xref: /openbmc/linux/kernel/printk/printk.c (revision c51d39010a1bccc9c1294e2d7c00005aefeb2b5c)
1 /*
2  *  linux/kernel/printk.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  *
6  * Modified to make sys_syslog() more flexible: added commands to
7  * return the last 4k of kernel messages, regardless of whether
8  * they've been read or not.  Added option to suppress kernel printk's
9  * to the console.  Added hook for sending the console messages
10  * elsewhere, in preparation for a serial line console (someday).
11  * Ted Ts'o, 2/11/93.
12  * Modified for sysctl support, 1/8/97, Chris Horn.
13  * Fixed SMP synchronization, 08/08/99, Manfred Spraul
14  *     manfred@colorfullife.com
15  * Rewrote bits to get rid of console_lock
16  *	01Mar01 Andrew Morton
17  */
18 
19 #include <linux/kernel.h>
20 #include <linux/mm.h>
21 #include <linux/tty.h>
22 #include <linux/tty_driver.h>
23 #include <linux/console.h>
24 #include <linux/init.h>
25 #include <linux/jiffies.h>
26 #include <linux/nmi.h>
27 #include <linux/module.h>
28 #include <linux/moduleparam.h>
29 #include <linux/delay.h>
30 #include <linux/smp.h>
31 #include <linux/security.h>
32 #include <linux/bootmem.h>
33 #include <linux/memblock.h>
34 #include <linux/syscalls.h>
35 #include <linux/kexec.h>
36 #include <linux/kdb.h>
37 #include <linux/ratelimit.h>
38 #include <linux/kmsg_dump.h>
39 #include <linux/syslog.h>
40 #include <linux/cpu.h>
41 #include <linux/notifier.h>
42 #include <linux/rculist.h>
43 #include <linux/poll.h>
44 #include <linux/irq_work.h>
45 #include <linux/utsname.h>
46 #include <linux/ctype.h>
47 #include <linux/uio.h>
48 
49 #include <asm/uaccess.h>
50 #include <asm/sections.h>
51 
52 #define CREATE_TRACE_POINTS
53 #include <trace/events/printk.h>
54 
55 #include "console_cmdline.h"
56 #include "braille.h"
57 #include "internal.h"
58 
59 int console_printk[4] = {
60 	CONSOLE_LOGLEVEL_DEFAULT,	/* console_loglevel */
61 	MESSAGE_LOGLEVEL_DEFAULT,	/* default_message_loglevel */
62 	CONSOLE_LOGLEVEL_MIN,		/* minimum_console_loglevel */
63 	CONSOLE_LOGLEVEL_DEFAULT,	/* default_console_loglevel */
64 };
65 
66 /*
67  * Low level drivers may need that to know if they can schedule in
68  * their unblank() callback or not. So let's export it.
69  */
70 int oops_in_progress;
71 EXPORT_SYMBOL(oops_in_progress);
72 
73 /*
74  * console_sem protects the console_drivers list, and also
75  * provides serialisation for access to the entire console
76  * driver system.
