xref: /openbmc/linux/kernel/printk/printk.c (revision d4fd6347)
1 /*
2  *  linux/kernel/printk.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  *
6  * Modified to make sys_syslog() more flexible: added commands to
7  * return the last 4k of kernel messages, regardless of whether
8  * they've been read or not.  Added option to suppress kernel printk's
9  * to the console.  Added hook for sending the console messages
10  * elsewhere, in preparation for a serial line console (someday).
11  * Ted Ts'o, 2/11/93.
12  * Modified for sysctl support, 1/8/97, Chris Horn.
13  * Fixed SMP synchronization, 08/08/99, Manfred Spraul
14  *     manfred@colorfullife.com
15  * Rewrote bits to get rid of console_lock
16  *	01Mar01 Andrew Morton
17  */
18 
19 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
20 
21 #include <linux/kernel.h>
22 #include <linux/mm.h>
23 #include <linux/tty.h>
24 #include <linux/tty_driver.h>
25 #include <linux/console.h>
26 #include <linux/init.h>
27 #include <linux/jiffies.h>
28 #include <linux/nmi.h>
29 #include <linux/module.h>
30 #include <linux/moduleparam.h>
31 #include <linux/delay.h>
32 #include <linux/smp.h>
33 #include <linux/security.h>
34 #include <linux/memblock.h>
35 #include <linux/syscalls.h>
36 #include <linux/crash_core.h>
37 #include <linux/kdb.h>
38 #include <linux/ratelimit.h>
39 #include <linux/kmsg_dump.h>
40 #include <linux/syslog.h>
41 #include <linux/cpu.h>
42 #include <linux/rculist.h>
43 #include <linux/poll.h>
44 #include <linux/irq_work.h>
45 #include <linux/ctype.h>
46 #include <linux/uio.h>
47 #include <linux/sched/clock.h>
48 #include <linux/sched/debug.h>
49 #include <linux/sched/task_stack.h>
50 
51 #include <linux/uaccess.h>
52 #include <asm/sections.h>
53 
54 #include <trace/events/initcall.h>
55 #define CREATE_TRACE_POINTS
56 #include <trace/events/printk.h>
57 
58 #include "console_cmdline.h"
59 #include "braille.h"
60 #include "internal.h"
61 
62 int console_printk[4] = {
63 	CONSOLE_LOGLEVEL_DEFAULT,	/* console_loglevel */
64 	MESSAGE_LOGLEVEL_DEFAULT,	/* default_message_loglevel */
65 	CONSOLE_LOGLEVEL_MIN,		/* minimum_console_loglevel */
66 	CONSOLE_LOGLEVEL_DEFAULT,	/* default_console_loglevel */
67 };
68 EXPORT_SYMBOL_GPL(console_printk);
69 
70 atomic_t ignore_console_lock_warning __read_mostly = ATOMIC_INIT(0);
71 EXPORT_SYMBOL(ignore_console_lock_warning);
72 
73 /*
74  * Low level drivers may need that to know if they can schedule in
75  * their unblank() callback or not. So let's export it.
76  */
77 int oops_in_progress;
78 EXPORT_SYMBOL(oops_in_progress);
79 
80 /*
81  * console_sem protects the console_drivers list, and also
82  * provides serialisation for access to the entire console
83  * driver system.
84  */
85 static DEFINE_SEMAPHORE(console_sem);
86 struct console *console_drivers;
87 EXPORT_SYMBOL_GPL(console_drivers);
88 
89 /*
90  * System may need to suppress printk message under certain
91  * circumstances, like after kernel panic happens.
92  */
93 int __read_mostly suppress_printk;
94 
95 #ifdef CONFIG_LOCKDEP
96 static struct lockdep_map console_lock_dep_map = {
97 	.name = "console_lock"
98 };
99 #endif
100 
101 enum devkmsg_log_bits {
102 	__DEVKMSG_LOG_BIT_ON = 0,
103 	__DEVKMSG_LOG_BIT_OFF,
104 	__DEVKMSG_LOG_BIT_LOCK,
105 };
106 
107 enum devkmsg_log_masks {
108 	DEVKMSG_LOG_MASK_ON             = BIT(__DEVKMSG_LOG_BIT_ON),
109 	DEVKMSG_LOG_MASK_OFF            = BIT(__DEVKMSG_LOG_BIT_OFF),
110 	DEVKMSG_LOG_MASK_LOCK           = BIT(__DEVKMSG_LOG_BIT_LOCK),
111 };
112 
113 /* Keep both the 'on' and 'off' bits clear, i.e. ratelimit by default: */
114 #define DEVKMSG_LOG_MASK_DEFAULT	0
115 
116 static unsigned int __read_mostly devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT;
117 
118 static int __control_devkmsg(char *str)
119 {
120 	if (!str)
121 		return -EINVAL;
122 
123 	if (!strncmp(str, "on", 2)) {
124 		devkmsg_log = DEVKMSG_LOG_MASK_ON;
125 		return 2;
126 	} else if (!strncmp(str, "off", 3)) {
127 		devkmsg_log = DEVKMSG_LOG_MASK_OFF;
128 		return 3;
129 	} else if (!strncmp(str, "ratelimit", 9)) {
130 		devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT;
131 		return 9;
132 	}
133 	return -EINVAL;
134 }
135 
136 static int __init control_devkmsg(char *str)
137 {
138 	if (__control_devkmsg(str) < 0)
139 		return 1;
140 
141 	/*
142 	 * Set sysctl string accordingly:
143 	 */
144 	if (devkmsg_log == DEVKMSG_LOG_MASK_ON)
145 		strcpy(devkmsg_log_str, "on");
146 	else if (devkmsg_log == DEVKMSG_LOG_MASK_OFF)
147 		strcpy(devkmsg_log_str, "off");
148 	/* else "ratelimit" which is set by default. */
149 
150 	/*
151 	 * Sysctl cannot change it anymore. The kernel command line setting of
152 	 * this parameter is to force the setting to be permanent throughout the
153 	 * runtime of the system. This is a precation measure against userspace
154 	 * trying to be a smarta** and attempting to change it up on us.
155 	 */
156 	devkmsg_log |= DEVKMSG_LOG_MASK_LOCK;
157 
158 	return 0;
159 }
160 __setup("printk.devkmsg=", control_devkmsg);
161 
162 char devkmsg_log_str[DEVKMSG_STR_MAX_SIZE] = "ratelimit";
163 
164 int devkmsg_sysctl_set_loglvl(struct ctl_table *table, int write,
165 			      void __user *buffer, size_t *lenp, loff_t *ppos)
166 {
167 	char old_str[DEVKMSG_STR_MAX_SIZE];
168 	unsigned int old;
169 	int err;
170 
171 	if (write) {
172 		if (devkmsg_log & DEVKMSG_LOG_MASK_LOCK)
173 			return -EINVAL;
174 
175 		old = devkmsg_log;
176 		strncpy(old_str, devkmsg_log_str, DEVKMSG_STR_MAX_SIZE);
177 	}
178 
179 	err = proc_dostring(table, write, buffer, lenp, ppos);
180 	if (err)
181 		return err;
182 
183 	if (write) {
184 		err = __control_devkmsg(devkmsg_log_str);
185 
186 		/*
187 		 * Do not accept an unknown string OR a known string with
188 		 * trailing crap...
189 		 */
190 		if (err < 0 || (err + 1 != *lenp)) {
191 
192 			/* ... and restore old setting. */
193 			devkmsg_log = old;
194 			strncpy(devkmsg_log_str, old_str, DEVKMSG_STR_MAX_SIZE);
195 
196 			return -EINVAL;
197 		}
198 	}
199 
200 	return 0;
201 }
202 
203 /* Number of registered extended console drivers. */
204 static int nr_ext_console_drivers;
205 
206 /*
207  * Helper macros to handle lockdep when locking/unlocking console_sem. We use
208  * macros instead of functions so that _RET_IP_ contains useful information.
209  */
210 #define down_console_sem() do { \
211 	down(&console_sem);\
212 	mutex_acquire(&console_lock_dep_map, 0, 0, _RET_IP_);\
213 } while (0)
214 
215 static int __down_trylock_console_sem(unsigned long ip)
216 {
217 	int lock_failed;
218 	unsigned long flags;
219 
220 	/*
221 	 * Here and in __up_console_sem() we need to be in safe mode,
222 	 * because spindump/WARN/etc from under console ->lock will
223 	 * deadlock in printk()->down_trylock_console_sem() otherwise.
224 	 */
225 	printk_safe_enter_irqsave(flags);
226 	lock_failed = down_trylock(&console_sem);
227 	printk_safe_exit_irqrestore(flags);
228 
229 	if (lock_failed)
230 		return 1;
231 	mutex_acquire(&console_lock_dep_map, 0, 1, ip);
232 	return 0;
233 }
234 #define down_trylock_console_sem() __down_trylock_console_sem(_RET_IP_)
235 
236 static void __up_console_sem(unsigned long ip)
237 {
238 	unsigned long flags;
239 
240 	mutex_release(&console_lock_dep_map, 1, ip);
241 
242 	printk_safe_enter_irqsave(flags);
243 	up(&console_sem);
244 	printk_safe_exit_irqrestore(flags);
245 }
246 #define up_console_sem() __up_console_sem(_RET_IP_)
247 
248 /*
249  * This is used for debugging the mess that is the VT code by
250  * keeping track if we have the console semaphore held. It's
251  * definitely not the perfect debug tool (we don't know if _WE_
252  * hold it and are racing, but it helps tracking those weird code
253  * paths in the console code where we end up in places I want
254  * locked without the console sempahore held).
255  */
256 static int console_locked, console_suspended;
257 
258 /*
259  * If exclusive_console is non-NULL then only this console is to be printed to.
260  */
261 static struct console *exclusive_console;
262 
263 /*
264  *	Array of consoles built from command line options (console=)
265  */
266 
267 #define MAX_CMDLINECONSOLES 8
268 
269 static struct console_cmdline console_cmdline[MAX_CMDLINECONSOLES];
270 
271 static int preferred_console = -1;
272 int console_set_on_cmdline;
273 EXPORT_SYMBOL(console_set_on_cmdline);
274 
275 /* Flag: console code may call schedule() */
276 static int console_may_schedule;
277 
278 enum con_msg_format_flags {
279 	MSG_FORMAT_DEFAULT	= 0,
280 	MSG_FORMAT_SYSLOG	= (1 << 0),
281 };
282 
283 static int console_msg_format = MSG_FORMAT_DEFAULT;
284 
285 /*
286  * The printk log buffer consists of a chain of concatenated variable
287  * length records. Every record starts with a record header, containing
288  * the overall length of the record.
289  *
290  * The heads to the first and last entry in the buffer, as well as the
291  * sequence numbers of these entries are maintained when messages are
292  * stored.
293  *
294  * If the heads indicate available messages, the length in the header
295  * tells the start next message. A length == 0 for the next message
296  * indicates a wrap-around to the beginning of the buffer.
297  *
298  * Every record carries the monotonic timestamp in microseconds, as well as
299  * the standard userspace syslog level and syslog facility. The usual
300  * kernel messages use LOG_KERN; userspace-injected messages always carry
301  * a matching syslog facility, by default LOG_USER. The origin of every
302  * message can be reliably determined that way.
303  *
304  * The human readable log message directly follows the message header. The
305  * length of the message text is stored in the header, the stored message
306  * is not terminated.
307  *
308  * Optionally, a message can carry a dictionary of properties (key/value pairs),
309  * to provide userspace with a machine-readable message context.
310  *
311  * Examples for well-defined, commonly used property names are:
312  *   DEVICE=b12:8               device identifier
313  *                                b12:8         block dev_t
314  *                                c127:3        char dev_t
315  *                                n8            netdev ifindex
316  *                                +sound:card0  subsystem:devname
317  *   SUBSYSTEM=pci              driver-core subsystem name
318  *
319  * Valid characters in property names are [a-zA-Z0-9.-_]. The plain text value
320  * follows directly after a '=' character. Every property is terminated by
321  * a '\0' character. The last property is not terminated.
322  *
323  * Example of a message structure:
324  *   0000  ff 8f 00 00 00 00 00 00      monotonic time in nsec
325  *   0008  34 00                        record is 52 bytes long
326  *   000a        0b 00                  text is 11 bytes long
327  *   000c              1f 00            dictionary is 23 bytes long
328  *   000e                    03 00      LOG_KERN (facility) LOG_ERR (level)
329  *   0010  69 74 27 73 20 61 20 6c      "it's a l"
330  *         69 6e 65                     "ine"
331  *   001b           44 45 56 49 43      "DEVIC"
332  *         45 3d 62 38 3a 32 00 44      "E=b8:2\0D"
333  *         52 49 56 45 52 3d 62 75      "RIVER=bu"
334  *         67                           "g"
335  *   0032     00 00 00                  padding to next message header
336  *
337  * The 'struct printk_log' buffer header must never be directly exported to
338  * userspace, it is a kernel-private implementation detail that might
339  * need to be changed in the future, when the requirements change.
340  *
341  * /dev/kmsg exports the structured data in the following line format:
342  *   "<level>,<sequnum>,<timestamp>,<contflag>[,additional_values, ... ];<message text>\n"
343  *
344  * Users of the export format should ignore possible additional values
345  * separated by ',', and find the message after the ';' character.
346  *
347  * The optional key/value pairs are attached as continuation lines starting
348  * with a space character and terminated by a newline. All possible
349  * non-prinatable characters are escaped in the "\xff" notation.
350  */
351 
352 enum log_flags {
353 	LOG_NEWLINE	= 2,	/* text ended with a newline */
354 	LOG_CONT	= 8,	/* text is a fragment of a continuation line */
355 };
356 
357 struct printk_log {
358 	u64 ts_nsec;		/* timestamp in nanoseconds */
359 	u16 len;		/* length of entire record */
360 	u16 text_len;		/* length of text buffer */
361 	u16 dict_len;		/* length of dictionary buffer */
362 	u8 facility;		/* syslog facility */
363 	u8 flags:5;		/* internal record flags */
364 	u8 level:3;		/* syslog level */
365 #ifdef CONFIG_PRINTK_CALLER
366 	u32 caller_id;            /* thread id or processor id */
367 #endif
368 }
369 #ifdef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
370 __packed __aligned(4)
371 #endif
372 ;
373 
374 /*
375  * The logbuf_lock protects kmsg buffer, indices, counters.  This can be taken
376  * within the scheduler's rq lock. It must be released before calling
377  * console_unlock() or anything else that might wake up a process.
378  */
379 DEFINE_RAW_SPINLOCK(logbuf_lock);
380 
381 /*
382  * Helper macros to lock/unlock logbuf_lock and switch between
383  * printk-safe/unsafe modes.
