xref: /openbmc/linux/kernel/printk/printk.c (revision d21077fb)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/printk.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  *
7  * Modified to make sys_syslog() more flexible: added commands to
8  * return the last 4k of kernel messages, regardless of whether
9  * they've been read or not.  Added option to suppress kernel printk's
10  * to the console.  Added hook for sending the console messages
11  * elsewhere, in preparation for a serial line console (someday).
12  * Ted Ts'o, 2/11/93.
13  * Modified for sysctl support, 1/8/97, Chris Horn.
14  * Fixed SMP synchronization, 08/08/99, Manfred Spraul
15  *     manfred@colorfullife.com
16  * Rewrote bits to get rid of console_lock
17  *	01Mar01 Andrew Morton
18  */
19 
20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
21 
22 #include <linux/kernel.h>
23 #include <linux/mm.h>
24 #include <linux/tty.h>
25 #include <linux/tty_driver.h>
26 #include <linux/console.h>
27 #include <linux/init.h>
28 #include <linux/jiffies.h>
29 #include <linux/nmi.h>
30 #include <linux/module.h>
31 #include <linux/moduleparam.h>
32 #include <linux/delay.h>
33 #include <linux/smp.h>
34 #include <linux/security.h>
35 #include <linux/memblock.h>
36 #include <linux/syscalls.h>
37 #include <linux/crash_core.h>
38 #include <linux/ratelimit.h>
39 #include <linux/kmsg_dump.h>
40 #include <linux/syslog.h>
41 #include <linux/cpu.h>
42 #include <linux/rculist.h>
43 #include <linux/poll.h>
44 #include <linux/irq_work.h>
45 #include <linux/ctype.h>
46 #include <linux/uio.h>
47 #include <linux/sched/clock.h>
48 #include <linux/sched/debug.h>
49 #include <linux/sched/task_stack.h>
50 
51 #include <linux/uaccess.h>
52 #include <asm/sections.h>
53 
54 #include <trace/events/initcall.h>
55 #define CREATE_TRACE_POINTS
56 #include <trace/events/printk.h>
57 
58 #include "printk_ringbuffer.h"
59 #include "console_cmdline.h"
60 #include "braille.h"
61 #include "internal.h"
62 
63 int console_printk[4] = {
64 	CONSOLE_LOGLEVEL_DEFAULT,	/* console_loglevel */
65 	MESSAGE_LOGLEVEL_DEFAULT,	/* default_message_loglevel */
66 	CONSOLE_LOGLEVEL_MIN,		/* minimum_console_loglevel */
67 	CONSOLE_LOGLEVEL_DEFAULT,	/* default_console_loglevel */
68 };
69 EXPORT_SYMBOL_GPL(console_printk);
70 
71 atomic_t ignore_console_lock_warning __read_mostly = ATOMIC_INIT(0);
72 EXPORT_SYMBOL(ignore_console_lock_warning);
73 
74 EXPORT_TRACEPOINT_SYMBOL_GPL(console);
75 
76 /*
77  * Low level drivers may need that to know if they can schedule in
78  * their unblank() callback or not. So let's export it.
79  */
80 int oops_in_progress;
81 EXPORT_SYMBOL(oops_in_progress);
82 
83 /*
84  * console_mutex protects console_list updates and console->flags updates.
85  * The flags are synchronized only for consoles that are registered, i.e.
86  * accessible via the console list.
87  */
88 static DEFINE_MUTEX(console_mutex);
89 
90 /*
91  * console_sem protects updates to console->seq and console_suspended,
92  * and also provides serialization for console printing.
93  */
94 static DEFINE_SEMAPHORE(console_sem);
95 HLIST_HEAD(console_list);
96 EXPORT_SYMBOL_GPL(console_list);
97 DEFINE_STATIC_SRCU(console_srcu);
98 
99 /*
100  * System may need to suppress printk message under certain
101  * circumstances, like after kernel panic happens.
102  */
103 int __read_mostly suppress_printk;
104 
105 /*
106  * During panic, heavy printk by other CPUs can delay the
107  * panic and risk deadlock on console resources.
108  */
109 static int __read_mostly suppress_panic_printk;
110 
111 #ifdef CONFIG_LOCKDEP
112 static struct lockdep_map console_lock_dep_map = {
113 	.name = "console_lock"
114 };
115 
116 void lockdep_assert_console_list_lock_held(void)
117 {
118 	lockdep_assert_held(&console_mutex);
119 }
120 EXPORT_SYMBOL(lockdep_assert_console_list_lock_held);
121 #endif
122 
123 #ifdef CONFIG_DEBUG_LOCK_ALLOC
124 bool console_srcu_read_lock_is_held(void)
125 {
126 	return srcu_read_lock_held(&console_srcu);
127 }
128 EXPORT_SYMBOL(console_srcu_read_lock_is_held);
129 #endif
130 
131 enum devkmsg_log_bits {
132 	__DEVKMSG_LOG_BIT_ON = 0,
133 	__DEVKMSG_LOG_BIT_OFF,
134 	__DEVKMSG_LOG_BIT_LOCK,
135 };
136 
137 enum devkmsg_log_masks {
138 	DEVKMSG_LOG_MASK_ON             = BIT(__DEVKMSG_LOG_BIT_ON),
139 	DEVKMSG_LOG_MASK_OFF            = BIT(__DEVKMSG_LOG_BIT_OFF),
140 	DEVKMSG_LOG_MASK_LOCK           = BIT(__DEVKMSG_LOG_BIT_LOCK),
141 };
142 
143 /* Keep both the 'on' and 'off' bits clear, i.e. ratelimit by default: */
144 #define DEVKMSG_LOG_MASK_DEFAULT	0
145 
146 static unsigned int __read_mostly devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT;
147 
148 static int __control_devkmsg(char *str)
149 {
150 	size_t len;
151 
152 	if (!str)
153 		return -EINVAL;
154 
155 	len = str_has_prefix(str, "on");
156 	if (len) {
157 		devkmsg_log = DEVKMSG_LOG_MASK_ON;
158 		return len;
159 	}
160 
161 	len = str_has_prefix(str, "off");
162 	if (len) {
163 		devkmsg_log = DEVKMSG_LOG_MASK_OFF;
164 		return len;
165 	}
166 
167 	len = str_has_prefix(str, "ratelimit");
168 	if (len) {
169 		devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT;
170 		return len;
171 	}
172 
173 	return -EINVAL;
174 }
175 
176 static int __init control_devkmsg(char *str)
177 {
178 	if (__control_devkmsg(str) < 0) {
179 		pr_warn("printk.devkmsg: bad option string '%s'\n", str);
180 		return 1;
181 	}
182 
183 	/*
184 	 * Set sysctl string accordingly:
185 	 */
186 	if (devkmsg_log == DEVKMSG_LOG_MASK_ON)
187 		strcpy(devkmsg_log_str, "on");
188 	else if (devkmsg_log == DEVKMSG_LOG_MASK_OFF)
189 		strcpy(devkmsg_log_str, "off");
190 	/* else "ratelimit" which is set by default. */
191 
192 	/*
193 	 * Sysctl cannot change it anymore. The kernel command line setting of
194 	 * this parameter is to force the setting to be permanent throughout the
195 	 * runtime of the system. This is a precation measure against userspace
196 	 * trying to be a smarta** and attempting to change it up on us.
197 	 */
198 	devkmsg_log |= DEVKMSG_LOG_MASK_LOCK;
199 
200 	return 1;
201 }
202 __setup("printk.devkmsg=", control_devkmsg);
203 
204 char devkmsg_log_str[DEVKMSG_STR_MAX_SIZE] = "ratelimit";
205 #if defined(CONFIG_PRINTK) && defined(CONFIG_SYSCTL)
206 int devkmsg_sysctl_set_loglvl(struct ctl_table *table, int write,
207 			      void *buffer, size_t *lenp, loff_t *ppos)
208 {
209 	char old_str[DEVKMSG_STR_MAX_SIZE];
210 	unsigned int old;
211 	int err;
212 
213 	if (write) {
214 		if (devkmsg_log & DEVKMSG_LOG_MASK_LOCK)
215 			return -EINVAL;
216 
217 		old = devkmsg_log;
218 		strncpy(old_str, devkmsg_log_str, DEVKMSG_STR_MAX_SIZE);
219 	}
220 
221 	err = proc_dostring(table, write, buffer, lenp, ppos);
222 	if (err)
223 		return err;
224 
225 	if (write) {
226 		err = __control_devkmsg(devkmsg_log_str);
227 
228 		/*
229 		 * Do not accept an unknown string OR a known string with
230 		 * trailing crap...
231 		 */
232 		if (err < 0 || (err + 1 != *lenp)) {
233 
234 			/* ... and restore old setting. */
235 			devkmsg_log = old;
236 			strncpy(devkmsg_log_str, old_str, DEVKMSG_STR_MAX_SIZE);
237 
238 			return -EINVAL;
239 		}
240 	}
241 
242 	return 0;
243 }
244 #endif /* CONFIG_PRINTK && CONFIG_SYSCTL */
245 
246 /**
247  * console_list_lock - Lock the console list
248  *
249  * For console list or console->flags updates
250  */
251 void console_list_lock(void)
252 {
253 	/*
254 	 * In unregister_console() and console_force_preferred_locked(),
255 	 * synchronize_srcu() is called with the console_list_lock held.
256 	 * Therefore it is not allowed that the console_list_lock is taken
257 	 * with the srcu_lock held.
258 	 *
259 	 * Detecting if this context is really in the read-side critical
260 	 * section is only possible if the appropriate debug options are
261 	 * enabled.
262 	 */
263 	WARN_ON_ONCE(debug_lockdep_rcu_enabled() &&
264 		     srcu_read_lock_held(&console_srcu));
265 
266 	mutex_lock(&console_mutex);
267 }
268 EXPORT_SYMBOL(console_list_lock);
269 
270 /**
271  * console_list_unlock - Unlock the console list
272  *
273  * Counterpart to console_list_lock()
274  */
275 void console_list_unlock(void)
276 {
277 	mutex_unlock(&console_mutex);
278 }
279 EXPORT_SYMBOL(console_list_unlock);
280 
281 /**
282  * console_srcu_read_lock - Register a new reader for the
283  *	SRCU-protected console list
284  *
285  * Use for_each_console_srcu() to iterate the console list
286  *
287  * Context: Any context.
288  * Return: A cookie to pass to console_srcu_read_unlock().
289  */
290 int console_srcu_read_lock(void)
291 {
292 	return srcu_read_lock_nmisafe(&console_srcu);
293 }
294 EXPORT_SYMBOL(console_srcu_read_lock);
295 
296 /**
297  * console_srcu_read_unlock - Unregister an old reader from
298  *	the SRCU-protected console list
299  * @cookie: cookie returned from console_srcu_read_lock()
300  *
301  * Counterpart to console_srcu_read_lock()
302  */
303 void console_srcu_read_unlock(int cookie)
304 {
305 	srcu_read_unlock_nmisafe(&console_srcu, cookie);
306 }
307 EXPORT_SYMBOL(console_srcu_read_unlock);
308 
309 /*
310  * Helper macros to handle lockdep when locking/unlocking console_sem. We use
311  * macros instead of functions so that _RET_IP_ contains useful information.
312  */
313 #define down_console_sem() do { \
314 	down(&console_sem);\
315 	mutex_acquire(&console_lock_dep_map, 0, 0, _RET_IP_);\
316 } while (0)
317 
318 static int __down_trylock_console_sem(unsigned long ip)
319 {
320 	int lock_failed;
321 	unsigned long flags;
322 
323 	/*
324 	 * Here and in __up_console_sem() we need to be in safe mode,
325 	 * because spindump/WARN/etc from under console ->lock will
326 	 * deadlock in printk()->down_trylock_console_sem() otherwise.
327 	 */
328 	printk_safe_enter_irqsave(flags);
329 	lock_failed = down_trylock(&console_sem);
330 	printk_safe_exit_irqrestore(flags);
331 
332 	if (lock_failed)
333 		return 1;
334 	mutex_acquire(&console_lock_dep_map, 0, 1, ip);
335 	return 0;
336 }
337 #define down_trylock_console_sem() __down_trylock_console_sem(_RET_IP_)
338 
339 static void __up_console_sem(unsigned long ip)
340 {
341 	unsigned long flags;
342 
343 	mutex_release(&console_lock_dep_map, ip);
344 
345 	printk_safe_enter_irqsave(flags);
346 	up(&console_sem);
347 	printk_safe_exit_irqrestore(flags);
348 }
349 #define up_console_sem() __up_console_sem(_RET_IP_)
350 
351 static bool panic_in_progress(void)
352 {
353 	return unlikely(atomic_read(&panic_cpu) != PANIC_CPU_INVALID);
354 }
355 
356 /*
357  * This is used for debugging the mess that is the VT code by
358  * keeping track if we have the console semaphore held. It's
359  * definitely not the perfect debug tool (we don't know if _WE_
360  * hold it and are racing, but it helps tracking those weird code
361  * paths in the console code where we end up in places I want
362  * locked without the console semaphore held).
363  */
364 static int console_locked, console_suspended;
365 
366 /*
367  *	Array of consoles built from command line options (console=)
368  */
369 
370 #define MAX_CMDLINECONSOLES 8
371 
372 static struct console_cmdline console_cmdline[MAX_CMDLINECONSOLES];
373 
374 static int preferred_console = -1;
375 int console_set_on_cmdline;
376 EXPORT_SYMBOL(console_set_on_cmdline);
377 
378 /* Flag: console code may call schedule() */
379 static int console_may_schedule;
380 
381 enum con_msg_format_flags {
382 	MSG_FORMAT_DEFAULT	= 0,
383 	MSG_FORMAT_SYSLOG	= (1 << 0),
384 };
385 
386 static int console_msg_format = MSG_FORMAT_DEFAULT;
387 
388 /*
389  * The printk log buffer consists of a sequenced collection of records, each
390  * containing variable length message text. Every record also contains its
391  * own meta-data (@info).
392  *
393  * Every record meta-data carries the timestamp in microseconds, as well as
394  * the standard userspace syslog level and syslog facility. The usual kernel
395  * messages use LOG_KERN; userspace-injected messages always carry a matching
396  * syslog facility, by default LOG_USER. The origin of every message can be
397  * reliably determined that way.
398  *
399  * The human readable log message of a record is available in @text, the
400  * length of the message text in @text_len. The stored message is not
401  * terminated.
402  *
403  * Optionally, a record can carry a dictionary of properties (key/value
404  * pairs), to provide userspace with a machine-readable message context.
405  *
406  * Examples for well-defined, commonly used property names are:
407  *   DEVICE=b12:8               device identifier
408  *                                b12:8         block dev_t
409  *                                c127:3        char dev_t
410  *                                n8            netdev ifindex
411  *                                +sound:card0  subsystem:devname
412  *   SUBSYSTEM=pci              driver-core subsystem name
413  *
414  * Valid characters in property names are [a-zA-Z0-9.-_]. Property names
415  * and values are terminated by a '\0' character.
416  *
417  * Example of record values:
418  *   record.text_buf                = "it's a line" (unterminated)
419  *   record.info.seq                = 56
420  *   record.info.ts_nsec            = 36863
421  *   record.info.text_len           = 11
422  *   record.info.facility           = 0 (LOG_KERN)
423  *   record.info.flags              = 0
424  *   record.info.level              = 3 (LOG_ERR)
425  *   record.info.caller_id          = 299 (task 299)
426  *   record.info.dev_info.subsystem = "pci" (terminated)
427  *   record.info.dev_info.device    = "+pci:0000:00:01.0" (terminated)
428  *
429  * The 'struct printk_info' buffer must never be directly exported to
430  * userspace, it is a kernel-private implementation detail that might
431  * need to be changed in the future, when the requirements change.
432  *
433  * /dev/kmsg exports the structured data in the following line format:
434  *   "<level>,<sequnum>,<timestamp>,<contflag>[,additional_values, ... ];<message text>\n"
435  *
436  * Users of the export format should ignore possible additional values
437  * separated by ',', and find the message after the ';' character.
438  *
439  * The optional key/value pairs are attached as continuation lines starting
440  * with a space character and terminated by a newline. All possible
441  * non-prinatable characters are escaped in the "\xff" notation.
442  */
443 
444 /* syslog_lock protects syslog_* variables and write access to clear_seq. */
445 static DEFINE_MUTEX(syslog_lock);
446 
447 #ifdef CONFIG_PRINTK
448 DECLARE_WAIT_QUEUE_HEAD(log_wait);
449 /* All 3 protected by @syslog_lock. */
450 /* the next printk record to read by syslog(READ) or /proc/kmsg */
451 static u64 syslog_seq;
452 static size_t syslog_partial;
453 static bool syslog_time;
454 
455 struct latched_seq {
456 	seqcount_latch_t	latch;
457 	u64			val[2];
458 };
459 
460 /*
461  * The next printk record to read after the last 'clear' command. There are
462  * two copies (updated with seqcount_latch) so that reads can locklessly
463  * access a valid value. Writers are synchronized by @syslog_lock.
464  */
465 static struct latched_seq clear_seq = {
466 	.latch		= SEQCNT_LATCH_ZERO(clear_seq.latch),
467 	.val[0]		= 0,
468 	.val[1]		= 0,
469 };
470 
471 #define LOG_LEVEL(v)		((v) & 0x07)
472 #define LOG_FACILITY(v)		((v) >> 3 & 0xff)
473 
474 /* record buffer */
475 #define LOG_ALIGN __alignof__(unsigned long)
476 #define __LOG_BUF_LEN (1 << CONFIG_LOG_BUF_SHIFT)
477 #define LOG_BUF_LEN_MAX (u32)(1 << 31)
478 static char __log_buf[__LOG_BUF_LEN] __aligned(LOG_ALIGN);
479 static char *log_buf = __log_buf;
480 static u32 log_buf_len = __LOG_BUF_LEN;
481 
482 /*
483  * Define the average message size. This only affects the number of
484  * descriptors that will be available. Underestimating is better than
485  * overestimating (too many available descriptors is better than not enough).
486  */
487 #define PRB_AVGBITS 5	/* 32 character average length */
488 
489 #if CONFIG_LOG_BUF_SHIFT <= PRB_AVGBITS
490 #error CONFIG_LOG_BUF_SHIFT value too small.
491 #endif
492 _DEFINE_PRINTKRB(printk_rb_static, CONFIG_LOG_BUF_SHIFT - PRB_AVGBITS,
493 		 PRB_AVGBITS, &__log_buf[0]);
494 
495 static struct printk_ringbuffer printk_rb_dynamic;
496 
497 static struct printk_ringbuffer *prb = &printk_rb_static;
498 
499 /*
500  * We cannot access per-CPU data (e.g. per-CPU flush irq_work) before
501  * per_cpu_areas are initialised. This variable is set to true when
502  * it's safe to access per-CPU data.
503  */
504 static bool __printk_percpu_data_ready __ro_after_init;
505 
506 bool printk_percpu_data_ready(void)
507 {
508 	return __printk_percpu_data_ready;
509 }
510 
511 /* Must be called under syslog_lock. */
512 static void latched_seq_write(struct latched_seq *ls, u64 val)
513 {
514 	raw_write_seqcount_latch(&ls->latch);
515 	ls->val[0] = val;
516 	raw_write_seqcount_latch(&ls->latch);
517 	ls->val[1] = val;
518 }
519 
520 /* Can be called from any context. */
521 static u64 latched_seq_read_nolock(struct latched_seq *ls)
522 {
523 	unsigned int seq;
524 	unsigned int idx;
525 	u64 val;
526 
527 	do {
528 		seq = raw_read_seqcount_latch(&ls->latch);
529 		idx = seq & 0x1;
530 		val = ls->val[idx];
531 	} while (read_seqcount_latch_retry(&ls->latch, seq));
532 
533 	return val;
534 }
535 
536 /* Return log buffer address */
537 char *log_buf_addr_get(void)
538 {
539 	return log_buf;
540 }
541 
542 /* Return log buffer size */
543 u32 log_buf_len_get(void)
544 {
545 	return log_buf_len;
546 }
547 
548 /*
549  * Define how much of the log buffer we could take at maximum. The value
550  * must be greater than two. Note that only half of the buffer is available
551  * when the index points to the middle.
