1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/printk.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 * 7 * Modified to make sys_syslog() more flexible: added commands to 8 * return the last 4k of kernel messages, regardless of whether 9 * they've been read or not. Added option to suppress kernel printk's 10 * to the console. Added hook for sending the console messages 11 * elsewhere, in preparation for a serial line console (someday). 12 * Ted Ts'o, 2/11/93. 13 * Modified for sysctl support, 1/8/97, Chris Horn. 14 * Fixed SMP synchronization, 08/08/99, Manfred Spraul 15 * manfred@colorfullife.com 16 * Rewrote bits to get rid of console_lock 17 * 01Mar01 Andrew Morton 18 */ 19 20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 21 22 #include <linux/kernel.h> 23 #include <linux/mm.h> 24 #include <linux/tty.h> 25 #include <linux/tty_driver.h> 26 #include <linux/console.h> 27 #include <linux/init.h> 28 #include <linux/jiffies.h> 29 #include <linux/nmi.h> 30 #include <linux/module.h> 31 #include <linux/moduleparam.h> 32 #include <linux/delay.h> 33 #include <linux/smp.h> 34 #include <linux/security.h> 35 #include <linux/memblock.h> 36 #include <linux/syscalls.h> 37 #include <linux/crash_core.h> 38 #include <linux/ratelimit.h> 39 #include <linux/kmsg_dump.h> 40 #include <linux/syslog.h> 41 #include <linux/cpu.h> 42 #include <linux/rculist.h> 43 #include <linux/poll.h> 44 #include <linux/irq_work.h> 45 #include <linux/ctype.h> 46 #include <linux/uio.h> 47 #include <linux/sched/clock.h> 48 #include <linux/sched/debug.h> 49 #include <linux/sched/task_stack.h> 50 51 #include <linux/uaccess.h> 52 #include <asm/sections.h> 53 54 #include <trace/events/initcall.h> 55 #define CREATE_TRACE_POINTS 56 #include <trace/events/printk.h> 57 58 #include "printk_ringbuffer.h" 59 #include "console_cmdline.h" 60 #include "braille.h" 61 #include "internal.h" 62 63 int console_printk[4] = { 64 CONSOLE_LOGLEVEL_DEFAULT, /* console_loglevel */ 65 MESSAGE_LOGLEVEL_DEFAULT, /* default_message_loglevel */ 66 CONSOLE_LOGLEVEL_MIN, /* minimum_console_loglevel */ 67 CONSOLE_LOGLEVEL_DEFAULT, /* default_console_loglevel */ 68 }; 69 EXPORT_SYMBOL_GPL(console_printk); 70 71 atomic_t ignore_console_lock_warning __read_mostly = ATOMIC_INIT(0); 72 EXPORT_SYMBOL(ignore_console_lock_warning); 73 74 EXPORT_TRACEPOINT_SYMBOL_GPL(console); 75 76 /* 77 * Low level drivers may need that to know if they can schedule in 78 * their unblank() callback or not. So let's export it. 79 */ 80 int oops_in_progress; 81 EXPORT_SYMBOL(oops_in_progress); 82 83 /* 84 * console_mutex protects console_list updates and console->flags updates. 85 * The flags are synchronized only for consoles that are registered, i.e. 86 * accessible via the console list. 87 */ 88 static DEFINE_MUTEX(console_mutex); 89 90 /* 91 * console_sem protects updates to console->seq and console_suspended, 92 * and also provides serialization for console printing. 93 */ 94 static DEFINE_SEMAPHORE(console_sem); 95 HLIST_HEAD(console_list); 96 EXPORT_SYMBOL_GPL(console_list); 97 DEFINE_STATIC_SRCU(console_srcu); 98 99 /* 100 * System may need to suppress printk message under certain 101 * circumstances, like after kernel panic happens. 102 */ 103 int __read_mostly suppress_printk; 104 105 /* 106 * During panic, heavy printk by other CPUs can delay the 107 * panic and risk deadlock on console resources. 108 */ 109 static int __read_mostly suppress_panic_printk; 110 111 #ifdef CONFIG_LOCKDEP 112 static struct lockdep_map console_lock_dep_map = { 113 .name = "console_lock" 114 }; 115 116 void lockdep_assert_console_list_lock_held(void) 117 { 118 lockdep_assert_held(&console_mutex); 119 } 120 EXPORT_SYMBOL(lockdep_assert_console_list_lock_held); 121 #endif 122 123 #ifdef CONFIG_DEBUG_LOCK_ALLOC 124 bool console_srcu_read_lock_is_held(void) 125 { 126 return srcu_read_lock_held(&console_srcu); 127 } 128 EXPORT_SYMBOL(console_srcu_read_lock_is_held); 129 #endif 130 131 enum devkmsg_log_bits { 132 __DEVKMSG_LOG_BIT_ON = 0, 133 __DEVKMSG_LOG_BIT_OFF, 134 __DEVKMSG_LOG_BIT_LOCK, 135 }; 136 137 enum devkmsg_log_masks { 138 DEVKMSG_LOG_MASK_ON = BIT(__DEVKMSG_LOG_BIT_ON), 139 DEVKMSG_LOG_MASK_OFF = BIT(__DEVKMSG_LOG_BIT_OFF), 140 DEVKMSG_LOG_MASK_LOCK = BIT(__DEVKMSG_LOG_BIT_LOCK), 141 }; 142 143 /* Keep both the 'on' and 'off' bits clear, i.e. ratelimit by default: */ 144 #define DEVKMSG_LOG_MASK_DEFAULT 0 145 146 static unsigned int __read_mostly devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT; 147 148 static int __control_devkmsg(char *str) 149 { 150 size_t len; 151 152 if (!str) 153 return -EINVAL; 154 155 len = str_has_prefix(str, "on"); 156 if (len) { 157 devkmsg_log = DEVKMSG_LOG_MASK_ON; 158 return len; 159 } 160 161 len = str_has_prefix(str, "off"); 162 if (len) { 163 devkmsg_log = DEVKMSG_LOG_MASK_OFF; 164 return len; 165 } 166 167 len = str_has_prefix(str, "ratelimit"); 168 if (len) { 169 devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT; 170 return len; 171 } 172 173 return -EINVAL; 174 } 175 176 static int __init control_devkmsg(char *str) 177 { 178 if (__control_devkmsg(str) < 0) { 179 pr_warn("printk.devkmsg: bad option string '%s'\n", str); 180 return 1; 181 } 182 183 /* 184 * Set sysctl string accordingly: 185 */ 186 if (devkmsg_log == DEVKMSG_LOG_MASK_ON) 187 strcpy(devkmsg_log_str, "on"); 188 else if (devkmsg_log == DEVKMSG_LOG_MASK_OFF) 189 strcpy(devkmsg_log_str, "off"); 190 /* else "ratelimit" which is set by default. */ 191 192 /* 193 * Sysctl cannot change it anymore. The kernel command line setting of 194 * this parameter is to force the setting to be permanent throughout the 195 * runtime of the system. This is a precation measure against userspace 196 * trying to be a smarta** and attempting to change it up on us. 197 */ 198 devkmsg_log |= DEVKMSG_LOG_MASK_LOCK; 199 200 return 1; 201 } 202 __setup("printk.devkmsg=", control_devkmsg); 203 204 char devkmsg_log_str[DEVKMSG_STR_MAX_SIZE] = "ratelimit"; 205 #if defined(CONFIG_PRINTK) && defined(CONFIG_SYSCTL) 206 int devkmsg_sysctl_set_loglvl(struct ctl_table *table, int write, 207 void *buffer, size_t *lenp, loff_t *ppos) 208 { 209 char old_str[DEVKMSG_STR_MAX_SIZE]; 210 unsigned int old; 211 int err; 212 213 if (write) { 214 if (devkmsg_log & DEVKMSG_LOG_MASK_LOCK) 215 return -EINVAL; 216 217 old = devkmsg_log; 218 strncpy(old_str, devkmsg_log_str, DEVKMSG_STR_MAX_SIZE); 219 } 220 221 err = proc_dostring(table, write, buffer, lenp, ppos); 222 if (err) 223 return err; 224 225 if (write) { 226 err = __control_devkmsg(devkmsg_log_str); 227 228 /* 229 * Do not accept an unknown string OR a known string with 230 * trailing crap... 231 */ 232 if (err < 0 || (err + 1 != *lenp)) { 233 234 /* ... and restore old setting. */ 235 devkmsg_log = old; 236 strncpy(devkmsg_log_str, old_str, DEVKMSG_STR_MAX_SIZE); 237 238 return -EINVAL; 239 } 240 } 241 242 return 0; 243 } 244 #endif /* CONFIG_PRINTK && CONFIG_SYSCTL */ 245 246 /** 247 * console_list_lock - Lock the console list 248 * 249 * For console list or console->flags updates 250 */ 251 void console_list_lock(void) 252 { 253 /* 254 * In unregister_console() and console_force_preferred_locked(), 255 * synchronize_srcu() is called with the console_list_lock held. 256 * Therefore it is not allowed that the console_list_lock is taken 257 * with the srcu_lock held. 258 * 259 * Detecting if this context is really in the read-side critical 260 * section is only possible if the appropriate debug options are 261 * enabled. 262 */ 263 WARN_ON_ONCE(debug_lockdep_rcu_enabled() && 264 srcu_read_lock_held(&console_srcu)); 265 266 mutex_lock(&console_mutex); 267 } 268 EXPORT_SYMBOL(console_list_lock); 269 270 /** 271 * console_list_unlock - Unlock the console list 272 * 273 * Counterpart to console_list_lock() 274 */ 275 void console_list_unlock(void) 276 { 277 mutex_unlock(&console_mutex); 278 } 279 EXPORT_SYMBOL(console_list_unlock); 280 281 /** 282 * console_srcu_read_lock - Register a new reader for the 283 * SRCU-protected console list 284 * 285 * Use for_each_console_srcu() to iterate the console list 286 * 287 * Context: Any context. 288 * Return: A cookie to pass to console_srcu_read_unlock(). 289 */ 290 int console_srcu_read_lock(void) 291 { 292 return srcu_read_lock_nmisafe(&console_srcu); 293 } 294 EXPORT_SYMBOL(console_srcu_read_lock); 295 296 /** 297 * console_srcu_read_unlock - Unregister an old reader from 298 * the SRCU-protected console list 299 * @cookie: cookie returned from console_srcu_read_lock() 300 * 301 * Counterpart to console_srcu_read_lock() 302 */ 303 void console_srcu_read_unlock(int cookie) 304 { 305 srcu_read_unlock_nmisafe(&console_srcu, cookie); 306 } 307 EXPORT_SYMBOL(console_srcu_read_unlock); 308 309 /* 310 * Helper macros to handle lockdep when locking/unlocking console_sem. We use 311 * macros instead of functions so that _RET_IP_ contains useful information. 312 */ 313 #define down_console_sem() do { \ 314 down(&console_sem);\ 315 mutex_acquire(&console_lock_dep_map, 0, 0, _RET_IP_);\ 316 } while (0) 317 318 static int __down_trylock_console_sem(unsigned long ip) 319 { 320 int lock_failed; 321 unsigned long flags; 322 323 /* 324 * Here and in __up_console_sem() we need to be in safe mode, 325 * because spindump/WARN/etc from under console ->lock will 326 * deadlock in printk()->down_trylock_console_sem() otherwise. 327 */ 328 printk_safe_enter_irqsave(flags); 329 lock_failed = down_trylock(&console_sem); 330 printk_safe_exit_irqrestore(flags); 331 332 if (lock_failed) 333 return 1; 334 mutex_acquire(&console_lock_dep_map, 0, 1, ip); 335 return 0; 336 } 337 #define down_trylock_console_sem() __down_trylock_console_sem(_RET_IP_) 338 339 static void __up_console_sem(unsigned long ip) 340 { 341 unsigned long flags; 342 343 mutex_release(&console_lock_dep_map, ip); 344 345 printk_safe_enter_irqsave(flags); 346 up(&console_sem); 347 printk_safe_exit_irqrestore(flags); 348 } 349 #define up_console_sem() __up_console_sem(_RET_IP_) 350 351 static bool panic_in_progress(void) 352 { 353 return unlikely(atomic_read(&panic_cpu) != PANIC_CPU_INVALID); 354 } 355 356 /* 357 * This is used for debugging the mess that is the VT code by 358 * keeping track if we have the console semaphore held. It's 359 * definitely not the perfect debug tool (we don't know if _WE_ 360 * hold it and are racing, but it helps tracking those weird code 361 * paths in the console code where we end up in places I want 362 * locked without the console semaphore held). 363 */ 364 static int console_locked, console_suspended; 365 366 /* 367 * Array of consoles built from command line options (console=) 368 */ 369 370 #define MAX_CMDLINECONSOLES 8 371 372 static struct console_cmdline console_cmdline[MAX_CMDLINECONSOLES]; 373 374 static int preferred_console = -1; 375 int console_set_on_cmdline; 376 EXPORT_SYMBOL(console_set_on_cmdline); 377 378 /* Flag: console code may call schedule() */ 379 static int console_may_schedule; 380 381 enum con_msg_format_flags { 382 MSG_FORMAT_DEFAULT = 0, 383 MSG_FORMAT_SYSLOG = (1 << 0), 384 }; 385 386 static int console_msg_format = MSG_FORMAT_DEFAULT; 387 388 /* 389 * The printk log buffer consists of a sequenced collection of records, each 390 * containing variable length message text. Every record also contains its 391 * own meta-data (@info). 392 * 393 * Every record meta-data carries the timestamp in microseconds, as well as 394 * the standard userspace syslog level and syslog facility. The usual kernel 395 * messages use LOG_KERN; userspace-injected messages always carry a matching 396 * syslog facility, by default LOG_USER. The origin of every message can be 397 * reliably determined that way. 398 * 399 * The human readable log message of a record is available in @text, the 400 * length of the message text in @text_len. The stored message is not 401 * terminated. 402 * 403 * Optionally, a record can carry a dictionary of properties (key/value 404 * pairs), to provide userspace with a machine-readable message context. 405 * 406 * Examples for well-defined, commonly used property names are: 407 * DEVICE=b12:8 device identifier 408 * b12:8 block dev_t 409 * c127:3 char dev_t 410 * n8 netdev ifindex 411 * +sound:card0 subsystem:devname 412 * SUBSYSTEM=pci driver-core subsystem name 413 * 414 * Valid characters in property names are [a-zA-Z0-9.-_]. Property names 415 * and values are terminated by a '\0' character. 416 * 417 * Example of record values: 418 * record.text_buf = "it's a line" (unterminated) 419 * record.info.seq = 56 420 * record.info.ts_nsec = 36863 421 * record.info.text_len = 11 422 * record.info.facility = 0 (LOG_KERN) 423 * record.info.flags = 0 424 * record.info.level = 3 (LOG_ERR) 425 * record.info.caller_id = 299 (task 299) 426 * record.info.dev_info.subsystem = "pci" (terminated) 427 * record.info.dev_info.device = "+pci:0000:00:01.0" (terminated) 428 * 429 * The 'struct printk_info' buffer must never be directly exported to 430 * userspace, it is a kernel-private implementation detail that might 431 * need to be changed in the future, when the requirements change. 432 * 433 * /dev/kmsg exports the structured data in the following line format: 434 * "<level>,<sequnum>,<timestamp>,<contflag>[,additional_values, ... ];<message text>\n" 435 * 436 * Users of the export format should ignore possible additional values 437 * separated by ',', and find the message after the ';' character. 438 * 439 * The optional key/value pairs are attached as continuation lines starting 440 * with a space character and terminated by a newline. All possible 441 * non-prinatable characters are escaped in the "\xff" notation. 442 */ 443 444 /* syslog_lock protects syslog_* variables and write access to clear_seq. */ 445 static DEFINE_MUTEX(syslog_lock); 446 447 #ifdef CONFIG_PRINTK 448 DECLARE_WAIT_QUEUE_HEAD(log_wait); 449 /* All 3 protected by @syslog_lock. */ 450 /* the next printk record to read by syslog(READ) or /proc/kmsg */ 451 static u64 syslog_seq; 452 static size_t syslog_partial; 453 static bool syslog_time; 454 455 struct latched_seq { 456 seqcount_latch_t latch; 457 u64 val[2]; 458 }; 459 460 /* 461 * The next printk record to read after the last 'clear' command. There are 462 * two copies (updated with seqcount_latch) so that reads can locklessly 463 * access a valid value. Writers are synchronized by @syslog_lock. 464 */ 465 static struct latched_seq clear_seq = { 466 .latch = SEQCNT_LATCH_ZERO(clear_seq.latch), 467 .val[0] = 0, 468 .val[1] = 0, 469 }; 470 471 #define LOG_LEVEL(v) ((v) & 0x07) 472 #define LOG_FACILITY(v) ((v) >> 3 & 0xff) 473 474 /* record buffer */ 475 #define LOG_ALIGN __alignof__(unsigned long) 476 #define __LOG_BUF_LEN (1 << CONFIG_LOG_BUF_SHIFT) 477 #define LOG_BUF_LEN_MAX (u32)(1 << 31) 478 static char __log_buf[__LOG_BUF_LEN] __aligned(LOG_ALIGN); 479 static char *log_buf = __log_buf; 480 static u32 log_buf_len = __LOG_BUF_LEN; 481 482 /* 483 * Define the average message size. This only affects the number of 484 * descriptors that will be available. Underestimating is better than 485 * overestimating (too many available descriptors is better than not enough). 486 */ 487 #define PRB_AVGBITS 5 /* 32 character average length */ 488 489 #if CONFIG_LOG_BUF_SHIFT <= PRB_AVGBITS 490 #error CONFIG_LOG_BUF_SHIFT value too small. 