77  */
78 static DEFINE_SEMAPHORE(console_sem);
79 struct console *console_drivers;
80 EXPORT_SYMBOL_GPL(console_drivers);
81 
82 #ifdef CONFIG_LOCKDEP
83 static struct lockdep_map console_lock_dep_map = {
84 	.name = "console_lock"
85 };
86 #endif
87 
88 enum devkmsg_log_bits {
89 	__DEVKMSG_LOG_BIT_ON = 0,
90 	__DEVKMSG_LOG_BIT_OFF,
91 	__DEVKMSG_LOG_BIT_LOCK,
92 };
93 
94 enum devkmsg_log_masks {
95 	DEVKMSG_LOG_MASK_ON             = BIT(__DEVKMSG_LOG_BIT_ON),
96 	DEVKMSG_LOG_MASK_OFF            = BIT(__DEVKMSG_LOG_BIT_OFF),
97 	DEVKMSG_LOG_MASK_LOCK           = BIT(__DEVKMSG_LOG_BIT_LOCK),
98 };
99 
100 /* Keep both the 'on' and 'off' bits clear, i.e. ratelimit by default: */
101 #define DEVKMSG_LOG_MASK_DEFAULT	0
102 
103 static unsigned int __read_mostly devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT;
104 
105 static int __control_devkmsg(char *str)
106 {
107 	if (!str)
108 		return -EINVAL;
109 
110 	if (!strncmp(str, "on", 2)) {
111 		devkmsg_log = DEVKMSG_LOG_MASK_ON;
112 		return 2;
113 	} else if (!strncmp(str, "off", 3)) {
114 		devkmsg_log = DEVKMSG_LOG_MASK_OFF;
115 		return 3;
116 	} else if (!strncmp(str, "ratelimit", 9)) {
117 		devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT;
118 		return 9;
119 	}
120 	return -EINVAL;
121 }
122 
123 static int __init control_devkmsg(char *str)
124 {
125 	if (__control_devkmsg(str) < 0)
126 		return 1;
127 
128 	/*
129 	 * Set sysctl string accordingly:
130 	 */
131 	if (devkmsg_log == DEVKMSG_LOG_MASK_ON) {
132 		memset(devkmsg_log_str, 0, DEVKMSG_STR_MAX_SIZE);
133 		strncpy(devkmsg_log_str, "on", 2);
134 	} else if (devkmsg_log == DEVKMSG_LOG_MASK_OFF) {
135 		memset(devkmsg_log_str, 0, DEVKMSG_STR_MAX_SIZE);
136 		strncpy(devkmsg_log_str, "off", 3);
137 	}
138 	/* else "ratelimit" which is set by default. */
139 
140 	/*
141 	 * Sysctl cannot change it anymore. The kernel command line setting of
142 	 * this parameter is to force the setting to be permanent throughout the
143 	 * runtime of the system. This is a precation measure against userspace
144 	 * trying to be a smarta** and attempting to change it up on us.
145 	 */
146 	devkmsg_log |= DEVKMSG_LOG_MASK_LOCK;
147 
148 	return 0;
149 }
150 __setup("printk.devkmsg=", control_devkmsg);
151 
152 char devkmsg_log_str[DEVKMSG_STR_MAX_SIZE] = "ratelimit";
153 
154 int devkmsg_sysctl_set_loglvl(struct ctl_table *table, int write,
155 			      void __user *buffer, size_t *lenp, loff_t *ppos)
156 {
157 	char old_str[DEVKMSG_STR_MAX_SIZE];
158 	unsigned int old;
159 	int err;
160 
161 	if (write) {
162 		if (devkmsg_log & DEVKMSG_LOG_MASK_LOCK)
163 			return -EINVAL;
164 
165 		old = devkmsg_log;
166 		strncpy(old_str, devkmsg_log_str, DEVKMSG_STR_MAX_SIZE);
167 	}
168 
169 	err = proc_dostring(table, write, buffer, lenp, ppos);
170 	if (err)
171 		return err;
172 
173 	if (write) {
174 		err = __control_devkmsg(devkmsg_log_str);
175 
176 		/*
177 		 * Do not accept an unknown string OR a known string with
178 		 * trailing crap...
179 		 */
180 		if (err < 0 || (err + 1 != *lenp)) {
181 
182 			/* ... and restore old setting. */
183 			devkmsg_log = old;
184 			strncpy(devkmsg_log_str, old_str, DEVKMSG_STR_MAX_SIZE);
185 
186 			return -EINVAL;
187 		}
188 	}
189 
190 	return 0;
191 }
192 
193 /*
194  * Number of registered extended console drivers.
195  *
196  * If extended consoles are present, in-kernel cont reassembly is disabled
197  * and each fragment is stored as a separate log entry with proper
198  * continuation flag so that every emitted message has full metadata.  This
199  * doesn't change the result for regular consoles or /proc/kmsg.  For
200  * /dev/kmsg, as long as the reader concatenates messages according to
201  * consecutive continuation flags, the end result should be the same too.