552  */
553 #define MAX_LOG_TAKE_PART 4
554 static const char trunc_msg[] = "<truncated>";
555 
556 static void truncate_msg(u16 *text_len, u16 *trunc_msg_len)
557 {
558 	/*
559 	 * The message should not take the whole buffer. Otherwise, it might
560 	 * get removed too soon.
561 	 */
562 	u32 max_text_len = log_buf_len / MAX_LOG_TAKE_PART;
563 
564 	if (*text_len > max_text_len)
565 		*text_len = max_text_len;
566 
567 	/* enable the warning message (if there is room) */
568 	*trunc_msg_len = strlen(trunc_msg);
569 	if (*text_len >= *trunc_msg_len)
570 		*text_len -= *trunc_msg_len;
571 	else
572 		*trunc_msg_len = 0;
573 }
574 
575 int dmesg_restrict = IS_ENABLED(CONFIG_SECURITY_DMESG_RESTRICT);
576 
577 static int syslog_action_restricted(int type)
578 {
579 	if (dmesg_restrict)
580 		return 1;
581 	/*
582 	 * Unless restricted, we allow "read all" and "get buffer size"
583 	 * for everybody.
584 	 */
585 	return type != SYSLOG_ACTION_READ_ALL &&
586 	       type != SYSLOG_ACTION_SIZE_BUFFER;
587 }
588 
589 static int check_syslog_permissions(int type, int source)
590 {
591 	/*
592 	 * If this is from /proc/kmsg and we've already opened it, then we've
593 	 * already done the capabilities checks at open time.
594 	 */
595 	if (source == SYSLOG_FROM_PROC && type != SYSLOG_ACTION_OPEN)
596 		goto ok;
597 
598 	if (syslog_action_restricted(type)) {
599 		if (capable(CAP_SYSLOG))
600 			goto ok;
601 		/*
602 		 * For historical reasons, accept CAP_SYS_ADMIN too, with
603 		 * a warning.
604 		 */
605 		if (capable(CAP_SYS_ADMIN)) {
606 			pr_warn_once("%s (%d): Attempt to access syslog with "
607 				     "CAP_SYS_ADMIN but no CAP_SYSLOG "
608 				     "(deprecated).\n",
609 				 current->comm, task_pid_nr(current));
610 			goto ok;
611 		}
612 		return -EPERM;
613 	}
614 ok:
615 	return security_syslog(type);
616 }
617 
618 static void append_char(char **pp, char *e, char c)
619 {
620 	if (*pp < e)
621 		*(*pp)++ = c;
622 }
623 
624 static ssize_t info_print_ext_header(char *buf, size_t size,
625 				     struct printk_info *info)
626 {
627 	u64 ts_usec = info->ts_nsec;
628 	char caller[20];
629 #ifdef CONFIG_PRINTK_CALLER
630 	u32 id = info->caller_id;
631 
632 	snprintf(caller, sizeof(caller), ",caller=%c%u",
633 		 id & 0x80000000 ? 'C' : 'T', id & ~0x80000000);
634 #else
635 	caller[0] = '\0';
636 #endif
637 
638 	do_div(ts_usec, 1000);
639 
640 	return scnprintf(buf, size, "%u,%llu,%llu,%c%s;",
641 			 (info->facility << 3) | info->level, info->seq,
642 			 ts_usec, info->flags & LOG_CONT ? 'c' : '-', caller);
643 }
644 
645 static ssize_t msg_add_ext_text(char *buf, size_t size,
646 				const char *text, size_t text_len,
647 				unsigned char endc)
648 {
649 	char *p = buf, *e = buf + size;
650 	size_t i;
651 
652 	/* escape non-printable characters */
653 	for (i = 0; i < text_len; i++) {
654 		unsigned char c = text[i];
655 
656 		if (c < ' ' || c >= 127 || c == '\\')
657 			p += scnprintf(p, e - p, "\\x%02x", c);
658 		else
659 			append_char(&p, e, c);
660 	}
661 	append_char(&p, e, endc);
662 
663 	return p - buf;
664 }
665 
666 static ssize_t msg_add_dict_text(char *buf, size_t size,
667 				 const char *key, const char *val)
668 {
669 	size_t val_len = strlen(val);
670 	ssize_t len;
671 
672 	if (!val_len)
673 		return 0;
674 
675 	len = msg_add_ext_text(buf, size, "", 0, ' ');	/* dict prefix */
676 	len += msg_add_ext_text(buf + len, size - len, key, strlen(key), '=');
677 	len += msg_add_ext_text(buf + len, size - len, val, val_len, '\n');
678 
679 	return len;
680 }
681 
682 static ssize_t msg_print_ext_body(char *buf, size_t size,
683 				  char *text, size_t text_len,
684 				  struct dev_printk_info *dev_info)
685 {
686 	ssize_t len;
687 
688 	len = msg_add_ext_text(buf, size, text, text_len, '\n');
689 
690 	if (!dev_info)
691 		goto out;
692 
693 	len += msg_add_dict_text(buf + len, size - len, "SUBSYSTEM",
694 				 dev_info->subsystem);
695 	len += msg_add_dict_text(buf + len, size - len, "DEVICE",
696 				 dev_info->device);
697 out:
698 	return len;
699 }
700 
701 static bool printk_get_next_message(struct printk_message *pmsg, u64 seq,
702 				    bool is_extended, bool may_supress);
703 
704 /* /dev/kmsg - userspace message inject/listen interface */
705 struct devkmsg_user {
706 	atomic64_t seq;
707 	struct ratelimit_state rs;
708 	struct mutex lock;
709 	struct printk_buffers pbufs;
710 };
711 
712 static __printf(3, 4) __cold
713 int devkmsg_emit(int facility, int level, const char *fmt, ...)
714 {
715 	va_list args;
716 	int r;
717 
718 	va_start(args, fmt);
719 	r = vprintk_emit(facility, level, NULL, fmt, args);
720 	va_end(args);
721 
722 	return r;
723 }
724 
725 static ssize_t devkmsg_write(struct kiocb *iocb, struct iov_iter *from)
726 {
727 	char *buf, *line;
728 	int level = default_message_loglevel;
729 	int facility = 1;	/* LOG_USER */
730 	struct file *file = iocb->ki_filp;
731 	struct devkmsg_user *user = file->private_data;
732 	size_t len = iov_iter_count(from);
733 	ssize_t ret = len;
734 
735 	if (!user || len > PRINTKRB_RECORD_MAX)
736 		return -EINVAL;
737 
738 	/* Ignore when user logging is disabled. */
739 	if (devkmsg_log & DEVKMSG_LOG_MASK_OFF)
740 		return len;
741 
742 	/* Ratelimit when not explicitly enabled. */
743 	if (!(devkmsg_log & DEVKMSG_LOG_MASK_ON)) {
744 		if (!___ratelimit(&user->rs, current->comm))
745 			return ret;
746 	}
747 
748 	buf = kmalloc(len+1, GFP_KERNEL);
749 	if (buf == NULL)
750 		return -ENOMEM;
751 
752 	buf[len] = '\0';
753 	if (!copy_from_iter_full(buf, len, from)) {
754 		kfree(buf);
755 		return -EFAULT;
756 	}
757 
758 	/*
759 	 * Extract and skip the syslog prefix <[0-9]*>. Coming from userspace
760 	 * the decimal value represents 32bit, the lower 3 bit are the log
761 	 * level, the rest are the log facility.
762 	 *
763 	 * If no prefix or no userspace facility is specified, we
764 	 * enforce LOG_USER, to be able to reliably distinguish
765 	 * kernel-generated messages from userspace-injected ones.
766 	 */
767 	line = buf;
768 	if (line[0] == '<') {
769 		char *endp = NULL;
770 		unsigned int u;
771 
772 		u = simple_strtoul(line + 1, &endp, 10);
773 		if (endp && endp[0] == '>') {
774 			level = LOG_LEVEL(u);
775 			if (LOG_FACILITY(u) != 0)
776 				facility = LOG_FACILITY(u);
777 			endp++;
778 			line = endp;
779 		}
780 	}
781 
782 	devkmsg_emit(facility, level, "%s", line);
783 	kfree(buf);
784 	return ret;
785 }
786 
787 static ssize_t devkmsg_read(struct file *file, char __user *buf,
788 			    size_t count, loff_t *ppos)
789 {
790 	struct devkmsg_user *user = file->private_data;
791 	char *outbuf = &user->pbufs.outbuf[0];
792 	struct printk_message pmsg = {
793 		.pbufs = &user->pbufs,
794 	};
795 	ssize_t ret;
796 
797 	if (!user)
798 		return -EBADF;
799 
800 	ret = mutex_lock_interruptible(&user->lock);
801 	if (ret)
802 		return ret;
803 
804 	if (!printk_get_next_message(&pmsg, atomic64_read(&user->seq), true, false)) {
805 		if (file->f_flags & O_NONBLOCK) {
806 			ret = -EAGAIN;
807 			goto out;
808 		}
809 
810 		/*
811 		 * Guarantee this task is visible on the waitqueue before
812 		 * checking the wake condition.
813 		 *
814 		 * The full memory barrier within set_current_state() of
815 		 * prepare_to_wait_event() pairs with the full memory barrier
816 		 * within wq_has_sleeper().
817 		 *
818 		 * This pairs with __wake_up_klogd:A.
819 		 */
820 		ret = wait_event_interruptible(log_wait,
821 				printk_get_next_message(&pmsg, atomic64_read(&user->seq), true,
822 							false)); /* LMM(devkmsg_read:A) */
823 		if (ret)
824 			goto out;
825 	}
826 
827 	if (pmsg.dropped) {
828 		/* our last seen message is gone, return error and reset */
829 		atomic64_set(&user->seq, pmsg.seq);
830 		ret = -EPIPE;
831 		goto out;
832 	}
833 
834 	atomic64_set(&user->seq, pmsg.seq + 1);
835 
836 	if (pmsg.outbuf_len > count) {
837 		ret = -EINVAL;
838 		goto out;
839 	}
840 
841 	if (copy_to_user(buf, outbuf, pmsg.outbuf_len)) {
842 		ret = -EFAULT;
843 		goto out;
844 	}
845 	ret = pmsg.outbuf_len;
846 out:
847 	mutex_unlock(&user->lock);
848 	return ret;
849 }
850 
851 /*
852  * Be careful when modifying this function!!!
853  *
854  * Only few operations are supported because the device works only with the
855  * entire variable length messages (records). Non-standard values are
856  * returned in the other cases and has been this way for quite some time.
857  * User space applications might depend on this behavior.
858  */
859 static loff_t devkmsg_llseek(struct file *file, loff_t offset, int whence)
860 {
861 	struct devkmsg_user *user = file->private_data;
862 	loff_t ret = 0;
863 
864 	if (!user)
865 		return -EBADF;
866 	if (offset)
867 		return -ESPIPE;
868 
869 	switch (whence) {
870 	case SEEK_SET:
871 		/* the first record */
872 		atomic64_set(&user->seq, prb_first_valid_seq(prb));
873 		break;
874 	case SEEK_DATA:
875 		/*
876 		 * The first record after the last SYSLOG_ACTION_CLEAR,
877 		 * like issued by 'dmesg -c'. Reading /dev/kmsg itself
878 		 * changes no global state, and does not clear anything.
879 		 */
880 		atomic64_set(&user->seq, latched_seq_read_nolock(&clear_seq));
881 		break;
882 	case SEEK_END:
883 		/* after the last record */
884 		atomic64_set(&user->seq, prb_next_seq(prb));
885 		break;
886 	default:
887 		ret = -EINVAL;
888 	}
889 	return ret;
890 }
891 
892 static __poll_t devkmsg_poll(struct file *file, poll_table *wait)
893 {
894 	struct devkmsg_user *user = file->private_data;
895 	struct printk_info info;
896 	__poll_t ret = 0;
897 
898 	if (!user)
899 		return EPOLLERR|EPOLLNVAL;
900 
901 	poll_wait(file, &log_wait, wait);
902 
903 	if (prb_read_valid_info(prb, atomic64_read(&user->seq), &info, NULL)) {
904 		/* return error when data has vanished underneath us */
905 		if (info.seq != atomic64_read(&user->seq))
906 			ret = EPOLLIN|EPOLLRDNORM|EPOLLERR|EPOLLPRI;
907 		else
908 			ret = EPOLLIN|EPOLLRDNORM;
909 	}
910 
911 	return ret;
912 }
913 
914 static int devkmsg_open(struct inode *inode, struct file *file)
915 {
916 	struct devkmsg_user *user;
917 	int err;
918 
919 	if (devkmsg_log & DEVKMSG_LOG_MASK_OFF)
920 		return -EPERM;
921 
922 	/* write-only does not need any file context */
923 	if ((file->f_flags & O_ACCMODE) != O_WRONLY) {
924 		err = check_syslog_permissions(SYSLOG_ACTION_READ_ALL,
925 					       SYSLOG_FROM_READER);
926 		if (err)
927 			return err;
928 	}
929 
930 	user = kvmalloc(sizeof(struct devkmsg_user), GFP_KERNEL);
931 	if (!user)
932 		return -ENOMEM;
933 
934 	ratelimit_default_init(&user->rs);
935 	ratelimit_set_flags(&user->rs, RATELIMIT_MSG_ON_RELEASE);
936 
937 	mutex_init(&user->lock);
938 
939 	atomic64_set(&user->seq, prb_first_valid_seq(prb));
940 
941 	file->private_data = user;
942 	return 0;
943 }
944 
945 static int devkmsg_release(struct inode *inode, struct file *file)
946 {
947 	struct devkmsg_user *user = file->private_data;
948 
949 	if (!user)
950 		return 0;
951 
952 	ratelimit_state_exit(&user->rs);
953 
954 	mutex_destroy(&user->lock);
955 	kvfree(user);
956 	return 0;
957 }
958 
959 const struct file_operations kmsg_fops = {
960 	.open = devkmsg_open,
961 	.read = devkmsg_read,
962 	.write_iter = devkmsg_write,
963 	.llseek = devkmsg_llseek,
964 	.poll = devkmsg_poll,
965 	.release = devkmsg_release,
966 };
967 
968 #ifdef CONFIG_CRASH_CORE
969 /*
970  * This appends the listed symbols to /proc/vmcore
971  *
972  * /proc/vmcore is used by various utilities, like crash and makedumpfile to
973  * obtain access to symbols that are otherwise very difficult to locate.  These
974  * symbols are specifically used so that utilities can access and extract the
975  * dmesg log from a vmcore file after a crash.
976  */
977 void log_buf_vmcoreinfo_setup(void)
978 {
979 	struct dev_printk_info *dev_info = NULL;
980 
981 	VMCOREINFO_SYMBOL(prb);
982 	VMCOREINFO_SYMBOL(printk_rb_static);
983 	VMCOREINFO_SYMBOL(clear_seq);
984 
985 	/*
986 	 * Export struct size and field offsets. User space tools can
987 	 * parse it and detect any changes to structure down the line.
988 	 */
989 
990 	VMCOREINFO_STRUCT_SIZE(printk_ringbuffer);
991 	VMCOREINFO_OFFSET(printk_ringbuffer, desc_ring);
992 	VMCOREINFO_OFFSET(printk_ringbuffer, text_data_ring);
993 	VMCOREINFO_OFFSET(printk_ringbuffer, fail);
994 
995 	VMCOREINFO_STRUCT_SIZE(prb_desc_ring);
996 	VMCOREINFO_OFFSET(prb_desc_ring, count_bits);
997 	VMCOREINFO_OFFSET(prb_desc_ring, descs);
998 	VMCOREINFO_OFFSET(prb_desc_ring, infos);
999 	VMCOREINFO_OFFSET(prb_desc_ring, head_id);
1000 	VMCOREINFO_OFFSET(prb_desc_ring, tail_id);
1001 
1002 	VMCOREINFO_STRUCT_SIZE(prb_desc);
1003 	VMCOREINFO_OFFSET(prb_desc, state_var);
1004 	VMCOREINFO_OFFSET(prb_desc, text_blk_lpos);
1005 
1006 	VMCOREINFO_STRUCT_SIZE(prb_data_blk_lpos);
1007 	VMCOREINFO_OFFSET(prb_data_blk_lpos, begin);
1008 	VMCOREINFO_OFFSET(prb_data_blk_lpos, next);
1009 
1010 	VMCOREINFO_STRUCT_SIZE(printk_info);
1011 	VMCOREINFO_OFFSET(printk_info, seq);
1012 	VMCOREINFO_OFFSET(printk_info, ts_nsec);
1013 	VMCOREINFO_OFFSET(printk_info, text_len);
1014 	VMCOREINFO_OFFSET(printk_info, caller_id);
1015 	VMCOREINFO_OFFSET(printk_info, dev_info);
1016 
1017 	VMCOREINFO_STRUCT_SIZE(dev_printk_info);
1018 	VMCOREINFO_OFFSET(dev_printk_info, subsystem);
1019 	VMCOREINFO_LENGTH(printk_info_subsystem, sizeof(dev_info->subsystem));
1020 	VMCOREINFO_OFFSET(dev_printk_info, device);
1021 	VMCOREINFO_LENGTH(printk_info_device, sizeof(dev_info->device));
1022 
1023 	VMCOREINFO_STRUCT_SIZE(prb_data_ring);
1024 	VMCOREINFO_OFFSET(prb_data_ring, size_bits);
1025 	VMCOREINFO_OFFSET(prb_data_ring, data);
1026 	VMCOREINFO_OFFSET(prb_data_ring, head_lpos);
1027 	VMCOREINFO_OFFSET(prb_data_ring, tail_lpos);
1028 
1029 	VMCOREINFO_SIZE(atomic_long_t);
1030 	VMCOREINFO_TYPE_OFFSET(atomic_long_t, counter);
1031 
1032 	VMCOREINFO_STRUCT_SIZE(latched_seq);
1033 	VMCOREINFO_OFFSET(latched_seq, val);
1034 }
1035 #endif
1036 
1037 /* requested log_buf_len from kernel cmdline */
1038 static unsigned long __initdata new_log_buf_len;
1039 
1040 /* we practice scaling the ring buffer by powers of 2 */
1041 static void __init log_buf_len_update(u64 size)
1042 {
1043 	if (size > (u64)LOG_BUF_LEN_MAX) {
1044 		size = (u64)LOG_BUF_LEN_MAX;
1045 		pr_err("log_buf over 2G is not supported.\n");
1046 	}
1047 
1048 	if (size)
1049 		size = roundup_pow_of_two(size);
1050 	if (size > log_buf_len)
1051 		new_log_buf_len = (unsigned long)size;
1052 }
1053 
1054 /* save requested log_buf_len since it's too early to process it */
1055 static int __init log_buf_len_setup(char *str)
1056 {
1057 	u64 size;
1058 
1059 	if (!str)
1060 		return -EINVAL;
1061 
1062 	size = memparse(str, &str);
1063 
1064 	log_buf_len_update(size);
1065 
1066 	return 0;
1067 }
1068 early_param("log_buf_len", log_buf_len_setup);
1069 
1070 #ifdef CONFIG_SMP
1071 #define __LOG_CPU_MAX_BUF_LEN (1 << CONFIG_LOG_CPU_MAX_BUF_SHIFT)
1072 
1073 static void __init log_buf_add_cpu(void)
1074 {
1075 	unsigned int cpu_extra;
1076 
1077 	/*
1078 	 * archs should set up cpu_possible_bits properly with
1079 	 * set_cpu_possible() after setup_arch() but just in
1080 	 * case lets ensure this is valid.