491 #endif 492 _DEFINE_PRINTKRB(printk_rb_static, CONFIG_LOG_BUF_SHIFT - PRB_AVGBITS, 493 PRB_AVGBITS, &__log_buf[0]); 494 495 static struct printk_ringbuffer printk_rb_dynamic; 496 497 static struct printk_ringbuffer *prb = &printk_rb_static; 498 499 /* 500 * We cannot access per-CPU data (e.g. per-CPU flush irq_work) before 501 * per_cpu_areas are initialised. This variable is set to true when 502 * it's safe to access per-CPU data. 503 */ 504 static bool __printk_percpu_data_ready __ro_after_init; 505 506 bool printk_percpu_data_ready(void) 507 { 508 return __printk_percpu_data_ready; 509 } 510 511 /* Must be called under syslog_lock. */ 512 static void latched_seq_write(struct latched_seq *ls, u64 val) 513 { 514 raw_write_seqcount_latch(&ls->latch); 515 ls->val[0] = val; 516 raw_write_seqcount_latch(&ls->latch); 517 ls->val[1] = val; 518 } 519 520 /* Can be called from any context. */ 521 static u64 latched_seq_read_nolock(struct latched_seq *ls) 522 { 523 unsigned int seq; 524 unsigned int idx; 525 u64 val; 526 527 do { 528 seq = raw_read_seqcount_latch(&ls->latch); 529 idx = seq & 0x1; 530 val = ls->val[idx]; 531 } while (read_seqcount_latch_retry(&ls->latch, seq)); 532 533 return val; 534 } 535 536 /* Return log buffer address */ 537 char *log_buf_addr_get(void) 538 { 539 return log_buf; 540 } 541 542 /* Return log buffer size */ 543 u32 log_buf_len_get(void) 544 { 545 return log_buf_len; 546 } 547 548 /* 549 * Define how much of the log buffer we could take at maximum. The value 550 * must be greater than two. Note that only half of the buffer is available 551 * when the index points to the middle. 552 */ 553 #define MAX_LOG_TAKE_PART 4 554 static const char trunc_msg[] = "<truncated>"; 555 556 static void truncate_msg(u16 *text_len, u16 *trunc_msg_len) 557 { 558 /* 559 * The message should not take the whole buffer. Otherwise, it might 560 * get removed too soon. 561 */ 562 u32 max_text_len = log_buf_len / MAX_LOG_TAKE_PART; 563 564 if (*text_len > max_text_len) 565 *text_len = max_text_len; 566 567 /* enable the warning message (if there is room) */ 568 *trunc_msg_len = strlen(trunc_msg); 569 if (*text_len >= *trunc_msg_len) 570 *text_len -= *trunc_msg_len; 571 else 572 *trunc_msg_len = 0; 573 } 574 575 int dmesg_restrict = IS_ENABLED(CONFIG_SECURITY_DMESG_RESTRICT); 576 577 static int syslog_action_restricted(int type) 578 { 579 if (dmesg_restrict) 580 return 1; 581 /* 582 * Unless restricted, we allow "read all" and "get buffer size" 583 * for everybody. 584 */ 585 return type != SYSLOG_ACTION_READ_ALL && 586 type != SYSLOG_ACTION_SIZE_BUFFER; 587 } 588 589 static int check_syslog_permissions(int type, int source) 590 { 591 /* 592 * If this is from /proc/kmsg and we've already opened it, then we've 593 * already done the capabilities checks at open time. 594 */ 595 if (source == SYSLOG_FROM_PROC && type != SYSLOG_ACTION_OPEN) 596 goto ok; 597 598 if (syslog_action_restricted(type)) { 599 if (capable(CAP_SYSLOG)) 600 goto ok; 601 /* 602 * For historical reasons, accept CAP_SYS_ADMIN too, with 603 * a warning. 604 */ 605 if (capable(CAP_SYS_ADMIN)) { 606 pr_warn_once("%s (%d): Attempt to access syslog with " 607 "CAP_SYS_ADMIN but no CAP_SYSLOG " 608 "(deprecated).\n", 609 current->comm, task_pid_nr(current)); 610 goto ok; 611 } 612 return -EPERM; 613 } 614 ok: 615 return security_syslog(type); 616 } 617 618 static void append_char(char **pp, char *e, char c) 619 { 620 if (*pp < e) 621 *(*pp)++ = c; 622 } 623 624 static ssize_t info_print_ext_header(char *buf, size_t size, 625 struct printk_info *info) 626 { 627 u64 ts_usec = info->ts_nsec; 628 char caller[20]; 629 #ifdef CONFIG_PRINTK_CALLER 630 u32 id = info->caller_id; 631 632 snprintf(caller, sizeof(caller), ",caller=%c%u", 633 id & 0x80000000 ? 'C' : 'T', id & ~0x80000000); 634 #else 635 caller[0] = '\0'; 636 #endif 637 638 do_div(ts_usec, 1000); 639 640 return scnprintf(buf, size, "%u,%llu,%llu,%c%s;", 641 (info->facility << 3) | info->level, info->seq, 642 ts_usec, info->flags & LOG_CONT ? 'c' : '-', caller); 643 } 644 645 static ssize_t msg_add_ext_text(char *buf, size_t size, 646 const char *text, size_t text_len, 647 unsigned char endc) 648 { 649 char *p = buf, *e = buf + size; 650 size_t i; 651 652 /* escape non-printable characters */ 653 for (i = 0; i < text_len; i++) { 654 unsigned char c = text[i]; 655 656 if (c < ' ' || c >= 127 || c == '\\') 657 p += scnprintf(p, e - p, "\\x%02x", c); 658 else 659 append_char(&p, e, c); 660 } 661 append_char(&p, e, endc); 662 663 return p - buf; 664 } 665 666 static ssize_t msg_add_dict_text(char *buf, size_t size, 667 const char *key, const char *val) 668 { 669 size_t val_len = strlen(val); 670 ssize_t len; 671 672 if (!val_len) 673 return 0; 674 675 len = msg_add_ext_text(buf, size, "", 0, ' '); /* dict prefix */ 676 len += msg_add_ext_text(buf + len, size - len, key, strlen(key), '='); 677 len += msg_add_ext_text(buf + len, size - len, val, val_len, '\n'); 678 679 return len; 680 } 681 682 static ssize_t msg_print_ext_body(char *buf, size_t size, 683 char *text, size_t text_len, 684 struct dev_printk_info *dev_info) 685 { 686 ssize_t len; 687 688 len = msg_add_ext_text(buf, size, text, text_len, '\n'); 689 690 if (!dev_info) 691 goto out; 692 693 len += msg_add_dict_text(buf + len, size - len, "SUBSYSTEM", 694 dev_info->subsystem); 695 len += msg_add_dict_text(buf + len, size - len, "DEVICE", 696 dev_info->device); 697 out: 698 return len; 699 } 700 701 static bool printk_get_next_message(struct printk_message *pmsg, u64 seq, 702 bool is_extended, bool may_supress); 703 704 /* /dev/kmsg - userspace message inject/listen interface */ 705 struct devkmsg_user { 706 atomic64_t seq; 707 struct ratelimit_state rs; 708 struct mutex lock; 709 struct printk_buffers pbufs; 710 }; 711 712 static __printf(3, 4) __cold 713 int devkmsg_emit(int facility, int level, const char *fmt, ...) 714 { 715 va_list args; 716 int r; 717 718 va_start(args, fmt); 719 r = vprintk_emit(facility, level, NULL, fmt, args); 720 va_end(args); 721 722 return r; 723 } 724 725 static ssize_t devkmsg_write(struct kiocb *iocb, struct iov_iter *from) 726 { 727 char *buf, *line; 728 int level = default_message_loglevel; 729 int facility = 1; /* LOG_USER */ 730 struct file *file = iocb->ki_filp; 731 struct devkmsg_user *user = file->private_data; 732 size_t len = iov_iter_count(from); 733 ssize_t ret = len; 734 735 if (!user || len > PRINTKRB_RECORD_MAX) 736 return -EINVAL; 737 738 /* Ignore when user logging is disabled. */ 739 if (devkmsg_log & DEVKMSG_LOG_MASK_OFF) 740 return len; 741 742 /* Ratelimit when not explicitly enabled. */ 743 if (!(devkmsg_log & DEVKMSG_LOG_MASK_ON)) { 744 if (!___ratelimit(&user->rs, current->comm)) 745 return ret; 746 } 747 748 buf = kmalloc(len+1, GFP_KERNEL); 749 if (buf == NULL) 750 return -ENOMEM; 751 752 buf[len] = '\0'; 753 if (!copy_from_iter_full(buf, len, from)) { 754 kfree(buf); 755 return -EFAULT; 756 } 757 758 /* 759 * Extract and skip the syslog prefix <[0-9]*>. Coming from userspace 760 * the decimal value represents 32bit, the lower 3 bit are the log 761 * level, the rest are the log facility. 762 * 763 * If no prefix or no userspace facility is specified, we 764 * enforce LOG_USER, to be able to reliably distinguish 765 * kernel-generated messages from userspace-injected ones. 766 */ 767 line = buf; 768 if (line[0] == '<') { 769 char *endp = NULL; 770 unsigned int u; 771 772 u = simple_strtoul(line + 1, &endp, 10); 773 if (endp && endp[0] == '>') { 774 level = LOG_LEVEL(u); 775 if (LOG_FACILITY(u) != 0) 776 facility = LOG_FACILITY(u); 777 endp++; 778 line = endp; 779 } 780 } 781 782 devkmsg_emit(facility, level, "%s", line); 783 kfree(buf); 784 return ret; 785 } 786 787 static ssize_t devkmsg_read(struct file *file, char __user *buf, 788 size_t count, loff_t *ppos) 789 { 790 struct devkmsg_user *user = file->private_data; 791 char *outbuf = &user->pbufs.outbuf[0]; 792 struct printk_message pmsg = { 793 .pbufs = &user->pbufs, 794 }; 795 ssize_t ret; 796 797 if (!user) 798 return -EBADF; 799 800 ret = mutex_lock_interruptible(&user->lock); 801 if (ret) 802 return ret; 803 804 if (!printk_get_next_message(&pmsg, atomic64_read(&user->seq), true, false)) { 805 if (file->f_flags & O_NONBLOCK) { 806 ret = -EAGAIN; 807 goto out; 808 } 809 810 /* 811 * Guarantee this task is visible on the waitqueue before 812 * checking the wake condition. 813 * 814 * The full memory barrier within set_current_state() of 815 * prepare_to_wait_event() pairs with the full memory barrier 816 * within wq_has_sleeper(). 817 * 818 * This pairs with __wake_up_klogd:A. 819 */ 820 ret = wait_event_interruptible(log_wait, 821 printk_get_next_message(&pmsg, atomic64_read(&user->seq), true, 822 false)); /* LMM(devkmsg_read:A) */ 823 if (ret) 824 goto out; 825 } 826 827 if (pmsg.dropped) { 828 /* our last seen message is gone, return error and reset */ 829 atomic64_set(&user->seq, pmsg.seq); 830 ret = -EPIPE; 831 goto out; 832 } 833 834 atomic64_set(&user->seq, pmsg.seq + 1); 835 836 if (pmsg.outbuf_len > count) { 837 ret = -EINVAL; 838 goto out; 839 } 840 841 if (copy_to_user(buf, outbuf, pmsg.outbuf_len)) { 842 ret = -EFAULT; 843 goto out; 844 } 845 ret = pmsg.outbuf_len; 846 out: 847 mutex_unlock(&user->lock); 848 return ret; 849 } 850 851 /* 852 * Be careful when modifying this function!!! 853 * 854 * Only few operations are supported because the device works only with the 855 * entire variable length messages (records). Non-standard values are 856 * returned in the other cases and has been this way for quite some time. 857 * User space applications might depend on this behavior. 858 */ 859 static loff_t devkmsg_llseek(struct file *file, loff_t offset, int whence) 860 { 861 struct devkmsg_user *user = file->private_data; 862 loff_t ret = 0; 863 864 if (!user) 865 return -EBADF; 866 if (offset) 867 return -ESPIPE; 868 869 switch (whence) { 870 case SEEK_SET: 871 /* the first record */ 872 atomic64_set(&user->seq, prb_first_valid_seq(prb)); 873 break; 874 case SEEK_DATA: 875 /* 876 * The first record after the last SYSLOG_ACTION_CLEAR, 877 * like issued by 'dmesg -c'. Reading /dev/kmsg itself 878 * changes no global state, and does not clear anything. 879 */ 880 atomic64_set(&user->seq, latched_seq_read_nolock(&clear_seq)); 881 break; 882 case SEEK_END: 883 /* after the last record */ 884 atomic64_set(&user->seq, prb_next_seq(prb)); 885 break; 886 default: 887 ret = -EINVAL; 888 } 889 return ret; 890 } 891 892 static __poll_t devkmsg_poll(struct file *file, poll_table *wait) 893 { 894 struct devkmsg_user *user = file->private_data; 895 struct printk_info info; 896 __poll_t ret = 0; 897 898 if (!user) 899 return EPOLLERR|EPOLLNVAL; 900 901 poll_wait(file, &log_wait, wait); 902 903 if (prb_read_valid_info(prb, atomic64_read(&user->seq), &info, NULL)) { 904 /* return error when data has vanished underneath us */ 905 if (info.seq != atomic64_read(&user->seq)) 906 ret = EPOLLIN|EPOLLRDNORM|EPOLLERR|EPOLLPRI; 907 else 908 ret = EPOLLIN|EPOLLRDNORM; 909 } 910 911 return ret; 912 } 913 914 static int devkmsg_open(struct inode *inode, struct file *file) 915 { 916 struct devkmsg_user *user; 917 int err; 918 919 if (devkmsg_log & DEVKMSG_LOG_MASK_OFF) 920 return -EPERM; 921 922 /* write-only does not need any file context */ 923 if ((file->f_flags & O_ACCMODE) != O_WRONLY) { 924 err = check_syslog_permissions(SYSLOG_ACTION_READ_ALL, 925 SYSLOG_FROM_READER); 926 if (err) 927 return err; 928 } 929 930 user = kvmalloc(sizeof(struct devkmsg_user), GFP_KERNEL); 931 if (!user) 932 return -ENOMEM; 933 934 ratelimit_default_init(&user->rs); 935 ratelimit_set_flags(&user->rs, RATELIMIT_MSG_ON_RELEASE); 936 937 mutex_init(&user->lock); 938 939 atomic64_set(&user->seq, prb_first_valid_seq(prb)); 940 941 file->private_data = user; 942 return 0; 943 } 944 945 static int devkmsg_release(struct inode *inode, struct file *file) 946 { 947 struct devkmsg_user *user = file->private_data; 948 949 if (!user) 950 return 0; 951 952 ratelimit_state_exit(&user->rs); 953 954 mutex_destroy(&user->lock); 955 kvfree(user); 956 return 0; 957 } 958 959 const struct file_operations kmsg_fops = { 960 .open = devkmsg_open, 961 .read = devkmsg_read, 962 .write_iter = devkmsg_write, 963 .llseek = devkmsg_llseek, 964 .poll = devkmsg_poll, 965 .release = devkmsg_release, 966 }; 967 968 #ifdef CONFIG_CRASH_CORE 969 /* 970 * This appends the listed symbols to /proc/vmcore 971 * 972 * /proc/vmcore is used by various utilities, like crash and makedumpfile to 973 * obtain access to symbols that are otherwise very difficult to locate. These 974 * symbols are specifically used so that utilities can access and extract the 975 * dmesg log from a vmcore file after a crash. 976 */ 977 void log_buf_vmcoreinfo_setup(void) 978 { 979 struct dev_printk_info *dev_info = NULL; 980 981 VMCOREINFO_SYMBOL(prb); 982 VMCOREINFO_SYMBOL(printk_rb_static); 983 VMCOREINFO_SYMBOL(clear_seq); 984 985 /* 986 * Export struct size and field offsets. User space tools can 987 * parse it and detect any changes to structure down the line. 988 */ 989 990 VMCOREINFO_STRUCT_SIZE(printk_ringbuffer); 991 VMCOREINFO_OFFSET(printk_ringbuffer, desc_ring); 992 VMCOREINFO_OFFSET(printk_ringbuffer, text_data_ring); 993 VMCOREINFO_OFFSET(printk_ringbuffer, fail); 994 995 VMCOREINFO_STRUCT_SIZE(prb_desc_ring); 996 VMCOREINFO_OFFSET(prb_desc_ring, count_bits); 997 VMCOREINFO_OFFSET(prb_desc_ring, descs); 998 VMCOREINFO_OFFSET(prb_desc_ring, infos); 999 VMCOREINFO_OFFSET(prb_desc_ring, head_id); 1000 VMCOREINFO_OFFSET(prb_desc_ring, tail_id); 1001 1002 VMCOREINFO_STRUCT_SIZE(prb_desc); 1003 VMCOREINFO_OFFSET(prb_desc, state_var); 1004 VMCOREINFO_OFFSET(prb_desc, text_blk_lpos); 1005 1006 VMCOREINFO_STRUCT_SIZE(prb_data_blk_lpos); 1007 VMCOREINFO_OFFSET(prb_data_blk_lpos, begin); 1008 VMCOREINFO_OFFSET(prb_data_blk_lpos, next); 1009 1010 VMCOREINFO_STRUCT_SIZE(printk_info); 1011 VMCOREINFO_OFFSET(printk_info, seq); 1012 VMCOREINFO_OFFSET(printk_info, ts_nsec); 1013 VMCOREINFO_OFFSET(printk_info, text_len); 1014 VMCOREINFO_OFFSET(printk_info, caller_id); 1015 VMCOREINFO_OFFSET(printk_info, dev_info); 1016 1017 VMCOREINFO_STRUCT_SIZE(dev_printk_info); 1018 VMCOREINFO_OFFSET(dev_printk_info, subsystem); 1019 VMCOREINFO_LENGTH(printk_info_subsystem, sizeof(dev_info->subsystem)); 1020 VMCOREINFO_OFFSET(dev_printk_info, device); 1021 VMCOREINFO_LENGTH(printk_info_device, sizeof(dev_info->device)); 1022 1023 VMCOREINFO_STRUCT_SIZE(prb_data_ring); 1024 VMCOREINFO_OFFSET(prb_data_ring, size_bits); 1025 VMCOREINFO_OFFSET(prb_data_ring, data); 1026 VMCOREINFO_OFFSET(prb_data_ring, head_lpos); 1027 VMCOREINFO_OFFSET(prb_data_ring, tail_lpos); 1028 1029 VMCOREINFO_SIZE(atomic_long_t); 1030 VMCOREINFO_TYPE_OFFSET(atomic_long_t, counter); 1031 1032 VMCOREINFO_STRUCT_SIZE(latched_seq); 1033 VMCOREINFO_OFFSET(latched_seq, val); 1034 } 1035 #endif 1036 1037 /* requested log_buf_len from kernel cmdline */ 1038 static unsigned long __initdata new_log_buf_len; 1039 1040 /* we practice scaling the ring buffer by powers of 2 */ 1041 static void __init log_buf_len_update(u64 size) 1042 { 1043 if (size > (u64)LOG_BUF_LEN_MAX) { 1044 size = (u64)LOG_BUF_LEN_MAX; 1045 pr_err("log_buf over 2G is not supported.\n"); 1046 } 1047 1048 if (size) 1049 size = roundup_pow_of_two(size); 1050 if (size > log_buf_len) 1051 new_log_buf_len = (unsigned long)size; 1052 } 1053 1054 /* save requested log_buf_len since it's too early to process it */ 1055 static int __init log_buf_len_setup(char *str) 1056 { 1057 u64 size; 1058 1059 if (!str) 1060 return -EINVAL; 1061 1062 size = memparse(str, &str); 1063 1064 log_buf_len_update(size); 1065 1066 return 0; 1067 } 1068 early_param("log_buf_len", log_buf_len_setup); 1069 1070 #ifdef CONFIG_SMP 1071 #define __LOG_CPU_MAX_BUF_LEN (1 << CONFIG_LOG_CPU_MAX_BUF_SHIFT) 1072 1073 static void __init log_buf_add_cpu(void) 1074 { 1075 unsigned int cpu_extra; 1076 1077 /* 1078 * archs should set up cpu_possible_bits properly with 1079 * set_cpu_possible() after setup_arch() but just in 1080 * case lets ensure this is valid. 