. Added option to suppress kernel printk's 10 * to the console. Added hook for sending the console messages 11 * elsewhere, in preparation for a serial line console (someday). 12 * Ted Ts'o, 2/11/93. 13 * Modified for sysctl support, 1/8/97, Chris Horn. 14 * Fixed SMP synchronization, 08/08/99, Manfred Spraul 15 * manfred@colorfullife.com 16 * Rewrote bits to get rid of console_lock 17 * 01Mar01 Andrew Morton 18 */ 19 20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 21 22 #include <linux/kernel.h> 23 #include <linux/mm.h> 24 #include <linux/tty.h> 25 #include <linux/tty_driver.h> 26 #include <linux/console.h> 27 #include <linux/init.h> 28 #include <linux/jiffies.h> 29 #include <linux/nmi.h> 30 #include <linux/module.h> 31 #include <linux/moduleparam.h> 32 #include <linux/delay.h> 33 #include <linux/smp.h> 34 #include <linux/security.h> 35 #include <linux/memblock.h> 36 #include <linux/syscalls.h> 37 #include <linux/crash_core.h> 38 #include <linux/ratelimit.h> 39 #include <linux/kmsg_dump.h> 40 #include <linux/syslog.h> 41 #include <linux/cpu.h> 42 #include <linux/rculist.h> 43 #include <linux/poll.h> 44 #include <linux/irq_work.h> 45 #include <linux/ctype.h> 46 #include <linux/uio.h> 47 #include <linux/sched/clock.h> 48 #include <linux/sched/debug.h> 49 #include <linux/sched/task_stack.h> 50 51 #include <linux/uaccess.h> 52 #include <asm/sections.h> 53 54 #include <trace/events/initcall.h> 55 #define CREATE_TRACE_POINTS 56 #include <trace/events/printk.h> 57 58 #include "printk_ringbuffer.h" 59 #include "console_cmdline.h" 60 #include "braille.h" 61 #include "internal.h" 62 63 int console_printk[4] = { 64 CONSOLE_LOGLEVEL_DEFAULT, /* console_loglevel */ 65 MESSAGE_LOGLEVEL_DEFAULT, /* default_message_loglevel */ 66 CONSOLE_LOGLEVEL_MIN, /* minimum_console_loglevel */ 67 CONSOLE_LOGLEVEL_DEFAULT, /* default_console_loglevel */ 68 }; 69 EXPORT_SYMBOL_GPL(console_printk); 70 71 atomic_t ignore_console_lock_warning __read_mostly = ATOMIC_INIT(0); 72 EXPORT_SYMBOL(ignore_console_lock_warning); 73 74 /* 75 * Low level drivers may need that to know if they can schedule in 76 * their unblank() callback or not. So let's export it. 77 */ 78 int oops_in_progress; 79 EXPORT_SYMBOL(oops_in_progress); 80 81 /* 82 * console_sem protects the console_drivers list, and also 83 * provides serialisation for access to the entire console 84 * driver system. 85 */ 86 static DEFINE_SEMAPHORE(console_sem); 87 struct console *console_drivers; 88 EXPORT_SYMBOL_GPL(console_drivers); 89 90 /* 91 * System may need to suppress printk message under certain 92 * circumstances, like after kernel panic happens. 93 */ 94 int __read_mostly suppress_printk; 95 96 /* 97 * During panic, heavy printk by other CPUs can delay the 98 * panic and risk deadlock on console resources. 99 */ 100 static int __read_mostly suppress_panic_printk; 101 102 #ifdef CONFIG_LOCKDEP 103 static struct lockdep_map console_lock_dep_map = { 104 .name = "console_lock" 105 }; 106 #endif 107 108 enum devkmsg_log_bits { 109 __DEVKMSG_LOG_BIT_ON = 0, 110 __DEVKMSG_LOG_BIT_OFF, 111 __DEVKMSG_LOG_BIT_LOCK, 112 }; 113 114 enum devkmsg_log_masks { 115 DEVKMSG_LOG_MASK_ON = BIT(__DEVKMSG_LOG_BIT_ON), 116 DEVKMSG_LOG_MASK_OFF = BIT(__DEVKMSG_LOG_BIT_OFF), 117 DEVKMSG_LOG_MASK_LOCK = BIT(__DEVKMSG_LOG_BIT_LOCK), 118 }; 119 120 /* Keep both the 'on' and 'off' bits clear, i.e. ratelimit by default: */ 121 #define DEVKMSG_LOG_MASK_DEFAULT 0 122 123 static unsigned int __read_mostly devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT; 124 125 static int __control_devkmsg(char *str) 126 { 127 size_t len; 128 129 if (!str) 130 return -EINVAL; 131 132 len = str_has_prefix(str, "on"); 133 if (len) { 134 devkmsg_log = DEVKMSG_LOG_MASK_ON; 135 return len; 136 } 137 138 len = str_has_prefix(str, "off"); 139 if (len) { 140 devkmsg_log = DEVKMSG_LOG_MASK_OFF; 141 return len; 142 } 143 144 len = str_has_prefix(str, "ratelimit"); 145 if (len) { 146 devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT; 147 return len; 148 } 149 150 return -EINVAL; 151 } 152 153 static int __init control_devkmsg(char *str) 154 { 155 if (__control_devkmsg(str) < 0) { 156 pr_warn("printk.devkmsg: bad option string '%s'\n", str); 157 return 1; 158 } 159 160 /* 161 * Set sysctl string accordingly: 162 */ 163 if (devkmsg_log == DEVKMSG_LOG_MASK_ON) 164 strcpy(devkmsg_log_str, "on"); 165 else if (devkmsg_log == DEVKMSG_LOG_MASK_OFF) 166 strcpy(devkmsg_log_str, "off"); 167 /* else "ratelimit" which is set by default. */ 168 169 /* 170 * Sysctl cannot change it anymore. The kernel command line setting of 171 * this parameter is to force the setting to be permanent throughout the 172 * runtime of the system. This is a precation measure against userspace 173 * trying to be a smarta** and attempting to change it up on us. 174 */ 175 devkmsg_log |= DEVKMSG_LOG_MASK_LOCK; 176 177 return 1; 178 } 179 __setup("printk.devkmsg=", control_devkmsg); 180 181 char devkmsg_log_str[DEVKMSG_STR_MAX_SIZE] = "ratelimit"; 182 #if defined(CONFIG_PRINTK) && defined(CONFIG_SYSCTL) 183 int devkmsg_sysctl_set_loglvl(struct ctl_table *table, int write, 184 void *buffer, size_t *lenp, loff_t *ppos) 185 { 186 char old_str[DEVKMSG_STR_MAX_SIZE]; 187 unsigned int old; 188 int err; 189 190 if (write) { 191 if (devkmsg_log & DEVKMSG_LOG_MASK_LOCK) 192 return -EINVAL; 193 194 old = devkmsg_log; 195 strncpy(old_str, devkmsg_log_str, DEVKMSG_STR_MAX_SIZE); 196 } 197 198 err = proc_dostring(table, write, buffer, lenp, ppos); 199 if (err) 200 return err; 201 202 if (write) { 203 err = __control_devkmsg(devkmsg_log_str); 204 205 /* 206 * Do not accept an unknown string OR a known string with 207 * trailing crap... 208 */ 209 if (err < 0 || (err + 1 != *lenp)) { 210 211 /* ... and restore old setting. */ 212 devkmsg_log = old; 213 strncpy(devkmsg_log_str, old_str, DEVKMSG_STR_MAX_SIZE); 214 215 return -EINVAL; 216 } 217 } 218 219 return 0; 220 } 221 #endif /* CONFIG_PRINTK && CONFIG_SYSCTL */ 222 223 /* Number of registered extended console drivers. */ 224 static int nr_ext_console_drivers; 225 226 /* 227 * Used to synchronize printing kthreads against direct printing via 228 * console_trylock/console_unlock. 229 * 230 * Values: 231 * -1 = console kthreads atomically blocked (via global trylock) 232 * 0 = no kthread printing, console not locked (via trylock) 233 * >0 = kthread(s) actively printing 234 * 235 * Note: For synchronizing against direct printing via 236 * console_lock/console_unlock, see the @lock variable in 237 * struct console. 238 */ 239 static atomic_t console_kthreads_active = ATOMIC_INIT(0); 240 241 #define console_kthreads_atomic_tryblock() \ 242 (atomic_cmpxchg(&console_kthreads_active, 0, -1) == 0) 243 #define console_kthreads_atomic_unblock() \ 244 atomic_cmpxchg(&console_kthreads_active, -1, 0) 245 #define console_kthreads_atomically_blocked() \ 246 (atomic_read(&console_kthreads_active) == -1) 247 248 #define console_kthread_printing_tryenter() \ 249 atomic_inc_unless_negative(&console_kthreads_active) 250 #define console_kthread_printing_exit() \ 251 atomic_dec(&console_kthreads_active) 252 253 /* Block console kthreads to avoid processing new messages. */ 254 bool block_console_kthreads; 255 256 /* 257 * Helper macros to handle lockdep when locking/unlocking console_sem. We use 258 * macros instead of functions so that _RET_IP_ contains useful information. 259 */ 260 #define down_console_sem() do { \ 261 down(&console_sem);\ 262 mutex_acquire(&console_lock_dep_map, 0, 0, _RET_IP_);\ 263 } while (0) 264 265 static int __down_trylock_console_sem(unsigned long ip) 266 { 267 int lock_failed; 268 unsigned long flags; 269 270 /* 271 * Here and in __up_console_sem() we need to be in safe mode, 272 * because spindump/WARN/etc from under console ->lock will 273 * deadlock in printk()->down_trylock_console_sem() otherwise. 274 */ 275 printk_safe_enter_irqsave(flags); 276 lock_failed = down_trylock(&console_sem); 277 printk_safe_exit_irqrestore(flags); 278 279 if (lock_failed) 280 return 1; 281 mutex_acquire(&console_lock_dep_map, 0, 1, ip); 282 return 0; 283 } 284 #define down_trylock_console_sem() __down_trylock_console_sem(_RET_IP_) 285 286 static void __up_console_sem(unsigned long ip) 287 { 288 unsigned long flags; 289 290 mutex_release(&console_lock_dep_map, ip); 291 292 printk_safe_enter_irqsave(flags); 293 up(&console_sem); 294 printk_safe_exit_irqrestore(flags); 295 } 296 #define up_console_sem() __up_console_sem(_RET_IP_) 297 298 static bool panic_in_progress(void) 299 { 300 return unlikely(atomic_read(&panic_cpu) != PANIC_CPU_INVALID); 301 } 302 303 /* 304 * Tracks whether kthread printers are all blocked. A value of true implies 305 * that the console is locked via console_lock() or the console is suspended. 306 * Writing to this variable requires holding @console_sem. 307 */ 308 static bool console_kthreads_blocked; 309 310 /* 311 * Block all kthread printers from a schedulable context. 312 * 313 * Requires holding @console_sem. 314 */ 315 static void console_kthreads_block(void) 316 { 317 struct console *con; 318 319 for_each_console(con) { 320 mutex_lock(&con->lock); 321 con->blocked = true; 322 mutex_unlock(&con->lock); 323 } 324 325 console_kthreads_blocked = true; 326 } 327 328 /* 329 * Unblock all kthread printers from a schedulable context. 330 * 331 * Requires holding @console_sem. 332 */ 333 static void console_kthreads_unblock(void) 334 { 335 struct console *con; 336 337 for_each_console(con) { 338 mutex_lock(&con->lock); 339 con->blocked = false; 340 mutex_unlock(&con->lock); 341 } 342 343 console_kthreads_blocked = false; 344 } 345 346 static int console_suspended; 347 348 /* 349 * Array of consoles built from command line options (console=) 350 */ 351 352 #define MAX_CMDLINECONSOLES 8 353 354 static struct console_cmdline console_cmdline[MAX_CMDLINECONSOLES]; 355 356 static int preferred_console = -1; 357 int console_set_on_cmdline; 358 EXPORT_SYMBOL(console_set_on_cmdline); 359 360 /* Flag: console code may call schedule() */ 361 static int console_may_schedule; 362 363 enum con_msg_format_flags { 364 MSG_FORMAT_DEFAULT = 0, 365 MSG_FORMAT_SYSLOG = (1 << 0), 366 }; 367 368 static int console_msg_format = MSG_FORMAT_DEFAULT; 369 370 /* 371 * The printk log buffer consists of a sequenced collection of records, each 372 * containing variable length message text. Every record also contains its 373 * own meta-data (@info). 374 * 375 * Every record meta-data carries the timestamp in microseconds, as well as 376 * the standard userspace syslog level and syslog facility. The usual kernel 377 * messages use LOG_KERN; userspace-injected messages always carry a matching 378 * syslog facility, by default LOG_USER. The origin of every message can be 379 * reliably determined that way. 380 * 381 * The human readable log message of a record is available in @text, the 382 * length of the message text in @text_len. The stored message is not 383 * terminated. 384 * 385 * Optionally, a record can carry a dictionary of properties (key/value 386 * pairs), to provide userspace with a machine-readable message context. 387 * 388 * Examples for well-defined, commonly used property names are: 389 * DEVICE=b12:8 device identifier 390 * b12:8 block dev_t 391 * c127:3 char dev_t 392 * n8 netdev ifindex 393 * +sound:card0 subsystem:devname 394 * SUBSYSTEM=pci driver-core subsystem name 395 * 396 * Valid characters in property names are [a-zA-Z0-9.-_]. Property names 397 * and values are terminated by a '\0' character. 398 * 399 * Example of record values: 400 * record.text_buf = "it's a line" (unterminated) 401 * record.info.seq = 56 402 * record.info.ts_nsec = 36863 403 * record.info.text_len = 11 404 * record.info.facility = 0 (LOG_KERN) 405 * record.info.flags = 0 406 * record.info.level = 3 (LOG_ERR) 407 * record.info.caller_id = 299 (task 299) 408 * record.info.dev_info.subsystem = "pci" (terminated) 409 * record.info.dev_info.device = "+pci:0000:00:01.0" (terminated) 410 * 411 * The 'struct printk_info' buffer must never be directly exported to 412 * userspace, it is a kernel-private implementation detail that might 413 * need to be changed in the future, when the requirements change. 414 * 415 * /dev/kmsg exports the structured data in the following line format: 416 * "<level>,<sequnum>,<timestamp>,<contflag>[,additional_values, ... ];<message text>\n" 417 * 418 * Users of the export format should ignore possible additional values 419 * separated by ',', and find the message after the ';' character. 420 * 421 * The optional key/value pairs are attached as continuation lines starting 422 * with a space character and terminated by a newline. All possible 423 * non-prinatable characters are escaped in the "\xff" notation. 424 */ 425 426 /* syslog_lock protects syslog_* variables and write access to clear_seq. */ 427 static DEFINE_MUTEX(syslog_lock); 428 429 /* 430 * A flag to signify if printk_activate_kthreads() has already started the 431 * kthread printers. If true, any later registered consoles must start their 432 * own kthread directly. The flag is write protected by the console_lock. 433 */ 434 static bool printk_kthreads_available; 435 436 #ifdef CONFIG_PRINTK 437 static atomic_t printk_prefer_direct = ATOMIC_INIT(0); 438 439 /** 440 * printk_prefer_direct_enter - cause printk() calls to attempt direct 441 * printing to all enabled consoles 442 * 443 * Since it is not possible to call into the console printing code from any 444 * context, there is no guarantee that direct printing will occur. 445 * 446 * This globally effects all printk() callers. 447 * 448 * Context: Any context. 449 */ 450 void printk_prefer_direct_enter(void) 451 { 452 atomic_inc(&printk_prefer_direct); 453 } 454 455 /** 456 * printk_prefer_direct_exit - restore printk() behavior 457 * 458 * Context: Any context. 459 */ 460 void printk_prefer_direct_exit(void) 461 { 462 WARN_ON(atomic_dec_if_positive(&printk_prefer_direct) < 0); 463 } 464 465 /* 466 * Calling printk() always wakes kthread printers so that they can 467 * flush the new message to their respective consoles. Also, if direct 468 * printing is allowed, printk() tries to flush the messages directly. 469 * 470 * Direct printing is allowed in situations when the kthreads 471 * are not available or the system is in a problematic state. 472 * 473 * See the implementation about possible races. 474 */ 475 static inline bool allow_direct_printing(void) 476 { 477 /* 478 * Checking kthread availability is a possible race because the 479 * kthread printers can become permanently disabled during runtime. 480 * However, doing that requires holding the console_lock, so any 481 * pending messages will be direct printed by console_unlock(). 482 */ 483 if (!printk_kthreads_available) 484 return true; 485 486 /* 487 * Prefer direct printing when the system is in a problematic state. 488 * The context that sets this state will always see the updated value. 489 * The other contexts do not care. Anyway, direct printing is just a 490 * best effort. The direct output is only possible when console_lock 491 * is not already taken and no kthread printers are actively printing. 492 */ 493 return (system_state > SYSTEM_RUNNING || 494 oops_in_progress || 495 atomic_read(&printk_prefer_direct)); 496 } 497 498 DECLARE_WAIT_QUEUE_HEAD(log_wait); 499 /* All 3 protected by @syslog_lock. */ 500 /* the next printk record to read by syslog(READ) or /proc/kmsg */ 501 static u64 syslog_seq; 502 static size_t syslog_partial; 503 static bool syslog_time; 504 505 struct latched_seq { 506 seqcount_latch_t latch; 507 u64 val[2]; 508 }; 509 510 /* 511 * The next printk record to read after the last 'clear' command. There are 512 * two copies (updated with seqcount_latch) so that reads can locklessly 513 * access a valid value. Writers are synchronized by @syslog_lock. 514 */ 515 static struct latched_seq clear_seq = { 516 .latch = SEQCNT_LATCH_ZERO(clear_seq.latch), 517 .val[0] = 0, 518 .val[1] = 0, 519 }; 520 521 #ifdef CONFIG_PRINTK_CALLER 522 #define PREFIX_MAX 48 523 #else 524 #define PREFIX_MAX 32 525 #endif 526 527 /* the maximum size of a formatted record (i.e. with prefix added per line) */ 528 #define CONSOLE_LOG_MAX 1024 529 530 /* the maximum size for a dropped text message */ 531 #define DROPPED_TEXT_MAX 64 532 533 /* the maximum size allowed to be reserved for a record */ 534 #define LOG_LINE_MAX (CONSOLE_LOG_MAX - PREFIX_MAX) 535 536 #define LOG_LEVEL(v) ((v) & 0x07) 537 #define LOG_FACILITY(v) ((v) >> 3 & 0xff) 538 539 /* record buffer */ 540 #define LOG_ALIGN __alignof__(unsigned long) 541 #define __LOG_BUF_LEN (1 << CONFIG_LOG_BUF_SHIFT) 542 #define LOG_BUF_LEN_MAX (u32)(1 << 31) 543 static char __log_buf[__LOG_BUF_LEN] __aligned(LOG_ALIGN); 544 static char *log_buf = __log_buf; 545 static u32 log_buf_len = __LOG_BUF_LEN; 546 547 /* 548 * Define the average message size. This only affects the number of 549 * descriptors that will be available. Underestimating is better than 550 * overestimating (too many available descriptors is better than not enough). 