1081 	 */
1082 	if (num_possible_cpus() == 1)
1083 		return;
1084 
1085 	cpu_extra = (num_possible_cpus() - 1) * __LOG_CPU_MAX_BUF_LEN;
1086 
1087 	/* by default this will only continue through for large > 64 CPUs */
1088 	if (cpu_extra <= __LOG_BUF_LEN / 2)
1089 		return;
1090 
1091 	pr_info("log_buf_len individual max cpu contribution: %d bytes\n",
1092 		__LOG_CPU_MAX_BUF_LEN);
1093 	pr_info("log_buf_len total cpu_extra contributions: %d bytes\n",
1094 		cpu_extra);
1095 	pr_info("log_buf_len min size: %d bytes\n", __LOG_BUF_LEN);
1096 
1097 	log_buf_len_update(cpu_extra + __LOG_BUF_LEN);
1098 }
1099 #else /* !CONFIG_SMP */
1100 static inline void log_buf_add_cpu(void) {}
1101 #endif /* CONFIG_SMP */
1102 
1103 static void __init set_percpu_data_ready(void)
1104 {
1105 	__printk_percpu_data_ready = true;
1106 }
1107 
1108 static unsigned int __init add_to_rb(struct printk_ringbuffer *rb,
1109 				     struct printk_record *r)
1110 {
1111 	struct prb_reserved_entry e;
1112 	struct printk_record dest_r;
1113 
1114 	prb_rec_init_wr(&dest_r, r->info->text_len);
1115 
1116 	if (!prb_reserve(&e, rb, &dest_r))
1117 		return 0;
1118 
1119 	memcpy(&dest_r.text_buf[0], &r->text_buf[0], r->info->text_len);
1120 	dest_r.info->text_len = r->info->text_len;
1121 	dest_r.info->facility = r->info->facility;
1122 	dest_r.info->level = r->info->level;
1123 	dest_r.info->flags = r->info->flags;
1124 	dest_r.info->ts_nsec = r->info->ts_nsec;
1125 	dest_r.info->caller_id = r->info->caller_id;
1126 	memcpy(&dest_r.info->dev_info, &r->info->dev_info, sizeof(dest_r.info->dev_info));
1127 
1128 	prb_final_commit(&e);
1129 
1130 	return prb_record_text_space(&e);
1131 }
1132 
1133 static char setup_text_buf[PRINTKRB_RECORD_MAX] __initdata;
1134 
1135 void __init setup_log_buf(int early)
1136 {
1137 	struct printk_info *new_infos;
1138 	unsigned int new_descs_count;
1139 	struct prb_desc *new_descs;
1140 	struct printk_info info;
1141 	struct printk_record r;
1142 	unsigned int text_size;
1143 	size_t new_descs_size;
1144 	size_t new_infos_size;
1145 	unsigned long flags;
1146 	char *new_log_buf;
1147 	unsigned int free;
1148 	u64 seq;
1149 
1150 	/*
1151 	 * Some archs call setup_log_buf() multiple times - first is very
1152 	 * early, e.g. from setup_arch(), and second - when percpu_areas
1153 	 * are initialised.
1154 	 */
1155 	if (!early)
1156 		set_percpu_data_ready();
1157 
1158 	if (log_buf != __log_buf)
1159 		return;
1160 
1161 	if (!early && !new_log_buf_len)
1162 		log_buf_add_cpu();
1163 
1164 	if (!new_log_buf_len)
1165 		return;
1166 
1167 	new_descs_count = new_log_buf_len >> PRB_AVGBITS;
1168 	if (new_descs_count == 0) {
1169 		pr_err("new_log_buf_len: %lu too small\n", new_log_buf_len);
1170 		return;
1171 	}
1172 
1173 	new_log_buf = memblock_alloc(new_log_buf_len, LOG_ALIGN);
1174 	if (unlikely(!new_log_buf)) {
1175 		pr_err("log_buf_len: %lu text bytes not available\n",
1176 		       new_log_buf_len);
1177 		return;
1178 	}
1179 
1180 	new_descs_size = new_descs_count * sizeof(struct prb_desc);
1181 	new_descs = memblock_alloc(new_descs_size, LOG_ALIGN);
1182 	if (unlikely(!new_descs)) {
1183 		pr_err("log_buf_len: %zu desc bytes not available\n",
1184 		       new_descs_size);
1185 		goto err_free_log_buf;
1186 	}
1187 
1188 	new_infos_size = new_descs_count * sizeof(struct printk_info);
1189 	new_infos = memblock_alloc(new_infos_size, LOG_ALIGN);
1190 	if (unlikely(!new_infos)) {
1191 		pr_err("log_buf_len: %zu info bytes not available\n",
1192 		       new_infos_size);
1193 		goto err_free_descs;
1194 	}
1195 
1196 	prb_rec_init_rd(&r, &info, &setup_text_buf[0], sizeof(setup_text_buf));
1197 
1198 	prb_init(&printk_rb_dynamic,
1199 		 new_log_buf, ilog2(new_log_buf_len),
1200 		 new_descs, ilog2(new_descs_count),
1201 		 new_infos);
1202 
1203 	local_irq_save(flags);
1204 
1205 	log_buf_len = new_log_buf_len;
1206 	log_buf = new_log_buf;
1207 	new_log_buf_len = 0;
1208 
1209 	free = __LOG_BUF_LEN;
1210 	prb_for_each_record(0, &printk_rb_static, seq, &r) {
1211 		text_size = add_to_rb(&printk_rb_dynamic, &r);
1212 		if (text_size > free)
1213 			free = 0;
1214 		else
1215 			free -= text_size;
1216 	}
1217 
1218 	prb = &printk_rb_dynamic;
1219 
1220 	local_irq_restore(flags);
1221 
1222 	/*
1223 	 * Copy any remaining messages that might have appeared from
1224 	 * NMI context after copying but before switching to the
1225 	 * dynamic buffer.
1226 	 */
1227 	prb_for_each_record(seq, &printk_rb_static, seq, &r) {
1228 		text_size = add_to_rb(&printk_rb_dynamic, &r);
1229 		if (text_size > free)
1230 			free = 0;
1231 		else
1232 			free -= text_size;
1233 	}
1234 
1235 	if (seq != prb_next_seq(&printk_rb_static)) {
1236 		pr_err("dropped %llu messages\n",
1237 		       prb_next_seq(&printk_rb_static) - seq);
1238 	}
1239 
1240 	pr_info("log_buf_len: %u bytes\n", log_buf_len);
1241 	pr_info("early log buf free: %u(%u%%)\n",
1242 		free, (free * 100) / __LOG_BUF_LEN);
1243 	return;
1244 
1245 err_free_descs:
1246 	memblock_free(new_descs, new_descs_size);
1247 err_free_log_buf:
1248 	memblock_free(new_log_buf, new_log_buf_len);
1249 }
1250 
1251 static bool __read_mostly ignore_loglevel;
1252 
1253 static int __init ignore_loglevel_setup(char *str)
1254 {
1255 	ignore_loglevel = true;
1256 	pr_info("debug: ignoring loglevel setting.\n");
1257 
1258 	return 0;
1259 }
1260 
1261 early_param("ignore_loglevel", ignore_loglevel_setup);
1262 module_param(ignore_loglevel, bool, S_IRUGO | S_IWUSR);
1263 MODULE_PARM_DESC(ignore_loglevel,
1264 		 "ignore loglevel setting (prints all kernel messages to the console)");
1265 
1266 static bool suppress_message_printing(int level)
1267 {
1268 	return (level >= console_loglevel && !ignore_loglevel);
1269 }
1270 
1271 #ifdef CONFIG_BOOT_PRINTK_DELAY
1272 
1273 static int boot_delay; /* msecs delay after each printk during bootup */
1274 static unsigned long long loops_per_msec;	/* based on boot_delay */
1275 
1276 static int __init boot_delay_setup(char *str)
1277 {
1278 	unsigned long lpj;
1279 
1280 	lpj = preset_lpj ? preset_lpj : 1000000;	/* some guess */
1281 	loops_per_msec = (unsigned long long)lpj / 1000 * HZ;
1282 
1283 	get_option(&str, &boot_delay);
1284 	if (boot_delay > 10 * 1000)
1285 		boot_delay = 0;
1286 
1287 	pr_debug("boot_delay: %u, preset_lpj: %ld, lpj: %lu, "
1288 		"HZ: %d, loops_per_msec: %llu\n",
1289 		boot_delay, preset_lpj, lpj, HZ, loops_per_msec);
1290 	return 0;
1291 }
1292 early_param("boot_delay", boot_delay_setup);
1293 
1294 static void boot_delay_msec(int level)
1295 {
1296 	unsigned long long k;
1297 	unsigned long timeout;
1298 
1299 	if ((boot_delay == 0 || system_state >= SYSTEM_RUNNING)
1300 		|| suppress_message_printing(level)) {
1301 		return;
1302 	}
1303 
1304 	k = (unsigned long long)loops_per_msec * boot_delay;
1305 
1306 	timeout = jiffies + msecs_to_jiffies(boot_delay);
1307 	while (k) {
1308 		k--;
1309 		cpu_relax();
1310 		/*
1311 		 * use (volatile) jiffies to prevent
1312 		 * compiler reduction; loop termination via jiffies
1313 		 * is secondary and may or may not happen.
1314 		 */
1315 		if (time_after(jiffies, timeout))
1316 			break;
1317 		touch_nmi_watchdog();
1318 	}
1319 }
1320 #else
1321 static inline void boot_delay_msec(int level)
1322 {
1323 }
1324 #endif
1325 
1326 static bool printk_time = IS_ENABLED(CONFIG_PRINTK_TIME);
1327 module_param_named(time, printk_time, bool, S_IRUGO | S_IWUSR);
1328 
1329 static size_t print_syslog(unsigned int level, char *buf)
1330 {
1331 	return sprintf(buf, "<%u>", level);
1332 }
1333 
1334 static size_t print_time(u64 ts, char *buf)
1335 {
1336 	unsigned long rem_nsec = do_div(ts, 1000000000);
1337 
1338 	return sprintf(buf, "[%5lu.%06lu]",
1339 		       (unsigned long)ts, rem_nsec / 1000);
1340 }
1341 
1342 #ifdef CONFIG_PRINTK_CALLER
1343 static size_t print_caller(u32 id, char *buf)
1344 {
1345 	char caller[12];
1346 
1347 	snprintf(caller, sizeof(caller), "%c%u",
1348 		 id & 0x80000000 ? 'C' : 'T', id & ~0x80000000);
1349 	return sprintf(buf, "[%6s]", caller);
1350 }
1351 #else
1352 #define print_caller(id, buf) 0
1353 #endif
1354 
1355 static size_t info_print_prefix(const struct printk_info  *info, bool syslog,
1356 				bool time, char *buf)
1357 {
1358 	size_t len = 0;
1359 
1360 	if (syslog)
1361 		len = print_syslog((info->facility << 3) | info->level, buf);
1362 
1363 	if (time)
1364 		len += print_time(info->ts_nsec, buf + len);
1365 
1366 	len += print_caller(info->caller_id, buf + len);
1367 
1368 	if (IS_ENABLED(CONFIG_PRINTK_CALLER) || time) {
1369 		buf[len++] = ' ';
1370 		buf[len] = '\0';
1371 	}
1372 
1373 	return len;
1374 }
1375 
1376 /*
1377  * Prepare the record for printing. The text is shifted within the given
1378  * buffer to avoid a need for another one. The following operations are
1379  * done:
1380  *
1381  *   - Add prefix for each line.
1382  *   - Drop truncated lines that no longer fit into the buffer.
1383  *   - Add the trailing newline that has been removed in vprintk_store().
1384  *   - Add a string terminator.
1385  *
1386  * Since the produced string is always terminated, the maximum possible
1387  * return value is @r->text_buf_size - 1;
1388  *
1389  * Return: The length of the updated/prepared text, including the added
1390  * prefixes and the newline. The terminator is not counted. The dropped
1391  * line(s) are not counted.
1392  */
1393 static size_t record_print_text(struct printk_record *r, bool syslog,
1394 				bool time)
1395 {
1396 	size_t text_len = r->info->text_len;
1397 	size_t buf_size = r->text_buf_size;
1398 	char *text = r->text_buf;
1399 	char prefix[PRINTK_PREFIX_MAX];
1400 	bool truncated = false;
1401 	size_t prefix_len;
1402 	size_t line_len;
1403 	size_t len = 0;
1404 	char *next;
1405 
1406 	/*
1407 	 * If the message was truncated because the buffer was not large
1408 	 * enough, treat the available text as if it were the full text.
1409 	 */
1410 	if (text_len > buf_size)
1411 		text_len = buf_size;
1412 
1413 	prefix_len = info_print_prefix(r->info, syslog, time, prefix);
1414 
1415 	/*
1416 	 * @text_len: bytes of unprocessed text
1417 	 * @line_len: bytes of current line _without_ newline
1418 	 * @text:     pointer to beginning of current line
1419 	 * @len:      number of bytes prepared in r->text_buf
1420 	 */
1421 	for (;;) {
1422 		next = memchr(text, '\n', text_len);
1423 		if (next) {
1424 			line_len = next - text;
1425 		} else {
1426 			/* Drop truncated line(s). */
1427 			if (truncated)
1428 				break;
1429 			line_len = text_len;
1430 		}
1431 
1432 		/*
1433 		 * Truncate the text if there is not enough space to add the
1434 		 * prefix and a trailing newline and a terminator.
1435 		 */
1436 		if (len + prefix_len + text_len + 1 + 1 > buf_size) {
1437 			/* Drop even the current line if no space. */
1438 			if (len + prefix_len + line_len + 1 + 1 > buf_size)
1439 				break;
1440 
1441 			text_len = buf_size - len - prefix_len - 1 - 1;
1442 			truncated = true;
1443 		}
1444 
1445 		memmove(text + prefix_len, text, text_len);
1446 		memcpy(text, prefix, prefix_len);
1447 
1448 		/*
1449 		 * Increment the prepared length to include the text and
1450 		 * prefix that were just moved+copied. Also increment for the
1451 		 * newline at the end of this line. If this is the last line,
1452 		 * there is no newline, but it will be added immediately below.
1453 		 */
1454 		len += prefix_len + line_len + 1;
1455 		if (text_len == line_len) {
1456 			/*
1457 			 * This is the last line. Add the trailing newline
1458 			 * removed in vprintk_store().
1459 			 */
1460 			text[prefix_len + line_len] = '\n';
1461 			break;
1462 		}
1463 
1464 		/*
1465 		 * Advance beyond the added prefix and the related line with
1466 		 * its newline.
1467 		 */
1468 		text += prefix_len + line_len + 1;
1469 
1470 		/*
1471 		 * The remaining text has only decreased by the line with its
1472 		 * newline.
1473 		 *
1474 		 * Note that @text_len can become zero. It happens when @text
1475 		 * ended with a newline (either due to truncation or the
1476 		 * original string ending with "\n\n"). The loop is correctly
1477 		 * repeated and (if not truncated) an empty line with a prefix
1478 		 * will be prepared.
1479 		 */
1480 		text_len -= line_len + 1;
1481 	}
1482 
1483 	/*
1484 	 * If a buffer was provided, it will be terminated. Space for the
1485 	 * string terminator is guaranteed to be available. The terminator is
1486 	 * not counted in the return value.
1487 	 */
1488 	if (buf_size > 0)
1489 		r->text_buf[len] = 0;
1490 
1491 	return len;
1492 }
1493 
1494 static size_t get_record_print_text_size(struct printk_info *info,
1495 					 unsigned int line_count,
1496 					 bool syslog, bool time)
1497 {
1498 	char prefix[PRINTK_PREFIX_MAX];
1499 	size_t prefix_len;
1500 
1501 	prefix_len = info_print_prefix(info, syslog, time, prefix);
1502 
1503 	/*
1504 	 * Each line will be preceded with a prefix. The intermediate
1505 	 * newlines are already within the text, but a final trailing
1506 	 * newline will be added.
1507 	 */
1508 	return ((prefix_len * line_count) + info->text_len + 1);
1509 }
1510 
1511 /*
1512  * Beginning with @start_seq, find the first record where it and all following
1513  * records up to (but not including) @max_seq fit into @size.
1514  *
1515  * @max_seq is simply an upper bound and does not need to exist. If the caller
1516  * does not require an upper bound, -1 can be used for @max_seq.
1517  */
1518 static u64 find_first_fitting_seq(u64 start_seq, u64 max_seq, size_t size,
1519 				  bool syslog, bool time)
1520 {
1521 	struct printk_info info;
1522 	unsigned int line_count;
1523 	size_t len = 0;
1524 	u64 seq;
1525 
1526 	/* Determine the size of the records up to @max_seq. */
1527 	prb_for_each_info(start_seq, prb, seq, &info, &line_count) {
1528 		if (info.seq >= max_seq)
1529 			break;
1530 		len += get_record_print_text_size(&info, line_count, syslog, time);
1531 	}
1532 
1533 	/*
1534 	 * Adjust the upper bound for the next loop to avoid subtracting
1535 	 * lengths that were never added.
1536 	 */
1537 	if (seq < max_seq)
1538 		max_seq = seq;
1539 
1540 	/*
1541 	 * Move first record forward until length fits into the buffer. Ignore
1542 	 * newest messages that were not counted in the above cycle. Messages
1543 	 * might appear and get lost in the meantime. This is a best effort
1544 	 * that prevents an infinite loop that could occur with a retry.
1545 	 */
1546 	prb_for_each_info(start_seq, prb, seq, &info, &line_count) {
1547 		if (len <= size || info.seq >= max_seq)
1548 			break;
1549 		len -= get_record_print_text_size(&info, line_count, syslog, time);
1550 	}
1551 
1552 	return seq;
1553 }
1554 
1555 /* The caller is responsible for making sure @size is greater than 0. */
1556 static int syslog_print(char __user *buf, int size)
1557 {
1558 	struct printk_info info;
1559 	struct printk_record r;
1560 	char *text;
1561 	int len = 0;
1562 	u64 seq;
1563 
1564 	text = kmalloc(PRINTK_MESSAGE_MAX, GFP_KERNEL);
1565 	if (!text)
1566 		return -ENOMEM;
1567 
1568 	prb_rec_init_rd(&r, &info, text, PRINTK_MESSAGE_MAX);
1569 
1570 	mutex_lock(&syslog_lock);
1571 
1572 	/*
1573 	 * Wait for the @syslog_seq record to be available. @syslog_seq may
1574 	 * change while waiting.
1575 	 */
1576 	do {
1577 		seq = syslog_seq;
1578 
1579 		mutex_unlock(&syslog_lock);
1580 		/*
1581 		 * Guarantee this task is visible on the waitqueue before
1582 		 * checking the wake condition.
1583 		 *
1584 		 * The full memory barrier within set_current_state() of
1585 		 * prepare_to_wait_event() pairs with the full memory barrier
1586 		 * within wq_has_sleeper().