1081 */ 1082 if (num_possible_cpus() == 1) 1083 return; 1084 1085 cpu_extra = (num_possible_cpus() - 1) * __LOG_CPU_MAX_BUF_LEN; 1086 1087 /* by default this will only continue through for large > 64 CPUs */ 1088 if (cpu_extra <= __LOG_BUF_LEN / 2) 1089 return; 1090 1091 pr_info("log_buf_len individual max cpu contribution: %d bytes\n", 1092 __LOG_CPU_MAX_BUF_LEN); 1093 pr_info("log_buf_len total cpu_extra contributions: %d bytes\n", 1094 cpu_extra); 1095 pr_info("log_buf_len min size: %d bytes\n", __LOG_BUF_LEN); 1096 1097 log_buf_len_update(cpu_extra + __LOG_BUF_LEN); 1098 } 1099 #else /* !CONFIG_SMP */ 1100 static inline void log_buf_add_cpu(void) {} 1101 #endif /* CONFIG_SMP */ 1102 1103 static void __init set_percpu_data_ready(void) 1104 { 1105 __printk_percpu_data_ready = true; 1106 } 1107 1108 static unsigned int __init add_to_rb(struct printk_ringbuffer *rb, 1109 struct printk_record *r) 1110 { 1111 struct prb_reserved_entry e; 1112 struct printk_record dest_r; 1113 1114 prb_rec_init_wr(&dest_r, r->info->text_len); 1115 1116 if (!prb_reserve(&e, rb, &dest_r)) 1117 return 0; 1118 1119 memcpy(&dest_r.text_buf[0], &r->text_buf[0], r->info->text_len); 1120 dest_r.info->text_len = r->info->text_len; 1121 dest_r.info->facility = r->info->facility; 1122 dest_r.info->level = r->info->level; 1123 dest_r.info->flags = r->info->flags; 1124 dest_r.info->ts_nsec = r->info->ts_nsec; 1125 dest_r.info->caller_id = r->info->caller_id; 1126 memcpy(&dest_r.info->dev_info, &r->info->dev_info, sizeof(dest_r.info->dev_info)); 1127 1128 prb_final_commit(&e); 1129 1130 return prb_record_text_space(&e); 1131 } 1132 1133 static char setup_text_buf[PRINTKRB_RECORD_MAX] __initdata; 1134 1135 void __init setup_log_buf(int early) 1136 { 1137 struct printk_info *new_infos; 1138 unsigned int new_descs_count; 1139 struct prb_desc *new_descs; 1140 struct printk_info info; 1141 struct printk_record r; 1142 unsigned int text_size; 1143 size_t new_descs_size; 1144 size_t new_infos_size; 1145 unsigned long flags; 1146 char *new_log_buf; 1147 unsigned int free; 1148 u64 seq; 1149 1150 /* 1151 * Some archs call setup_log_buf() multiple times - first is very 1152 * early, e.g. from setup_arch(), and second - when percpu_areas 1153 * are initialised. 1154 */ 1155 if (!early) 1156 set_percpu_data_ready(); 1157 1158 if (log_buf != __log_buf) 1159 return; 1160 1161 if (!early && !new_log_buf_len) 1162 log_buf_add_cpu(); 1163 1164 if (!new_log_buf_len) 1165 return; 1166 1167 new_descs_count = new_log_buf_len >> PRB_AVGBITS; 1168 if (new_descs_count == 0) { 1169 pr_err("new_log_buf_len: %lu too small\n", new_log_buf_len); 1170 return; 1171 } 1172 1173 new_log_buf = memblock_alloc(new_log_buf_len, LOG_ALIGN); 1174 if (unlikely(!new_log_buf)) { 1175 pr_err("log_buf_len: %lu text bytes not available\n", 1176 new_log_buf_len); 1177 return; 1178 } 1179 1180 new_descs_size = new_descs_count * sizeof(struct prb_desc); 1181 new_descs = memblock_alloc(new_descs_size, LOG_ALIGN); 1182 if (unlikely(!new_descs)) { 1183 pr_err("log_buf_len: %zu desc bytes not available\n", 1184 new_descs_size); 1185 goto err_free_log_buf; 1186 } 1187 1188 new_infos_size = new_descs_count * sizeof(struct printk_info); 1189 new_infos = memblock_alloc(new_infos_size, LOG_ALIGN); 1190 if (unlikely(!new_infos)) { 1191 pr_err("log_buf_len: %zu info bytes not available\n", 1192 new_infos_size); 1193 goto err_free_descs; 1194 } 1195 1196 prb_rec_init_rd(&r, &info, &setup_text_buf[0], sizeof(setup_text_buf)); 1197 1198 prb_init(&printk_rb_dynamic, 1199 new_log_buf, ilog2(new_log_buf_len), 1200 new_descs, ilog2(new_descs_count), 1201 new_infos); 1202 1203 local_irq_save(flags); 1204 1205 log_buf_len = new_log_buf_len; 1206 log_buf = new_log_buf; 1207 new_log_buf_len = 0; 1208 1209 free = __LOG_BUF_LEN; 1210 prb_for_each_record(0, &printk_rb_static, seq, &r) { 1211 text_size = add_to_rb(&printk_rb_dynamic, &r); 1212 if (text_size > free) 1213 free = 0; 1214 else 1215 free -= text_size; 1216 } 1217 1218 prb = &printk_rb_dynamic; 1219 1220 local_irq_restore(flags); 1221 1222 /* 1223 * Copy any remaining messages that might have appeared from 1224 * NMI context after copying but before switching to the 1225 * dynamic buffer. 1226 */ 1227 prb_for_each_record(seq, &printk_rb_static, seq, &r) { 1228 text_size = add_to_rb(&printk_rb_dynamic, &r); 1229 if (text_size > free) 1230 free = 0; 1231 else 1232 free -= text_size; 1233 } 1234 1235 if (seq != prb_next_seq(&printk_rb_static)) { 1236 pr_err("dropped %llu messages\n", 1237 prb_next_seq(&printk_rb_static) - seq); 1238 } 1239 1240 pr_info("log_buf_len: %u bytes\n", log_buf_len); 1241 pr_info("early log buf free: %u(%u%%)\n", 1242 free, (free * 100) / __LOG_BUF_LEN); 1243 return; 1244 1245 err_free_descs: 1246 memblock_free(new_descs, new_descs_size); 1247 err_free_log_buf: 1248 memblock_free(new_log_buf, new_log_buf_len); 1249 } 1250 1251 static bool __read_mostly ignore_loglevel; 1252 1253 static int __init ignore_loglevel_setup(char *str) 1254 { 1255 ignore_loglevel = true; 1256 pr_info("debug: ignoring loglevel setting.\n"); 1257 1258 return 0; 1259 } 1260 1261 early_param("ignore_loglevel", ignore_loglevel_setup); 1262 module_param(ignore_loglevel, bool, S_IRUGO | S_IWUSR); 1263 MODULE_PARM_DESC(ignore_loglevel, 1264 "ignore loglevel setting (prints all kernel messages to the console)"); 1265 1266 static bool suppress_message_printing(int level) 1267 { 1268 return (level >= console_loglevel && !ignore_loglevel); 1269 } 1270 1271 #ifdef CONFIG_BOOT_PRINTK_DELAY 1272 1273 static int boot_delay; /* msecs delay after each printk during bootup */ 1274 static unsigned long long loops_per_msec; /* based on boot_delay */ 1275 1276 static int __init boot_delay_setup(char *str) 1277 { 1278 unsigned long lpj; 1279 1280 lpj = preset_lpj ? preset_lpj : 1000000; /* some guess */ 1281 loops_per_msec = (unsigned long long)lpj / 1000 * HZ; 1282 1283 get_option(&str, &boot_delay); 1284 if (boot_delay > 10 * 1000) 1285 boot_delay = 0; 1286 1287 pr_debug("boot_delay: %u, preset_lpj: %ld, lpj: %lu, " 1288 "HZ: %d, loops_per_msec: %llu\n", 1289 boot_delay, preset_lpj, lpj, HZ, loops_per_msec); 1290 return 0; 1291 } 1292 early_param("boot_delay", boot_delay_setup); 1293 1294 static void boot_delay_msec(int level) 1295 { 1296 unsigned long long k; 1297 unsigned long timeout; 1298 1299 if ((boot_delay == 0 || system_state >= SYSTEM_RUNNING) 1300 || suppress_message_printing(level)) { 1301 return; 1302 } 1303 1304 k = (unsigned long long)loops_per_msec * boot_delay; 1305 1306 timeout = jiffies + msecs_to_jiffies(boot_delay); 1307 while (k) { 1308 k--; 1309 cpu_relax(); 1310 /* 1311 * use (volatile) jiffies to prevent 1312 * compiler reduction; loop termination via jiffies 1313 * is secondary and may or may not happen. 1314 */ 1315 if (time_after(jiffies, timeout)) 1316 break; 1317 touch_nmi_watchdog(); 1318 } 1319 } 1320 #else 1321 static inline void boot_delay_msec(int level) 1322 { 1323 } 1324 #endif 1325 1326 static bool printk_time = IS_ENABLED(CONFIG_PRINTK_TIME); 1327 module_param_named(time, printk_time, bool, S_IRUGO | S_IWUSR); 1328 1329 static size_t print_syslog(unsigned int level, char *buf) 1330 { 1331 return sprintf(buf, "<%u>", level); 1332 } 1333 1334 static size_t print_time(u64 ts, char *buf) 1335 { 1336 unsigned long rem_nsec = do_div(ts, 1000000000); 1337 1338 return sprintf(buf, "[%5lu.%06lu]", 1339 (unsigned long)ts, rem_nsec / 1000); 1340 } 1341 1342 #ifdef CONFIG_PRINTK_CALLER 1343 static size_t print_caller(u32 id, char *buf) 1344 { 1345 char caller[12]; 1346 1347 snprintf(caller, sizeof(caller), "%c%u", 1348 id & 0x80000000 ? 'C' : 'T', id & ~0x80000000); 1349 return sprintf(buf, "[%6s]", caller); 1350 } 1351 #else 1352 #define print_caller(id, buf) 0 1353 #endif 1354 1355 static size_t info_print_prefix(const struct printk_info *info, bool syslog, 1356 bool time, char *buf) 1357 { 1358 size_t len = 0; 1359 1360 if (syslog) 1361 len = print_syslog((info->facility << 3) | info->level, buf); 1362 1363 if (time) 1364 len += print_time(info->ts_nsec, buf + len); 1365 1366 len += print_caller(info->caller_id, buf + len); 1367 1368 if (IS_ENABLED(CONFIG_PRINTK_CALLER) || time) { 1369 buf[len++] = ' '; 1370 buf[len] = '\0'; 1371 } 1372 1373 return len; 1374 } 1375 1376 /* 1377 * Prepare the record for printing. The text is shifted within the given 1378 * buffer to avoid a need for another one. The following operations are 1379 * done: 1380 * 1381 * - Add prefix for each line. 1382 * - Drop truncated lines that no longer fit into the buffer. 1383 * - Add the trailing newline that has been removed in vprintk_store(). 1384 * - Add a string terminator. 1385 * 1386 * Since the produced string is always terminated, the maximum possible 1387 * return value is @r->text_buf_size - 1; 1388 * 1389 * Return: The length of the updated/prepared text, including the added 1390 * prefixes and the newline. The terminator is not counted. The dropped 1391 * line(s) are not counted. 1392 */ 1393 static size_t record_print_text(struct printk_record *r, bool syslog, 1394 bool time) 1395 { 1396 size_t text_len = r->info->text_len; 1397 size_t buf_size = r->text_buf_size; 1398 char *text = r->text_buf; 1399 char prefix[PRINTK_PREFIX_MAX]; 1400 bool truncated = false; 1401 size_t prefix_len; 1402 size_t line_len; 1403 size_t len = 0; 1404 char *next; 1405 1406 /* 1407 * If the message was truncated because the buffer was not large 1408 * enough, treat the available text as if it were the full text. 1409 */ 1410 if (text_len > buf_size) 1411 text_len = buf_size; 1412 1413 prefix_len = info_print_prefix(r->info, syslog, time, prefix); 1414 1415 /* 1416 * @text_len: bytes of unprocessed text 1417 * @line_len: bytes of current line _without_ newline 1418 * @text: pointer to beginning of current line 1419 * @len: number of bytes prepared in r->text_buf 1420 */ 1421 for (;;) { 1422 next = memchr(text, '\n', text_len); 1423 if (next) { 1424 line_len = next - text; 1425 } else { 1426 /* Drop truncated line(s). */ 1427 if (truncated) 1428 break; 1429 line_len = text_len; 1430 } 1431 1432 /* 1433 * Truncate the text if there is not enough space to add the 1434 * prefix and a trailing newline and a terminator. 1435 */ 1436 if (len + prefix_len + text_len + 1 + 1 > buf_size) { 1437 /* Drop even the current line if no space. */ 1438 if (len + prefix_len + line_len + 1 + 1 > buf_size) 1439 break; 1440 1441 text_len = buf_size - len - prefix_len - 1 - 1; 1442 truncated = true; 1443 } 1444 1445 memmove(text + prefix_len, text, text_len); 1446 memcpy(text, prefix, prefix_len); 1447 1448 /* 1449 * Increment the prepared length to include the text and 1450 * prefix that were just moved+copied. Also increment for the 1451 * newline at the end of this line. If this is the last line, 1452 * there is no newline, but it will be added immediately below. 1453 */ 1454 len += prefix_len + line_len + 1; 1455 if (text_len == line_len) { 1456 /* 1457 * This is the last line. Add the trailing newline 1458 * removed in vprintk_store(). 1459 */ 1460 text[prefix_len + line_len] = '\n'; 1461 break; 1462 } 1463 1464 /* 1465 * Advance beyond the added prefix and the related line with 1466 * its newline. 1467 */ 1468 text += prefix_len + line_len + 1; 1469 1470 /* 1471 * The remaining text has only decreased by the line with its 1472 * newline. 1473 * 1474 * Note that @text_len can become zero. It happens when @text 1475 * ended with a newline (either due to truncation or the 1476 * original string ending with "\n\n"). The loop is correctly 1477 * repeated and (if not truncated) an empty line with a prefix 1478 * will be prepared. 1479 */ 1480 text_len -= line_len + 1; 1481 } 1482 1483 /* 1484 * If a buffer was provided, it will be terminated. Space for the 1485 * string terminator is guaranteed to be available. The terminator is 1486 * not counted in the return value. 1487 */ 1488 if (buf_size > 0) 1489 r->text_buf[len] = 0; 1490 1491 return len; 1492 } 1493 1494 static size_t get_record_print_text_size(struct printk_info *info, 1495 unsigned int line_count, 1496 bool syslog, bool time) 1497 { 1498 char prefix[PRINTK_PREFIX_MAX]; 1499 size_t prefix_len; 1500 1501 prefix_len = info_print_prefix(info, syslog, time, prefix); 1502 1503 /* 1504 * Each line will be preceded with a prefix. The intermediate 1505 * newlines are already within the text, but a final trailing 1506 * newline will be added. 1507 */ 1508 return ((prefix_len * line_count) + info->text_len + 1); 1509 } 1510 1511 /* 1512 * Beginning with @start_seq, find the first record where it and all following 1513 * records up to (but not including) @max_seq fit into @size. 1514 * 1515 * @max_seq is simply an upper bound and does not need to exist. If the caller 1516 * does not require an upper bound, -1 can be used for @max_seq. 1517 */ 1518 static u64 find_first_fitting_seq(u64 start_seq, u64 max_seq, size_t size, 1519 bool syslog, bool time) 1520 { 1521 struct printk_info info; 1522 unsigned int line_count; 1523 size_t len = 0; 1524 u64 seq; 1525 1526 /* Determine the size of the records up to @max_seq. */ 1527 prb_for_each_info(start_seq, prb, seq, &info, &line_count) { 1528 if (info.seq >= max_seq) 1529 break; 1530 len += get_record_print_text_size(&info, line_count, syslog, time); 1531 } 1532 1533 /* 1534 * Adjust the upper bound for the next loop to avoid subtracting 1535 * lengths that were never added. 1536 */ 1537 if (seq < max_seq) 1538 max_seq = seq; 1539 1540 /* 1541 * Move first record forward until length fits into the buffer. Ignore 1542 * newest messages that were not counted in the above cycle. Messages 1543 * might appear and get lost in the meantime. This is a best effort 1544 * that prevents an infinite loop that could occur with a retry. 1545 */ 1546 prb_for_each_info(start_seq, prb, seq, &info, &line_count) { 1547 if (len <= size || info.seq >= max_seq) 1548 break; 1549 len -= get_record_print_text_size(&info, line_count, syslog, time); 1550 } 1551 1552 return seq; 1553 } 1554 1555 /* The caller is responsible for making sure @size is greater than 0. */ 1556 static int syslog_print(char __user *buf, int size) 1557 { 1558 struct printk_info info; 1559 struct printk_record r; 1560 char *text; 1561 int len = 0; 1562 u64 seq; 1563 1564 text = kmalloc(PRINTK_MESSAGE_MAX, GFP_KERNEL); 1565 if (!text) 1566 return -ENOMEM; 1567 1568 prb_rec_init_rd(&r, &info, text, PRINTK_MESSAGE_MAX); 1569 1570 mutex_lock(&syslog_lock); 1571 1572 /* 1573 * Wait for the @syslog_seq record to be available. @syslog_seq may 1574 * change while waiting. 1575 */ 1576 do { 1577 seq = syslog_seq; 1578 1579 mutex_unlock(&syslog_lock); 1580 /* 1581 * Guarantee this task is visible on the waitqueue before 1582 * checking the wake condition. 1583 * 1584 * The full memory barrier within set_current_state() of 1585 * prepare_to_wait_event() pairs with the full memory barrier 1586 * within wq_has_sleeper(). 1587 * 1588 * This pairs with __wake_up_klogd:A. 1589 */ 1590 len = wait_event_interruptible(log_wait, 1591 prb_read_valid(prb, seq, NULL)); /* LMM(syslog_print:A) */ 1592 mutex_lock(&syslog_lock); 1593 1594 if (len) 1595 goto out; 1596 } while (syslog_seq != seq); 1597 1598 /* 1599 * Copy records that fit into the buffer. The above cycle makes sure 1600 * that the first record is always available. 