1 /* 2 * linux/kernel/printk.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 * 6 * Modified to make sys_syslog() more flexible: added commands to 7 * return the last 4k of kernel messages, regardless of whether 8 * they've been read or not. Added option to suppress kernel printk's 9 * to the console. Added hook for sending the console messages 10 * elsewhere, in preparation for a serial line console (someday). 11 * Ted Ts'o, 2/11/93. 12 * Modified for sysctl support, 1/8/97, Chris Horn. 13 * Fixed SMP synchronization, 08/08/99, Manfred Spraul 14 * manfred@colorfullife.com 15 * Rewrote bits to get rid of console_lock 16 * 01Mar01 Andrew Morton 17 */ 18 19 #include <linux/kernel.h> 20 #include <linux/mm.h> 21 #include <linux/tty.h> 22 #include <linux/tty_driver.h> 23 #include <linux/console.h> 24 #include <linux/init.h> 25 #include <linux/jiffies.h> 26 #include <linux/nmi.h> 27 #include <linux/module.h> 28 #include <linux/moduleparam.h> 29 #include <linux/delay.h> 30 #include <linux/smp.h> 31 #include <linux/security.h> 32 #include <linux/bootmem.h> 33 #include <linux/memblock.h> 34 #include <linux/syscalls.h> 35 #include <linux/crash_core.h> 36 #include <linux/kdb.h> 37 #include <linux/ratelimit.h> 38 #include <linux/kmsg_dump.h> 39 #include <linux/syslog.h> 40 #include <linux/cpu.h> 41 #include <linux/notifier.h> 42 #include <linux/rculist.h> 43 #include <linux/poll.h> 44 #include <linux/irq_work.h> 45 #include <linux/utsname.h> 46 #include <linux/ctype.h> 47 #include <linux/uio.h> 48 #include <linux/sched/clock.h> 49 #include <linux/sched/debug.h> 50 #include <linux/sched/task_stack.h> 51 52 #include <linux/uaccess.h> 53 #include <asm/sections.h> 54 55 #define CREATE_TRACE_POINTS 56 #include <trace/events/printk.h> 57 58 #include "console_cmdline.h" 59 #include "braille.h" 60 #include "internal.h" 61 62 int console_printk[4] = { 63 CONSOLE_LOGLEVEL_DEFAULT, /* console_loglevel */ 64 MESSAGE_LOGLEVEL_DEFAULT, /* default_message_loglevel */ 65 CONSOLE_LOGLEVEL_MIN, /* minimum_console_loglevel */ 66 CONSOLE_LOGLEVEL_DEFAULT, /* default_console_loglevel */ 67 }; 68 69 /* 70 * Low level drivers may need that to know if they can schedule in 71 * their unblank() callback or not. So let's export it. 72 */ 73 int oops_in_progress; 74 EXPORT_SYMBOL(oops_in_progress); 75 76 /* 77 * console_sem protects the console_drivers list, and also 78 * provides serialisation for access to the entire console 79 * driver system. 80 */ 81 static DEFINE_SEMAPHORE(console_sem); 82 struct console *console_drivers; 83 EXPORT_SYMBOL_GPL(console_drivers); 84 85 #ifdef CONFIG_LOCKDEP 86 static struct lockdep_map console_lock_dep_map = { 87 .name = "console_lock" 88 }; 89 #endif 90 91 enum devkmsg_log_bits { 92 __DEVKMSG_LOG_BIT_ON = 0, 93 __DEVKMSG_LOG_BIT_OFF, 94 __DEVKMSG_LOG_BIT_LOCK, 95 }; 96 97 enum devkmsg_log_masks { 98 DEVKMSG_LOG_MASK_ON = BIT(__DEVKMSG_LOG_BIT_ON), 99 DEVKMSG_LOG_MASK_OFF = BIT(__DEVKMSG_LOG_BIT_OFF), 100 DEVKMSG_LOG_MASK_LOCK = BIT(__DEVKMSG_LOG_BIT_LOCK), 101 }; 102 103 /* Keep both the 'on' and 'off' bits clear, i.e. ratelimit by default: */ 104 #define DEVKMSG_LOG_MASK_DEFAULT 0 105 106 static unsigned int __read_mostly devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT; 107 108 static int __control_devkmsg(char *str) 109 { 110 if (!str) 111 return -EINVAL; 112 113 if (!strncmp(str, "on", 2)) { 114 devkmsg_log = DEVKMSG_LOG_MASK_ON; 115 return 2; 116 } else if (!strncmp(str, "off", 3)) { 117 devkmsg_log = DEVKMSG_LOG_MASK_OFF; 118 return 3; 119 } else if (!strncmp(str, "ratelimit", 9)) { 120 devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT; 121 return 9; 122 } 123 return -EINVAL; 124 } 125 126 static int __init control_devkmsg(char *str) 127 { 128 if (__control_devkmsg(str) < 0) 129 return 1; 130 131 /* 132 * Set sysctl string accordingly: 133 */ 134 if (devkmsg_log == DEVKMSG_LOG_MASK_ON) { 135 memset(devkmsg_log_str, 0, DEVKMSG_STR_MAX_SIZE); 136 strncpy(devkmsg_log_str, "on", 2); 137 } else if (devkmsg_log == DEVKMSG_LOG_MASK_OFF) { 138 memset(devkmsg_log_str, 0, DEVKMSG_STR_MAX_SIZE); 139 strncpy(devkmsg_log_str, "off", 3); 140 } 141 /* else "ratelimit" which is set by default. */ 142 143 /* 144 * Sysctl cannot change it anymore. The kernel command line setting of 145 * this parameter is to force the setting to be permanent throughout the 146 * runtime of the system. This is a precation measure against userspace 147 * trying to be a smarta** and attempting to change it up on us. 148 */ 149 devkmsg_log |= DEVKMSG_LOG_MASK_LOCK; 150 151 return 0; 152 } 153 __setup("printk.devkmsg=", control_devkmsg); 154 155 char devkmsg_log_str[DEVKMSG_STR_MAX_SIZE] = "ratelimit"; 156 157 int devkmsg_sysctl_set_loglvl(struct ctl_table *table, int write, 158 void __user *buffer, size_t *lenp, loff_t *ppos) 159 { 160 char old_str[DEVKMSG_STR_MAX_SIZE]; 161 unsigned int old; 162 int err; 163 164 if (write) { 165 if (devkmsg_log & DEVKMSG_LOG_MASK_LOCK) 166 return -EINVAL; 167 168 old = devkmsg_log; 169 strncpy(old_str, devkmsg_log_str, DEVKMSG_STR_MAX_SIZE); 170 } 171 172 err = proc_dostring(table, write, buffer, lenp, ppos); 173 if (err) 174 return err; 175 176 if (write) { 177 err = __control_devkmsg(devkmsg_log_str); 178 179 /* 180 * Do not accept an unknown string OR a known string with 181 * trailing crap... 182 */ 183 if (err < 0 || (err + 1 != *lenp)) { 184 185 /* ... and restore old setting. */ 186 devkmsg_log = old; 187 strncpy(devkmsg_log_str, old_str, DEVKMSG_STR_MAX_SIZE); 188 189 return -EINVAL; 190 } 191 } 192 193 return 0; 194 } 195 196 /* 197 * Number of registered extended console drivers. 198 * 199 * If extended consoles are present, in-kernel cont reassembly is disabled 200 * and each fragment is stored as a separate log entry with proper 201 * continuation flag so that every emitted message has full metadata. This 202 * doesn't change the result for regular consoles or /proc/kmsg. For 203 * /dev/kmsg, as long as the reader concatenates messages according to 204 * consecutive continuation flags, the end result should be the same too. 205 */ 206 static int nr_ext_console_drivers; 207 208 /* 209 * Helper macros to handle lockdep when locking/unlocking console_sem. We use 210 * macros instead of functions so that _RET_IP_ contains useful information. 211 */ 212 #define down_console_sem() do { \ 213 down(&console_sem);\ 214 mutex_acquire(&console_lock_dep_map, 0, 0, _RET_IP_);\ 215 } while (0) 216 217 static int __down_trylock_console_sem(unsigned long ip) 218 { 219 int lock_failed; 220 unsigned long flags; 221 222 /* 223 * Here and in __up_console_sem() we need to be in safe mode, 224 * because spindump/WARN/etc from under console ->lock will 225 * deadlock in printk()->down_trylock_console_sem() otherwise. 226 */ 227 printk_safe_enter_irqsave(flags); 228 lock_failed = down_trylock(&console_sem); 229 printk_safe_exit_irqrestore(flags); 230 231 if (lock_failed) 232 return 1; 233 mutex_acquire(&console_lock_dep_map, 0, 1, ip); 234 return 0; 235 } 236 #define down_trylock_console_sem() __down_trylock_console_sem(_RET_IP_) 237 238 static void __up_console_sem(unsigned long ip) 239 { 240 unsigned long flags; 241 242 mutex_release(&console_lock_dep_map, 1, ip); 243 244 printk_safe_enter_irqsave(flags); 245 up(&console_sem); 246 printk_safe_exit_irqrestore(flags); 247 } 248 #define up_console_sem() __up_console_sem(_RET_IP_) 249 250 /* 251 * This is used for debugging the mess that is the VT code by 252 * keeping track if we have the console semaphore held. It's 253 * definitely not the perfect debug tool (we don't know if _WE_ 254 * hold it and are racing, but it helps tracking those weird code 255 * paths in the console code where we end up in places I want 256 * locked without the console sempahore held). 257 */ 258 static int console_locked, console_suspended; 259 260 /* 261 * If exclusive_console is non-NULL then only this console is to be printed to. 262 */ 263 static struct console *exclusive_console; 264 265 /* 266 * Array of consoles built from command line options (console=) 267 */ 268 269 #define MAX_CMDLINECONSOLES 8 270 271 static struct console_cmdline console_cmdline[MAX_CMDLINECONSOLES]; 272 273 static int preferred_console = -1; 274 int console_set_on_cmdline; 275 EXPORT_SYMBOL(console_set_on_cmdline); 276 277 /* Flag: console code may call schedule() */ 278 static int console_may_schedule; 279 280 /* 281 * The printk log buffer consists of a chain of concatenated variable 282 * length records. Every record starts with a record header, containing 283 * the overall length of the record. 284 * 285 * The heads to the first and last entry in the buffer, as well as the 286 * sequence numbers of these entries are maintained when messages are 287 * stored. 288 * 289 * If the heads indicate available messages, the length in the header 290 * tells the start next message. A length == 0 for the next message 291 * indicates a wrap-around to the beginning of the buffer. 292 * 293 * Every record carries the monotonic timestamp in microseconds, as well as 294 * the standard userspace syslog level and syslog facility. The usual 295 * kernel messages use LOG_KERN; userspace-injected messages always carry 296 * a matching syslog facility, by default LOG_USER. The origin of every 297 * message can be reliably determined that way. 298 * 299 * The human readable log message directly follows the message header. The 300 * length of the message text is stored in the header, the stored message 301 * is not terminated. 302 * 303 * Optionally, a message can carry a dictionary of properties (key/value pairs), 304 * to provide userspace with a machine-readable message context. 305 * 306 * Examples for well-defined, commonly used property names are: 307 * DEVICE=b12:8 device identifier 308 * b12:8 block dev_t 309 * c127:3 char dev_t 310 * n8 netdev ifindex 311 * +sound:card0 subsystem:devname 312 * SUBSYSTEM=pci driver-core subsystem name 313 * 314 * Valid characters in property names are [a-zA-Z0-9.-_]. The plain text value 315 * follows directly after a '=' character. Every property is terminated by 316 * a '\0' character. The last property is not terminated. 317 * 318 * Example of a message structure: 319 * 0000 ff 8f 00 00 00 00 00 00 monotonic time in nsec 320 * 0008 34 00 record is 52 bytes long 321 * 000a 0b 00 text is 11 bytes long 322 * 000c 1f 00 dictionary is 23 bytes long 323 * 000e 03 00 LOG_KERN (facility) LOG_ERR (level) 324 * 0010 69 74 27 73 20 61 20 6c "it's a l" 325 * 69 6e 65 "ine" 326 * 001b 44 45 56 49 43 "DEVIC" 327 * 45 3d 62 38 3a 32 00 44 "E=b8:2\0D" 328 * 52 49 56 45 52 3d 62 75 "RIVER=bu" 329 * 67 "g" 330 * 0032 00 00 00 padding to next message header 331 * 332 * The 'struct printk_log' buffer header must never be directly exported to 333 * userspace, it is a kernel-private implementation detail that might 334 * need to be changed in the future, when the requirements change. 335 * 336 * /dev/kmsg exports the structured data in the following line format: 337 * "<level>,<sequnum>,<timestamp>,<contflag>[,additional_values, ... ];<message text>\n" 338 * 339 * Users of the export format should ignore possible additional values 340 * separated by ',', and find the message after the ';' character. 341 * 342 * The optional key/value pairs are attached as continuation lines starting 343 * with a space character and terminated by a newline. All possible 344 * non-prinatable characters are escaped in the "\xff" notation. 