384  */
385 #define logbuf_lock_irq()				\
386 	do {						\
387 		printk_safe_enter_irq();		\
388 		raw_spin_lock(&logbuf_lock);		\
389 	} while (0)
390 
391 #define logbuf_unlock_irq()				\
392 	do {						\
393 		raw_spin_unlock(&logbuf_lock);		\
394 		printk_safe_exit_irq();			\
395 	} while (0)
396 
397 #define logbuf_lock_irqsave(flags)			\
398 	do {						\
399 		printk_safe_enter_irqsave(flags);	\
400 		raw_spin_lock(&logbuf_lock);		\
401 	} while (0)
402 
403 #define logbuf_unlock_irqrestore(flags)		\
404 	do {						\
405 		raw_spin_unlock(&logbuf_lock);		\
406 		printk_safe_exit_irqrestore(flags);	\
407 	} while (0)
408 
409 #ifdef CONFIG_PRINTK
410 DECLARE_WAIT_QUEUE_HEAD(log_wait);
411 /* the next printk record to read by syslog(READ) or /proc/kmsg */
412 static u64 syslog_seq;
413 static u32 syslog_idx;
414 static size_t syslog_partial;
415 static bool syslog_time;
416 
417 /* index and sequence number of the first record stored in the buffer */
418 static u64 log_first_seq;
419 static u32 log_first_idx;
420 
421 /* index and sequence number of the next record to store in the buffer */
422 static u64 log_next_seq;
423 static u32 log_next_idx;
424 
425 /* the next printk record to write to the console */
426 static u64 console_seq;
427 static u32 console_idx;
428 static u64 exclusive_console_stop_seq;
429 
430 /* the next printk record to read after the last 'clear' command */
431 static u64 clear_seq;
432 static u32 clear_idx;
433 
434 #ifdef CONFIG_PRINTK_CALLER
435 #define PREFIX_MAX		48
436 #else
437 #define PREFIX_MAX		32
438 #endif
439 #define LOG_LINE_MAX		(1024 - PREFIX_MAX)
440 
441 #define LOG_LEVEL(v)		((v) & 0x07)
442 #define LOG_FACILITY(v)		((v) >> 3 & 0xff)
443 
444 /* record buffer */
445 #define LOG_ALIGN __alignof__(struct printk_log)
446 #define __LOG_BUF_LEN (1 << CONFIG_LOG_BUF_SHIFT)
447 #define LOG_BUF_LEN_MAX (u32)(1 << 31)
448 static char __log_buf[__LOG_BUF_LEN] __aligned(LOG_ALIGN);
449 static char *log_buf = __log_buf;
450 static u32 log_buf_len = __LOG_BUF_LEN;
451 
452 /* Return log buffer address */
453 char *log_buf_addr_get(void)
454 {
455 	return log_buf;
456 }
457 
458 /* Return log buffer size */
459 u32 log_buf_len_get(void)
460 {
461 	return log_buf_len;
462 }
463 
464 /* human readable text of the record */
465 static char *log_text(const struct printk_log *msg)
466 {
467 	return (char *)msg + sizeof(struct printk_log);
468 }
469 
470 /* optional key/value pair dictionary attached to the record */
471 static char *log_dict(const struct printk_log *msg)
472 {
473 	return (char *)msg + sizeof(struct printk_log) + msg->text_len;
474 }
475 
476 /* get record by index; idx must point to valid msg */
477 static struct printk_log *log_from_idx(u32 idx)
478 {
479 	struct printk_log *msg = (struct printk_log *)(log_buf + idx);
480 
481 	/*
482 	 * A length == 0 record is the end of buffer marker. Wrap around and
483 	 * read the message at the start of the buffer.
484 	 */
485 	if (!msg->len)
486 		return (struct printk_log *)log_buf;
487 	return msg;
488 }
489 
490 /* get next record; idx must point to valid msg */
491 static u32 log_next(u32 idx)
492 {
493 	struct printk_log *msg = (struct printk_log *)(log_buf + idx);
494 
495 	/* length == 0 indicates the end of the buffer; wrap */
496 	/*
497 	 * A length == 0 record is the end of buffer marker. Wrap around and
498 	 * read the message at the start of the buffer as *this* one, and
499 	 * return the one after that.
500 	 */
501 	if (!msg->len) {
502 		msg = (struct printk_log *)log_buf;
503 		return msg->len;
504 	}
505 	return idx + msg->len;
506 }
507 
508 /*
509  * Check whether there is enough free space for the given message.
510  *
511  * The same values of first_idx and next_idx mean that the buffer
512  * is either empty or full.
513  *
514  * If the buffer is empty, we must respect the position of the indexes.
515  * They cannot be reset to the beginning of the buffer.
516  */
517 static int logbuf_has_space(u32 msg_size, bool empty)
518 {
519 	u32 free;
520 
521 	if (log_next_idx > log_first_idx || empty)
522 		free = max(log_buf_len - log_next_idx, log_first_idx);
523 	else
524 		free = log_first_idx - log_next_idx;
525 
526 	/*
527 	 * We need space also for an empty header that signalizes wrapping
528 	 * of the buffer.
529 	 */
530 	return free >= msg_size + sizeof(struct printk_log);
531 }
532 
533 static int log_make_free_space(u32 msg_size)
534 {
535 	while (log_first_seq < log_next_seq &&
536 	       !logbuf_has_space(msg_size, false)) {
537 		/* drop old messages until we have enough contiguous space */
538 		log_first_idx = log_next(log_first_idx);
539 		log_first_seq++;
540 	}
541 
542 	if (clear_seq < log_first_seq) {
543 		clear_seq = log_first_seq;
544 		clear_idx = log_first_idx;
545 	}
546 
547 	/* sequence numbers are equal, so the log buffer is empty */
548 	if (logbuf_has_space(msg_size, log_first_seq == log_next_seq))
549 		return 0;
550 
551 	return -ENOMEM;
552 }
553 
554 /* compute the message size including the padding bytes */
555 static u32 msg_used_size(u16 text_len, u16 dict_len, u32 *pad_len)
556 {
557 	u32 size;
558 
559 	size = sizeof(struct printk_log) + text_len + dict_len;
560 	*pad_len = (-size) & (LOG_ALIGN - 1);
561 	size += *pad_len;
562 
563 	return size;
564 }
565 
566 /*
567  * Define how much of the log buffer we could take at maximum. The value
568  * must be greater than two. Note that only half of the buffer is available
569  * when the index points to the middle.
570  */
571 #define MAX_LOG_TAKE_PART 4
572 static const char trunc_msg[] = "<truncated>";
573 
574 static u32 truncate_msg(u16 *text_len, u16 *trunc_msg_len,
575 			u16 *dict_len, u32 *pad_len)
576 {
577 	/*
578 	 * The message should not take the whole buffer. Otherwise, it might
579 	 * get removed too soon.
580 	 */
581 	u32 max_text_len = log_buf_len / MAX_LOG_TAKE_PART;
582 	if (*text_len > max_text_len)
583 		*text_len = max_text_len;
584 	/* enable the warning message */
585 	*trunc_msg_len = strlen(trunc_msg);
586 	/* disable the "dict" completely */
587 	*dict_len = 0;
588 	/* compute the size again, count also the warning message */
589 	return msg_used_size(*text_len + *trunc_msg_len, 0, pad_len);
590 }
591 
592 /* insert record into the buffer, discard old ones, update heads */
593 static int log_store(u32 caller_id, int facility, int level,
594 		     enum log_flags flags, u64 ts_nsec,
595 		     const char *dict, u16 dict_len,
596 		     const char *text, u16 text_len)
597 {
598 	struct printk_log *msg;
599 	u32 size, pad_len;
600 	u16 trunc_msg_len = 0;
601 
602 	/* number of '\0' padding bytes to next message */
603 	size = msg_used_size(text_len, dict_len, &pad_len);
604 
605 	if (log_make_free_space(size)) {
606 		/* truncate the message if it is too long for empty buffer */
607 		size = truncate_msg(&text_len, &trunc_msg_len,
608 				    &dict_len, &pad_len);
609 		/* survive when the log buffer is too small for trunc_msg */
610 		if (log_make_free_space(size))
611 			return 0;
612 	}
613 
614 	if (log_next_idx + size + sizeof(struct printk_log) > log_buf_len) {
615 		/*
616 		 * This message + an additional empty header does not fit
617 		 * at the end of the buffer. Add an empty header with len == 0
618 		 * to signify a wrap around.
619 		 */
620 		memset(log_buf + log_next_idx, 0, sizeof(struct printk_log));
621 		log_next_idx = 0;
622 	}
623 
624 	/* fill message */
625 	msg = (struct printk_log *)(log_buf + log_next_idx);
626 	memcpy(log_text(msg), text, text_len);
627 	msg->text_len = text_len;
628 	if (trunc_msg_len) {
629 		memcpy(log_text(msg) + text_len, trunc_msg, trunc_msg_len);
630 		msg->text_len += trunc_msg_len;
631 	}
632 	memcpy(log_dict(msg), dict, dict_len);
633 	msg->dict_len = dict_len;
634 	msg->facility = facility;
635 	msg->level = level & 7;
636 	msg->flags = flags & 0x1f;
637 	if (ts_nsec > 0)
638 		msg->ts_nsec = ts_nsec;
639 	else
640 		msg->ts_nsec = local_clock();
641 #ifdef CONFIG_PRINTK_CALLER
642 	msg->caller_id = caller_id;
643 #endif
644 	memset(log_dict(msg) + dict_len, 0, pad_len);
645 	msg->len = size;
646 
647 	/* insert message */
648 	log_next_idx += msg->len;
649 	log_next_seq++;
650 
651 	return msg->text_len;
652 }
653 
654 int dmesg_restrict = IS_ENABLED(CONFIG_SECURITY_DMESG_RESTRICT);
655 
656 static int syslog_action_restricted(int type)
657 {
658 	if (dmesg_restrict)
659 		return 1;
660 	/*
661 	 * Unless restricted, we allow "read all" and "get buffer size"
662 	 * for everybody.
663 	 */
664 	return type != SYSLOG_ACTION_READ_ALL &&
665 	       type != SYSLOG_ACTION_SIZE_BUFFER;
666 }
667 
668 static int check_syslog_permissions(int type, int source)
669 {
670 	/*
671 	 * If this is from /proc/kmsg and we've already opened it, then we've
672 	 * already done the capabilities checks at open time.
673 	 */
674 	if (source == SYSLOG_FROM_PROC && type != SYSLOG_ACTION_OPEN)
675 		goto ok;
676 
677 	if (syslog_action_restricted(type)) {
678 		if (capable(CAP_SYSLOG))
679 			goto ok;
680 		/*
681 		 * For historical reasons, accept CAP_SYS_ADMIN too, with
682 		 * a warning.
683 		 */
684 		if (capable(CAP_SYS_ADMIN)) {
685 			pr_warn_once("%s (%d): Attempt to access syslog with "
686 				     "CAP_SYS_ADMIN but no CAP_SYSLOG "
687 				     "(deprecated).\n",
688 				 current->comm, task_pid_nr(current));
689 			goto ok;
690 		}
691 		return -EPERM;
692 	}
693 ok:
694 	return security_syslog(type);
695 }
696 
697 static void append_char(char **pp, char *e, char c)
698 {
699 	if (*pp < e)
700 		*(*pp)++ = c;
701 }
702 
703 static ssize_t msg_print_ext_header(char *buf, size_t size,
704 				    struct printk_log *msg, u64 seq)
705 {
706 	u64 ts_usec = msg->ts_nsec;
707 	char caller[20];
708 #ifdef CONFIG_PRINTK_CALLER
709 	u32 id = msg->caller_id;
710 
711 	snprintf(caller, sizeof(caller), ",caller=%c%u",
712 		 id & 0x80000000 ? 'C' : 'T', id & ~0x80000000);
713 #else
714 	caller[0] = '\0';
715 #endif
716 
717 	do_div(ts_usec, 1000);
718 
719 	return scnprintf(buf, size, "%u,%llu,%llu,%c%s;",
720 			 (msg->facility << 3) | msg->level, seq, ts_usec,
721 			 msg->flags & LOG_CONT ? 'c' : '-', caller);
722 }
723 
724 static ssize_t msg_print_ext_body(char *buf, size_t size,
725 				  char *dict, size_t dict_len,
726 				  char *text, size_t text_len)
727 {
728 	char *p = buf, *e = buf + size;
729 	size_t i;
730 
731 	/* escape non-printable characters */
732 	for (i = 0; i < text_len; i++) {
733 		unsigned char c = text[i];
734 
735 		if (c < ' ' || c >= 127 || c == '\\')
736 			p += scnprintf(p, e - p, "\\x%02x", c);
737 		else
738 			append_char(&p, e, c);
739 	}
740 	append_char(&p, e, '\n');
741 
742 	if (dict_len) {
743 		bool line = true;
744 
745 		for (i = 0; i < dict_len; i++) {
746 			unsigned char c = dict[i];
747 
748 			if (line) {
749 				append_char(&p, e, ' ');
750 				line = false;
751 			}
752 
753 			if (c == '\0') {
754 				append_char(&p, e, '\n');
755 				line = true;
756 				continue;
757 			}
758 
759 			if (c < ' ' || c >= 127 || c == '\\') {
760 				p += scnprintf(p, e - p, "\\x%02x", c);
761 				continue;
762 			}
763 
764 			append_char(&p, e, c);
765 		}
766 		append_char(&p, e, '\n');
767 	}
768 
769 	return p - buf;
770 }
771 
772 /* /dev/kmsg - userspace message inject/listen interface */
773 struct devkmsg_user {
774 	u64 seq;
775 	u32 idx;
776 	struct ratelimit_state rs;
777 	struct mutex lock;
778 	char buf[CONSOLE_EXT_LOG_MAX];
779 };
780 
781 static __printf(3, 4) __cold
782 int devkmsg_emit(int facility, int level, const char *fmt, ...)
783 {
784 	va_list args;
785 	int r;
786 
787 	va_start(args, fmt);
788 	r = vprintk_emit(facility, level, NULL, 0, fmt, args);
789 	va_end(args);
790 
791 	return r;
792 }
793 
794 static ssize_t devkmsg_write(struct kiocb *iocb, struct iov_iter *from)
795 {
796 	char *buf, *line;
797 	int level = default_message_loglevel;
798 	int facility = 1;	/* LOG_USER */
799 	struct file *file = iocb->ki_filp;
800 	struct devkmsg_user *user = file->private_data;
801 	size_t len = iov_iter_count(from);
802 	ssize_t ret = len;
803 
804 	if (!user || len > LOG_LINE_MAX)
805 		return -EINVAL;
806 
807 	/* Ignore when user logging is disabled. */
808 	if (devkmsg_log & DEVKMSG_LOG_MASK_OFF)
809 		return len;
810 
811 	/* Ratelimit when not explicitly enabled. */
812 	if (!(devkmsg_log & DEVKMSG_LOG_MASK_ON)) {
813 		if (!___ratelimit(&user->rs, current->comm))
814 			return ret;
815 	}
816 
817 	buf = kmalloc(len+1, GFP_KERNEL);
818 	if (buf == NULL)
819 		return -ENOMEM;
820 
821 	buf[len] = '\0';
822 	if (!copy_from_iter_full(buf, len, from)) {
823 		kfree(buf);
824 		return -EFAULT;
825 	}
826 
827 	/*
828 	 * Extract and skip the syslog prefix <[0-9]*>. Coming from userspace
829 	 * the decimal value represents 32bit, the lower 3 bit are the log
830 	 * level, the rest are the log facility.