1601 */ 1602 do { 1603 size_t n; 1604 size_t skip; 1605 int err; 1606 1607 if (!prb_read_valid(prb, syslog_seq, &r)) 1608 break; 1609 1610 if (r.info->seq != syslog_seq) { 1611 /* message is gone, move to next valid one */ 1612 syslog_seq = r.info->seq; 1613 syslog_partial = 0; 1614 } 1615 1616 /* 1617 * To keep reading/counting partial line consistent, 1618 * use printk_time value as of the beginning of a line. 1619 */ 1620 if (!syslog_partial) 1621 syslog_time = printk_time; 1622 1623 skip = syslog_partial; 1624 n = record_print_text(&r, true, syslog_time); 1625 if (n - syslog_partial <= size) { 1626 /* message fits into buffer, move forward */ 1627 syslog_seq = r.info->seq + 1; 1628 n -= syslog_partial; 1629 syslog_partial = 0; 1630 } else if (!len){ 1631 /* partial read(), remember position */ 1632 n = size; 1633 syslog_partial += n; 1634 } else 1635 n = 0; 1636 1637 if (!n) 1638 break; 1639 1640 mutex_unlock(&syslog_lock); 1641 err = copy_to_user(buf, text + skip, n); 1642 mutex_lock(&syslog_lock); 1643 1644 if (err) { 1645 if (!len) 1646 len = -EFAULT; 1647 break; 1648 } 1649 1650 len += n; 1651 size -= n; 1652 buf += n; 1653 } while (size); 1654 out: 1655 mutex_unlock(&syslog_lock); 1656 kfree(text); 1657 return len; 1658 } 1659 1660 static int syslog_print_all(char __user *buf, int size, bool clear) 1661 { 1662 struct printk_info info; 1663 struct printk_record r; 1664 char *text; 1665 int len = 0; 1666 u64 seq; 1667 bool time; 1668 1669 text = kmalloc(PRINTK_MESSAGE_MAX, GFP_KERNEL); 1670 if (!text) 1671 return -ENOMEM; 1672 1673 time = printk_time; 1674 /* 1675 * Find first record that fits, including all following records, 1676 * into the user-provided buffer for this dump. 1677 */ 1678 seq = find_first_fitting_seq(latched_seq_read_nolock(&clear_seq), -1, 1679 size, true, time); 1680 1681 prb_rec_init_rd(&r, &info, text, PRINTK_MESSAGE_MAX); 1682 1683 len = 0; 1684 prb_for_each_record(seq, prb, seq, &r) { 1685 int textlen; 1686 1687 textlen = record_print_text(&r, true, time); 1688 1689 if (len + textlen > size) { 1690 seq--; 1691 break; 1692 } 1693 1694 if (copy_to_user(buf + len, text, textlen)) 1695 len = -EFAULT; 1696 else 1697 len += textlen; 1698 1699 if (len < 0) 1700 break; 1701 } 1702 1703 if (clear) { 1704 mutex_lock(&syslog_lock); 1705 latched_seq_write(&clear_seq, seq); 1706 mutex_unlock(&syslog_lock); 1707 } 1708 1709 kfree(text); 1710 return len; 1711 } 1712 1713 static void syslog_clear(void) 1714 { 1715 mutex_lock(&syslog_lock); 1716 latched_seq_write(&clear_seq, prb_next_seq(prb)); 1717 mutex_unlock(&syslog_lock); 1718 } 1719 1720 int do_syslog(int type, char __user *buf, int len, int source) 1721 { 1722 struct printk_info info; 1723 bool clear = false; 1724 static int saved_console_loglevel = LOGLEVEL_DEFAULT; 1725 int error; 1726 1727 error = check_syslog_permissions(type, source); 1728 if (error) 1729 return error; 1730 1731 switch (type) { 1732 case SYSLOG_ACTION_CLOSE: /* Close log */ 1733 break; 1734 case SYSLOG_ACTION_OPEN: /* Open log */ 1735 break; 1736 case SYSLOG_ACTION_READ: /* Read from log */ 1737 if (!buf || len < 0) 1738 return -EINVAL; 1739 if (!len) 1740 return 0; 1741 if (!access_ok(buf, len)) 1742 return -EFAULT; 1743 error = syslog_print(buf, len); 1744 break; 1745 /* Read/clear last kernel messages */ 1746 case SYSLOG_ACTION_READ_CLEAR: 1747 clear = true; 1748 fallthrough; 1749 /* Read last kernel messages */ 1750 case SYSLOG_ACTION_READ_ALL: 1751 if (!buf || len < 0) 1752 return -EINVAL; 1753 if (!len) 1754 return 0; 1755 if (!access_ok(buf, len)) 1756 return -EFAULT; 1757 error = syslog_print_all(buf, len, clear); 1758 break; 1759 /* Clear ring buffer */ 1760 case SYSLOG_ACTION_CLEAR: 1761 syslog_clear(); 1762 break; 1763 /* Disable logging to console */ 1764 case SYSLOG_ACTION_CONSOLE_OFF: 1765 if (saved_console_loglevel == LOGLEVEL_DEFAULT) 1766 saved_console_loglevel = console_loglevel; 1767 console_loglevel = minimum_console_loglevel; 1768 break; 1769 /* Enable logging to console */ 1770 case SYSLOG_ACTION_CONSOLE_ON: 1771 if (saved_console_loglevel != LOGLEVEL_DEFAULT) { 1772 console_loglevel = saved_console_loglevel; 1773 saved_console_loglevel = LOGLEVEL_DEFAULT; 1774 } 1775 break; 1776 /* Set level of messages printed to console */ 1777 case SYSLOG_ACTION_CONSOLE_LEVEL: 1778 if (len < 1 || len > 8) 1779 return -EINVAL; 1780 if (len < minimum_console_loglevel) 1781 len = minimum_console_loglevel; 1782 console_loglevel = len; 1783 /* Implicitly re-enable logging to console */ 1784 saved_console_loglevel = LOGLEVEL_DEFAULT; 1785 break; 1786 /* Number of chars in the log buffer */ 1787 case SYSLOG_ACTION_SIZE_UNREAD: 1788 mutex_lock(&syslog_lock); 1789 if (!prb_read_valid_info(prb, syslog_seq, &info, NULL)) { 1790 /* No unread messages. */ 1791 mutex_unlock(&syslog_lock); 1792 return 0; 1793 } 1794 if (info.seq != syslog_seq) { 1795 /* messages are gone, move to first one */ 1796 syslog_seq = info.seq; 1797 syslog_partial = 0; 1798 } 1799 if (source == SYSLOG_FROM_PROC) { 1800 /* 1801 * Short-cut for poll(/"proc/kmsg") which simply checks 1802 * for pending data, not the size; return the count of 1803 * records, not the length. 1804 */ 1805 error = prb_next_seq(prb) - syslog_seq; 1806 } else { 1807 bool time = syslog_partial ? syslog_time : printk_time; 1808 unsigned int line_count; 1809 u64 seq; 1810 1811 prb_for_each_info(syslog_seq, prb, seq, &info, 1812 &line_count) { 1813 error += get_record_print_text_size(&info, line_count, 1814 true, time); 1815 time = printk_time; 1816 } 1817 error -= syslog_partial; 1818 } 1819 mutex_unlock(&syslog_lock); 1820 break; 1821 /* Size of the log buffer */ 1822 case SYSLOG_ACTION_SIZE_BUFFER: 1823 error = log_buf_len; 1824 break; 1825 default: 1826 error = -EINVAL; 1827 break; 1828 } 1829 1830 return error; 1831 } 1832 1833 SYSCALL_DEFINE3(syslog, int, type, char __user *, buf, int, len) 1834 { 1835 return do_syslog(type, buf, len, SYSLOG_FROM_READER); 1836 } 1837 1838 /* 1839 * Special console_lock variants that help to reduce the risk of soft-lockups. 1840 * They allow to pass console_lock to another printk() call using a busy wait. 1841 */ 1842 1843 #ifdef CONFIG_LOCKDEP 1844 static struct lockdep_map console_owner_dep_map = { 1845 .name = "console_owner" 1846 }; 1847 #endif 1848 1849 static DEFINE_RAW_SPINLOCK(console_owner_lock); 1850 static struct task_struct *console_owner; 1851 static bool console_waiter; 1852 1853 /** 1854 * console_lock_spinning_enable - mark beginning of code where another 1855 * thread might safely busy wait 1856 * 1857 * This basically converts console_lock into a spinlock. This marks 1858 * the section where the console_lock owner can not sleep, because 1859 * there may be a waiter spinning (like a spinlock). Also it must be 1860 * ready to hand over the lock at the end of the section. 1861 */ 1862 static void console_lock_spinning_enable(void) 1863 { 1864 raw_spin_lock(&console_owner_lock); 1865 console_owner = current; 1866 raw_spin_unlock(&console_owner_lock); 1867 1868 /* The waiter may spin on us after setting console_owner */ 1869 spin_acquire(&console_owner_dep_map, 0, 0, _THIS_IP_); 1870 } 1871 1872 /** 1873 * console_lock_spinning_disable_and_check - mark end of code where another 1874 * thread was able to busy wait and check if there is a waiter 1875 * @cookie: cookie returned from console_srcu_read_lock() 1876 * 1877 * This is called at the end of the section where spinning is allowed. 1878 * It has two functions. First, it is a signal that it is no longer 1879 * safe to start busy waiting for the lock. Second, it checks if 1880 * there is a busy waiter and passes the lock rights to her. 1881 * 1882 * Important: Callers lose both the console_lock and the SRCU read lock if 1883 * there was a busy waiter. They must not touch items synchronized by 1884 * console_lock or SRCU read lock in this case. 1885 * 1886 * Return: 1 if the lock rights were passed, 0 otherwise. 1887 */ 1888 static int console_lock_spinning_disable_and_check(int cookie) 1889 { 1890 int waiter; 1891 1892 raw_spin_lock(&console_owner_lock); 1893 waiter = READ_ONCE(console_waiter); 1894 console_owner = NULL; 1895 raw_spin_unlock(&console_owner_lock); 1896 1897 if (!waiter) { 1898 spin_release(&console_owner_dep_map, _THIS_IP_); 1899 return 0; 1900 } 1901 1902 /* The waiter is now free to continue */ 1903 WRITE_ONCE(console_waiter, false); 1904 1905 spin_release(&console_owner_dep_map, _THIS_IP_); 1906 1907 /* 1908 * Preserve lockdep lock ordering. Release the SRCU read lock before 1909 * releasing the console_lock. 1910 */ 1911 console_srcu_read_unlock(cookie); 1912 1913 /* 1914 * Hand off console_lock to waiter. The waiter will perform 1915 * the up(). After this, the waiter is the console_lock owner. 1916 */ 1917 mutex_release(&console_lock_dep_map, _THIS_IP_); 1918 return 1; 1919 } 1920 1921 /** 1922 * console_trylock_spinning - try to get console_lock by busy waiting 1923 * 1924 * This allows to busy wait for the console_lock when the current 1925 * owner is running in specially marked sections. It means that 1926 * the current owner is running and cannot reschedule until it 1927 * is ready to lose the lock. 1928 * 1929 * Return: 1 if we got the lock, 0 othrewise 1930 */ 1931 static int console_trylock_spinning(void) 1932 { 1933 struct task_struct *owner = NULL; 1934 bool waiter; 1935 bool spin = false; 1936 unsigned long flags; 1937 1938 if (console_trylock()) 1939 return 1; 1940 1941 /* 1942 * It's unsafe to spin once a panic has begun. If we are the 1943 * panic CPU, we may have already halted the owner of the 1944 * console_sem. If we are not the panic CPU, then we should 1945 * avoid taking console_sem, so the panic CPU has a better 1946 * chance of cleanly acquiring it later. 1947 */ 1948 if (panic_in_progress()) 1949 return 0; 1950 1951 printk_safe_enter_irqsave(flags); 1952 1953 raw_spin_lock(&console_owner_lock); 1954 owner = READ_ONCE(console_owner); 1955 waiter = READ_ONCE(console_waiter); 1956 if (!waiter && owner && owner != current) { 1957 WRITE_ONCE(console_waiter, true); 1958 spin = true; 1959 } 1960 raw_spin_unlock(&console_owner_lock); 1961 1962 /* 1963 * If there is an active printk() writing to the 1964 * consoles, instead of having it write our data too, 1965 * see if we can offload that load from the active 1966 * printer, and do some printing ourselves. 1967 * Go into a spin only if there isn't already a waiter 1968 * spinning, and there is an active printer, and 1969 * that active printer isn't us (recursive printk?). 1970 */ 1971 if (!spin) { 1972 printk_safe_exit_irqrestore(flags); 1973 return 0; 1974 } 1975 1976 /* We spin waiting for the owner to release us */ 1977 spin_acquire(&console_owner_dep_map, 0, 0, _THIS_IP_); 1978 /* Owner will clear console_waiter on hand off */ 1979 while (READ_ONCE(console_waiter)) 1980 cpu_relax(); 1981 spin_release(&console_owner_dep_map, _THIS_IP_); 1982 1983 printk_safe_exit_irqrestore(flags); 1984 /* 1985 * The owner passed the console lock to us. 1986 * Since we did not spin on console lock, annotate 1987 * this as a trylock. Otherwise lockdep will 1988 * complain. 1989 */ 1990 mutex_acquire(&console_lock_dep_map, 0, 1, _THIS_IP_); 1991 1992 return 1; 1993 } 1994 1995 /* 1996 * Recursion is tracked separately on each CPU. If NMIs are supported, an 1997 * additional NMI context per CPU is also separately tracked. Until per-CPU 1998 * is available, a separate "early tracking" is performed. 1999 */ 2000 static DEFINE_PER_CPU(u8, printk_count); 2001 static u8 printk_count_early; 2002 #ifdef CONFIG_HAVE_NMI 2003 static DEFINE_PER_CPU(u8, printk_count_nmi); 2004 static u8 printk_count_nmi_early; 2005 #endif 2006 2007 /* 2008 * Recursion is limited to keep the output sane. printk() should not require 2009 * more than 1 level of recursion (allowing, for example, printk() to trigger 2010 * a WARN), but a higher value is used in case some printk-internal errors 2011 * exist, such as the ringbuffer validation checks failing. 2012 */ 2013 #define PRINTK_MAX_RECURSION 3 2014 2015 /* 2016 * Return a pointer to the dedicated counter for the CPU+context of the 2017 * caller. 2018 */ 2019 static u8 *__printk_recursion_counter(void) 2020 { 2021 #ifdef CONFIG_HAVE_NMI 2022 if (in_nmi()) { 2023 if (printk_percpu_data_ready()) 2024 return this_cpu_ptr(&printk_count_nmi); 2025 return &printk_count_nmi_early; 2026 } 2027 #endif 2028 if (printk_percpu_data_ready()) 2029 return this_cpu_ptr(&printk_count); 2030 return &printk_count_early; 2031 } 2032 2033 /* 2034 * Enter recursion tracking. Interrupts are disabled to simplify tracking. 2035 * The caller must check the boolean return value to see if the recursion is 2036 * allowed. On failure, interrupts are not disabled. 2037 * 2038 * @recursion_ptr must be a variable of type (u8 *) and is the same variable 2039 * that is passed to printk_exit_irqrestore(). 2040 */ 2041 #define printk_enter_irqsave(recursion_ptr, flags) \ 2042 ({ \ 2043 bool success = true; \ 2044 \ 2045 typecheck(u8 *, recursion_ptr); \ 2046 local_irq_save(flags); \ 2047 (recursion_ptr) = __printk_recursion_counter(); \ 2048 if (*(recursion_ptr) > PRINTK_MAX_RECURSION) { \ 2049 local_irq_restore(flags); \ 2050 success = false; \ 2051 } else { \ 2052 (*(recursion_ptr))++; \ 2053 } \ 2054 success; \ 2055 }) 2056 2057 /* Exit recursion tracking, restoring interrupts. */ 2058 #define printk_exit_irqrestore(recursion_ptr, flags) \ 2059 do { \ 2060 typecheck(u8 *, recursion_ptr); \ 2061 (*(recursion_ptr))--; \ 2062 local_irq_restore(flags); \ 2063 } while (0) 2064 2065 int printk_delay_msec __read_mostly; 2066 2067 static inline void printk_delay(int level) 2068 { 2069 boot_delay_msec(level); 2070 2071 if (unlikely(printk_delay_msec)) { 2072 int m = printk_delay_msec; 2073 2074 while (m--) { 2075 mdelay(1); 2076 touch_nmi_watchdog(); 2077 } 2078 } 2079 } 2080 2081 static inline u32 printk_caller_id(void) 2082 { 2083 return in_task() ? task_pid_nr(current) : 2084 0x80000000 + smp_processor_id(); 2085 } 2086 2087 /** 2088 * printk_parse_prefix - Parse level and control flags. 2089 * 2090 * @text: The terminated text message. 2091 * @level: A pointer to the current level value, will be updated. 2092 * @flags: A pointer to the current printk_info flags, will be updated. 2093 * 2094 * @level may be NULL if the caller is not interested in the parsed value. 2095 * Otherwise the variable pointed to by @level must be set to 2096 * LOGLEVEL_DEFAULT in order to be updated with the parsed value. 2097 * 2098 * @flags may be NULL if the caller is not interested in the parsed value. 2099 * Otherwise the variable pointed to by @flags will be OR'd with the parsed 2100 * value. 2101 * 2102 * Return: The length of the parsed level and control flags. 2103 */ 2104 u16 printk_parse_prefix(const char *text, int *level, 2105 enum printk_info_flags *flags) 2106 { 2107 u16 prefix_len = 0; 2108 int kern_level; 2109 2110 while (*text) { 2111 kern_level = printk_get_level(text); 2112 if (!kern_level) 2113 break; 2114 2115 switch (kern_level) { 2116 case '0' ... '7': 2117 if (level && *level == LOGLEVEL_DEFAULT) 2118 *level = kern_level - '0'; 2119 break; 2120 case 'c': /* KERN_CONT */ 2121 if (flags) 2122 *flags |= LOG_CONT; 2123 } 2124 2125 prefix_len += 2; 2126 text += 2; 2127 } 2128 2129 return prefix_len; 2130 } 2131 2132 __printf(5, 0) 2133 static u16 printk_sprint(char *text, u16 size, int facility, 2134 enum printk_info_flags *flags, const char *fmt, 2135 va_list args) 2136 { 2137 u16 text_len; 2138 2139 text_len = vscnprintf(text, size, fmt, args); 2140 2141 /* Mark and strip a trailing newline. */ 2142 if (text_len && text[text_len - 1] == '\n') { 2143 text_len--; 2144 *flags |= LOG_NEWLINE; 2145 } 2146 2147 /* Strip log level and control flags. */ 2148 if (facility == 0) { 2149 u16 prefix_len; 2150 2151 prefix_len = printk_parse_prefix(text, NULL, NULL); 2152 if (prefix_len) { 2153 text_len -= prefix_len; 2154 memmove(text, text + prefix_len, text_len); 2155 } 2156 } 2157 2158 trace_console(text, text_len); 2159 2160 return text_len; 2161 } 2162 2163 __printf(4, 0) 2164 int vprintk_store(int facility, int level, 2165 const struct dev_printk_info *dev_info, 2166 const char *fmt, va_list args) 2167 { 2168 struct prb_reserved_entry e; 2169 enum printk_info_flags flags = 0; 2170 struct printk_record r; 2171 unsigned long irqflags; 2172 u16 trunc_msg_len = 0; 2173 char prefix_buf[8]; 2174 u8 *recursion_ptr; 2175 u16 reserve_size; 2176 va_list args2; 2177 u32 caller_id; 2178 u16 text_len; 2179 int ret = 0; 2180 u64 ts_nsec; 2181 2182 if (!printk_enter_irqsave(recursion_ptr, irqflags)) 2183 return 0; 2184 2185 /* 2186 * Since the duration of printk() can vary depending on the message 2187 * and state of the ringbuffer, grab the timestamp now so that it is 2188 * close to the call of printk(). This provides a more deterministic 2189 * timestamp with respect to the caller. 