551 */ 552 #define PRB_AVGBITS 5 /* 32 character average length */ 553 554 #if CONFIG_LOG_BUF_SHIFT <= PRB_AVGBITS 555 #error CONFIG_LOG_BUF_SHIFT value too small. 556 #endif 557 _DEFINE_PRINTKRB(printk_rb_static, CONFIG_LOG_BUF_SHIFT - PRB_AVGBITS, 558 PRB_AVGBITS, &__log_buf[0]); 559 560 static struct printk_ringbuffer printk_rb_dynamic; 561 562 static struct printk_ringbuffer *prb = &printk_rb_static; 563 564 /* 565 * We cannot access per-CPU data (e.g. per-CPU flush irq_work) before 566 * per_cpu_areas are initialised. This variable is set to true when 567 * it's safe to access per-CPU data. 568 */ 569 static bool __printk_percpu_data_ready __read_mostly; 570 571 bool printk_percpu_data_ready(void) 572 { 573 return __printk_percpu_data_ready; 574 } 575 576 /* Must be called under syslog_lock. */ 577 static void latched_seq_write(struct latched_seq *ls, u64 val) 578 { 579 raw_write_seqcount_latch(&ls->latch); 580 ls->val[0] = val; 581 raw_write_seqcount_latch(&ls->latch); 582 ls->val[1] = val; 583 } 584 585 /* Can be called from any context. */ 586 static u64 latched_seq_read_nolock(struct latched_seq *ls) 587 { 588 unsigned int seq; 589 unsigned int idx; 590 u64 val; 591 592 do { 593 seq = raw_read_seqcount_latch(&ls->latch); 594 idx = seq & 0x1; 595 val = ls->val[idx]; 596 } while (read_seqcount_latch_retry(&ls->latch, seq)); 597 598 return val; 599 } 600 601 /* Return log buffer address */ 602 char *log_buf_addr_get(void) 603 { 604 return log_buf; 605 } 606 607 /* Return log buffer size */ 608 u32 log_buf_len_get(void) 609 { 610 return log_buf_len; 611 } 612 613 /* 614 * Define how much of the log buffer we could take at maximum. The value 615 * must be greater than two. Note that only half of the buffer is available 616 * when the index points to the middle. 617 */ 618 #define MAX_LOG_TAKE_PART 4 619 static const char trunc_msg[] = "<truncated>"; 620 621 static void truncate_msg(u16 *text_len, u16 *trunc_msg_len) 622 { 623 /* 624 * The message should not take the whole buffer. Otherwise, it might 625 * get removed too soon. 626 */ 627 u32 max_text_len = log_buf_len / MAX_LOG_TAKE_PART; 628 629 if (*text_len > max_text_len) 630 *text_len = max_text_len; 631 632 /* enable the warning message (if there is room) */ 633 *trunc_msg_len = strlen(trunc_msg); 634 if (*text_len >= *trunc_msg_len) 635 *text_len -= *trunc_msg_len; 636 else 637 *trunc_msg_len = 0; 638 } 639 640 int dmesg_restrict = IS_ENABLED(CONFIG_SECURITY_DMESG_RESTRICT); 641 642 static int syslog_action_restricted(int type) 643 { 644 if (dmesg_restrict) 645 return 1; 646 /* 647 * Unless restricted, we allow "read all" and "get buffer size" 648 * for everybody. 649 */ 650 return type != SYSLOG_ACTION_READ_ALL && 651 type != SYSLOG_ACTION_SIZE_BUFFER; 652 } 653 654 static int check_syslog_permissions(int type, int source) 655 { 656 /* 657 * If this is from /proc/kmsg and we've already opened it, then we've 658 * already done the capabilities checks at open time. 659 */ 660 if (source == SYSLOG_FROM_PROC && type != SYSLOG_ACTION_OPEN) 661 goto ok; 662 663 if (syslog_action_restricted(type)) { 664 if (capable(CAP_SYSLOG)) 665 goto ok; 666 /* 667 * For historical reasons, accept CAP_SYS_ADMIN too, with 668 * a warning. 669 */ 670 if (capable(CAP_SYS_ADMIN)) { 671 pr_warn_once("%s (%d): Attempt to access syslog with " 672 "CAP_SYS_ADMIN but no CAP_SYSLOG " 673 "(deprecated).\n", 674 current->comm, task_pid_nr(current)); 675 goto ok; 676 } 677 return -EPERM; 678 } 679 ok: 680 return security_syslog(type); 681 } 682 683 static void append_char(char **pp, char *e, char c) 684 { 685 if (*pp < e) 686 *(*pp)++ = c; 687 } 688 689 static ssize_t info_print_ext_header(char *buf, size_t size, 690 struct printk_info *info) 691 { 692 u64 ts_usec = info->ts_nsec; 693 char caller[20]; 694 #ifdef CONFIG_PRINTK_CALLER 695 u32 id = info->caller_id; 696 697 snprintf(caller, sizeof(caller), ",caller=%c%u", 698 id & 0x80000000 ? 'C' : 'T', id & ~0x80000000); 699 #else 700 caller[0] = '\0'; 701 #endif 702 703 do_div(ts_usec, 1000); 704 705 return scnprintf(buf, size, "%u,%llu,%llu,%c%s;", 706 (info->facility << 3) | info->level, info->seq, 707 ts_usec, info->flags & LOG_CONT ? 'c' : '-', caller); 708 } 709 710 static ssize_t msg_add_ext_text(char *buf, size_t size, 711 const char *text, size_t text_len, 712 unsigned char endc) 713 { 714 char *p = buf, *e = buf + size; 715 size_t i; 716 717 /* escape non-printable characters */ 718 for (i = 0; i < text_len; i++) { 719 unsigned char c = text[i]; 720 721 if (c < ' ' || c >= 127 || c == '\\') 722 p += scnprintf(p, e - p, "\\x%02x", c); 723 else 724 append_char(&p, e, c); 725 } 726 append_char(&p, e, endc); 727 728 return p - buf; 729 } 730 731 static ssize_t msg_add_dict_text(char *buf, size_t size, 732 const char *key, const char *val) 733 { 734 size_t val_len = strlen(val); 735 ssize_t len; 736 737 if (!val_len) 738 return 0; 739 740 len = msg_add_ext_text(buf, size, "", 0, ' '); /* dict prefix */ 741 len += msg_add_ext_text(buf + len, size - len, key, strlen(key), '='); 742 len += msg_add_ext_text(buf + len, size - len, val, val_len, '\n'); 743 744 return len; 745 } 746 747 static ssize_t msg_print_ext_body(char *buf, size_t size, 748 char *text, size_t text_len, 749 struct dev_printk_info *dev_info) 750 { 751 ssize_t len; 752 753 len = msg_add_ext_text(buf, size, text, text_len, '\n'); 754 755 if (!dev_info) 756 goto out; 757 758 len += msg_add_dict_text(buf + len, size - len, "SUBSYSTEM", 759 dev_info->subsystem); 760 len += msg_add_dict_text(buf + len, size - len, "DEVICE", 761 dev_info->device); 762 out: 763 return len; 764 } 765 766 /* /dev/kmsg - userspace message inject/listen interface */ 767 struct devkmsg_user { 768 atomic64_t seq; 769 struct ratelimit_state rs; 770 struct mutex lock; 771 char buf[CONSOLE_EXT_LOG_MAX]; 772 773 struct printk_info info; 774 char text_buf[CONSOLE_EXT_LOG_MAX]; 775 struct printk_record record; 776 }; 777 778 static __printf(3, 4) __cold 779 int devkmsg_emit(int facility, int level, const char *fmt, ...) 780 { 781 va_list args; 782 int r; 783 784 va_start(args, fmt); 785 r = vprintk_emit(facility, level, NULL, fmt, args); 786 va_end(args); 787 788 return r; 789 } 790 791 static ssize_t devkmsg_write(struct kiocb *iocb, struct iov_iter *from) 792 { 793 char *buf, *line; 794 int level = default_message_loglevel; 795 int facility = 1; /* LOG_USER */ 796 struct file *file = iocb->ki_filp; 797 struct devkmsg_user *user = file->private_data; 798 size_t len = iov_iter_count(from); 799 ssize_t ret = len; 800 801 if (!user || len > LOG_LINE_MAX) 802 return -EINVAL; 803 804 /* Ignore when user logging is disabled. */ 805 if (devkmsg_log & DEVKMSG_LOG_MASK_OFF) 806 return len; 807 808 /* Ratelimit when not explicitly enabled. */ 809 if (!(devkmsg_log & DEVKMSG_LOG_MASK_ON)) { 810 if (!___ratelimit(&user->rs, current->comm)) 811 return ret; 812 } 813 814 buf = kmalloc(len+1, GFP_KERNEL); 815 if (buf == NULL) 816 return -ENOMEM; 817 818 buf[len] = '\0'; 819 if (!copy_from_iter_full(buf, len, from)) { 820 kfree(buf); 821 return -EFAULT; 822 } 823 824 /* 825 * Extract and skip the syslog prefix <[0-9]*>. Coming from userspace 826 * the decimal value represents 32bit, the lower 3 bit are the log 827 * level, the rest are the log facility. 828 * 829 * If no prefix or no userspace facility is specified, we 830 * enforce LOG_USER, to be able to reliably distinguish 831 * kernel-generated messages from userspace-injected ones. 832 */ 833 line = buf; 834 if (line[0] == '<') { 835 char *endp = NULL; 836 unsigned int u; 837 838 u = simple_strtoul(line + 1, &endp, 10); 839 if (endp && endp[0] == '>') { 840 level = LOG_LEVEL(u); 841 if (LOG_FACILITY(u) != 0) 842 facility = LOG_FACILITY(u); 843 endp++; 844 line = endp; 845 } 846 } 847 848 devkmsg_emit(facility, level, "%s", line); 849 kfree(buf); 850 return ret; 851 } 852 853 static ssize_t devkmsg_read(struct file *file, char __user *buf, 854 size_t count, loff_t *ppos) 855 { 856 struct devkmsg_user *user = file->private_data; 857 struct printk_record *r = &user->record; 858 size_t len; 859 ssize_t ret; 860 861 if (!user) 862 return -EBADF; 863 864 ret = mutex_lock_interruptible(&user->lock); 865 if (ret) 866 return ret; 867 868 if (!prb_read_valid(prb, atomic64_read(&user->seq), r)) { 869 if (file->f_flags & O_NONBLOCK) { 870 ret = -EAGAIN; 871 goto out; 872 } 873 874 /* 875 * Guarantee this task is visible on the waitqueue before 876 * checking the wake condition. 877 * 878 * The full memory barrier within set_current_state() of 879 * prepare_to_wait_event() pairs with the full memory barrier 880 * within wq_has_sleeper(). 881 * 882 * This pairs with __wake_up_klogd:A. 883 */ 884 ret = wait_event_interruptible(log_wait, 885 prb_read_valid(prb, 886 atomic64_read(&user->seq), r)); /* LMM(devkmsg_read:A) */ 887 if (ret) 888 goto out; 889 } 890 891 if (r->info->seq != atomic64_read(&user->seq)) { 892 /* our last seen message is gone, return error and reset */ 893 atomic64_set(&user->seq, r->info->seq); 894 ret = -EPIPE; 895 goto out; 896 } 897 898 len = info_print_ext_header(user->buf, sizeof(user->buf), r->info); 899 len += msg_print_ext_body(user->buf + len, sizeof(user->buf) - len, 900 &r->text_buf[0], r->info->text_len, 901 &r->info->dev_info); 902 903 atomic64_set(&user->seq, r->info->seq + 1); 904 905 if (len > count) { 906 ret = -EINVAL; 907 goto out; 908 } 909 910 if (copy_to_user(buf, user->buf, len)) { 911 ret = -EFAULT; 912 goto out; 913 } 914 ret = len; 915 out: 916 mutex_unlock(&user->lock); 917 return ret; 918 } 919 920 /* 921 * Be careful when modifying this function!!! 922 * 923 * Only few operations are supported because the device works only with the 924 * entire variable length messages (records). Non-standard values are 925 * returned in the other cases and has been this way for quite some time. 926 * User space applications might depend on this behavior. 927 */ 928 static loff_t devkmsg_llseek(struct file *file, loff_t offset, int whence) 929 { 930 struct devkmsg_user *user = file->private_data; 931 loff_t ret = 0; 932 933 if (!user) 934 return -EBADF; 935 if (offset) 936 return -ESPIPE; 937 938 switch (whence) { 939 case SEEK_SET: 940 /* the first record */ 941 atomic64_set(&user->seq, prb_first_valid_seq(prb)); 942 break; 943 case SEEK_DATA: 944 /* 945 * The first record after the last SYSLOG_ACTION_CLEAR, 946 * like issued by 'dmesg -c'. Reading /dev/kmsg itself 947 * changes no global state, and does not clear anything. 948 */ 949 atomic64_set(&user->seq, latched_seq_read_nolock(&clear_seq)); 950 break; 951 case SEEK_END: 952 /* after the last record */ 953 atomic64_set(&user->seq, prb_next_seq(prb)); 954 break; 955 default: 956 ret = -EINVAL; 957 } 958 return ret; 959 } 960 961 static __poll_t devkmsg_poll(struct file *file, poll_table *wait) 962 { 963 struct devkmsg_user *user = file->private_data; 964 struct printk_info info; 965 __poll_t ret = 0; 966 967 if (!user) 968 return EPOLLERR|EPOLLNVAL; 969 970 poll_wait(file, &log_wait, wait); 971 972 if (prb_read_valid_info(prb, atomic64_read(&user->seq), &info, NULL)) { 973 /* return error when data has vanished underneath us */ 974 if (info.seq != atomic64_read(&user->seq)) 975 ret = EPOLLIN|EPOLLRDNORM|EPOLLERR|EPOLLPRI; 976 else 977 ret = EPOLLIN|EPOLLRDNORM; 978 } 979 980 return ret; 981 } 982 983 static int devkmsg_open(struct inode *inode, struct file *file) 984 { 985 struct devkmsg_user *user; 986 int err; 987 988 if (devkmsg_log & DEVKMSG_LOG_MASK_OFF) 989 return -EPERM; 990 991 /* write-only does not need any file context */ 992 if ((file->f_flags & O_ACCMODE) != O_WRONLY) { 993 err = check_syslog_permissions(SYSLOG_ACTION_READ_ALL, 994 SYSLOG_FROM_READER); 995 if (err) 996 return err; 997 } 998 999 user = kvmalloc(sizeof(struct devkmsg_user), GFP_KERNEL); 1000 if (!user) 1001 return -ENOMEM; 1002 1003 ratelimit_default_init(&user->rs); 1004 ratelimit_set_flags(&user->rs, RATELIMIT_MSG_ON_RELEASE); 1005 1006 mutex_init(&user->lock); 1007 1008 prb_rec_init_rd(&user->record, &user->info, 1009 &user->text_buf[0], sizeof(user->text_buf)); 1010 1011 atomic64_set(&user->seq, prb_first_valid_seq(prb)); 1012 1013 file->private_data = user; 1014 return 0; 1015 } 1016 1017 static int devkmsg_release(struct inode *inode, struct file *file) 1018 { 1019 struct devkmsg_user *user = file->private_data; 1020 1021 if (!user) 1022 return 0; 1023 1024 ratelimit_state_exit(&user->rs); 1025 1026 mutex_destroy(&user->lock); 1027 kvfree(user); 1028 return 0; 1029 } 1030 1031 const struct file_operations kmsg_fops = { 1032 .open = devkmsg_open, 1033 .read = devkmsg_read, 1034 .write_iter = devkmsg_write, 1035 .llseek = devkmsg_llseek, 1036 .poll = devkmsg_poll, 1037 .release = devkmsg_release, 1038 }; 1039 1040 #ifdef CONFIG_CRASH_CORE 1041 /* 1042 * This appends the listed symbols to /proc/vmcore 1043 * 1044 * /proc/vmcore is used by various utilities, like crash and makedumpfile to 1045 * obtain access to symbols that are otherwise very difficult to locate. These 1046 * symbols are specifically used so that utilities can access and extract the 1047 * dmesg log from a vmcore file after a crash. 1048 */ 1049 void log_buf_vmcoreinfo_setup(void) 1050 { 1051 struct dev_printk_info *dev_info = NULL; 1052 1053 VMCOREINFO_SYMBOL(prb); 1054 VMCOREINFO_SYMBOL(printk_rb_static); 1055 VMCOREINFO_SYMBOL(clear_seq); 1056 1057 /* 1058 * Export struct size and field offsets. User space tools can 1059 * parse it and detect any changes to structure down the line. 1060 */ 1061 1062 VMCOREINFO_STRUCT_SIZE(printk_ringbuffer); 1063 VMCOREINFO_OFFSET(printk_ringbuffer, desc_ring); 1064 VMCOREINFO_OFFSET(printk_ringbuffer, text_data_ring); 1065 VMCOREINFO_OFFSET(printk_ringbuffer, fail); 1066 1067 VMCOREINFO_STRUCT_SIZE(prb_desc_ring); 1068 VMCOREINFO_OFFSET(prb_desc_ring, count_bits); 1069 VMCOREINFO_OFFSET(prb_desc_ring, descs); 1070 VMCOREINFO_OFFSET(prb_desc_ring, infos); 1071 VMCOREINFO_OFFSET(prb_desc_ring, head_id); 1072 VMCOREINFO_OFFSET(prb_desc_ring, tail_id); 1073 1074 VMCOREINFO_STRUCT_SIZE(prb_desc); 1075 VMCOREINFO_OFFSET(prb_desc, state_var); 1076 VMCOREINFO_OFFSET(prb_desc, text_blk_lpos); 1077 1078 VMCOREINFO_STRUCT_SIZE(prb_data_blk_lpos); 1079 VMCOREINFO_OFFSET(prb_data_blk_lpos, begin); 1080 VMCOREINFO_OFFSET(prb_data_blk_lpos, next); 1081 1082 VMCOREINFO_STRUCT_SIZE(printk_info); 1083 VMCOREINFO_OFFSET(printk_info, seq); 1084 VMCOREINFO_OFFSET(printk_info, ts_nsec); 1085 VMCOREINFO_OFFSET(printk_info, text_len); 1086 VMCOREINFO_OFFSET(printk_info, caller_id); 1087 VMCOREINFO_OFFSET(printk_info, dev_info); 1088 1089 VMCOREINFO_STRUCT_SIZE(dev_printk_info); 1090 VMCOREINFO_OFFSET(dev_printk_info, subsystem); 1091 VMCOREINFO_LENGTH(printk_info_subsystem, sizeof(dev_info->subsystem)); 1092 VMCOREINFO_OFFSET(dev_printk_info, device); 1093 VMCOREINFO_LENGTH(printk_info_device, sizeof(dev_info->device)); 1094 1095 VMCOREINFO_STRUCT_SIZE(prb_data_ring); 1096 VMCOREINFO_OFFSET(prb_data_ring, size_bits); 1097 VMCOREINFO_OFFSET(prb_data_ring, data); 1098 VMCOREINFO_OFFSET(prb_data_ring, head_lpos); 1099 VMCOREINFO_OFFSET(prb_data_ring, tail_lpos); 1100 1101 VMCOREINFO_SIZE(atomic_long_t); 1102 VMCOREINFO_TYPE_OFFSET(atomic_long_t, counter); 1103 1104 VMCOREINFO_STRUCT_SIZE(latched_seq); 1105 VMCOREINFO_OFFSET(latched_seq, val); 1106 } 1107 #endif 1108 1109 /* requested log_buf_len from kernel cmdline */ 1110 static unsigned long __initdata new_log_buf_len; 1111 1112 /* we practice scaling the ring buffer by powers of 2 */ 1113 static void __init log_buf_len_update(u64 size) 1114 { 1115 if (size > (u64)LOG_BUF_LEN_MAX) { 1116 size = (u64)LOG_BUF_LEN_MAX; 1117 pr_err("log_buf over 2G is not supported.