345 */ 346 347 enum log_flags { 348 LOG_NOCONS = 1, /* already flushed, do not print to console */ 349 LOG_NEWLINE = 2, /* text ended with a newline */ 350 LOG_PREFIX = 4, /* text started with a prefix */ 351 LOG_CONT = 8, /* text is a fragment of a continuation line */ 352 }; 353 354 struct printk_log { 355 u64 ts_nsec; /* timestamp in nanoseconds */ 356 u16 len; /* length of entire record */ 357 u16 text_len; /* length of text buffer */ 358 u16 dict_len; /* length of dictionary buffer */ 359 u8 facility; /* syslog facility */ 360 u8 flags:5; /* internal record flags */ 361 u8 level:3; /* syslog level */ 362 } 363 #ifdef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS 364 __packed __aligned(4) 365 #endif 366 ; 367 368 /* 369 * The logbuf_lock protects kmsg buffer, indices, counters. This can be taken 370 * within the scheduler's rq lock. It must be released before calling 371 * console_unlock() or anything else that might wake up a process. 372 */ 373 DEFINE_RAW_SPINLOCK(logbuf_lock); 374 375 /* 376 * Helper macros to lock/unlock logbuf_lock and switch between 377 * printk-safe/unsafe modes. 378 */ 379 #define logbuf_lock_irq() \ 380 do { \ 381 printk_safe_enter_irq(); \ 382 raw_spin_lock(&logbuf_lock); \ 383 } while (0) 384 385 #define logbuf_unlock_irq() \ 386 do { \ 387 raw_spin_unlock(&logbuf_lock); \ 388 printk_safe_exit_irq(); \ 389 } while (0) 390 391 #define logbuf_lock_irqsave(flags) \ 392 do { \ 393 printk_safe_enter_irqsave(flags); \ 394 raw_spin_lock(&logbuf_lock); \ 395 } while (0) 396 397 #define logbuf_unlock_irqrestore(flags) \ 398 do { \ 399 raw_spin_unlock(&logbuf_lock); \ 400 printk_safe_exit_irqrestore(flags); \ 401 } while (0) 402 403 #ifdef CONFIG_PRINTK 404 DECLARE_WAIT_QUEUE_HEAD(log_wait); 405 /* the next printk record to read by syslog(READ) or /proc/kmsg */ 406 static u64 syslog_seq; 407 static u32 syslog_idx; 408 static size_t syslog_partial; 409 410 /* index and sequence number of the first record stored in the buffer */ 411 static u64 log_first_seq; 412 static u32 log_first_idx; 413 414 /* index and sequence number of the next record to store in the buffer */ 415 static u64 log_next_seq; 416 static u32 log_next_idx; 417 418 /* the next printk record to write to the console */ 419 static u64 console_seq; 420 static u32 console_idx; 421 422 /* the next printk record to read after the last 'clear' command */ 423 static u64 clear_seq; 424 static u32 clear_idx; 425 426 #define PREFIX_MAX 32 427 #define LOG_LINE_MAX (1024 - PREFIX_MAX) 428 429 #define LOG_LEVEL(v) ((v) & 0x07) 430 #define LOG_FACILITY(v) ((v) >> 3 & 0xff) 431 432 /* record buffer */ 433 #define LOG_ALIGN __alignof__(struct printk_log) 434 #define __LOG_BUF_LEN (1 << CONFIG_LOG_BUF_SHIFT) 435 static char __log_buf[__LOG_BUF_LEN] __aligned(LOG_ALIGN); 436 static char *log_buf = __log_buf; 437 static u32 log_buf_len = __LOG_BUF_LEN; 438 439 /* Return log buffer address */ 440 char *log_buf_addr_get(void) 441 { 442 return log_buf; 443 } 444 445 /* Return log buffer size */ 446 u32 log_buf_len_get(void) 447 { 448 return log_buf_len; 449 } 450 451 /* human readable text of the record */ 452 static char *log_text(const struct printk_log *msg) 453 { 454 return (char *)msg + sizeof(struct printk_log); 455 } 456 457 /* optional key/value pair dictionary attached to the record */ 458 static char *log_dict(const struct printk_log *msg) 459 { 460 return (char *)msg + sizeof(struct printk_log) + msg->text_len; 461 } 462 463 /* get record by index; idx must point to valid msg */ 464 static struct printk_log *log_from_idx(u32 idx) 465 { 466 struct printk_log *msg = (struct printk_log *)(log_buf + idx); 467 468 /* 469 * A length == 0 record is the end of buffer marker. Wrap around and 470 * read the message at the start of the buffer. 471 */ 472 if (!msg->len) 473 return (struct printk_log *)log_buf; 474 return msg; 475 } 476 477 /* get next record; idx must point to valid msg */ 478 static u32 log_next(u32 idx) 479 { 480 struct printk_log *msg = (struct printk_log *)(log_buf + idx); 481 482 /* length == 0 indicates the end of the buffer; wrap */ 483 /* 484 * A length == 0 record is the end of buffer marker. Wrap around and 485 * read the message at the start of the buffer as *this* one, and 486 * return the one after that. 487 */ 488 if (!msg->len) { 489 msg = (struct printk_log *)log_buf; 490 return msg->len; 491 } 492 return idx + msg->len; 493 } 494 495 /* 496 * Check whether there is enough free space for the given message. 497 * 498 * The same values of first_idx and next_idx mean that the buffer 499 * is either empty or full. 500 * 501 * If the buffer is empty, we must respect the position of the indexes. 502 * They cannot be reset to the beginning of the buffer. 503 */ 504 static int logbuf_has_space(u32 msg_size, bool empty) 505 { 506 u32 free; 507 508 if (log_next_idx > log_first_idx || empty) 509 free = max(log_buf_len - log_next_idx, log_first_idx); 510 else 511 free = log_first_idx - log_next_idx; 512 513 /* 514 * We need space also for an empty header that signalizes wrapping 515 * of the buffer. 516 */ 517 return free >= msg_size + sizeof(struct printk_log); 518 } 519 520 static int log_make_free_space(u32 msg_size) 521 { 522 while (log_first_seq < log_next_seq && 523 !logbuf_has_space(msg_size, false)) { 524 /* drop old messages until we have enough contiguous space */ 525 log_first_idx = log_next(log_first_idx); 526 log_first_seq++; 527 } 528 529 if (clear_seq < log_first_seq) { 530 clear_seq = log_first_seq; 531 clear_idx = log_first_idx; 532 } 533 534 /* sequence numbers are equal, so the log buffer is empty */ 535 if (logbuf_has_space(msg_size, log_first_seq == log_next_seq)) 536 return 0; 537 538 return -ENOMEM; 539 } 540 541 /* compute the message size including the padding bytes */ 542 static u32 msg_used_size(u16 text_len, u16 dict_len, u32 *pad_len) 543 { 544 u32 size; 545 546 size = sizeof(struct printk_log) + text_len + dict_len; 547 *pad_len = (-size) & (LOG_ALIGN - 1); 548 size += *pad_len; 549 550 return size; 551 } 552 553 /* 554 * Define how much of the log buffer we could take at maximum. The value 555 * must be greater than two. Note that only half of the buffer is available 556 * when the index points to the middle. 557 */ 558 #define MAX_LOG_TAKE_PART 4 559 static const char trunc_msg[] = "<truncated>"; 560 561 static u32 truncate_msg(u16 *text_len, u16 *trunc_msg_len, 562 u16 *dict_len, u32 *pad_len) 563 { 564 /* 565 * The message should not take the whole buffer. Otherwise, it might 566 * get removed too soon. 567 */ 568 u32 max_text_len = log_buf_len / MAX_LOG_TAKE_PART; 569 if (*text_len > max_text_len) 570 *text_len = max_text_len; 571 /* enable the warning message */ 572 *trunc_msg_len = strlen(trunc_msg); 573 /* disable the "dict" completely */ 574 *dict_len = 0; 575 /* compute the size again, count also the warning message */ 576 return msg_used_size(*text_len + *trunc_msg_len, 0, pad_len); 577 } 578 579 /* insert record into the buffer, discard old ones, update heads */ 580 static int log_store(int facility, int level, 581 enum log_flags flags, u64 ts_nsec, 582 const char *dict, u16 dict_len, 583 const char *text, u16 text_len) 584 { 585 struct printk_log *msg; 586 u32 size, pad_len; 587 u16 trunc_msg_len = 0; 588 589 /* number of '\0' padding bytes to next message */ 590 size = msg_used_size(text_len, dict_len, &pad_len); 591 592 if (log_make_free_space(size)) { 593 /* truncate the message if it is too long for empty buffer */ 594 size = truncate_msg(&text_len, &trunc_msg_len, 595 &dict_len, &pad_len); 596 /* survive when the log buffer is too small for trunc_msg */ 597 if (log_make_free_space(size)) 598 return 0; 599 } 600 601 if (log_next_idx + size + sizeof(struct printk_log) > log_buf_len) { 602 /* 603 * This message + an additional empty header does not fit 604 * at the end of the buffer. Add an empty header with len == 0 605 * to signify a wrap around. 606 */ 607 memset(log_buf + log_next_idx, 0, sizeof(struct printk_log)); 608 log_next_idx = 0; 609 } 610 611 /* fill message */ 612 msg = (struct printk_log *)(log_buf + log_next_idx); 613 memcpy(log_text(msg), text, text_len); 614 msg->text_len = text_len; 615 if (trunc_msg_len) { 616 memcpy(log_text(msg) + text_len, trunc_msg, trunc_msg_len); 617 msg->text_len += trunc_msg_len; 618 } 619 memcpy(log_dict(msg), dict, dict_len); 620 msg->dict_len = dict_len; 621 msg->facility = facility; 622 msg->level = level & 7; 623 msg->flags = flags & 0x1f; 624 if (ts_nsec > 0) 625 msg->ts_nsec = ts_nsec; 626 else 627 msg->ts_nsec = local_clock(); 628 memset(log_dict(msg) + dict_len, 0, pad_len); 629 msg->len = size; 630 631 /* insert message */ 632 log_next_idx += msg->len; 633 log_next_seq++; 634 635 return msg->text_len; 636 } 637 638 int dmesg_restrict = IS_ENABLED(CONFIG_SECURITY_DMESG_RESTRICT); 639 640 static int syslog_action_restricted(int type) 641 { 642 if (dmesg_restrict) 643 return 1; 644 /* 645 * Unless restricted, we allow "read all" and "get buffer size" 646 * for everybody. 647 */ 648 return type != SYSLOG_ACTION_READ_ALL && 649 type != SYSLOG_ACTION_SIZE_BUFFER; 650 } 651 652 static int check_syslog_permissions(int type, int source) 653 { 654 /* 655 * If this is from /proc/kmsg and we've already opened it, then we've 656 * already done the capabilities checks at open time. 657 */ 658 if (source == SYSLOG_FROM_PROC && type != SYSLOG_ACTION_OPEN) 659 goto ok; 660 661 if (syslog_action_restricted(type)) { 662 if (capable(CAP_SYSLOG)) 663 goto ok; 664 /* 665 * For historical reasons, accept CAP_SYS_ADMIN too, with 666 * a warning. 667 */ 668 if (capable(CAP_SYS_ADMIN)) { 669 pr_warn_once("%s (%d): Attempt to access syslog with " 670 "CAP_SYS_ADMIN but no CAP_SYSLOG " 671 "(deprecated).\n", 672 current->comm, task_pid_nr(current)); 673 goto ok; 674 } 675 return -EPERM; 676 } 677 ok: 678 return security_syslog(type); 679 } 680 681 static void append_char(char **pp, char *e, char c) 682 { 683 if (*pp < e) 684 *(*pp)++ = c; 685 } 686 687 static ssize_t msg_print_ext_header(char *buf, size_t size, 688 struct printk_log *msg, u64 seq) 689 { 690 u64 ts_usec = msg->ts_nsec; 691 692 do_div(ts_usec, 1000); 693 694 return scnprintf(buf, size, "%u,%llu,%llu,%c;", 695 (msg->facility << 3) | msg->level, seq, ts_usec, 696 msg->flags & LOG_CONT ? 'c' : '-'); 697 } 698 699 static ssize_t msg_print_ext_body(char *buf, size_t size, 700 char *dict, size_t dict_len, 701 char *text, size_t text_len) 702 { 703 char *p = buf, *e = buf + size; 704 size_t i; 705 706 /* escape non-printable characters */ 707 for (i = 0; i < text_len; i++) { 708 unsigned char c = text[i]; 709 710 if (c < ' ' || c >= 127 || c == '\\') 711 p += scnprintf(p, e - p, "\\x%02x", c); 712 else 713 append_char(&p, e, c); 714 } 715 append_char(&p, e, '\n'); 716 717 if (dict_len) { 718 bool line = true; 719 720 for (i = 0; i < dict_len; i++) { 721 unsigned char c = dict[i]; 722 723 if (line) { 724 append_char(&p, e, ' '); 725 line = false; 726 } 727 728 if (c == '\0') { 729 append_char(&p, e, '\n'); 730 line = true; 731 continue; 732 } 733 734 if (c < ' ' || c >= 127 || c == '\\') { 735 p += scnprintf(p, e - p, "\\x%02x", c); 736 continue; 737 } 738 739 append_char(&p, e, c); 740 } 741 append_char(&p, e, '\n'); 742 } 743 744 return p - buf; 745 } 746 747 /* /dev/kmsg - userspace message inject/listen interface */ 748 struct devkmsg_user { 749 u64 seq; 750 u32 idx; 751 struct ratelimit_state rs; 752 struct mutex lock; 753 char buf[CONSOLE_EXT_LOG_MAX]; 754 }; 755 756 static ssize_t devkmsg_write(struct kiocb *iocb, struct iov_iter *from) 757 { 758 char *buf, *line; 759 int level = default_message_loglevel; 760 int facility = 1; /* LOG_USER */ 761 struct file *file = iocb->ki_filp; 762 struct devkmsg_user *user = file->private_data; 763 size_t len = iov_iter_count(from); 764 ssize_t ret = len; 765 766 if (!user || len > LOG_LINE_MAX) 767 return -EINVAL; 768 769 /* Ignore when user logging is disabled. */ 770 if (devkmsg_log & DEVKMSG_LOG_MASK_OFF) 771 return len; 772 773 /* Ratelimit when not explicitly enabled. */ 774 if (!