1587 		 *
1588 		 * This pairs with __wake_up_klogd:A.
1589 		 */
1590 		len = wait_event_interruptible(log_wait,
1591 				prb_read_valid(prb, seq, NULL)); /* LMM(syslog_print:A) */
1592 		mutex_lock(&syslog_lock);
1593 
1594 		if (len)
1595 			goto out;
1596 	} while (syslog_seq != seq);
1597 
1598 	/*
1599 	 * Copy records that fit into the buffer. The above cycle makes sure
1600 	 * that the first record is always available.
1601 	 */
1602 	do {
1603 		size_t n;
1604 		size_t skip;
1605 		int err;
1606 
1607 		if (!prb_read_valid(prb, syslog_seq, &r))
1608 			break;
1609 
1610 		if (r.info->seq != syslog_seq) {
1611 			/* message is gone, move to next valid one */
1612 			syslog_seq = r.info->seq;
1613 			syslog_partial = 0;
1614 		}
1615 
1616 		/*
1617 		 * To keep reading/counting partial line consistent,
1618 		 * use printk_time value as of the beginning of a line.
1619 		 */
1620 		if (!syslog_partial)
1621 			syslog_time = printk_time;
1622 
1623 		skip = syslog_partial;
1624 		n = record_print_text(&r, true, syslog_time);
1625 		if (n - syslog_partial <= size) {
1626 			/* message fits into buffer, move forward */
1627 			syslog_seq = r.info->seq + 1;
1628 			n -= syslog_partial;
1629 			syslog_partial = 0;
1630 		} else if (!len){
1631 			/* partial read(), remember position */
1632 			n = size;
1633 			syslog_partial += n;
1634 		} else
1635 			n = 0;
1636 
1637 		if (!n)
1638 			break;
1639 
1640 		mutex_unlock(&syslog_lock);
1641 		err = copy_to_user(buf, text + skip, n);
1642 		mutex_lock(&syslog_lock);
1643 
1644 		if (err) {
1645 			if (!len)
1646 				len = -EFAULT;
1647 			break;
1648 		}
1649 
1650 		len += n;
1651 		size -= n;
1652 		buf += n;
1653 	} while (size);
1654 out:
1655 	mutex_unlock(&syslog_lock);
1656 	kfree(text);
1657 	return len;
1658 }
1659 
1660 static int syslog_print_all(char __user *buf, int size, bool clear)
1661 {
1662 	struct printk_info info;
1663 	struct printk_record r;
1664 	char *text;
1665 	int len = 0;
1666 	u64 seq;
1667 	bool time;
1668 
1669 	text = kmalloc(PRINTK_MESSAGE_MAX, GFP_KERNEL);
1670 	if (!text)
1671 		return -ENOMEM;
1672 
1673 	time = printk_time;
1674 	/*
1675 	 * Find first record that fits, including all following records,
1676 	 * into the user-provided buffer for this dump.
1677 	 */
1678 	seq = find_first_fitting_seq(latched_seq_read_nolock(&clear_seq), -1,
1679 				     size, true, time);
1680 
1681 	prb_rec_init_rd(&r, &info, text, PRINTK_MESSAGE_MAX);
1682 
1683 	len = 0;
1684 	prb_for_each_record(seq, prb, seq, &r) {
1685 		int textlen;
1686 
1687 		textlen = record_print_text(&r, true, time);
1688 
1689 		if (len + textlen > size) {
1690 			seq--;
1691 			break;
1692 		}
1693 
1694 		if (copy_to_user(buf + len, text, textlen))
1695 			len = -EFAULT;
1696 		else
1697 			len += textlen;
1698 
1699 		if (len < 0)
1700 			break;
1701 	}
1702 
1703 	if (clear) {
1704 		mutex_lock(&syslog_lock);
1705 		latched_seq_write(&clear_seq, seq);
1706 		mutex_unlock(&syslog_lock);
1707 	}
1708 
1709 	kfree(text);
1710 	return len;
1711 }
1712 
1713 static void syslog_clear(void)
1714 {
1715 	mutex_lock(&syslog_lock);
1716 	latched_seq_write(&clear_seq, prb_next_seq(prb));
1717 	mutex_unlock(&syslog_lock);
1718 }
1719 
1720 int do_syslog(int type, char __user *buf, int len, int source)
1721 {
1722 	struct printk_info info;
1723 	bool clear = false;
1724 	static int saved_console_loglevel = LOGLEVEL_DEFAULT;
1725 	int error;
1726 
1727 	error = check_syslog_permissions(type, source);
1728 	if (error)
1729 		return error;
1730 
1731 	switch (type) {
1732 	case SYSLOG_ACTION_CLOSE:	/* Close log */
1733 		break;
1734 	case SYSLOG_ACTION_OPEN:	/* Open log */
1735 		break;
1736 	case SYSLOG_ACTION_READ:	/* Read from log */
1737 		if (!buf || len < 0)
1738 			return -EINVAL;
1739 		if (!len)
1740 			return 0;
1741 		if (!access_ok(buf, len))
1742 			return -EFAULT;
1743 		error = syslog_print(buf, len);
1744 		break;
1745 	/* Read/clear last kernel messages */
1746 	case SYSLOG_ACTION_READ_CLEAR:
1747 		clear = true;
1748 		fallthrough;
1749 	/* Read last kernel messages */
1750 	case SYSLOG_ACTION_READ_ALL:
1751 		if (!buf || len < 0)
1752 			return -EINVAL;
1753 		if (!len)
1754 			return 0;
1755 		if (!access_ok(buf, len))
1756 			return -EFAULT;
1757 		error = syslog_print_all(buf, len, clear);
1758 		break;
1759 	/* Clear ring buffer */
1760 	case SYSLOG_ACTION_CLEAR:
1761 		syslog_clear();
1762 		break;
1763 	/* Disable logging to console */
1764 	case SYSLOG_ACTION_CONSOLE_OFF:
1765 		if (saved_console_loglevel == LOGLEVEL_DEFAULT)
1766 			saved_console_loglevel = console_loglevel;
1767 		console_loglevel = minimum_console_loglevel;
1768 		break;
1769 	/* Enable logging to console */
1770 	case SYSLOG_ACTION_CONSOLE_ON:
1771 		if (saved_console_loglevel != LOGLEVEL_DEFAULT) {
1772 			console_loglevel = saved_console_loglevel;
1773 			saved_console_loglevel = LOGLEVEL_DEFAULT;
1774 		}
1775 		break;
1776 	/* Set level of messages printed to console */
1777 	case SYSLOG_ACTION_CONSOLE_LEVEL:
1778 		if (len < 1 || len > 8)
1779 			return -EINVAL;
1780 		if (len < minimum_console_loglevel)
1781 			len = minimum_console_loglevel;
1782 		console_loglevel = len;
1783 		/* Implicitly re-enable logging to console */
1784 		saved_console_loglevel = LOGLEVEL_DEFAULT;
1785 		break;
1786 	/* Number of chars in the log buffer */
1787 	case SYSLOG_ACTION_SIZE_UNREAD:
1788 		mutex_lock(&syslog_lock);
1789 		if (!prb_read_valid_info(prb, syslog_seq, &info, NULL)) {
1790 			/* No unread messages. */
1791 			mutex_unlock(&syslog_lock);
1792 			return 0;
1793 		}
1794 		if (info.seq != syslog_seq) {
1795 			/* messages are gone, move to first one */
1796 			syslog_seq = info.seq;
1797 			syslog_partial = 0;
1798 		}
1799 		if (source == SYSLOG_FROM_PROC) {
1800 			/*
1801 			 * Short-cut for poll(/"proc/kmsg") which simply checks
1802 			 * for pending data, not the size; return the count of
1803 			 * records, not the length.
1804 			 */
1805 			error = prb_next_seq(prb) - syslog_seq;
1806 		} else {
1807 			bool time = syslog_partial ? syslog_time : printk_time;
1808 			unsigned int line_count;
1809 			u64 seq;
1810 
1811 			prb_for_each_info(syslog_seq, prb, seq, &info,
1812 					  &line_count) {
1813 				error += get_record_print_text_size(&info, line_count,
1814 								    true, time);
1815 				time = printk_time;
1816 			}
1817 			error -= syslog_partial;
1818 		}
1819 		mutex_unlock(&syslog_lock);
1820 		break;
1821 	/* Size of the log buffer */
1822 	case SYSLOG_ACTION_SIZE_BUFFER:
1823 		error = log_buf_len;
1824 		break;
1825 	default:
1826 		error = -EINVAL;
1827 		break;
1828 	}
1829 
1830 	return error;
1831 }
1832 
1833 SYSCALL_DEFINE3(syslog, int, type, char __user *, buf, int, len)
1834 {
1835 	return do_syslog(type, buf, len, SYSLOG_FROM_READER);
1836 }
1837 
1838 /*
1839  * Special console_lock variants that help to reduce the risk of soft-lockups.
1840  * They allow to pass console_lock to another printk() call using a busy wait.
1841  */
1842 
1843 #ifdef CONFIG_LOCKDEP
1844 static struct lockdep_map console_owner_dep_map = {
1845 	.name = "console_owner"
1846 };
1847 #endif
1848 
1849 static DEFINE_RAW_SPINLOCK(console_owner_lock);
1850 static struct task_struct *console_owner;
1851 static bool console_waiter;
1852 
1853 /**
1854  * console_lock_spinning_enable - mark beginning of code where another
1855  *	thread might safely busy wait
1856  *
1857  * This basically converts console_lock into a spinlock. This marks
1858  * the section where the console_lock owner can not sleep, because
1859  * there may be a waiter spinning (like a spinlock). Also it must be
1860  * ready to hand over the lock at the end of the section.
1861  */
1862 static void console_lock_spinning_enable(void)
1863 {
1864 	raw_spin_lock(&console_owner_lock);
1865 	console_owner = current;
1866 	raw_spin_unlock(&console_owner_lock);
1867 
1868 	/* The waiter may spin on us after setting console_owner */
1869 	spin_acquire(&console_owner_dep_map, 0, 0, _THIS_IP_);
1870 }
1871 
1872 /**
1873  * console_lock_spinning_disable_and_check - mark end of code where another
1874  *	thread was able to busy wait and check if there is a waiter
1875  * @cookie: cookie returned from console_srcu_read_lock()
1876  *
1877  * This is called at the end of the section where spinning is allowed.
1878  * It has two functions. First, it is a signal that it is no longer
1879  * safe to start busy waiting for the lock. Second, it checks if
1880  * there is a busy waiter and passes the lock rights to her.
1881  *
1882  * Important: Callers lose both the console_lock and the SRCU read lock if
1883  *	there was a busy waiter. They must not touch items synchronized by
1884  *	console_lock or SRCU read lock in this case.
1885  *
1886  * Return: 1 if the lock rights were passed, 0 otherwise.
1887  */
1888 static int console_lock_spinning_disable_and_check(int cookie)
1889 {
1890 	int waiter;
1891 
1892 	raw_spin_lock(&console_owner_lock);
1893 	waiter = READ_ONCE(console_waiter);
1894 	console_owner = NULL;
1895 	raw_spin_unlock(&console_owner_lock);
1896 
1897 	if (!waiter) {
1898 		spin_release(&console_owner_dep_map, _THIS_IP_);
1899 		return 0;
1900 	}
1901 
1902 	/* The waiter is now free to continue */
1903 	WRITE_ONCE(console_waiter, false);
1904 
1905 	spin_release(&console_owner_dep_map, _THIS_IP_);
1906 
1907 	/*
1908 	 * Preserve lockdep lock ordering. Release the SRCU read lock before
1909 	 * releasing the console_lock.
1910 	 */
1911 	console_srcu_read_unlock(cookie);
1912 
1913 	/*
1914 	 * Hand off console_lock to waiter. The waiter will perform
1915 	 * the up(). After this, the waiter is the console_lock owner.
1916 	 */
1917 	mutex_release(&console_lock_dep_map, _THIS_IP_);
1918 	return 1;
1919 }
1920 
1921 /**
1922  * console_trylock_spinning - try to get console_lock by busy waiting
1923  *
1924  * This allows to busy wait for the console_lock when the current
1925  * owner is running in specially marked sections. It means that
1926  * the current owner is running and cannot reschedule until it
1927  * is ready to lose the lock.
1928  *
1929  * Return: 1 if we got the lock, 0 othrewise
1930  */
1931 static int console_trylock_spinning(void)
1932 {
1933 	struct task_struct *owner = NULL;
1934 	bool waiter;
1935 	bool spin = false;
1936 	unsigned long flags;
1937 
1938 	if (console_trylock())
1939 		return 1;
1940 
1941 	/*
1942 	 * It's unsafe to spin once a panic has begun. If we are the
1943 	 * panic CPU, we may have already halted the owner of the
1944 	 * console_sem. If we are not the panic CPU, then we should
1945 	 * avoid taking console_sem, so the panic CPU has a better
1946 	 * chance of cleanly acquiring it later.
1947 	 */
1948 	if (panic_in_progress())
1949 		return 0;
1950 
1951 	printk_safe_enter_irqsave(flags);
1952 
1953 	raw_spin_lock(&console_owner_lock);
1954 	owner = READ_ONCE(console_owner);
1955 	waiter = READ_ONCE(console_waiter);
1956 	if (!waiter && owner && owner != current) {
1957 		WRITE_ONCE(console_waiter, true);
1958 		spin = true;
1959 	}
1960 	raw_spin_unlock(&console_owner_lock);
1961 
1962 	/*
1963 	 * If there is an active printk() writing to the
1964 	 * consoles, instead of having it write our data too,
1965 	 * see if we can offload that load from the active
1966 	 * printer, and do some printing ourselves.
1967 	 * Go into a spin only if there isn't already a waiter
1968 	 * spinning, and there is an active printer, and
1969 	 * that active printer isn't us (recursive printk?).
1970 	 */
1971 	if (!spin) {
1972 		printk_safe_exit_irqrestore(flags);
1973 		return 0;
1974 	}
1975 
1976 	/* We spin waiting for the owner to release us */
1977 	spin_acquire(&console_owner_dep_map, 0, 0, _THIS_IP_);
1978 	/* Owner will clear console_waiter on hand off */
1979 	while (READ_ONCE(console_waiter))
1980 		cpu_relax();
1981 	spin_release(&console_owner_dep_map, _THIS_IP_);
1982 
1983 	printk_safe_exit_irqrestore(flags);
1984 	/*
1985 	 * The owner passed the console lock to us.
1986 	 * Since we did not spin on console lock, annotate
1987 	 * this as a trylock. Otherwise lockdep will
1988 	 * complain.
1989 	 */
1990 	mutex_acquire(&console_lock_dep_map, 0, 1, _THIS_IP_);
1991 
1992 	return 1;
1993 }
1994 
1995 /*
1996  * Recursion is tracked separately on each CPU. If NMIs are supported, an
1997  * additional NMI context per CPU is also separately tracked. Until per-CPU
1998  * is available, a separate "early tracking" is performed.
1999  */
2000 static DEFINE_PER_CPU(u8, printk_count);
2001 static u8 printk_count_early;
2002 #ifdef CONFIG_HAVE_NMI
2003 static DEFINE_PER_CPU(u8, printk_count_nmi);
2004 static u8 printk_count_nmi_early;
2005 #endif
2006 
2007 /*
2008  * Recursion is limited to keep the output sane. printk() should not require
2009  * more than 1 level of recursion (allowing, for example, printk() to trigger
2010  * a WARN), but a higher value is used in case some printk-internal errors
2011  * exist, such as the ringbuffer validation checks failing.
2012  */
2013 #define PRINTK_MAX_RECURSION 3
2014 
2015 /*
2016  * Return a pointer to the dedicated counter for the CPU+context of the
2017  * caller.
2018  */
2019 static u8 *__printk_recursion_counter(void)
2020 {
2021 #ifdef CONFIG_HAVE_NMI
2022 	if (in_nmi()) {
2023 		if (printk_percpu_data_ready())
2024 			return this_cpu_ptr(&printk_count_nmi);
2025 		return &printk_count_nmi_early;
2026 	}
2027 #endif
2028 	if (printk_percpu_data_ready())
2029 		return this_cpu_ptr(&printk_count);
2030 	return &printk_count_early;
2031 }
2032 
2033 /*
2034  * Enter recursion tracking. Interrupts are disabled to simplify tracking.
2035  * The caller must check the boolean return value to see if the recursion is
2036  * allowed. On failure, interrupts are not disabled.
2037  *
2038  * @recursion_ptr must be a variable of type (u8 *) and is the same variable
2039  * that is passed to printk_exit_irqrestore().
2040  */
2041 #define printk_enter_irqsave(recursion_ptr, flags)	\
2042 ({							\
2043 	bool success = true;				\
2044 							\
2045 	typecheck(u8 *, recursion_ptr);			\
2046 	local_irq_save(flags);				\
2047 	(recursion_ptr) = __printk_recursion_counter();	\
2048 	if (*(recursion_ptr) > PRINTK_MAX_RECURSION) {	\
2049 		local_irq_restore(flags);		\
2050 		success = false;			\
2051 	} else {					\
2052 		(*(recursion_ptr))++;			\
2053 	}						\
2054 	success;					\
2055 })
2056 
2057 /* Exit recursion tracking, restoring interrupts. */
2058 #define printk_exit_irqrestore(recursion_ptr, flags)	\
2059 	do {						\
2060 		typecheck(u8 *, recursion_ptr);		\
2061 		(*(recursion_ptr))--;			\
2062 		local_irq_restore(flags);		\
2063 	} while (0)
2064 
2065 int printk_delay_msec __read_mostly;
2066 
2067 static inline void printk_delay(int level)
2068 {
2069 	boot_delay_msec(level);
2070 
2071 	if (unlikely(printk_delay_msec)) {
2072 		int m = printk_delay_msec;
2073 
2074 		while (m--) {
2075 			mdelay(1);
2076 			touch_nmi_watchdog();
2077 		}
2078 	}
2079 }
2080 
2081 static inline u32 printk_caller_id(void)
2082 {
2083 	return in_task() ? task_pid_nr(current) :
2084 		0x80000000 + smp_processor_id();
2085 }
2086 
2087 /**
2088  * printk_parse_prefix - Parse level and control flags.
2089  *
2090  * @text:     The terminated text message.
2091  * @level:    A pointer to the current level value, will be updated.
2092  * @flags:    A pointer to the current printk_info flags, will be updated.
2093  *
2094  * @level may be NULL if the caller is not interested in the parsed value.
2095  * Otherwise the variable pointed to by @level must be set to
2096  * LOGLEVEL_DEFAULT in order to be updated with the parsed value.
2097  *
2098  * @flags may be NULL if the caller is not interested in the parsed value.
2099  * Otherwise the variable pointed to by @flags will be OR'd with the parsed
2100  * value.
2101  *
2102  * Return: The length of the parsed level and control flags.