831 	 *
832 	 * If no prefix or no userspace facility is specified, we
833 	 * enforce LOG_USER, to be able to reliably distinguish
834 	 * kernel-generated messages from userspace-injected ones.
835 	 */
836 	line = buf;
837 	if (line[0] == '<') {
838 		char *endp = NULL;
839 		unsigned int u;
840 
841 		u = simple_strtoul(line + 1, &endp, 10);
842 		if (endp && endp[0] == '>') {
843 			level = LOG_LEVEL(u);
844 			if (LOG_FACILITY(u) != 0)
845 				facility = LOG_FACILITY(u);
846 			endp++;
847 			len -= endp - line;
848 			line = endp;
849 		}
850 	}
851 
852 	devkmsg_emit(facility, level, "%s", line);
853 	kfree(buf);
854 	return ret;
855 }
856 
857 static ssize_t devkmsg_read(struct file *file, char __user *buf,
858 			    size_t count, loff_t *ppos)
859 {
860 	struct devkmsg_user *user = file->private_data;
861 	struct printk_log *msg;
862 	size_t len;
863 	ssize_t ret;
864 
865 	if (!user)
866 		return -EBADF;
867 
868 	ret = mutex_lock_interruptible(&user->lock);
869 	if (ret)
870 		return ret;
871 
872 	logbuf_lock_irq();
873 	while (user->seq == log_next_seq) {
874 		if (file->f_flags & O_NONBLOCK) {
875 			ret = -EAGAIN;
876 			logbuf_unlock_irq();
877 			goto out;
878 		}
879 
880 		logbuf_unlock_irq();
881 		ret = wait_event_interruptible(log_wait,
882 					       user->seq != log_next_seq);
883 		if (ret)
884 			goto out;
885 		logbuf_lock_irq();
886 	}
887 
888 	if (user->seq < log_first_seq) {
889 		/* our last seen message is gone, return error and reset */
890 		user->idx = log_first_idx;
891 		user->seq = log_first_seq;
892 		ret = -EPIPE;
893 		logbuf_unlock_irq();
894 		goto out;
895 	}
896 
897 	msg = log_from_idx(user->idx);
898 	len = msg_print_ext_header(user->buf, sizeof(user->buf),
899 				   msg, user->seq);
900 	len += msg_print_ext_body(user->buf + len, sizeof(user->buf) - len,
901 				  log_dict(msg), msg->dict_len,
902 				  log_text(msg), msg->text_len);
903 
904 	user->idx = log_next(user->idx);
905 	user->seq++;
906 	logbuf_unlock_irq();
907 
908 	if (len > count) {
909 		ret = -EINVAL;
910 		goto out;
911 	}
912 
913 	if (copy_to_user(buf, user->buf, len)) {
914 		ret = -EFAULT;
915 		goto out;
916 	}
917 	ret = len;
918 out:
919 	mutex_unlock(&user->lock);
920 	return ret;
921 }
922 
923 static loff_t devkmsg_llseek(struct file *file, loff_t offset, int whence)
924 {
925 	struct devkmsg_user *user = file->private_data;
926 	loff_t ret = 0;
927 
928 	if (!user)
929 		return -EBADF;
930 	if (offset)
931 		return -ESPIPE;
932 
933 	logbuf_lock_irq();
934 	switch (whence) {
935 	case SEEK_SET:
936 		/* the first record */
937 		user->idx = log_first_idx;
938 		user->seq = log_first_seq;
939 		break;
940 	case SEEK_DATA:
941 		/*
942 		 * The first record after the last SYSLOG_ACTION_CLEAR,
943 		 * like issued by 'dmesg -c'. Reading /dev/kmsg itself
944 		 * changes no global state, and does not clear anything.
945 		 */
946 		user->idx = clear_idx;
947 		user->seq = clear_seq;
948 		break;
949 	case SEEK_END:
950 		/* after the last record */
951 		user->idx = log_next_idx;
952 		user->seq = log_next_seq;
953 		break;
954 	default:
955 		ret = -EINVAL;
956 	}
957 	logbuf_unlock_irq();
958 	return ret;
959 }
960 
961 static __poll_t devkmsg_poll(struct file *file, poll_table *wait)
962 {
963 	struct devkmsg_user *user = file->private_data;
964 	__poll_t ret = 0;
965 
966 	if (!user)
967 		return EPOLLERR|EPOLLNVAL;
968 
969 	poll_wait(file, &log_wait, wait);
970 
971 	logbuf_lock_irq();
972 	if (user->seq < log_next_seq) {
973 		/* return error when data has vanished underneath us */
974 		if (user->seq < log_first_seq)
975 			ret = EPOLLIN|EPOLLRDNORM|EPOLLERR|EPOLLPRI;
976 		else
977 			ret = EPOLLIN|EPOLLRDNORM;
978 	}
979 	logbuf_unlock_irq();
980 
981 	return ret;
982 }
983 
984 static int devkmsg_open(struct inode *inode, struct file *file)
985 {
986 	struct devkmsg_user *user;
987 	int err;
988 
989 	if (devkmsg_log & DEVKMSG_LOG_MASK_OFF)
990 		return -EPERM;
991 
992 	/* write-only does not need any file context */
993 	if ((file->f_flags & O_ACCMODE) != O_WRONLY) {
994 		err = check_syslog_permissions(SYSLOG_ACTION_READ_ALL,
995 					       SYSLOG_FROM_READER);
996 		if (err)
997 			return err;
998 	}
999 
1000 	user = kmalloc(sizeof(struct devkmsg_user), GFP_KERNEL);
1001 	if (!user)
1002 		return -ENOMEM;
1003 
1004 	ratelimit_default_init(&user->rs);
1005 	ratelimit_set_flags(&user->rs, RATELIMIT_MSG_ON_RELEASE);
1006 
1007 	mutex_init(&user->lock);
1008 
1009 	logbuf_lock_irq();
1010 	user->idx = log_first_idx;
1011 	user->seq = log_first_seq;
1012 	logbuf_unlock_irq();
1013 
1014 	file->private_data = user;
1015 	return 0;
1016 }
1017 
1018 static int devkmsg_release(struct inode *inode, struct file *file)
1019 {
1020 	struct devkmsg_user *user = file->private_data;
1021 
1022 	if (!user)
1023 		return 0;
1024 
1025 	ratelimit_state_exit(&user->rs);
1026 
1027 	mutex_destroy(&user->lock);
1028 	kfree(user);
1029 	return 0;
1030 }
1031 
1032 const struct file_operations kmsg_fops = {
1033 	.open = devkmsg_open,
1034 	.read = devkmsg_read,
1035 	.write_iter = devkmsg_write,
1036 	.llseek = devkmsg_llseek,
1037 	.poll = devkmsg_poll,
1038 	.release = devkmsg_release,
1039 };
1040 
1041 #ifdef CONFIG_CRASH_CORE
1042 /*
1043  * This appends the listed symbols to /proc/vmcore
1044  *
1045  * /proc/vmcore is used by various utilities, like crash and makedumpfile to
1046  * obtain access to symbols that are otherwise very difficult to locate.  These
1047  * symbols are specifically used so that utilities can access and extract the
1048  * dmesg log from a vmcore file after a crash.
1049  */
1050 void log_buf_vmcoreinfo_setup(void)
1051 {
1052 	VMCOREINFO_SYMBOL(log_buf);
1053 	VMCOREINFO_SYMBOL(log_buf_len);
1054 	VMCOREINFO_SYMBOL(log_first_idx);
1055 	VMCOREINFO_SYMBOL(clear_idx);
1056 	VMCOREINFO_SYMBOL(log_next_idx);
1057 	/*
1058 	 * Export struct printk_log size and field offsets. User space tools can
1059 	 * parse it and detect any changes to structure down the line.
1060 	 */
1061 	VMCOREINFO_STRUCT_SIZE(printk_log);
1062 	VMCOREINFO_OFFSET(printk_log, ts_nsec);
1063 	VMCOREINFO_OFFSET(printk_log, len);
1064 	VMCOREINFO_OFFSET(printk_log, text_len);
1065 	VMCOREINFO_OFFSET(printk_log, dict_len);
1066 #ifdef CONFIG_PRINTK_CALLER
1067 	VMCOREINFO_OFFSET(printk_log, caller_id);
1068 #endif
1069 }
1070 #endif
1071 
1072 /* requested log_buf_len from kernel cmdline */
1073 static unsigned long __initdata new_log_buf_len;
1074 
1075 /* we practice scaling the ring buffer by powers of 2 */
1076 static void __init log_buf_len_update(u64 size)
1077 {
1078 	if (size > (u64)LOG_BUF_LEN_MAX) {
1079 		size = (u64)LOG_BUF_LEN_MAX;
1080 		pr_err("log_buf over 2G is not supported.\n");
1081 	}
1082 
1083 	if (size)
1084 		size = roundup_pow_of_two(size);
1085 	if (size > log_buf_len)
1086 		new_log_buf_len = (unsigned long)size;
1087 }
1088 
1089 /* save requested log_buf_len since it's too early to process it */
1090 static int __init log_buf_len_setup(char *str)
1091 {
1092 	u64 size;
1093 
1094 	if (!str)
1095 		return -EINVAL;
1096 
1097 	size = memparse(str, &str);
1098 
1099 	log_buf_len_update(size);
1100 
1101 	return 0;
1102 }
1103 early_param("log_buf_len", log_buf_len_setup);
1104 
1105 #ifdef CONFIG_SMP
1106 #define __LOG_CPU_MAX_BUF_LEN (1 << CONFIG_LOG_CPU_MAX_BUF_SHIFT)
1107 
1108 static void __init log_buf_add_cpu(void)
1109 {
1110 	unsigned int cpu_extra;
1111 
1112 	/*
1113 	 * archs should set up cpu_possible_bits properly with
1114 	 * set_cpu_possible() after setup_arch() but just in
1115 	 * case lets ensure this is valid.
1116 	 */
1117 	if (num_possible_cpus() == 1)
1118 		return;
1119 
1120 	cpu_extra = (num_possible_cpus() - 1) * __LOG_CPU_MAX_BUF_LEN;
1121 
1122 	/* by default this will only continue through for large > 64 CPUs */
1123 	if (cpu_extra <= __LOG_BUF_LEN / 2)
1124 		return;
1125 
1126 	pr_info("log_buf_len individual max cpu contribution: %d bytes\n",
1127 		__LOG_CPU_MAX_BUF_LEN);
1128 	pr_info("log_buf_len total cpu_extra contributions: %d bytes\n",
1129 		cpu_extra);
1130 	pr_info("log_buf_len min size: %d bytes\n", __LOG_BUF_LEN);
1131 
1132 	log_buf_len_update(cpu_extra + __LOG_BUF_LEN);
1133 }
1134 #else /* !CONFIG_SMP */
1135 static inline void log_buf_add_cpu(void) {}
1136 #endif /* CONFIG_SMP */
1137 
1138 void __init setup_log_buf(int early)
1139 {
1140 	unsigned long flags;
1141 	char *new_log_buf;
1142 	unsigned int free;
1143 
1144 	if (log_buf != __log_buf)
1145 		return;
1146 
1147 	if (!early && !new_log_buf_len)
1148 		log_buf_add_cpu();
1149 
1150 	if (!new_log_buf_len)
1151 		return;
1152 
1153 	new_log_buf = memblock_alloc(new_log_buf_len, LOG_ALIGN);
1154 	if (unlikely(!new_log_buf)) {
1155 		pr_err("log_buf_len: %lu bytes not available\n",
1156 			new_log_buf_len);
1157 		return;
1158 	}
1159 
1160 	logbuf_lock_irqsave(flags);
1161 	log_buf_len = new_log_buf_len;
1162 	log_buf = new_log_buf;
1163 	new_log_buf_len = 0;
1164 	free = __LOG_BUF_LEN - log_next_idx;
1165 	memcpy(log_buf, __log_buf, __LOG_BUF_LEN);
1166 	logbuf_unlock_irqrestore(flags);
1167 
1168 	pr_info("log_buf_len: %u bytes\n", log_buf_len);
1169 	pr_info("early log buf free: %u(%u%%)\n",
1170 		free, (free * 100) / __LOG_BUF_LEN);
1171 }
1172 
1173 static bool __read_mostly ignore_loglevel;
1174 
1175 static int __init ignore_loglevel_setup(char *str)
1176 {
1177 	ignore_loglevel = true;
1178 	pr_info("debug: ignoring loglevel setting.\n");
1179 
1180 	return 0;
1181 }
1182 
1183 early_param("ignore_loglevel", ignore_loglevel_setup);
1184 module_param(ignore_loglevel, bool, S_IRUGO | S_IWUSR);
1185 MODULE_PARM_DESC(ignore_loglevel,
1186 		 "ignore loglevel setting (prints all kernel messages to the console)");
1187 
1188 static bool suppress_message_printing(int level)
1189 {
1190 	return (level >= console_loglevel && !ignore_loglevel);
1191 }
1192 
1193 #ifdef CONFIG_BOOT_PRINTK_DELAY
1194 
1195 static int boot_delay; /* msecs delay after each printk during bootup */
1196 static unsigned long long loops_per_msec;	/* based on boot_delay */
1197 
1198 static int __init boot_delay_setup(char *str)
1199 {
1200 	unsigned long lpj;
1201 
1202 	lpj = preset_lpj ? preset_lpj : 1000000;	/* some guess */
1203 	loops_per_msec = (unsigned long long)lpj / 1000 * HZ;
1204 
1205 	get_option(&str, &boot_delay);
1206 	if (boot_delay > 10 * 1000)
1207 		boot_delay = 0;
1208 
1209 	pr_debug("boot_delay: %u, preset_lpj: %ld, lpj: %lu, "
1210 		"HZ: %d, loops_per_msec: %llu\n",
1211 		boot_delay, preset_lpj, lpj, HZ, loops_per_msec);
1212 	return 0;
1213 }
1214 early_param("boot_delay", boot_delay_setup);
1215 
1216 static void boot_delay_msec(int level)
1217 {
1218 	unsigned long long k;
1219 	unsigned long timeout;
1220 
1221 	if ((boot_delay == 0 || system_state >= SYSTEM_RUNNING)
1222 		|| suppress_message_printing(level)) {
1223 		return;
1224 	}
1225 
1226 	k = (unsigned long long)loops_per_msec * boot_delay;
1227 
1228 	timeout = jiffies + msecs_to_jiffies(boot_delay);
1229 	while (k) {
1230 		k--;
1231 		cpu_relax();
1232 		/*
1233 		 * use (volatile) jiffies to prevent
1234 		 * compiler reduction; loop termination via jiffies
1235 		 * is secondary and may or may not happen.