\n"); 1118 } 1119 1120 if (size) 1121 size = roundup_pow_of_two(size); 1122 if (size > log_buf_len) 1123 new_log_buf_len = (unsigned long)size; 1124 } 1125 1126 /* save requested log_buf_len since it's too early to process it */ 1127 static int __init log_buf_len_setup(char *str) 1128 { 1129 u64 size; 1130 1131 if (!str) 1132 return -EINVAL; 1133 1134 size = memparse(str, &str); 1135 1136 log_buf_len_update(size); 1137 1138 return 0; 1139 } 1140 early_param("log_buf_len", log_buf_len_setup); 1141 1142 #ifdef CONFIG_SMP 1143 #define __LOG_CPU_MAX_BUF_LEN (1 << CONFIG_LOG_CPU_MAX_BUF_SHIFT) 1144 1145 static void __init log_buf_add_cpu(void) 1146 { 1147 unsigned int cpu_extra; 1148 1149 /* 1150 * archs should set up cpu_possible_bits properly with 1151 * set_cpu_possible() after setup_arch() but just in 1152 * case lets ensure this is valid. 1153 */ 1154 if (num_possible_cpus() == 1) 1155 return; 1156 1157 cpu_extra = (num_possible_cpus() - 1) * __LOG_CPU_MAX_BUF_LEN; 1158 1159 /* by default this will only continue through for large > 64 CPUs */ 1160 if (cpu_extra <= __LOG_BUF_LEN / 2) 1161 return; 1162 1163 pr_info("log_buf_len individual max cpu contribution: %d bytes\n", 1164 __LOG_CPU_MAX_BUF_LEN); 1165 pr_info("log_buf_len total cpu_extra contributions: %d bytes\n", 1166 cpu_extra); 1167 pr_info("log_buf_len min size: %d bytes\n", __LOG_BUF_LEN); 1168 1169 log_buf_len_update(cpu_extra + __LOG_BUF_LEN); 1170 } 1171 #else /* !CONFIG_SMP */ 1172 static inline void log_buf_add_cpu(void) {} 1173 #endif /* CONFIG_SMP */ 1174 1175 static void __init set_percpu_data_ready(void) 1176 { 1177 __printk_percpu_data_ready = true; 1178 } 1179 1180 static unsigned int __init add_to_rb(struct printk_ringbuffer *rb, 1181 struct printk_record *r) 1182 { 1183 struct prb_reserved_entry e; 1184 struct printk_record dest_r; 1185 1186 prb_rec_init_wr(&dest_r, r->info->text_len); 1187 1188 if (!prb_reserve(&e, rb, &dest_r)) 1189 return 0; 1190 1191 memcpy(&dest_r.text_buf[0], &r->text_buf[0], r->info->text_len); 1192 dest_r.info->text_len = r->info->text_len; 1193 dest_r.info->facility = r->info->facility; 1194 dest_r.info->level = r->info->level; 1195 dest_r.info->flags = r->info->flags; 1196 dest_r.info->ts_nsec = r->info->ts_nsec; 1197 dest_r.info->caller_id = r->info->caller_id; 1198 memcpy(&dest_r.info->dev_info, &r->info->dev_info, sizeof(dest_r.info->dev_info)); 1199 1200 prb_final_commit(&e); 1201 1202 return prb_record_text_space(&e); 1203 } 1204 1205 static char setup_text_buf[LOG_LINE_MAX] __initdata; 1206 1207 void __init setup_log_buf(int early) 1208 { 1209 struct printk_info *new_infos; 1210 unsigned int new_descs_count; 1211 struct prb_desc *new_descs; 1212 struct printk_info info; 1213 struct printk_record r; 1214 unsigned int text_size; 1215 size_t new_descs_size; 1216 size_t new_infos_size; 1217 unsigned long flags; 1218 char *new_log_buf; 1219 unsigned int free; 1220 u64 seq; 1221 1222 /* 1223 * Some archs call setup_log_buf() multiple times - first is very 1224 * early, e.g. from setup_arch(), and second - when percpu_areas 1225 * are initialised. 1226 */ 1227 if (!early) 1228 set_percpu_data_ready(); 1229 1230 if (log_buf != __log_buf) 1231 return; 1232 1233 if (!early && !new_log_buf_len) 1234 log_buf_add_cpu(); 1235 1236 if (!new_log_buf_len) 1237 return; 1238 1239 new_descs_count = new_log_buf_len >> PRB_AVGBITS; 1240 if (new_descs_count == 0) { 1241 pr_err("new_log_buf_len: %lu too small\n", new_log_buf_len); 1242 return; 1243 } 1244 1245 new_log_buf = memblock_alloc(new_log_buf_len, LOG_ALIGN); 1246 if (unlikely(!new_log_buf)) { 1247 pr_err("log_buf_len: %lu text bytes not available\n", 1248 new_log_buf_len); 1249 return; 1250 } 1251 1252 new_descs_size = new_descs_count * sizeof(struct prb_desc); 1253 new_descs = memblock_alloc(new_descs_size, LOG_ALIGN); 1254 if (unlikely(!new_descs)) { 1255 pr_err("log_buf_len: %zu desc bytes not available\n", 1256 new_descs_size); 1257 goto err_free_log_buf; 1258 } 1259 1260 new_infos_size = new_descs_count * sizeof(struct printk_info); 1261 new_infos = memblock_alloc(new_infos_size, LOG_ALIGN); 1262 if (unlikely(!new_infos)) { 1263 pr_err("log_buf_len: %zu info bytes not available\n", 1264 new_infos_size); 1265 goto err_free_descs; 1266 } 1267 1268 prb_rec_init_rd(&r, &info, &setup_text_buf[0], sizeof(setup_text_buf)); 1269 1270 prb_init(&printk_rb_dynamic, 1271 new_log_buf, ilog2(new_log_buf_len), 1272 new_descs, ilog2(new_descs_count), 1273 new_infos); 1274 1275 local_irq_save(flags); 1276 1277 log_buf_len = new_log_buf_len; 1278 log_buf = new_log_buf; 1279 new_log_buf_len = 0; 1280 1281 free = __LOG_BUF_LEN; 1282 prb_for_each_record(0, &printk_rb_static, seq, &r) { 1283 text_size = add_to_rb(&printk_rb_dynamic, &r); 1284 if (text_size > free) 1285 free = 0; 1286 else 1287 free -= text_size; 1288 } 1289 1290 prb = &printk_rb_dynamic; 1291 1292 local_irq_restore(flags); 1293 1294 /* 1295 * Copy any remaining messages that might have appeared from 1296 * NMI context after copying but before switching to the 1297 * dynamic buffer. 1298 */ 1299 prb_for_each_record(seq, &printk_rb_static, seq, &r) { 1300 text_size = add_to_rb(&printk_rb_dynamic, &r); 1301 if (text_size > free) 1302 free = 0; 1303 else 1304 free -= text_size; 1305 } 1306 1307 if (seq != prb_next_seq(&printk_rb_static)) { 1308 pr_err("dropped %llu messages\n", 1309 prb_next_seq(&printk_rb_static) - seq); 1310 } 1311 1312 pr_info("log_buf_len: %u bytes\n", log_buf_len); 1313 pr_info("early log buf free: %u(%u%%)\n", 1314 free, (free * 100) / __LOG_BUF_LEN); 1315 return; 1316 1317 err_free_descs: 1318 memblock_free(new_descs, new_descs_size); 1319 err_free_log_buf: 1320 memblock_free(new_log_buf, new_log_buf_len); 1321 } 1322 1323 static bool __read_mostly ignore_loglevel; 1324 1325 static int __init ignore_loglevel_setup(char *str) 1326 { 1327 ignore_loglevel = true; 1328 pr_info("debug: ignoring loglevel setting.\n"); 1329 1330 return 0; 1331 } 1332 1333 early_param("ignore_loglevel", ignore_loglevel_setup); 1334 module_param(ignore_loglevel, bool, S_IRUGO | S_IWUSR); 1335 MODULE_PARM_DESC(ignore_loglevel, 1336 "ignore loglevel setting (prints all kernel messages to the console)"); 1337 1338 static bool suppress_message_printing(int level) 1339 { 1340 return (level >= console_loglevel && !ignore_loglevel); 1341 } 1342 1343 #ifdef CONFIG_BOOT_PRINTK_DELAY 1344 1345 static int boot_delay; /* msecs delay after each printk during bootup */ 1346 static unsigned long long loops_per_msec; /* based on boot_delay */ 1347 1348 static int __init boot_delay_setup(char *str) 1349 { 1350 unsigned long lpj; 1351 1352 lpj = preset_lpj ? preset_lpj : 1000000; /* some guess */ 1353 loops_per_msec = (unsigned long long)lpj / 1000 * HZ; 1354 1355 get_option(&str, &boot_delay); 1356 if (boot_delay > 10 * 1000) 1357 boot_delay = 0; 1358 1359 pr_debug("boot_delay: %u, preset_lpj: %ld, lpj: %lu, " 1360 "HZ: %d, loops_per_msec: %llu\n", 1361 boot_delay, preset_lpj, lpj, HZ, loops_per_msec); 1362 return 0; 1363 } 1364 early_param("boot_delay", boot_delay_setup); 1365 1366 static void boot_delay_msec(int level) 1367 { 1368 unsigned long long k; 1369 unsigned long timeout; 1370 1371 if ((boot_delay == 0 || system_state >= SYSTEM_RUNNING) 1372 || suppress_message_printing(level)) { 1373 return; 1374 } 1375 1376 k = (unsigned long long)loops_per_msec * boot_delay; 1377 1378 timeout = jiffies + msecs_to_jiffies(boot_delay); 1379 while (k) { 1380 k--; 1381 cpu_relax(); 1382 /* 1383 * use (volatile) jiffies to prevent 1384 * compiler reduction; loop termination via jiffies 1385 * is secondary and may or may not happen. 1386 */ 1387 if (time_after(jiffies, timeout)) 1388 break; 1389 touch_nmi_watchdog(); 1390 } 1391 } 1392 #else 1393 static inline void boot_delay_msec(int level) 1394 { 1395 } 1396 #endif 1397 1398 static bool printk_time = IS_ENABLED(CONFIG_PRINTK_TIME); 1399 module_param_named(time, printk_time, bool, S_IRUGO | S_IWUSR); 1400 1401 static size_t print_syslog(unsigned int level, char *buf) 1402 { 1403 return sprintf(buf, "<%u>", level); 1404 } 1405 1406 static size_t print_time(u64 ts, char *buf) 1407 { 1408 unsigned long rem_nsec = do_div(ts, 1000000000); 1409 1410 return sprintf(buf, "[%5lu.%06lu]", 1411 (unsigned long)ts, rem_nsec / 1000); 1412 } 1413 1414 #ifdef CONFIG_PRINTK_CALLER 1415 static size_t print_caller(u32 id, char *buf) 1416 { 1417 char caller[12]; 1418 1419 snprintf(caller, sizeof(caller), "%c%u", 1420 id & 0x80000000 ? 'C' : 'T', id & ~0x80000000); 1421 return sprintf(buf, "[%6s]", caller); 1422 } 1423 #else 1424 #define print_caller(id, buf) 0 1425 #endif 1426 1427 static size_t info_print_prefix(const struct printk_info *info, bool syslog, 1428 bool time, char *buf) 1429 { 1430 size_t len = 0; 1431 1432 if (syslog) 1433 len = print_syslog((info->facility << 3) | info->level, buf); 1434 1435 if (time) 1436 len += print_time(info->ts_nsec, buf + len); 1437 1438 len += print_caller(info->caller_id, buf + len); 1439 1440 if (IS_ENABLED(CONFIG_PRINTK_CALLER) || time) { 1441 buf[len++] = ' '; 1442 buf[len] = '\0'; 1443 } 1444 1445 return len; 1446 } 1447 1448 /* 1449 * Prepare the record for printing. The text is shifted within the given 1450 * buffer to avoid a need for another one. The following operations are 1451 * done: 1452 * 1453 * - Add prefix for each line. 1454 * - Drop truncated lines that no longer fit into the buffer. 1455 * - Add the trailing newline that has been removed in vprintk_store(). 1456 * - Add a string terminator. 1457 * 1458 * Since the produced string is always terminated, the maximum possible 1459 * return value is @r->text_buf_size - 1; 1460 * 1461 * Return: The length of the updated/prepared text, including the added 1462 * prefixes and the newline. The terminator is not counted. The dropped 1463 * line(s) are not counted. 1464 */ 1465 static size_t record_print_text(struct printk_record *r, bool syslog, 1466 bool time) 1467 { 1468 size_t text_len = r->info->text_len; 1469 size_t buf_size = r->text_buf_size; 1470 char *text = r->text_buf; 1471 char prefix[PREFIX_MAX]; 1472 bool truncated = false; 1473 size_t prefix_len; 1474 size_t line_len; 1475 size_t len = 0; 1476 char *next; 1477 1478 /* 1479 * If the message was truncated because the buffer was not large 1480 * enough, treat the available text as if it were the full text. 1481 */ 1482 if (text_len > buf_size) 1483 text_len = buf_size; 1484 1485 prefix_len = info_print_prefix(r->info, syslog, time, prefix); 1486 1487 /* 1488 * @text_len: bytes of unprocessed text 1489 * @line_len: bytes of current line _without_ newline 1490 * @text: pointer to beginning of current line 1491 * @len: number of bytes prepared in r->text_buf 1492 */ 1493 for (;;) { 1494 next = memchr(text, '\n', text_len); 1495 if (next) { 1496 line_len = next - text; 1497 } else { 1498 /* Drop truncated line(s). */ 1499 if (truncated) 1500 break; 1501 line_len = text_len; 1502 } 1503 1504 /* 1505 * Truncate the text if there is not enough space to add the 1506 * prefix and a trailing newline and a terminator. 1507 */ 1508 if (len + prefix_len + text_len + 1 + 1 > buf_size) { 1509 /* Drop even the current line if no space. */ 1510 if (len + prefix_len + line_len + 1 + 1 > buf_size) 1511 break; 1512 1513 text_len = buf_size - len - prefix_len - 1 - 1; 1514 truncated = true; 1515 } 1516 1517 memmove(text + prefix_len, text, text_len); 1518 memcpy(text, prefix, prefix_len); 1519 1520 /* 1521 * Increment the prepared length to include the text and 1522 * prefix that were just moved+copied. Also increment for the 1523 * newline at the end of this line. If this is the last line, 1524 * there is no newline, but it will be added immediately below. 1525 */ 1526 len += prefix_len + line_len + 1; 1527 if (text_len == line_len) { 1528 /* 1529 * This is the last line. Add the trailing newline 1530 * removed in vprintk_store(). 1531 */ 1532 text[prefix_len + line_len] = '\n'; 1533 break; 1534 } 1535 1536 /* 1537 * Advance beyond the added prefix and the related line with 1538 * its newline. 1539 */ 1540 text += prefix_len + line_len + 1; 1541 1542 /* 1543 * The remaining text has only decreased by the line with its 1544 * newline. 1545 * 1546 * Note that @text_len can become zero. It happens when @text 1547 * ended with a newline (either due to truncation or the 1548 * original string ending with "\n\n"). The loop is correctly 1549 * repeated and (if not truncated) an empty line with a prefix 1550 * will be prepared. 1551 */ 1552 text_len -= line_len + 1; 1553 } 1554 1555 /* 1556 * If a buffer was provided, it will be terminated. Space for the 1557 * string terminator is guaranteed to be available. The terminator is 1558 * not counted in the return value. 1559 */ 1560 if (buf_size > 0) 1561 r->text_buf[len] = 0; 1562 1563 return len; 1564 } 1565 1566 static size_t get_record_print_text_size(struct printk_info *info, 1567 unsigned int line_count, 1568 bool syslog, bool time) 1569 { 1570 char prefix[PREFIX_MAX]; 1571 size_t prefix_len; 1572 1573 prefix_len = info_print_prefix(info, syslog, time, prefix); 1574 1575 /* 1576 * Each line will be preceded with a prefix. The intermediate 1577 * newlines are already within the text, but a final trailing 1578 * newline will be added. 1579 */ 1580 return ((prefix_len * line_count) + info->text_len + 1); 1581 } 1582 1583 /* 1584 * Beginning with @start_seq, find the first record where it and all following 1585 * records up to (but not including) @max_seq fit into @size. 1586 * 1587 * @max_seq is simply an upper bound and does not need to exist. If the caller 1588 * does not require an upper bound, -1 can be used for @max_seq. 1589 */ 1590 static u64 find_first_fitting_seq(u64 start_seq, u64 max_seq, size_t size, 1591 bool syslog, bool time) 1592 { 1593 struct printk_info info; 1594 unsigned int line_count; 1595 size_t len = 0; 1596 u64 seq; 1597 1598 /* Determine the size of the records up to @max_seq. */ 1599 prb_for_each_info(start_seq, prb, seq, &info, &line_count) { 1600 if (info.seq >= max_seq) 1601 break; 1602 len += get_record_print_text_size(&info, line_count, syslog, time); 1603 } 1604 1605 /* 1606 * Adjust the upper bound for the next loop to avoid subtracting 1607 * lengths that were never added. 1608 */ 1609 if (seq < max_seq) 1610 max_seq = seq; 1611 1612 /* 1613 * Move first record forward until length fits into the buffer. Ignore 1614 * newest messages that were not counted in the above cycle. Messages 1615 * might appear and get lost in the meantime. This is a best effort 1616 * that prevents an infinite loop that could occur with a retry. 1617 */ 1618 prb_for_each_info(start_seq, prb, seq, &info, &line_count) { 1619 if (len <= size || info.seq >= max_seq) 1620 break; 1621 len -= get_record_print_text_size(&info, line_count, syslog, time); 1622 } 1623 1624 return seq; 1625 } 1626 1627 /* The caller is responsible for making sure @size is greater than 0. */ 1628 static int syslog_print(char __user *buf, int size) 1629 { 1630 struct printk_info info; 1631 struct printk_record r; 1632 char *text; 1633 int len = 0; 1634 u64 seq; 1635 1636 text = kmalloc(CONSOLE_LOG_MAX, GFP_KERNEL); 1637 if (!text) 1638 return -ENOMEM; 1639 1640 prb_rec_init_rd(&r, &info, text, CONSOLE_LOG_MAX); 1641 1642 mutex_lock(&syslog_lock); 1643 1644 /* 1645 * Wait for the @syslog_seq record to be available. @syslog_seq may 1646 * change while waiting. 1647 */ 1648 do { 1649 seq = syslog_seq; 1650 1651 mutex_unlock(&syslog_lock); 1652 /* 1653 * Guarantee this task is visible on the waitqueue before 1654 * checking the wake condition. 1655 * 1656 * The full memory barrier within set_current_state() of 1657 * prepare_to_wait_event() pairs with the full memory barrier 1658 * within wq_has_sleeper(). 1659 * 1660 * This pairs with __wake_up_klogd:A. 1661 */ 1662 len = wait_event_interruptible(log_wait, 1663 prb_read_valid(prb, seq, NULL)); /* LMM(syslog_print:A) */ 1664 mutex_lock(&syslog_lock); 1665 1666 if (len) 1667 goto out; 1668 } while (syslog_seq != seq); 1669 1670 /* 1671 * Copy records that fit into the buffer. The above cycle makes sure 1672 * that the first record is always available. 