2190 */ 2191 ts_nsec = local_clock(); 2192 2193 caller_id = printk_caller_id(); 2194 2195 /* 2196 * The sprintf needs to come first since the syslog prefix might be 2197 * passed in as a parameter. An extra byte must be reserved so that 2198 * later the vscnprintf() into the reserved buffer has room for the 2199 * terminating '\0', which is not counted by vsnprintf(). 2200 */ 2201 va_copy(args2, args); 2202 reserve_size = vsnprintf(&prefix_buf[0], sizeof(prefix_buf), fmt, args2) + 1; 2203 va_end(args2); 2204 2205 if (reserve_size > PRINTKRB_RECORD_MAX) 2206 reserve_size = PRINTKRB_RECORD_MAX; 2207 2208 /* Extract log level or control flags. */ 2209 if (facility == 0) 2210 printk_parse_prefix(&prefix_buf[0], &level, &flags); 2211 2212 if (level == LOGLEVEL_DEFAULT) 2213 level = default_message_loglevel; 2214 2215 if (dev_info) 2216 flags |= LOG_NEWLINE; 2217 2218 if (flags & LOG_CONT) { 2219 prb_rec_init_wr(&r, reserve_size); 2220 if (prb_reserve_in_last(&e, prb, &r, caller_id, PRINTKRB_RECORD_MAX)) { 2221 text_len = printk_sprint(&r.text_buf[r.info->text_len], reserve_size, 2222 facility, &flags, fmt, args); 2223 r.info->text_len += text_len; 2224 2225 if (flags & LOG_NEWLINE) { 2226 r.info->flags |= LOG_NEWLINE; 2227 prb_final_commit(&e); 2228 } else { 2229 prb_commit(&e); 2230 } 2231 2232 ret = text_len; 2233 goto out; 2234 } 2235 } 2236 2237 /* 2238 * Explicitly initialize the record before every prb_reserve() call. 2239 * prb_reserve_in_last() and prb_reserve() purposely invalidate the 2240 * structure when they fail. 2241 */ 2242 prb_rec_init_wr(&r, reserve_size); 2243 if (!prb_reserve(&e, prb, &r)) { 2244 /* truncate the message if it is too long for empty buffer */ 2245 truncate_msg(&reserve_size, &trunc_msg_len); 2246 2247 prb_rec_init_wr(&r, reserve_size + trunc_msg_len); 2248 if (!prb_reserve(&e, prb, &r)) 2249 goto out; 2250 } 2251 2252 /* fill message */ 2253 text_len = printk_sprint(&r.text_buf[0], reserve_size, facility, &flags, fmt, args); 2254 if (trunc_msg_len) 2255 memcpy(&r.text_buf[text_len], trunc_msg, trunc_msg_len); 2256 r.info->text_len = text_len + trunc_msg_len; 2257 r.info->facility = facility; 2258 r.info->level = level & 7; 2259 r.info->flags = flags & 0x1f; 2260 r.info->ts_nsec = ts_nsec; 2261 r.info->caller_id = caller_id; 2262 if (dev_info) 2263 memcpy(&r.info->dev_info, dev_info, sizeof(r.info->dev_info)); 2264 2265 /* A message without a trailing newline can be continued. */ 2266 if (!(flags & LOG_NEWLINE)) 2267 prb_commit(&e); 2268 else 2269 prb_final_commit(&e); 2270 2271 ret = text_len + trunc_msg_len; 2272 out: 2273 printk_exit_irqrestore(recursion_ptr, irqflags); 2274 return ret; 2275 } 2276 2277 asmlinkage int vprintk_emit(int facility, int level, 2278 const struct dev_printk_info *dev_info, 2279 const char *fmt, va_list args) 2280 { 2281 int printed_len; 2282 bool in_sched = false; 2283 2284 /* Suppress unimportant messages after panic happens */ 2285 if (unlikely(suppress_printk)) 2286 return 0; 2287 2288 if (unlikely(suppress_panic_printk) && 2289 atomic_read(&panic_cpu) != raw_smp_processor_id()) 2290 return 0; 2291 2292 if (level == LOGLEVEL_SCHED) { 2293 level = LOGLEVEL_DEFAULT; 2294 in_sched = true; 2295 } 2296 2297 printk_delay(level); 2298 2299 printed_len = vprintk_store(facility, level, dev_info, fmt, args); 2300 2301 /* If called from the scheduler, we can not call up(). */ 2302 if (!in_sched) { 2303 /* 2304 * The caller may be holding system-critical or 2305 * timing-sensitive locks. Disable preemption during 2306 * printing of all remaining records to all consoles so that 2307 * this context can return as soon as possible. Hopefully 2308 * another printk() caller will take over the printing. 2309 */ 2310 preempt_disable(); 2311 /* 2312 * Try to acquire and then immediately release the console 2313 * semaphore. The release will print out buffers. With the 2314 * spinning variant, this context tries to take over the 2315 * printing from another printing context. 2316 */ 2317 if (console_trylock_spinning()) 2318 console_unlock(); 2319 preempt_enable(); 2320 } 2321 2322 wake_up_klogd(); 2323 return printed_len; 2324 } 2325 EXPORT_SYMBOL(vprintk_emit); 2326 2327 int vprintk_default(const char *fmt, va_list args) 2328 { 2329 return vprintk_emit(0, LOGLEVEL_DEFAULT, NULL, fmt, args); 2330 } 2331 EXPORT_SYMBOL_GPL(vprintk_default); 2332 2333 asmlinkage __visible int _printk(const char *fmt, ...) 2334 { 2335 va_list args; 2336 int r; 2337 2338 va_start(args, fmt); 2339 r = vprintk(fmt, args); 2340 va_end(args); 2341 2342 return r; 2343 } 2344 EXPORT_SYMBOL(_printk); 2345 2346 static bool pr_flush(int timeout_ms, bool reset_on_progress); 2347 static bool __pr_flush(struct console *con, int timeout_ms, bool reset_on_progress); 2348 2349 #else /* CONFIG_PRINTK */ 2350 2351 #define printk_time false 2352 2353 #define prb_read_valid(rb, seq, r) false 2354 #define prb_first_valid_seq(rb) 0 2355 #define prb_next_seq(rb) 0 2356 2357 static u64 syslog_seq; 2358 2359 static size_t record_print_text(const struct printk_record *r, 2360 bool syslog, bool time) 2361 { 2362 return 0; 2363 } 2364 static ssize_t info_print_ext_header(char *buf, size_t size, 2365 struct printk_info *info) 2366 { 2367 return 0; 2368 } 2369 static ssize_t msg_print_ext_body(char *buf, size_t size, 2370 char *text, size_t text_len, 2371 struct dev_printk_info *dev_info) { return 0; } 2372 static void console_lock_spinning_enable(void) { } 2373 static int console_lock_spinning_disable_and_check(int cookie) { return 0; } 2374 static bool suppress_message_printing(int level) { return false; } 2375 static bool pr_flush(int timeout_ms, bool reset_on_progress) { return true; } 2376 static bool __pr_flush(struct console *con, int timeout_ms, bool reset_on_progress) { return true; } 2377 2378 #endif /* CONFIG_PRINTK */ 2379 2380 #ifdef CONFIG_EARLY_PRINTK 2381 struct console *early_console; 2382 2383 asmlinkage __visible void early_printk(const char *fmt, ...) 2384 { 2385 va_list ap; 2386 char buf[512]; 2387 int n; 2388 2389 if (!early_console) 2390 return; 2391 2392 va_start(ap, fmt); 2393 n = vscnprintf(buf, sizeof(buf), fmt, ap); 2394 va_end(ap); 2395 2396 early_console->write(early_console, buf, n); 2397 } 2398 #endif 2399 2400 static void set_user_specified(struct console_cmdline *c, bool user_specified) 2401 { 2402 if (!user_specified) 2403 return; 2404 2405 /* 2406 * @c console was defined by the user on the command line. 2407 * Do not clear when added twice also by SPCR or the device tree. 2408 */ 2409 c->user_specified = true; 2410 /* At least one console defined by the user on the command line. */ 2411 console_set_on_cmdline = 1; 2412 } 2413 2414 static int __add_preferred_console(char *name, int idx, char *options, 2415 char *brl_options, bool user_specified) 2416 { 2417 struct console_cmdline *c; 2418 int i; 2419 2420 /* 2421 * See if this tty is not yet registered, and 2422 * if we have a slot free. 2423 */ 2424 for (i = 0, c = console_cmdline; 2425 i < MAX_CMDLINECONSOLES && c->name[0]; 2426 i++, c++) { 2427 if (strcmp(c->name, name) == 0 && c->index == idx) { 2428 if (!brl_options) 2429 preferred_console = i; 2430 set_user_specified(c, user_specified); 2431 return 0; 2432 } 2433 } 2434 if (i == MAX_CMDLINECONSOLES) 2435 return -E2BIG; 2436 if (!brl_options) 2437 preferred_console = i; 2438 strscpy(c->name, name, sizeof(c->name)); 2439 c->options = options; 2440 set_user_specified(c, user_specified); 2441 braille_set_options(c, brl_options); 2442 2443 c->index = idx; 2444 return 0; 2445 } 2446 2447 static int __init console_msg_format_setup(char *str) 2448 { 2449 if (!strcmp(str, "syslog")) 2450 console_msg_format = MSG_FORMAT_SYSLOG; 2451 if (!strcmp(str, "default")) 2452 console_msg_format = MSG_FORMAT_DEFAULT; 2453 return 1; 2454 } 2455 __setup("console_msg_format=", console_msg_format_setup); 2456 2457 /* 2458 * Set up a console. Called via do_early_param() in init/main.c 2459 * for each "console=" parameter in the boot command line. 2460 */ 2461 static int __init console_setup(char *str) 2462 { 2463 char buf[sizeof(console_cmdline[0].name) + 4]; /* 4 for "ttyS" */ 2464 char *s, *options, *brl_options = NULL; 2465 int idx; 2466 2467 /* 2468 * console="" or console=null have been suggested as a way to 2469 * disable console output. Use ttynull that has been created 2470 * for exactly this purpose. 2471 */ 2472 if (str[0] == 0 || strcmp(str, "null") == 0) { 2473 __add_preferred_console("ttynull", 0, NULL, NULL, true); 2474 return 1; 2475 } 2476 2477 if (_braille_console_setup(&str, &brl_options)) 2478 return 1; 2479 2480 /* 2481 * Decode str into name, index, options. 2482 */ 2483 if (str[0] >= '0' && str[0] <= '9') { 2484 strcpy(buf, "ttyS"); 2485 strncpy(buf + 4, str, sizeof(buf) - 5); 2486 } else { 2487 strncpy(buf, str, sizeof(buf) - 1); 2488 } 2489 buf[sizeof(buf) - 1] = 0; 2490 options = strchr(str, ','); 2491 if (options) 2492 *(options++) = 0; 2493 #ifdef __sparc__ 2494 if (!strcmp(str, "ttya")) 2495 strcpy(buf, "ttyS0"); 2496 if (!strcmp(str, "ttyb")) 2497 strcpy(buf, "ttyS1"); 2498 #endif 2499 for (s = buf; *s; s++) 2500 if (isdigit(*s) || *s == ',') 2501 break; 2502 idx = simple_strtoul(s, NULL, 10); 2503 *s = 0; 2504 2505 __add_preferred_console(buf, idx, options, brl_options, true); 2506 return 1; 2507 } 2508 __setup("console=", console_setup); 2509 2510 /** 2511 * add_preferred_console - add a device to the list of preferred consoles. 2512 * @name: device name 2513 * @idx: device index 2514 * @options: options for this console 2515 * 2516 * The last preferred console added will be used for kernel messages 2517 * and stdin/out/err for init. Normally this is used by console_setup 2518 * above to handle user-supplied console arguments; however it can also 2519 * be used by arch-specific code either to override the user or more 2520 * commonly to provide a default console (ie from PROM variables) when 2521 * the user has not supplied one. 2522 */ 2523 int add_preferred_console(char *name, int idx, char *options) 2524 { 2525 return __add_preferred_console(name, idx, options, NULL, false); 2526 } 2527 2528 bool console_suspend_enabled = true; 2529 EXPORT_SYMBOL(console_suspend_enabled); 2530 2531 static int __init console_suspend_disable(char *str) 2532 { 2533 console_suspend_enabled = false; 2534 return 1; 2535 } 2536 __setup("no_console_suspend", console_suspend_disable); 2537 module_param_named(console_suspend, console_suspend_enabled, 2538 bool, S_IRUGO | S_IWUSR); 2539 MODULE_PARM_DESC(console_suspend, "suspend console during suspend" 2540 " and hibernate operations"); 2541 2542 static bool printk_console_no_auto_verbose; 2543 2544 void console_verbose(void) 2545 { 2546 if (console_loglevel && !printk_console_no_auto_verbose) 2547 console_loglevel = CONSOLE_LOGLEVEL_MOTORMOUTH; 2548 } 2549 EXPORT_SYMBOL_GPL(console_verbose); 2550 2551 module_param_named(console_no_auto_verbose, printk_console_no_auto_verbose, bool, 0644); 2552 MODULE_PARM_DESC(console_no_auto_verbose, "Disable console loglevel raise to highest on oops/panic/etc"); 2553 2554 /** 2555 * suspend_console - suspend the console subsystem 2556 * 2557 * This disables printk() while we go into suspend states 2558 */ 2559 void suspend_console(void) 2560 { 2561 if (!console_suspend_enabled) 2562 return; 2563 pr_info("Suspending console(s) (use no_console_suspend to debug)\n"); 2564 pr_flush(1000, true); 2565 console_lock(); 2566 console_suspended = 1; 2567 up_console_sem(); 2568 } 2569 2570 void resume_console(void) 2571 { 2572 if (!console_suspend_enabled) 2573 return; 2574 down_console_sem(); 2575 console_suspended = 0; 2576 console_unlock(); 2577 pr_flush(1000, true); 2578 } 2579 2580 /** 2581 * console_cpu_notify - print deferred console messages after CPU hotplug 2582 * @cpu: unused 2583 * 2584 * If printk() is called from a CPU that is not online yet, the messages 2585 * will be printed on the console only if there are CON_ANYTIME consoles. 2586 * This function is called when a new CPU comes online (or fails to come 2587 * up) or goes offline. 2588 */ 2589 static int console_cpu_notify(unsigned int cpu) 2590 { 2591 if (!cpuhp_tasks_frozen) { 2592 /* If trylock fails, someone else is doing the printing */ 2593 if (console_trylock()) 2594 console_unlock(); 2595 } 2596 return 0; 2597 } 2598 2599 /** 2600 * console_lock - block the console subsystem from printing 2601 * 2602 * Acquires a lock which guarantees that no consoles will 2603 * be in or enter their write() callback. 2604 * 2605 * Can sleep, returns nothing. 2606 */ 2607 void console_lock(void) 2608 { 2609 might_sleep(); 2610 2611 down_console_sem(); 2612 if (console_suspended) 2613 return; 2614 console_locked = 1; 2615 console_may_schedule = 1; 2616 } 2617 EXPORT_SYMBOL(console_lock); 2618 2619 /** 2620 * console_trylock - try to block the console subsystem from printing 2621 * 2622 * Try to acquire a lock which guarantees that no consoles will 2623 * be in or enter their write() callback. 2624 * 2625 * returns 1 on success, and 0 on failure to acquire the lock. 2626 */ 2627 int console_trylock(void) 2628 { 2629 if (down_trylock_console_sem()) 2630 return 0; 2631 if (console_suspended) { 2632 up_console_sem(); 2633 return 0; 2634 } 2635 console_locked = 1; 2636 console_may_schedule = 0; 2637 return 1; 2638 } 2639 EXPORT_SYMBOL(console_trylock); 2640 2641 int is_console_locked(void) 2642 { 2643 return console_locked; 2644 } 2645 EXPORT_SYMBOL(is_console_locked); 2646 2647 /* 2648 * Return true when this CPU should unlock console_sem without pushing all 2649 * messages to the console. This reduces the chance that the console is 2650 * locked when the panic CPU tries to use it. 2651 */ 2652 static bool abandon_console_lock_in_panic(void) 2653 { 2654 if (!panic_in_progress()) 2655 return false; 2656 2657 /* 2658 * We can use raw_smp_processor_id() here because it is impossible for 2659 * the task to be migrated to the panic_cpu, or away from it. If 2660 * panic_cpu has already been set, and we're not currently executing on 2661 * that CPU, then we never will be. 2662 */ 2663 return atomic_read(&panic_cpu) != raw_smp_processor_id(); 2664 } 2665 2666 /* 2667 * Check if the given console is currently capable and allowed to print 2668 * records. 2669 * 2670 * Requires the console_srcu_read_lock. 2671 */ 2672 static inline bool console_is_usable(struct console *con) 2673 { 2674 short flags = console_srcu_read_flags(con); 2675 2676 if (!(flags & CON_ENABLED)) 2677 return false; 2678 2679 if (!con->write) 2680 return false; 2681 2682 /* 2683 * Console drivers may assume that per-cpu resources have been 2684 * allocated. So unless they're explicitly marked as being able to 2685 * cope (CON_ANYTIME) don't call them until this CPU is officially up. 2686 */ 2687 if (!cpu_online(raw_smp_processor_id()) && !(flags & CON_ANYTIME)) 2688 return false; 2689 2690 return true; 2691 } 2692 2693 static void __console_unlock(void) 2694 { 2695 console_locked = 0; 2696 up_console_sem(); 2697 } 2698 2699 /* 2700 * Prepend the message in @pmsg->pbufs->outbuf with a "dropped message". This 2701 * is achieved by shifting the existing message over and inserting the dropped 2702 * message. 2703 * 2704 * @pmsg is the printk message to prepend. 2705 * 2706 * @dropped is the dropped count to report in the dropped message. 2707 * 2708 * If the message text in @pmsg->pbufs->outbuf does not have enough space for 2709 * the dropped message, the message text will be sufficiently truncated. 2710 * 2711 * If @pmsg->pbufs->outbuf is modified, @pmsg->outbuf_len is updated. 