(devkmsg_log & DEVKMSG_LOG_MASK_ON)) { 775 if (!___ratelimit(&user->rs, current->comm)) 776 return ret; 777 } 778 779 buf = kmalloc(len+1, GFP_KERNEL); 780 if (buf == NULL) 781 return -ENOMEM; 782 783 buf[len] = '\0'; 784 if (!copy_from_iter_full(buf, len, from)) { 785 kfree(buf); 786 return -EFAULT; 787 } 788 789 /* 790 * Extract and skip the syslog prefix <[0-9]*>. Coming from userspace 791 * the decimal value represents 32bit, the lower 3 bit are the log 792 * level, the rest are the log facility. 793 * 794 * If no prefix or no userspace facility is specified, we 795 * enforce LOG_USER, to be able to reliably distinguish 796 * kernel-generated messages from userspace-injected ones. 797 */ 798 line = buf; 799 if (line[0] == '<') { 800 char *endp = NULL; 801 unsigned int u; 802 803 u = simple_strtoul(line + 1, &endp, 10); 804 if (endp && endp[0] == '>') { 805 level = LOG_LEVEL(u); 806 if (LOG_FACILITY(u) != 0) 807 facility = LOG_FACILITY(u); 808 endp++; 809 len -= endp - line; 810 line = endp; 811 } 812 } 813 814 printk_emit(facility, level, NULL, 0, "%s", line); 815 kfree(buf); 816 return ret; 817 } 818 819 static ssize_t devkmsg_read(struct file *file, char __user *buf, 820 size_t count, loff_t *ppos) 821 { 822 struct devkmsg_user *user = file->private_data; 823 struct printk_log *msg; 824 size_t len; 825 ssize_t ret; 826 827 if (!user) 828 return -EBADF; 829 830 ret = mutex_lock_interruptible(&user->lock); 831 if (ret) 832 return ret; 833 834 logbuf_lock_irq(); 835 while (user->seq == log_next_seq) { 836 if (file->f_flags & O_NONBLOCK) { 837 ret = -EAGAIN; 838 logbuf_unlock_irq(); 839 goto out; 840 } 841 842 logbuf_unlock_irq(); 843 ret = wait_event_interruptible(log_wait, 844 user->seq != log_next_seq); 845 if (ret) 846 goto out; 847 logbuf_lock_irq(); 848 } 849 850 if (user->seq < log_first_seq) { 851 /* our last seen message is gone, return error and reset */ 852 user->idx = log_first_idx; 853 user->seq = log_first_seq; 854 ret = -EPIPE; 855 logbuf_unlock_irq(); 856 goto out; 857 } 858 859 msg = log_from_idx(user->idx); 860 len = msg_print_ext_header(user->buf, sizeof(user->buf), 861 msg, user->seq); 862 len += msg_print_ext_body(user->buf + len, sizeof(user->buf) - len, 863 log_dict(msg), msg->dict_len, 864 log_text(msg), msg->text_len); 865 866 user->idx = log_next(user->idx); 867 user->seq++; 868 logbuf_unlock_irq(); 869 870 if (len > count) { 871 ret = -EINVAL; 872 goto out; 873 } 874 875 if (copy_to_user(buf, user->buf, len)) { 876 ret = -EFAULT; 877 goto out; 878 } 879 ret = len; 880 out: 881 mutex_unlock(&user->lock); 882 return ret; 883 } 884 885 static loff_t devkmsg_llseek(struct file *file, loff_t offset, int whence) 886 { 887 struct devkmsg_user *user = file->private_data; 888 loff_t ret = 0; 889 890 if (!user) 891 return -EBADF; 892 if (offset) 893 return -ESPIPE; 894 895 logbuf_lock_irq(); 896 switch (whence) { 897 case SEEK_SET: 898 /* the first record */ 899 user->idx = log_first_idx; 900 user->seq = log_first_seq; 901 break; 902 case SEEK_DATA: 903 /* 904 * The first record after the last SYSLOG_ACTION_CLEAR, 905 * like issued by 'dmesg -c'. Reading /dev/kmsg itself 906 * changes no global state, and does not clear anything. 907 */ 908 user->idx = clear_idx; 909 user->seq = clear_seq; 910 break; 911 case SEEK_END: 912 /* after the last record */ 913 user->idx = log_next_idx; 914 user->seq = log_next_seq; 915 break; 916 default: 917 ret = -EINVAL; 918 } 919 logbuf_unlock_irq(); 920 return ret; 921 } 922 923 static unsigned int devkmsg_poll(struct file *file, poll_table *wait) 924 { 925 struct devkmsg_user *user = file->private_data; 926 int ret = 0; 927 928 if (!user) 929 return POLLERR|POLLNVAL; 930 931 poll_wait(file, &log_wait, wait); 932 933 logbuf_lock_irq(); 934 if (user->seq < log_next_seq) { 935 /* return error when data has vanished underneath us */ 936 if (user->seq < log_first_seq) 937 ret = POLLIN|POLLRDNORM|POLLERR|POLLPRI; 938 else 939 ret = POLLIN|POLLRDNORM; 940 } 941 logbuf_unlock_irq(); 942 943 return ret; 944 } 945 946 static int devkmsg_open(struct inode *inode, struct file *file) 947 { 948 struct devkmsg_user *user; 949 int err; 950 951 if (devkmsg_log & DEVKMSG_LOG_MASK_OFF) 952 return -EPERM; 953 954 /* write-only does not need any file context */ 955 if ((file->f_flags & O_ACCMODE) != O_WRONLY) { 956 err = check_syslog_permissions(SYSLOG_ACTION_READ_ALL, 957 SYSLOG_FROM_READER); 958 if (err) 959 return err; 960 } 961 962 user = kmalloc(sizeof(struct devkmsg_user), GFP_KERNEL); 963 if (!user) 964 return -ENOMEM; 965 966 ratelimit_default_init(&user->rs); 967 ratelimit_set_flags(&user->rs, RATELIMIT_MSG_ON_RELEASE); 968 969 mutex_init(&user->lock); 970 971 logbuf_lock_irq(); 972 user->idx = log_first_idx; 973 user->seq = log_first_seq; 974 logbuf_unlock_irq(); 975 976 file->private_data = user; 977 return 0; 978 } 979 980 static int devkmsg_release(struct inode *inode, struct file *file) 981 { 982 struct devkmsg_user *user = file->private_data; 983 984 if (!user) 985 return 0; 986 987 ratelimit_state_exit(&user->rs); 988 989 mutex_destroy(&user->lock); 990 kfree(user); 991 return 0; 992 } 993 994 const struct file_operations kmsg_fops = { 995 .open = devkmsg_open, 996 .read = devkmsg_read, 997 .write_iter = devkmsg_write, 998 .llseek = devkmsg_llseek, 999 .poll = devkmsg_poll, 1000 .release = devkmsg_release, 1001 }; 1002 1003 #ifdef CONFIG_CRASH_CORE 1004 /* 1005 * This appends the listed symbols to /proc/vmcore 1006 * 1007 * /proc/vmcore is used by various utilities, like crash and makedumpfile to 1008 * obtain access to symbols that are otherwise very difficult to locate. These 1009 * symbols are specifically used so that utilities can access and extract the 1010 * dmesg log from a vmcore file after a crash. 1011 */ 1012 void log_buf_vmcoreinfo_setup(void) 1013 { 1014 VMCOREINFO_SYMBOL(log_buf); 1015 VMCOREINFO_SYMBOL(log_buf_len); 1016 VMCOREINFO_SYMBOL(log_first_idx); 1017 VMCOREINFO_SYMBOL(clear_idx); 1018 VMCOREINFO_SYMBOL(log_next_idx); 1019 /* 1020 * Export struct printk_log size and field offsets. User space tools can 1021 * parse it and detect any changes to structure down the line. 1022 */ 1023 VMCOREINFO_STRUCT_SIZE(printk_log); 1024 VMCOREINFO_OFFSET(printk_log, ts_nsec); 1025 VMCOREINFO_OFFSET(printk_log, len); 1026 VMCOREINFO_OFFSET(printk_log, text_len); 1027 VMCOREINFO_OFFSET(printk_log, dict_len); 1028 } 1029 #endif 1030 1031 /* requested log_buf_len from kernel cmdline */ 1032 static unsigned long __initdata new_log_buf_len; 1033 1034 /* we practice scaling the ring buffer by powers of 2 */ 1035 static void __init log_buf_len_update(unsigned size) 1036 { 1037 if (size) 1038 size = roundup_pow_of_two(size); 1039 if (size > log_buf_len) 1040 new_log_buf_len = size; 1041 } 1042 1043 /* save requested log_buf_len since it's too early to process it */ 1044 static int __init log_buf_len_setup(char *str) 1045 { 1046 unsigned size = memparse(str, &str); 1047 1048 log_buf_len_update(size); 1049 1050 return 0; 1051 } 1052 early_param("log_buf_len", log_buf_len_setup); 1053 1054 #ifdef CONFIG_SMP 1055 #define __LOG_CPU_MAX_BUF_LEN (1 << CONFIG_LOG_CPU_MAX_BUF_SHIFT) 1056 1057 static void __init log_buf_add_cpu(void) 1058 { 1059 unsigned int cpu_extra; 1060 1061 /* 1062 * archs should set up cpu_possible_bits properly with 1063 * set_cpu_possible() after setup_arch() but just in 1064 * case lets ensure this is valid. 1065 */ 1066 if (num_possible_cpus() == 1) 1067 return; 1068 1069 cpu_extra = (num_possible_cpus() - 1) * __LOG_CPU_MAX_BUF_LEN; 1070 1071 /* by default this will only continue through for large > 64 CPUs */ 1072 if (cpu_extra <= __LOG_BUF_LEN / 2) 1073 return; 1074 1075 pr_info("log_buf_len individual max cpu contribution: %d bytes\n", 1076 __LOG_CPU_MAX_BUF_LEN); 1077 pr_info("log_buf_len total cpu_extra contributions: %d bytes\n", 1078 cpu_extra); 1079 pr_info("log_buf_len min size: %d bytes\n", __LOG_BUF_LEN); 1080 1081 log_buf_len_update(cpu_extra + __LOG_BUF_LEN); 1082 } 1083 #else /* !CONFIG_SMP */ 1084 static inline void log_buf_add_cpu(void) {} 1085 #endif /* CONFIG_SMP */ 1086 1087 void __init setup_log_buf(int early) 1088 { 1089 unsigned long flags; 1090 char *new_log_buf; 1091 int free; 1092 1093 if (log_buf != __log_buf) 1094 return; 1095 1096 if (!early && !new_log_buf_len) 1097 log_buf_add_cpu(); 1098 1099 if (!new_log_buf_len) 1100 return; 1101 1102 if (early) { 1103 new_log_buf = 1104 memblock_virt_alloc(new_log_buf_len, LOG_ALIGN); 1105 } else { 1106 new_log_buf = memblock_virt_alloc_nopanic(new_log_buf_len, 1107 LOG_ALIGN); 1108 } 1109 1110 if (unlikely(!new_log_buf)) { 1111 pr_err("log_buf_len: %ld bytes not available\n", 1112 new_log_buf_len); 1113 return; 1114 } 1115 1116 logbuf_lock_irqsave(flags); 1117 log_buf_len = new_log_buf_len; 1118 log_buf = new_log_buf; 1119 new_log_buf_len = 0; 1120 free = __LOG_BUF_LEN - log_next_idx; 1121 memcpy(log_buf, __log_buf, __LOG_BUF_LEN); 1122 logbuf_unlock_irqrestore(flags); 1123 1124 pr_info("log_buf_len: %d bytes\n", log_buf_len); 1125 pr_info("early log buf free: %d(%d%%)\n", 1126 free, (free * 100) / __LOG_BUF_LEN); 1127 } 1128 1129 static bool __read_mostly ignore_loglevel; 1130 1131 static int __init ignore_loglevel_setup(char *str) 1132 { 1133 ignore_loglevel = true; 1134 pr_info("debug: ignoring loglevel setting.\n"); 1135 1136 return 0; 1137 } 1138 1139 early_param("ignore_loglevel", ignore_loglevel_setup); 1140 module_param(ignore_loglevel, bool, S_IRUGO | S_IWUSR); 1141 MODULE_PARM_DESC(ignore_loglevel, 1142 "ignore loglevel setting (prints all kernel messages to the console)"); 1143 1144 static bool suppress_message_printing(int level) 1145 { 1146 return (level >= console_loglevel && !ignore_loglevel); 1147 } 1148 1149 #ifdef CONFIG_BOOT_PRINTK_DELAY 1150 1151 static int boot_delay; /* msecs delay after each printk during bootup */ 1152 static unsigned long long loops_per_msec; /* based on boot_delay */ 1153 1154 static int __init boot_delay_setup(char *str) 1155 { 1156 unsigned long lpj; 1157 1158 lpj = preset_lpj ? preset_lpj : 1000000; /* some guess */ 1159 loops_per_msec = (unsigned long long)lpj / 1000 * HZ; 1160 1161 get_option(&str, &boot_delay); 1162 if (boot_delay > 10 * 1000) 1163 boot_delay = 0; 1164 1165 pr_debug("boot_delay: %u, preset_lpj: %ld, lpj: %lu, " 1166 "HZ: %d, loops_per_msec: %llu\n", 1167 boot_delay, preset_lpj, lpj, HZ, loops_per_msec); 1168 return 0; 1169 } 1170 early_param("boot_delay", boot_delay_setup); 1171 1172 static void boot_delay_msec(int level) 1173 { 1174 unsigned long long k; 1175 unsigned long timeout; 1176 1177 if ((boot_delay == 0 || system_state >= SYSTEM_RUNNING) 1178 || suppress_message_printing(level)) { 1179 return; 1180 } 1181 1182 k = (unsigned long long)loops_per_msec * boot_delay; 1183 1184 timeout = jiffies + msecs_to_jiffies(boot_delay); 1185 while (k) { 1186 k--; 1187 cpu_relax(); 1188 /* 1189 * use (volatile) jiffies to prevent 1190 * compiler reduction; loop termination via jiffies 1191 * is secondary and may or may not happen. 