1673 */ 1674 do { 1675 size_t n; 1676 size_t skip; 1677 int err; 1678 1679 if (!prb_read_valid(prb, syslog_seq, &r)) 1680 break; 1681 1682 if (r.info->seq != syslog_seq) { 1683 /* message is gone, move to next valid one */ 1684 syslog_seq = r.info->seq; 1685 syslog_partial = 0; 1686 } 1687 1688 /* 1689 * To keep reading/counting partial line consistent, 1690 * use printk_time value as of the beginning of a line. 1691 */ 1692 if (!syslog_partial) 1693 syslog_time = printk_time; 1694 1695 skip = syslog_partial; 1696 n = record_print_text(&r, true, syslog_time); 1697 if (n - syslog_partial <= size) { 1698 /* message fits into buffer, move forward */ 1699 syslog_seq = r.info->seq + 1; 1700 n -= syslog_partial; 1701 syslog_partial = 0; 1702 } else if (!len){ 1703 /* partial read(), remember position */ 1704 n = size; 1705 syslog_partial += n; 1706 } else 1707 n = 0; 1708 1709 if (!n) 1710 break; 1711 1712 mutex_unlock(&syslog_lock); 1713 err = copy_to_user(buf, text + skip, n); 1714 mutex_lock(&syslog_lock); 1715 1716 if (err) { 1717 if (!len) 1718 len = -EFAULT; 1719 break; 1720 } 1721 1722 len += n; 1723 size -= n; 1724 buf += n; 1725 } while (size); 1726 out: 1727 mutex_unlock(&syslog_lock); 1728 kfree(text); 1729 return len; 1730 } 1731 1732 static int syslog_print_all(char __user *buf, int size, bool clear) 1733 { 1734 struct printk_info info; 1735 struct printk_record r; 1736 char *text; 1737 int len = 0; 1738 u64 seq; 1739 bool time; 1740 1741 text = kmalloc(CONSOLE_LOG_MAX, GFP_KERNEL); 1742 if (!text) 1743 return -ENOMEM; 1744 1745 time = printk_time; 1746 /* 1747 * Find first record that fits, including all following records, 1748 * into the user-provided buffer for this dump. 1749 */ 1750 seq = find_first_fitting_seq(latched_seq_read_nolock(&clear_seq), -1, 1751 size, true, time); 1752 1753 prb_rec_init_rd(&r, &info, text, CONSOLE_LOG_MAX); 1754 1755 len = 0; 1756 prb_for_each_record(seq, prb, seq, &r) { 1757 int textlen; 1758 1759 textlen = record_print_text(&r, true, time); 1760 1761 if (len + textlen > size) { 1762 seq--; 1763 break; 1764 } 1765 1766 if (copy_to_user(buf + len, text, textlen)) 1767 len = -EFAULT; 1768 else 1769 len += textlen; 1770 1771 if (len < 0) 1772 break; 1773 } 1774 1775 if (clear) { 1776 mutex_lock(&syslog_lock); 1777 latched_seq_write(&clear_seq, seq); 1778 mutex_unlock(&syslog_lock); 1779 } 1780 1781 kfree(text); 1782 return len; 1783 } 1784 1785 static void syslog_clear(void) 1786 { 1787 mutex_lock(&syslog_lock); 1788 latched_seq_write(&clear_seq, prb_next_seq(prb)); 1789 mutex_unlock(&syslog_lock); 1790 } 1791 1792 int do_syslog(int type, char __user *buf, int len, int source) 1793 { 1794 struct printk_info info; 1795 bool clear = false; 1796 static int saved_console_loglevel = LOGLEVEL_DEFAULT; 1797 int error; 1798 1799 error = check_syslog_permissions(type, source); 1800 if (error) 1801 return error; 1802 1803 switch (type) { 1804 case SYSLOG_ACTION_CLOSE: /* Close log */ 1805 break; 1806 case SYSLOG_ACTION_OPEN: /* Open log */ 1807 break; 1808 case SYSLOG_ACTION_READ: /* Read from log */ 1809 if (!buf || len < 0) 1810 return -EINVAL; 1811 if (!len) 1812 return 0; 1813 if (!access_ok(buf, len)) 1814 return -EFAULT; 1815 error = syslog_print(buf, len); 1816 break; 1817 /* Read/clear last kernel messages */ 1818 case SYSLOG_ACTION_READ_CLEAR: 1819 clear = true; 1820 fallthrough; 1821 /* Read last kernel messages */ 1822 case SYSLOG_ACTION_READ_ALL: 1823 if (!buf || len < 0) 1824 return -EINVAL; 1825 if (!len) 1826 return 0; 1827 if (!access_ok(buf, len)) 1828 return -EFAULT; 1829 error = syslog_print_all(buf, len, clear); 1830 break; 1831 /* Clear ring buffer */ 1832 case SYSLOG_ACTION_CLEAR: 1833 syslog_clear(); 1834 break; 1835 /* Disable logging to console */ 1836 case SYSLOG_ACTION_CONSOLE_OFF: 1837 if (saved_console_loglevel == LOGLEVEL_DEFAULT) 1838 saved_console_loglevel = console_loglevel; 1839 console_loglevel = minimum_console_loglevel; 1840 break; 1841 /* Enable logging to console */ 1842 case SYSLOG_ACTION_CONSOLE_ON: 1843 if (saved_console_loglevel != LOGLEVEL_DEFAULT) { 1844 console_loglevel = saved_console_loglevel; 1845 saved_console_loglevel = LOGLEVEL_DEFAULT; 1846 } 1847 break; 1848 /* Set level of messages printed to console */ 1849 case SYSLOG_ACTION_CONSOLE_LEVEL: 1850 if (len < 1 || len > 8) 1851 return -EINVAL; 1852 if (len < minimum_console_loglevel) 1853 len = minimum_console_loglevel; 1854 console_loglevel = len; 1855 /* Implicitly re-enable logging to console */ 1856 saved_console_loglevel = LOGLEVEL_DEFAULT; 1857 break; 1858 /* Number of chars in the log buffer */ 1859 case SYSLOG_ACTION_SIZE_UNREAD: 1860 mutex_lock(&syslog_lock); 1861 if (!prb_read_valid_info(prb, syslog_seq, &info, NULL)) { 1862 /* No unread messages. */ 1863 mutex_unlock(&syslog_lock); 1864 return 0; 1865 } 1866 if (info.seq != syslog_seq) { 1867 /* messages are gone, move to first one */ 1868 syslog_seq = info.seq; 1869 syslog_partial = 0; 1870 } 1871 if (source == SYSLOG_FROM_PROC) { 1872 /* 1873 * Short-cut for poll(/"proc/kmsg") which simply checks 1874 * for pending data, not the size; return the count of 1875 * records, not the length. 1876 */ 1877 error = prb_next_seq(prb) - syslog_seq; 1878 } else { 1879 bool time = syslog_partial ? syslog_time : printk_time; 1880 unsigned int line_count; 1881 u64 seq; 1882 1883 prb_for_each_info(syslog_seq, prb, seq, &info, 1884 &line_count) { 1885 error += get_record_print_text_size(&info, line_count, 1886 true, time); 1887 time = printk_time; 1888 } 1889 error -= syslog_partial; 1890 } 1891 mutex_unlock(&syslog_lock); 1892 break; 1893 /* Size of the log buffer */ 1894 case SYSLOG_ACTION_SIZE_BUFFER: 1895 error = log_buf_len; 1896 break; 1897 default: 1898 error = -EINVAL; 1899 break; 1900 } 1901 1902 return error; 1903 } 1904 1905 SYSCALL_DEFINE3(syslog, int, type, char __user *, buf, int, len) 1906 { 1907 return do_syslog(type, buf, len, SYSLOG_FROM_READER); 1908 } 1909 1910 /* 1911 * Special console_lock variants that help to reduce the risk of soft-lockups. 1912 * They allow to pass console_lock to another printk() call using a busy wait. 1913 */ 1914 1915 #ifdef CONFIG_LOCKDEP 1916 static struct lockdep_map console_owner_dep_map = { 1917 .name = "console_owner" 1918 }; 1919 #endif 1920 1921 static DEFINE_RAW_SPINLOCK(console_owner_lock); 1922 static struct task_struct *console_owner; 1923 static bool console_waiter; 1924 1925 /** 1926 * console_lock_spinning_enable - mark beginning of code where another 1927 * thread might safely busy wait 1928 * 1929 * This basically converts console_lock into a spinlock. This marks 1930 * the section where the console_lock owner can not sleep, because 1931 * there may be a waiter spinning (like a spinlock). Also it must be 1932 * ready to hand over the lock at the end of the section. 1933 */ 1934 static void console_lock_spinning_enable(void) 1935 { 1936 raw_spin_lock(&console_owner_lock); 1937 console_owner = current; 1938 raw_spin_unlock(&console_owner_lock); 1939 1940 /* The waiter may spin on us after setting console_owner */ 1941 spin_acquire(&console_owner_dep_map, 0, 0, _THIS_IP_); 1942 } 1943 1944 /** 1945 * console_lock_spinning_disable_and_check - mark end of code where another 1946 * thread was able to busy wait and check if there is a waiter 1947 * 1948 * This is called at the end of the section where spinning is allowed. 1949 * It has two functions. First, it is a signal that it is no longer 1950 * safe to start busy waiting for the lock. Second, it checks if 1951 * there is a busy waiter and passes the lock rights to her. 1952 * 1953 * Important: Callers lose the lock if there was a busy waiter. 1954 * They must not touch items synchronized by console_lock 1955 * in this case. 1956 * 1957 * Return: 1 if the lock rights were passed, 0 otherwise. 1958 */ 1959 static int console_lock_spinning_disable_and_check(void) 1960 { 1961 int waiter; 1962 1963 raw_spin_lock(&console_owner_lock); 1964 waiter = READ_ONCE(console_waiter); 1965 console_owner = NULL; 1966 raw_spin_unlock(&console_owner_lock); 1967 1968 if (!waiter) { 1969 spin_release(&console_owner_dep_map, _THIS_IP_); 1970 return 0; 1971 } 1972 1973 /* The waiter is now free to continue */ 1974 WRITE_ONCE(console_waiter, false); 1975 1976 spin_release(&console_owner_dep_map, _THIS_IP_); 1977 1978 /* 1979 * Hand off console_lock to waiter. The waiter will perform 1980 * the up(). After this, the waiter is the console_lock owner. 1981 */ 1982 mutex_release(&console_lock_dep_map, _THIS_IP_); 1983 return 1; 1984 } 1985 1986 /** 1987 * console_trylock_spinning - try to get console_lock by busy waiting 1988 * 1989 * This allows to busy wait for the console_lock when the current 1990 * owner is running in specially marked sections. It means that 1991 * the current owner is running and cannot reschedule until it 1992 * is ready to lose the lock. 1993 * 1994 * Return: 1 if we got the lock, 0 othrewise 1995 */ 1996 static int console_trylock_spinning(void) 1997 { 1998 struct task_struct *owner = NULL; 1999 bool waiter; 2000 bool spin = false; 2001 unsigned long flags; 2002 2003 if (console_trylock()) 2004 return 1; 2005 2006 /* 2007 * It's unsafe to spin once a panic has begun. If we are the 2008 * panic CPU, we may have already halted the owner of the 2009 * console_sem. If we are not the panic CPU, then we should 2010 * avoid taking console_sem, so the panic CPU has a better 2011 * chance of cleanly acquiring it later. 2012 */ 2013 if (panic_in_progress()) 2014 return 0; 2015 2016 printk_safe_enter_irqsave(flags); 2017 2018 raw_spin_lock(&console_owner_lock); 2019 owner = READ_ONCE(console_owner); 2020 waiter = READ_ONCE(console_waiter); 2021 if (!waiter && owner && owner != current) { 2022 WRITE_ONCE(console_waiter, true); 2023 spin = true; 2024 } 2025 raw_spin_unlock(&console_owner_lock); 2026 2027 /* 2028 * If there is an active printk() writing to the 2029 * consoles, instead of having it write our data too, 2030 * see if we can offload that load from the active 2031 * printer, and do some printing ourselves. 2032 * Go into a spin only if there isn't already a waiter 2033 * spinning, and there is an active printer, and 2034 * that active printer isn't us (recursive printk?). 2035 */ 2036 if (!spin) { 2037 printk_safe_exit_irqrestore(flags); 2038 return 0; 2039 } 2040 2041 /* We spin waiting for the owner to release us */ 2042 spin_acquire(&console_owner_dep_map, 0, 0, _THIS_IP_); 2043 /* Owner will clear console_waiter on hand off */ 2044 while (READ_ONCE(console_waiter)) 2045 cpu_relax(); 2046 spin_release(&console_owner_dep_map, _THIS_IP_); 2047 2048 printk_safe_exit_irqrestore(flags); 2049 /* 2050 * The owner passed the console lock to us. 2051 * Since we did not spin on console lock, annotate 2052 * this as a trylock. Otherwise lockdep will 2053 * complain. 2054 */ 2055 mutex_acquire(&console_lock_dep_map, 0, 1, _THIS_IP_); 2056 2057 return 1; 2058 } 2059 2060 /* 2061 * Call the specified console driver, asking it to write out the specified 2062 * text and length. If @dropped_text is non-NULL and any records have been 2063 * dropped, a dropped message will be written out first. 2064 */ 2065 static void call_console_driver(struct console *con, const char *text, size_t len, 2066 char *dropped_text) 2067 { 2068 size_t dropped_len; 2069 2070 if (con->dropped && dropped_text) { 2071 dropped_len = snprintf(dropped_text, DROPPED_TEXT_MAX, 2072 "** %lu printk messages dropped **\n", 2073 con->dropped); 2074 con->dropped = 0; 2075 con->write(con, dropped_text, dropped_len); 2076 } 2077 2078 con->write(con, text, len); 2079 } 2080 2081 /* 2082 * Recursion is tracked separately on each CPU. If NMIs are supported, an 2083 * additional NMI context per CPU is also separately tracked. Until per-CPU 2084 * is available, a separate "early tracking" is performed. 2085 */ 2086 static DEFINE_PER_CPU(u8, printk_count); 2087 static u8 printk_count_early; 2088 #ifdef CONFIG_HAVE_NMI 2089 static DEFINE_PER_CPU(u8, printk_count_nmi); 2090 static u8 printk_count_nmi_early; 2091 #endif 2092 2093 /* 2094 * Recursion is limited to keep the output sane. printk() should not require 2095 * more than 1 level of recursion (allowing, for example, printk() to trigger 2096 * a WARN), but a higher value is used in case some printk-internal errors 2097 * exist, such as the ringbuffer validation checks failing. 2098 */ 2099 #define PRINTK_MAX_RECURSION 3 2100 2101 /* 2102 * Return a pointer to the dedicated counter for the CPU+context of the 2103 * caller. 2104 */ 2105 static u8 *__printk_recursion_counter(void) 2106 { 2107 #ifdef CONFIG_HAVE_NMI 2108 if (in_nmi()) { 2109 if (printk_percpu_data_ready()) 2110 return this_cpu_ptr(&printk_count_nmi); 2111 return &printk_count_nmi_early; 2112 } 2113 #endif 2114 if (printk_percpu_data_ready()) 2115 return this_cpu_ptr(&printk_count); 2116 return &printk_count_early; 2117 } 2118 2119 /* 2120 * Enter recursion tracking. Interrupts are disabled to simplify tracking. 2121 * The caller must check the boolean return value to see if the recursion is 2122 * allowed. On failure, interrupts are not disabled. 2123 * 2124 * @recursion_ptr must be a variable of type (u8 *) and is the same variable 2125 * that is passed to printk_exit_irqrestore(). 2126 */ 2127 #define printk_enter_irqsave(recursion_ptr, flags) \ 2128 ({ \ 2129 bool success = true; \ 2130 \ 2131 typecheck(u8 *, recursion_ptr); \ 2132 local_irq_save(flags); \ 2133 (recursion_ptr) = __printk_recursion_counter(); \ 2134 if (*(recursion_ptr) > PRINTK_MAX_RECURSION) { \ 2135 local_irq_restore(flags); \ 2136 success = false; \ 2137 } else { \ 2138 (*(recursion_ptr))++; \ 2139 } \ 2140 success; \ 2141 }) 2142 2143 /* Exit recursion tracking, restoring interrupts. */ 2144 #define printk_exit_irqrestore(recursion_ptr, flags) \ 2145 do { \ 2146 typecheck(u8 *, recursion_ptr); \ 2147 (*(recursion_ptr))--; \ 2148 local_irq_restore(flags); \ 2149 } while (0) 2150 2151 int printk_delay_msec __read_mostly; 2152 2153 static inline void printk_delay(int level) 2154 { 2155 boot_delay_msec(level); 2156 2157 if (unlikely(printk_delay_msec)) { 2158 int m = printk_delay_msec; 2159 2160 while (m--) { 2161 mdelay(1); 2162 touch_nmi_watchdog(); 2163 } 2164 } 2165 } 2166 2167 static inline u32 printk_caller_id(void) 2168 { 2169 return in_task() ? task_pid_nr(current) : 2170 0x80000000 + smp_processor_id(); 2171 } 2172 2173 /** 2174 * printk_parse_prefix - Parse level and control flags. 2175 * 2176 * @text: The terminated text message. 2177 * @level: A pointer to the current level value, will be updated. 2178 * @flags: A pointer to the current printk_info flags, will be updated. 2179 * 2180 * @level may be NULL if the caller is not interested in the parsed value. 2181 * Otherwise the variable pointed to by @level must be set to 2182 * LOGLEVEL_DEFAULT in order to be updated with the parsed value. 2183 * 2184 * @flags may be NULL if the caller is not interested in the parsed value. 2185 * Otherwise the variable pointed to by @flags will be OR'd with the parsed 2186 * value. 2187 * 2188 * Return: The length of the parsed level and control flags. 2189 */ 2190 u16 printk_parse_prefix(const char *text, int *level, 2191 enum printk_info_flags *flags) 2192 { 2193 u16 prefix_len = 0; 2194 int kern_level; 2195 2196 while (*text) { 2197 kern_level = printk_get_level(text); 2198 if (!kern_level) 2199 break; 2200 2201 switch (kern_level) { 2202 case '0' ... '7': 2203 if (level && *level == LOGLEVEL_DEFAULT) 2204 *level = kern_level - '0'; 2205 break; 2206 case 'c': /* KERN_CONT */ 2207 if (flags) 2208 *flags |= LOG_CONT; 2209 } 2210 2211 prefix_len += 2; 2212 text += 2; 2213 } 2214 2215 return prefix_len; 2216 } 2217 2218 __printf(5, 0) 2219 static u16 printk_sprint(char *text, u16 size, int facility, 2220 enum printk_info_flags *flags, const char *fmt, 2221 va_list args) 2222 { 2223 u16 text_len; 2224 2225 text_len = vscnprintf(text, size, fmt, args); 2226 2227 /* Mark and strip a trailing newline. */ 2228 if (text_len && text[text_len - 1] == '\n') { 2229 text_len--; 2230 *flags |= LOG_NEWLINE; 2231 } 2232 2233 /* Strip log level and control flags. */ 2234 if (facility == 0) { 2235 u16 prefix_len; 2236 2237 prefix_len = printk_parse_prefix(text, NULL, NULL); 2238 if (prefix_len) { 2239 text_len -= prefix_len; 2240 memmove(text, text + prefix_len, text_len); 2241 } 2242 } 2243 2244 trace_console_rcuidle(text, text_len); 2245 2246 return text_len; 2247 } 2248 2249 __printf(4, 0) 2250 int vprintk_store(int facility, int level, 2251 const struct dev_printk_info *dev_info, 2252 const char *fmt, va_list args) 2253 { 2254 struct prb_reserved_entry e; 2255 enum printk_info_flags flags = 0; 2256 struct printk_record r; 2257 unsigned long irqflags; 2258 u16 trunc_msg_len = 0; 2259 char prefix_buf[8]; 2260 u8 *recursion_ptr; 2261 u16 reserve_size; 2262 va_list args2; 2263 u32 caller_id; 2264 u16 text_len; 2265 int ret = 0; 2266 u64 ts_nsec; 2267 2268 if (!printk_enter_irqsave(recursion_ptr, irqflags)) 2269 return 0; 2270 2271 /* 2272 * Since the duration of printk() can vary depending on the message 2273 * and state of the ringbuffer, grab the timestamp now so that it is 2274 * close to the call of printk(). This provides a more deterministic 2275 * timestamp with respect to the caller. 