2712 */ 2713 #ifdef CONFIG_PRINTK 2714 static void console_prepend_dropped(struct printk_message *pmsg, unsigned long dropped) 2715 { 2716 struct printk_buffers *pbufs = pmsg->pbufs; 2717 const size_t scratchbuf_sz = sizeof(pbufs->scratchbuf); 2718 const size_t outbuf_sz = sizeof(pbufs->outbuf); 2719 char *scratchbuf = &pbufs->scratchbuf[0]; 2720 char *outbuf = &pbufs->outbuf[0]; 2721 size_t len; 2722 2723 len = scnprintf(scratchbuf, scratchbuf_sz, 2724 "** %lu printk messages dropped **\n", dropped); 2725 2726 /* 2727 * Make sure outbuf is sufficiently large before prepending. 2728 * Keep at least the prefix when the message must be truncated. 2729 * It is a rather theoretical problem when someone tries to 2730 * use a minimalist buffer. 2731 */ 2732 if (WARN_ON_ONCE(len + PRINTK_PREFIX_MAX >= outbuf_sz)) 2733 return; 2734 2735 if (pmsg->outbuf_len + len >= outbuf_sz) { 2736 /* Truncate the message, but keep it terminated. */ 2737 pmsg->outbuf_len = outbuf_sz - (len + 1); 2738 outbuf[pmsg->outbuf_len] = 0; 2739 } 2740 2741 memmove(outbuf + len, outbuf, pmsg->outbuf_len + 1); 2742 memcpy(outbuf, scratchbuf, len); 2743 pmsg->outbuf_len += len; 2744 } 2745 #else 2746 #define console_prepend_dropped(pmsg, dropped) 2747 #endif /* CONFIG_PRINTK */ 2748 2749 /* 2750 * Read and format the specified record (or a later record if the specified 2751 * record is not available). 2752 * 2753 * @pmsg will contain the formatted result. @pmsg->pbufs must point to a 2754 * struct printk_buffers. 2755 * 2756 * @seq is the record to read and format. If it is not available, the next 2757 * valid record is read. 2758 * 2759 * @is_extended specifies if the message should be formatted for extended 2760 * console output. 2761 * 2762 * @may_supress specifies if records may be skipped based on loglevel. 2763 * 2764 * Returns false if no record is available. Otherwise true and all fields 2765 * of @pmsg are valid. (See the documentation of struct printk_message 2766 * for information about the @pmsg fields.) 2767 */ 2768 static bool printk_get_next_message(struct printk_message *pmsg, u64 seq, 2769 bool is_extended, bool may_suppress) 2770 { 2771 static int panic_console_dropped; 2772 2773 struct printk_buffers *pbufs = pmsg->pbufs; 2774 const size_t scratchbuf_sz = sizeof(pbufs->scratchbuf); 2775 const size_t outbuf_sz = sizeof(pbufs->outbuf); 2776 char *scratchbuf = &pbufs->scratchbuf[0]; 2777 char *outbuf = &pbufs->outbuf[0]; 2778 struct printk_info info; 2779 struct printk_record r; 2780 size_t len = 0; 2781 2782 /* 2783 * Formatting extended messages requires a separate buffer, so use the 2784 * scratch buffer to read in the ringbuffer text. 2785 * 2786 * Formatting normal messages is done in-place, so read the ringbuffer 2787 * text directly into the output buffer. 2788 */ 2789 if (is_extended) 2790 prb_rec_init_rd(&r, &info, scratchbuf, scratchbuf_sz); 2791 else 2792 prb_rec_init_rd(&r, &info, outbuf, outbuf_sz); 2793 2794 if (!prb_read_valid(prb, seq, &r)) 2795 return false; 2796 2797 pmsg->seq = r.info->seq; 2798 pmsg->dropped = r.info->seq - seq; 2799 2800 /* 2801 * Check for dropped messages in panic here so that printk 2802 * suppression can occur as early as possible if necessary. 2803 */ 2804 if (pmsg->dropped && 2805 panic_in_progress() && 2806 panic_console_dropped++ > 10) { 2807 suppress_panic_printk = 1; 2808 pr_warn_once("Too many dropped messages. Suppress messages on non-panic CPUs to prevent livelock.\n"); 2809 } 2810 2811 /* Skip record that has level above the console loglevel. */ 2812 if (may_suppress && suppress_message_printing(r.info->level)) 2813 goto out; 2814 2815 if (is_extended) { 2816 len = info_print_ext_header(outbuf, outbuf_sz, r.info); 2817 len += msg_print_ext_body(outbuf + len, outbuf_sz - len, 2818 &r.text_buf[0], r.info->text_len, &r.info->dev_info); 2819 } else { 2820 len = record_print_text(&r, console_msg_format & MSG_FORMAT_SYSLOG, printk_time); 2821 } 2822 out: 2823 pmsg->outbuf_len = len; 2824 return true; 2825 } 2826 2827 /* 2828 * Print one record for the given console. The record printed is whatever 2829 * record is the next available record for the given console. 2830 * 2831 * @handover will be set to true if a printk waiter has taken over the 2832 * console_lock, in which case the caller is no longer holding both the 2833 * console_lock and the SRCU read lock. Otherwise it is set to false. 2834 * 2835 * @cookie is the cookie from the SRCU read lock. 2836 * 2837 * Returns false if the given console has no next record to print, otherwise 2838 * true. 2839 * 2840 * Requires the console_lock and the SRCU read lock. 2841 */ 2842 static bool console_emit_next_record(struct console *con, bool *handover, int cookie) 2843 { 2844 static struct printk_buffers pbufs; 2845 2846 bool is_extended = console_srcu_read_flags(con) & CON_EXTENDED; 2847 char *outbuf = &pbufs.outbuf[0]; 2848 struct printk_message pmsg = { 2849 .pbufs = &pbufs, 2850 }; 2851 unsigned long flags; 2852 2853 *handover = false; 2854 2855 if (!printk_get_next_message(&pmsg, con->seq, is_extended, true)) 2856 return false; 2857 2858 con->dropped += pmsg.dropped; 2859 2860 /* Skip messages of formatted length 0. */ 2861 if (pmsg.outbuf_len == 0) { 2862 con->seq = pmsg.seq + 1; 2863 goto skip; 2864 } 2865 2866 if (con->dropped && !is_extended) { 2867 console_prepend_dropped(&pmsg, con->dropped); 2868 con->dropped = 0; 2869 } 2870 2871 /* 2872 * While actively printing out messages, if another printk() 2873 * were to occur on another CPU, it may wait for this one to 2874 * finish. This task can not be preempted if there is a 2875 * waiter waiting to take over. 2876 * 2877 * Interrupts are disabled because the hand over to a waiter 2878 * must not be interrupted until the hand over is completed 2879 * (@console_waiter is cleared). 2880 */ 2881 printk_safe_enter_irqsave(flags); 2882 console_lock_spinning_enable(); 2883 2884 /* Do not trace print latency. */ 2885 stop_critical_timings(); 2886 2887 /* Write everything out to the hardware. */ 2888 con->write(con, outbuf, pmsg.outbuf_len); 2889 2890 start_critical_timings(); 2891 2892 con->seq = pmsg.seq + 1; 2893 2894 *handover = console_lock_spinning_disable_and_check(cookie); 2895 printk_safe_exit_irqrestore(flags); 2896 skip: 2897 return true; 2898 } 2899 2900 /* 2901 * Print out all remaining records to all consoles. 2902 * 2903 * @do_cond_resched is set by the caller. It can be true only in schedulable 2904 * context. 2905 * 2906 * @next_seq is set to the sequence number after the last available record. 2907 * The value is valid only when this function returns true. It means that all 2908 * usable consoles are completely flushed. 2909 * 2910 * @handover will be set to true if a printk waiter has taken over the 2911 * console_lock, in which case the caller is no longer holding the 2912 * console_lock. Otherwise it is set to false. 2913 * 2914 * Returns true when there was at least one usable console and all messages 2915 * were flushed to all usable consoles. A returned false informs the caller 2916 * that everything was not flushed (either there were no usable consoles or 2917 * another context has taken over printing or it is a panic situation and this 2918 * is not the panic CPU). Regardless the reason, the caller should assume it 2919 * is not useful to immediately try again. 2920 * 2921 * Requires the console_lock. 2922 */ 2923 static bool console_flush_all(bool do_cond_resched, u64 *next_seq, bool *handover) 2924 { 2925 bool any_usable = false; 2926 struct console *con; 2927 bool any_progress; 2928 int cookie; 2929 2930 *next_seq = 0; 2931 *handover = false; 2932 2933 do { 2934 any_progress = false; 2935 2936 cookie = console_srcu_read_lock(); 2937 for_each_console_srcu(con) { 2938 bool progress; 2939 2940 if (!console_is_usable(con)) 2941 continue; 2942 any_usable = true; 2943 2944 progress = console_emit_next_record(con, handover, cookie); 2945 2946 /* 2947 * If a handover has occurred, the SRCU read lock 2948 * is already released. 2949 */ 2950 if (*handover) 2951 return false; 2952 2953 /* Track the next of the highest seq flushed. */ 2954 if (con->seq > *next_seq) 2955 *next_seq = con->seq; 2956 2957 if (!progress) 2958 continue; 2959 any_progress = true; 2960 2961 /* Allow panic_cpu to take over the consoles safely. */ 2962 if (abandon_console_lock_in_panic()) 2963 goto abandon; 2964 2965 if (do_cond_resched) 2966 cond_resched(); 2967 } 2968 console_srcu_read_unlock(cookie); 2969 } while (any_progress); 2970 2971 return any_usable; 2972 2973 abandon: 2974 console_srcu_read_unlock(cookie); 2975 return false; 2976 } 2977 2978 /** 2979 * console_unlock - unblock the console subsystem from printing 2980 * 2981 * Releases the console_lock which the caller holds to block printing of 2982 * the console subsystem. 2983 * 2984 * While the console_lock was held, console output may have been buffered 2985 * by printk(). If this is the case, console_unlock(); emits 2986 * the output prior to releasing the lock. 2987 * 2988 * console_unlock(); may be called from any context. 2989 */ 2990 void console_unlock(void) 2991 { 2992 bool do_cond_resched; 2993 bool handover; 2994 bool flushed; 2995 u64 next_seq; 2996 2997 if (console_suspended) { 2998 up_console_sem(); 2999 return; 3000 } 3001 3002 /* 3003 * Console drivers are called with interrupts disabled, so 3004 * @console_may_schedule should be cleared before; however, we may 3005 * end up dumping a lot of lines, for example, if called from 3006 * console registration path, and should invoke cond_resched() 3007 * between lines if allowable. Not doing so can cause a very long 3008 * scheduling stall on a slow console leading to RCU stall and 3009 * softlockup warnings which exacerbate the issue with more 3010 * messages practically incapacitating the system. Therefore, create 3011 * a local to use for the printing loop. 3012 */ 3013 do_cond_resched = console_may_schedule; 3014 3015 do { 3016 console_may_schedule = 0; 3017 3018 flushed = console_flush_all(do_cond_resched, &next_seq, &handover); 3019 if (!handover) 3020 __console_unlock(); 3021 3022 /* 3023 * Abort if there was a failure to flush all messages to all 3024 * usable consoles. Either it is not possible to flush (in 3025 * which case it would be an infinite loop of retrying) or 3026 * another context has taken over printing. 3027 */ 3028 if (!flushed) 3029 break; 3030 3031 /* 3032 * Some context may have added new records after 3033 * console_flush_all() but before unlocking the console. 3034 * Re-check if there is a new record to flush. If the trylock 3035 * fails, another context is already handling the printing. 3036 */ 3037 } while (prb_read_valid(prb, next_seq, NULL) && console_trylock()); 3038 } 3039 EXPORT_SYMBOL(console_unlock); 3040 3041 /** 3042 * console_conditional_schedule - yield the CPU if required 3043 * 3044 * If the console code is currently allowed to sleep, and 3045 * if this CPU should yield the CPU to another task, do 3046 * so here. 3047 * 3048 * Must be called within console_lock();. 3049 */ 3050 void __sched console_conditional_schedule(void) 3051 { 3052 if (console_may_schedule) 3053 cond_resched(); 3054 } 3055 EXPORT_SYMBOL(console_conditional_schedule); 3056 3057 void console_unblank(void) 3058 { 3059 struct console *c; 3060 int cookie; 3061 3062 /* 3063 * Stop console printing because the unblank() callback may 3064 * assume the console is not within its write() callback. 3065 * 3066 * If @oops_in_progress is set, this may be an atomic context. 3067 * In that case, attempt a trylock as best-effort. 3068 */ 3069 if (oops_in_progress) { 3070 if (down_trylock_console_sem() != 0) 3071 return; 3072 } else 3073 console_lock(); 3074 3075 console_locked = 1; 3076 console_may_schedule = 0; 3077 3078 cookie = console_srcu_read_lock(); 3079 for_each_console_srcu(c) { 3080 if ((console_srcu_read_flags(c) & CON_ENABLED) && c->unblank) 3081 c->unblank(); 3082 } 3083 console_srcu_read_unlock(cookie); 3084 3085 console_unlock(); 3086 3087 if (!oops_in_progress) 3088 pr_flush(1000, true); 3089 } 3090 3091 /** 3092 * console_flush_on_panic - flush console content on panic 3093 * @mode: flush all messages in buffer or just the pending ones 3094 * 3095 * Immediately output all pending messages no matter what. 3096 */ 3097 void console_flush_on_panic(enum con_flush_mode mode) 3098 { 3099 /* 3100 * If someone else is holding the console lock, trylock will fail 3101 * and may_schedule may be set. Ignore and proceed to unlock so 3102 * that messages are flushed out. As this can be called from any 3103 * context and we don't want to get preempted while flushing, 3104 * ensure may_schedule is cleared. 3105 */ 3106 console_trylock(); 3107 console_may_schedule = 0; 3108 3109 if (mode == CONSOLE_REPLAY_ALL) { 3110 struct console *c; 3111 int cookie; 3112 u64 seq; 3113 3114 seq = prb_first_valid_seq(prb); 3115 3116 cookie = console_srcu_read_lock(); 3117 for_each_console_srcu(c) { 3118 /* 3119 * If the above console_trylock() failed, this is an 3120 * unsynchronized assignment. But in that case, the 3121 * kernel is in "hope and pray" mode anyway. 3122 */ 3123 c->seq = seq; 3124 } 3125 console_srcu_read_unlock(cookie); 3126 } 3127 console_unlock(); 3128 } 3129 3130 /* 3131 * Return the console tty driver structure and its associated index 3132 */ 3133 struct tty_driver *console_device(int *index) 3134 { 3135 struct console *c; 3136 struct tty_driver *driver = NULL; 3137 int cookie; 3138 3139 /* 3140 * Take console_lock to serialize device() callback with 3141 * other console operations. For example, fg_console is 3142 * modified under console_lock when switching vt. 3143 */ 3144 console_lock(); 3145 3146 cookie = console_srcu_read_lock(); 3147 for_each_console_srcu(c) { 3148 if (!c->device) 3149 continue; 3150 driver = c->device(c, index); 3151 if (driver) 3152 break; 3153 } 3154 console_srcu_read_unlock(cookie); 3155 3156 console_unlock(); 3157 return driver; 3158 } 3159 3160 /* 3161 * Prevent further output on the passed console device so that (for example) 3162 * serial drivers can disable console output before suspending a port, and can 3163 * re-enable output afterwards. 3164 */ 3165 void console_stop(struct console *console) 3166 { 3167 __pr_flush(console, 1000, true); 3168 console_list_lock(); 3169 console_srcu_write_flags(console, console->flags & ~CON_ENABLED); 3170 console_list_unlock(); 3171 3172 /* 3173 * Ensure that all SRCU list walks have completed. All contexts must 3174 * be able to see that this console is disabled so that (for example) 3175 * the caller can suspend the port without risk of another context 3176 * using the port. 3177 */ 3178 synchronize_srcu(&console_srcu); 3179 } 3180 EXPORT_SYMBOL(console_stop); 3181 3182 void console_start(struct console *console) 3183 { 3184 console_list_lock(); 3185 console_srcu_write_flags(console, console->flags | CON_ENABLED); 3186 console_list_unlock(); 3187 __pr_flush(console, 1000, true); 3188 } 3189 EXPORT_SYMBOL(console_start); 3190 3191 static int __read_mostly keep_bootcon; 3192 3193 static int __init keep_bootcon_setup(char *str) 3194 { 3195 keep_bootcon = 1; 3196 pr_info("debug: skip boot console de-registration.\n"); 3197 3198 return 0; 3199 } 3200 3201 early_param("keep_bootcon", keep_bootcon_setup); 3202 3203 /* 3204 * This is called by register_console() to try to match 3205 * the newly registered console with any of the ones selected 3206 * by either the command line or add_preferred_console() and 3207 * setup/enable it. 3208 * 3209 * Care need to be taken with consoles that are statically 3210 * enabled such as netconsole 3211 */ 3212 static int try_enable_preferred_console(struct console *newcon, 3213 bool user_specified) 3214 { 3215 struct console_cmdline *c; 3216 int i, err; 3217 3218 for (i = 0, c = console_cmdline; 3219 i < MAX_CMDLINECONSOLES && c->name[0]; 3220 i++, c++) { 3221 if (c->user_specified != user_specified) 3222 continue; 3223 if (!newcon->match || 3224 newcon->match(newcon, c->name, c->index, c->options) != 0) { 3225 /* default matching */ 3226 BUILD_BUG_ON(sizeof(c->name) != sizeof(newcon->name)); 3227 if (strcmp(c->name, newcon->name) != 0) 3228 continue; 3229 if (newcon->index >= 0 && 3230 newcon->index != c->index) 3231 continue; 3232 if (newcon->index < 0) 3233 newcon->index = c->index; 3234 3235 if (_braille_register_console(newcon, c)) 3236 return 0; 3237 3238 if (newcon->setup && 3239 (err = newcon->setup(newcon, c->options)) != 0) 3240 return err; 3241 } 3242 newcon->flags |= CON_ENABLED; 3243 if (i == preferred_console) 3244 newcon->flags |= CON_CONSDEV; 3245 return 0; 3246 } 3247 3248 /* 3249 * Some consoles, such as pstore and netconsole, can be enabled even 3250 * without matching. Accept the pre-enabled consoles only when match() 3251 * and setup() had a chance to be called. 