2103  */
2104 u16 printk_parse_prefix(const char *text, int *level,
2105 			enum printk_info_flags *flags)
2106 {
2107 	u16 prefix_len = 0;
2108 	int kern_level;
2109 
2110 	while (*text) {
2111 		kern_level = printk_get_level(text);
2112 		if (!kern_level)
2113 			break;
2114 
2115 		switch (kern_level) {
2116 		case '0' ... '7':
2117 			if (level && *level == LOGLEVEL_DEFAULT)
2118 				*level = kern_level - '0';
2119 			break;
2120 		case 'c':	/* KERN_CONT */
2121 			if (flags)
2122 				*flags |= LOG_CONT;
2123 		}
2124 
2125 		prefix_len += 2;
2126 		text += 2;
2127 	}
2128 
2129 	return prefix_len;
2130 }
2131 
2132 __printf(5, 0)
2133 static u16 printk_sprint(char *text, u16 size, int facility,
2134 			 enum printk_info_flags *flags, const char *fmt,
2135 			 va_list args)
2136 {
2137 	u16 text_len;
2138 
2139 	text_len = vscnprintf(text, size, fmt, args);
2140 
2141 	/* Mark and strip a trailing newline. */
2142 	if (text_len && text[text_len - 1] == '\n') {
2143 		text_len--;
2144 		*flags |= LOG_NEWLINE;
2145 	}
2146 
2147 	/* Strip log level and control flags. */
2148 	if (facility == 0) {
2149 		u16 prefix_len;
2150 
2151 		prefix_len = printk_parse_prefix(text, NULL, NULL);
2152 		if (prefix_len) {
2153 			text_len -= prefix_len;
2154 			memmove(text, text + prefix_len, text_len);
2155 		}
2156 	}
2157 
2158 	trace_console(text, text_len);
2159 
2160 	return text_len;
2161 }
2162 
2163 __printf(4, 0)
2164 int vprintk_store(int facility, int level,
2165 		  const struct dev_printk_info *dev_info,
2166 		  const char *fmt, va_list args)
2167 {
2168 	struct prb_reserved_entry e;
2169 	enum printk_info_flags flags = 0;
2170 	struct printk_record r;
2171 	unsigned long irqflags;
2172 	u16 trunc_msg_len = 0;
2173 	char prefix_buf[8];
2174 	u8 *recursion_ptr;
2175 	u16 reserve_size;
2176 	va_list args2;
2177 	u32 caller_id;
2178 	u16 text_len;
2179 	int ret = 0;
2180 	u64 ts_nsec;
2181 
2182 	if (!printk_enter_irqsave(recursion_ptr, irqflags))
2183 		return 0;
2184 
2185 	/*
2186 	 * Since the duration of printk() can vary depending on the message
2187 	 * and state of the ringbuffer, grab the timestamp now so that it is
2188 	 * close to the call of printk(). This provides a more deterministic
2189 	 * timestamp with respect to the caller.
2190 	 */
2191 	ts_nsec = local_clock();
2192 
2193 	caller_id = printk_caller_id();
2194 
2195 	/*
2196 	 * The sprintf needs to come first since the syslog prefix might be
2197 	 * passed in as a parameter. An extra byte must be reserved so that
2198 	 * later the vscnprintf() into the reserved buffer has room for the
2199 	 * terminating '\0', which is not counted by vsnprintf().
2200 	 */
2201 	va_copy(args2, args);
2202 	reserve_size = vsnprintf(&prefix_buf[0], sizeof(prefix_buf), fmt, args2) + 1;
2203 	va_end(args2);
2204 
2205 	if (reserve_size > PRINTKRB_RECORD_MAX)
2206 		reserve_size = PRINTKRB_RECORD_MAX;
2207 
2208 	/* Extract log level or control flags. */
2209 	if (facility == 0)
2210 		printk_parse_prefix(&prefix_buf[0], &level, &flags);
2211 
2212 	if (level == LOGLEVEL_DEFAULT)
2213 		level = default_message_loglevel;
2214 
2215 	if (dev_info)
2216 		flags |= LOG_NEWLINE;
2217 
2218 	if (flags & LOG_CONT) {
2219 		prb_rec_init_wr(&r, reserve_size);
2220 		if (prb_reserve_in_last(&e, prb, &r, caller_id, PRINTKRB_RECORD_MAX)) {
2221 			text_len = printk_sprint(&r.text_buf[r.info->text_len], reserve_size,
2222 						 facility, &flags, fmt, args);
2223 			r.info->text_len += text_len;
2224 
2225 			if (flags & LOG_NEWLINE) {
2226 				r.info->flags |= LOG_NEWLINE;
2227 				prb_final_commit(&e);
2228 			} else {
2229 				prb_commit(&e);
2230 			}
2231 
2232 			ret = text_len;
2233 			goto out;
2234 		}
2235 	}
2236 
2237 	/*
2238 	 * Explicitly initialize the record before every prb_reserve() call.
2239 	 * prb_reserve_in_last() and prb_reserve() purposely invalidate the
2240 	 * structure when they fail.
2241 	 */
2242 	prb_rec_init_wr(&r, reserve_size);
2243 	if (!prb_reserve(&e, prb, &r)) {
2244 		/* truncate the message if it is too long for empty buffer */
2245 		truncate_msg(&reserve_size, &trunc_msg_len);
2246 
2247 		prb_rec_init_wr(&r, reserve_size + trunc_msg_len);
2248 		if (!prb_reserve(&e, prb, &r))
2249 			goto out;
2250 	}
2251 
2252 	/* fill message */
2253 	text_len = printk_sprint(&r.text_buf[0], reserve_size, facility, &flags, fmt, args);
2254 	if (trunc_msg_len)
2255 		memcpy(&r.text_buf[text_len], trunc_msg, trunc_msg_len);
2256 	r.info->text_len = text_len + trunc_msg_len;
2257 	r.info->facility = facility;
2258 	r.info->level = level & 7;
2259 	r.info->flags = flags & 0x1f;
2260 	r.info->ts_nsec = ts_nsec;
2261 	r.info->caller_id = caller_id;
2262 	if (dev_info)
2263 		memcpy(&r.info->dev_info, dev_info, sizeof(r.info->dev_info));
2264 
2265 	/* A message without a trailing newline can be continued. */
2266 	if (!(flags & LOG_NEWLINE))
2267 		prb_commit(&e);
2268 	else
2269 		prb_final_commit(&e);
2270 
2271 	ret = text_len + trunc_msg_len;
2272 out:
2273 	printk_exit_irqrestore(recursion_ptr, irqflags);
2274 	return ret;
2275 }
2276 
2277 asmlinkage int vprintk_emit(int facility, int level,
2278 			    const struct dev_printk_info *dev_info,
2279 			    const char *fmt, va_list args)
2280 {
2281 	int printed_len;
2282 	bool in_sched = false;
2283 
2284 	/* Suppress unimportant messages after panic happens */
2285 	if (unlikely(suppress_printk))
2286 		return 0;
2287 
2288 	if (unlikely(suppress_panic_printk) &&
2289 	    atomic_read(&panic_cpu) != raw_smp_processor_id())
2290 		return 0;
2291 
2292 	if (level == LOGLEVEL_SCHED) {
2293 		level = LOGLEVEL_DEFAULT;
2294 		in_sched = true;
2295 	}
2296 
2297 	printk_delay(level);
2298 
2299 	printed_len = vprintk_store(facility, level, dev_info, fmt, args);
2300 
2301 	/* If called from the scheduler, we can not call up(). */
2302 	if (!in_sched) {
2303 		/*
2304 		 * The caller may be holding system-critical or
2305 		 * timing-sensitive locks. Disable preemption during
2306 		 * printing of all remaining records to all consoles so that
2307 		 * this context can return as soon as possible. Hopefully
2308 		 * another printk() caller will take over the printing.
2309 		 */
2310 		preempt_disable();
2311 		/*
2312 		 * Try to acquire and then immediately release the console
2313 		 * semaphore. The release will print out buffers. With the
2314 		 * spinning variant, this context tries to take over the
2315 		 * printing from another printing context.
2316 		 */
2317 		if (console_trylock_spinning())
2318 			console_unlock();
2319 		preempt_enable();
2320 	}
2321 
2322 	wake_up_klogd();
2323 	return printed_len;
2324 }
2325 EXPORT_SYMBOL(vprintk_emit);
2326 
2327 int vprintk_default(const char *fmt, va_list args)
2328 {
2329 	return vprintk_emit(0, LOGLEVEL_DEFAULT, NULL, fmt, args);
2330 }
2331 EXPORT_SYMBOL_GPL(vprintk_default);
2332 
2333 asmlinkage __visible int _printk(const char *fmt, ...)
2334 {
2335 	va_list args;
2336 	int r;
2337 
2338 	va_start(args, fmt);
2339 	r = vprintk(fmt, args);
2340 	va_end(args);
2341 
2342 	return r;
2343 }
2344 EXPORT_SYMBOL(_printk);
2345 
2346 static bool pr_flush(int timeout_ms, bool reset_on_progress);
2347 static bool __pr_flush(struct console *con, int timeout_ms, bool reset_on_progress);
2348 
2349 #else /* CONFIG_PRINTK */
2350 
2351 #define printk_time		false
2352 
2353 #define prb_read_valid(rb, seq, r)	false
2354 #define prb_first_valid_seq(rb)		0
2355 #define prb_next_seq(rb)		0
2356 
2357 static u64 syslog_seq;
2358 
2359 static size_t record_print_text(const struct printk_record *r,
2360 				bool syslog, bool time)
2361 {
2362 	return 0;
2363 }
2364 static ssize_t info_print_ext_header(char *buf, size_t size,
2365 				     struct printk_info *info)
2366 {
2367 	return 0;
2368 }
2369 static ssize_t msg_print_ext_body(char *buf, size_t size,
2370 				  char *text, size_t text_len,
2371 				  struct dev_printk_info *dev_info) { return 0; }
2372 static void console_lock_spinning_enable(void) { }
2373 static int console_lock_spinning_disable_and_check(int cookie) { return 0; }
2374 static bool suppress_message_printing(int level) { return false; }
2375 static bool pr_flush(int timeout_ms, bool reset_on_progress) { return true; }
2376 static bool __pr_flush(struct console *con, int timeout_ms, bool reset_on_progress) { return true; }
2377 
2378 #endif /* CONFIG_PRINTK */
2379 
2380 #ifdef CONFIG_EARLY_PRINTK
2381 struct console *early_console;
2382 
2383 asmlinkage __visible void early_printk(const char *fmt, ...)
2384 {
2385 	va_list ap;
2386 	char buf[512];
2387 	int n;
2388 
2389 	if (!early_console)
2390 		return;
2391 
2392 	va_start(ap, fmt);
2393 	n = vscnprintf(buf, sizeof(buf), fmt, ap);
2394 	va_end(ap);
2395 
2396 	early_console->write(early_console, buf, n);
2397 }
2398 #endif
2399 
2400 static void set_user_specified(struct console_cmdline *c, bool user_specified)
2401 {
2402 	if (!user_specified)
2403 		return;
2404 
2405 	/*
2406 	 * @c console was defined by the user on the command line.
2407 	 * Do not clear when added twice also by SPCR or the device tree.
2408 	 */
2409 	c->user_specified = true;
2410 	/* At least one console defined by the user on the command line. */
2411 	console_set_on_cmdline = 1;
2412 }
2413 
2414 static int __add_preferred_console(char *name, int idx, char *options,
2415 				   char *brl_options, bool user_specified)
2416 {
2417 	struct console_cmdline *c;
2418 	int i;
2419 
2420 	/*
2421 	 *	See if this tty is not yet registered, and
2422 	 *	if we have a slot free.
2423 	 */
2424 	for (i = 0, c = console_cmdline;
2425 	     i < MAX_CMDLINECONSOLES && c->name[0];
2426 	     i++, c++) {
2427 		if (strcmp(c->name, name) == 0 && c->index == idx) {
2428 			if (!brl_options)
2429 				preferred_console = i;
2430 			set_user_specified(c, user_specified);
2431 			return 0;
2432 		}
2433 	}
2434 	if (i == MAX_CMDLINECONSOLES)
2435 		return -E2BIG;
2436 	if (!brl_options)
2437 		preferred_console = i;
2438 	strscpy(c->name, name, sizeof(c->name));
2439 	c->options = options;
2440 	set_user_specified(c, user_specified);
2441 	braille_set_options(c, brl_options);
2442 
2443 	c->index = idx;
2444 	return 0;
2445 }
2446 
2447 static int __init console_msg_format_setup(char *str)
2448 {
2449 	if (!strcmp(str, "syslog"))
2450 		console_msg_format = MSG_FORMAT_SYSLOG;
2451 	if (!strcmp(str, "default"))
2452 		console_msg_format = MSG_FORMAT_DEFAULT;
2453 	return 1;
2454 }
2455 __setup("console_msg_format=", console_msg_format_setup);
2456 
2457 /*
2458  * Set up a console.  Called via do_early_param() in init/main.c
2459  * for each "console=" parameter in the boot command line.
2460  */
2461 static int __init console_setup(char *str)
2462 {
2463 	char buf[sizeof(console_cmdline[0].name) + 4]; /* 4 for "ttyS" */
2464 	char *s, *options, *brl_options = NULL;
2465 	int idx;
2466 
2467 	/*
2468 	 * console="" or console=null have been suggested as a way to
2469 	 * disable console output. Use ttynull that has been created
2470 	 * for exactly this purpose.
2471 	 */
2472 	if (str[0] == 0 || strcmp(str, "null") == 0) {
2473 		__add_preferred_console("ttynull", 0, NULL, NULL, true);
2474 		return 1;
2475 	}
2476 
2477 	if (_braille_console_setup(&str, &brl_options))
2478 		return 1;
2479 
2480 	/*
2481 	 * Decode str into name, index, options.
2482 	 */
2483 	if (str[0] >= '0' && str[0] <= '9') {
2484 		strcpy(buf, "ttyS");
2485 		strncpy(buf + 4, str, sizeof(buf) - 5);
2486 	} else {
2487 		strncpy(buf, str, sizeof(buf) - 1);
2488 	}
2489 	buf[sizeof(buf) - 1] = 0;
2490 	options = strchr(str, ',');
2491 	if (options)
2492 		*(options++) = 0;
2493 #ifdef __sparc__
2494 	if (!strcmp(str, "ttya"))
2495 		strcpy(buf, "ttyS0");
2496 	if (!strcmp(str, "ttyb"))
2497 		strcpy(buf, "ttyS1");
2498 #endif
2499 	for (s = buf; *s; s++)
2500 		if (isdigit(*s) || *s == ',')
2501 			break;
2502 	idx = simple_strtoul(s, NULL, 10);
2503 	*s = 0;
2504 
2505 	__add_preferred_console(buf, idx, options, brl_options, true);
2506 	return 1;
2507 }
2508 __setup("console=", console_setup);
2509 
2510 /**
2511  * add_preferred_console - add a device to the list of preferred consoles.
2512  * @name: device name
2513  * @idx: device index
2514  * @options: options for this console
2515  *
2516  * The last preferred console added will be used for kernel messages
2517  * and stdin/out/err for init.  Normally this is used by console_setup
2518  * above to handle user-supplied console arguments; however it can also
2519  * be used by arch-specific code either to override the user or more
2520  * commonly to provide a default console (ie from PROM variables) when
2521  * the user has not supplied one.
2522  */
2523 int add_preferred_console(char *name, int idx, char *options)
2524 {
2525 	return __add_preferred_console(name, idx, options, NULL, false);
2526 }
2527 
2528 bool console_suspend_enabled = true;
2529 EXPORT_SYMBOL(console_suspend_enabled);
2530 
2531 static int __init console_suspend_disable(char *str)
2532 {
2533 	console_suspend_enabled = false;
2534 	return 1;
2535 }
2536 __setup("no_console_suspend", console_suspend_disable);
2537 module_param_named(console_suspend, console_suspend_enabled,
2538 		bool, S_IRUGO | S_IWUSR);
2539 MODULE_PARM_DESC(console_suspend, "suspend console during suspend"
2540 	" and hibernate operations");
2541 
2542 static bool printk_console_no_auto_verbose;
2543 
2544 void console_verbose(void)
2545 {
2546 	if (console_loglevel && !printk_console_no_auto_verbose)
2547 		console_loglevel = CONSOLE_LOGLEVEL_MOTORMOUTH;
2548 }
2549 EXPORT_SYMBOL_GPL(console_verbose);
2550 
2551 module_param_named(console_no_auto_verbose, printk_console_no_auto_verbose, bool, 0644);
2552 MODULE_PARM_DESC(console_no_auto_verbose, "Disable console loglevel raise to highest on oops/panic/etc");
2553 
2554 /**
2555  * suspend_console - suspend the console subsystem
2556  *
2557  * This disables printk() while we go into suspend states
2558  */
2559 void suspend_console(void)
2560 {
2561 	if (!console_suspend_enabled)
2562 		return;
2563 	pr_info("Suspending console(s) (use no_console_suspend to debug)\n");
2564 	pr_flush(1000, true);
2565 	console_lock();
2566 	console_suspended = 1;
2567 	up_console_sem();
2568 }
2569 
2570 void resume_console(void)
2571 {
2572 	if (!console_suspend_enabled)
2573 		return;
2574 	down_console_sem();
2575 	console_suspended = 0;
2576 	console_unlock();
2577 	pr_flush(1000, true);
2578 }
2579 
2580 /**
2581  * console_cpu_notify - print deferred console messages after CPU hotplug
2582  * @cpu: unused
2583  *
2584  * If printk() is called from a CPU that is not online yet, the messages
2585  * will be printed on the console only if there are CON_ANYTIME consoles.
2586  * This function is called when a new CPU comes online (or fails to come
2587  * up) or goes offline.
2588  */
2589 static int console_cpu_notify(unsigned int cpu)
2590 {
2591 	if (!cpuhp_tasks_frozen) {
2592 		/* If trylock fails, someone else is doing the printing */
2593 		if (console_trylock())
2594 			console_unlock();
2595 	}
2596 	return 0;
2597 }
2598 
2599 /**
2600  * console_lock - block the console subsystem from printing
2601  *
2602  * Acquires a lock which guarantees that no consoles will
2603  * be in or enter their write() callback.
2604  *
2605  * Can sleep, returns nothing.
2606  */
2607 void console_lock(void)
2608 {
2609 	might_sleep();
2610 
2611 	down_console_sem();
2612 	if (console_suspended)
2613 		return;
2614 	console_locked = 1;
2615 	console_may_schedule = 1;
2616 }
2617 EXPORT_SYMBOL(console_lock);
2618 
2619 /**
2620  * console_trylock - try to block the console subsystem from printing
2621  *
2622  * Try to acquire a lock which guarantees that no consoles will
2623  * be in or enter their write() callback.
2624  *
2625  * returns 1 on success, and 0 on failure to acquire the lock.
2626  */
2627 int console_trylock(void)
2628 {
2629 	if (down_trylock_console_sem())
2630 		return 0;
2631 	if (console_suspended) {
2632 		up_console_sem();
2633 		return 0;
2634 	}
2635 	console_locked = 1;
2636 	console_may_schedule = 0;
2637 	return 1;
2638 }
2639 EXPORT_SYMBOL(console_trylock);
2640 
2641 int is_console_locked(void)
2642 {
2643 	return console_locked;
2644 }
2645 EXPORT_SYMBOL(is_console_locked);
2646 
2647 /*
2648  * Return true when this CPU should unlock console_sem without pushing all
2649  * messages to the console. This reduces the chance that the console is
2650  * locked when the panic CPU tries to use it.
2651  */
2652 static bool abandon_console_lock_in_panic(void)
2653 {
2654 	if (!panic_in_progress())
2655 		return false;
2656 
2657 	/*
2658 	 * We can use raw_smp_processor_id() here because it is impossible for
2659 	 * the task to be migrated to the panic_cpu, or away from it. If
2660 	 * panic_cpu has already been set, and we're not currently executing on
2661 	 * that CPU, then we never will be.
2662 	 */
2663 	return atomic_read(&panic_cpu) != raw_smp_processor_id();
2664 }
2665 
2666 /*
2667  * Check if the given console is currently capable and allowed to print
2668  * records.