2276 */ 2277 ts_nsec = local_clock(); 2278 2279 caller_id = printk_caller_id(); 2280 2281 /* 2282 * The sprintf needs to come first since the syslog prefix might be 2283 * passed in as a parameter. An extra byte must be reserved so that 2284 * later the vscnprintf() into the reserved buffer has room for the 2285 * terminating '\0', which is not counted by vsnprintf(). 2286 */ 2287 va_copy(args2, args); 2288 reserve_size = vsnprintf(&prefix_buf[0], sizeof(prefix_buf), fmt, args2) + 1; 2289 va_end(args2); 2290 2291 if (reserve_size > LOG_LINE_MAX) 2292 reserve_size = LOG_LINE_MAX; 2293 2294 /* Extract log level or control flags. */ 2295 if (facility == 0) 2296 printk_parse_prefix(&prefix_buf[0], &level, &flags); 2297 2298 if (level == LOGLEVEL_DEFAULT) 2299 level = default_message_loglevel; 2300 2301 if (dev_info) 2302 flags |= LOG_NEWLINE; 2303 2304 if (flags & LOG_CONT) { 2305 prb_rec_init_wr(&r, reserve_size); 2306 if (prb_reserve_in_last(&e, prb, &r, caller_id, LOG_LINE_MAX)) { 2307 text_len = printk_sprint(&r.text_buf[r.info->text_len], reserve_size, 2308 facility, &flags, fmt, args); 2309 r.info->text_len += text_len; 2310 2311 if (flags & LOG_NEWLINE) { 2312 r.info->flags |= LOG_NEWLINE; 2313 prb_final_commit(&e); 2314 } else { 2315 prb_commit(&e); 2316 } 2317 2318 ret = text_len; 2319 goto out; 2320 } 2321 } 2322 2323 /* 2324 * Explicitly initialize the record before every prb_reserve() call. 2325 * prb_reserve_in_last() and prb_reserve() purposely invalidate the 2326 * structure when they fail. 2327 */ 2328 prb_rec_init_wr(&r, reserve_size); 2329 if (!prb_reserve(&e, prb, &r)) { 2330 /* truncate the message if it is too long for empty buffer */ 2331 truncate_msg(&reserve_size, &trunc_msg_len); 2332 2333 prb_rec_init_wr(&r, reserve_size + trunc_msg_len); 2334 if (!prb_reserve(&e, prb, &r)) 2335 goto out; 2336 } 2337 2338 /* fill message */ 2339 text_len = printk_sprint(&r.text_buf[0], reserve_size, facility, &flags, fmt, args); 2340 if (trunc_msg_len) 2341 memcpy(&r.text_buf[text_len], trunc_msg, trunc_msg_len); 2342 r.info->text_len = text_len + trunc_msg_len; 2343 r.info->facility = facility; 2344 r.info->level = level & 7; 2345 r.info->flags = flags & 0x1f; 2346 r.info->ts_nsec = ts_nsec; 2347 r.info->caller_id = caller_id; 2348 if (dev_info) 2349 memcpy(&r.info->dev_info, dev_info, sizeof(r.info->dev_info)); 2350 2351 /* A message without a trailing newline can be continued. */ 2352 if (!(flags & LOG_NEWLINE)) 2353 prb_commit(&e); 2354 else 2355 prb_final_commit(&e); 2356 2357 ret = text_len + trunc_msg_len; 2358 out: 2359 printk_exit_irqrestore(recursion_ptr, irqflags); 2360 return ret; 2361 } 2362 2363 asmlinkage int vprintk_emit(int facility, int level, 2364 const struct dev_printk_info *dev_info, 2365 const char *fmt, va_list args) 2366 { 2367 int printed_len; 2368 bool in_sched = false; 2369 2370 /* Suppress unimportant messages after panic happens */ 2371 if (unlikely(suppress_printk)) 2372 return 0; 2373 2374 if (unlikely(suppress_panic_printk) && 2375 atomic_read(&panic_cpu) != raw_smp_processor_id()) 2376 return 0; 2377 2378 if (level == LOGLEVEL_SCHED) { 2379 level = LOGLEVEL_DEFAULT; 2380 in_sched = true; 2381 } 2382 2383 printk_delay(level); 2384 2385 printed_len = vprintk_store(facility, level, dev_info, fmt, args); 2386 2387 /* If called from the scheduler, we can not call up(). */ 2388 if (!in_sched && allow_direct_printing()) { 2389 /* 2390 * The caller may be holding system-critical or 2391 * timing-sensitive locks. Disable preemption during direct 2392 * printing of all remaining records to all consoles so that 2393 * this context can return as soon as possible. Hopefully 2394 * another printk() caller will take over the printing. 2395 */ 2396 preempt_disable(); 2397 /* 2398 * Try to acquire and then immediately release the console 2399 * semaphore. The release will print out buffers. With the 2400 * spinning variant, this context tries to take over the 2401 * printing from another printing context. 2402 */ 2403 if (console_trylock_spinning()) 2404 console_unlock(); 2405 preempt_enable(); 2406 } 2407 2408 wake_up_klogd(); 2409 return printed_len; 2410 } 2411 EXPORT_SYMBOL(vprintk_emit); 2412 2413 int vprintk_default(const char *fmt, va_list args) 2414 { 2415 return vprintk_emit(0, LOGLEVEL_DEFAULT, NULL, fmt, args); 2416 } 2417 EXPORT_SYMBOL_GPL(vprintk_default); 2418 2419 asmlinkage __visible int _printk(const char *fmt, ...) 2420 { 2421 va_list args; 2422 int r; 2423 2424 va_start(args, fmt); 2425 r = vprintk(fmt, args); 2426 va_end(args); 2427 2428 return r; 2429 } 2430 EXPORT_SYMBOL(_printk); 2431 2432 static bool __pr_flush(struct console *con, int timeout_ms, bool reset_on_progress); 2433 2434 static void printk_start_kthread(struct console *con); 2435 2436 #else /* CONFIG_PRINTK */ 2437 2438 #define CONSOLE_LOG_MAX 0 2439 #define DROPPED_TEXT_MAX 0 2440 #define printk_time false 2441 2442 #define prb_read_valid(rb, seq, r) false 2443 #define prb_first_valid_seq(rb) 0 2444 #define prb_next_seq(rb) 0 2445 2446 static u64 syslog_seq; 2447 2448 static size_t record_print_text(const struct printk_record *r, 2449 bool syslog, bool time) 2450 { 2451 return 0; 2452 } 2453 static ssize_t info_print_ext_header(char *buf, size_t size, 2454 struct printk_info *info) 2455 { 2456 return 0; 2457 } 2458 static ssize_t msg_print_ext_body(char *buf, size_t size, 2459 char *text, size_t text_len, 2460 struct dev_printk_info *dev_info) { return 0; } 2461 static void console_lock_spinning_enable(void) { } 2462 static int console_lock_spinning_disable_and_check(void) { return 0; } 2463 static void call_console_driver(struct console *con, const char *text, size_t len, 2464 char *dropped_text) 2465 { 2466 } 2467 static bool suppress_message_printing(int level) { return false; } 2468 static bool __pr_flush(struct console *con, int timeout_ms, bool reset_on_progress) { return true; } 2469 static void printk_start_kthread(struct console *con) { } 2470 static bool allow_direct_printing(void) { return true; } 2471 2472 #endif /* CONFIG_PRINTK */ 2473 2474 #ifdef CONFIG_EARLY_PRINTK 2475 struct console *early_console; 2476 2477 asmlinkage __visible void early_printk(const char *fmt, ...) 2478 { 2479 va_list ap; 2480 char buf[512]; 2481 int n; 2482 2483 if (!early_console) 2484 return; 2485 2486 va_start(ap, fmt); 2487 n = vscnprintf(buf, sizeof(buf), fmt, ap); 2488 va_end(ap); 2489 2490 early_console->write(early_console, buf, n); 2491 } 2492 #endif 2493 2494 static void set_user_specified(struct console_cmdline *c, bool user_specified) 2495 { 2496 if (!user_specified) 2497 return; 2498 2499 /* 2500 * @c console was defined by the user on the command line. 2501 * Do not clear when added twice also by SPCR or the device tree. 2502 */ 2503 c->user_specified = true; 2504 /* At least one console defined by the user on the command line. */ 2505 console_set_on_cmdline = 1; 2506 } 2507 2508 static int __add_preferred_console(char *name, int idx, char *options, 2509 char *brl_options, bool user_specified) 2510 { 2511 struct console_cmdline *c; 2512 int i; 2513 2514 /* 2515 * See if this tty is not yet registered, and 2516 * if we have a slot free. 2517 */ 2518 for (i = 0, c = console_cmdline; 2519 i < MAX_CMDLINECONSOLES && c->name[0]; 2520 i++, c++) { 2521 if (strcmp(c->name, name) == 0 && c->index == idx) { 2522 if (!brl_options) 2523 preferred_console = i; 2524 set_user_specified(c, user_specified); 2525 return 0; 2526 } 2527 } 2528 if (i == MAX_CMDLINECONSOLES) 2529 return -E2BIG; 2530 if (!brl_options) 2531 preferred_console = i; 2532 strlcpy(c->name, name, sizeof(c->name)); 2533 c->options = options; 2534 set_user_specified(c, user_specified); 2535 braille_set_options(c, brl_options); 2536 2537 c->index = idx; 2538 return 0; 2539 } 2540 2541 static int __init console_msg_format_setup(char *str) 2542 { 2543 if (!strcmp(str, "syslog")) 2544 console_msg_format = MSG_FORMAT_SYSLOG; 2545 if (!strcmp(str, "default")) 2546 console_msg_format = MSG_FORMAT_DEFAULT; 2547 return 1; 2548 } 2549 __setup("console_msg_format=", console_msg_format_setup); 2550 2551 /* 2552 * Set up a console. Called via do_early_param() in init/main.c 2553 * for each "console=" parameter in the boot command line. 2554 */ 2555 static int __init console_setup(char *str) 2556 { 2557 char buf[sizeof(console_cmdline[0].name) + 4]; /* 4 for "ttyS" */ 2558 char *s, *options, *brl_options = NULL; 2559 int idx; 2560 2561 /* 2562 * console="" or console=null have been suggested as a way to 2563 * disable console output. Use ttynull that has been created 2564 * for exactly this purpose. 2565 */ 2566 if (str[0] == 0 || strcmp(str, "null") == 0) { 2567 __add_preferred_console("ttynull", 0, NULL, NULL, true); 2568 return 1; 2569 } 2570 2571 if (_braille_console_setup(&str, &brl_options)) 2572 return 1; 2573 2574 /* 2575 * Decode str into name, index, options. 2576 */ 2577 if (str[0] >= '0' && str[0] <= '9') { 2578 strcpy(buf, "ttyS"); 2579 strncpy(buf + 4, str, sizeof(buf) - 5); 2580 } else { 2581 strncpy(buf, str, sizeof(buf) - 1); 2582 } 2583 buf[sizeof(buf) - 1] = 0; 2584 options = strchr(str, ','); 2585 if (options) 2586 *(options++) = 0; 2587 #ifdef __sparc__ 2588 if (!strcmp(str, "ttya")) 2589 strcpy(buf, "ttyS0"); 2590 if (!strcmp(str, "ttyb")) 2591 strcpy(buf, "ttyS1"); 2592 #endif 2593 for (s = buf; *s; s++) 2594 if (isdigit(*s) || *s == ',') 2595 break; 2596 idx = simple_strtoul(s, NULL, 10); 2597 *s = 0; 2598 2599 __add_preferred_console(buf, idx, options, brl_options, true); 2600 return 1; 2601 } 2602 __setup("console=", console_setup); 2603 2604 /** 2605 * add_preferred_console - add a device to the list of preferred consoles. 2606 * @name: device name 2607 * @idx: device index 2608 * @options: options for this console 2609 * 2610 * The last preferred console added will be used for kernel messages 2611 * and stdin/out/err for init. Normally this is used by console_setup 2612 * above to handle user-supplied console arguments; however it can also 2613 * be used by arch-specific code either to override the user or more 2614 * commonly to provide a default console (ie from PROM variables) when 2615 * the user has not supplied one. 2616 */ 2617 int add_preferred_console(char *name, int idx, char *options) 2618 { 2619 return __add_preferred_console(name, idx, options, NULL, false); 2620 } 2621 2622 bool console_suspend_enabled = true; 2623 EXPORT_SYMBOL(console_suspend_enabled); 2624 2625 static int __init console_suspend_disable(char *str) 2626 { 2627 console_suspend_enabled = false; 2628 return 1; 2629 } 2630 __setup("no_console_suspend", console_suspend_disable); 2631 module_param_named(console_suspend, console_suspend_enabled, 2632 bool, S_IRUGO | S_IWUSR); 2633 MODULE_PARM_DESC(console_suspend, "suspend console during suspend" 2634 " and hibernate operations"); 2635 2636 static bool printk_console_no_auto_verbose; 2637 2638 void console_verbose(void) 2639 { 2640 if (console_loglevel && !printk_console_no_auto_verbose) 2641 console_loglevel = CONSOLE_LOGLEVEL_MOTORMOUTH; 2642 } 2643 EXPORT_SYMBOL_GPL(console_verbose); 2644 2645 module_param_named(console_no_auto_verbose, printk_console_no_auto_verbose, bool, 0644); 2646 MODULE_PARM_DESC(console_no_auto_verbose, "Disable console loglevel raise to highest on oops/panic/etc"); 2647 2648 /** 2649 * suspend_console - suspend the console subsystem 2650 * 2651 * This disables printk() while we go into suspend states 2652 */ 2653 void suspend_console(void) 2654 { 2655 if (!console_suspend_enabled) 2656 return; 2657 pr_info("Suspending console(s) (use no_console_suspend to debug)\n"); 2658 pr_flush(1000, true); 2659 console_lock(); 2660 console_suspended = 1; 2661 up_console_sem(); 2662 } 2663 2664 void resume_console(void) 2665 { 2666 if (!console_suspend_enabled) 2667 return; 2668 down_console_sem(); 2669 console_suspended = 0; 2670 console_unlock(); 2671 pr_flush(1000, true); 2672 } 2673 2674 /** 2675 * console_cpu_notify - print deferred console messages after CPU hotplug 2676 * @cpu: unused 2677 * 2678 * If printk() is called from a CPU that is not online yet, the messages 2679 * will be printed on the console only if there are CON_ANYTIME consoles. 2680 * This function is called when a new CPU comes online (or fails to come 2681 * up) or goes offline. 2682 */ 2683 static int console_cpu_notify(unsigned int cpu) 2684 { 2685 if (!cpuhp_tasks_frozen) { 2686 /* If trylock fails, someone else is doing the printing */ 2687 if (console_trylock()) 2688 console_unlock(); 2689 else { 2690 /* 2691 * If a new CPU comes online, the conditions for 2692 * printer_should_wake() may have changed for some 2693 * kthread printer with !CON_ANYTIME. 2694 */ 2695 wake_up_klogd(); 2696 } 2697 } 2698 return 0; 2699 } 2700 2701 /** 2702 * console_lock - lock the console system for exclusive use. 2703 * 2704 * Acquires a lock which guarantees that the caller has 2705 * exclusive access to the console system and the console_drivers list. 2706 * 2707 * Can sleep, returns nothing. 2708 */ 2709 void console_lock(void) 2710 { 2711 might_sleep(); 2712 2713 down_console_sem(); 2714 if (console_suspended) 2715 return; 2716 console_kthreads_block(); 2717 console_may_schedule = 1; 2718 } 2719 EXPORT_SYMBOL(console_lock); 2720 2721 /** 2722 * console_trylock - try to lock the console system for exclusive use. 2723 * 2724 * Try to acquire a lock which guarantees that the caller has exclusive 2725 * access to the console system and the console_drivers list. 2726 * 2727 * returns 1 on success, and 0 on failure to acquire the lock. 2728 */ 2729 int console_trylock(void) 2730 { 2731 if (down_trylock_console_sem()) 2732 return 0; 2733 if (console_suspended) { 2734 up_console_sem(); 2735 return 0; 2736 } 2737 if (!console_kthreads_atomic_tryblock()) { 2738 up_console_sem(); 2739 return 0; 2740 } 2741 console_may_schedule = 0; 2742 return 1; 2743 } 2744 EXPORT_SYMBOL(console_trylock); 2745 2746 /* 2747 * This is used to help to make sure that certain paths within the VT code are 2748 * running with the console lock held. It is definitely not the perfect debug 2749 * tool (it is not known if the VT code is the task holding the console lock), 2750 * but it helps tracking those weird code paths in the console code such as 2751 * when the console is suspended: where the console is not locked but no 2752 * console printing may occur. 2753 * 2754 * Note: This returns true when the console is suspended but is not locked. 2755 * This is intentional because the VT code must consider that situation 2756 * the same as if the console was locked. 2757 */ 2758 int is_console_locked(void) 2759 { 2760 return (console_kthreads_blocked || atomic_read(&console_kthreads_active)); 2761 } 2762 EXPORT_SYMBOL(is_console_locked); 2763 2764 /* 2765 * Return true when this CPU should unlock console_sem without pushing all 2766 * messages to the console. This reduces the chance that the console is 2767 * locked when the panic CPU tries to use it. 2768 */ 2769 static bool abandon_console_lock_in_panic(void) 2770 { 2771 if (!panic_in_progress()) 2772 return false; 2773 2774 /* 2775 * We can use raw_smp_processor_id() here because it is impossible for 2776 * the task to be migrated to the panic_cpu, or away from it. If 2777 * panic_cpu has already been set, and we're not currently executing on 2778 * that CPU, then we never will be. 2779 */ 2780 return atomic_read(&panic_cpu) != raw_smp_processor_id(); 2781 } 2782 2783 static inline bool __console_is_usable(short flags) 2784 { 2785 if (!