3252 */ 3253 if (newcon->flags & CON_ENABLED && c->user_specified == user_specified) 3254 return 0; 3255 3256 return -ENOENT; 3257 } 3258 3259 /* Try to enable the console unconditionally */ 3260 static void try_enable_default_console(struct console *newcon) 3261 { 3262 if (newcon->index < 0) 3263 newcon->index = 0; 3264 3265 if (newcon->setup && newcon->setup(newcon, NULL) != 0) 3266 return; 3267 3268 newcon->flags |= CON_ENABLED; 3269 3270 if (newcon->device) 3271 newcon->flags |= CON_CONSDEV; 3272 } 3273 3274 #define con_printk(lvl, con, fmt, ...) \ 3275 printk(lvl pr_fmt("%sconsole [%s%d] " fmt), \ 3276 (con->flags & CON_BOOT) ? "boot" : "", \ 3277 con->name, con->index, ##__VA_ARGS__) 3278 3279 static void console_init_seq(struct console *newcon, bool bootcon_registered) 3280 { 3281 struct console *con; 3282 bool handover; 3283 3284 if (newcon->flags & (CON_PRINTBUFFER | CON_BOOT)) { 3285 /* Get a consistent copy of @syslog_seq. */ 3286 mutex_lock(&syslog_lock); 3287 newcon->seq = syslog_seq; 3288 mutex_unlock(&syslog_lock); 3289 } else { 3290 /* Begin with next message added to ringbuffer. */ 3291 newcon->seq = prb_next_seq(prb); 3292 3293 /* 3294 * If any enabled boot consoles are due to be unregistered 3295 * shortly, some may not be caught up and may be the same 3296 * device as @newcon. Since it is not known which boot console 3297 * is the same device, flush all consoles and, if necessary, 3298 * start with the message of the enabled boot console that is 3299 * the furthest behind. 3300 */ 3301 if (bootcon_registered && !keep_bootcon) { 3302 /* 3303 * Hold the console_lock to stop console printing and 3304 * guarantee safe access to console->seq. 3305 */ 3306 console_lock(); 3307 3308 /* 3309 * Flush all consoles and set the console to start at 3310 * the next unprinted sequence number. 3311 */ 3312 if (!console_flush_all(true, &newcon->seq, &handover)) { 3313 /* 3314 * Flushing failed. Just choose the lowest 3315 * sequence of the enabled boot consoles. 3316 */ 3317 3318 /* 3319 * If there was a handover, this context no 3320 * longer holds the console_lock. 3321 */ 3322 if (handover) 3323 console_lock(); 3324 3325 newcon->seq = prb_next_seq(prb); 3326 for_each_console(con) { 3327 if ((con->flags & CON_BOOT) && 3328 (con->flags & CON_ENABLED) && 3329 con->seq < newcon->seq) { 3330 newcon->seq = con->seq; 3331 } 3332 } 3333 } 3334 3335 console_unlock(); 3336 } 3337 } 3338 } 3339 3340 #define console_first() \ 3341 hlist_entry(console_list.first, struct console, node) 3342 3343 static int unregister_console_locked(struct console *console); 3344 3345 /* 3346 * The console driver calls this routine during kernel initialization 3347 * to register the console printing procedure with printk() and to 3348 * print any messages that were printed by the kernel before the 3349 * console driver was initialized. 3350 * 3351 * This can happen pretty early during the boot process (because of 3352 * early_printk) - sometimes before setup_arch() completes - be careful 3353 * of what kernel features are used - they may not be initialised yet. 3354 * 3355 * There are two types of consoles - bootconsoles (early_printk) and 3356 * "real" consoles (everything which is not a bootconsole) which are 3357 * handled differently. 3358 * - Any number of bootconsoles can be registered at any time. 3359 * - As soon as a "real" console is registered, all bootconsoles 3360 * will be unregistered automatically. 3361 * - Once a "real" console is registered, any attempt to register a 3362 * bootconsoles will be rejected 3363 */ 3364 void register_console(struct console *newcon) 3365 { 3366 struct console *con; 3367 bool bootcon_registered = false; 3368 bool realcon_registered = false; 3369 int err; 3370 3371 console_list_lock(); 3372 3373 for_each_console(con) { 3374 if (WARN(con == newcon, "console '%s%d' already registered\n", 3375 con->name, con->index)) { 3376 goto unlock; 3377 } 3378 3379 if (con->flags & CON_BOOT) 3380 bootcon_registered = true; 3381 else 3382 realcon_registered = true; 3383 } 3384 3385 /* Do not register boot consoles when there already is a real one. */ 3386 if ((newcon->flags & CON_BOOT) && realcon_registered) { 3387 pr_info("Too late to register bootconsole %s%d\n", 3388 newcon->name, newcon->index); 3389 goto unlock; 3390 } 3391 3392 /* 3393 * See if we want to enable this console driver by default. 3394 * 3395 * Nope when a console is preferred by the command line, device 3396 * tree, or SPCR. 3397 * 3398 * The first real console with tty binding (driver) wins. More 3399 * consoles might get enabled before the right one is found. 3400 * 3401 * Note that a console with tty binding will have CON_CONSDEV 3402 * flag set and will be first in the list. 3403 */ 3404 if (preferred_console < 0) { 3405 if (hlist_empty(&console_list) || !console_first()->device || 3406 console_first()->flags & CON_BOOT) { 3407 try_enable_default_console(newcon); 3408 } 3409 } 3410 3411 /* See if this console matches one we selected on the command line */ 3412 err = try_enable_preferred_console(newcon, true); 3413 3414 /* If not, try to match against the platform default(s) */ 3415 if (err == -ENOENT) 3416 err = try_enable_preferred_console(newcon, false); 3417 3418 /* printk() messages are not printed to the Braille console. */ 3419 if (err || newcon->flags & CON_BRL) 3420 goto unlock; 3421 3422 /* 3423 * If we have a bootconsole, and are switching to a real console, 3424 * don't print everything out again, since when the boot console, and 3425 * the real console are the same physical device, it's annoying to 3426 * see the beginning boot messages twice 3427 */ 3428 if (bootcon_registered && 3429 ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV)) { 3430 newcon->flags &= ~CON_PRINTBUFFER; 3431 } 3432 3433 newcon->dropped = 0; 3434 console_init_seq(newcon, bootcon_registered); 3435 3436 /* 3437 * Put this console in the list - keep the 3438 * preferred driver at the head of the list. 3439 */ 3440 if (hlist_empty(&console_list)) { 3441 /* Ensure CON_CONSDEV is always set for the head. */ 3442 newcon->flags |= CON_CONSDEV; 3443 hlist_add_head_rcu(&newcon->node, &console_list); 3444 3445 } else if (newcon->flags & CON_CONSDEV) { 3446 /* Only the new head can have CON_CONSDEV set. */ 3447 console_srcu_write_flags(console_first(), console_first()->flags & ~CON_CONSDEV); 3448 hlist_add_head_rcu(&newcon->node, &console_list); 3449 3450 } else { 3451 hlist_add_behind_rcu(&newcon->node, console_list.first); 3452 } 3453 3454 /* 3455 * No need to synchronize SRCU here! The caller does not rely 3456 * on all contexts being able to see the new console before 3457 * register_console() completes. 3458 */ 3459 3460 console_sysfs_notify(); 3461 3462 /* 3463 * By unregistering the bootconsoles after we enable the real console 3464 * we get the "console xxx enabled" message on all the consoles - 3465 * boot consoles, real consoles, etc - this is to ensure that end 3466 * users know there might be something in the kernel's log buffer that 3467 * went to the bootconsole (that they do not see on the real console) 3468 */ 3469 con_printk(KERN_INFO, newcon, "enabled\n"); 3470 if (bootcon_registered && 3471 ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV) && 3472 !keep_bootcon) { 3473 struct hlist_node *tmp; 3474 3475 hlist_for_each_entry_safe(con, tmp, &console_list, node) { 3476 if (con->flags & CON_BOOT) 3477 unregister_console_locked(con); 3478 } 3479 } 3480 unlock: 3481 console_list_unlock(); 3482 } 3483 EXPORT_SYMBOL(register_console); 3484 3485 /* Must be called under console_list_lock(). */ 3486 static int unregister_console_locked(struct console *console) 3487 { 3488 int res; 3489 3490 lockdep_assert_console_list_lock_held(); 3491 3492 con_printk(KERN_INFO, console, "disabled\n"); 3493 3494 res = _braille_unregister_console(console); 3495 if (res < 0) 3496 return res; 3497 if (res > 0) 3498 return 0; 3499 3500 /* Disable it unconditionally */ 3501 console_srcu_write_flags(console, console->flags & ~CON_ENABLED); 3502 3503 if (!console_is_registered_locked(console)) 3504 return -ENODEV; 3505 3506 hlist_del_init_rcu(&console->node); 3507 3508 /* 3509 * <HISTORICAL> 3510 * If this isn't the last console and it has CON_CONSDEV set, we 3511 * need to set it on the next preferred console. 3512 * </HISTORICAL> 3513 * 3514 * The above makes no sense as there is no guarantee that the next 3515 * console has any device attached. Oh well.... 3516 */ 3517 if (!hlist_empty(&console_list) && console->flags & CON_CONSDEV) 3518 console_srcu_write_flags(console_first(), console_first()->flags | CON_CONSDEV); 3519 3520 /* 3521 * Ensure that all SRCU list walks have completed. All contexts 3522 * must not be able to see this console in the list so that any 3523 * exit/cleanup routines can be performed safely. 3524 */ 3525 synchronize_srcu(&console_srcu); 3526 3527 console_sysfs_notify(); 3528 3529 if (console->exit) 3530 res = console->exit(console); 3531 3532 return res; 3533 } 3534 3535 int unregister_console(struct console *console) 3536 { 3537 int res; 3538 3539 console_list_lock(); 3540 res = unregister_console_locked(console); 3541 console_list_unlock(); 3542 return res; 3543 } 3544 EXPORT_SYMBOL(unregister_console); 3545 3546 /** 3547 * console_force_preferred_locked - force a registered console preferred 3548 * @con: The registered console to force preferred. 3549 * 3550 * Must be called under console_list_lock(). 3551 */ 3552 void console_force_preferred_locked(struct console *con) 3553 { 3554 struct console *cur_pref_con; 3555 3556 if (!console_is_registered_locked(con)) 3557 return; 3558 3559 cur_pref_con = console_first(); 3560 3561 /* Already preferred? */ 3562 if (cur_pref_con == con) 3563 return; 3564 3565 /* 3566 * Delete, but do not re-initialize the entry. This allows the console 3567 * to continue to appear registered (via any hlist_unhashed_lockless() 3568 * checks), even though it was briefly removed from the console list. 3569 */ 3570 hlist_del_rcu(&con->node); 3571 3572 /* 3573 * Ensure that all SRCU list walks have completed so that the console 3574 * can be added to the beginning of the console list and its forward 3575 * list pointer can be re-initialized. 3576 */ 3577 synchronize_srcu(&console_srcu); 3578 3579 con->flags |= CON_CONSDEV; 3580 WARN_ON(!con->device); 3581 3582 /* Only the new head can have CON_CONSDEV set. */ 3583 console_srcu_write_flags(cur_pref_con, cur_pref_con->flags & ~CON_CONSDEV); 3584 hlist_add_head_rcu(&con->node, &console_list); 3585 } 3586 EXPORT_SYMBOL(console_force_preferred_locked); 3587 3588 /* 3589 * Initialize the console device. This is called *early*, so 3590 * we can't necessarily depend on lots of kernel help here. 3591 * Just do some early initializations, and do the complex setup 3592 * later. 3593 */ 3594 void __init console_init(void) 3595 { 3596 int ret; 3597 initcall_t call; 3598 initcall_entry_t *ce; 3599 3600 /* Setup the default TTY line discipline. */ 3601 n_tty_init(); 3602 3603 /* 3604 * set up the console device so that later boot sequences can 3605 * inform about problems etc.. 3606 */ 3607 ce = __con_initcall_start; 3608 trace_initcall_level("console"); 3609 while (ce < __con_initcall_end) { 3610 call = initcall_from_entry(ce); 3611 trace_initcall_start(call); 3612 ret = call(); 3613 trace_initcall_finish(call, ret); 3614 ce++; 3615 } 3616 } 3617 3618 /* 3619 * Some boot consoles access data that is in the init section and which will 3620 * be discarded after the initcalls have been run. To make sure that no code 3621 * will access this data, unregister the boot consoles in a late initcall. 3622 * 3623 * If for some reason, such as deferred probe or the driver being a loadable 3624 * module, the real console hasn't registered yet at this point, there will 3625 * be a brief interval in which no messages are logged to the console, which 3626 * makes it difficult to diagnose problems that occur during this time. 3627 * 3628 * To mitigate this problem somewhat, only unregister consoles whose memory 3629 * intersects with the init section. Note that all other boot consoles will 3630 * get unregistered when the real preferred console is registered. 3631 */ 3632 static int __init printk_late_init(void) 3633 { 3634 struct hlist_node *tmp; 3635 struct console *con; 3636 int ret; 3637 3638 console_list_lock(); 3639 hlist_for_each_entry_safe(con, tmp, &console_list, node) { 3640 if (!(con->flags & CON_BOOT)) 3641 continue; 3642 3643 /* Check addresses that might be used for enabled consoles. */ 3644 if (init_section_intersects(con, sizeof(*con)) || 3645 init_section_contains(con->write, 0) || 3646 init_section_contains(con->read, 0) || 3647 init_section_contains(con->device, 0) || 3648 init_section_contains(con->unblank, 0) || 3649 init_section_contains(con->data, 0)) { 3650 /* 3651 * Please, consider moving the reported consoles out 3652 * of the init section. 3653 */ 3654 pr_warn("bootconsole [%s%d] uses init memory and must be disabled even before the real one is ready\n", 3655 con->name, con->index); 3656 unregister_console_locked(con); 3657 } 3658 } 3659 console_list_unlock(); 3660 3661 ret = cpuhp_setup_state_nocalls(CPUHP_PRINTK_DEAD, "printk:dead", NULL, 3662 console_cpu_notify); 3663 WARN_ON(ret < 0); 3664 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "printk:online", 3665 console_cpu_notify, NULL); 3666 WARN_ON(ret < 0); 3667 printk_sysctl_init(); 3668 return 0; 3669 } 3670 late_initcall(printk_late_init); 3671 3672 #if defined CONFIG_PRINTK 3673 /* If @con is specified, only wait for that console. Otherwise wait for all. */ 3674 static bool __pr_flush(struct console *con, int timeout_ms, bool reset_on_progress) 3675 { 3676 int remaining = timeout_ms; 3677 struct console *c; 3678 u64 last_diff = 0; 3679 u64 printk_seq; 3680 int cookie; 3681 u64 diff; 3682 u64 seq; 3683 3684 might_sleep(); 3685 3686 seq = prb_next_seq(prb); 3687 3688 for (;;) { 3689 diff = 0; 3690 3691 /* 3692 * Hold the console_lock to guarantee safe access to 3693 * console->seq and to prevent changes to @console_suspended 3694 * until all consoles have been processed. 3695 */ 3696 console_lock(); 3697 3698 cookie = console_srcu_read_lock(); 3699 for_each_console_srcu(c) { 3700 if (con && con != c) 3701 continue; 3702 if (!console_is_usable(c)) 3703 continue; 3704 printk_seq = c->seq; 3705 if (printk_seq < seq) 3706 diff += seq - printk_seq; 3707 } 3708 console_srcu_read_unlock(cookie); 3709 3710 /* 3711 * If consoles are suspended, it cannot be expected that they 3712 * make forward progress, so timeout immediately. @diff is 3713 * still used to return a valid flush status. 3714 */ 3715 if (console_suspended) 3716 remaining = 0; 3717 else if (diff != last_diff && reset_on_progress) 3718 remaining = timeout_ms; 3719 3720 console_unlock(); 3721 3722 if (diff == 0 || remaining == 0) 3723 break; 3724 3725 if (remaining < 0) { 3726 /* no timeout limit */ 3727 msleep(100); 3728 } else if (remaining < 100) { 3729 msleep(remaining); 3730 remaining = 0; 3731 } else { 3732 msleep(100); 3733 remaining -= 100; 3734 } 3735 3736 last_diff = diff; 3737 } 3738 3739 return (diff == 0); 3740 } 3741 3742 /** 3743 * pr_flush() - Wait for printing threads to catch up. 3744 * 3745 * @timeout_ms: The maximum time (in ms) to wait. 3746 * @reset_on_progress: Reset the timeout if forward progress is seen. 3747 * 3748 * A value of 0 for @timeout_ms means no waiting will occur. A value of -1 3749 * represents infinite waiting. 