202  */
203 static int nr_ext_console_drivers;
204 
205 /*
206  * Helper macros to handle lockdep when locking/unlocking console_sem. We use
207  * macros instead of functions so that _RET_IP_ contains useful information.
208  */
209 #define down_console_sem() do { \
210 	down(&console_sem);\
211 	mutex_acquire(&console_lock_dep_map, 0, 0, _RET_IP_);\
212 } while (0)
213 
214 static int __down_trylock_console_sem(unsigned long ip)
215 {
216 	if (down_trylock(&console_sem))
217 		return 1;
218 	mutex_acquire(&console_lock_dep_map, 0, 1, ip);
219 	return 0;
220 }
221 #define down_trylock_console_sem() __down_trylock_console_sem(_RET_IP_)
222 
223 #define up_console_sem() do { \
224 	mutex_release(&console_lock_dep_map, 1, _RET_IP_);\
225 	up(&console_sem);\
226 } while (0)
227 
228 /*
229  * This is used for debugging the mess that is the VT code by
230  * keeping track if we have the console semaphore held. It's
231  * definitely not the perfect debug tool (we don't know if _WE_
232  * hold it and are racing, but it helps tracking those weird code
233  * paths in the console code where we end up in places I want
234  * locked without the console sempahore held).
235  */
236 static int console_locked, console_suspended;
237 
238 /*
239  * If exclusive_console is non-NULL then only this console is to be printed to.
240  */
241 static struct console *exclusive_console;
242 
243 /*
244  *	Array of consoles built from command line options (console=)
245  */
246 
247 #define MAX_CMDLINECONSOLES 8
248 
249 static struct console_cmdline console_cmdline[MAX_CMDLINECONSOLES];
250 
251 static int selected_console = -1;
252 static int preferred_console = -1;
253 int console_set_on_cmdline;
254 EXPORT_SYMBOL(console_set_on_cmdline);
255 
256 /* Flag: console code may call schedule() */
257 static int console_may_schedule;
258 
259 /*
260  * The printk log buffer consists of a chain of concatenated variable
261  * length records. Every record starts with a record header, containing
262  * the overall length of the record.
263  *
264  * The heads to the first and last entry in the buffer, as well as the
265  * sequence numbers of these entries are maintained when messages are
266  * stored.
267  *
268  * If the heads indicate available messages, the length in the header
269  * tells the start next message. A length == 0 for the next message
270  * indicates a wrap-around to the beginning of the buffer.
271  *
272  * Every record carries the monotonic timestamp in microseconds, as well as
273  * the standard userspace syslog level and syslog facility. The usual
274  * kernel messages use LOG_KERN; userspace-injected messages always carry
275  * a matching syslog facility, by default LOG_USER. The origin of every
276  * message can be reliably determined that way.
277  *
278  * The human readable log message directly follows the message header. The
279  * length of the message text is stored in the header, the stored message
280  * is not terminated.
281  *
282  * Optionally, a message can carry a dictionary of properties (key/value pairs),
283  * to provide userspace with a machine-readable message context.
284  *
285  * Examples for well-defined, commonly used property names are:
286  *   DEVICE=b12:8               device identifier
287  *                                b12:8         block dev_t
288  *                                c127:3        char dev_t
289  *                                n8            netdev ifindex
290  *                                +sound:card0  subsystem:devname
291  *   SUBSYSTEM=pci              driver-core subsystem name
292  *
293  * Valid characters in property names are [a-zA-Z0-9.-_]. The plain text value
294  * follows directly after a '=' character. Every property is terminated by
295  * a '\0' character. The last property is not terminated.