1192 */ 1193 if (time_after(jiffies, timeout)) 1194 break; 1195 touch_nmi_watchdog(); 1196 } 1197 } 1198 #else 1199 static inline void boot_delay_msec(int level) 1200 { 1201 } 1202 #endif 1203 1204 static bool printk_time = IS_ENABLED(CONFIG_PRINTK_TIME); 1205 module_param_named(time, printk_time, bool, S_IRUGO | S_IWUSR); 1206 1207 static size_t print_time(u64 ts, char *buf) 1208 { 1209 unsigned long rem_nsec; 1210 1211 if (!printk_time) 1212 return 0; 1213 1214 rem_nsec = do_div(ts, 1000000000); 1215 1216 if (!buf) 1217 return snprintf(NULL, 0, "[%5lu.000000] ", (unsigned long)ts); 1218 1219 return sprintf(buf, "[%5lu.%06lu] ", 1220 (unsigned long)ts, rem_nsec / 1000); 1221 } 1222 1223 static size_t print_prefix(const struct printk_log *msg, bool syslog, char *buf) 1224 { 1225 size_t len = 0; 1226 unsigned int prefix = (msg->facility << 3) | msg->level; 1227 1228 if (syslog) { 1229 if (buf) { 1230 len += sprintf(buf, "<%u>", prefix); 1231 } else { 1232 len += 3; 1233 if (prefix > 999) 1234 len += 3; 1235 else if (prefix > 99) 1236 len += 2; 1237 else if (prefix > 9) 1238 len++; 1239 } 1240 } 1241 1242 len += print_time(msg->ts_nsec, buf ? buf + len : NULL); 1243 return len; 1244 } 1245 1246 static size_t msg_print_text(const struct printk_log *msg, bool syslog, char *buf, size_t size) 1247 { 1248 const char *text = log_text(msg); 1249 size_t text_size = msg->text_len; 1250 size_t len = 0; 1251 1252 do { 1253 const char *next = memchr(text, '\n', text_size); 1254 size_t text_len; 1255 1256 if (next) { 1257 text_len = next - text; 1258 next++; 1259 text_size -= next - text; 1260 } else { 1261 text_len = text_size; 1262 } 1263 1264 if (buf) { 1265 if (print_prefix(msg, syslog, NULL) + 1266 text_len + 1 >= size - len) 1267 break; 1268 1269 len += print_prefix(msg, syslog, buf + len); 1270 memcpy(buf + len, text, text_len); 1271 len += text_len; 1272 buf[len++] = '\n'; 1273 } else { 1274 /* SYSLOG_ACTION_* buffer size only calculation */ 1275 len += print_prefix(msg, syslog, NULL); 1276 len += text_len; 1277 len++; 1278 } 1279 1280 text = next; 1281 } while (text); 1282 1283 return len; 1284 } 1285 1286 static int syslog_print(char __user *buf, int size) 1287 { 1288 char *text; 1289 struct printk_log *msg; 1290 int len = 0; 1291 1292 text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL); 1293 if (!text) 1294 return -ENOMEM; 1295 1296 while (size > 0) { 1297 size_t n; 1298 size_t skip; 1299 1300 logbuf_lock_irq(); 1301 if (syslog_seq < log_first_seq) { 1302 /* messages are gone, move to first one */ 1303 syslog_seq = log_first_seq; 1304 syslog_idx = log_first_idx; 1305 syslog_partial = 0; 1306 } 1307 if (syslog_seq == log_next_seq) { 1308 logbuf_unlock_irq(); 1309 break; 1310 } 1311 1312 skip = syslog_partial; 1313 msg = log_from_idx(syslog_idx); 1314 n = msg_print_text(msg, true, text, LOG_LINE_MAX + PREFIX_MAX); 1315 if (n - syslog_partial <= size) { 1316 /* message fits into buffer, move forward */ 1317 syslog_idx = log_next(syslog_idx); 1318 syslog_seq++; 1319 n -= syslog_partial; 1320 syslog_partial = 0; 1321 } else if (!len){ 1322 /* partial read(), remember position */ 1323 n = size; 1324 syslog_partial += n; 1325 } else 1326 n = 0; 1327 logbuf_unlock_irq(); 1328 1329 if (!n) 1330 break; 1331 1332 if (copy_to_user(buf, text + skip, n)) { 1333 if (!len) 1334 len = -EFAULT; 1335 break; 1336 } 1337 1338 len += n; 1339 size -= n; 1340 buf += n; 1341 } 1342 1343 kfree(text); 1344 return len; 1345 } 1346 1347 static int syslog_print_all(char __user *buf, int size, bool clear) 1348 { 1349 char *text; 1350 int len = 0; 1351 1352 text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL); 1353 if (!text) 1354 return -ENOMEM; 1355 1356 logbuf_lock_irq(); 1357 if (buf) { 1358 u64 next_seq; 1359 u64 seq; 1360 u32 idx; 1361 1362 /* 1363 * Find first record that fits, including all following records, 1364 * into the user-provided buffer for this dump. 1365 */ 1366 seq = clear_seq; 1367 idx = clear_idx; 1368 while (seq < log_next_seq) { 1369 struct printk_log *msg = log_from_idx(idx); 1370 1371 len += msg_print_text(msg, true, NULL, 0); 1372 idx = log_next(idx); 1373 seq++; 1374 } 1375 1376 /* move first record forward until length fits into the buffer */ 1377 seq = clear_seq; 1378 idx = clear_idx; 1379 while (len > size && seq < log_next_seq) { 1380 struct printk_log *msg = log_from_idx(idx); 1381 1382 len -= msg_print_text(msg, true, NULL, 0); 1383 idx = log_next(idx); 1384 seq++; 1385 } 1386 1387 /* last message fitting into this dump */ 1388 next_seq = log_next_seq; 1389 1390 len = 0; 1391 while (len >= 0 && seq < next_seq) { 1392 struct printk_log *msg = log_from_idx(idx); 1393 int textlen; 1394 1395 textlen = msg_print_text(msg, true, text, 1396 LOG_LINE_MAX + PREFIX_MAX); 1397 if (textlen < 0) { 1398 len = textlen; 1399 break; 1400 } 1401 idx = log_next(idx); 1402 seq++; 1403 1404 logbuf_unlock_irq(); 1405 if (copy_to_user(buf + len, text, textlen)) 1406 len = -EFAULT; 1407 else 1408 len += textlen; 1409 logbuf_lock_irq(); 1410 1411 if (seq < log_first_seq) { 1412 /* messages are gone, move to next one */ 1413 seq = log_first_seq; 1414 idx = log_first_idx; 1415 } 1416 } 1417 } 1418 1419 if (clear) { 1420 clear_seq = log_next_seq; 1421 clear_idx = log_next_idx; 1422 } 1423 logbuf_unlock_irq(); 1424 1425 kfree(text); 1426 return len; 1427 } 1428 1429 int do_syslog(int type, char __user *buf, int len, int source) 1430 { 1431 bool clear = false; 1432 static int saved_console_loglevel = LOGLEVEL_DEFAULT; 1433 int error; 1434 1435 error = check_syslog_permissions(type, source); 1436 if (error) 1437 return error; 1438 1439 switch (type) { 1440 case SYSLOG_ACTION_CLOSE: /* Close log */ 1441 break; 1442 case SYSLOG_ACTION_OPEN: /* Open log */ 1443 break; 1444 case SYSLOG_ACTION_READ: /* Read from log */ 1445 if (!buf || len < 0) 1446 return -EINVAL; 1447 if (!len) 1448 return 0; 1449 if (!access_ok(VERIFY_WRITE, buf, len)) 1450 return -EFAULT; 1451 error = wait_event_interruptible(log_wait, 1452 syslog_seq != log_next_seq); 1453 if (error) 1454 return error; 1455 error = syslog_print(buf, len); 1456 break; 1457 /* Read/clear last kernel messages */ 1458 case SYSLOG_ACTION_READ_CLEAR: 1459 clear = true; 1460 /* FALL THRU */ 1461 /* Read last kernel messages */ 1462 case SYSLOG_ACTION_READ_ALL: 1463 if (!buf || len < 0) 1464 return -EINVAL; 1465 if (!len) 1466 return 0; 1467 if (!access_ok(VERIFY_WRITE, buf, len)) 1468 return -EFAULT; 1469 error = syslog_print_all(buf, len, clear); 1470 break; 1471 /* Clear ring buffer */ 1472 case SYSLOG_ACTION_CLEAR: 1473 syslog_print_all(NULL, 0, true); 1474 break; 1475 /* Disable logging to console */ 1476 case SYSLOG_ACTION_CONSOLE_OFF: 1477 if (saved_console_loglevel == LOGLEVEL_DEFAULT) 1478 saved_console_loglevel = console_loglevel; 1479 console_loglevel = minimum_console_loglevel; 1480 break; 1481 /* Enable logging to console */ 1482 case SYSLOG_ACTION_CONSOLE_ON: 1483 if (saved_console_loglevel != LOGLEVEL_DEFAULT) { 1484 console_loglevel = saved_console_loglevel; 1485 saved_console_loglevel = LOGLEVEL_DEFAULT; 1486 } 1487 break; 1488 /* Set level of messages printed to console */ 1489 case SYSLOG_ACTION_CONSOLE_LEVEL: 1490 if (len < 1 || len > 8) 1491 return -EINVAL; 1492 if (len < minimum_console_loglevel) 1493 len = minimum_console_loglevel; 1494 console_loglevel = len; 1495 /* Implicitly re-enable logging to console */ 1496 saved_console_loglevel = LOGLEVEL_DEFAULT; 1497 break; 1498 /* Number of chars in the log buffer */ 1499 case SYSLOG_ACTION_SIZE_UNREAD: 1500 logbuf_lock_irq(); 1501 if (syslog_seq < log_first_seq) { 1502 /* messages are gone, move to first one */ 1503 syslog_seq = log_first_seq; 1504 syslog_idx = log_first_idx; 1505 syslog_partial = 0; 1506 } 1507 if (source == SYSLOG_FROM_PROC) { 1508 /* 1509 * Short-cut for poll(/"proc/kmsg") which simply checks 1510 * for pending data, not the size; return the count of 1511 * records, not the length. 1512 */ 1513 error = log_next_seq - syslog_seq; 1514 } else { 1515 u64 seq = syslog_seq; 1516 u32 idx = syslog_idx; 1517 1518 while (seq < log_next_seq) { 1519 struct printk_log *msg = log_from_idx(idx); 1520 1521 error += msg_print_text(msg, true, NULL, 0); 1522 idx = log_next(idx); 1523 seq++; 1524 } 1525 error -= syslog_partial; 1526 } 1527 logbuf_unlock_irq(); 1528 break; 1529 /* Size of the log buffer */ 1530 case SYSLOG_ACTION_SIZE_BUFFER: 1531 error = log_buf_len; 1532 break; 1533 default: 1534 error = -EINVAL; 1535 break; 1536 } 1537 1538 return error; 1539 } 1540 1541 SYSCALL_DEFINE3(syslog, int, type, char __user *, buf, int, len) 1542 { 1543 return do_syslog(type, buf, len, SYSLOG_FROM_READER); 1544 } 1545 1546 /* 1547 * Call the console drivers, asking them to write out 1548 * log_buf[start] to log_buf[end - 1]. 1549 * The console_lock must be held. 1550 */ 1551 static void call_console_drivers(const char *ext_text, size_t ext_len, 1552 const char *text, size_t len) 1553 { 1554 struct console *con; 1555 1556 trace_console_rcuidle(text, len); 1557 1558 if (!console_drivers) 1559 return; 1560 1561 for_each_console(con) { 1562 if (exclusive_console && con != exclusive_console) 1563 continue; 1564 if (!(con->flags & CON_ENABLED)) 1565 continue; 1566 if (!con->write) 1567 continue; 1568 if (!cpu_online(smp_processor_id()) && 1569 !(con->flags & CON_ANYTIME)) 1570 continue; 1571 if (con->flags & CON_EXTENDED) 1572 con->write(con, ext_text, ext_len); 1573 else 1574 con->write(con, text, len); 1575 } 1576 } 1577 1578 int printk_delay_msec __read_mostly; 1579 1580 static inline void printk_delay(void) 1581 { 1582 if (unlikely(printk_delay_msec)) { 1583 int m = printk_delay_msec; 1584 1585 while (m--) { 1586 mdelay(1); 1587 touch_nmi_watchdog(); 1588 } 1589 } 1590 } 1591 1592 /* 1593 * Continuation lines are buffered, and not committed to the record buffer 1594 * until the line is complete, or a race forces it. The line fragments 1595 * though, are printed immediately to the consoles to ensure everything has 1596 * reached the console in case of a kernel crash. 1597 */ 1598 static struct cont { 1599 char buf[LOG_LINE_MAX]; 1600 size_t len; /* length == 0 means unused buffer */ 1601 struct task_struct *owner; /* task of first print*/ 1602 u64 ts_nsec; /* time of first print */ 1603 u8 level; /* log level of first message */ 1604 u8 facility; /* log facility of first message */ 1605 enum log_flags flags; /* prefix, newline flags */ 1606 } cont; 1607 1608 static void cont_flush(void) 1609 { 1610 if (cont.len == 0) 1611 return; 1612 1613 log_store(cont.facility, cont.level, cont.flags, cont.ts_nsec, 1614 NULL, 0, cont.buf, cont.len); 1615 cont.len = 0; 1616 } 1617 1618 static bool cont_add(int facility, int level, enum log_flags flags, const char *text, size_t len) 1619 { 1620 /* 1621 * If ext consoles are present, flush and skip in-kernel 1622 * continuation. See nr_ext_console_drivers definition. Also, if 1623 * the line gets too long, split it up in separate records. 