(flags & CON_ENABLED)) 2786 return false; 2787 2788 /* 2789 * Console drivers may assume that per-cpu resources have been 2790 * allocated. So unless they're explicitly marked as being able to 2791 * cope (CON_ANYTIME) don't call them until this CPU is officially up. 2792 */ 2793 if (!cpu_online(raw_smp_processor_id()) && 2794 !(flags & CON_ANYTIME)) 2795 return false; 2796 2797 return true; 2798 } 2799 2800 /* 2801 * Check if the given console is currently capable and allowed to print 2802 * records. 2803 * 2804 * Requires holding the console_lock. 2805 */ 2806 static inline bool console_is_usable(struct console *con) 2807 { 2808 if (!con->write) 2809 return false; 2810 2811 return __console_is_usable(con->flags); 2812 } 2813 2814 static void __console_unlock(void) 2815 { 2816 /* 2817 * Depending on whether console_lock() or console_trylock() was used, 2818 * appropriately allow the kthread printers to continue. 2819 */ 2820 if (console_kthreads_blocked) 2821 console_kthreads_unblock(); 2822 else 2823 console_kthreads_atomic_unblock(); 2824 2825 /* 2826 * New records may have arrived while the console was locked. 2827 * Wake the kthread printers to print them. 2828 */ 2829 wake_up_klogd(); 2830 2831 up_console_sem(); 2832 } 2833 2834 /* 2835 * Print one record for the given console. The record printed is whatever 2836 * record is the next available record for the given console. 2837 * 2838 * @text is a buffer of size CONSOLE_LOG_MAX. 2839 * 2840 * If extended messages should be printed, @ext_text is a buffer of size 2841 * CONSOLE_EXT_LOG_MAX. Otherwise @ext_text must be NULL. 2842 * 2843 * If dropped messages should be printed, @dropped_text is a buffer of size 2844 * DROPPED_TEXT_MAX. Otherwise @dropped_text must be NULL. 2845 * 2846 * @handover will be set to true if a printk waiter has taken over the 2847 * console_lock, in which case the caller is no longer holding the 2848 * console_lock. Otherwise it is set to false. A NULL pointer may be provided 2849 * to disable allowing the console_lock to be taken over by a printk waiter. 2850 * 2851 * Returns false if the given console has no next record to print, otherwise 2852 * true. 2853 * 2854 * Requires the console_lock if @handover is non-NULL. 2855 * Requires con->lock otherwise. 2856 */ 2857 static bool __console_emit_next_record(struct console *con, char *text, char *ext_text, 2858 char *dropped_text, bool *handover) 2859 { 2860 static atomic_t panic_console_dropped = ATOMIC_INIT(0); 2861 struct printk_info info; 2862 struct printk_record r; 2863 unsigned long flags; 2864 char *write_text; 2865 size_t len; 2866 2867 prb_rec_init_rd(&r, &info, text, CONSOLE_LOG_MAX); 2868 2869 if (handover) 2870 *handover = false; 2871 2872 if (!prb_read_valid(prb, con->seq, &r)) 2873 return false; 2874 2875 if (con->seq != r.info->seq) { 2876 con->dropped += r.info->seq - con->seq; 2877 con->seq = r.info->seq; 2878 if (panic_in_progress() && 2879 atomic_fetch_inc_relaxed(&panic_console_dropped) > 10) { 2880 suppress_panic_printk = 1; 2881 pr_warn_once("Too many dropped messages. Suppress messages on non-panic CPUs to prevent livelock.\n"); 2882 } 2883 } 2884 2885 /* Skip record that has level above the console loglevel. */ 2886 if (suppress_message_printing(r.info->level)) { 2887 con->seq++; 2888 goto skip; 2889 } 2890 2891 if (ext_text) { 2892 write_text = ext_text; 2893 len = info_print_ext_header(ext_text, CONSOLE_EXT_LOG_MAX, r.info); 2894 len += msg_print_ext_body(ext_text + len, CONSOLE_EXT_LOG_MAX - len, 2895 &r.text_buf[0], r.info->text_len, &r.info->dev_info); 2896 } else { 2897 write_text = text; 2898 len = record_print_text(&r, console_msg_format & MSG_FORMAT_SYSLOG, printk_time); 2899 } 2900 2901 if (handover) { 2902 /* 2903 * While actively printing out messages, if another printk() 2904 * were to occur on another CPU, it may wait for this one to 2905 * finish. This task can not be preempted if there is a 2906 * waiter waiting to take over. 2907 * 2908 * Interrupts are disabled because the hand over to a waiter 2909 * must not be interrupted until the hand over is completed 2910 * (@console_waiter is cleared). 2911 */ 2912 printk_safe_enter_irqsave(flags); 2913 console_lock_spinning_enable(); 2914 2915 /* don't trace irqsoff print latency */ 2916 stop_critical_timings(); 2917 } 2918 2919 call_console_driver(con, write_text, len, dropped_text); 2920 2921 con->seq++; 2922 2923 if (handover) { 2924 start_critical_timings(); 2925 *handover = console_lock_spinning_disable_and_check(); 2926 printk_safe_exit_irqrestore(flags); 2927 } 2928 skip: 2929 return true; 2930 } 2931 2932 /* 2933 * Print a record for a given console, but allow another printk() caller to 2934 * take over the console_lock and continue printing. 2935 * 2936 * Requires the console_lock, but depending on @handover after the call, the 2937 * caller may no longer have the console_lock. 2938 * 2939 * See __console_emit_next_record() for argument and return details. 2940 */ 2941 static bool console_emit_next_record_transferable(struct console *con, char *text, char *ext_text, 2942 char *dropped_text, bool *handover) 2943 { 2944 /* 2945 * Handovers are only supported if threaded printers are atomically 2946 * blocked. The context taking over the console_lock may be atomic. 2947 */ 2948 if (!console_kthreads_atomically_blocked()) { 2949 *handover = false; 2950 handover = NULL; 2951 } 2952 2953 return __console_emit_next_record(con, text, ext_text, dropped_text, handover); 2954 } 2955 2956 /* 2957 * Print out all remaining records to all consoles. 2958 * 2959 * @do_cond_resched is set by the caller. It can be true only in schedulable 2960 * context. 2961 * 2962 * @next_seq is set to the sequence number after the last available record. 2963 * The value is valid only when this function returns true. It means that all 2964 * usable consoles are completely flushed. 2965 * 2966 * @handover will be set to true if a printk waiter has taken over the 2967 * console_lock, in which case the caller is no longer holding the 2968 * console_lock. Otherwise it is set to false. 2969 * 2970 * Returns true when there was at least one usable console and all messages 2971 * were flushed to all usable consoles. A returned false informs the caller 2972 * that everything was not flushed (either there were no usable consoles or 2973 * another context has taken over printing or it is a panic situation and this 2974 * is not the panic CPU or direct printing is not preferred). Regardless the 2975 * reason, the caller should assume it is not useful to immediately try again. 2976 * 2977 * Requires the console_lock. 2978 */ 2979 static bool console_flush_all(bool do_cond_resched, u64 *next_seq, bool *handover) 2980 { 2981 static char dropped_text[DROPPED_TEXT_MAX]; 2982 static char ext_text[CONSOLE_EXT_LOG_MAX]; 2983 static char text[CONSOLE_LOG_MAX]; 2984 bool any_usable = false; 2985 struct console *con; 2986 bool any_progress; 2987 2988 *next_seq = 0; 2989 *handover = false; 2990 2991 do { 2992 /* Let the kthread printers do the work if they can. */ 2993 if (!allow_direct_printing()) 2994 return false; 2995 2996 any_progress = false; 2997 2998 for_each_console(con) { 2999 bool progress; 3000 3001 if (!console_is_usable(con)) 3002 continue; 3003 any_usable = true; 3004 3005 if (con->flags & CON_EXTENDED) { 3006 /* Extended consoles do not print "dropped messages". */ 3007 progress = console_emit_next_record_transferable(con, &text[0], 3008 &ext_text[0], NULL, handover); 3009 } else { 3010 progress = console_emit_next_record_transferable(con, &text[0], 3011 NULL, &dropped_text[0], handover); 3012 } 3013 if (*handover) 3014 return false; 3015 3016 /* Track the next of the highest seq flushed. */ 3017 if (con->seq > *next_seq) 3018 *next_seq = con->seq; 3019 3020 if (!progress) 3021 continue; 3022 any_progress = true; 3023 3024 /* Allow panic_cpu to take over the consoles safely. */ 3025 if (abandon_console_lock_in_panic()) 3026 return false; 3027 3028 if (do_cond_resched) 3029 cond_resched(); 3030 } 3031 } while (any_progress); 3032 3033 return any_usable; 3034 } 3035 3036 /** 3037 * console_unlock - unlock the console system 3038 * 3039 * Releases the console_lock which the caller holds on the console system 3040 * and the console driver list. 3041 * 3042 * While the console_lock was held, console output may have been buffered 3043 * by printk(). If this is the case, console_unlock(); emits 3044 * the output prior to releasing the lock. 3045 * 3046 * console_unlock(); may be called from any context. 3047 */ 3048 void console_unlock(void) 3049 { 3050 bool do_cond_resched; 3051 bool handover; 3052 bool flushed; 3053 u64 next_seq; 3054 3055 if (console_suspended) { 3056 up_console_sem(); 3057 return; 3058 } 3059 3060 /* 3061 * Console drivers are called with interrupts disabled, so 3062 * @console_may_schedule should be cleared before; however, we may 3063 * end up dumping a lot of lines, for example, if called from 3064 * console registration path, and should invoke cond_resched() 3065 * between lines if allowable. Not doing so can cause a very long 3066 * scheduling stall on a slow console leading to RCU stall and 3067 * softlockup warnings which exacerbate the issue with more 3068 * messages practically incapacitating the system. Therefore, create 3069 * a local to use for the printing loop. 3070 */ 3071 do_cond_resched = console_may_schedule; 3072 3073 do { 3074 console_may_schedule = 0; 3075 3076 flushed = console_flush_all(do_cond_resched, &next_seq, &handover); 3077 if (!handover) 3078 __console_unlock(); 3079 3080 /* 3081 * Abort if there was a failure to flush all messages to all 3082 * usable consoles. Either it is not possible to flush (in 3083 * which case it would be an infinite loop of retrying) or 3084 * another context has taken over printing. 3085 */ 3086 if (!flushed) 3087 break; 3088 3089 /* 3090 * Some context may have added new records after 3091 * console_flush_all() but before unlocking the console. 3092 * Re-check if there is a new record to flush. If the trylock 3093 * fails, another context is already handling the printing. 3094 */ 3095 } while (prb_read_valid(prb, next_seq, NULL) && console_trylock()); 3096 } 3097 EXPORT_SYMBOL(console_unlock); 3098 3099 /** 3100 * console_conditional_schedule - yield the CPU if required 3101 * 3102 * If the console code is currently allowed to sleep, and 3103 * if this CPU should yield the CPU to another task, do 3104 * so here. 3105 * 3106 * Must be called within console_lock();. 3107 */ 3108 void __sched console_conditional_schedule(void) 3109 { 3110 if (console_may_schedule) 3111 cond_resched(); 3112 } 3113 EXPORT_SYMBOL(console_conditional_schedule); 3114 3115 void console_unblank(void) 3116 { 3117 struct console *c; 3118 3119 /* 3120 * console_unblank can no longer be called in interrupt context unless 3121 * oops_in_progress is set to 1.. 3122 */ 3123 if (oops_in_progress) { 3124 if (down_trylock_console_sem() != 0) 3125 return; 3126 if (!console_kthreads_atomic_tryblock()) { 3127 up_console_sem(); 3128 return; 3129 } 3130 } else 3131 console_lock(); 3132 3133 console_may_schedule = 0; 3134 for_each_console(c) 3135 if ((c->flags & CON_ENABLED) && c->unblank) 3136 c->unblank(); 3137 console_unlock(); 3138 3139 if (!oops_in_progress) 3140 pr_flush(1000, true); 3141 } 3142 3143 /** 3144 * console_flush_on_panic - flush console content on panic 3145 * @mode: flush all messages in buffer or just the pending ones 3146 * 3147 * Immediately output all pending messages no matter what. 3148 */ 3149 void console_flush_on_panic(enum con_flush_mode mode) 3150 { 3151 /* 3152 * If someone else is holding the console lock, trylock will fail 3153 * and may_schedule may be set. Ignore and proceed to unlock so 3154 * that messages are flushed out. As this can be called from any 3155 * context and we don't want to get preempted while flushing, 3156 * ensure may_schedule is cleared. 3157 */ 3158 console_trylock(); 3159 console_may_schedule = 0; 3160 3161 if (mode == CONSOLE_REPLAY_ALL) { 3162 struct console *c; 3163 u64 seq; 3164 3165 seq = prb_first_valid_seq(prb); 3166 for_each_console(c) 3167 c->seq = seq; 3168 } 3169 console_unlock(); 3170 } 3171 3172 /* 3173 * Return the console tty driver structure and its associated index 3174 */ 3175 struct tty_driver *console_device(int *index) 3176 { 3177 struct console *c; 3178 struct tty_driver *driver = NULL; 3179 3180 console_lock(); 3181 for_each_console(c) { 3182 if (!c->device) 3183 continue; 3184 driver = c->device(c, index); 3185 if (driver) 3186 break; 3187 } 3188 console_unlock(); 3189 return driver; 3190 } 3191 3192 /* 3193 * Prevent further output on the passed console device so that (for example) 3194 * serial drivers can disable console output before suspending a port, and can 3195 * re-enable output afterwards. 3196 */ 3197 void console_stop(struct console *console) 3198 { 3199 __pr_flush(console, 1000, true); 3200 console_lock(); 3201 console->flags &= ~CON_ENABLED; 3202 console_unlock(); 3203 } 3204 EXPORT_SYMBOL(console_stop); 3205 3206 void console_start(struct console *console) 3207 { 3208 console_lock(); 3209 console->flags |= CON_ENABLED; 3210 console_unlock(); 3211 __pr_flush(console, 1000, true); 3212 } 3213 EXPORT_SYMBOL(console_start); 3214 3215 static int __read_mostly keep_bootcon; 3216 3217 static int __init keep_bootcon_setup(char *str) 3218 { 3219 keep_bootcon = 1; 3220 pr_info("debug: skip boot console de-registration.\n"); 3221 3222 return 0; 3223 } 3224 3225 early_param("keep_bootcon", keep_bootcon_setup); 3226 3227 /* 3228 * This is called by register_console() to try to match 3229 * the newly registered console with any of the ones selected 3230 * by either the command line or add_preferred_console() and 3231 * setup/enable it. 3232 * 3233 * Care need to be taken with consoles that are statically 3234 * enabled such as netconsole 3235 */ 3236 static int try_enable_preferred_console(struct console *newcon, 3237 bool user_specified) 3238 { 3239 struct console_cmdline *c; 3240 int i, err; 3241 3242 for (i = 0, c = console_cmdline; 3243 i < MAX_CMDLINECONSOLES && c->name[0]; 3244 i++, c++) { 3245 if (c->user_specified != user_specified) 3246 continue; 3247 if (!newcon->match || 3248 newcon->match(newcon, c->name, c->index, c->options) != 0) { 3249 /* default matching */ 3250 BUILD_BUG_ON(sizeof(c->name) != sizeof(newcon->name)); 3251 if (strcmp(c->name, newcon->name) != 0) 3252 continue; 3253 if (newcon->index >= 0 && 3254 newcon->index != c->index) 3255 continue; 3256 if (newcon->index < 0) 3257 newcon->index = c->index; 3258 3259 if (_braille_register_console(newcon, c)) 3260 return 0; 3261 3262 if (newcon->setup && 3263 (err = newcon->setup(newcon, c->options)) != 0) 3264 return err; 3265 } 3266 newcon->flags |= CON_ENABLED; 3267 if (i == preferred_console) 3268 newcon->flags |= CON_CONSDEV; 3269 return 0; 3270 } 3271 3272 /* 3273 * Some consoles, such as pstore and netconsole, can be enabled even 3274 * without matching. Accept the pre-enabled consoles only when match() 3275 * and setup() had a chance to be called. 3276 */ 3277 if (newcon->flags & CON_ENABLED && c->user_specified == user_specified) 3278 return 0; 3279 3280 return -ENOENT; 3281 } 3282 3283 /* Try to enable the console unconditionally */ 3284 static void try_enable_default_console(struct console *newcon) 3285 { 3286 if (newcon->index < 0) 3287 newcon->index = 0; 3288 3289 if (newcon->setup && newcon->setup(newcon, NULL) != 0) 3290 return; 3291 3292 newcon->flags |= CON_ENABLED; 3293 3294 if (newcon->device) 3295 newcon->flags |= CON_CONSDEV; 3296 } 3297 3298 #define con_printk(lvl, con, fmt, ...) \ 3299 printk(lvl pr_fmt("%sconsole [%s%d] " fmt), \ 3300 (con->flags & CON_BOOT) ? "boot" : "", \ 3301 con->name, con->index, ##__VA_ARGS__) 3302 3303 /* 3304 * The console driver calls this routine during kernel initialization 3305 * to register the console printing procedure with printk() and to 3306 * print any messages that were printed by the kernel before the 3307 * console driver was initialized. 3308 * 3309 * This can happen pretty early during the boot process (because of 3310 * early_printk) - sometimes before setup_arch() completes - be careful 3311 * of what kernel features are used - they may not be initialised yet. 3312 * 3313 * There are two types of consoles - bootconsoles (early_printk) and 3314 * "real" consoles (everything which is not a bootconsole) which are 3315 * handled differently. 