296  *
297  * Example of a message structure:
298  *   0000  ff 8f 00 00 00 00 00 00      monotonic time in nsec
299  *   0008  34 00                        record is 52 bytes long
300  *   000a        0b 00                  text is 11 bytes long
301  *   000c              1f 00            dictionary is 23 bytes long
302  *   000e                    03 00      LOG_KERN (facility) LOG_ERR (level)
303  *   0010  69 74 27 73 20 61 20 6c      "it's a l"
304  *         69 6e 65                     "ine"
305  *   001b           44 45 56 49 43      "DEVIC"
306  *         45 3d 62 38 3a 32 00 44      "E=b8:2\0D"
307  *         52 49 56 45 52 3d 62 75      "RIVER=bu"
308  *         67                           "g"
309  *   0032     00 00 00                  padding to next message header
310  *
311  * The 'struct printk_log' buffer header must never be directly exported to
312  * userspace, it is a kernel-private implementation detail that might
313  * need to be changed in the future, when the requirements change.
314  *
315  * /dev/kmsg exports the structured data in the following line format:
316  *   "<level>,<sequnum>,<timestamp>,<contflag>[,additional_values, ... ];<message text>\n"
317  *
318  * Users of the export format should ignore possible additional values
319  * separated by ',', and find the message after the ';' character.
320  *
321  * The optional key/value pairs are attached as continuation lines starting
322  * with a space character and terminated by a newline. All possible
323  * non-prinatable characters are escaped in the "\xff" notation.
324  */
325 
326 enum log_flags {
327 	LOG_NOCONS	= 1,	/* already flushed, do not print to console */
328 	LOG_NEWLINE	= 2,	/* text ended with a newline */
329 	LOG_PREFIX	= 4,	/* text started with a prefix */
330 	LOG_CONT	= 8,	/* text is a fragment of a continuation line */
331 };
332 
333 struct printk_log {
334 	u64 ts_nsec;		/* timestamp in nanoseconds */
335 	u16 len;		/* length of entire record */
336 	u16 text_len;		/* length of text buffer */
337 	u16 dict_len;		/* length of dictionary buffer */
338 	u8 facility;		/* syslog facility */
339 	u8 flags:5;		/* internal record flags */
340 	u8 level:3;		/* syslog level */
341 }
342 #ifdef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
343 __packed __aligned(4)
344 #endif
345 ;
346 
347 /*
348  * The logbuf_lock protects kmsg buffer, indices, counters.  This can be taken
349  * within the scheduler's rq lock. It must be released before calling
350  * console_unlock() or anything else that might wake up a process.
351  */
352 DEFINE_RAW_SPINLOCK(logbuf_lock);
353 
354 #ifdef CONFIG_PRINTK
355 DECLARE_WAIT_QUEUE_HEAD(log_wait);
356 /* the next printk record to read by syslog(READ) or /proc/kmsg */
357 static u64 syslog_seq;
358 static u32 syslog_idx;
359 static enum log_flags syslog_prev;
360 static size_t syslog_partial;
361 
362 /* index and sequence number of the first record stored in the buffer */
363 static u64 log_first_seq;
364 static u32 log_first_idx;
365 
366 /* index and sequence number of the next record to store in the buffer */
367 static u64 log_next_seq;
368 static u32 log_next_idx;
369 
370 /* the next printk record to write to the console */
371 static u64 console_seq;
372 static u32 console_idx;
373 static enum log_flags console_prev;
374 
375 /* the next printk record to read after the last 'clear' command */
376 static u64 clear_seq;
377 static u32 clear_idx;
378 
379 #define PREFIX_MAX		32
380 #define LOG_LINE_MAX		(1024 - PREFIX_MAX)
381 
382 #define LOG_LEVEL(v)		((v) & 0x07)
383 #define LOG_FACILITY(v)		((v) >> 3 & 0xff)
384 
385 /* record buffer */
386 #define LOG_ALIGN __alignof__(struct printk_log)
387 #define __LOG_BUF_LEN (1 << CONFIG_LOG_BUF_SHIFT)
388 static char __log_buf[__LOG_BUF_LEN] __aligned(LOG_ALIGN);
389 static char *log_buf = __log_buf;
390 static u32 log_buf_len = __LOG_BUF_LEN;
391 
392 /* Return log buffer address */
393 char *log_buf_addr_get(void)
394 {
395 	return log_buf;
396 }
397 
398 /* Return log buffer size */
399 u32 log_buf_len_get(void)
400 {
401 	return log_buf_len;
402 }
403 
404 /* human readable text of the record */
405 static char *log_text(const struct printk_log *msg)
406 {
407 	return (char *)msg + sizeof(struct printk_log);
408 }
409 
410 /* optional key/value pair dictionary attached to the record */
411 static char *log_dict(const struct printk_log *msg)
412 {
413 	return (char *)msg + sizeof(struct printk_log) + msg->text_len;
414 }
415 
416 /* get record by index; idx must point to valid msg */
417 static struct printk_log *log_from_idx(u32 idx)
418 {
419 	struct printk_log *msg = (struct printk_log *)(log_buf + idx);
420 
421 	/*
422 	 * A length == 0 record is the end of buffer marker. Wrap around and
423 	 * read the message at the start of the buffer.