1624 */ 1625 if (nr_ext_console_drivers || cont.len + len > sizeof(cont.buf)) { 1626 cont_flush(); 1627 return false; 1628 } 1629 1630 if (!cont.len) { 1631 cont.facility = facility; 1632 cont.level = level; 1633 cont.owner = current; 1634 cont.ts_nsec = local_clock(); 1635 cont.flags = flags; 1636 } 1637 1638 memcpy(cont.buf + cont.len, text, len); 1639 cont.len += len; 1640 1641 // The original flags come from the first line, 1642 // but later continuations can add a newline. 1643 if (flags & LOG_NEWLINE) { 1644 cont.flags |= LOG_NEWLINE; 1645 cont_flush(); 1646 } 1647 1648 if (cont.len > (sizeof(cont.buf) * 80) / 100) 1649 cont_flush(); 1650 1651 return true; 1652 } 1653 1654 static size_t log_output(int facility, int level, enum log_flags lflags, const char *dict, size_t dictlen, char *text, size_t text_len) 1655 { 1656 /* 1657 * If an earlier line was buffered, and we're a continuation 1658 * write from the same process, try to add it to the buffer. 1659 */ 1660 if (cont.len) { 1661 if (cont.owner == current && (lflags & LOG_CONT)) { 1662 if (cont_add(facility, level, lflags, text, text_len)) 1663 return text_len; 1664 } 1665 /* Otherwise, make sure it's flushed */ 1666 cont_flush(); 1667 } 1668 1669 /* Skip empty continuation lines that couldn't be added - they just flush */ 1670 if (!text_len && (lflags & LOG_CONT)) 1671 return 0; 1672 1673 /* If it doesn't end in a newline, try to buffer the current line */ 1674 if (!(lflags & LOG_NEWLINE)) { 1675 if (cont_add(facility, level, lflags, text, text_len)) 1676 return text_len; 1677 } 1678 1679 /* Store it in the record log */ 1680 return log_store(facility, level, lflags, 0, dict, dictlen, text, text_len); 1681 } 1682 1683 asmlinkage int vprintk_emit(int facility, int level, 1684 const char *dict, size_t dictlen, 1685 const char *fmt, va_list args) 1686 { 1687 static char textbuf[LOG_LINE_MAX]; 1688 char *text = textbuf; 1689 size_t text_len; 1690 enum log_flags lflags = 0; 1691 unsigned long flags; 1692 int printed_len; 1693 bool in_sched = false; 1694 1695 if (level == LOGLEVEL_SCHED) { 1696 level = LOGLEVEL_DEFAULT; 1697 in_sched = true; 1698 } 1699 1700 boot_delay_msec(level); 1701 printk_delay(); 1702 1703 /* This stops the holder of console_sem just where we want him */ 1704 logbuf_lock_irqsave(flags); 1705 /* 1706 * The printf needs to come first; we need the syslog 1707 * prefix which might be passed-in as a parameter. 1708 */ 1709 text_len = vscnprintf(text, sizeof(textbuf), fmt, args); 1710 1711 /* mark and strip a trailing newline */ 1712 if (text_len && text[text_len-1] == '\n') { 1713 text_len--; 1714 lflags |= LOG_NEWLINE; 1715 } 1716 1717 /* strip kernel syslog prefix and extract log level or control flags */ 1718 if (facility == 0) { 1719 int kern_level; 1720 1721 while ((kern_level = printk_get_level(text)) != 0) { 1722 switch (kern_level) { 1723 case '0' ... '7': 1724 if (level == LOGLEVEL_DEFAULT) 1725 level = kern_level - '0'; 1726 /* fallthrough */ 1727 case 'd': /* KERN_DEFAULT */ 1728 lflags |= LOG_PREFIX; 1729 break; 1730 case 'c': /* KERN_CONT */ 1731 lflags |= LOG_CONT; 1732 } 1733 1734 text_len -= 2; 1735 text += 2; 1736 } 1737 } 1738 1739 if (level == LOGLEVEL_DEFAULT) 1740 level = default_message_loglevel; 1741 1742 if (dict) 1743 lflags |= LOG_PREFIX|LOG_NEWLINE; 1744 1745 printed_len = log_output(facility, level, lflags, dict, dictlen, text, text_len); 1746 1747 logbuf_unlock_irqrestore(flags); 1748 1749 /* If called from the scheduler, we can not call up(). */ 1750 if (!in_sched) { 1751 /* 1752 * Try to acquire and then immediately release the console 1753 * semaphore. The release will print out buffers and wake up 1754 * /dev/kmsg and syslog() users. 1755 */ 1756 if (console_trylock()) 1757 console_unlock(); 1758 } 1759 1760 return printed_len; 1761 } 1762 EXPORT_SYMBOL(vprintk_emit); 1763 1764 asmlinkage int vprintk(const char *fmt, va_list args) 1765 { 1766 return vprintk_func(fmt, args); 1767 } 1768 EXPORT_SYMBOL(vprintk); 1769 1770 asmlinkage int printk_emit(int facility, int level, 1771 const char *dict, size_t dictlen, 1772 const char *fmt, ...) 1773 { 1774 va_list args; 1775 int r; 1776 1777 va_start(args, fmt); 1778 r = vprintk_emit(facility, level, dict, dictlen, fmt, args); 1779 va_end(args); 1780 1781 return r; 1782 } 1783 EXPORT_SYMBOL(printk_emit); 1784 1785 int vprintk_default(const char *fmt, va_list args) 1786 { 1787 int r; 1788 1789 #ifdef CONFIG_KGDB_KDB 1790 /* Allow to pass printk() to kdb but avoid a recursion. */ 1791 if (unlikely(kdb_trap_printk && kdb_printf_cpu < 0)) { 1792 r = vkdb_printf(KDB_MSGSRC_PRINTK, fmt, args); 1793 return r; 1794 } 1795 #endif 1796 r = vprintk_emit(0, LOGLEVEL_DEFAULT, NULL, 0, fmt, args); 1797 1798 return r; 1799 } 1800 EXPORT_SYMBOL_GPL(vprintk_default); 1801 1802 /** 1803 * printk - print a kernel message 1804 * @fmt: format string 1805 * 1806 * This is printk(). It can be called from any context. We want it to work. 1807 * 1808 * We try to grab the console_lock. If we succeed, it's easy - we log the 1809 * output and call the console drivers. If we fail to get the semaphore, we 1810 * place the output into the log buffer and return. The current holder of 1811 * the console_sem will notice the new output in console_unlock(); and will 1812 * send it to the consoles before releasing the lock. 1813 * 1814 * One effect of this deferred printing is that code which calls printk() and 1815 * then changes console_loglevel may break. This is because console_loglevel 1816 * is inspected when the actual printing occurs. 1817 * 1818 * See also: 1819 * printf(3) 1820 * 1821 * See the vsnprintf() documentation for format string extensions over C99. 1822 */ 1823 asmlinkage __visible int printk(const char *fmt, ...) 1824 { 1825 va_list args; 1826 int r; 1827 1828 va_start(args, fmt); 1829 r = vprintk_func(fmt, args); 1830 va_end(args); 1831 1832 return r; 1833 } 1834 EXPORT_SYMBOL(printk); 1835 1836 #else /* CONFIG_PRINTK */ 1837 1838 #define LOG_LINE_MAX 0 1839 #define PREFIX_MAX 0 1840 1841 static u64 syslog_seq; 1842 static u32 syslog_idx; 1843 static u64 console_seq; 1844 static u32 console_idx; 1845 static u64 log_first_seq; 1846 static u32 log_first_idx; 1847 static u64 log_next_seq; 1848 static char *log_text(const struct printk_log *msg) { return NULL; } 1849 static char *log_dict(const struct printk_log *msg) { return NULL; } 1850 static struct printk_log *log_from_idx(u32 idx) { return NULL; } 1851 static u32 log_next(u32 idx) { return 0; } 1852 static ssize_t msg_print_ext_header(char *buf, size_t size, 1853 struct printk_log *msg, 1854 u64 seq) { return 0; } 1855 static ssize_t msg_print_ext_body(char *buf, size_t size, 1856 char *dict, size_t dict_len, 1857 char *text, size_t text_len) { return 0; } 1858 static void call_console_drivers(const char *ext_text, size_t ext_len, 1859 const char *text, size_t len) {} 1860 static size_t msg_print_text(const struct printk_log *msg, 1861 bool syslog, char *buf, size_t size) { return 0; } 1862 static bool suppress_message_printing(int level) { return false; } 1863 1864 #endif /* CONFIG_PRINTK */ 1865 1866 #ifdef CONFIG_EARLY_PRINTK 1867 struct console *early_console; 1868 1869 asmlinkage __visible void early_printk(const char *fmt, ...) 1870 { 1871 va_list ap; 1872 char buf[512]; 1873 int n; 1874 1875 if (!early_console) 1876 return; 1877 1878 va_start(ap, fmt); 1879 n = vscnprintf(buf, sizeof(buf), fmt, ap); 1880 va_end(ap); 1881 1882 early_console->write(early_console, buf, n); 1883 } 1884 #endif 1885 1886 static int __add_preferred_console(char *name, int idx, char *options, 1887 char *brl_options) 1888 { 1889 struct console_cmdline *c; 1890 int i; 1891 1892 /* 1893 * See if this tty is not yet registered, and 1894 * if we have a slot free. 1895 */ 1896 for (i = 0, c = console_cmdline; 1897 i < MAX_CMDLINECONSOLES && c->name[0]; 1898 i++, c++) { 1899 if (strcmp(c->name, name) == 0 && c->index == idx) { 1900 if (!brl_options) 1901 preferred_console = i; 1902 return 0; 1903 } 1904 } 1905 if (i == MAX_CMDLINECONSOLES) 1906 return -E2BIG; 1907 if (!brl_options) 1908 preferred_console = i; 1909 strlcpy(c->name, name, sizeof(c->name)); 1910 c->options = options; 1911 braille_set_options(c, brl_options); 1912 1913 c->index = idx; 1914 return 0; 1915 } 1916 /* 1917 * Set up a console. Called via do_early_param() in init/main.c 1918 * for each "console=" parameter in the boot command line. 1919 */ 1920 static int __init console_setup(char *str) 1921 { 1922 char buf[sizeof(console_cmdline[0].name) + 4]; /* 4 for "ttyS" */ 1923 char *s, *options, *brl_options = NULL; 1924 int idx; 1925 1926 if (_braille_console_setup(&str, &brl_options)) 1927 return 1; 1928 1929 /* 1930 * Decode str into name, index, options. 1931 */ 1932 if (str[0] >= '0' && str[0] <= '9') { 1933 strcpy(buf, "ttyS"); 1934 strncpy(buf + 4, str, sizeof(buf) - 5); 1935 } else { 1936 strncpy(buf, str, sizeof(buf) - 1); 1937 } 1938 buf[sizeof(buf) - 1] = 0; 1939 options = strchr(str, ','); 1940 if (options) 1941 *(options++) = 0; 1942 #ifdef __sparc__ 1943 if (!strcmp(str, "ttya")) 1944 strcpy(buf, "ttyS0"); 1945 if (!strcmp(str, "ttyb")) 1946 strcpy(buf, "ttyS1"); 1947 #endif 1948 for (s = buf; *s; s++) 1949 if (isdigit(*s) || *s == ',') 1950 break; 1951 idx = simple_strtoul(s, NULL, 10); 1952 *s = 0; 1953 1954 __add_preferred_console(buf, idx, options, brl_options); 1955 console_set_on_cmdline = 1; 1956 return 1; 1957 } 1958 __setup("console=", console_setup); 1959 1960 /** 1961 * add_preferred_console - add a device to the list of preferred consoles. 1962 * @name: device name 1963 * @idx: device index 1964 * @options: options for this console 1965 * 1966 * The last preferred console added will be used for kernel messages 1967 * and stdin/out/err for init. Normally this is used by console_setup 1968 * above to handle user-supplied console arguments; however it can also 1969 * be used by arch-specific code either to override the user or more 1970 * commonly to provide a default console (ie from PROM variables) when 1971 * the user has not supplied one. 1972 */ 1973 int add_preferred_console(char *name, int idx, char *options) 1974 { 1975 return __add_preferred_console(name, idx, options, NULL); 1976 } 1977 1978 bool console_suspend_enabled = true; 1979 EXPORT_SYMBOL(console_suspend_enabled); 1980 1981 static int __init console_suspend_disable(char *str) 1982 { 1983 console_suspend_enabled = false; 1984 return 1; 1985 } 1986 __setup("no_console_suspend", console_suspend_disable); 1987 module_param_named(console_suspend, console_suspend_enabled, 1988 bool, S_IRUGO | S_IWUSR); 1989 MODULE_PARM_DESC(console_suspend, "suspend console during suspend" 1990 " and hibernate operations"); 1991 1992 /** 1993 * suspend_console - suspend the console subsystem 1994 * 1995 * This disables printk() while we go into suspend states 1996 */ 1997 void suspend_console(void) 1998 { 1999 if (!console_suspend_enabled) 2000 return; 2001 printk("Suspending console(s) (use no_console_suspend to debug)\n"); 2002 console_lock(); 2003 console_suspended = 1; 2004 up_console_sem(); 2005 } 2006 2007 void resume_console(void) 2008 { 2009 if (!console_suspend_enabled) 2010 return; 2011 down_console_sem(); 2012 console_suspended = 0; 2013 console_unlock(); 2014 } 2015 2016 /** 2017 * console_cpu_notify - print deferred console messages after CPU hotplug 2018 * @cpu: unused 2019 * 2020 * If printk() is called from a CPU that is not online yet, the messages 2021 * will be printed on the console only if there are CON_ANYTIME consoles. 