1236 		 */
1237 		if (time_after(jiffies, timeout))
1238 			break;
1239 		touch_nmi_watchdog();
1240 	}
1241 }
1242 #else
1243 static inline void boot_delay_msec(int level)
1244 {
1245 }
1246 #endif
1247 
1248 static bool printk_time = IS_ENABLED(CONFIG_PRINTK_TIME);
1249 module_param_named(time, printk_time, bool, S_IRUGO | S_IWUSR);
1250 
1251 static size_t print_syslog(unsigned int level, char *buf)
1252 {
1253 	return sprintf(buf, "<%u>", level);
1254 }
1255 
1256 static size_t print_time(u64 ts, char *buf)
1257 {
1258 	unsigned long rem_nsec = do_div(ts, 1000000000);
1259 
1260 	return sprintf(buf, "[%5lu.%06lu]",
1261 		       (unsigned long)ts, rem_nsec / 1000);
1262 }
1263 
1264 #ifdef CONFIG_PRINTK_CALLER
1265 static size_t print_caller(u32 id, char *buf)
1266 {
1267 	char caller[12];
1268 
1269 	snprintf(caller, sizeof(caller), "%c%u",
1270 		 id & 0x80000000 ? 'C' : 'T', id & ~0x80000000);
1271 	return sprintf(buf, "[%6s]", caller);
1272 }
1273 #else
1274 #define print_caller(id, buf) 0
1275 #endif
1276 
1277 static size_t print_prefix(const struct printk_log *msg, bool syslog,
1278 			   bool time, char *buf)
1279 {
1280 	size_t len = 0;
1281 
1282 	if (syslog)
1283 		len = print_syslog((msg->facility << 3) | msg->level, buf);
1284 
1285 	if (time)
1286 		len += print_time(msg->ts_nsec, buf + len);
1287 
1288 	len += print_caller(msg->caller_id, buf + len);
1289 
1290 	if (IS_ENABLED(CONFIG_PRINTK_CALLER) || time) {
1291 		buf[len++] = ' ';
1292 		buf[len] = '\0';
1293 	}
1294 
1295 	return len;
1296 }
1297 
1298 static size_t msg_print_text(const struct printk_log *msg, bool syslog,
1299 			     bool time, char *buf, size_t size)
1300 {
1301 	const char *text = log_text(msg);
1302 	size_t text_size = msg->text_len;
1303 	size_t len = 0;
1304 	char prefix[PREFIX_MAX];
1305 	const size_t prefix_len = print_prefix(msg, syslog, time, prefix);
1306 
1307 	do {
1308 		const char *next = memchr(text, '\n', text_size);
1309 		size_t text_len;
1310 
1311 		if (next) {
1312 			text_len = next - text;
1313 			next++;
1314 			text_size -= next - text;
1315 		} else {
1316 			text_len = text_size;
1317 		}
1318 
1319 		if (buf) {
1320 			if (prefix_len + text_len + 1 >= size - len)
1321 				break;
1322 
1323 			memcpy(buf + len, prefix, prefix_len);
1324 			len += prefix_len;
1325 			memcpy(buf + len, text, text_len);
1326 			len += text_len;
1327 			buf[len++] = '\n';
1328 		} else {
1329 			/* SYSLOG_ACTION_* buffer size only calculation */
1330 			len += prefix_len + text_len + 1;
1331 		}
1332 
1333 		text = next;
1334 	} while (text);
1335 
1336 	return len;
1337 }
1338 
1339 static int syslog_print(char __user *buf, int size)
1340 {
1341 	char *text;
1342 	struct printk_log *msg;
1343 	int len = 0;
1344 
1345 	text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
1346 	if (!text)
1347 		return -ENOMEM;
1348 
1349 	while (size > 0) {
1350 		size_t n;
1351 		size_t skip;
1352 
1353 		logbuf_lock_irq();
1354 		if (syslog_seq < log_first_seq) {
1355 			/* messages are gone, move to first one */
1356 			syslog_seq = log_first_seq;
1357 			syslog_idx = log_first_idx;
1358 			syslog_partial = 0;
1359 		}
1360 		if (syslog_seq == log_next_seq) {
1361 			logbuf_unlock_irq();
1362 			break;
1363 		}
1364 
1365 		/*
1366 		 * To keep reading/counting partial line consistent,
1367 		 * use printk_time value as of the beginning of a line.
1368 		 */
1369 		if (!syslog_partial)
1370 			syslog_time = printk_time;
1371 
1372 		skip = syslog_partial;
1373 		msg = log_from_idx(syslog_idx);
1374 		n = msg_print_text(msg, true, syslog_time, text,
1375 				   LOG_LINE_MAX + PREFIX_MAX);
1376 		if (n - syslog_partial <= size) {
1377 			/* message fits into buffer, move forward */
1378 			syslog_idx = log_next(syslog_idx);
1379 			syslog_seq++;
1380 			n -= syslog_partial;
1381 			syslog_partial = 0;
1382 		} else if (!len){
1383 			/* partial read(), remember position */
1384 			n = size;
1385 			syslog_partial += n;
1386 		} else
1387 			n = 0;
1388 		logbuf_unlock_irq();
1389 
1390 		if (!n)
1391 			break;
1392 
1393 		if (copy_to_user(buf, text + skip, n)) {
1394 			if (!len)
1395 				len = -EFAULT;
1396 			break;
1397 		}
1398 
1399 		len += n;
1400 		size -= n;
1401 		buf += n;
1402 	}
1403 
1404 	kfree(text);
1405 	return len;
1406 }
1407 
1408 static int syslog_print_all(char __user *buf, int size, bool clear)
1409 {
1410 	char *text;
1411 	int len = 0;
1412 	u64 next_seq;
1413 	u64 seq;
1414 	u32 idx;
1415 	bool time;
1416 
1417 	text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
1418 	if (!text)
1419 		return -ENOMEM;
1420 
1421 	time = printk_time;
1422 	logbuf_lock_irq();
1423 	/*
1424 	 * Find first record that fits, including all following records,
1425 	 * into the user-provided buffer for this dump.
1426 	 */
1427 	seq = clear_seq;
1428 	idx = clear_idx;
1429 	while (seq < log_next_seq) {
1430 		struct printk_log *msg = log_from_idx(idx);
1431 
1432 		len += msg_print_text(msg, true, time, NULL, 0);
1433 		idx = log_next(idx);
1434 		seq++;
1435 	}
1436 
1437 	/* move first record forward until length fits into the buffer */
1438 	seq = clear_seq;
1439 	idx = clear_idx;
1440 	while (len > size && seq < log_next_seq) {
1441 		struct printk_log *msg = log_from_idx(idx);
1442 
1443 		len -= msg_print_text(msg, true, time, NULL, 0);
1444 		idx = log_next(idx);
1445 		seq++;
1446 	}
1447 
1448 	/* last message fitting into this dump */
1449 	next_seq = log_next_seq;
1450 
1451 	len = 0;
1452 	while (len >= 0 && seq < next_seq) {
1453 		struct printk_log *msg = log_from_idx(idx);
1454 		int textlen = msg_print_text(msg, true, time, text,
1455 					     LOG_LINE_MAX + PREFIX_MAX);
1456 
1457 		idx = log_next(idx);
1458 		seq++;
1459 
1460 		logbuf_unlock_irq();
1461 		if (copy_to_user(buf + len, text, textlen))
1462 			len = -EFAULT;
1463 		else
1464 			len += textlen;
1465 		logbuf_lock_irq();
1466 
1467 		if (seq < log_first_seq) {
1468 			/* messages are gone, move to next one */
1469 			seq = log_first_seq;
1470 			idx = log_first_idx;
1471 		}
1472 	}
1473 
1474 	if (clear) {
1475 		clear_seq = log_next_seq;
1476 		clear_idx = log_next_idx;
1477 	}
1478 	logbuf_unlock_irq();
1479 
1480 	kfree(text);
1481 	return len;
1482 }
1483 
1484 static void syslog_clear(void)
1485 {
1486 	logbuf_lock_irq();
1487 	clear_seq = log_next_seq;
1488 	clear_idx = log_next_idx;
1489 	logbuf_unlock_irq();
1490 }
1491 
1492 int do_syslog(int type, char __user *buf, int len, int source)
1493 {
1494 	bool clear = false;
1495 	static int saved_console_loglevel = LOGLEVEL_DEFAULT;
1496 	int error;
1497 
1498 	error = check_syslog_permissions(type, source);
1499 	if (error)
1500 		return error;
1501 
1502 	switch (type) {
1503 	case SYSLOG_ACTION_CLOSE:	/* Close log */
1504 		break;
1505 	case SYSLOG_ACTION_OPEN:	/* Open log */
1506 		break;
1507 	case SYSLOG_ACTION_READ:	/* Read from log */
1508 		if (!buf || len < 0)
1509 			return -EINVAL;
1510 		if (!len)
1511 			return 0;
1512 		if (!access_ok(buf, len))
1513 			return -EFAULT;
1514 		error = wait_event_interruptible(log_wait,
1515 						 syslog_seq != log_next_seq);
1516 		if (error)
1517 			return error;
1518 		error = syslog_print(buf, len);
1519 		break;
1520 	/* Read/clear last kernel messages */
1521 	case SYSLOG_ACTION_READ_CLEAR:
1522 		clear = true;
1523 		/* FALL THRU */
1524 	/* Read last kernel messages */
1525 	case SYSLOG_ACTION_READ_ALL:
1526 		if (!buf || len < 0)
1527 			return -EINVAL;
1528 		if (!len)
1529 			return 0;
1530 		if (!access_ok(buf, len))
1531 			return -EFAULT;
1532 		error = syslog_print_all(buf, len, clear);
1533 		break;
1534 	/* Clear ring buffer */
1535 	case SYSLOG_ACTION_CLEAR:
1536 		syslog_clear();
1537 		break;
1538 	/* Disable logging to console */
1539 	case SYSLOG_ACTION_CONSOLE_OFF:
1540 		if (saved_console_loglevel == LOGLEVEL_DEFAULT)
1541 			saved_console_loglevel = console_loglevel;
1542 		console_loglevel = minimum_console_loglevel;
1543 		break;
1544 	/* Enable logging to console */
1545 	case SYSLOG_ACTION_CONSOLE_ON:
1546 		if (saved_console_loglevel != LOGLEVEL_DEFAULT) {
1547 			console_loglevel = saved_console_loglevel;
1548 			saved_console_loglevel = LOGLEVEL_DEFAULT;
1549 		}
1550 		break;
1551 	/* Set level of messages printed to console */
1552 	case SYSLOG_ACTION_CONSOLE_LEVEL:
1553 		if (len < 1 || len > 8)
1554 			return -EINVAL;
1555 		if (len < minimum_console_loglevel)
1556 			len = minimum_console_loglevel;
1557 		console_loglevel = len;
1558 		/* Implicitly re-enable logging to console */
1559 		saved_console_loglevel = LOGLEVEL_DEFAULT;
1560 		break;
1561 	/* Number of chars in the log buffer */
1562 	case SYSLOG_ACTION_SIZE_UNREAD:
1563 		logbuf_lock_irq();
1564 		if (syslog_seq < log_first_seq) {
1565 			/* messages are gone, move to first one */
1566 			syslog_seq = log_first_seq;
1567 			syslog_idx = log_first_idx;
1568 			syslog_partial = 0;
1569 		}
1570 		if (source == SYSLOG_FROM_PROC) {
1571 			/*
1572 			 * Short-cut for poll(/"proc/kmsg") which simply checks
1573 			 * for pending data, not the size; return the count of
1574 			 * records, not the length.
1575 			 */
1576 			error = log_next_seq - syslog_seq;
1577 		} else {
1578 			u64 seq = syslog_seq;
1579 			u32 idx = syslog_idx;
1580 			bool time = syslog_partial ? syslog_time : printk_time;
1581 
1582 			while (seq < log_next_seq) {
1583 				struct printk_log *msg = log_from_idx(idx);
1584 
1585 				error += msg_print_text(msg, true, time, NULL,
1586 							0);
1587 				time = printk_time;
1588 				idx = log_next(idx);
1589 				seq++;
1590 			}
1591 			error -= syslog_partial;
1592 		}
1593 		logbuf_unlock_irq();
1594 		break;
1595 	/* Size of the log buffer */
1596 	case SYSLOG_ACTION_SIZE_BUFFER:
1597 		error = log_buf_len;
1598 		break;
1599 	default:
1600 		error = -EINVAL;
1601 		break;
1602 	}
1603 
1604 	return error;
1605 }
1606 
1607 SYSCALL_DEFINE3(syslog, int, type, char __user *, buf, int, len)
1608 {
1609 	return do_syslog(type, buf, len, SYSLOG_FROM_READER);
1610 }
1611 
1612 /*
1613  * Special console_lock variants that help to reduce the risk of soft-lockups.
1614  * They allow to pass console_lock to another printk() call using a busy wait.
1615  */
1616 
1617 #ifdef CONFIG_LOCKDEP
1618 static struct lockdep_map console_owner_dep_map = {
1619 	.name = "console_owner"
1620 };
1621 #endif
1622 
1623 static DEFINE_RAW_SPINLOCK(console_owner_lock);
1624 static struct task_struct *console_owner;
1625 static bool console_waiter;
1626 
1627 /**
1628  * console_lock_spinning_enable - mark beginning of code where another
1629  *	thread might safely busy wait
1630  *
1631  * This basically converts console_lock into a spinlock. This marks
1632  * the section where the console_lock owner can not sleep, because
1633  * there may be a waiter spinning (like a spinlock). Also it must be
1634  * ready to hand over the lock at the end of the section.
1635  */
1636 static void console_lock_spinning_enable(void)
1637 {
1638 	raw_spin_lock(&console_owner_lock);
1639 	console_owner = current;
1640 	raw_spin_unlock(&console_owner_lock);
1641 
1642 	/* The waiter may spin on us after setting console_owner */
1643 	spin_acquire(&console_owner_dep_map, 0, 0, _THIS_IP_);
1644 }
1645 
1646 /**
1647  * console_lock_spinning_disable_and_check - mark end of code where another
1648  *	thread was able to busy wait and check if there is a waiter
1649  *
1650  * This is called at the end of the section where spinning is allowed.
1651  * It has two functions. First, it is a signal that it is no longer
1652  * safe to start busy waiting for the lock. Second, it checks if
1653  * there is a busy waiter and passes the lock rights to her.
1654  *
1655  * Important: Callers lose the lock if there was a busy waiter.
1656  *	They must not touch items synchronized by console_lock
1657  *	in this case.
1658  *
1659  * Return: 1 if the lock rights were passed, 0 otherwise.
1660  */
1661 static int console_lock_spinning_disable_and_check(void)
1662 {
1663 	int waiter;
1664 
1665 	raw_spin_lock(&console_owner_lock);
1666 	waiter = READ_ONCE(console_waiter);
1667 	console_owner = NULL;
1668 	raw_spin_unlock(&console_owner_lock);
1669 
1670 	if (!waiter) {
1671 		spin_release(&console_owner_dep_map, 1, _THIS_IP_);
1672 		return 0;
1673 	}
1674 
1675 	/* The waiter is now free to continue */
1676 	WRITE_ONCE(console_waiter, false);
1677 
1678 	spin_release(&console_owner_dep_map, 1, _THIS_IP_);
1679 
1680 	/*
1681 	 * Hand off console_lock to waiter. The waiter will perform
1682 	 * the up(). After this, the waiter is the console_lock owner.