424 	 */
425 	if (!msg->len)
426 		return (struct printk_log *)log_buf;
427 	return msg;
428 }
429 
430 /* get next record; idx must point to valid msg */
431 static u32 log_next(u32 idx)
432 {
433 	struct printk_log *msg = (struct printk_log *)(log_buf + idx);
434 
435 	/* length == 0 indicates the end of the buffer; wrap */
436 	/*
437 	 * A length == 0 record is the end of buffer marker. Wrap around and
438 	 * read the message at the start of the buffer as *this* one, and
439 	 * return the one after that.
440 	 */
441 	if (!msg->len) {
442 		msg = (struct printk_log *)log_buf;
443 		return msg->len;
444 	}
445 	return idx + msg->len;
446 }
447 
448 /*
449  * Check whether there is enough free space for the given message.
450  *
451  * The same values of first_idx and next_idx mean that the buffer
452  * is either empty or full.
453  *
454  * If the buffer is empty, we must respect the position of the indexes.
455  * They cannot be reset to the beginning of the buffer.
456  */
457 static int logbuf_has_space(u32 msg_size, bool empty)
458 {
459 	u32 free;
460 
461 	if (log_next_idx > log_first_idx || empty)
462 		free = max(log_buf_len - log_next_idx, log_first_idx);
463 	else
464 		free = log_first_idx - log_next_idx;
465 
466 	/*
467 	 * We need space also for an empty header that signalizes wrapping
468 	 * of the buffer.
469 	 */
470 	return free >= msg_size + sizeof(struct printk_log);
471 }
472 
473 static int log_make_free_space(u32 msg_size)
474 {
475 	while (log_first_seq < log_next_seq &&
476 	       !logbuf_has_space(msg_size, false)) {
477 		/* drop old messages until we have enough contiguous space */
478 		log_first_idx = log_next(log_first_idx);
479 		log_first_seq++;
480 	}
481 
482 	if (clear_seq < log_first_seq) {
483 		clear_seq = log_first_seq;
484 		clear_idx = log_first_idx;
485 	}
486 
487 	/* sequence numbers are equal, so the log buffer is empty */
488 	if (logbuf_has_space(msg_size, log_first_seq == log_next_seq))
489 		return 0;
490 
491 	return -ENOMEM;
492 }
493 
494 /* compute the message size including the padding bytes */
495 static u32 msg_used_size(u16 text_len, u16 dict_len, u32 *pad_len)
496 {
497 	u32 size;
498 
499 	size = sizeof(struct printk_log) + text_len + dict_len;
500 	*pad_len = (-size) & (LOG_ALIGN - 1);
501 	size += *pad_len;
502 
503 	return size;
504 }
505 
506 /*
507  * Define how much of the log buffer we could take at maximum. The value
508  * must be greater than two. Note that only half of the buffer is available
509  * when the index points to the middle.