3316 * - Any number of bootconsoles can be registered at any time. 3317 * - As soon as a "real" console is registered, all bootconsoles 3318 * will be unregistered automatically. 3319 * - Once a "real" console is registered, any attempt to register a 3320 * bootconsoles will be rejected 3321 */ 3322 void register_console(struct console *newcon) 3323 { 3324 struct console *con; 3325 bool bootcon_enabled = false; 3326 bool realcon_enabled = false; 3327 int err; 3328 3329 for_each_console(con) { 3330 if (WARN(con == newcon, "console '%s%d' already registered\n", 3331 con->name, con->index)) 3332 return; 3333 } 3334 3335 for_each_console(con) { 3336 if (con->flags & CON_BOOT) 3337 bootcon_enabled = true; 3338 else 3339 realcon_enabled = true; 3340 } 3341 3342 /* Do not register boot consoles when there already is a real one. */ 3343 if (newcon->flags & CON_BOOT && realcon_enabled) { 3344 pr_info("Too late to register bootconsole %s%d\n", 3345 newcon->name, newcon->index); 3346 return; 3347 } 3348 3349 /* 3350 * See if we want to enable this console driver by default. 3351 * 3352 * Nope when a console is preferred by the command line, device 3353 * tree, or SPCR. 3354 * 3355 * The first real console with tty binding (driver) wins. More 3356 * consoles might get enabled before the right one is found. 3357 * 3358 * Note that a console with tty binding will have CON_CONSDEV 3359 * flag set and will be first in the list. 3360 */ 3361 if (preferred_console < 0) { 3362 if (!console_drivers || !console_drivers->device || 3363 console_drivers->flags & CON_BOOT) { 3364 try_enable_default_console(newcon); 3365 } 3366 } 3367 3368 /* See if this console matches one we selected on the command line */ 3369 err = try_enable_preferred_console(newcon, true); 3370 3371 /* If not, try to match against the platform default(s) */ 3372 if (err == -ENOENT) 3373 err = try_enable_preferred_console(newcon, false); 3374 3375 /* printk() messages are not printed to the Braille console. */ 3376 if (err || newcon->flags & CON_BRL) 3377 return; 3378 3379 /* 3380 * If we have a bootconsole, and are switching to a real console, 3381 * don't print everything out again, since when the boot console, and 3382 * the real console are the same physical device, it's annoying to 3383 * see the beginning boot messages twice 3384 */ 3385 if (bootcon_enabled && 3386 ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV)) { 3387 newcon->flags &= ~CON_PRINTBUFFER; 3388 } 3389 3390 /* 3391 * Put this console in the list - keep the 3392 * preferred driver at the head of the list. 3393 */ 3394 console_lock(); 3395 if ((newcon->flags & CON_CONSDEV) || console_drivers == NULL) { 3396 newcon->next = console_drivers; 3397 console_drivers = newcon; 3398 if (newcon->next) 3399 newcon->next->flags &= ~CON_CONSDEV; 3400 /* Ensure this flag is always set for the head of the list */ 3401 newcon->flags |= CON_CONSDEV; 3402 } else { 3403 newcon->next = console_drivers->next; 3404 console_drivers->next = newcon; 3405 } 3406 3407 if (newcon->flags & CON_EXTENDED) 3408 nr_ext_console_drivers++; 3409 3410 newcon->dropped = 0; 3411 newcon->thread = NULL; 3412 newcon->blocked = true; 3413 mutex_init(&newcon->lock); 3414 3415 if (newcon->flags & CON_PRINTBUFFER) { 3416 /* Get a consistent copy of @syslog_seq. */ 3417 mutex_lock(&syslog_lock); 3418 newcon->seq = syslog_seq; 3419 mutex_unlock(&syslog_lock); 3420 } else { 3421 /* Begin with next message. */ 3422 newcon->seq = prb_next_seq(prb); 3423 } 3424 3425 if (printk_kthreads_available) 3426 printk_start_kthread(newcon); 3427 3428 console_unlock(); 3429 console_sysfs_notify(); 3430 3431 /* 3432 * By unregistering the bootconsoles after we enable the real console 3433 * we get the "console xxx enabled" message on all the consoles - 3434 * boot consoles, real consoles, etc - this is to ensure that end 3435 * users know there might be something in the kernel's log buffer that 3436 * went to the bootconsole (that they do not see on the real console) 3437 */ 3438 con_printk(KERN_INFO, newcon, "enabled\n"); 3439 if (bootcon_enabled && 3440 ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV) && 3441 !keep_bootcon) { 3442 /* We need to iterate through all boot consoles, to make 3443 * sure we print everything out, before we unregister them. 3444 */ 3445 for_each_console(con) 3446 if (con->flags & CON_BOOT) 3447 unregister_console(con); 3448 } 3449 } 3450 EXPORT_SYMBOL(register_console); 3451 3452 int unregister_console(struct console *console) 3453 { 3454 struct task_struct *thd; 3455 struct console *con; 3456 int res; 3457 3458 con_printk(KERN_INFO, console, "disabled\n"); 3459 3460 res = _braille_unregister_console(console); 3461 if (res < 0) 3462 return res; 3463 if (res > 0) 3464 return 0; 3465 3466 res = -ENODEV; 3467 console_lock(); 3468 if (console_drivers == console) { 3469 console_drivers=console->next; 3470 res = 0; 3471 } else { 3472 for_each_console(con) { 3473 if (con->next == console) { 3474 con->next = console->next; 3475 res = 0; 3476 break; 3477 } 3478 } 3479 } 3480 3481 if (res) 3482 goto out_disable_unlock; 3483 3484 if (console->flags & CON_EXTENDED) 3485 nr_ext_console_drivers--; 3486 3487 /* 3488 * If this isn't the last console and it has CON_CONSDEV set, we 3489 * need to set it on the next preferred console. 3490 */ 3491 if (console_drivers != NULL && console->flags & CON_CONSDEV) 3492 console_drivers->flags |= CON_CONSDEV; 3493 3494 console->flags &= ~CON_ENABLED; 3495 3496 /* 3497 * console->thread can only be cleared under the console lock. But 3498 * stopping the thread must be done without the console lock. The 3499 * task that clears @thread is the task that stops the kthread. 3500 */ 3501 thd = console->thread; 3502 console->thread = NULL; 3503 3504 console_unlock(); 3505 3506 if (thd) 3507 kthread_stop(thd); 3508 3509 console_sysfs_notify(); 3510 3511 if (console->exit) 3512 res = console->exit(console); 3513 3514 return res; 3515 3516 out_disable_unlock: 3517 console->flags &= ~CON_ENABLED; 3518 console_unlock(); 3519 3520 return res; 3521 } 3522 EXPORT_SYMBOL(unregister_console); 3523 3524 /* 3525 * Initialize the console device. This is called *early*, so 3526 * we can't necessarily depend on lots of kernel help here. 3527 * Just do some early initializations, and do the complex setup 3528 * later. 3529 */ 3530 void __init console_init(void) 3531 { 3532 int ret; 3533 initcall_t call; 3534 initcall_entry_t *ce; 3535 3536 /* Setup the default TTY line discipline. */ 3537 n_tty_init(); 3538 3539 /* 3540 * set up the console device so that later boot sequences can 3541 * inform about problems etc.. 3542 */ 3543 ce = __con_initcall_start; 3544 trace_initcall_level("console"); 3545 while (ce < __con_initcall_end) { 3546 call = initcall_from_entry(ce); 3547 trace_initcall_start(call); 3548 ret = call(); 3549 trace_initcall_finish(call, ret); 3550 ce++; 3551 } 3552 } 3553 3554 /* 3555 * Some boot consoles access data that is in the init section and which will 3556 * be discarded after the initcalls have been run. To make sure that no code 3557 * will access this data, unregister the boot consoles in a late initcall. 3558 * 3559 * If for some reason, such as deferred probe or the driver being a loadable 3560 * module, the real console hasn't registered yet at this point, there will 3561 * be a brief interval in which no messages are logged to the console, which 3562 * makes it difficult to diagnose problems that occur during this time. 3563 * 3564 * To mitigate this problem somewhat, only unregister consoles whose memory 3565 * intersects with the init section. Note that all other boot consoles will 3566 * get unregistered when the real preferred console is registered. 3567 */ 3568 static int __init printk_late_init(void) 3569 { 3570 struct console *con; 3571 int ret; 3572 3573 for_each_console(con) { 3574 if (!(con->flags & CON_BOOT)) 3575 continue; 3576 3577 /* Check addresses that might be used for enabled consoles. */ 3578 if (init_section_intersects(con, sizeof(*con)) || 3579 init_section_contains(con->write, 0) || 3580 init_section_contains(con->read, 0) || 3581 init_section_contains(con->device, 0) || 3582 init_section_contains(con->unblank, 0) || 3583 init_section_contains(con->data, 0)) { 3584 /* 3585 * Please, consider moving the reported consoles out 3586 * of the init section. 3587 */ 3588 pr_warn("bootconsole [%s%d] uses init memory and must be disabled even before the real one is ready\n", 3589 con->name, con->index); 3590 unregister_console(con); 3591 } 3592 } 3593 ret = cpuhp_setup_state_nocalls(CPUHP_PRINTK_DEAD, "printk:dead", NULL, 3594 console_cpu_notify); 3595 WARN_ON(ret < 0); 3596 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "printk:online", 3597 console_cpu_notify, NULL); 3598 WARN_ON(ret < 0); 3599 printk_sysctl_init(); 3600 return 0; 3601 } 3602 late_initcall(printk_late_init); 3603 3604 static int __init printk_activate_kthreads(void) 3605 { 3606 struct console *con; 3607 3608 console_lock(); 3609 printk_kthreads_available = true; 3610 for_each_console(con) 3611 printk_start_kthread(con); 3612 console_unlock(); 3613 3614 return 0; 3615 } 3616 early_initcall(printk_activate_kthreads); 3617 3618 #if defined CONFIG_PRINTK 3619 /* If @con is specified, only wait for that console. Otherwise wait for all. */ 3620 static bool __pr_flush(struct console *con, int timeout_ms, bool reset_on_progress) 3621 { 3622 int remaining = timeout_ms; 3623 struct console *c; 3624 u64 last_diff = 0; 3625 u64 printk_seq; 3626 u64 diff; 3627 u64 seq; 3628 3629 might_sleep(); 3630 3631 seq = prb_next_seq(prb); 3632 3633 for (;;) { 3634 diff = 0; 3635 3636 console_lock(); 3637 for_each_console(c) { 3638 if (con && con != c) 3639 continue; 3640 if (!console_is_usable(c)) 3641 continue; 3642 printk_seq = c->seq; 3643 if (printk_seq < seq) 3644 diff += seq - printk_seq; 3645 } 3646 console_unlock(); 3647 3648 if (diff != last_diff && reset_on_progress) 3649 remaining = timeout_ms; 3650 3651 if (diff == 0 || remaining == 0) 3652 break; 3653 3654 if (remaining < 0) { 3655 /* no timeout limit */ 3656 msleep(100); 3657 } else if (remaining < 100) { 3658 msleep(remaining); 3659 remaining = 0; 3660 } else { 3661 msleep(100); 3662 remaining -= 100; 3663 } 3664 3665 last_diff = diff; 3666 } 3667 3668 return (diff == 0); 3669 } 3670 3671 /** 3672 * pr_flush() - Wait for printing threads to catch up. 3673 * 3674 * @timeout_ms: The maximum time (in ms) to wait. 3675 * @reset_on_progress: Reset the timeout if forward progress is seen. 3676 * 3677 * A value of 0 for @timeout_ms means no waiting will occur. A value of -1 3678 * represents infinite waiting. 3679 * 3680 * If @reset_on_progress is true, the timeout will be reset whenever any 3681 * printer has been seen to make some forward progress. 3682 * 3683 * Context: Process context. May sleep while acquiring console lock. 3684 * Return: true if all enabled printers are caught up. 3685 */ 3686 bool pr_flush(int timeout_ms, bool reset_on_progress) 3687 { 3688 return __pr_flush(NULL, timeout_ms, reset_on_progress); 3689 } 3690 EXPORT_SYMBOL(pr_flush); 3691 3692 static void __printk_fallback_preferred_direct(void) 3693 { 3694 printk_prefer_direct_enter(); 3695 pr_err("falling back to preferred direct printing\n"); 3696 printk_kthreads_available = false; 3697 } 3698 3699 /* 3700 * Enter preferred direct printing, but never exit. Mark console threads as 3701 * unavailable. The system is then forever in preferred direct printing and 3702 * any printing threads will exit. 3703 * 3704 * Must *not* be called under console_lock. Use 3705 * __printk_fallback_preferred_direct() if already holding console_lock. 3706 */ 3707 static void printk_fallback_preferred_direct(void) 3708 { 3709 console_lock(); 3710 __printk_fallback_preferred_direct(); 3711 console_unlock(); 3712 } 3713 3714 /* 3715 * Print a record for a given console, not allowing another printk() caller 3716 * to take over. This is appropriate for contexts that do not have the 3717 * console_lock. 3718 * 3719 * See __console_emit_next_record() for argument and return details. 3720 */ 3721 static bool console_emit_next_record(struct console *con, char *text, char *ext_text, 3722 char *dropped_text) 3723 { 3724 return __console_emit_next_record(con, text, ext_text, dropped_text, NULL); 3725 } 3726 3727 static bool printer_should_wake(struct console *con, u64 seq) 3728 { 3729 short flags; 3730 3731 if (kthread_should_stop() || !printk_kthreads_available) 3732 return true; 3733 3734 if (con->blocked || 3735 console_kthreads_atomically_blocked() || 3736 block_console_kthreads || 3737 system_state > SYSTEM_RUNNING || 3738 oops_in_progress) { 3739 return false; 3740 } 3741 3742 /* 3743 * This is an unsafe read from con->flags, but a false positive is 3744 * not a problem. Worst case it would allow the printer to wake up 3745 * although it is disabled. But the printer will notice that when 3746 * attempting to print and instead go back to sleep. 3747 */ 3748 flags = data_race(READ_ONCE(con->flags)); 3749 3750 if (!__console_is_usable(flags)) 3751 return false; 3752 3753 return prb_read_valid(prb, seq, NULL); 3754 } 3755 3756 static int printk_kthread_func(void *data) 3757 { 3758 struct console *con = data; 3759 char *dropped_text = NULL; 3760 char *ext_text = NULL; 3761 u64 seq = 0; 3762 char *text; 3763 int error; 3764 3765 text = kmalloc(CONSOLE_LOG_MAX, GFP_KERNEL); 3766 if (!text) { 3767 con_printk(KERN_ERR, con, "failed to allocate text buffer\n"); 3768 printk_fallback_preferred_direct(); 3769 goto out; 3770 } 3771 3772 if (con->flags & CON_EXTENDED) { 3773 ext_text = kmalloc(CONSOLE_EXT_LOG_MAX, GFP_KERNEL); 3774 if (!ext_text) { 3775 con_printk(KERN_ERR, con, "failed to allocate ext_text buffer\n"); 3776 printk_fallback_preferred_direct(); 3777 goto out; 3778 } 3779 } else { 3780 dropped_text = kmalloc(DROPPED_TEXT_MAX, GFP_KERNEL); 3781 if (!dropped_text) { 3782 con_printk(KERN_ERR, con, "failed to allocate dropped_text buffer\n"); 3783 printk_fallback_preferred_direct(); 3784 goto out; 3785 } 3786 } 3787 3788 con_printk(KERN_INFO, con, "printing thread started\n"); 3789 3790 for (;;) { 3791 /* 3792 * Guarantee this task is visible on the waitqueue before 3793 * checking the wake condition. 3794 * 3795 * The full memory barrier within set_current_state() of 3796 * prepare_to_wait_event() pairs with the full memory barrier 3797 * within wq_has_sleeper(). 3798 * 3799 * This pairs with __wake_up_klogd:A. 3800 */ 3801 error = wait_event_interruptible(log_wait, 3802 printer_should_wake(con, seq)); /* LMM(printk_kthread_func:A) */ 3803 3804 if (kthread_should_stop() || !printk_kthreads_available) 3805 break; 3806 3807 if (error) 3808 continue; 3809 3810 error = mutex_lock_interruptible(&con->lock); 3811 if (error) 3812 continue; 3813 3814 if (con->blocked || 3815 !console_kthread_printing_tryenter()) { 3816 /* Another context has locked the console_lock. */ 3817 mutex_unlock(&con->lock); 3818 continue; 3819 } 3820 3821 /* 3822 * Although this context has not locked the console_lock, it 3823 * is known that the console_lock is not locked and it is not 3824 * possible for any other context to lock the console_lock. 3825 * Therefore it is safe to read con->flags. 3826 */ 3827 3828 if (!__console_is_usable(con->flags)) { 3829 console_kthread_printing_exit(); 3830 mutex_unlock(&con->lock); 3831 continue; 3832 } 3833 3834 /* 3835 * Even though the printk kthread is always preemptible, it is 3836 * still not allowed to call cond_resched() from within 3837 * console drivers. The task may become non-preemptible in the 3838 * console driver call chain. For example, vt_console_print() 3839 * takes a spinlock and then can call into fbcon_redraw(), 3840 * which can conditionally invoke cond_resched(). 3841 */ 3842 console_may_schedule = 0; 3843 console_emit_next_record(con, text, ext_text, dropped_text); 3844 3845 seq = con->seq; 3846 3847 console_kthread_printing_exit(); 3848 3849 mutex_unlock(&con->lock); 3850 } 3851 3852 con_printk(KERN_INFO, con, "printing thread stopped\n"); 3853 out: 3854 kfree(dropped_text); 3855 kfree(ext_text); 3856 kfree(text); 3857 3858 console_lock(); 3859 /* 3860 * If this kthread is being stopped by another task, con->thread will 3861 * already be NULL. That is fine. The important thing is that it is 3862 * NULL after the kthread exits. 