1683 	 */
1684 	mutex_release(&console_lock_dep_map, 1, _THIS_IP_);
1685 	return 1;
1686 }
1687 
1688 /**
1689  * console_trylock_spinning - try to get console_lock by busy waiting
1690  *
1691  * This allows to busy wait for the console_lock when the current
1692  * owner is running in specially marked sections. It means that
1693  * the current owner is running and cannot reschedule until it
1694  * is ready to lose the lock.
1695  *
1696  * Return: 1 if we got the lock, 0 othrewise
1697  */
1698 static int console_trylock_spinning(void)
1699 {
1700 	struct task_struct *owner = NULL;
1701 	bool waiter;
1702 	bool spin = false;
1703 	unsigned long flags;
1704 
1705 	if (console_trylock())
1706 		return 1;
1707 
1708 	printk_safe_enter_irqsave(flags);
1709 
1710 	raw_spin_lock(&console_owner_lock);
1711 	owner = READ_ONCE(console_owner);
1712 	waiter = READ_ONCE(console_waiter);
1713 	if (!waiter && owner && owner != current) {
1714 		WRITE_ONCE(console_waiter, true);
1715 		spin = true;
1716 	}
1717 	raw_spin_unlock(&console_owner_lock);
1718 
1719 	/*
1720 	 * If there is an active printk() writing to the
1721 	 * consoles, instead of having it write our data too,
1722 	 * see if we can offload that load from the active
1723 	 * printer, and do some printing ourselves.
1724 	 * Go into a spin only if there isn't already a waiter
1725 	 * spinning, and there is an active printer, and
1726 	 * that active printer isn't us (recursive printk?).
1727 	 */
1728 	if (!spin) {
1729 		printk_safe_exit_irqrestore(flags);
1730 		return 0;
1731 	}
1732 
1733 	/* We spin waiting for the owner to release us */
1734 	spin_acquire(&console_owner_dep_map, 0, 0, _THIS_IP_);
1735 	/* Owner will clear console_waiter on hand off */
1736 	while (READ_ONCE(console_waiter))
1737 		cpu_relax();
1738 	spin_release(&console_owner_dep_map, 1, _THIS_IP_);
1739 
1740 	printk_safe_exit_irqrestore(flags);
1741 	/*
1742 	 * The owner passed the console lock to us.
1743 	 * Since we did not spin on console lock, annotate
1744 	 * this as a trylock. Otherwise lockdep will
1745 	 * complain.
1746 	 */
1747 	mutex_acquire(&console_lock_dep_map, 0, 1, _THIS_IP_);
1748 
1749 	return 1;
1750 }
1751 
1752 /*
1753  * Call the console drivers, asking them to write out
1754  * log_buf[start] to log_buf[end - 1].
1755  * The console_lock must be held.
1756  */
1757 static void call_console_drivers(const char *ext_text, size_t ext_len,
1758 				 const char *text, size_t len)
1759 {
1760 	struct console *con;
1761 
1762 	trace_console_rcuidle(text, len);
1763 
1764 	if (!console_drivers)
1765 		return;
1766 
1767 	for_each_console(con) {
1768 		if (exclusive_console && con != exclusive_console)
1769 			continue;
1770 		if (!(con->flags & CON_ENABLED))
1771 			continue;
1772 		if (!con->write)
1773 			continue;
1774 		if (!cpu_online(smp_processor_id()) &&
1775 		    !(con->flags & CON_ANYTIME))
1776 			continue;
1777 		if (con->flags & CON_EXTENDED)
1778 			con->write(con, ext_text, ext_len);
1779 		else
1780 			con->write(con, text, len);
1781 	}
1782 }
1783 
1784 int printk_delay_msec __read_mostly;
1785 
1786 static inline void printk_delay(void)
1787 {
1788 	if (unlikely(printk_delay_msec)) {
1789 		int m = printk_delay_msec;
1790 
1791 		while (m--) {
1792 			mdelay(1);
1793 			touch_nmi_watchdog();
1794 		}
1795 	}
1796 }
1797 
1798 static inline u32 printk_caller_id(void)
1799 {
1800 	return in_task() ? task_pid_nr(current) :
1801 		0x80000000 + raw_smp_processor_id();
1802 }
1803 
1804 /*
1805  * Continuation lines are buffered, and not committed to the record buffer
1806  * until the line is complete, or a race forces it. The line fragments
1807  * though, are printed immediately to the consoles to ensure everything has
1808  * reached the console in case of a kernel crash.
1809  */
1810 static struct cont {
1811 	char buf[LOG_LINE_MAX];
1812 	size_t len;			/* length == 0 means unused buffer */
1813 	u32 caller_id;			/* printk_caller_id() of first print */
1814 	u64 ts_nsec;			/* time of first print */
1815 	u8 level;			/* log level of first message */
1816 	u8 facility;			/* log facility of first message */
1817 	enum log_flags flags;		/* prefix, newline flags */
1818 } cont;
1819 
1820 static void cont_flush(void)
1821 {
1822 	if (cont.len == 0)
1823 		return;
1824 
1825 	log_store(cont.caller_id, cont.facility, cont.level, cont.flags,
1826 		  cont.ts_nsec, NULL, 0, cont.buf, cont.len);
1827 	cont.len = 0;
1828 }
1829 
1830 static bool cont_add(u32 caller_id, int facility, int level,
1831 		     enum log_flags flags, const char *text, size_t len)
1832 {
1833 	/* If the line gets too long, split it up in separate records. */
1834 	if (cont.len + len > sizeof(cont.buf)) {
1835 		cont_flush();
1836 		return false;
1837 	}
1838 
1839 	if (!cont.len) {
1840 		cont.facility = facility;
1841 		cont.level = level;
1842 		cont.caller_id = caller_id;
1843 		cont.ts_nsec = local_clock();
1844 		cont.flags = flags;
1845 	}
1846 
1847 	memcpy(cont.buf + cont.len, text, len);
1848 	cont.len += len;
1849 
1850 	// The original flags come from the first line,
1851 	// but later continuations can add a newline.
1852 	if (flags & LOG_NEWLINE) {
1853 		cont.flags |= LOG_NEWLINE;
1854 		cont_flush();
1855 	}
1856 
1857 	return true;
1858 }
1859 
1860 static size_t log_output(int facility, int level, enum log_flags lflags, const char *dict, size_t dictlen, char *text, size_t text_len)
1861 {
1862 	const u32 caller_id = printk_caller_id();
1863 
1864 	/*
1865 	 * If an earlier line was buffered, and we're a continuation
1866 	 * write from the same context, try to add it to the buffer.
1867 	 */
1868 	if (cont.len) {
1869 		if (cont.caller_id == caller_id && (lflags & LOG_CONT)) {
1870 			if (cont_add(caller_id, facility, level, lflags, text, text_len))
1871 				return text_len;
1872 		}
1873 		/* Otherwise, make sure it's flushed */
1874 		cont_flush();
1875 	}
1876 
1877 	/* Skip empty continuation lines that couldn't be added - they just flush */
1878 	if (!text_len && (lflags & LOG_CONT))
1879 		return 0;
1880 
1881 	/* If it doesn't end in a newline, try to buffer the current line */
1882 	if (!(lflags & LOG_NEWLINE)) {
1883 		if (cont_add(caller_id, facility, level, lflags, text, text_len))
1884 			return text_len;
1885 	}
1886 
1887 	/* Store it in the record log */
1888 	return log_store(caller_id, facility, level, lflags, 0,
1889 			 dict, dictlen, text, text_len);
1890 }
1891 
1892 /* Must be called under logbuf_lock. */
1893 int vprintk_store(int facility, int level,
1894 		  const char *dict, size_t dictlen,
1895 		  const char *fmt, va_list args)
1896 {
1897 	static char textbuf[LOG_LINE_MAX];
1898 	char *text = textbuf;
1899 	size_t text_len;
1900 	enum log_flags lflags = 0;
1901 
1902 	/*
1903 	 * The printf needs to come first; we need the syslog
1904 	 * prefix which might be passed-in as a parameter.
1905 	 */
1906 	text_len = vscnprintf(text, sizeof(textbuf), fmt, args);
1907 
1908 	/* mark and strip a trailing newline */
1909 	if (text_len && text[text_len-1] == '\n') {
1910 		text_len--;
1911 		lflags |= LOG_NEWLINE;
1912 	}
1913 
1914 	/* strip kernel syslog prefix and extract log level or control flags */
1915 	if (facility == 0) {
1916 		int kern_level;
1917 
1918 		while ((kern_level = printk_get_level(text)) != 0) {
1919 			switch (kern_level) {
1920 			case '0' ... '7':
1921 				if (level == LOGLEVEL_DEFAULT)
1922 					level = kern_level - '0';
1923 				break;
1924 			case 'c':	/* KERN_CONT */
1925 				lflags |= LOG_CONT;
1926 			}
1927 
1928 			text_len -= 2;
1929 			text += 2;
1930 		}
1931 	}
1932 
1933 	if (level == LOGLEVEL_DEFAULT)
1934 		level = default_message_loglevel;
1935 
1936 	if (dict)
1937 		lflags |= LOG_NEWLINE;
1938 
1939 	return log_output(facility, level, lflags,
1940 			  dict, dictlen, text, text_len);
1941 }
1942 
1943 asmlinkage int vprintk_emit(int facility, int level,
1944 			    const char *dict, size_t dictlen,
1945 			    const char *fmt, va_list args)
1946 {
1947 	int printed_len;
1948 	bool in_sched = false, pending_output;
1949 	unsigned long flags;
1950 	u64 curr_log_seq;
1951 
1952 	/* Suppress unimportant messages after panic happens */
1953 	if (unlikely(suppress_printk))
1954 		return 0;
1955 
1956 	if (level == LOGLEVEL_SCHED) {
1957 		level = LOGLEVEL_DEFAULT;
1958 		in_sched = true;
1959 	}
1960 
1961 	boot_delay_msec(level);
1962 	printk_delay();
1963 
1964 	/* This stops the holder of console_sem just where we want him */
1965 	logbuf_lock_irqsave(flags);
1966 	curr_log_seq = log_next_seq;
1967 	printed_len = vprintk_store(facility, level, dict, dictlen, fmt, args);
1968 	pending_output = (curr_log_seq != log_next_seq);
1969 	logbuf_unlock_irqrestore(flags);
1970 
1971 	/* If called from the scheduler, we can not call up(). */
1972 	if (!in_sched && pending_output) {
1973 		/*
1974 		 * Disable preemption to avoid being preempted while holding
1975 		 * console_sem which would prevent anyone from printing to
1976 		 * console
1977 		 */
1978 		preempt_disable();
1979 		/*
1980 		 * Try to acquire and then immediately release the console
1981 		 * semaphore.  The release will print out buffers and wake up
1982 		 * /dev/kmsg and syslog() users.
1983 		 */
1984 		if (console_trylock_spinning())
1985 			console_unlock();
1986 		preempt_enable();
1987 	}
1988 
1989 	if (pending_output)
1990 		wake_up_klogd();
1991 	return printed_len;
1992 }
1993 EXPORT_SYMBOL(vprintk_emit);
1994 
1995 asmlinkage int vprintk(const char *fmt, va_list args)
1996 {
1997 	return vprintk_func(fmt, args);
1998 }
1999 EXPORT_SYMBOL(vprintk);
2000 
2001 int vprintk_default(const char *fmt, va_list args)
2002 {
2003 	int r;
2004 
2005 #ifdef CONFIG_KGDB_KDB
2006 	/* Allow to pass printk() to kdb but avoid a recursion. */
2007 	if (unlikely(kdb_trap_printk && kdb_printf_cpu < 0)) {
2008 		r = vkdb_printf(KDB_MSGSRC_PRINTK, fmt, args);
2009 		return r;
2010 	}
2011 #endif
2012 	r = vprintk_emit(0, LOGLEVEL_DEFAULT, NULL, 0, fmt, args);
2013 
2014 	return r;
2015 }
2016 EXPORT_SYMBOL_GPL(vprintk_default);
2017 
2018 /**
2019  * printk - print a kernel message
2020  * @fmt: format string
2021  *
2022  * This is printk(). It can be called from any context. We want it to work.
2023  *
2024  * We try to grab the console_lock. If we succeed, it's easy - we log the
2025  * output and call the console drivers.  If we fail to get the semaphore, we
2026  * place the output into the log buffer and return. The current holder of
2027  * the console_sem will notice the new output in console_unlock(); and will
2028  * send it to the consoles before releasing the lock.
2029  *
2030  * One effect of this deferred printing is that code which calls printk() and
2031  * then changes console_loglevel may break. This is because console_loglevel
2032  * is inspected when the actual printing occurs.
2033  *
2034  * See also:
2035  * printf(3)
2036  *
2037  * See the vsnprintf() documentation for format string extensions over C99.
2038  */
2039 asmlinkage __visible int printk(const char *fmt, ...)
2040 {
2041 	va_list args;
2042 	int r;
2043 
2044 	va_start(args, fmt);
2045 	r = vprintk_func(fmt, args);
2046 	va_end(args);
2047 
2048 	return r;
2049 }
2050 EXPORT_SYMBOL(printk);
2051 
2052 #else /* CONFIG_PRINTK */
2053 
2054 #define LOG_LINE_MAX		0
2055 #define PREFIX_MAX		0
2056 #define printk_time		false
2057 
2058 static u64 syslog_seq;
2059 static u32 syslog_idx;
2060 static u64 console_seq;
2061 static u32 console_idx;
2062 static u64 exclusive_console_stop_seq;
2063 static u64 log_first_seq;
2064 static u32 log_first_idx;
2065 static u64 log_next_seq;
2066 static char *log_text(const struct printk_log *msg) { return NULL; }
2067 static char *log_dict(const struct printk_log *msg) { return NULL; }
2068 static struct printk_log *log_from_idx(u32 idx) { return NULL; }
2069 static u32 log_next(u32 idx) { return 0; }
2070 static ssize_t msg_print_ext_header(char *buf, size_t size,
2071 				    struct printk_log *msg,
2072 				    u64 seq) { return 0; }
2073 static ssize_t msg_print_ext_body(char *buf, size_t size,
2074 				  char *dict, size_t dict_len,
2075 				  char *text, size_t text_len) { return 0; }
2076 static void console_lock_spinning_enable(void) { }
2077 static int console_lock_spinning_disable_and_check(void) { return 0; }
2078 static void call_console_drivers(const char *ext_text, size_t ext_len,
2079 				 const char *text, size_t len) {}
2080 static size_t msg_print_text(const struct printk_log *msg, bool syslog,
2081 			     bool time, char *buf, size_t size) { return 0; }
2082 static bool suppress_message_printing(int level) { return false; }
2083 
2084 #endif /* CONFIG_PRINTK */
2085 
2086 #ifdef CONFIG_EARLY_PRINTK
2087 struct console *early_console;
2088 
2089 asmlinkage __visible void early_printk(const char *fmt, ...)