2022 * This function is called when a new CPU comes online (or fails to come 2023 * up) or goes offline. 2024 */ 2025 static int console_cpu_notify(unsigned int cpu) 2026 { 2027 if (!cpuhp_tasks_frozen) { 2028 /* If trylock fails, someone else is doing the printing */ 2029 if (console_trylock()) 2030 console_unlock(); 2031 } 2032 return 0; 2033 } 2034 2035 /** 2036 * console_lock - lock the console system for exclusive use. 2037 * 2038 * Acquires a lock which guarantees that the caller has 2039 * exclusive access to the console system and the console_drivers list. 2040 * 2041 * Can sleep, returns nothing. 2042 */ 2043 void console_lock(void) 2044 { 2045 might_sleep(); 2046 2047 down_console_sem(); 2048 if (console_suspended) 2049 return; 2050 console_locked = 1; 2051 console_may_schedule = 1; 2052 } 2053 EXPORT_SYMBOL(console_lock); 2054 2055 /** 2056 * console_trylock - try to lock the console system for exclusive use. 2057 * 2058 * Try to acquire a lock which guarantees that the caller has exclusive 2059 * access to the console system and the console_drivers list. 2060 * 2061 * returns 1 on success, and 0 on failure to acquire the lock. 2062 */ 2063 int console_trylock(void) 2064 { 2065 if (down_trylock_console_sem()) 2066 return 0; 2067 if (console_suspended) { 2068 up_console_sem(); 2069 return 0; 2070 } 2071 console_locked = 1; 2072 /* 2073 * When PREEMPT_COUNT disabled we can't reliably detect if it's 2074 * safe to schedule (e.g. calling printk while holding a spin_lock), 2075 * because preempt_disable()/preempt_enable() are just barriers there 2076 * and preempt_count() is always 0. 2077 * 2078 * RCU read sections have a separate preemption counter when 2079 * PREEMPT_RCU enabled thus we must take extra care and check 2080 * rcu_preempt_depth(), otherwise RCU read sections modify 2081 * preempt_count(). 2082 */ 2083 console_may_schedule = !oops_in_progress && 2084 preemptible() && 2085 !rcu_preempt_depth(); 2086 return 1; 2087 } 2088 EXPORT_SYMBOL(console_trylock); 2089 2090 int is_console_locked(void) 2091 { 2092 return console_locked; 2093 } 2094 2095 /* 2096 * Check if we have any console that is capable of printing while cpu is 2097 * booting or shutting down. Requires console_sem. 2098 */ 2099 static int have_callable_console(void) 2100 { 2101 struct console *con; 2102 2103 for_each_console(con) 2104 if ((con->flags & CON_ENABLED) && 2105 (con->flags & CON_ANYTIME)) 2106 return 1; 2107 2108 return 0; 2109 } 2110 2111 /* 2112 * Can we actually use the console at this time on this cpu? 2113 * 2114 * Console drivers may assume that per-cpu resources have been allocated. So 2115 * unless they're explicitly marked as being able to cope (CON_ANYTIME) don't 2116 * call them until this CPU is officially up. 2117 */ 2118 static inline int can_use_console(void) 2119 { 2120 return cpu_online(raw_smp_processor_id()) || have_callable_console(); 2121 } 2122 2123 /** 2124 * console_unlock - unlock the console system 2125 * 2126 * Releases the console_lock which the caller holds on the console system 2127 * and the console driver list. 2128 * 2129 * While the console_lock was held, console output may have been buffered 2130 * by printk(). If this is the case, console_unlock(); emits 2131 * the output prior to releasing the lock. 2132 * 2133 * If there is output waiting, we wake /dev/kmsg and syslog() users. 2134 * 2135 * console_unlock(); may be called from any context. 2136 */ 2137 void console_unlock(void) 2138 { 2139 static char ext_text[CONSOLE_EXT_LOG_MAX]; 2140 static char text[LOG_LINE_MAX + PREFIX_MAX]; 2141 static u64 seen_seq; 2142 unsigned long flags; 2143 bool wake_klogd = false; 2144 bool do_cond_resched, retry; 2145 2146 if (console_suspended) { 2147 up_console_sem(); 2148 return; 2149 } 2150 2151 /* 2152 * Console drivers are called with interrupts disabled, so 2153 * @console_may_schedule should be cleared before; however, we may 2154 * end up dumping a lot of lines, for example, if called from 2155 * console registration path, and should invoke cond_resched() 2156 * between lines if allowable. Not doing so can cause a very long 2157 * scheduling stall on a slow console leading to RCU stall and 2158 * softlockup warnings which exacerbate the issue with more 2159 * messages practically incapacitating the system. 2160 * 2161 * console_trylock() is not able to detect the preemptive 2162 * context reliably. Therefore the value must be stored before 2163 * and cleared after the the "again" goto label. 2164 */ 2165 do_cond_resched = console_may_schedule; 2166 again: 2167 console_may_schedule = 0; 2168 2169 /* 2170 * We released the console_sem lock, so we need to recheck if 2171 * cpu is online and (if not) is there at least one CON_ANYTIME 2172 * console. 2173 */ 2174 if (!can_use_console()) { 2175 console_locked = 0; 2176 up_console_sem(); 2177 return; 2178 } 2179 2180 for (;;) { 2181 struct printk_log *msg; 2182 size_t ext_len = 0; 2183 size_t len; 2184 2185 printk_safe_enter_irqsave(flags); 2186 raw_spin_lock(&logbuf_lock); 2187 if (seen_seq != log_next_seq) { 2188 wake_klogd = true; 2189 seen_seq = log_next_seq; 2190 } 2191 2192 if (console_seq < log_first_seq) { 2193 len = sprintf(text, "** %u printk messages dropped ** ", 2194 (unsigned)(log_first_seq - console_seq)); 2195 2196 /* messages are gone, move to first one */ 2197 console_seq = log_first_seq; 2198 console_idx = log_first_idx; 2199 } else { 2200 len = 0; 2201 } 2202 skip: 2203 if (console_seq == log_next_seq) 2204 break; 2205 2206 msg = log_from_idx(console_idx); 2207 if (suppress_message_printing(msg->level)) { 2208 /* 2209 * Skip record we have buffered and already printed 2210 * directly to the console when we received it, and 2211 * record that has level above the console loglevel. 2212 */ 2213 console_idx = log_next(console_idx); 2214 console_seq++; 2215 goto skip; 2216 } 2217 2218 len += msg_print_text(msg, false, text + len, sizeof(text) - len); 2219 if (nr_ext_console_drivers) { 2220 ext_len = msg_print_ext_header(ext_text, 2221 sizeof(ext_text), 2222 msg, console_seq); 2223 ext_len += msg_print_ext_body(ext_text + ext_len, 2224 sizeof(ext_text) - ext_len, 2225 log_dict(msg), msg->dict_len, 2226 log_text(msg), msg->text_len); 2227 } 2228 console_idx = log_next(console_idx); 2229 console_seq++; 2230 raw_spin_unlock(&logbuf_lock); 2231 2232 stop_critical_timings(); /* don't trace print latency */ 2233 call_console_drivers(ext_text, ext_len, text, len); 2234 start_critical_timings(); 2235 printk_safe_exit_irqrestore(flags); 2236 2237 if (do_cond_resched) 2238 cond_resched(); 2239 } 2240 console_locked = 0; 2241 2242 /* Release the exclusive_console once it is used */ 2243 if (unlikely(exclusive_console)) 2244 exclusive_console = NULL; 2245 2246 raw_spin_unlock(&logbuf_lock); 2247 2248 up_console_sem(); 2249 2250 /* 2251 * Someone could have filled up the buffer again, so re-check if there's 2252 * something to flush. In case we cannot trylock the console_sem again, 2253 * there's a new owner and the console_unlock() from them will do the 2254 * flush, no worries. 2255 */ 2256 raw_spin_lock(&logbuf_lock); 2257 retry = console_seq != log_next_seq; 2258 raw_spin_unlock(&logbuf_lock); 2259 printk_safe_exit_irqrestore(flags); 2260 2261 if (retry && console_trylock()) 2262 goto again; 2263 2264 if (wake_klogd) 2265 wake_up_klogd(); 2266 } 2267 EXPORT_SYMBOL(console_unlock); 2268 2269 /** 2270 * console_conditional_schedule - yield the CPU if required 2271 * 2272 * If the console code is currently allowed to sleep, and 2273 * if this CPU should yield the CPU to another task, do 2274 * so here. 2275 * 2276 * Must be called within console_lock();. 2277 */ 2278 void __sched console_conditional_schedule(void) 2279 { 2280 if (console_may_schedule) 2281 cond_resched(); 2282 } 2283 EXPORT_SYMBOL(console_conditional_schedule); 2284 2285 void console_unblank(void) 2286 { 2287 struct console *c; 2288 2289 /* 2290 * console_unblank can no longer be called in interrupt context unless 2291 * oops_in_progress is set to 1.. 2292 */ 2293 if (oops_in_progress) { 2294 if (down_trylock_console_sem() != 0) 2295 return; 2296 } else 2297 console_lock(); 2298 2299 console_locked = 1; 2300 console_may_schedule = 0; 2301 for_each_console(c) 2302 if ((c->flags & CON_ENABLED) && c->unblank) 2303 c->unblank(); 2304 console_unlock(); 2305 } 2306 2307 /** 2308 * console_flush_on_panic - flush console content on panic 2309 * 2310 * Immediately output all pending messages no matter what. 2311 */ 2312 void console_flush_on_panic(void) 2313 { 2314 /* 2315 * If someone else is holding the console lock, trylock will fail 2316 * and may_schedule may be set. Ignore and proceed to unlock so 2317 * that messages are flushed out. As this can be called from any 2318 * context and we don't want to get preempted while flushing, 2319 * ensure may_schedule is cleared. 2320 */ 2321 console_trylock(); 2322 console_may_schedule = 0; 2323 console_unlock(); 2324 } 2325 2326 /* 2327 * Return the console tty driver structure and its associated index 2328 */ 2329 struct tty_driver *console_device(int *index) 2330 { 2331 struct console *c; 2332 struct tty_driver *driver = NULL; 2333 2334 console_lock(); 2335 for_each_console(c) { 2336 if (!c->device) 2337 continue; 2338 driver = c->device(c, index); 2339 if (driver) 2340 break; 2341 } 2342 console_unlock(); 2343 return driver; 2344 } 2345 2346 /* 2347 * Prevent further output on the passed console device so that (for example) 2348 * serial drivers can disable console output before suspending a port, and can 2349 * re-enable output afterwards. 2350 */ 2351 void console_stop(struct console *console) 2352 { 2353 console_lock(); 2354 console->flags &= ~CON_ENABLED; 2355 console_unlock(); 2356 } 2357 EXPORT_SYMBOL(console_stop); 2358 2359 void console_start(struct console *console) 2360 { 2361 console_lock(); 2362 console->flags |= CON_ENABLED; 2363 console_unlock(); 2364 } 2365 EXPORT_SYMBOL(console_start); 2366 2367 static int __read_mostly keep_bootcon; 2368 2369 static int __init keep_bootcon_setup(char *str) 2370 { 2371 keep_bootcon = 1; 2372 pr_info("debug: skip boot console de-registration.\n"); 2373 2374 return 0; 2375 } 2376 2377 early_param("keep_bootcon", keep_bootcon_setup); 2378 2379 /* 2380 * The console driver calls this routine during kernel initialization 2381 * to register the console printing procedure with printk() and to 2382 * print any messages that were printed by the kernel before the 2383 * console driver was initialized. 2384 * 2385 * This can happen pretty early during the boot process (because of 2386 * early_printk) - sometimes before setup_arch() completes - be careful 2387 * of what kernel features are used - they may not be initialised yet. 2388 * 2389 * There are two types of consoles - bootconsoles (early_printk) and 2390 * "real" consoles (everything which is not a bootconsole) which are 2391 * handled differently. 2392 * - Any number of bootconsoles can be registered at any time. 2393 * - As soon as a "real" console is registered, all bootconsoles 2394 * will be unregistered automatically. 