3863 */ 3864 con->thread = NULL; 3865 console_unlock(); 3866 3867 return 0; 3868 } 3869 3870 /* Must be called under console_lock. */ 3871 static void printk_start_kthread(struct console *con) 3872 { 3873 /* 3874 * Do not start a kthread if there is no write() callback. The 3875 * kthreads assume the write() callback exists. 3876 */ 3877 if (!con->write) 3878 return; 3879 3880 con->thread = kthread_run(printk_kthread_func, con, 3881 "pr/%s%d", con->name, con->index); 3882 if (IS_ERR(con->thread)) { 3883 con->thread = NULL; 3884 con_printk(KERN_ERR, con, "unable to start printing thread\n"); 3885 __printk_fallback_preferred_direct(); 3886 return; 3887 } 3888 } 3889 3890 /* 3891 * Delayed printk version, for scheduler-internal messages: 3892 */ 3893 #define PRINTK_PENDING_WAKEUP 0x01 3894 #define PRINTK_PENDING_DIRECT_OUTPUT 0x02 3895 3896 static DEFINE_PER_CPU(int, printk_pending); 3897 3898 static void wake_up_klogd_work_func(struct irq_work *irq_work) 3899 { 3900 int pending = this_cpu_xchg(printk_pending, 0); 3901 3902 if (pending & PRINTK_PENDING_DIRECT_OUTPUT) { 3903 printk_prefer_direct_enter(); 3904 3905 /* If trylock fails, someone else is doing the printing */ 3906 if (console_trylock()) 3907 console_unlock(); 3908 3909 printk_prefer_direct_exit(); 3910 } 3911 3912 if (pending & PRINTK_PENDING_WAKEUP) 3913 wake_up_interruptible(&log_wait); 3914 } 3915 3916 static DEFINE_PER_CPU(struct irq_work, wake_up_klogd_work) = 3917 IRQ_WORK_INIT_LAZY(wake_up_klogd_work_func); 3918 3919 static void __wake_up_klogd(int val) 3920 { 3921 if (!printk_percpu_data_ready()) 3922 return; 3923 3924 preempt_disable(); 3925 /* 3926 * Guarantee any new records can be seen by tasks preparing to wait 3927 * before this context checks if the wait queue is empty. 3928 * 3929 * The full memory barrier within wq_has_sleeper() pairs with the full 3930 * memory barrier within set_current_state() of 3931 * prepare_to_wait_event(), which is called after ___wait_event() adds 3932 * the waiter but before it has checked the wait condition. 3933 * 3934 * This pairs with devkmsg_read:A, syslog_print:A, and 3935 * printk_kthread_func:A. 3936 */ 3937 if (wq_has_sleeper(&log_wait) || /* LMM(__wake_up_klogd:A) */ 3938 (val & PRINTK_PENDING_DIRECT_OUTPUT)) { 3939 this_cpu_or(printk_pending, val); 3940 irq_work_queue(this_cpu_ptr(&wake_up_klogd_work)); 3941 } 3942 preempt_enable(); 3943 } 3944 3945 void wake_up_klogd(void) 3946 { 3947 __wake_up_klogd(PRINTK_PENDING_WAKEUP); 3948 } 3949 3950 void defer_console_output(void) 3951 { 3952 /* 3953 * New messages may have been added directly to the ringbuffer 3954 * using vprintk_store(), so wake any waiters as well. 3955 */ 3956 int val = PRINTK_PENDING_WAKEUP; 3957 3958 /* 3959 * Make sure that some context will print the messages when direct 3960 * printing is allowed. This happens in situations when the kthreads 3961 * may not be as reliable or perhaps unusable. 3962 */ 3963 if (allow_direct_printing()) 3964 val |= PRINTK_PENDING_DIRECT_OUTPUT; 3965 3966 __wake_up_klogd(val); 3967 } 3968 3969 void printk_trigger_flush(void) 3970 { 3971 defer_console_output(); 3972 } 3973 3974 int vprintk_deferred(const char *fmt, va_list args) 3975 { 3976 int r; 3977 3978 r = vprintk_emit(0, LOGLEVEL_SCHED, NULL, fmt, args); 3979 defer_console_output(); 3980 3981 return r; 3982 } 3983 3984 int _printk_deferred(const char *fmt, ...) 3985 { 3986 va_list args; 3987 int r; 3988 3989 va_start(args, fmt); 3990 r = vprintk_deferred(fmt, args); 3991 va_end(args); 3992 3993 return r; 3994 } 3995 3996 /* 3997 * printk rate limiting, lifted from the networking subsystem. 3998 * 3999 * This enforces a rate limit: not more than 10 kernel messages 4000 * every 5s to make a denial-of-service attack impossible. 4001 */ 4002 DEFINE_RATELIMIT_STATE(printk_ratelimit_state, 5 * HZ, 10); 4003 4004 int __printk_ratelimit(const char *func) 4005 { 4006 return ___ratelimit(&printk_ratelimit_state, func); 4007 } 4008 EXPORT_SYMBOL(__printk_ratelimit); 4009 4010 /** 4011 * printk_timed_ratelimit - caller-controlled printk ratelimiting 4012 * @caller_jiffies: pointer to caller's state 4013 * @interval_msecs: minimum interval between prints 4014 * 4015 * printk_timed_ratelimit() returns true if more than @interval_msecs 4016 * milliseconds have elapsed since the last time printk_timed_ratelimit() 4017 * returned true. 4018 */ 4019 bool printk_timed_ratelimit(unsigned long *caller_jiffies, 4020 unsigned int interval_msecs) 4021 { 4022 unsigned long elapsed = jiffies - *caller_jiffies; 4023 4024 if (*caller_jiffies && elapsed <= msecs_to_jiffies(interval_msecs)) 4025 return false; 4026 4027 *caller_jiffies = jiffies; 4028 return true; 4029 } 4030 EXPORT_SYMBOL(printk_timed_ratelimit); 4031 4032 static DEFINE_SPINLOCK(dump_list_lock); 4033 static LIST_HEAD(dump_list); 4034 4035 /** 4036 * kmsg_dump_register - register a kernel log dumper. 4037 * @dumper: pointer to the kmsg_dumper structure 4038 * 4039 * Adds a kernel log dumper to the system. The dump callback in the 4040 * structure will be called when the kernel oopses or panics and must be 4041 * set. Returns zero on success and %-EINVAL or %-EBUSY otherwise. 4042 */ 4043 int kmsg_dump_register(struct kmsg_dumper *dumper) 4044 { 4045 unsigned long flags; 4046 int err = -EBUSY; 4047 4048 /* The dump callback needs to be set */ 4049 if (!dumper->dump) 4050 return -EINVAL; 4051 4052 spin_lock_irqsave(&dump_list_lock, flags); 4053 /* Don't allow registering multiple times */ 4054 if (!dumper->registered) { 4055 dumper->registered = 1; 4056 list_add_tail_rcu(&dumper->list, &dump_list); 4057 err = 0; 4058 } 4059 spin_unlock_irqrestore(&dump_list_lock, flags); 4060 4061 return err; 4062 } 4063 EXPORT_SYMBOL_GPL(kmsg_dump_register); 4064 4065 /** 4066 * kmsg_dump_unregister - unregister a kmsg dumper. 4067 * @dumper: pointer to the kmsg_dumper structure 4068 * 4069 * Removes a dump device from the system. Returns zero on success and 4070 * %-EINVAL otherwise. 4071 */ 4072 int kmsg_dump_unregister(struct kmsg_dumper *dumper) 4073 { 4074 unsigned long flags; 4075 int err = -EINVAL; 4076 4077 spin_lock_irqsave(&dump_list_lock, flags); 4078 if (dumper->registered) { 4079 dumper->registered = 0; 4080 list_del_rcu(&dumper->list); 4081 err = 0; 4082 } 4083 spin_unlock_irqrestore(&dump_list_lock, flags); 4084 synchronize_rcu(); 4085 4086 return err; 4087 } 4088 EXPORT_SYMBOL_GPL(kmsg_dump_unregister); 4089 4090 static bool always_kmsg_dump; 4091 module_param_named(always_kmsg_dump, always_kmsg_dump, bool, S_IRUGO | S_IWUSR); 4092 4093 const char *kmsg_dump_reason_str(enum kmsg_dump_reason reason) 4094 { 4095 switch (reason) { 4096 case KMSG_DUMP_PANIC: 4097 return "Panic"; 4098 case KMSG_DUMP_OOPS: 4099 return "Oops"; 4100 case KMSG_DUMP_EMERG: 4101 return "Emergency"; 4102 case KMSG_DUMP_SHUTDOWN: 4103 return "Shutdown"; 4104 default: 4105 return "Unknown"; 4106 } 4107 } 4108 EXPORT_SYMBOL_GPL(kmsg_dump_reason_str); 4109 4110 /** 4111 * kmsg_dump - dump kernel log to kernel message dumpers. 4112 * @reason: the reason (oops, panic etc) for dumping 4113 * 4114 * Call each of the registered dumper's dump() callback, which can 4115 * retrieve the kmsg records with kmsg_dump_get_line() or 4116 * kmsg_dump_get_buffer(). 4117 */ 4118 void kmsg_dump(enum kmsg_dump_reason reason) 4119 { 4120 struct kmsg_dumper *dumper; 4121 4122 rcu_read_lock(); 4123 list_for_each_entry_rcu(dumper, &dump_list, list) { 4124 enum kmsg_dump_reason max_reason = dumper->max_reason; 4125 4126 /* 4127 * If client has not provided a specific max_reason, default 4128 * to KMSG_DUMP_OOPS, unless always_kmsg_dump was set. 4129 */ 4130 if (max_reason == KMSG_DUMP_UNDEF) { 4131 max_reason = always_kmsg_dump ? KMSG_DUMP_MAX : 4132 KMSG_DUMP_OOPS; 4133 } 4134 if (reason > max_reason) 4135 continue; 4136 4137 /* invoke dumper which will iterate over records */ 4138 dumper->dump(dumper, reason); 4139 } 4140 rcu_read_unlock(); 4141 } 4142 4143 /** 4144 * kmsg_dump_get_line - retrieve one kmsg log line 4145 * @iter: kmsg dump iterator 4146 * @syslog: include the "<4>" prefixes 4147 * @line: buffer to copy the line to 4148 * @size: maximum size of the buffer 4149 * @len: length of line placed into buffer 4150 * 4151 * Start at the beginning of the kmsg buffer, with the oldest kmsg 4152 * record, and copy one record into the provided buffer. 4153 * 4154 * Consecutive calls will return the next available record moving 4155 * towards the end of the buffer with the youngest messages. 4156 * 4157 * A return value of FALSE indicates that there are no more records to 4158 * read. 4159 */ 4160 bool kmsg_dump_get_line(struct kmsg_dump_iter *iter, bool syslog, 4161 char *line, size_t size, size_t *len) 4162 { 4163 u64 min_seq = latched_seq_read_nolock(&clear_seq); 4164 struct printk_info info; 4165 unsigned int line_count; 4166 struct printk_record r; 4167 size_t l = 0; 4168 bool ret = false; 4169 4170 if (iter->cur_seq < min_seq) 4171 iter->cur_seq = min_seq; 4172 4173 prb_rec_init_rd(&r, &info, line, size); 4174 4175 /* Read text or count text lines? */ 4176 if (line) { 4177 if (!prb_read_valid(prb, iter->cur_seq, &r)) 4178 goto out; 4179 l = record_print_text(&r, syslog, printk_time); 4180 } else { 4181 if (!prb_read_valid_info(prb, iter->cur_seq, 4182 &info, &line_count)) { 4183 goto out; 4184 } 4185 l = get_record_print_text_size(&info, line_count, syslog, 4186 printk_time); 4187 4188 } 4189 4190 iter->cur_seq = r.info->seq + 1; 4191 ret = true; 4192 out: 4193 if (len) 4194 *len = l; 4195 return ret; 4196 } 4197 EXPORT_SYMBOL_GPL(kmsg_dump_get_line); 4198 4199 /** 4200 * kmsg_dump_get_buffer - copy kmsg log lines 4201 * @iter: kmsg dump iterator 4202 * @syslog: include the "<4>" prefixes 4203 * @buf: buffer to copy the line to 4204 * @size: maximum size of the buffer 4205 * @len_out: length of line placed into buffer 4206 * 4207 * Start at the end of the kmsg buffer and fill the provided buffer 4208 * with as many of the *youngest* kmsg records that fit into it. 4209 * If the buffer is large enough, all available kmsg records will be 4210 * copied with a single call. 4211 * 4212 * Consecutive calls will fill the buffer with the next block of 4213 * available older records, not including the earlier retrieved ones. 4214 * 4215 * A return value of FALSE indicates that there are no more records to 4216 * read. 4217 */ 4218 bool kmsg_dump_get_buffer(struct kmsg_dump_iter *iter, bool syslog, 4219 char *buf, size_t size, size_t *len_out) 4220 { 4221 u64 min_seq = latched_seq_read_nolock(&clear_seq); 4222 struct printk_info info; 4223 struct printk_record r; 4224 u64 seq; 4225 u64 next_seq; 4226 size_t len = 0; 4227 bool ret = false; 4228 bool time = printk_time; 4229 4230 if (!buf || !size) 4231 goto out; 4232 4233 if (iter->cur_seq < min_seq) 4234 iter->cur_seq = min_seq; 4235 4236 if (prb_read_valid_info(prb, iter->cur_seq, &info, NULL)) { 4237 if (info.seq != iter->cur_seq) { 4238 /* messages are gone, move to first available one */ 4239 iter->cur_seq = info.seq; 4240 } 4241 } 4242 4243 /* last entry */ 4244 if (iter->cur_seq >= iter->next_seq) 4245 goto out; 4246 4247 /* 4248 * Find first record that fits, including all following records, 4249 * into the user-provided buffer for this dump. Pass in size-1 4250 * because this function (by way of record_print_text()) will 4251 * not write more than size-1 bytes of text into @buf. 4252 */ 4253 seq = find_first_fitting_seq(iter->cur_seq, iter->next_seq, 4254 size - 1, syslog, time); 4255 4256 /* 4257 * Next kmsg_dump_get_buffer() invocation will dump block of 4258 * older records stored right before this one. 4259 */ 4260 next_seq = seq; 4261 4262 prb_rec_init_rd(&r, &info, buf, size); 4263 4264 len = 0; 4265 prb_for_each_record(seq, prb, seq, &r) { 4266 if (r.info->seq >= iter->next_seq) 4267 break; 4268 4269 len += record_print_text(&r, syslog, time); 4270 4271 /* Adjust record to store to remaining buffer space. */ 4272 prb_rec_init_rd(&r, &info, buf + len, size - len); 4273 } 4274 4275 iter->next_seq = next_seq; 4276 ret = true; 4277 out: 4278 if (len_out) 4279 *len_out = len; 4280 return ret; 4281 } 4282 EXPORT_SYMBOL_GPL(kmsg_dump_get_buffer); 4283 4284 /** 4285 * kmsg_dump_rewind - reset the iterator 4286 * @iter: kmsg dump iterator 4287 * 4288 * Reset the dumper's iterator so that kmsg_dump_get_line() and 4289 * kmsg_dump_get_buffer() can be called again and used multiple 4290 * times within the same dumper.dump() callback. 4291 */ 4292 void kmsg_dump_rewind(struct kmsg_dump_iter *iter) 4293 { 4294 iter->cur_seq = latched_seq_read_nolock(&clear_seq); 4295 iter->next_seq = prb_next_seq(prb); 4296 } 4297 EXPORT_SYMBOL_GPL(kmsg_dump_rewind); 4298 4299 #endif 4300 4301 #ifdef CONFIG_SMP 4302 static atomic_t printk_cpu_sync_owner = ATOMIC_INIT(-1); 4303 static atomic_t printk_cpu_sync_nested = ATOMIC_INIT(0); 4304 4305 /** 4306 * __printk_cpu_sync_wait() - Busy wait until the printk cpu-reentrant 4307 * spinning lock is not owned by any CPU. 4308 * 4309 * Context: Any context. 4310 */ 4311 void __printk_cpu_sync_wait(void) 4312 { 4313 do { 4314 cpu_relax(); 4315 } while (atomic_read(&printk_cpu_sync_owner) != -1); 4316 } 4317 EXPORT_SYMBOL(__printk_cpu_sync_wait); 4318 4319 /** 4320 * __printk_cpu_sync_try_get() - Try to acquire the printk cpu-reentrant 4321 * spinning lock. 4322 * 4323 * If no processor has the lock, the calling processor takes the lock and 4324 * becomes the owner. If the calling processor is already the owner of the 4325 * lock, this function succeeds immediately. 4326 * 4327 * Context: Any context. Expects interrupts to be disabled. 4328 * Return: 1 on success, otherwise 0. 4329 */ 4330 int __printk_cpu_sync_try_get(void) 4331 { 4332 int cpu; 4333 int old; 4334 4335 cpu = smp_processor_id(); 4336 4337 /* 4338 * Guarantee loads and stores from this CPU when it is the lock owner 4339 * are _not_ visible to the previous lock owner. This pairs with 4340 * __printk_cpu_sync_put:B. 4341 * 4342 * Memory barrier involvement: 4343 * 4344 * If __printk_cpu_sync_try_get:A reads from __printk_cpu_sync_put:B, 4345 * then __printk_cpu_sync_put:A can never read from 4346 * __printk_cpu_sync_try_get:B. 4347 * 4348 * Relies on: 4349 * 4350 * RELEASE from __printk_cpu_sync_put:A to __printk_cpu_sync_put:B 4351 * of the previous CPU 4352 * matching 4353 * ACQUIRE from __printk_cpu_sync_try_get:A to 4354 * __printk_cpu_sync_try_get:B of this CPU 4355 */ 4356 old = atomic_cmpxchg_acquire(&printk_cpu_sync_owner, -1, 4357 cpu); /* LMM(__printk_cpu_sync_try_get:A) */ 4358 if (old == -1) { 4359 /* 4360 * This CPU is now the owner and begins loading/storing 4361 * data: LMM(__printk_cpu_sync_try_get:B) 4362 */ 4363 return 1; 4364 4365 } else if (old == cpu) { 4366 /* This CPU is already the owner. */ 4367 atomic_inc(&printk_cpu_sync_nested); 4368 return 1; 4369 } 4370 4371 return 0; 4372 } 4373 EXPORT_SYMBOL(__printk_cpu_sync_try_get); 4374 4375 /** 4376 * __printk_cpu_sync_put() - Release the printk cpu-reentrant spinning lock. 4377 * 4378 * The calling processor must be the owner of the lock. 4379 * 4380 * Context: Any context. Expects interrupts to be disabled. 4381 */ 4382 void __printk_cpu_sync_put(void) 4383 { 4384 if (atomic_read(&printk_cpu_sync_nested)) { 4385 atomic_dec(&printk_cpu_sync_nested); 4386 return; 4387 } 4388 4389 /* 4390 * This CPU is finished loading/storing data: 4391 * LMM(__printk_cpu_sync_put:A) 4392 */ 4393 4394 /* 4395 * Guarantee loads and stores from this CPU when it was the 4396 * lock owner are visible to the next lock owner. This pairs 4397 * with __printk_cpu_sync_try_get:A. 4398 * 4399 * Memory barrier involvement: 4400 * 4401 * If __printk_cpu_sync_try_get:A reads from __printk_cpu_sync_put:B, 4402 * then __printk_cpu_sync_try_get:B reads from __printk_cpu_sync_put:A. 4403 * 4404 * Relies on: 4405 * 4406 * RELEASE from __printk_cpu_sync_put:A to __printk_cpu_sync_put:B 4407 * of this CPU 4408 * matching 4409 * ACQUIRE from __printk_cpu_sync_try_get:A to 4410 * __printk_cpu_sync_try_get:B of the next CPU 4411 */ 4412 atomic_set_release(&printk_cpu_sync_owner, 4413 -1); /* LMM(__printk_cpu_sync_put:B) */ 4414 } 4415 EXPORT_SYMBOL(__printk_cpu_sync_put); 4416 #endif /* CONFIG_SMP */ 4417