2090 {
2091 	va_list ap;
2092 	char buf[512];
2093 	int n;
2094 
2095 	if (!early_console)
2096 		return;
2097 
2098 	va_start(ap, fmt);
2099 	n = vscnprintf(buf, sizeof(buf), fmt, ap);
2100 	va_end(ap);
2101 
2102 	early_console->write(early_console, buf, n);
2103 }
2104 #endif
2105 
2106 static int __add_preferred_console(char *name, int idx, char *options,
2107 				   char *brl_options)
2108 {
2109 	struct console_cmdline *c;
2110 	int i;
2111 
2112 	/*
2113 	 *	See if this tty is not yet registered, and
2114 	 *	if we have a slot free.
2115 	 */
2116 	for (i = 0, c = console_cmdline;
2117 	     i < MAX_CMDLINECONSOLES && c->name[0];
2118 	     i++, c++) {
2119 		if (strcmp(c->name, name) == 0 && c->index == idx) {
2120 			if (!brl_options)
2121 				preferred_console = i;
2122 			return 0;
2123 		}
2124 	}
2125 	if (i == MAX_CMDLINECONSOLES)
2126 		return -E2BIG;
2127 	if (!brl_options)
2128 		preferred_console = i;
2129 	strlcpy(c->name, name, sizeof(c->name));
2130 	c->options = options;
2131 	braille_set_options(c, brl_options);
2132 
2133 	c->index = idx;
2134 	return 0;
2135 }
2136 
2137 static int __init console_msg_format_setup(char *str)
2138 {
2139 	if (!strcmp(str, "syslog"))
2140 		console_msg_format = MSG_FORMAT_SYSLOG;
2141 	if (!strcmp(str, "default"))
2142 		console_msg_format = MSG_FORMAT_DEFAULT;
2143 	return 1;
2144 }
2145 __setup("console_msg_format=", console_msg_format_setup);
2146 
2147 /*
2148  * Set up a console.  Called via do_early_param() in init/main.c
2149  * for each "console=" parameter in the boot command line.
2150  */
2151 static int __init console_setup(char *str)
2152 {
2153 	char buf[sizeof(console_cmdline[0].name) + 4]; /* 4 for "ttyS" */
2154 	char *s, *options, *brl_options = NULL;
2155 	int idx;
2156 
2157 	if (_braille_console_setup(&str, &brl_options))
2158 		return 1;
2159 
2160 	/*
2161 	 * Decode str into name, index, options.
2162 	 */
2163 	if (str[0] >= '0' && str[0] <= '9') {
2164 		strcpy(buf, "ttyS");
2165 		strncpy(buf + 4, str, sizeof(buf) - 5);
2166 	} else {
2167 		strncpy(buf, str, sizeof(buf) - 1);
2168 	}
2169 	buf[sizeof(buf) - 1] = 0;
2170 	options = strchr(str, ',');
2171 	if (options)
2172 		*(options++) = 0;
2173 #ifdef __sparc__
2174 	if (!strcmp(str, "ttya"))
2175 		strcpy(buf, "ttyS0");
2176 	if (!strcmp(str, "ttyb"))
2177 		strcpy(buf, "ttyS1");
2178 #endif
2179 	for (s = buf; *s; s++)
2180 		if (isdigit(*s) || *s == ',')
2181 			break;
2182 	idx = simple_strtoul(s, NULL, 10);
2183 	*s = 0;
2184 
2185 	__add_preferred_console(buf, idx, options, brl_options);
2186 	console_set_on_cmdline = 1;
2187 	return 1;
2188 }
2189 __setup("console=", console_setup);
2190 
2191 /**
2192  * add_preferred_console - add a device to the list of preferred consoles.
2193  * @name: device name
2194  * @idx: device index
2195  * @options: options for this console
2196  *
2197  * The last preferred console added will be used for kernel messages
2198  * and stdin/out/err for init.  Normally this is used by console_setup
2199  * above to handle user-supplied console arguments; however it can also
2200  * be used by arch-specific code either to override the user or more
2201  * commonly to provide a default console (ie from PROM variables) when
2202  * the user has not supplied one.
2203  */
2204 int add_preferred_console(char *name, int idx, char *options)
2205 {
2206 	return __add_preferred_console(name, idx, options, NULL);
2207 }
2208 
2209 bool console_suspend_enabled = true;
2210 EXPORT_SYMBOL(console_suspend_enabled);
2211 
2212 static int __init console_suspend_disable(char *str)
2213 {
2214 	console_suspend_enabled = false;
2215 	return 1;
2216 }
2217 __setup("no_console_suspend", console_suspend_disable);
2218 module_param_named(console_suspend, console_suspend_enabled,
2219 		bool, S_IRUGO | S_IWUSR);
2220 MODULE_PARM_DESC(console_suspend, "suspend console during suspend"
2221 	" and hibernate operations");
2222 
2223 /**
2224  * suspend_console - suspend the console subsystem
2225  *
2226  * This disables printk() while we go into suspend states
2227  */
2228 void suspend_console(void)
2229 {
2230 	if (!console_suspend_enabled)
2231 		return;
2232 	pr_info("Suspending console(s) (use no_console_suspend to debug)\n");
2233 	console_lock();
2234 	console_suspended = 1;
2235 	up_console_sem();
2236 }
2237 
2238 void resume_console(void)
2239 {
2240 	if (!console_suspend_enabled)
2241 		return;
2242 	down_console_sem();
2243 	console_suspended = 0;
2244 	console_unlock();
2245 }
2246 
2247 /**
2248  * console_cpu_notify - print deferred console messages after CPU hotplug
2249  * @cpu: unused
2250  *
2251  * If printk() is called from a CPU that is not online yet, the messages
2252  * will be printed on the console only if there are CON_ANYTIME consoles.
2253  * This function is called when a new CPU comes online (or fails to come
2254  * up) or goes offline.
2255  */
2256 static int console_cpu_notify(unsigned int cpu)
2257 {
2258 	if (!cpuhp_tasks_frozen) {
2259 		/* If trylock fails, someone else is doing the printing */
2260 		if (console_trylock())
2261 			console_unlock();
2262 	}
2263 	return 0;
2264 }
2265 
2266 /**
2267  * console_lock - lock the console system for exclusive use.
2268  *
2269  * Acquires a lock which guarantees that the caller has
2270  * exclusive access to the console system and the console_drivers list.
2271  *
2272  * Can sleep, returns nothing.
2273  */
2274 void console_lock(void)
2275 {
2276 	might_sleep();
2277 
2278 	down_console_sem();
2279 	if (console_suspended)
2280 		return;
2281 	console_locked = 1;
2282 	console_may_schedule = 1;
2283 }
2284 EXPORT_SYMBOL(console_lock);
2285 
2286 /**
2287  * console_trylock - try to lock the console system for exclusive use.
2288  *
2289  * Try to acquire a lock which guarantees that the caller has exclusive
2290  * access to the console system and the console_drivers list.
2291  *
2292  * returns 1 on success, and 0 on failure to acquire the lock.
2293  */
2294 int console_trylock(void)
2295 {
2296 	if (down_trylock_console_sem())
2297 		return 0;
2298 	if (console_suspended) {
2299 		up_console_sem();
2300 		return 0;
2301 	}
2302 	console_locked = 1;
2303 	console_may_schedule = 0;
2304 	return 1;
2305 }
2306 EXPORT_SYMBOL(console_trylock);
2307 
2308 int is_console_locked(void)
2309 {
2310 	return console_locked;
2311 }
2312 EXPORT_SYMBOL(is_console_locked);
2313 
2314 /*
2315  * Check if we have any console that is capable of printing while cpu is
2316  * booting or shutting down. Requires console_sem.
2317  */
2318 static int have_callable_console(void)
2319 {
2320 	struct console *con;
2321 
2322 	for_each_console(con)
2323 		if ((con->flags & CON_ENABLED) &&
2324 				(con->flags & CON_ANYTIME))
2325 			return 1;
2326 
2327 	return 0;
2328 }
2329 
2330 /*
2331  * Can we actually use the console at this time on this cpu?
2332  *
2333  * Console drivers may assume that per-cpu resources have been allocated. So
2334  * unless they're explicitly marked as being able to cope (CON_ANYTIME) don't
2335  * call them until this CPU is officially up.
2336  */
2337 static inline int can_use_console(void)
2338 {
2339 	return cpu_online(raw_smp_processor_id()) || have_callable_console();
2340 }
2341 
2342 /**
2343  * console_unlock - unlock the console system
2344  *
2345  * Releases the console_lock which the caller holds on the console system
2346  * and the console driver list.
2347  *
2348  * While the console_lock was held, console output may have been buffered
2349  * by printk().  If this is the case, console_unlock(); emits
2350  * the output prior to releasing the lock.
2351  *
2352  * If there is output waiting, we wake /dev/kmsg and syslog() users.
2353  *
2354  * console_unlock(); may be called from any context.
2355  */
2356 void console_unlock(void)
2357 {
2358 	static char ext_text[CONSOLE_EXT_LOG_MAX];
2359 	static char text[LOG_LINE_MAX + PREFIX_MAX];
2360 	unsigned long flags;
2361 	bool do_cond_resched, retry;
2362 
2363 	if (console_suspended) {
2364 		up_console_sem();
2365 		return;
2366 	}
2367 
2368 	/*
2369 	 * Console drivers are called with interrupts disabled, so
2370 	 * @console_may_schedule should be cleared before; however, we may
2371 	 * end up dumping a lot of lines, for example, if called from
2372 	 * console registration path, and should invoke cond_resched()
2373 	 * between lines if allowable.  Not doing so can cause a very long
2374 	 * scheduling stall on a slow console leading to RCU stall and
2375 	 * softlockup warnings which exacerbate the issue with more
2376 	 * messages practically incapacitating the system.
2377 	 *
2378 	 * console_trylock() is not able to detect the preemptive
2379 	 * context reliably. Therefore the value must be stored before
2380 	 * and cleared after the the "again" goto label.
2381 	 */
2382 	do_cond_resched = console_may_schedule;
2383 again:
2384 	console_may_schedule = 0;
2385 
2386 	/*
2387 	 * We released the console_sem lock, so we need to recheck if
2388 	 * cpu is online and (if not) is there at least one CON_ANYTIME
2389 	 * console.
2390 	 */
2391 	if (!can_use_console()) {
2392 		console_locked = 0;
2393 		up_console_sem();
2394 		return;
2395 	}
2396 
2397 	for (;;) {
2398 		struct printk_log *msg;
2399 		size_t ext_len = 0;
2400 		size_t len;
2401 
2402 		printk_safe_enter_irqsave(flags);
2403 		raw_spin_lock(&logbuf_lock);
2404 		if (console_seq < log_first_seq) {
2405 			len = sprintf(text,
2406 				      "** %llu printk messages dropped **\n",
2407 				      log_first_seq - console_seq);
2408 
2409 			/* messages are gone, move to first one */
2410 			console_seq = log_first_seq;
2411 			console_idx = log_first_idx;
2412 		} else {
2413 			len = 0;
2414 		}
2415 skip:
2416 		if (console_seq == log_next_seq)
2417 			break;
2418 
2419 		msg = log_from_idx(console_idx);
2420 		if (suppress_message_printing(msg->level)) {
2421 			/*
2422 			 * Skip record we have buffered and already printed
2423 			 * directly to the console when we received it, and
2424 			 * record that has level above the console loglevel.
2425 			 */
2426 			console_idx = log_next(console_idx);
2427 			console_seq++;
2428 			goto skip;
2429 		}
2430 
2431 		/* Output to all consoles once old messages replayed. */
2432 		if (unlikely(exclusive_console &&
2433 			     console_seq >= exclusive_console_stop_seq)) {
2434 			exclusive_console = NULL;
2435 		}
2436 
2437 		len += msg_print_text(msg,
2438 				console_msg_format & MSG_FORMAT_SYSLOG,
2439 				printk_time, text + len, sizeof(text) - len);
2440 		if (nr_ext_console_drivers) {
2441 			ext_len = msg_print_ext_header(ext_text,
2442 						sizeof(ext_text),
2443 						msg, console_seq);
2444 			ext_len += msg_print_ext_body(ext_text + ext_len,
2445 						sizeof(ext_text) - ext_len,
2446 						log_dict(msg), msg->dict_len,
2447 						log_text(msg), msg->text_len);
2448 		}
2449 		console_idx = log_next(console_idx);
2450 		console_seq++;
2451 		raw_spin_unlock(&logbuf_lock);
2452 
2453 		/*
2454 		 * While actively printing out messages, if another printk()
2455 		 * were to occur on another CPU, it may wait for this one to
2456 		 * finish. This task can not be preempted if there is a
2457 		 * waiter waiting to take over.
2458 		 */
2459 		console_lock_spinning_enable();
2460 
2461 		stop_critical_timings();	/* don't trace print latency */
2462 		call_console_drivers(ext_text, ext_len, text, len);
2463 		start_critical_timings();
2464 
2465 		if (console_lock_spinning_disable_and_check()) {
2466 			printk_safe_exit_irqrestore(flags);
2467 			return;
2468 		}
2469 
2470 		printk_safe_exit_irqrestore(flags);
2471 
2472 		if (do_cond_resched)
2473 			cond_resched();
2474 	}
2475 
2476 	console_locked = 0;
2477 
2478 	raw_spin_unlock(&logbuf_lock);
2479 
2480 	up_console_sem();
2481 
2482 	/*
2483 	 * Someone could have filled up the buffer again, so re-check if there's
2484 	 * something to flush. In case we cannot trylock the console_sem again,
2485 	 * there's a new owner and the console_unlock() from them will do the
2486 	 * flush, no worries.
2487 	 */
2488 	raw_spin_lock(&logbuf_lock);
2489 	retry = console_seq != log_next_seq;
2490 	raw_spin_unlock(&logbuf_lock);
2491 	printk_safe_exit_irqrestore(flags);
2492 
2493 	if (retry && console_trylock())
2494 		goto again;
2495 }
2496 EXPORT_SYMBOL(console_unlock);
2497 
2498 /**
2499  * console_conditional_schedule - yield the CPU if required
2500  *
2501  * If the console code is currently allowed to sleep, and
2502  * if this CPU should yield the CPU to another task, do
2503  * so here.
2504  *
2505  * Must be called within console_lock();.
2506  */
2507 void __sched console_conditional_schedule(void)
2508 {
2509 	if (console_may_schedule)
2510 		cond_resched();
2511 }
2512 EXPORT_SYMBOL(console_conditional_schedule);
2513 
2514 void console_unblank(void)
2515 {
2516 	struct console *c;
2517 
2518 	/*
2519 	 * console_unblank can no longer be called in interrupt context unless
2520 	 * oops_in_progress is set to 1..