510  */
511 #define MAX_LOG_TAKE_PART 4
512 static const char trunc_msg[] = "<truncated>";
513 
514 static u32 truncate_msg(u16 *text_len, u16 *trunc_msg_len,
515 			u16 *dict_len, u32 *pad_len)
516 {
517 	/*
518 	 * The message should not take the whole buffer. Otherwise, it might
519 	 * get removed too soon.
520 	 */
521 	u32 max_text_len = log_buf_len / MAX_LOG_TAKE_PART;
522 	if (*text_len > max_text_len)
523 		*text_len = max_text_len;
524 	/* enable the warning message */
525 	*trunc_msg_len = strlen(trunc_msg);
526 	/* disable the "dict" completely */
527 	*dict_len = 0;
528 	/* compute the size again, count also the warning message */
529 	return msg_used_size(*text_len + *trunc_msg_len, 0, pad_len);
530 }
531 
532 /* insert record into the buffer, discard old ones, update heads */
533 static int log_store(int facility, int level,
534 		     enum log_flags flags, u64 ts_nsec,
535 		     const char *dict, u16 dict_len,
536 		     const char *text, u16 text_len)
537 {
538 	struct printk_log *msg;
539 	u32 size, pad_len;
540 	u16 trunc_msg_len = 0;
541 
542 	/* number of '\0' padding bytes to next message */
543 	size = msg_used_size(text_len, dict_len, &pad_len);
544 
545 	if (log_make_free_space(size)) {
546 		/* truncate the message if it is too long for empty buffer */
547 		size = truncate_msg(&text_len, &trunc_msg_len,
548 				    &dict_len, &pad_len);
549 		/* survive when the log buffer is too small for trunc_msg */
550 		if (log_make_free_space(size))
551 			return 0;
552 	}
553 
554 	if (log_next_idx + size + sizeof(struct printk_log) > log_buf_len) {
555 		/*
556 		 * This message + an additional empty header does not fit
557 		 * at the end of the buffer. Add an empty header with len == 0
558 		 * to signify a wrap around.
559 		 */
560 		memset(log_buf + log_next_idx, 0, sizeof(struct printk_log));
561 		log_next_idx = 0;
562 	}
563 
564 	/* fill message */
565 	msg = (struct printk_log *)(log_buf + log_next_idx);
566 	memcpy(log_text(msg), text, text_len);
567 	msg->text_len = text_len;
568 	if (trunc_msg_len) {
569 		memcpy(log_text(msg) + text_len, trunc_msg, trunc_msg_len);
570 		msg->text_len += trunc_msg_len;
571 	}
572 	memcpy(log_dict(msg), dict, dict_len);
573 	msg->dict_len = dict_len;
574 	msg->facility = facility;
575 	msg->level = level & 7;
576 	msg->flags = flags & 0x1f;
577 	if (ts_nsec > 0)
578 		msg->ts_nsec = ts_nsec;
579 	else
580 		msg->ts_nsec = local_clock();
581 	memset(log_dict(msg) + dict_len, 0, pad_len);
582 	msg->len = size;
583 
584 	/* insert message */
585 	log_next_idx += msg->len;
586 	log_next_seq++;
587 
588 	return msg->text_len;
589 }
590 
591 int dmesg_restrict = IS_ENABLED(CONFIG_SECURITY_DMESG_RESTRICT);
592 
593 static int syslog_action_restricted(int type)
594 {
595 	if (dmesg_restrict)
596 		return 1;
597 	/*
598 	 * Unless restricted, we allow "read all" and "get buffer size"
599 	 * for everybody.
600 	 */
601 	return type != SYSLOG_ACTION_READ_ALL &&
602 	       type != SYSLOG_ACTION_SIZE_BUFFER;
603 }
604 
605 int check_syslog_permissions(int type, int source)
606 {
607 	/*
608 	 * If this is from /proc/kmsg and we've already opened it, then we've
609 	 * already done the capabilities checks at open time.