2669  *
2670  * Requires the console_srcu_read_lock.
2671  */
2672 static inline bool console_is_usable(struct console *con)
2673 {
2674 	short flags = console_srcu_read_flags(con);
2675 
2676 	if (!(flags & CON_ENABLED))
2677 		return false;
2678 
2679 	if (!con->write)
2680 		return false;
2681 
2682 	/*
2683 	 * Console drivers may assume that per-cpu resources have been
2684 	 * allocated. So unless they're explicitly marked as being able to
2685 	 * cope (CON_ANYTIME) don't call them until this CPU is officially up.
2686 	 */
2687 	if (!cpu_online(raw_smp_processor_id()) && !(flags & CON_ANYTIME))
2688 		return false;
2689 
2690 	return true;
2691 }
2692 
2693 static void __console_unlock(void)
2694 {
2695 	console_locked = 0;
2696 	up_console_sem();
2697 }
2698 
2699 /*
2700  * Prepend the message in @pmsg->pbufs->outbuf with a "dropped message". This
2701  * is achieved by shifting the existing message over and inserting the dropped
2702  * message.
2703  *
2704  * @pmsg is the printk message to prepend.
2705  *
2706  * @dropped is the dropped count to report in the dropped message.
2707  *
2708  * If the message text in @pmsg->pbufs->outbuf does not have enough space for
2709  * the dropped message, the message text will be sufficiently truncated.
2710  *
2711  * If @pmsg->pbufs->outbuf is modified, @pmsg->outbuf_len is updated.
2712  */
2713 #ifdef CONFIG_PRINTK
2714 static void console_prepend_dropped(struct printk_message *pmsg, unsigned long dropped)
2715 {
2716 	struct printk_buffers *pbufs = pmsg->pbufs;
2717 	const size_t scratchbuf_sz = sizeof(pbufs->scratchbuf);
2718 	const size_t outbuf_sz = sizeof(pbufs->outbuf);
2719 	char *scratchbuf = &pbufs->scratchbuf[0];
2720 	char *outbuf = &pbufs->outbuf[0];
2721 	size_t len;
2722 
2723 	len = scnprintf(scratchbuf, scratchbuf_sz,
2724 		       "** %lu printk messages dropped **\n", dropped);
2725 
2726 	/*
2727 	 * Make sure outbuf is sufficiently large before prepending.
2728 	 * Keep at least the prefix when the message must be truncated.
2729 	 * It is a rather theoretical problem when someone tries to
2730 	 * use a minimalist buffer.
2731 	 */
2732 	if (WARN_ON_ONCE(len + PRINTK_PREFIX_MAX >= outbuf_sz))
2733 		return;
2734 
2735 	if (pmsg->outbuf_len + len >= outbuf_sz) {
2736 		/* Truncate the message, but keep it terminated. */
2737 		pmsg->outbuf_len = outbuf_sz - (len + 1);
2738 		outbuf[pmsg->outbuf_len] = 0;
2739 	}
2740 
2741 	memmove(outbuf + len, outbuf, pmsg->outbuf_len + 1);
2742 	memcpy(outbuf, scratchbuf, len);
2743 	pmsg->outbuf_len += len;
2744 }
2745 #else
2746 #define console_prepend_dropped(pmsg, dropped)
2747 #endif /* CONFIG_PRINTK */
2748 
2749 /*
2750  * Read and format the specified record (or a later record if the specified
2751  * record is not available).
2752  *
2753  * @pmsg will contain the formatted result. @pmsg->pbufs must point to a
2754  * struct printk_buffers.
2755  *
2756  * @seq is the record to read and format. If it is not available, the next
2757  * valid record is read.
2758  *
2759  * @is_extended specifies if the message should be formatted for extended
2760  * console output.
2761  *
2762  * @may_supress specifies if records may be skipped based on loglevel.
2763  *
2764  * Returns false if no record is available. Otherwise true and all fields
2765  * of @pmsg are valid. (See the documentation of struct printk_message
2766  * for information about the @pmsg fields.)
2767  */
2768 static bool printk_get_next_message(struct printk_message *pmsg, u64 seq,
2769 				    bool is_extended, bool may_suppress)
2770 {
2771 	static int panic_console_dropped;
2772 
2773 	struct printk_buffers *pbufs = pmsg->pbufs;
2774 	const size_t scratchbuf_sz = sizeof(pbufs->scratchbuf);
2775 	const size_t outbuf_sz = sizeof(pbufs->outbuf);
2776 	char *scratchbuf = &pbufs->scratchbuf[0];
2777 	char *outbuf = &pbufs->outbuf[0];
2778 	struct printk_info info;
2779 	struct printk_record r;
2780 	size_t len = 0;
2781 
2782 	/*
2783 	 * Formatting extended messages requires a separate buffer, so use the
2784 	 * scratch buffer to read in the ringbuffer text.
2785 	 *
2786 	 * Formatting normal messages is done in-place, so read the ringbuffer
2787 	 * text directly into the output buffer.
2788 	 */
2789 	if (is_extended)
2790 		prb_rec_init_rd(&r, &info, scratchbuf, scratchbuf_sz);
2791 	else
2792 		prb_rec_init_rd(&r, &info, outbuf, outbuf_sz);
2793 
2794 	if (!prb_read_valid(prb, seq, &r))
2795 		return false;
2796 
2797 	pmsg->seq = r.info->seq;
2798 	pmsg->dropped = r.info->seq - seq;
2799 
2800 	/*
2801 	 * Check for dropped messages in panic here so that printk
2802 	 * suppression can occur as early as possible if necessary.
2803 	 */
2804 	if (pmsg->dropped &&
2805 	    panic_in_progress() &&
2806 	    panic_console_dropped++ > 10) {
2807 		suppress_panic_printk = 1;
2808 		pr_warn_once("Too many dropped messages. Suppress messages on non-panic CPUs to prevent livelock.\n");
2809 	}
2810 
2811 	/* Skip record that has level above the console loglevel. */
2812 	if (may_suppress && suppress_message_printing(r.info->level))
2813 		goto out;
2814 
2815 	if (is_extended) {
2816 		len = info_print_ext_header(outbuf, outbuf_sz, r.info);
2817 		len += msg_print_ext_body(outbuf + len, outbuf_sz - len,
2818 					  &r.text_buf[0], r.info->text_len, &r.info->dev_info);
2819 	} else {
2820 		len = record_print_text(&r, console_msg_format & MSG_FORMAT_SYSLOG, printk_time);
2821 	}
2822 out:
2823 	pmsg->outbuf_len = len;
2824 	return true;
2825 }
2826 
2827 /*
2828  * Print one record for the given console. The record printed is whatever
2829  * record is the next available record for the given console.
2830  *
2831  * @handover will be set to true if a printk waiter has taken over the
2832  * console_lock, in which case the caller is no longer holding both the
2833  * console_lock and the SRCU read lock. Otherwise it is set to false.
2834  *
2835  * @cookie is the cookie from the SRCU read lock.
2836  *
2837  * Returns false if the given console has no next record to print, otherwise
2838  * true.
2839  *
2840  * Requires the console_lock and the SRCU read lock.
2841  */
2842 static bool console_emit_next_record(struct console *con, bool *handover, int cookie)
2843 {
2844 	static struct printk_buffers pbufs;
2845 
2846 	bool is_extended = console_srcu_read_flags(con) & CON_EXTENDED;
2847 	char *outbuf = &pbufs.outbuf[0];
2848 	struct printk_message pmsg = {
2849 		.pbufs = &pbufs,
2850 	};
2851 	unsigned long flags;
2852 
2853 	*handover = false;
2854 
2855 	if (!printk_get_next_message(&pmsg, con->seq, is_extended, true))
2856 		return false;
2857 
2858 	con->dropped += pmsg.dropped;
2859 
2860 	/* Skip messages of formatted length 0. */
2861 	if (pmsg.outbuf_len == 0) {
2862 		con->seq = pmsg.seq + 1;
2863 		goto skip;
2864 	}
2865 
2866 	if (con->dropped && !is_extended) {
2867 		console_prepend_dropped(&pmsg, con->dropped);
2868 		con->dropped = 0;
2869 	}
2870 
2871 	/*
2872 	 * While actively printing out messages, if another printk()
2873 	 * were to occur on another CPU, it may wait for this one to
2874 	 * finish. This task can not be preempted if there is a
2875 	 * waiter waiting to take over.
2876 	 *
2877 	 * Interrupts are disabled because the hand over to a waiter
2878 	 * must not be interrupted until the hand over is completed
2879 	 * (@console_waiter is cleared).
2880 	 */
2881 	printk_safe_enter_irqsave(flags);
2882 	console_lock_spinning_enable();
2883 
2884 	/* Do not trace print latency. */
2885 	stop_critical_timings();
2886 
2887 	/* Write everything out to the hardware. */
2888 	con->write(con, outbuf, pmsg.outbuf_len);
2889 
2890 	start_critical_timings();
2891 
2892 	con->seq = pmsg.seq + 1;
2893 
2894 	*handover = console_lock_spinning_disable_and_check(cookie);
2895 	printk_safe_exit_irqrestore(flags);
2896 skip:
2897 	return true;
2898 }
2899 
2900 /*
2901  * Print out all remaining records to all consoles.
2902  *
2903  * @do_cond_resched is set by the caller. It can be true only in schedulable
2904  * context.
2905  *
2906  * @next_seq is set to the sequence number after the last available record.
2907  * The value is valid only when this function returns true. It means that all
2908  * usable consoles are completely flushed.
2909  *
2910  * @handover will be set to true if a printk waiter has taken over the
2911  * console_lock, in which case the caller is no longer holding the
2912  * console_lock. Otherwise it is set to false.
2913  *
2914  * Returns true when there was at least one usable console and all messages
2915  * were flushed to all usable consoles. A returned false informs the caller
2916  * that everything was not flushed (either there were no usable consoles or
2917  * another context has taken over printing or it is a panic situation and this
2918  * is not the panic CPU). Regardless the reason, the caller should assume it
2919  * is not useful to immediately try again.
2920  *
2921  * Requires the console_lock.
2922  */
2923 static bool console_flush_all(bool do_cond_resched, u64 *next_seq, bool *handover)
2924 {
2925 	bool any_usable = false;
2926 	struct console *con;
2927 	bool any_progress;
2928 	int cookie;
2929 
2930 	*next_seq = 0;
2931 	*handover = false;
2932 
2933 	do {
2934 		any_progress = false;
2935 
2936 		cookie = console_srcu_read_lock();
2937 		for_each_console_srcu(con) {
2938 			bool progress;
2939 
2940 			if (!console_is_usable(con))
2941 				continue;
2942 			any_usable = true;
2943 
2944 			progress = console_emit_next_record(con, handover, cookie);
2945 
2946 			/*
2947 			 * If a handover has occurred, the SRCU read lock
2948 			 * is already released.
2949 			 */
2950 			if (*handover)
2951 				return false;
2952 
2953 			/* Track the next of the highest seq flushed. */
2954 			if (con->seq > *next_seq)
2955 				*next_seq = con->seq;
2956 
2957 			if (!progress)
2958 				continue;
2959 			any_progress = true;
2960 
2961 			/* Allow panic_cpu to take over the consoles safely. */
2962 			if (abandon_console_lock_in_panic())
2963 				goto abandon;
2964 
2965 			if (do_cond_resched)
2966 				cond_resched();
2967 		}
2968 		console_srcu_read_unlock(cookie);
2969 	} while (any_progress);
2970 
2971 	return any_usable;
2972 
2973 abandon:
2974 	console_srcu_read_unlock(cookie);
2975 	return false;
2976 }
2977 
2978 /**
2979  * console_unlock - unblock the console subsystem from printing
2980  *
2981  * Releases the console_lock which the caller holds to block printing of
2982  * the console subsystem.
2983  *
2984  * While the console_lock was held, console output may have been buffered
2985  * by printk().  If this is the case, console_unlock(); emits
2986  * the output prior to releasing the lock.
2987  *
2988  * console_unlock(); may be called from any context.
2989  */
2990 void console_unlock(void)
2991 {
2992 	bool do_cond_resched;
2993 	bool handover;
2994 	bool flushed;
2995 	u64 next_seq;
2996 
2997 	if (console_suspended) {
2998 		up_console_sem();
2999 		return;
3000 	}
3001 
3002 	/*
3003 	 * Console drivers are called with interrupts disabled, so
3004 	 * @console_may_schedule should be cleared before; however, we may
3005 	 * end up dumping a lot of lines, for example, if called from
3006 	 * console registration path, and should invoke cond_resched()
3007 	 * between lines if allowable.  Not doing so can cause a very long
3008 	 * scheduling stall on a slow console leading to RCU stall and
3009 	 * softlockup warnings which exacerbate the issue with more
3010 	 * messages practically incapacitating the system. Therefore, create
3011 	 * a local to use for the printing loop.
3012 	 */
3013 	do_cond_resched = console_may_schedule;
3014 
3015 	do {
3016 		console_may_schedule = 0;
3017 
3018 		flushed = console_flush_all(do_cond_resched, &next_seq, &handover);
3019 		if (!handover)
3020 			__console_unlock();
3021 
3022 		/*
3023 		 * Abort if there was a failure to flush all messages to all
3024 		 * usable consoles. Either it is not possible to flush (in
3025 		 * which case it would be an infinite loop of retrying) or
3026 		 * another context has taken over printing.
3027 		 */
3028 		if (!flushed)
3029 			break;
3030 
3031 		/*
3032 		 * Some context may have added new records after
3033 		 * console_flush_all() but before unlocking the console.
3034 		 * Re-check if there is a new record to flush. If the trylock
3035 		 * fails, another context is already handling the printing.
3036 		 */
3037 	} while (prb_read_valid(prb, next_seq, NULL) && console_trylock());
3038 }
3039 EXPORT_SYMBOL(console_unlock);
3040 
3041 /**
3042  * console_conditional_schedule - yield the CPU if required
3043  *
3044  * If the console code is currently allowed to sleep, and
3045  * if this CPU should yield the CPU to another task, do
3046  * so here.
3047  *
3048  * Must be called within console_lock();.
3049  */
3050 void __sched console_conditional_schedule(void)
3051 {
3052 	if (console_may_schedule)
3053 		cond_resched();
3054 }
3055 EXPORT_SYMBOL(console_conditional_schedule);
3056 
3057 void console_unblank(void)
3058 {
3059 	struct console *c;
3060 	int cookie;
3061 
3062 	/*
3063 	 * Stop console printing because the unblank() callback may
3064 	 * assume the console is not within its write() callback.
3065 	 *
3066 	 * If @oops_in_progress is set, this may be an atomic context.
3067 	 * In that case, attempt a trylock as best-effort.
3068 	 */
3069 	if (oops_in_progress) {
3070 		if (down_trylock_console_sem() != 0)
3071 			return;
3072 	} else
3073 		console_lock();
3074 
3075 	console_locked = 1;
3076 	console_may_schedule = 0;
3077 
3078 	cookie = console_srcu_read_lock();
3079 	for_each_console_srcu(c) {
3080 		if ((console_srcu_read_flags(c) & CON_ENABLED) && c->unblank)
3081 			c->unblank();
3082 	}
3083 	console_srcu_read_unlock(cookie);
3084 
3085 	console_unlock();
3086 
3087 	if (!oops_in_progress)
3088 		pr_flush(1000, true);
3089 }
3090 
3091 /**
3092  * console_flush_on_panic - flush console content on panic
3093  * @mode: flush all messages in buffer or just the pending ones
3094  *
3095  * Immediately output all pending messages no matter what.
3096  */
3097 void console_flush_on_panic(enum con_flush_mode mode)
3098 {
3099 	/*
3100 	 * If someone else is holding the console lock, trylock will fail
3101 	 * and may_schedule may be set.  Ignore and proceed to unlock so
3102 	 * that messages are flushed out.  As this can be called from any
3103 	 * context and we don't want to get preempted while flushing,
3104 	 * ensure may_schedule is cleared.
3105 	 */
3106 	console_trylock();
3107 	console_may_schedule = 0;
3108 
3109 	if (mode == CONSOLE_REPLAY_ALL) {
3110 		struct console *c;
3111 		int cookie;
3112 		u64 seq;
3113 
3114 		seq = prb_first_valid_seq(prb);
3115 
3116 		cookie = console_srcu_read_lock();
3117 		for_each_console_srcu(c) {
3118 			/*
3119 			 * If the above console_trylock() failed, this is an
3120 			 * unsynchronized assignment. But in that case, the
3121 			 * kernel is in "hope and pray" mode anyway.
3122 			 */
3123 			c->seq = seq;
3124 		}
3125 		console_srcu_read_unlock(cookie);
3126 	}
3127 	console_unlock();
3128 }
3129 
3130 /*
3131  * Return the console tty driver structure and its associated index
3132  */
3133 struct tty_driver *console_device(int *index)
3134 {
3135 	struct console *c;
3136 	struct tty_driver *driver = NULL;
3137 	int cookie;
3138 
3139 	/*
3140 	 * Take console_lock to serialize device() callback with
3141 	 * other console operations. For example, fg_console is
3142 	 * modified under console_lock when switching vt.
3143 	 */
3144 	console_lock();
3145 
3146 	cookie = console_srcu_read_lock();
3147 	for_each_console_srcu(c) {
3148 		if (!c->device)
3149 			continue;
3150 		driver = c->device(c, index);
3151 		if (driver)
3152 			break;
3153 	}
3154 	console_srcu_read_unlock(cookie);
3155 
3156 	console_unlock();
3157 	return driver;
3158 }
3159 
3160 /*
3161  * Prevent further output on the passed console device so that (for example)
3162  * serial drivers can disable console output before suspending a port, and can
3163  * re-enable output afterwards.
3164  */
3165 void console_stop(struct console *console)
3166 {
3167 	__pr_flush(console, 1000, true);
3168 	console_list_lock();
3169 	console_srcu_write_flags(console, console->flags & ~CON_ENABLED);
3170 	console_list_unlock();
3171 
3172 	/*
3173 	 * Ensure that all SRCU list walks have completed. All contexts must
3174 	 * be able to see that this console is disabled so that (for example)
3175 	 * the caller can suspend the port without risk of another context
3176 	 * using the port.
3177 	 */
3178 	synchronize_srcu(&console_srcu);
3179 }
3180 EXPORT_SYMBOL(console_stop);
3181 
3182 void console_start(struct console *console)
3183 {
3184 	console_list_lock();
3185 	console_srcu_write_flags(console, console->flags | CON_ENABLED);
3186 	console_list_unlock();
3187 	__pr_flush(console, 1000, true);
3188 }
3189 EXPORT_SYMBOL(console_start);
3190 
3191 static int __read_mostly keep_bootcon;
3192 
3193 static int __init keep_bootcon_setup(char *str)
3194 {
3195 	keep_bootcon = 1;
3196 	pr_info("debug: skip boot console de-registration.\n");
3197 
3198 	return 0;
3199 }
3200 
3201 early_param("keep_bootcon", keep_bootcon_setup);
3202 
3203 /*
3204  * This is called by register_console() to try to match
3205  * the newly registered console with any of the ones selected
3206  * by either the command line or add_preferred_console() and
3207  * setup/enable it.