2521 	 */
2522 	if (oops_in_progress) {
2523 		if (down_trylock_console_sem() != 0)
2524 			return;
2525 	} else
2526 		console_lock();
2527 
2528 	console_locked = 1;
2529 	console_may_schedule = 0;
2530 	for_each_console(c)
2531 		if ((c->flags & CON_ENABLED) && c->unblank)
2532 			c->unblank();
2533 	console_unlock();
2534 }
2535 
2536 /**
2537  * console_flush_on_panic - flush console content on panic
2538  * @mode: flush all messages in buffer or just the pending ones
2539  *
2540  * Immediately output all pending messages no matter what.
2541  */
2542 void console_flush_on_panic(enum con_flush_mode mode)
2543 {
2544 	/*
2545 	 * If someone else is holding the console lock, trylock will fail
2546 	 * and may_schedule may be set.  Ignore and proceed to unlock so
2547 	 * that messages are flushed out.  As this can be called from any
2548 	 * context and we don't want to get preempted while flushing,
2549 	 * ensure may_schedule is cleared.
2550 	 */
2551 	console_trylock();
2552 	console_may_schedule = 0;
2553 
2554 	if (mode == CONSOLE_REPLAY_ALL) {
2555 		unsigned long flags;
2556 
2557 		logbuf_lock_irqsave(flags);
2558 		console_seq = log_first_seq;
2559 		console_idx = log_first_idx;
2560 		logbuf_unlock_irqrestore(flags);
2561 	}
2562 	console_unlock();
2563 }
2564 
2565 /*
2566  * Return the console tty driver structure and its associated index
2567  */
2568 struct tty_driver *console_device(int *index)
2569 {
2570 	struct console *c;
2571 	struct tty_driver *driver = NULL;
2572 
2573 	console_lock();
2574 	for_each_console(c) {
2575 		if (!c->device)
2576 			continue;
2577 		driver = c->device(c, index);
2578 		if (driver)
2579 			break;
2580 	}
2581 	console_unlock();
2582 	return driver;
2583 }
2584 
2585 /*
2586  * Prevent further output on the passed console device so that (for example)
2587  * serial drivers can disable console output before suspending a port, and can
2588  * re-enable output afterwards.
2589  */
2590 void console_stop(struct console *console)
2591 {
2592 	console_lock();
2593 	console->flags &= ~CON_ENABLED;
2594 	console_unlock();
2595 }
2596 EXPORT_SYMBOL(console_stop);
2597 
2598 void console_start(struct console *console)
2599 {
2600 	console_lock();
2601 	console->flags |= CON_ENABLED;
2602 	console_unlock();
2603 }
2604 EXPORT_SYMBOL(console_start);
2605 
2606 static int __read_mostly keep_bootcon;
2607 
2608 static int __init keep_bootcon_setup(char *str)
2609 {
2610 	keep_bootcon = 1;
2611 	pr_info("debug: skip boot console de-registration.\n");
2612 
2613 	return 0;
2614 }
2615 
2616 early_param("keep_bootcon", keep_bootcon_setup);
2617 
2618 /*
2619  * The console driver calls this routine during kernel initialization
2620  * to register the console printing procedure with printk() and to
2621  * print any messages that were printed by the kernel before the
2622  * console driver was initialized.
2623  *
2624  * This can happen pretty early during the boot process (because of
2625  * early_printk) - sometimes before setup_arch() completes - be careful
2626  * of what kernel features are used - they may not be initialised yet.
2627  *
2628  * There are two types of consoles - bootconsoles (early_printk) and
2629  * "real" consoles (everything which is not a bootconsole) which are
2630  * handled differently.
2631  *  - Any number of bootconsoles can be registered at any time.
2632  *  - As soon as a "real" console is registered, all bootconsoles
2633  *    will be unregistered automatically.
2634  *  - Once a "real" console is registered, any attempt to register a
2635  *    bootconsoles will be rejected
2636  */
2637 void register_console(struct console *newcon)
2638 {
2639 	int i;
2640 	unsigned long flags;
2641 	struct console *bcon = NULL;
2642 	struct console_cmdline *c;
2643 	static bool has_preferred;
2644 
2645 	if (console_drivers)
2646 		for_each_console(bcon)
2647 			if (WARN(bcon == newcon,
2648 					"console '%s%d' already registered\n",
2649 					bcon->name, bcon->index))
2650 				return;
2651 
2652 	/*
2653 	 * before we register a new CON_BOOT console, make sure we don't
2654 	 * already have a valid console
2655 	 */
2656 	if (console_drivers && newcon->flags & CON_BOOT) {
2657 		/* find the last or real console */
2658 		for_each_console(bcon) {
2659 			if (!(bcon->flags & CON_BOOT)) {
2660 				pr_info("Too late to register bootconsole %s%d\n",
2661 					newcon->name, newcon->index);
2662 				return;
2663 			}
2664 		}
2665 	}
2666 
2667 	if (console_drivers && console_drivers->flags & CON_BOOT)
2668 		bcon = console_drivers;
2669 
2670 	if (!has_preferred || bcon || !console_drivers)
2671 		has_preferred = preferred_console >= 0;
2672 
2673 	/*
2674 	 *	See if we want to use this console driver. If we
2675 	 *	didn't select a console we take the first one
2676 	 *	that registers here.
2677 	 */
2678 	if (!has_preferred) {
2679 		if (newcon->index < 0)
2680 			newcon->index = 0;
2681 		if (newcon->setup == NULL ||
2682 		    newcon->setup(newcon, NULL) == 0) {
2683 			newcon->flags |= CON_ENABLED;
2684 			if (newcon->device) {
2685 				newcon->flags |= CON_CONSDEV;
2686 				has_preferred = true;
2687 			}
2688 		}
2689 	}
2690 
2691 	/*
2692 	 *	See if this console matches one we selected on
2693 	 *	the command line.
2694 	 */
2695 	for (i = 0, c = console_cmdline;
2696 	     i < MAX_CMDLINECONSOLES && c->name[0];
2697 	     i++, c++) {
2698 		if (!newcon->match ||
2699 		    newcon->match(newcon, c->name, c->index, c->options) != 0) {
2700 			/* default matching */
2701 			BUILD_BUG_ON(sizeof(c->name) != sizeof(newcon->name));
2702 			if (strcmp(c->name, newcon->name) != 0)
2703 				continue;
2704 			if (newcon->index >= 0 &&
2705 			    newcon->index != c->index)
2706 				continue;
2707 			if (newcon->index < 0)
2708 				newcon->index = c->index;
2709 
2710 			if (_braille_register_console(newcon, c))
2711 				return;
2712 
2713 			if (newcon->setup &&
2714 			    newcon->setup(newcon, c->options) != 0)
2715 				break;
2716 		}
2717 
2718 		newcon->flags |= CON_ENABLED;
2719 		if (i == preferred_console) {
2720 			newcon->flags |= CON_CONSDEV;
2721 			has_preferred = true;
2722 		}
2723 		break;
2724 	}
2725 
2726 	if (!(newcon->flags & CON_ENABLED))
2727 		return;
2728 
2729 	/*
2730 	 * If we have a bootconsole, and are switching to a real console,
2731 	 * don't print everything out again, since when the boot console, and
2732 	 * the real console are the same physical device, it's annoying to
2733 	 * see the beginning boot messages twice
2734 	 */
2735 	if (bcon && ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV))
2736 		newcon->flags &= ~CON_PRINTBUFFER;
2737 
2738 	/*
2739 	 *	Put this console in the list - keep the
2740 	 *	preferred driver at the head of the list.
2741 	 */
2742 	console_lock();
2743 	if ((newcon->flags & CON_CONSDEV) || console_drivers == NULL) {
2744 		newcon->next = console_drivers;
2745 		console_drivers = newcon;
2746 		if (newcon->next)
2747 			newcon->next->flags &= ~CON_CONSDEV;
2748 	} else {
2749 		newcon->next = console_drivers->next;
2750 		console_drivers->next = newcon;
2751 	}
2752 
2753 	if (newcon->flags & CON_EXTENDED)
2754 		nr_ext_console_drivers++;
2755 
2756 	if (newcon->flags & CON_PRINTBUFFER) {
2757 		/*
2758 		 * console_unlock(); will print out the buffered messages
2759 		 * for us.
2760 		 */
2761 		logbuf_lock_irqsave(flags);
2762 		console_seq = syslog_seq;
2763 		console_idx = syslog_idx;
2764 		/*
2765 		 * We're about to replay the log buffer.  Only do this to the
2766 		 * just-registered console to avoid excessive message spam to
2767 		 * the already-registered consoles.
2768 		 *
2769 		 * Set exclusive_console with disabled interrupts to reduce
2770 		 * race window with eventual console_flush_on_panic() that
2771 		 * ignores console_lock.
2772 		 */
2773 		exclusive_console = newcon;
2774 		exclusive_console_stop_seq = console_seq;
2775 		logbuf_unlock_irqrestore(flags);
2776 	}
2777 	console_unlock();
2778 	console_sysfs_notify();
2779 
2780 	/*
2781 	 * By unregistering the bootconsoles after we enable the real console
2782 	 * we get the "console xxx enabled" message on all the consoles -
2783 	 * boot consoles, real consoles, etc - this is to ensure that end
2784 	 * users know there might be something in the kernel's log buffer that
2785 	 * went to the bootconsole (that they do not see on the real console)
2786 	 */
2787 	pr_info("%sconsole [%s%d] enabled\n",
2788 		(newcon->flags & CON_BOOT) ? "boot" : "" ,
2789 		newcon->name, newcon->index);
2790 	if (bcon &&
2791 	    ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV) &&
2792 	    !keep_bootcon) {
2793 		/* We need to iterate through all boot consoles, to make
2794 		 * sure we print everything out, before we unregister them.
2795 		 */
2796 		for_each_console(bcon)
2797 			if (bcon->flags & CON_BOOT)
2798 				unregister_console(bcon);
2799 	}
2800 }
2801 EXPORT_SYMBOL(register_console);
2802 
2803 int unregister_console(struct console *console)
2804 {
2805         struct console *a, *b;
2806 	int res;
2807 
2808 	pr_info("%sconsole [%s%d] disabled\n",
2809 		(console->flags & CON_BOOT) ? "boot" : "" ,
2810 		console->name, console->index);
2811 
2812 	res = _braille_unregister_console(console);
2813 	if (res)
2814 		return res;
2815 
2816 	res = 1;
2817 	console_lock();
2818 	if (console_drivers == console) {
2819 		console_drivers=console->next;
2820 		res = 0;
2821 	} else if (console_drivers) {
2822 		for (a=console_drivers->next, b=console_drivers ;
2823 		     a; b=a, a=b->next) {
2824 			if (a == console) {
2825 				b->next = a->next;
2826 				res = 0;
2827 				break;
2828 			}
2829 		}
2830 	}
2831 
2832 	if (!res && (console->flags & CON_EXTENDED))
2833 		nr_ext_console_drivers--;
2834 
2835 	/*
2836 	 * If this isn't the last console and it has CON_CONSDEV set, we
2837 	 * need to set it on the next preferred console.
2838 	 */
2839 	if (console_drivers != NULL && console->flags & CON_CONSDEV)
2840 		console_drivers->flags |= CON_CONSDEV;
2841 
2842 	console->flags &= ~CON_ENABLED;
2843 	console_unlock();
2844 	console_sysfs_notify();
2845 	return res;
2846 }
2847 EXPORT_SYMBOL(unregister_console);
2848 
2849 /*
2850  * Initialize the console device. This is called *early*, so
2851  * we can't necessarily depend on lots of kernel help here.
2852  * Just do some early initializations, and do the complex setup
2853  * later.
2854  */
2855 void __init console_init(void)
2856 {
2857 	int ret;
2858 	initcall_t call;
2859 	initcall_entry_t *ce;
2860 
2861 	/* Setup the default TTY line discipline. */
2862 	n_tty_init();
2863 
2864 	/*
2865 	 * set up the console device so that later boot sequences can
2866 	 * inform about problems etc..
2867 	 */
2868 	ce = __con_initcall_start;
2869 	trace_initcall_level("console");
2870 	while (ce < __con_initcall_end) {
2871 		call = initcall_from_entry(ce);
2872 		trace_initcall_start(call);
2873 		ret = call();
2874 		trace_initcall_finish(call, ret);
2875 		ce++;
2876 	}
2877 }
2878 
2879 /*
2880  * Some boot consoles access data that is in the init section and which will
2881  * be discarded after the initcalls have been run. To make sure that no code
2882  * will access this data, unregister the boot consoles in a late initcall.
2883  *
2884  * If for some reason, such as deferred probe or the driver being a loadable
2885  * module, the real console hasn't registered yet at this point, there will
2886  * be a brief interval in which no messages are logged to the console, which
2887  * makes it difficult to diagnose problems that occur during this time.
2888  *
2889  * To mitigate this problem somewhat, only unregister consoles whose memory
2890  * intersects with the init section. Note that all other boot consoles will
2891  * get unregistred when the real preferred console is registered.
2892  */
2893 static int __init printk_late_init(void)
2894 {
2895 	struct console *con;
2896 	int ret;
2897 
2898 	for_each_console(con) {
2899 		if (!(con->flags & CON_BOOT))
2900 			continue;
2901 
2902 		/* Check addresses that might be used for enabled consoles. */
2903 		if (init_section_intersects(con, sizeof(*con)) ||
2904 		    init_section_contains(con->write, 0) ||
2905 		    init_section_contains(con->read, 0) ||
2906 		    init_section_contains(con->device, 0) ||
2907 		    init_section_contains(con->unblank, 0) ||
2908 		    init_section_contains(con->data, 0)) {
2909 			/*
2910 			 * Please, consider moving the reported consoles out
2911 			 * of the init section.