3750 * 3751 * If @reset_on_progress is true, the timeout will be reset whenever any 3752 * printer has been seen to make some forward progress. 3753 * 3754 * Context: Process context. May sleep while acquiring console lock. 3755 * Return: true if all enabled printers are caught up. 3756 */ 3757 static bool pr_flush(int timeout_ms, bool reset_on_progress) 3758 { 3759 return __pr_flush(NULL, timeout_ms, reset_on_progress); 3760 } 3761 3762 /* 3763 * Delayed printk version, for scheduler-internal messages: 3764 */ 3765 #define PRINTK_PENDING_WAKEUP 0x01 3766 #define PRINTK_PENDING_OUTPUT 0x02 3767 3768 static DEFINE_PER_CPU(int, printk_pending); 3769 3770 static void wake_up_klogd_work_func(struct irq_work *irq_work) 3771 { 3772 int pending = this_cpu_xchg(printk_pending, 0); 3773 3774 if (pending & PRINTK_PENDING_OUTPUT) { 3775 /* If trylock fails, someone else is doing the printing */ 3776 if (console_trylock()) 3777 console_unlock(); 3778 } 3779 3780 if (pending & PRINTK_PENDING_WAKEUP) 3781 wake_up_interruptible(&log_wait); 3782 } 3783 3784 static DEFINE_PER_CPU(struct irq_work, wake_up_klogd_work) = 3785 IRQ_WORK_INIT_LAZY(wake_up_klogd_work_func); 3786 3787 static void __wake_up_klogd(int val) 3788 { 3789 if (!printk_percpu_data_ready()) 3790 return; 3791 3792 preempt_disable(); 3793 /* 3794 * Guarantee any new records can be seen by tasks preparing to wait 3795 * before this context checks if the wait queue is empty. 3796 * 3797 * The full memory barrier within wq_has_sleeper() pairs with the full 3798 * memory barrier within set_current_state() of 3799 * prepare_to_wait_event(), which is called after ___wait_event() adds 3800 * the waiter but before it has checked the wait condition. 3801 * 3802 * This pairs with devkmsg_read:A and syslog_print:A. 3803 */ 3804 if (wq_has_sleeper(&log_wait) || /* LMM(__wake_up_klogd:A) */ 3805 (val & PRINTK_PENDING_OUTPUT)) { 3806 this_cpu_or(printk_pending, val); 3807 irq_work_queue(this_cpu_ptr(&wake_up_klogd_work)); 3808 } 3809 preempt_enable(); 3810 } 3811 3812 void wake_up_klogd(void) 3813 { 3814 __wake_up_klogd(PRINTK_PENDING_WAKEUP); 3815 } 3816 3817 void defer_console_output(void) 3818 { 3819 /* 3820 * New messages may have been added directly to the ringbuffer 3821 * using vprintk_store(), so wake any waiters as well. 3822 */ 3823 __wake_up_klogd(PRINTK_PENDING_WAKEUP | PRINTK_PENDING_OUTPUT); 3824 } 3825 3826 void printk_trigger_flush(void) 3827 { 3828 defer_console_output(); 3829 } 3830 3831 int vprintk_deferred(const char *fmt, va_list args) 3832 { 3833 int r; 3834 3835 r = vprintk_emit(0, LOGLEVEL_SCHED, NULL, fmt, args); 3836 defer_console_output(); 3837 3838 return r; 3839 } 3840 3841 int _printk_deferred(const char *fmt, ...) 3842 { 3843 va_list args; 3844 int r; 3845 3846 va_start(args, fmt); 3847 r = vprintk_deferred(fmt, args); 3848 va_end(args); 3849 3850 return r; 3851 } 3852 3853 /* 3854 * printk rate limiting, lifted from the networking subsystem. 3855 * 3856 * This enforces a rate limit: not more than 10 kernel messages 3857 * every 5s to make a denial-of-service attack impossible. 3858 */ 3859 DEFINE_RATELIMIT_STATE(printk_ratelimit_state, 5 * HZ, 10); 3860 3861 int __printk_ratelimit(const char *func) 3862 { 3863 return ___ratelimit(&printk_ratelimit_state, func); 3864 } 3865 EXPORT_SYMBOL(__printk_ratelimit); 3866 3867 /** 3868 * printk_timed_ratelimit - caller-controlled printk ratelimiting 3869 * @caller_jiffies: pointer to caller's state 3870 * @interval_msecs: minimum interval between prints 3871 * 3872 * printk_timed_ratelimit() returns true if more than @interval_msecs 3873 * milliseconds have elapsed since the last time printk_timed_ratelimit() 3874 * returned true. 3875 */ 3876 bool printk_timed_ratelimit(unsigned long *caller_jiffies, 3877 unsigned int interval_msecs) 3878 { 3879 unsigned long elapsed = jiffies - *caller_jiffies; 3880 3881 if (*caller_jiffies && elapsed <= msecs_to_jiffies(interval_msecs)) 3882 return false; 3883 3884 *caller_jiffies = jiffies; 3885 return true; 3886 } 3887 EXPORT_SYMBOL(printk_timed_ratelimit); 3888 3889 static DEFINE_SPINLOCK(dump_list_lock); 3890 static LIST_HEAD(dump_list); 3891 3892 /** 3893 * kmsg_dump_register - register a kernel log dumper. 3894 * @dumper: pointer to the kmsg_dumper structure 3895 * 3896 * Adds a kernel log dumper to the system. The dump callback in the 3897 * structure will be called when the kernel oopses or panics and must be 3898 * set. Returns zero on success and %-EINVAL or %-EBUSY otherwise. 3899 */ 3900 int kmsg_dump_register(struct kmsg_dumper *dumper) 3901 { 3902 unsigned long flags; 3903 int err = -EBUSY; 3904 3905 /* The dump callback needs to be set */ 3906 if (!dumper->dump) 3907 return -EINVAL; 3908 3909 spin_lock_irqsave(&dump_list_lock, flags); 3910 /* Don't allow registering multiple times */ 3911 if (!dumper->registered) { 3912 dumper->registered = 1; 3913 list_add_tail_rcu(&dumper->list, &dump_list); 3914 err = 0; 3915 } 3916 spin_unlock_irqrestore(&dump_list_lock, flags); 3917 3918 return err; 3919 } 3920 EXPORT_SYMBOL_GPL(kmsg_dump_register); 3921 3922 /** 3923 * kmsg_dump_unregister - unregister a kmsg dumper. 3924 * @dumper: pointer to the kmsg_dumper structure 3925 * 3926 * Removes a dump device from the system. Returns zero on success and 3927 * %-EINVAL otherwise. 3928 */ 3929 int kmsg_dump_unregister(struct kmsg_dumper *dumper) 3930 { 3931 unsigned long flags; 3932 int err = -EINVAL; 3933 3934 spin_lock_irqsave(&dump_list_lock, flags); 3935 if (dumper->registered) { 3936 dumper->registered = 0; 3937 list_del_rcu(&dumper->list); 3938 err = 0; 3939 } 3940 spin_unlock_irqrestore(&dump_list_lock, flags); 3941 synchronize_rcu(); 3942 3943 return err; 3944 } 3945 EXPORT_SYMBOL_GPL(kmsg_dump_unregister); 3946 3947 static bool always_kmsg_dump; 3948 module_param_named(always_kmsg_dump, always_kmsg_dump, bool, S_IRUGO | S_IWUSR); 3949 3950 const char *kmsg_dump_reason_str(enum kmsg_dump_reason reason) 3951 { 3952 switch (reason) { 3953 case KMSG_DUMP_PANIC: 3954 return "Panic"; 3955 case KMSG_DUMP_OOPS: 3956 return "Oops"; 3957 case KMSG_DUMP_EMERG: 3958 return "Emergency"; 3959 case KMSG_DUMP_SHUTDOWN: 3960 return "Shutdown"; 3961 default: 3962 return "Unknown"; 3963 } 3964 } 3965 EXPORT_SYMBOL_GPL(kmsg_dump_reason_str); 3966 3967 /** 3968 * kmsg_dump - dump kernel log to kernel message dumpers. 3969 * @reason: the reason (oops, panic etc) for dumping 3970 * 3971 * Call each of the registered dumper's dump() callback, which can 3972 * retrieve the kmsg records with kmsg_dump_get_line() or 3973 * kmsg_dump_get_buffer(). 3974 */ 3975 void kmsg_dump(enum kmsg_dump_reason reason) 3976 { 3977 struct kmsg_dumper *dumper; 3978 3979 rcu_read_lock(); 3980 list_for_each_entry_rcu(dumper, &dump_list, list) { 3981 enum kmsg_dump_reason max_reason = dumper->max_reason; 3982 3983 /* 3984 * If client has not provided a specific max_reason, default 3985 * to KMSG_DUMP_OOPS, unless always_kmsg_dump was set. 3986 */ 3987 if (max_reason == KMSG_DUMP_UNDEF) { 3988 max_reason = always_kmsg_dump ? KMSG_DUMP_MAX : 3989 KMSG_DUMP_OOPS; 3990 } 3991 if (reason > max_reason) 3992 continue; 3993 3994 /* invoke dumper which will iterate over records */ 3995 dumper->dump(dumper, reason); 3996 } 3997 rcu_read_unlock(); 3998 } 3999 4000 /** 4001 * kmsg_dump_get_line - retrieve one kmsg log line 4002 * @iter: kmsg dump iterator 4003 * @syslog: include the "<4>" prefixes 4004 * @line: buffer to copy the line to 4005 * @size: maximum size of the buffer 4006 * @len: length of line placed into buffer 4007 * 4008 * Start at the beginning of the kmsg buffer, with the oldest kmsg 4009 * record, and copy one record into the provided buffer. 4010 * 4011 * Consecutive calls will return the next available record moving 4012 * towards the end of the buffer with the youngest messages. 4013 * 4014 * A return value of FALSE indicates that there are no more records to 4015 * read. 4016 */ 4017 bool kmsg_dump_get_line(struct kmsg_dump_iter *iter, bool syslog, 4018 char *line, size_t size, size_t *len) 4019 { 4020 u64 min_seq = latched_seq_read_nolock(&clear_seq); 4021 struct printk_info info; 4022 unsigned int line_count; 4023 struct printk_record r; 4024 size_t l = 0; 4025 bool ret = false; 4026 4027 if (iter->cur_seq < min_seq) 4028 iter->cur_seq = min_seq; 4029 4030 prb_rec_init_rd(&r, &info, line, size); 4031 4032 /* Read text or count text lines? */ 4033 if (line) { 4034 if (!prb_read_valid(prb, iter->cur_seq, &r)) 4035 goto out; 4036 l = record_print_text(&r, syslog, printk_time); 4037 } else { 4038 if (!prb_read_valid_info(prb, iter->cur_seq, 4039 &info, &line_count)) { 4040 goto out; 4041 } 4042 l = get_record_print_text_size(&info, line_count, syslog, 4043 printk_time); 4044 4045 } 4046 4047 iter->cur_seq = r.info->seq + 1; 4048 ret = true; 4049 out: 4050 if (len) 4051 *len = l; 4052 return ret; 4053 } 4054 EXPORT_SYMBOL_GPL(kmsg_dump_get_line); 4055 4056 /** 4057 * kmsg_dump_get_buffer - copy kmsg log lines 4058 * @iter: kmsg dump iterator 4059 * @syslog: include the "<4>" prefixes 4060 * @buf: buffer to copy the line to 4061 * @size: maximum size of the buffer 4062 * @len_out: length of line placed into buffer 4063 * 4064 * Start at the end of the kmsg buffer and fill the provided buffer 4065 * with as many of the *youngest* kmsg records that fit into it. 4066 * If the buffer is large enough, all available kmsg records will be 4067 * copied with a single call. 4068 * 4069 * Consecutive calls will fill the buffer with the next block of 4070 * available older records, not including the earlier retrieved ones. 4071 * 4072 * A return value of FALSE indicates that there are no more records to 4073 * read. 4074 */ 4075 bool kmsg_dump_get_buffer(struct kmsg_dump_iter *iter, bool syslog, 4076 char *buf, size_t size, size_t *len_out) 4077 { 4078 u64 min_seq = latched_seq_read_nolock(&clear_seq); 4079 struct printk_info info; 4080 struct printk_record r; 4081 u64 seq; 4082 u64 next_seq; 4083 size_t len = 0; 4084 bool ret = false; 4085 bool time = printk_time; 4086 4087 if (!buf || !size) 4088 goto out; 4089 4090 if (iter->cur_seq < min_seq) 4091 iter->cur_seq = min_seq; 4092 4093 if (prb_read_valid_info(prb, iter->cur_seq, &info, NULL)) { 4094 if (info.seq != iter->cur_seq) { 4095 /* messages are gone, move to first available one */ 4096 iter->cur_seq = info.seq; 4097 } 4098 } 4099 4100 /* last entry */ 4101 if (iter->cur_seq >= iter->next_seq) 4102 goto out; 4103 4104 /* 4105 * Find first record that fits, including all following records, 4106 * into the user-provided buffer for this dump. Pass in size-1 4107 * because this function (by way of record_print_text()) will 4108 * not write more than size-1 bytes of text into @buf. 4109 */ 4110 seq = find_first_fitting_seq(iter->cur_seq, iter->next_seq, 4111 size - 1, syslog, time); 4112 4113 /* 4114 * Next kmsg_dump_get_buffer() invocation will dump block of 4115 * older records stored right before this one. 4116 */ 4117 next_seq = seq; 4118 4119 prb_rec_init_rd(&r, &info, buf, size); 4120 4121 len = 0; 4122 prb_for_each_record(seq, prb, seq, &r) { 4123 if (r.info->seq >= iter->next_seq) 4124 break; 4125 4126 len += record_print_text(&r, syslog, time); 4127 4128 /* Adjust record to store to remaining buffer space. */ 4129 prb_rec_init_rd(&r, &info, buf + len, size - len); 4130 } 4131 4132 iter->next_seq = next_seq; 4133 ret = true; 4134 out: 4135 if (len_out) 4136 *len_out = len; 4137 return ret; 4138 } 4139 EXPORT_SYMBOL_GPL(kmsg_dump_get_buffer); 4140 4141 /** 4142 * kmsg_dump_rewind - reset the iterator 4143 * @iter: kmsg dump iterator 4144 * 4145 * Reset the dumper's iterator so that kmsg_dump_get_line() and 4146 * kmsg_dump_get_buffer() can be called again and used multiple 4147 * times within the same dumper.dump() callback. 4148 */ 4149 void kmsg_dump_rewind(struct kmsg_dump_iter *iter) 4150 { 4151 iter->cur_seq = latched_seq_read_nolock(&clear_seq); 4152 iter->next_seq = prb_next_seq(prb); 4153 } 4154 EXPORT_SYMBOL_GPL(kmsg_dump_rewind); 4155 4156 #endif 4157 4158 #ifdef CONFIG_SMP 4159 static atomic_t printk_cpu_sync_owner = ATOMIC_INIT(-1); 4160 static atomic_t printk_cpu_sync_nested = ATOMIC_INIT(0); 4161 4162 /** 4163 * __printk_cpu_sync_wait() - Busy wait until the printk cpu-reentrant 4164 * spinning lock is not owned by any CPU. 4165 * 4166 * Context: Any context. 4167 */ 4168 void __printk_cpu_sync_wait(void) 4169 { 4170 do { 4171 cpu_relax(); 4172 } while (atomic_read(&printk_cpu_sync_owner) != -1); 4173 } 4174 EXPORT_SYMBOL(__printk_cpu_sync_wait); 4175 4176 /** 4177 * __printk_cpu_sync_try_get() - Try to acquire the printk cpu-reentrant 4178 * spinning lock. 4179 * 4180 * If no processor has the lock, the calling processor takes the lock and 4181 * becomes the owner. If the calling processor is already the owner of the 4182 * lock, this function succeeds immediately. 4183 * 4184 * Context: Any context. Expects interrupts to be disabled. 4185 * Return: 1 on success, otherwise 0. 4186 */ 4187 int __printk_cpu_sync_try_get(void) 4188 { 4189 int cpu; 4190 int old; 4191 4192 cpu = smp_processor_id(); 4193 4194 /* 4195 * Guarantee loads and stores from this CPU when it is the lock owner 4196 * are _not_ visible to the previous lock owner. This pairs with 4197 * __printk_cpu_sync_put:B. 4198 * 4199 * Memory barrier involvement: 4200 * 4201 * If __printk_cpu_sync_try_get:A reads from __printk_cpu_sync_put:B, 4202 * then __printk_cpu_sync_put:A can never read from 4203 * __printk_cpu_sync_try_get:B. 4204 * 4205 * Relies on: 4206 * 4207 * RELEASE from __printk_cpu_sync_put:A to __printk_cpu_sync_put:B 4208 * of the previous CPU 4209 * matching 4210 * ACQUIRE from __printk_cpu_sync_try_get:A to 4211 * __printk_cpu_sync_try_get:B of this CPU 4212 */ 4213 old = atomic_cmpxchg_acquire(&printk_cpu_sync_owner, -1, 4214 cpu); /* LMM(__printk_cpu_sync_try_get:A) */ 4215 if (old == -1) { 4216 /* 4217 * This CPU is now the owner and begins loading/storing 4218 * data: LMM(__printk_cpu_sync_try_get:B) 4219 */ 4220 return 1; 4221 4222 } else if (old == cpu) { 4223 /* This CPU is already the owner. */ 4224 atomic_inc(&printk_cpu_sync_nested); 4225 return 1; 4226 } 4227 4228 return 0; 4229 } 4230 EXPORT_SYMBOL(__printk_cpu_sync_try_get); 4231 4232 /** 4233 * __printk_cpu_sync_put() - Release the printk cpu-reentrant spinning lock. 4234 * 4235 * The calling processor must be the owner of the lock. 4236 * 4237 * Context: Any context. Expects interrupts to be disabled. 4238 */ 4239 void __printk_cpu_sync_put(void) 4240 { 4241 if (atomic_read(&printk_cpu_sync_nested)) { 4242 atomic_dec(&printk_cpu_sync_nested); 4243 return; 4244 } 4245 4246 /* 4247 * This CPU is finished loading/storing data: 4248 * LMM(__printk_cpu_sync_put:A) 4249 */ 4250 4251 /* 4252 * Guarantee loads and stores from this CPU when it was the 4253 * lock owner are visible to the next lock owner. This pairs 4254 * with __printk_cpu_sync_try_get:A. 4255 * 4256 * Memory barrier involvement: 4257 * 4258 * If __printk_cpu_sync_try_get:A reads from __printk_cpu_sync_put:B, 4259 * then __printk_cpu_sync_try_get:B reads from __printk_cpu_sync_put:A. 4260 * 4261 * Relies on: 4262 * 4263 * RELEASE from __printk_cpu_sync_put:A to __printk_cpu_sync_put:B 4264 * of this CPU 4265 * matching 4266 * ACQUIRE from __printk_cpu_sync_try_get:A to 4267 * __printk_cpu_sync_try_get:B of the next CPU 4268 */ 4269 atomic_set_release(&printk_cpu_sync_owner, 4270 -1); /* LMM(__printk_cpu_sync_put:B) */ 4271 } 4272 EXPORT_SYMBOL(__printk_cpu_sync_put); 4273 #endif /* CONFIG_SMP */ 4274