3208  *
3209  * Care need to be taken with consoles that are statically
3210  * enabled such as netconsole
3211  */
3212 static int try_enable_preferred_console(struct console *newcon,
3213 					bool user_specified)
3214 {
3215 	struct console_cmdline *c;
3216 	int i, err;
3217 
3218 	for (i = 0, c = console_cmdline;
3219 	     i < MAX_CMDLINECONSOLES && c->name[0];
3220 	     i++, c++) {
3221 		if (c->user_specified != user_specified)
3222 			continue;
3223 		if (!newcon->match ||
3224 		    newcon->match(newcon, c->name, c->index, c->options) != 0) {
3225 			/* default matching */
3226 			BUILD_BUG_ON(sizeof(c->name) != sizeof(newcon->name));
3227 			if (strcmp(c->name, newcon->name) != 0)
3228 				continue;
3229 			if (newcon->index >= 0 &&
3230 			    newcon->index != c->index)
3231 				continue;
3232 			if (newcon->index < 0)
3233 				newcon->index = c->index;
3234 
3235 			if (_braille_register_console(newcon, c))
3236 				return 0;
3237 
3238 			if (newcon->setup &&
3239 			    (err = newcon->setup(newcon, c->options)) != 0)
3240 				return err;
3241 		}
3242 		newcon->flags |= CON_ENABLED;
3243 		if (i == preferred_console)
3244 			newcon->flags |= CON_CONSDEV;
3245 		return 0;
3246 	}
3247 
3248 	/*
3249 	 * Some consoles, such as pstore and netconsole, can be enabled even
3250 	 * without matching. Accept the pre-enabled consoles only when match()
3251 	 * and setup() had a chance to be called.
3252 	 */
3253 	if (newcon->flags & CON_ENABLED && c->user_specified ==	user_specified)
3254 		return 0;
3255 
3256 	return -ENOENT;
3257 }
3258 
3259 /* Try to enable the console unconditionally */
3260 static void try_enable_default_console(struct console *newcon)
3261 {
3262 	if (newcon->index < 0)
3263 		newcon->index = 0;
3264 
3265 	if (newcon->setup && newcon->setup(newcon, NULL) != 0)
3266 		return;
3267 
3268 	newcon->flags |= CON_ENABLED;
3269 
3270 	if (newcon->device)
3271 		newcon->flags |= CON_CONSDEV;
3272 }
3273 
3274 #define con_printk(lvl, con, fmt, ...)			\
3275 	printk(lvl pr_fmt("%sconsole [%s%d] " fmt),	\
3276 	       (con->flags & CON_BOOT) ? "boot" : "",	\
3277 	       con->name, con->index, ##__VA_ARGS__)
3278 
3279 static void console_init_seq(struct console *newcon, bool bootcon_registered)
3280 {
3281 	struct console *con;
3282 	bool handover;
3283 
3284 	if (newcon->flags & (CON_PRINTBUFFER | CON_BOOT)) {
3285 		/* Get a consistent copy of @syslog_seq. */
3286 		mutex_lock(&syslog_lock);
3287 		newcon->seq = syslog_seq;
3288 		mutex_unlock(&syslog_lock);
3289 	} else {
3290 		/* Begin with next message added to ringbuffer. */
3291 		newcon->seq = prb_next_seq(prb);
3292 
3293 		/*
3294 		 * If any enabled boot consoles are due to be unregistered
3295 		 * shortly, some may not be caught up and may be the same
3296 		 * device as @newcon. Since it is not known which boot console
3297 		 * is the same device, flush all consoles and, if necessary,
3298 		 * start with the message of the enabled boot console that is
3299 		 * the furthest behind.
3300 		 */
3301 		if (bootcon_registered && !keep_bootcon) {
3302 			/*
3303 			 * Hold the console_lock to stop console printing and
3304 			 * guarantee safe access to console->seq.
3305 			 */
3306 			console_lock();
3307 
3308 			/*
3309 			 * Flush all consoles and set the console to start at
3310 			 * the next unprinted sequence number.
3311 			 */
3312 			if (!console_flush_all(true, &newcon->seq, &handover)) {
3313 				/*
3314 				 * Flushing failed. Just choose the lowest
3315 				 * sequence of the enabled boot consoles.
3316 				 */
3317 
3318 				/*
3319 				 * If there was a handover, this context no
3320 				 * longer holds the console_lock.
3321 				 */
3322 				if (handover)
3323 					console_lock();
3324 
3325 				newcon->seq = prb_next_seq(prb);
3326 				for_each_console(con) {
3327 					if ((con->flags & CON_BOOT) &&
3328 					    (con->flags & CON_ENABLED) &&
3329 					    con->seq < newcon->seq) {
3330 						newcon->seq = con->seq;
3331 					}
3332 				}
3333 			}
3334 
3335 			console_unlock();
3336 		}
3337 	}
3338 }
3339 
3340 #define console_first()				\
3341 	hlist_entry(console_list.first, struct console, node)
3342 
3343 static int unregister_console_locked(struct console *console);
3344 
3345 /*
3346  * The console driver calls this routine during kernel initialization
3347  * to register the console printing procedure with printk() and to
3348  * print any messages that were printed by the kernel before the
3349  * console driver was initialized.
3350  *
3351  * This can happen pretty early during the boot process (because of
3352  * early_printk) - sometimes before setup_arch() completes - be careful
3353  * of what kernel features are used - they may not be initialised yet.
3354  *
3355  * There are two types of consoles - bootconsoles (early_printk) and
3356  * "real" consoles (everything which is not a bootconsole) which are
3357  * handled differently.
3358  *  - Any number of bootconsoles can be registered at any time.
3359  *  - As soon as a "real" console is registered, all bootconsoles
3360  *    will be unregistered automatically.
3361  *  - Once a "real" console is registered, any attempt to register a
3362  *    bootconsoles will be rejected
3363  */
3364 void register_console(struct console *newcon)
3365 {
3366 	struct console *con;
3367 	bool bootcon_registered = false;
3368 	bool realcon_registered = false;
3369 	int err;
3370 
3371 	console_list_lock();
3372 
3373 	for_each_console(con) {
3374 		if (WARN(con == newcon, "console '%s%d' already registered\n",
3375 					 con->name, con->index)) {
3376 			goto unlock;
3377 		}
3378 
3379 		if (con->flags & CON_BOOT)
3380 			bootcon_registered = true;
3381 		else
3382 			realcon_registered = true;
3383 	}
3384 
3385 	/* Do not register boot consoles when there already is a real one. */
3386 	if ((newcon->flags & CON_BOOT) && realcon_registered) {
3387 		pr_info("Too late to register bootconsole %s%d\n",
3388 			newcon->name, newcon->index);
3389 		goto unlock;
3390 	}
3391 
3392 	/*
3393 	 * See if we want to enable this console driver by default.
3394 	 *
3395 	 * Nope when a console is preferred by the command line, device
3396 	 * tree, or SPCR.
3397 	 *
3398 	 * The first real console with tty binding (driver) wins. More
3399 	 * consoles might get enabled before the right one is found.
3400 	 *
3401 	 * Note that a console with tty binding will have CON_CONSDEV
3402 	 * flag set and will be first in the list.
3403 	 */
3404 	if (preferred_console < 0) {
3405 		if (hlist_empty(&console_list) || !console_first()->device ||
3406 		    console_first()->flags & CON_BOOT) {
3407 			try_enable_default_console(newcon);
3408 		}
3409 	}
3410 
3411 	/* See if this console matches one we selected on the command line */
3412 	err = try_enable_preferred_console(newcon, true);
3413 
3414 	/* If not, try to match against the platform default(s) */
3415 	if (err == -ENOENT)
3416 		err = try_enable_preferred_console(newcon, false);
3417 
3418 	/* printk() messages are not printed to the Braille console. */
3419 	if (err || newcon->flags & CON_BRL)
3420 		goto unlock;
3421 
3422 	/*
3423 	 * If we have a bootconsole, and are switching to a real console,
3424 	 * don't print everything out again, since when the boot console, and
3425 	 * the real console are the same physical device, it's annoying to
3426 	 * see the beginning boot messages twice
3427 	 */
3428 	if (bootcon_registered &&
3429 	    ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV)) {
3430 		newcon->flags &= ~CON_PRINTBUFFER;
3431 	}
3432 
3433 	newcon->dropped = 0;
3434 	console_init_seq(newcon, bootcon_registered);
3435 
3436 	/*
3437 	 * Put this console in the list - keep the
3438 	 * preferred driver at the head of the list.
3439 	 */
3440 	if (hlist_empty(&console_list)) {
3441 		/* Ensure CON_CONSDEV is always set for the head. */
3442 		newcon->flags |= CON_CONSDEV;
3443 		hlist_add_head_rcu(&newcon->node, &console_list);
3444 
3445 	} else if (newcon->flags & CON_CONSDEV) {
3446 		/* Only the new head can have CON_CONSDEV set. */
3447 		console_srcu_write_flags(console_first(), console_first()->flags & ~CON_CONSDEV);
3448 		hlist_add_head_rcu(&newcon->node, &console_list);
3449 
3450 	} else {
3451 		hlist_add_behind_rcu(&newcon->node, console_list.first);
3452 	}
3453 
3454 	/*
3455 	 * No need to synchronize SRCU here! The caller does not rely
3456 	 * on all contexts being able to see the new console before
3457 	 * register_console() completes.
3458 	 */
3459 
3460 	console_sysfs_notify();
3461 
3462 	/*
3463 	 * By unregistering the bootconsoles after we enable the real console
3464 	 * we get the "console xxx enabled" message on all the consoles -
3465 	 * boot consoles, real consoles, etc - this is to ensure that end
3466 	 * users know there might be something in the kernel's log buffer that
3467 	 * went to the bootconsole (that they do not see on the real console)
3468 	 */
3469 	con_printk(KERN_INFO, newcon, "enabled\n");
3470 	if (bootcon_registered &&
3471 	    ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV) &&
3472 	    !keep_bootcon) {
3473 		struct hlist_node *tmp;
3474 
3475 		hlist_for_each_entry_safe(con, tmp, &console_list, node) {
3476 			if (con->flags & CON_BOOT)
3477 				unregister_console_locked(con);
3478 		}
3479 	}
3480 unlock:
3481 	console_list_unlock();
3482 }
3483 EXPORT_SYMBOL(register_console);
3484 
3485 /* Must be called under console_list_lock(). */
3486 static int unregister_console_locked(struct console *console)
3487 {
3488 	int res;
3489 
3490 	lockdep_assert_console_list_lock_held();
3491 
3492 	con_printk(KERN_INFO, console, "disabled\n");
3493 
3494 	res = _braille_unregister_console(console);
3495 	if (res < 0)
3496 		return res;
3497 	if (res > 0)
3498 		return 0;
3499 
3500 	/* Disable it unconditionally */
3501 	console_srcu_write_flags(console, console->flags & ~CON_ENABLED);
3502 
3503 	if (!console_is_registered_locked(console))
3504 		return -ENODEV;
3505 
3506 	hlist_del_init_rcu(&console->node);
3507 
3508 	/*
3509 	 * <HISTORICAL>
3510 	 * If this isn't the last console and it has CON_CONSDEV set, we
3511 	 * need to set it on the next preferred console.
3512 	 * </HISTORICAL>
3513 	 *
3514 	 * The above makes no sense as there is no guarantee that the next
3515 	 * console has any device attached. Oh well....
3516 	 */
3517 	if (!hlist_empty(&console_list) && console->flags & CON_CONSDEV)
3518 		console_srcu_write_flags(console_first(), console_first()->flags | CON_CONSDEV);
3519 
3520 	/*
3521 	 * Ensure that all SRCU list walks have completed. All contexts
3522 	 * must not be able to see this console in the list so that any
3523 	 * exit/cleanup routines can be performed safely.
3524 	 */
3525 	synchronize_srcu(&console_srcu);
3526 
3527 	console_sysfs_notify();
3528 
3529 	if (console->exit)
3530 		res = console->exit(console);
3531 
3532 	return res;
3533 }
3534 
3535 int unregister_console(struct console *console)
3536 {
3537 	int res;
3538 
3539 	console_list_lock();
3540 	res = unregister_console_locked(console);
3541 	console_list_unlock();
3542 	return res;
3543 }
3544 EXPORT_SYMBOL(unregister_console);
3545 
3546 /**
3547  * console_force_preferred_locked - force a registered console preferred
3548  * @con: The registered console to force preferred.
3549  *
3550  * Must be called under console_list_lock().
3551  */
3552 void console_force_preferred_locked(struct console *con)
3553 {
3554 	struct console *cur_pref_con;
3555 
3556 	if (!console_is_registered_locked(con))
3557 		return;
3558 
3559 	cur_pref_con = console_first();
3560 
3561 	/* Already preferred? */
3562 	if (cur_pref_con == con)
3563 		return;
3564 
3565 	/*
3566 	 * Delete, but do not re-initialize the entry. This allows the console
3567 	 * to continue to appear registered (via any hlist_unhashed_lockless()
3568 	 * checks), even though it was briefly removed from the console list.
3569 	 */
3570 	hlist_del_rcu(&con->node);
3571 
3572 	/*
3573 	 * Ensure that all SRCU list walks have completed so that the console
3574 	 * can be added to the beginning of the console list and its forward
3575 	 * list pointer can be re-initialized.
3576 	 */
3577 	synchronize_srcu(&console_srcu);
3578 
3579 	con->flags |= CON_CONSDEV;
3580 	WARN_ON(!con->device);
3581 
3582 	/* Only the new head can have CON_CONSDEV set. */
3583 	console_srcu_write_flags(cur_pref_con, cur_pref_con->flags & ~CON_CONSDEV);
3584 	hlist_add_head_rcu(&con->node, &console_list);
3585 }
3586 EXPORT_SYMBOL(console_force_preferred_locked);
3587 
3588 /*
3589  * Initialize the console device. This is called *early*, so
3590  * we can't necessarily depend on lots of kernel help here.
3591  * Just do some early initializations, and do the complex setup
3592  * later.
3593  */
3594 void __init console_init(void)
3595 {
3596 	int ret;
3597 	initcall_t call;
3598 	initcall_entry_t *ce;
3599 
3600 	/* Setup the default TTY line discipline. */
3601 	n_tty_init();
3602 
3603 	/*
3604 	 * set up the console device so that later boot sequences can
3605 	 * inform about problems etc..
3606 	 */
3607 	ce = __con_initcall_start;
3608 	trace_initcall_level("console");
3609 	while (ce < __con_initcall_end) {
3610 		call = initcall_from_entry(ce);
3611 		trace_initcall_start(call);
3612 		ret = call();
3613 		trace_initcall_finish(call, ret);
3614 		ce++;
3615 	}
3616 }
3617 
3618 /*
3619  * Some boot consoles access data that is in the init section and which will
3620  * be discarded after the initcalls have been run. To make sure that no code
3621  * will access this data, unregister the boot consoles in a late initcall.
3622  *
3623  * If for some reason, such as deferred probe or the driver being a loadable
3624  * module, the real console hasn't registered yet at this point, there will
3625  * be a brief interval in which no messages are logged to the console, which
3626  * makes it difficult to diagnose problems that occur during this time.
3627  *
3628  * To mitigate this problem somewhat, only unregister consoles whose memory
3629  * intersects with the init section. Note that all other boot consoles will
3630  * get unregistered when the real preferred console is registered.
3631  */
3632 static int __init printk_late_init(void)
3633 {
3634 	struct hlist_node *tmp;
3635 	struct console *con;
3636 	int ret;
3637 
3638 	console_list_lock();
3639 	hlist_for_each_entry_safe(con, tmp, &console_list, node) {
3640 		if (!(con->flags & CON_BOOT))
3641 			continue;
3642 
3643 		/* Check addresses that might be used for enabled consoles. */
3644 		if (init_section_intersects(con, sizeof(*con)) ||
3645 		    init_section_contains(con->write, 0) ||
3646 		    init_section_contains(con->read, 0) ||
3647 		    init_section_contains(con->device, 0) ||
3648 		    init_section_contains(con->unblank, 0) ||
3649 		    init_section_contains(con->data, 0)) {
3650 			/*
3651 			 * Please, consider moving the reported consoles out
3652 			 * of the init section.
3653 			 */
3654 			pr_warn("bootconsole [%s%d] uses init memory and must be disabled even before the real one is ready\n",
3655 				con->name, con->index);
3656 			unregister_console_locked(con);
3657 		}
3658 	}
3659 	console_list_unlock();
3660 
3661 	ret = cpuhp_setup_state_nocalls(CPUHP_PRINTK_DEAD, "printk:dead", NULL,
3662 					console_cpu_notify);
3663 	WARN_ON(ret < 0);
3664 	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "printk:online",
3665 					console_cpu_notify, NULL);
3666 	WARN_ON(ret < 0);
3667 	printk_sysctl_init();
3668 	return 0;
3669 }
3670 late_initcall(printk_late_init);
3671 
3672 #if defined CONFIG_PRINTK
3673 /* If @con is specified, only wait for that console. Otherwise wait for all. */
3674 static bool __pr_flush(struct console *con, int timeout_ms, bool reset_on_progress)
3675 {
3676 	int remaining = timeout_ms;
3677 	struct console *c;
3678 	u64 last_diff = 0;
3679 	u64 printk_seq;
3680 	int cookie;
3681 	u64 diff;
3682 	u64 seq;
3683 
3684 	might_sleep();
3685 
3686 	seq = prb_next_seq(prb);
3687 
3688 	for (;;) {
3689 		diff = 0;
3690 
3691 		/*
3692 		 * Hold the console_lock to guarantee safe access to
3693 		 * console->seq and to prevent changes to @console_suspended
3694 		 * until all consoles have been processed.
3695 		 */
3696 		console_lock();
3697 
3698 		cookie = console_srcu_read_lock();
3699 		for_each_console_srcu(c) {
3700 			if (con && con != c)
3701 				continue;
3702 			if (!console_is_usable(c))
3703 				continue;
3704 			printk_seq = c->seq;
3705 			if (printk_seq < seq)
3706 				diff += seq - printk_seq;
3707 		}
3708 		console_srcu_read_unlock(cookie);
3709 
3710 		/*
3711 		 * If consoles are suspended, it cannot be expected that they
3712 		 * make forward progress, so timeout immediately. @diff is
3713 		 * still used to return a valid flush status.
3714 		 */
3715 		if (console_suspended)
3716 			remaining = 0;
3717 		else if (diff != last_diff && reset_on_progress)
3718 			remaining = timeout_ms;
3719 
3720 		console_unlock();
3721 
3722 		if (diff == 0 || remaining == 0)
3723 			break;
3724 
3725 		if (remaining < 0) {
3726 			/* no timeout limit */
3727 			msleep(100);
3728 		} else if (remaining < 100) {
3729 			msleep(remaining);
3730 			remaining = 0;
3731 		} else {
3732 			msleep(100);
3733 			remaining -= 100;
3734 		}
3735 
3736 		last_diff = diff;
3737 	}
3738 
3739 	return (diff == 0);
3740 }
3741 
3742 /**
3743  * pr_flush() - Wait for printing threads to catch up.
3744  *
3745  * @timeout_ms:        The maximum time (in ms) to wait.
3746  * @reset_on_progress: Reset the timeout if forward progress is seen.
3747  *
3748  * A value of 0 for @timeout_ms means no waiting will occur. A value of -1
3749  * represents infinite waiting.
3750  *
3751  * If @reset_on_progress is true, the timeout will be reset whenever any
3752  * printer has been seen to make some forward progress.
3753  *
3754  * Context: Process context. May sleep while acquiring console lock.
3755  * Return: true if all enabled printers are caught up.