2395 * - Once a "real" console is registered, any attempt to register a 2396 * bootconsoles will be rejected 2397 */ 2398 void register_console(struct console *newcon) 2399 { 2400 int i; 2401 unsigned long flags; 2402 struct console *bcon = NULL; 2403 struct console_cmdline *c; 2404 static bool has_preferred; 2405 2406 if (console_drivers) 2407 for_each_console(bcon) 2408 if (WARN(bcon == newcon, 2409 "console '%s%d' already registered\n", 2410 bcon->name, bcon->index)) 2411 return; 2412 2413 /* 2414 * before we register a new CON_BOOT console, make sure we don't 2415 * already have a valid console 2416 */ 2417 if (console_drivers && newcon->flags & CON_BOOT) { 2418 /* find the last or real console */ 2419 for_each_console(bcon) { 2420 if (!(bcon->flags & CON_BOOT)) { 2421 pr_info("Too late to register bootconsole %s%d\n", 2422 newcon->name, newcon->index); 2423 return; 2424 } 2425 } 2426 } 2427 2428 if (console_drivers && console_drivers->flags & CON_BOOT) 2429 bcon = console_drivers; 2430 2431 if (!has_preferred || bcon || !console_drivers) 2432 has_preferred = preferred_console >= 0; 2433 2434 /* 2435 * See if we want to use this console driver. If we 2436 * didn't select a console we take the first one 2437 * that registers here. 2438 */ 2439 if (!has_preferred) { 2440 if (newcon->index < 0) 2441 newcon->index = 0; 2442 if (newcon->setup == NULL || 2443 newcon->setup(newcon, NULL) == 0) { 2444 newcon->flags |= CON_ENABLED; 2445 if (newcon->device) { 2446 newcon->flags |= CON_CONSDEV; 2447 has_preferred = true; 2448 } 2449 } 2450 } 2451 2452 /* 2453 * See if this console matches one we selected on 2454 * the command line. 2455 */ 2456 for (i = 0, c = console_cmdline; 2457 i < MAX_CMDLINECONSOLES && c->name[0]; 2458 i++, c++) { 2459 if (!newcon->match || 2460 newcon->match(newcon, c->name, c->index, c->options) != 0) { 2461 /* default matching */ 2462 BUILD_BUG_ON(sizeof(c->name) != sizeof(newcon->name)); 2463 if (strcmp(c->name, newcon->name) != 0) 2464 continue; 2465 if (newcon->index >= 0 && 2466 newcon->index != c->index) 2467 continue; 2468 if (newcon->index < 0) 2469 newcon->index = c->index; 2470 2471 if (_braille_register_console(newcon, c)) 2472 return; 2473 2474 if (newcon->setup && 2475 newcon->setup(newcon, c->options) != 0) 2476 break; 2477 } 2478 2479 newcon->flags |= CON_ENABLED; 2480 if (i == preferred_console) { 2481 newcon->flags |= CON_CONSDEV; 2482 has_preferred = true; 2483 } 2484 break; 2485 } 2486 2487 if (!(newcon->flags & CON_ENABLED)) 2488 return; 2489 2490 /* 2491 * If we have a bootconsole, and are switching to a real console, 2492 * don't print everything out again, since when the boot console, and 2493 * the real console are the same physical device, it's annoying to 2494 * see the beginning boot messages twice 2495 */ 2496 if (bcon && ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV)) 2497 newcon->flags &= ~CON_PRINTBUFFER; 2498 2499 /* 2500 * Put this console in the list - keep the 2501 * preferred driver at the head of the list. 2502 */ 2503 console_lock(); 2504 if ((newcon->flags & CON_CONSDEV) || console_drivers == NULL) { 2505 newcon->next = console_drivers; 2506 console_drivers = newcon; 2507 if (newcon->next) 2508 newcon->next->flags &= ~CON_CONSDEV; 2509 } else { 2510 newcon->next = console_drivers->next; 2511 console_drivers->next = newcon; 2512 } 2513 2514 if (newcon->flags & CON_EXTENDED) 2515 if (!nr_ext_console_drivers++) 2516 pr_info("printk: continuation disabled due to ext consoles, expect more fragments in /dev/kmsg\n"); 2517 2518 if (newcon->flags & CON_PRINTBUFFER) { 2519 /* 2520 * console_unlock(); will print out the buffered messages 2521 * for us. 2522 */ 2523 logbuf_lock_irqsave(flags); 2524 console_seq = syslog_seq; 2525 console_idx = syslog_idx; 2526 logbuf_unlock_irqrestore(flags); 2527 /* 2528 * We're about to replay the log buffer. Only do this to the 2529 * just-registered console to avoid excessive message spam to 2530 * the already-registered consoles. 2531 */ 2532 exclusive_console = newcon; 2533 } 2534 console_unlock(); 2535 console_sysfs_notify(); 2536 2537 /* 2538 * By unregistering the bootconsoles after we enable the real console 2539 * we get the "console xxx enabled" message on all the consoles - 2540 * boot consoles, real consoles, etc - this is to ensure that end 2541 * users know there might be something in the kernel's log buffer that 2542 * went to the bootconsole (that they do not see on the real console) 2543 */ 2544 pr_info("%sconsole [%s%d] enabled\n", 2545 (newcon->flags & CON_BOOT) ? "boot" : "" , 2546 newcon->name, newcon->index); 2547 if (bcon && 2548 ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV) && 2549 !keep_bootcon) { 2550 /* We need to iterate through all boot consoles, to make 2551 * sure we print everything out, before we unregister them. 2552 */ 2553 for_each_console(bcon) 2554 if (bcon->flags & CON_BOOT) 2555 unregister_console(bcon); 2556 } 2557 } 2558 EXPORT_SYMBOL(register_console); 2559 2560 int unregister_console(struct console *console) 2561 { 2562 struct console *a, *b; 2563 int res; 2564 2565 pr_info("%sconsole [%s%d] disabled\n", 2566 (console->flags & CON_BOOT) ? "boot" : "" , 2567 console->name, console->index); 2568 2569 res = _braille_unregister_console(console); 2570 if (res) 2571 return res; 2572 2573 res = 1; 2574 console_lock(); 2575 if (console_drivers == console) { 2576 console_drivers=console->next; 2577 res = 0; 2578 } else if (console_drivers) { 2579 for (a=console_drivers->next, b=console_drivers ; 2580 a; b=a, a=b->next) { 2581 if (a == console) { 2582 b->next = a->next; 2583 res = 0; 2584 break; 2585 } 2586 } 2587 } 2588 2589 if (!res && (console->flags & CON_EXTENDED)) 2590 nr_ext_console_drivers--; 2591 2592 /* 2593 * If this isn't the last console and it has CON_CONSDEV set, we 2594 * need to set it on the next preferred console. 2595 */ 2596 if (console_drivers != NULL && console->flags & CON_CONSDEV) 2597 console_drivers->flags |= CON_CONSDEV; 2598 2599 console->flags &= ~CON_ENABLED; 2600 console_unlock(); 2601 console_sysfs_notify(); 2602 return res; 2603 } 2604 EXPORT_SYMBOL(unregister_console); 2605 2606 /* 2607 * Initialize the console device. This is called *early*, so 2608 * we can't necessarily depend on lots of kernel help here. 2609 * Just do some early initializations, and do the complex setup 2610 * later. 2611 */ 2612 void __init console_init(void) 2613 { 2614 initcall_t *call; 2615 2616 /* Setup the default TTY line discipline. */ 2617 n_tty_init(); 2618 2619 /* 2620 * set up the console device so that later boot sequences can 2621 * inform about problems etc.. 2622 */ 2623 call = __con_initcall_start; 2624 while (call < __con_initcall_end) { 2625 (*call)(); 2626 call++; 2627 } 2628 } 2629 2630 /* 2631 * Some boot consoles access data that is in the init section and which will 2632 * be discarded after the initcalls have been run. To make sure that no code 2633 * will access this data, unregister the boot consoles in a late initcall. 2634 * 2635 * If for some reason, such as deferred probe or the driver being a loadable 2636 * module, the real console hasn't registered yet at this point, there will 2637 * be a brief interval in which no messages are logged to the console, which 2638 * makes it difficult to diagnose problems that occur during this time. 2639 * 2640 * To mitigate this problem somewhat, only unregister consoles whose memory 2641 * intersects with the init section. Note that all other boot consoles will 2642 * get unregistred when the real preferred console is registered. 2643 */ 2644 static int __init printk_late_init(void) 2645 { 2646 struct console *con; 2647 int ret; 2648 2649 for_each_console(con) { 2650 if (!(con->flags & CON_BOOT)) 2651 continue; 2652 2653 /* Check addresses that might be used for enabled consoles. */ 2654 if (init_section_intersects(con, sizeof(*con)) || 2655 init_section_contains(con->write, 0) || 2656 init_section_contains(con->read, 0) || 2657 init_section_contains(con->device, 0) || 2658 init_section_contains(con->unblank, 0) || 2659 init_section_contains(con->data, 0)) { 2660 /* 2661 * Please, consider moving the reported consoles out 2662 * of the init section. 2663 */ 2664 pr_warn("bootconsole [%s%d] uses init memory and must be disabled even before the real one is ready\n", 2665 con->name, con->index); 2666 unregister_console(con); 2667 } 2668 } 2669 ret = cpuhp_setup_state_nocalls(CPUHP_PRINTK_DEAD, "printk:dead", NULL, 2670 console_cpu_notify); 2671 WARN_ON(ret < 0); 2672 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "printk:online", 2673 console_cpu_notify, NULL); 2674 WARN_ON(ret < 0); 2675 return 0; 2676 } 2677 late_initcall(printk_late_init); 2678 2679 #if defined CONFIG_PRINTK 2680 /* 2681 * Delayed printk version, for scheduler-internal messages: 2682 */ 2683 #define PRINTK_PENDING_WAKEUP 0x01 2684 #define PRINTK_PENDING_OUTPUT 0x02 2685 2686 static DEFINE_PER_CPU(int, printk_pending); 2687 2688 static void wake_up_klogd_work_func(struct irq_work *irq_work) 2689 { 2690 int pending = __this_cpu_xchg(printk_pending, 0); 2691 2692 if (pending & PRINTK_PENDING_OUTPUT) { 2693 /* If trylock fails, someone else is doing the printing */ 2694 if (console_trylock()) 2695 console_unlock(); 2696 } 2697 2698 if (pending & PRINTK_PENDING_WAKEUP) 2699 wake_up_interruptible(&log_wait); 2700 } 2701 2702 static DEFINE_PER_CPU(struct irq_work, wake_up_klogd_work) = { 2703 .func = wake_up_klogd_work_func, 2704 .flags = IRQ_WORK_LAZY, 2705 }; 2706 2707 void wake_up_klogd(void) 2708 { 2709 preempt_disable(); 2710 if (waitqueue_active(&log_wait)) { 2711 this_cpu_or(printk_pending, PRINTK_PENDING_WAKEUP); 2712 irq_work_queue(this_cpu_ptr(&wake_up_klogd_work)); 2713 } 2714 preempt_enable(); 2715 } 2716 2717 int vprintk_deferred(const char *fmt, va_list args) 2718 { 2719 int r; 2720 2721 r = vprintk_emit(0, LOGLEVEL_SCHED, NULL, 0, fmt, args); 2722 2723 preempt_disable(); 2724 __this_cpu_or(printk_pending, PRINTK_PENDING_OUTPUT); 2725 irq_work_queue(this_cpu_ptr(&wake_up_klogd_work)); 2726 preempt_enable(); 2727 2728 return r; 2729 } 2730 2731 int printk_deferred(const char *fmt, ...) 2732 { 2733 va_list args; 2734 int r; 2735 2736 va_start(args, fmt); 2737 r = vprintk_deferred(fmt, args); 2738 va_end(args); 2739 2740 return r; 2741 } 2742 2743 /* 2744 * printk rate limiting, lifted from the networking subsystem. 2745 * 2746 * This enforces a rate limit: not more than 10 kernel messages 2747 * every 5s to make a denial-of-service attack impossible. 2748 */ 2749 DEFINE_RATELIMIT_STATE(printk_ratelimit_state, 5 * HZ, 10); 2750 2751 int __printk_ratelimit(const char *func) 2752 { 2753 return ___ratelimit(&printk_ratelimit_state, func); 2754 } 2755 EXPORT_SYMBOL(__printk_ratelimit); 2756 2757 /** 2758 * printk_timed_ratelimit - caller-controlled printk ratelimiting 2759 * @caller_jiffies: pointer to caller's state 2760 * @interval_msecs: minimum interval between prints 2761 * 2762 * printk_timed_ratelimit() returns true if more than @interval_msecs 2763 * milliseconds have elapsed since the last time printk_timed_ratelimit() 2764 * returned true. 2765 */ 2766 bool printk_timed_ratelimit(unsigned long *caller_jiffies, 2767 unsigned int interval_msecs) 2768 { 2769 unsigned long elapsed = jiffies - *caller_jiffies; 2770 2771 if (*caller_jiffies && elapsed <= msecs_to_jiffies(interval_msecs)) 2772 return false; 2773 2774 *caller_jiffies = jiffies; 2775 return true; 2776 } 2777 EXPORT_SYMBOL(printk_timed_ratelimit); 2778 2779 static DEFINE_SPINLOCK(dump_list_lock); 2780 static LIST_HEAD(dump_list); 2781 2782 /** 2783 * kmsg_dump_register - register a kernel log dumper. 