2912 			 */
2913 			pr_warn("bootconsole [%s%d] uses init memory and must be disabled even before the real one is ready\n",
2914 				con->name, con->index);
2915 			unregister_console(con);
2916 		}
2917 	}
2918 	ret = cpuhp_setup_state_nocalls(CPUHP_PRINTK_DEAD, "printk:dead", NULL,
2919 					console_cpu_notify);
2920 	WARN_ON(ret < 0);
2921 	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "printk:online",
2922 					console_cpu_notify, NULL);
2923 	WARN_ON(ret < 0);
2924 	return 0;
2925 }
2926 late_initcall(printk_late_init);
2927 
2928 #if defined CONFIG_PRINTK
2929 /*
2930  * Delayed printk version, for scheduler-internal messages:
2931  */
2932 #define PRINTK_PENDING_WAKEUP	0x01
2933 #define PRINTK_PENDING_OUTPUT	0x02
2934 
2935 static DEFINE_PER_CPU(int, printk_pending);
2936 
2937 static void wake_up_klogd_work_func(struct irq_work *irq_work)
2938 {
2939 	int pending = __this_cpu_xchg(printk_pending, 0);
2940 
2941 	if (pending & PRINTK_PENDING_OUTPUT) {
2942 		/* If trylock fails, someone else is doing the printing */
2943 		if (console_trylock())
2944 			console_unlock();
2945 	}
2946 
2947 	if (pending & PRINTK_PENDING_WAKEUP)
2948 		wake_up_interruptible(&log_wait);
2949 }
2950 
2951 static DEFINE_PER_CPU(struct irq_work, wake_up_klogd_work) = {
2952 	.func = wake_up_klogd_work_func,
2953 	.flags = IRQ_WORK_LAZY,
2954 };
2955 
2956 void wake_up_klogd(void)
2957 {
2958 	preempt_disable();
2959 	if (waitqueue_active(&log_wait)) {
2960 		this_cpu_or(printk_pending, PRINTK_PENDING_WAKEUP);
2961 		irq_work_queue(this_cpu_ptr(&wake_up_klogd_work));
2962 	}
2963 	preempt_enable();
2964 }
2965 
2966 void defer_console_output(void)
2967 {
2968 	preempt_disable();
2969 	__this_cpu_or(printk_pending, PRINTK_PENDING_OUTPUT);
2970 	irq_work_queue(this_cpu_ptr(&wake_up_klogd_work));
2971 	preempt_enable();
2972 }
2973 
2974 int vprintk_deferred(const char *fmt, va_list args)
2975 {
2976 	int r;
2977 
2978 	r = vprintk_emit(0, LOGLEVEL_SCHED, NULL, 0, fmt, args);
2979 	defer_console_output();
2980 
2981 	return r;
2982 }
2983 
2984 int printk_deferred(const char *fmt, ...)
2985 {
2986 	va_list args;
2987 	int r;
2988 
2989 	va_start(args, fmt);
2990 	r = vprintk_deferred(fmt, args);
2991 	va_end(args);
2992 
2993 	return r;
2994 }
2995 
2996 /*
2997  * printk rate limiting, lifted from the networking subsystem.
2998  *
2999  * This enforces a rate limit: not more than 10 kernel messages
3000  * every 5s to make a denial-of-service attack impossible.
3001  */
3002 DEFINE_RATELIMIT_STATE(printk_ratelimit_state, 5 * HZ, 10);
3003 
3004 int __printk_ratelimit(const char *func)
3005 {
3006 	return ___ratelimit(&printk_ratelimit_state, func);
3007 }
3008 EXPORT_SYMBOL(__printk_ratelimit);
3009 
3010 /**
3011  * printk_timed_ratelimit - caller-controlled printk ratelimiting
3012  * @caller_jiffies: pointer to caller's state
3013  * @interval_msecs: minimum interval between prints
3014  *
3015  * printk_timed_ratelimit() returns true if more than @interval_msecs
3016  * milliseconds have elapsed since the last time printk_timed_ratelimit()
3017  * returned true.
3018  */
3019 bool printk_timed_ratelimit(unsigned long *caller_jiffies,
3020 			unsigned int interval_msecs)
3021 {
3022 	unsigned long elapsed = jiffies - *caller_jiffies;
3023 
3024 	if (*caller_jiffies && elapsed <= msecs_to_jiffies(interval_msecs))
3025 		return false;
3026 
3027 	*caller_jiffies = jiffies;
3028 	return true;
3029 }
3030 EXPORT_SYMBOL(printk_timed_ratelimit);
3031 
3032 static DEFINE_SPINLOCK(dump_list_lock);
3033 static LIST_HEAD(dump_list);
3034 
3035 /**
3036  * kmsg_dump_register - register a kernel log dumper.
3037  * @dumper: pointer to the kmsg_dumper structure
3038  *
3039  * Adds a kernel log dumper to the system. The dump callback in the
3040  * structure will be called when the kernel oopses or panics and must be
3041  * set. Returns zero on success and %-EINVAL or %-EBUSY otherwise.
3042  */
3043 int kmsg_dump_register(struct kmsg_dumper *dumper)
3044 {
3045 	unsigned long flags;
3046 	int err = -EBUSY;
3047 
3048 	/* The dump callback needs to be set */
3049 	if (!dumper->dump)
3050 		return -EINVAL;
3051 
3052 	spin_lock_irqsave(&dump_list_lock, flags);
3053 	/* Don't allow registering multiple times */
3054 	if (!dumper->registered) {
3055 		dumper->registered = 1;
3056 		list_add_tail_rcu(&dumper->list, &dump_list);
3057 		err = 0;
3058 	}
3059 	spin_unlock_irqrestore(&dump_list_lock, flags);
3060 
3061 	return err;
3062 }
3063 EXPORT_SYMBOL_GPL(kmsg_dump_register);
3064 
3065 /**
3066  * kmsg_dump_unregister - unregister a kmsg dumper.
3067  * @dumper: pointer to the kmsg_dumper structure
3068  *
3069  * Removes a dump device from the system. Returns zero on success and
3070  * %-EINVAL otherwise.
3071  */
3072 int kmsg_dump_unregister(struct kmsg_dumper *dumper)
3073 {
3074 	unsigned long flags;
3075 	int err = -EINVAL;
3076 
3077 	spin_lock_irqsave(&dump_list_lock, flags);
3078 	if (dumper->registered) {
3079 		dumper->registered = 0;
3080 		list_del_rcu(&dumper->list);
3081 		err = 0;
3082 	}
3083 	spin_unlock_irqrestore(&dump_list_lock, flags);
3084 	synchronize_rcu();
3085 
3086 	return err;
3087 }
3088 EXPORT_SYMBOL_GPL(kmsg_dump_unregister);
3089 
3090 static bool always_kmsg_dump;
3091 module_param_named(always_kmsg_dump, always_kmsg_dump, bool, S_IRUGO | S_IWUSR);
3092 
3093 /**
3094  * kmsg_dump - dump kernel log to kernel message dumpers.
3095  * @reason: the reason (oops, panic etc) for dumping
3096  *
3097  * Call each of the registered dumper's dump() callback, which can
3098  * retrieve the kmsg records with kmsg_dump_get_line() or
3099  * kmsg_dump_get_buffer().
3100  */
3101 void kmsg_dump(enum kmsg_dump_reason reason)
3102 {
3103 	struct kmsg_dumper *dumper;
3104 	unsigned long flags;
3105 
3106 	if ((reason > KMSG_DUMP_OOPS) && !always_kmsg_dump)
3107 		return;
3108 
3109 	rcu_read_lock();
3110 	list_for_each_entry_rcu(dumper, &dump_list, list) {
3111 		if (dumper->max_reason && reason > dumper->max_reason)
3112 			continue;
3113 
3114 		/* initialize iterator with data about the stored records */
3115 		dumper->active = true;
3116 
3117 		logbuf_lock_irqsave(flags);
3118 		dumper->cur_seq = clear_seq;
3119 		dumper->cur_idx = clear_idx;
3120 		dumper->next_seq = log_next_seq;
3121 		dumper->next_idx = log_next_idx;
3122 		logbuf_unlock_irqrestore(flags);
3123 
3124 		/* invoke dumper which will iterate over records */
3125 		dumper->dump(dumper, reason);
3126 
3127 		/* reset iterator */
3128 		dumper->active = false;
3129 	}
3130 	rcu_read_unlock();
3131 }
3132 
3133 /**
3134  * kmsg_dump_get_line_nolock - retrieve one kmsg log line (unlocked version)
3135  * @dumper: registered kmsg dumper
3136  * @syslog: include the "<4>" prefixes
3137  * @line: buffer to copy the line to
3138  * @size: maximum size of the buffer
3139  * @len: length of line placed into buffer
3140  *
3141  * Start at the beginning of the kmsg buffer, with the oldest kmsg
3142  * record, and copy one record into the provided buffer.
3143  *
3144  * Consecutive calls will return the next available record moving
3145  * towards the end of the buffer with the youngest messages.
3146  *
3147  * A return value of FALSE indicates that there are no more records to
3148  * read.
3149  *
3150  * The function is similar to kmsg_dump_get_line(), but grabs no locks.
3151  */
3152 bool kmsg_dump_get_line_nolock(struct kmsg_dumper *dumper, bool syslog,
3153 			       char *line, size_t size, size_t *len)
3154 {
3155 	struct printk_log *msg;
3156 	size_t l = 0;
3157 	bool ret = false;
3158 
3159 	if (!dumper->active)
3160 		goto out;
3161 
3162 	if (dumper->cur_seq < log_first_seq) {
3163 		/* messages are gone, move to first available one */
3164 		dumper->cur_seq = log_first_seq;
3165 		dumper->cur_idx = log_first_idx;
3166 	}
3167 
3168 	/* last entry */
3169 	if (dumper->cur_seq >= log_next_seq)
3170 		goto out;
3171 
3172 	msg = log_from_idx(dumper->cur_idx);
3173 	l = msg_print_text(msg, syslog, printk_time, line, size);
3174 
3175 	dumper->cur_idx = log_next(dumper->cur_idx);
3176 	dumper->cur_seq++;
3177 	ret = true;
3178 out:
3179 	if (len)
3180 		*len = l;
3181 	return ret;
3182 }
3183 
3184 /**
3185  * kmsg_dump_get_line - retrieve one kmsg log line
3186  * @dumper: registered kmsg dumper
3187  * @syslog: include the "<4>" prefixes
3188  * @line: buffer to copy the line to
3189  * @size: maximum size of the buffer
3190  * @len: length of line placed into buffer
3191  *
3192  * Start at the beginning of the kmsg buffer, with the oldest kmsg
3193  * record, and copy one record into the provided buffer.
3194  *
3195  * Consecutive calls will return the next available record moving
3196  * towards the end of the buffer with the youngest messages.
3197  *
3198  * A return value of FALSE indicates that there are no more records to
3199  * read.
3200  */
3201 bool kmsg_dump_get_line(struct kmsg_dumper *dumper, bool syslog,
3202 			char *line, size_t size, size_t *len)
3203 {
3204 	unsigned long flags;
3205 	bool ret;
3206 
3207 	logbuf_lock_irqsave(flags);
3208 	ret = kmsg_dump_get_line_nolock(dumper, syslog, line, size, len);
3209 	logbuf_unlock_irqrestore(flags);
3210 
3211 	return ret;
3212 }
3213 EXPORT_SYMBOL_GPL(kmsg_dump_get_line);
3214 
3215 /**
3216  * kmsg_dump_get_buffer - copy kmsg log lines
3217  * @dumper: registered kmsg dumper
3218  * @syslog: include the "<4>" prefixes
3219  * @buf: buffer to copy the line to
3220  * @size: maximum size of the buffer
3221  * @len: length of line placed into buffer
3222  *
3223  * Start at the end of the kmsg buffer and fill the provided buffer
3224  * with as many of the the *youngest* kmsg records that fit into it.
3225  * If the buffer is large enough, all available kmsg records will be
3226  * copied with a single call.
3227  *
3228  * Consecutive calls will fill the buffer with the next block of
3229  * available older records, not including the earlier retrieved ones.
3230  *
3231  * A return value of FALSE indicates that there are no more records to
3232  * read.
3233  */
3234 bool kmsg_dump_get_buffer(struct kmsg_dumper *dumper, bool syslog,
3235 			  char *buf, size_t size, size_t *len)
3236 {
3237 	unsigned long flags;
3238 	u64 seq;
3239 	u32 idx;
3240 	u64 next_seq;
3241 	u32 next_idx;
3242 	size_t l = 0;
3243 	bool ret = false;
3244 	bool time = printk_time;
3245 
3246 	if (!dumper->active)
3247 		goto out;
3248 
3249 	logbuf_lock_irqsave(flags);
3250 	if (dumper->cur_seq < log_first_seq) {
3251 		/* messages are gone, move to first available one */
3252 		dumper->cur_seq = log_first_seq;
3253 		dumper->cur_idx = log_first_idx;
3254 	}
3255 
3256 	/* last entry */
3257 	if (dumper->cur_seq >= dumper->next_seq) {
3258 		logbuf_unlock_irqrestore(flags);
3259 		goto out;
3260 	}
3261 
3262 	/* calculate length of entire buffer */
3263 	seq = dumper->cur_seq;
3264 	idx = dumper->cur_idx;
3265 	while (seq < dumper->next_seq) {
3266 		struct printk_log *msg = log_from_idx(idx);
3267 
3268 		l += msg_print_text(msg, true, time, NULL, 0);
3269 		idx = log_next(idx);
3270 		seq++;
3271 	}
3272 
3273 	/* move first record forward until length fits into the buffer */
3274 	seq = dumper->cur_seq;
3275 	idx = dumper->cur_idx;
3276 	while (l > size && seq < dumper->next_seq) {
3277 		struct printk_log *msg = log_from_idx(idx);
3278 
3279 		l -= msg_print_text(msg, true, time, NULL, 0);
3280 		idx = log_next(idx);
3281 		seq++;
3282 	}
3283 
3284 	/* last message in next interation */
3285 	next_seq = seq;
3286 	next_idx = idx;
3287 
3288 	l = 0;
3289 	while (seq < dumper->next_seq) {
3290 		struct printk_log *msg = log_from_idx(idx);
3291 
3292 		l += msg_print_text(msg, syslog, time, buf + l, size - l);
3293 		idx = log_next(idx);
3294 		seq++;
3295 	}
3296 
3297 	dumper->next_seq = next_seq;
3298 	dumper->next_idx = next_idx;
3299 	ret = true;
3300 	logbuf_unlock_irqrestore(flags);
3301 out:
3302 	if (len)
3303 		*len = l;
3304 	return ret;
3305 }
3306 EXPORT_SYMBOL_GPL(kmsg_dump_get_buffer);
3307 
3308 /**
3309  * kmsg_dump_rewind_nolock - reset the interator (unlocked version)
3310  * @dumper: registered kmsg dumper
3311  *
3312  * Reset the dumper's iterator so that kmsg_dump_get_line() and
3313  * kmsg_dump_get_buffer() can be called again and used multiple
3314  * times within the same dumper.dump() callback.
3315  *
3316  * The function is similar to kmsg_dump_rewind(), but grabs no locks.
3317  */
3318 void kmsg_dump_rewind_nolock(struct kmsg_dumper *dumper)
3319 {
3320 	dumper->cur_seq = clear_seq;
3321 	dumper->cur_idx = clear_idx;
3322 	dumper->next_seq = log_next_seq;
3323 	dumper->next_idx = log_next_idx;
3324 }
3325 
3326 /**
3327  * kmsg_dump_rewind - reset the interator
3328  * @dumper: registered kmsg dumper
3329  *
3330  * Reset the dumper's iterator so that kmsg_dump_get_line() and
3331  * kmsg_dump_get_buffer() can be called again and used multiple
3332  * times within the same dumper.dump() callback.
3333  */
3334 void kmsg_dump_rewind(struct kmsg_dumper *dumper)
3335 {
3336 	unsigned long flags;
3337 
3338 	logbuf_lock_irqsave(flags);
3339 	kmsg_dump_rewind_nolock(dumper);
3340 	logbuf_unlock_irqrestore(flags);
3341 }
3342 EXPORT_SYMBOL_GPL(kmsg_dump_rewind);
3343 
3344 #endif
3345