3756  */
3757 static bool pr_flush(int timeout_ms, bool reset_on_progress)
3758 {
3759 	return __pr_flush(NULL, timeout_ms, reset_on_progress);
3760 }
3761 
3762 /*
3763  * Delayed printk version, for scheduler-internal messages:
3764  */
3765 #define PRINTK_PENDING_WAKEUP	0x01
3766 #define PRINTK_PENDING_OUTPUT	0x02
3767 
3768 static DEFINE_PER_CPU(int, printk_pending);
3769 
3770 static void wake_up_klogd_work_func(struct irq_work *irq_work)
3771 {
3772 	int pending = this_cpu_xchg(printk_pending, 0);
3773 
3774 	if (pending & PRINTK_PENDING_OUTPUT) {
3775 		/* If trylock fails, someone else is doing the printing */
3776 		if (console_trylock())
3777 			console_unlock();
3778 	}
3779 
3780 	if (pending & PRINTK_PENDING_WAKEUP)
3781 		wake_up_interruptible(&log_wait);
3782 }
3783 
3784 static DEFINE_PER_CPU(struct irq_work, wake_up_klogd_work) =
3785 	IRQ_WORK_INIT_LAZY(wake_up_klogd_work_func);
3786 
3787 static void __wake_up_klogd(int val)
3788 {
3789 	if (!printk_percpu_data_ready())
3790 		return;
3791 
3792 	preempt_disable();
3793 	/*
3794 	 * Guarantee any new records can be seen by tasks preparing to wait
3795 	 * before this context checks if the wait queue is empty.
3796 	 *
3797 	 * The full memory barrier within wq_has_sleeper() pairs with the full
3798 	 * memory barrier within set_current_state() of
3799 	 * prepare_to_wait_event(), which is called after ___wait_event() adds
3800 	 * the waiter but before it has checked the wait condition.
3801 	 *
3802 	 * This pairs with devkmsg_read:A and syslog_print:A.
3803 	 */
3804 	if (wq_has_sleeper(&log_wait) || /* LMM(__wake_up_klogd:A) */
3805 	    (val & PRINTK_PENDING_OUTPUT)) {
3806 		this_cpu_or(printk_pending, val);
3807 		irq_work_queue(this_cpu_ptr(&wake_up_klogd_work));
3808 	}
3809 	preempt_enable();
3810 }
3811 
3812 void wake_up_klogd(void)
3813 {
3814 	__wake_up_klogd(PRINTK_PENDING_WAKEUP);
3815 }
3816 
3817 void defer_console_output(void)
3818 {
3819 	/*
3820 	 * New messages may have been added directly to the ringbuffer
3821 	 * using vprintk_store(), so wake any waiters as well.
3822 	 */
3823 	__wake_up_klogd(PRINTK_PENDING_WAKEUP | PRINTK_PENDING_OUTPUT);
3824 }
3825 
3826 void printk_trigger_flush(void)
3827 {
3828 	defer_console_output();
3829 }
3830 
3831 int vprintk_deferred(const char *fmt, va_list args)
3832 {
3833 	int r;
3834 
3835 	r = vprintk_emit(0, LOGLEVEL_SCHED, NULL, fmt, args);
3836 	defer_console_output();
3837 
3838 	return r;
3839 }
3840 
3841 int _printk_deferred(const char *fmt, ...)
3842 {
3843 	va_list args;
3844 	int r;
3845 
3846 	va_start(args, fmt);
3847 	r = vprintk_deferred(fmt, args);
3848 	va_end(args);
3849 
3850 	return r;
3851 }
3852 
3853 /*
3854  * printk rate limiting, lifted from the networking subsystem.
3855  *
3856  * This enforces a rate limit: not more than 10 kernel messages
3857  * every 5s to make a denial-of-service attack impossible.
3858  */
3859 DEFINE_RATELIMIT_STATE(printk_ratelimit_state, 5 * HZ, 10);
3860 
3861 int __printk_ratelimit(const char *func)
3862 {
3863 	return ___ratelimit(&printk_ratelimit_state, func);
3864 }
3865 EXPORT_SYMBOL(__printk_ratelimit);
3866 
3867 /**
3868  * printk_timed_ratelimit - caller-controlled printk ratelimiting
3869  * @caller_jiffies: pointer to caller's state
3870  * @interval_msecs: minimum interval between prints
3871  *
3872  * printk_timed_ratelimit() returns true if more than @interval_msecs
3873  * milliseconds have elapsed since the last time printk_timed_ratelimit()
3874  * returned true.
3875  */
3876 bool printk_timed_ratelimit(unsigned long *caller_jiffies,
3877 			unsigned int interval_msecs)
3878 {
3879 	unsigned long elapsed = jiffies - *caller_jiffies;
3880 
3881 	if (*caller_jiffies && elapsed <= msecs_to_jiffies(interval_msecs))
3882 		return false;
3883 
3884 	*caller_jiffies = jiffies;
3885 	return true;
3886 }
3887 EXPORT_SYMBOL(printk_timed_ratelimit);
3888 
3889 static DEFINE_SPINLOCK(dump_list_lock);
3890 static LIST_HEAD(dump_list);
3891 
3892 /**
3893  * kmsg_dump_register - register a kernel log dumper.
3894  * @dumper: pointer to the kmsg_dumper structure
3895  *
3896  * Adds a kernel log dumper to the system. The dump callback in the
3897  * structure will be called when the kernel oopses or panics and must be
3898  * set. Returns zero on success and %-EINVAL or %-EBUSY otherwise.
3899  */
3900 int kmsg_dump_register(struct kmsg_dumper *dumper)
3901 {
3902 	unsigned long flags;
3903 	int err = -EBUSY;
3904 
3905 	/* The dump callback needs to be set */
3906 	if (!dumper->dump)
3907 		return -EINVAL;
3908 
3909 	spin_lock_irqsave(&dump_list_lock, flags);
3910 	/* Don't allow registering multiple times */
3911 	if (!dumper->registered) {
3912 		dumper->registered = 1;
3913 		list_add_tail_rcu(&dumper->list, &dump_list);
3914 		err = 0;
3915 	}
3916 	spin_unlock_irqrestore(&dump_list_lock, flags);
3917 
3918 	return err;
3919 }
3920 EXPORT_SYMBOL_GPL(kmsg_dump_register);
3921 
3922 /**
3923  * kmsg_dump_unregister - unregister a kmsg dumper.
3924  * @dumper: pointer to the kmsg_dumper structure
3925  *
3926  * Removes a dump device from the system. Returns zero on success and
3927  * %-EINVAL otherwise.
3928  */
3929 int kmsg_dump_unregister(struct kmsg_dumper *dumper)
3930 {
3931 	unsigned long flags;
3932 	int err = -EINVAL;
3933 
3934 	spin_lock_irqsave(&dump_list_lock, flags);
3935 	if (dumper->registered) {
3936 		dumper->registered = 0;
3937 		list_del_rcu(&dumper->list);
3938 		err = 0;
3939 	}
3940 	spin_unlock_irqrestore(&dump_list_lock, flags);
3941 	synchronize_rcu();
3942 
3943 	return err;
3944 }
3945 EXPORT_SYMBOL_GPL(kmsg_dump_unregister);
3946 
3947 static bool always_kmsg_dump;
3948 module_param_named(always_kmsg_dump, always_kmsg_dump, bool, S_IRUGO | S_IWUSR);
3949 
3950 const char *kmsg_dump_reason_str(enum kmsg_dump_reason reason)
3951 {
3952 	switch (reason) {
3953 	case KMSG_DUMP_PANIC:
3954 		return "Panic";
3955 	case KMSG_DUMP_OOPS:
3956 		return "Oops";
3957 	case KMSG_DUMP_EMERG:
3958 		return "Emergency";
3959 	case KMSG_DUMP_SHUTDOWN:
3960 		return "Shutdown";
3961 	default:
3962 		return "Unknown";
3963 	}
3964 }
3965 EXPORT_SYMBOL_GPL(kmsg_dump_reason_str);
3966 
3967 /**
3968  * kmsg_dump - dump kernel log to kernel message dumpers.
3969  * @reason: the reason (oops, panic etc) for dumping
3970  *
3971  * Call each of the registered dumper's dump() callback, which can
3972  * retrieve the kmsg records with kmsg_dump_get_line() or
3973  * kmsg_dump_get_buffer().
3974  */
3975 void kmsg_dump(enum kmsg_dump_reason reason)
3976 {
3977 	struct kmsg_dumper *dumper;
3978 
3979 	rcu_read_lock();
3980 	list_for_each_entry_rcu(dumper, &dump_list, list) {
3981 		enum kmsg_dump_reason max_reason = dumper->max_reason;
3982 
3983 		/*
3984 		 * If client has not provided a specific max_reason, default
3985 		 * to KMSG_DUMP_OOPS, unless always_kmsg_dump was set.
3986 		 */
3987 		if (max_reason == KMSG_DUMP_UNDEF) {
3988 			max_reason = always_kmsg_dump ? KMSG_DUMP_MAX :
3989 							KMSG_DUMP_OOPS;
3990 		}
3991 		if (reason > max_reason)
3992 			continue;
3993 
3994 		/* invoke dumper which will iterate over records */
3995 		dumper->dump(dumper, reason);
3996 	}
3997 	rcu_read_unlock();
3998 }
3999 
4000 /**
4001  * kmsg_dump_get_line - retrieve one kmsg log line
4002  * @iter: kmsg dump iterator
4003  * @syslog: include the "<4>" prefixes
4004  * @line: buffer to copy the line to
4005  * @size: maximum size of the buffer
4006  * @len: length of line placed into buffer
4007  *
4008  * Start at the beginning of the kmsg buffer, with the oldest kmsg
4009  * record, and copy one record into the provided buffer.
4010  *
4011  * Consecutive calls will return the next available record moving
4012  * towards the end of the buffer with the youngest messages.
4013  *
4014  * A return value of FALSE indicates that there are no more records to
4015  * read.
4016  */
4017 bool kmsg_dump_get_line(struct kmsg_dump_iter *iter, bool syslog,
4018 			char *line, size_t size, size_t *len)
4019 {
4020 	u64 min_seq = latched_seq_read_nolock(&clear_seq);
4021 	struct printk_info info;
4022 	unsigned int line_count;
4023 	struct printk_record r;
4024 	size_t l = 0;
4025 	bool ret = false;
4026 
4027 	if (iter->cur_seq < min_seq)
4028 		iter->cur_seq = min_seq;
4029 
4030 	prb_rec_init_rd(&r, &info, line, size);
4031 
4032 	/* Read text or count text lines? */
4033 	if (line) {
4034 		if (!prb_read_valid(prb, iter->cur_seq, &r))
4035 			goto out;
4036 		l = record_print_text(&r, syslog, printk_time);
4037 	} else {
4038 		if (!prb_read_valid_info(prb, iter->cur_seq,
4039 					 &info, &line_count)) {
4040 			goto out;
4041 		}
4042 		l = get_record_print_text_size(&info, line_count, syslog,
4043 					       printk_time);
4044 
4045 	}
4046 
4047 	iter->cur_seq = r.info->seq + 1;
4048 	ret = true;
4049 out:
4050 	if (len)
4051 		*len = l;
4052 	return ret;
4053 }
4054 EXPORT_SYMBOL_GPL(kmsg_dump_get_line);
4055 
4056 /**
4057  * kmsg_dump_get_buffer - copy kmsg log lines
4058  * @iter: kmsg dump iterator
4059  * @syslog: include the "<4>" prefixes
4060  * @buf: buffer to copy the line to
4061  * @size: maximum size of the buffer
4062  * @len_out: length of line placed into buffer
4063  *
4064  * Start at the end of the kmsg buffer and fill the provided buffer
4065  * with as many of the *youngest* kmsg records that fit into it.
4066  * If the buffer is large enough, all available kmsg records will be
4067  * copied with a single call.
4068  *
4069  * Consecutive calls will fill the buffer with the next block of
4070  * available older records, not including the earlier retrieved ones.
4071  *
4072  * A return value of FALSE indicates that there are no more records to
4073  * read.
4074  */
4075 bool kmsg_dump_get_buffer(struct kmsg_dump_iter *iter, bool syslog,
4076 			  char *buf, size_t size, size_t *len_out)
4077 {
4078 	u64 min_seq = latched_seq_read_nolock(&clear_seq);
4079 	struct printk_info info;
4080 	struct printk_record r;
4081 	u64 seq;
4082 	u64 next_seq;
4083 	size_t len = 0;
4084 	bool ret = false;
4085 	bool time = printk_time;
4086 
4087 	if (!buf || !size)
4088 		goto out;
4089 
4090 	if (iter->cur_seq < min_seq)
4091 		iter->cur_seq = min_seq;
4092 
4093 	if (prb_read_valid_info(prb, iter->cur_seq, &info, NULL)) {
4094 		if (info.seq != iter->cur_seq) {
4095 			/* messages are gone, move to first available one */
4096 			iter->cur_seq = info.seq;
4097 		}
4098 	}
4099 
4100 	/* last entry */
4101 	if (iter->cur_seq >= iter->next_seq)
4102 		goto out;
4103 
4104 	/*
4105 	 * Find first record that fits, including all following records,
4106 	 * into the user-provided buffer for this dump. Pass in size-1
4107 	 * because this function (by way of record_print_text()) will
4108 	 * not write more than size-1 bytes of text into @buf.
4109 	 */
4110 	seq = find_first_fitting_seq(iter->cur_seq, iter->next_seq,
4111 				     size - 1, syslog, time);
4112 
4113 	/*
4114 	 * Next kmsg_dump_get_buffer() invocation will dump block of
4115 	 * older records stored right before this one.
4116 	 */
4117 	next_seq = seq;
4118 
4119 	prb_rec_init_rd(&r, &info, buf, size);
4120 
4121 	len = 0;
4122 	prb_for_each_record(seq, prb, seq, &r) {
4123 		if (r.info->seq >= iter->next_seq)
4124 			break;
4125 
4126 		len += record_print_text(&r, syslog, time);
4127 
4128 		/* Adjust record to store to remaining buffer space. */
4129 		prb_rec_init_rd(&r, &info, buf + len, size - len);
4130 	}
4131 
4132 	iter->next_seq = next_seq;
4133 	ret = true;
4134 out:
4135 	if (len_out)
4136 		*len_out = len;
4137 	return ret;
4138 }
4139 EXPORT_SYMBOL_GPL(kmsg_dump_get_buffer);
4140 
4141 /**
4142  * kmsg_dump_rewind - reset the iterator
4143  * @iter: kmsg dump iterator
4144  *
4145  * Reset the dumper's iterator so that kmsg_dump_get_line() and
4146  * kmsg_dump_get_buffer() can be called again and used multiple
4147  * times within the same dumper.dump() callback.
4148  */
4149 void kmsg_dump_rewind(struct kmsg_dump_iter *iter)
4150 {
4151 	iter->cur_seq = latched_seq_read_nolock(&clear_seq);
4152 	iter->next_seq = prb_next_seq(prb);
4153 }
4154 EXPORT_SYMBOL_GPL(kmsg_dump_rewind);
4155 
4156 #endif
4157 
4158 #ifdef CONFIG_SMP
4159 static atomic_t printk_cpu_sync_owner = ATOMIC_INIT(-1);
4160 static atomic_t printk_cpu_sync_nested = ATOMIC_INIT(0);
4161 
4162 /**
4163  * __printk_cpu_sync_wait() - Busy wait until the printk cpu-reentrant
4164  *                            spinning lock is not owned by any CPU.
4165  *
4166  * Context: Any context.
4167  */
4168 void __printk_cpu_sync_wait(void)
4169 {
4170 	do {
4171 		cpu_relax();
4172 	} while (atomic_read(&printk_cpu_sync_owner) != -1);
4173 }
4174 EXPORT_SYMBOL(__printk_cpu_sync_wait);
4175 
4176 /**
4177  * __printk_cpu_sync_try_get() - Try to acquire the printk cpu-reentrant
4178  *                               spinning lock.
4179  *
4180  * If no processor has the lock, the calling processor takes the lock and
4181  * becomes the owner. If the calling processor is already the owner of the
4182  * lock, this function succeeds immediately.
4183  *
4184  * Context: Any context. Expects interrupts to be disabled.
4185  * Return: 1 on success, otherwise 0.
4186  */
4187 int __printk_cpu_sync_try_get(void)
4188 {
4189 	int cpu;
4190 	int old;
4191 
4192 	cpu = smp_processor_id();
4193 
4194 	/*
4195 	 * Guarantee loads and stores from this CPU when it is the lock owner
4196 	 * are _not_ visible to the previous lock owner. This pairs with
4197 	 * __printk_cpu_sync_put:B.
4198 	 *
4199 	 * Memory barrier involvement:
4200 	 *
4201 	 * If __printk_cpu_sync_try_get:A reads from __printk_cpu_sync_put:B,
4202 	 * then __printk_cpu_sync_put:A can never read from
4203 	 * __printk_cpu_sync_try_get:B.
4204 	 *
4205 	 * Relies on:
4206 	 *
4207 	 * RELEASE from __printk_cpu_sync_put:A to __printk_cpu_sync_put:B
4208 	 * of the previous CPU
4209 	 *    matching
4210 	 * ACQUIRE from __printk_cpu_sync_try_get:A to
4211 	 * __printk_cpu_sync_try_get:B of this CPU
4212 	 */
4213 	old = atomic_cmpxchg_acquire(&printk_cpu_sync_owner, -1,
4214 				     cpu); /* LMM(__printk_cpu_sync_try_get:A) */
4215 	if (old == -1) {
4216 		/*
4217 		 * This CPU is now the owner and begins loading/storing
4218 		 * data: LMM(__printk_cpu_sync_try_get:B)
4219 		 */
4220 		return 1;
4221 
4222 	} else if (old == cpu) {
4223 		/* This CPU is already the owner. */
4224 		atomic_inc(&printk_cpu_sync_nested);
4225 		return 1;
4226 	}
4227 
4228 	return 0;
4229 }
4230 EXPORT_SYMBOL(__printk_cpu_sync_try_get);
4231 
4232 /**
4233  * __printk_cpu_sync_put() - Release the printk cpu-reentrant spinning lock.
4234  *
4235  * The calling processor must be the owner of the lock.
4236  *
4237  * Context: Any context. Expects interrupts to be disabled.
4238  */
4239 void __printk_cpu_sync_put(void)
4240 {
4241 	if (atomic_read(&printk_cpu_sync_nested)) {
4242 		atomic_dec(&printk_cpu_sync_nested);
4243 		return;
4244 	}
4245 
4246 	/*
4247 	 * This CPU is finished loading/storing data:
4248 	 * LMM(__printk_cpu_sync_put:A)
4249 	 */
4250 
4251 	/*
4252 	 * Guarantee loads and stores from this CPU when it was the
4253 	 * lock owner are visible to the next lock owner. This pairs
4254 	 * with __printk_cpu_sync_try_get:A.
4255 	 *
4256 	 * Memory barrier involvement:
4257 	 *
4258 	 * If __printk_cpu_sync_try_get:A reads from __printk_cpu_sync_put:B,
4259 	 * then __printk_cpu_sync_try_get:B reads from __printk_cpu_sync_put:A.
4260 	 *
4261 	 * Relies on:
4262 	 *
4263 	 * RELEASE from __printk_cpu_sync_put:A to __printk_cpu_sync_put:B
4264 	 * of this CPU
4265 	 *    matching
4266 	 * ACQUIRE from __printk_cpu_sync_try_get:A to
4267 	 * __printk_cpu_sync_try_get:B of the next CPU
4268 	 */
4269 	atomic_set_release(&printk_cpu_sync_owner,
4270 			   -1); /* LMM(__printk_cpu_sync_put:B) */
4271 }
4272 EXPORT_SYMBOL(__printk_cpu_sync_put);
4273 #endif /* CONFIG_SMP */
4274