2784 * @dumper: pointer to the kmsg_dumper structure 2785 * 2786 * Adds a kernel log dumper to the system. The dump callback in the 2787 * structure will be called when the kernel oopses or panics and must be 2788 * set. Returns zero on success and %-EINVAL or %-EBUSY otherwise. 2789 */ 2790 int kmsg_dump_register(struct kmsg_dumper *dumper) 2791 { 2792 unsigned long flags; 2793 int err = -EBUSY; 2794 2795 /* The dump callback needs to be set */ 2796 if (!dumper->dump) 2797 return -EINVAL; 2798 2799 spin_lock_irqsave(&dump_list_lock, flags); 2800 /* Don't allow registering multiple times */ 2801 if (!dumper->registered) { 2802 dumper->registered = 1; 2803 list_add_tail_rcu(&dumper->list, &dump_list); 2804 err = 0; 2805 } 2806 spin_unlock_irqrestore(&dump_list_lock, flags); 2807 2808 return err; 2809 } 2810 EXPORT_SYMBOL_GPL(kmsg_dump_register); 2811 2812 /** 2813 * kmsg_dump_unregister - unregister a kmsg dumper. 2814 * @dumper: pointer to the kmsg_dumper structure 2815 * 2816 * Removes a dump device from the system. Returns zero on success and 2817 * %-EINVAL otherwise. 2818 */ 2819 int kmsg_dump_unregister(struct kmsg_dumper *dumper) 2820 { 2821 unsigned long flags; 2822 int err = -EINVAL; 2823 2824 spin_lock_irqsave(&dump_list_lock, flags); 2825 if (dumper->registered) { 2826 dumper->registered = 0; 2827 list_del_rcu(&dumper->list); 2828 err = 0; 2829 } 2830 spin_unlock_irqrestore(&dump_list_lock, flags); 2831 synchronize_rcu(); 2832 2833 return err; 2834 } 2835 EXPORT_SYMBOL_GPL(kmsg_dump_unregister); 2836 2837 static bool always_kmsg_dump; 2838 module_param_named(always_kmsg_dump, always_kmsg_dump, bool, S_IRUGO | S_IWUSR); 2839 2840 /** 2841 * kmsg_dump - dump kernel log to kernel message dumpers. 2842 * @reason: the reason (oops, panic etc) for dumping 2843 * 2844 * Call each of the registered dumper's dump() callback, which can 2845 * retrieve the kmsg records with kmsg_dump_get_line() or 2846 * kmsg_dump_get_buffer(). 2847 */ 2848 void kmsg_dump(enum kmsg_dump_reason reason) 2849 { 2850 struct kmsg_dumper *dumper; 2851 unsigned long flags; 2852 2853 if ((reason > KMSG_DUMP_OOPS) && !always_kmsg_dump) 2854 return; 2855 2856 rcu_read_lock(); 2857 list_for_each_entry_rcu(dumper, &dump_list, list) { 2858 if (dumper->max_reason && reason > dumper->max_reason) 2859 continue; 2860 2861 /* initialize iterator with data about the stored records */ 2862 dumper->active = true; 2863 2864 logbuf_lock_irqsave(flags); 2865 dumper->cur_seq = clear_seq; 2866 dumper->cur_idx = clear_idx; 2867 dumper->next_seq = log_next_seq; 2868 dumper->next_idx = log_next_idx; 2869 logbuf_unlock_irqrestore(flags); 2870 2871 /* invoke dumper which will iterate over records */ 2872 dumper->dump(dumper, reason); 2873 2874 /* reset iterator */ 2875 dumper->active = false; 2876 } 2877 rcu_read_unlock(); 2878 } 2879 2880 /** 2881 * kmsg_dump_get_line_nolock - retrieve one kmsg log line (unlocked version) 2882 * @dumper: registered kmsg dumper 2883 * @syslog: include the "<4>" prefixes 2884 * @line: buffer to copy the line to 2885 * @size: maximum size of the buffer 2886 * @len: length of line placed into buffer 2887 * 2888 * Start at the beginning of the kmsg buffer, with the oldest kmsg 2889 * record, and copy one record into the provided buffer. 2890 * 2891 * Consecutive calls will return the next available record moving 2892 * towards the end of the buffer with the youngest messages. 2893 * 2894 * A return value of FALSE indicates that there are no more records to 2895 * read. 2896 * 2897 * The function is similar to kmsg_dump_get_line(), but grabs no locks. 2898 */ 2899 bool kmsg_dump_get_line_nolock(struct kmsg_dumper *dumper, bool syslog, 2900 char *line, size_t size, size_t *len) 2901 { 2902 struct printk_log *msg; 2903 size_t l = 0; 2904 bool ret = false; 2905 2906 if (!dumper->active) 2907 goto out; 2908 2909 if (dumper->cur_seq < log_first_seq) { 2910 /* messages are gone, move to first available one */ 2911 dumper->cur_seq = log_first_seq; 2912 dumper->cur_idx = log_first_idx; 2913 } 2914 2915 /* last entry */ 2916 if (dumper->cur_seq >= log_next_seq) 2917 goto out; 2918 2919 msg = log_from_idx(dumper->cur_idx); 2920 l = msg_print_text(msg, syslog, line, size); 2921 2922 dumper->cur_idx = log_next(dumper->cur_idx); 2923 dumper->cur_seq++; 2924 ret = true; 2925 out: 2926 if (len) 2927 *len = l; 2928 return ret; 2929 } 2930 2931 /** 2932 * kmsg_dump_get_line - retrieve one kmsg log line 2933 * @dumper: registered kmsg dumper 2934 * @syslog: include the "<4>" prefixes 2935 * @line: buffer to copy the line to 2936 * @size: maximum size of the buffer 2937 * @len: length of line placed into buffer 2938 * 2939 * Start at the beginning of the kmsg buffer, with the oldest kmsg 2940 * record, and copy one record into the provided buffer. 2941 * 2942 * Consecutive calls will return the next available record moving 2943 * towards the end of the buffer with the youngest messages. 2944 * 2945 * A return value of FALSE indicates that there are no more records to 2946 * read. 2947 */ 2948 bool kmsg_dump_get_line(struct kmsg_dumper *dumper, bool syslog, 2949 char *line, size_t size, size_t *len) 2950 { 2951 unsigned long flags; 2952 bool ret; 2953 2954 logbuf_lock_irqsave(flags); 2955 ret = kmsg_dump_get_line_nolock(dumper, syslog, line, size, len); 2956 logbuf_unlock_irqrestore(flags); 2957 2958 return ret; 2959 } 2960 EXPORT_SYMBOL_GPL(kmsg_dump_get_line); 2961 2962 /** 2963 * kmsg_dump_get_buffer - copy kmsg log lines 2964 * @dumper: registered kmsg dumper 2965 * @syslog: include the "<4>" prefixes 2966 * @buf: buffer to copy the line to 2967 * @size: maximum size of the buffer 2968 * @len: length of line placed into buffer 2969 * 2970 * Start at the end of the kmsg buffer and fill the provided buffer 2971 * with as many of the the *youngest* kmsg records that fit into it. 2972 * If the buffer is large enough, all available kmsg records will be 2973 * copied with a single call. 2974 * 2975 * Consecutive calls will fill the buffer with the next block of 2976 * available older records, not including the earlier retrieved ones. 2977 * 2978 * A return value of FALSE indicates that there are no more records to 2979 * read. 2980 */ 2981 bool kmsg_dump_get_buffer(struct kmsg_dumper *dumper, bool syslog, 2982 char *buf, size_t size, size_t *len) 2983 { 2984 unsigned long flags; 2985 u64 seq; 2986 u32 idx; 2987 u64 next_seq; 2988 u32 next_idx; 2989 size_t l = 0; 2990 bool ret = false; 2991 2992 if (!dumper->active) 2993 goto out; 2994 2995 logbuf_lock_irqsave(flags); 2996 if (dumper->cur_seq < log_first_seq) { 2997 /* messages are gone, move to first available one */ 2998 dumper->cur_seq = log_first_seq; 2999 dumper->cur_idx = log_first_idx; 3000 } 3001 3002 /* last entry */ 3003 if (dumper->cur_seq >= dumper->next_seq) { 3004 logbuf_unlock_irqrestore(flags); 3005 goto out; 3006 } 3007 3008 /* calculate length of entire buffer */ 3009 seq = dumper->cur_seq; 3010 idx = dumper->cur_idx; 3011 while (seq < dumper->next_seq) { 3012 struct printk_log *msg = log_from_idx(idx); 3013 3014 l += msg_print_text(msg, true, NULL, 0); 3015 idx = log_next(idx); 3016 seq++; 3017 } 3018 3019 /* move first record forward until length fits into the buffer */ 3020 seq = dumper->cur_seq; 3021 idx = dumper->cur_idx; 3022 while (l > size && seq < dumper->next_seq) { 3023 struct printk_log *msg = log_from_idx(idx); 3024 3025 l -= msg_print_text(msg, true, NULL, 0); 3026 idx = log_next(idx); 3027 seq++; 3028 } 3029 3030 /* last message in next interation */ 3031 next_seq = seq; 3032 next_idx = idx; 3033 3034 l = 0; 3035 while (seq < dumper->next_seq) { 3036 struct printk_log *msg = log_from_idx(idx); 3037 3038 l += msg_print_text(msg, syslog, buf + l, size - l); 3039 idx = log_next(idx); 3040 seq++; 3041 } 3042 3043 dumper->next_seq = next_seq; 3044 dumper->next_idx = next_idx; 3045 ret = true; 3046 logbuf_unlock_irqrestore(flags); 3047 out: 3048 if (len) 3049 *len = l; 3050 return ret; 3051 } 3052 EXPORT_SYMBOL_GPL(kmsg_dump_get_buffer); 3053 3054 /** 3055 * kmsg_dump_rewind_nolock - reset the interator (unlocked version) 3056 * @dumper: registered kmsg dumper 3057 * 3058 * Reset the dumper's iterator so that kmsg_dump_get_line() and 3059 * kmsg_dump_get_buffer() can be called again and used multiple 3060 * times within the same dumper.dump() callback. 3061 * 3062 * The function is similar to kmsg_dump_rewind(), but grabs no locks. 3063 */ 3064 void kmsg_dump_rewind_nolock(struct kmsg_dumper *dumper) 3065 { 3066 dumper->cur_seq = clear_seq; 3067 dumper->cur_idx = clear_idx; 3068 dumper->next_seq = log_next_seq; 3069 dumper->next_idx = log_next_idx; 3070 } 3071 3072 /** 3073 * kmsg_dump_rewind - reset the interator 3074 * @dumper: registered kmsg dumper 3075 * 3076 * Reset the dumper's iterator so that kmsg_dump_get_line() and 3077 * kmsg_dump_get_buffer() can be called again and used multiple 3078 * times within the same dumper.dump() callback. 3079 */ 3080 void kmsg_dump_rewind(struct kmsg_dumper *dumper) 3081 { 3082 unsigned long flags; 3083 3084 logbuf_lock_irqsave(flags); 3085 kmsg_dump_rewind_nolock(dumper); 3086 logbuf_unlock_irqrestore(flags); 3087 } 3088 EXPORT_SYMBOL_GPL(kmsg_dump_rewind); 3089 3090 static char dump_stack_arch_desc_str[128]; 3091 3092 /** 3093 * dump_stack_set_arch_desc - set arch-specific str to show with task dumps 3094 * @fmt: printf-style format string 3095 * @...: arguments for the format string 3096 * 3097 * The configured string will be printed right after utsname during task 3098 * dumps. Usually used to add arch-specific system identifiers. If an 3099 * arch wants to make use of such an ID string, it should initialize this 3100 * as soon as possible during boot. 3101 */ 3102 void __init dump_stack_set_arch_desc(const char *fmt, ...) 3103 { 3104 va_list args; 3105 3106 va_start(args, fmt); 3107 vsnprintf(dump_stack_arch_desc_str, sizeof(dump_stack_arch_desc_str), 3108 fmt, args); 3109 va_end(args); 3110 } 3111 3112 /** 3113 * dump_stack_print_info - print generic debug info for dump_stack() 3114 * @log_lvl: log level 3115 * 3116 * Arch-specific dump_stack() implementations can use this function to 3117 * print out the same debug information as the generic dump_stack(). 3118 */ 3119 void dump_stack_print_info(const char *log_lvl) 3120 { 3121 printk("%sCPU: %d PID: %d Comm: %.20s %s %s %.*s\n", 3122 log_lvl, raw_smp_processor_id(), current->pid, current->comm, 3123 print_tainted(), init_utsname()->release, 3124 (int)strcspn(init_utsname()->version, " "), 3125 init_utsname()->version); 3126 3127 if (dump_stack_arch_desc_str[0] != '\0') 3128 printk("%sHardware name: %s\n", 3129 log_lvl, dump_stack_arch_desc_str); 3130 3131 print_worker_info(log_lvl, current); 3132 } 3133 3134 /** 3135 * show_regs_print_info - print generic debug info for show_regs() 3136 * @log_lvl: log level 3137 * 3138 * show_regs() implementations can use this function to print out generic 3139 * debug information. 3140 */ 3141 void show_regs_print_info(const char *log_lvl) 3142 { 3143 dump_stack_print_info(log_lvl); 3144 3145 printk("%stask: %p task.stack: %p\n", 3146 log_lvl, current, task_stack_page(current)); 3147 } 3148 3149 #endif 3150