610 	 */
611 	if (source == SYSLOG_FROM_PROC && type != SYSLOG_ACTION_OPEN)
612 		goto ok;
613 
614 	if (syslog_action_restricted(type)) {
615 		if (capable(CAP_SYSLOG))
616 			goto ok;
617 		/*
618 		 * For historical reasons, accept CAP_SYS_ADMIN too, with
619 		 * a warning.
620 		 */
621 		if (capable(CAP_SYS_ADMIN)) {
622 			pr_warn_once("%s (%d): Attempt to access syslog with "
623 				     "CAP_SYS_ADMIN but no CAP_SYSLOG "
624 				     "(deprecated).\n",
625 				 current->comm, task_pid_nr(current));
626 			goto ok;
627 		}
628 		return -EPERM;
629 	}
630 ok:
631 	return security_syslog(type);
632 }
633 EXPORT_SYMBOL_GPL(check_syslog_permissions);
634 
635 static void append_char(char **pp, char *e, char c)
636 {
637 	if (*pp < e)
638 		*(*pp)++ = c;
639 }
640 
641 static ssize_t msg_print_ext_header(char *buf, size_t size,
642 				    struct printk_log *msg, u64 seq,
643 				    enum log_flags prev_flags)
644 {
645 	u64 ts_usec = msg->ts_nsec;
646 	char cont = '-';
647 
648 	do_div(ts_usec, 1000);
649 
650 	/*
651 	 * If we couldn't merge continuation line fragments during the print,
652 	 * export the stored flags to allow an optional external merge of the
653 	 * records. Merging the records isn't always neccessarily correct, like
654 	 * when we hit a race during printing. In most cases though, it produces
655 	 * better readable output. 'c' in the record flags mark the first
656 	 * fragment of a line, '+' the following.
657 	 */
658 	if (msg->flags & LOG_CONT)
659 		cont = (prev_flags & LOG_CONT) ? '+' : 'c';
660 
661 	return scnprintf(buf, size, "%u,%llu,%llu,%c;",
662 		       (msg->facility << 3) | msg->level, seq, ts_usec, cont);
663 }
664 
665 static ssize_t msg_print_ext_body(char *buf, size_t size,
666 				  char *dict, size_t dict_len,
667 				  char *text, size_t text_len)
668 {
669 	char *p = buf, *e = buf + size;
670 	size_t i;
671 
672 	/* escape non-printable characters */
673 	for (i = 0; i < text_len; i++) {
674 		unsigned char c = text[i];
675 
676 		if (c < ' ' || c >= 127 || c == '\\')
677 			p += scnprintf(p, e - p, "\\x%02x", c);
678 		else
679 			append_char(&p, e, c);
680 	}
681 	append_char(&p, e, '\n');
682 
683 	if (dict_len) {
684 		bool line = true;
685 
686 		for (i = 0; i < dict_len; i++) {
687 			unsigned char c = dict[i];
688 
689 			if (line) {
690 				append_char(&p, e, ' ');
691 				line = false;
692 			}
693 
694 			if (c == '\0') {
695 				append_char(&p, e, '\n');
696 				line = true;
697 				continue;
698 			}
699 
700 			if (c < ' ' || c >= 127 || c == '\\') {
701 				p += scnprintf(p, e - p, "\\x%02x", c);
702 				continue;
703 			}
704 
705 			append_char(&p, e, c);
706 		}
707 		append_char(&p, e, '\n');
708 	}
709 
710 	return p - buf;
711 }
712 
713 /* /dev/kmsg - userspace message inject/listen interface */
714 struct devkmsg_user {
715 	u64 seq;
716 	u32 idx;
717 	enum log_flags prev;
718 	struct ratelimit_state rs;
719 	struct mutex lock;
720 	char buf[CONSOLE_EXT_LOG_MAX];
721 };
722 
723 static ssize_t devkmsg_write(struct kiocb *iocb, struct iov_iter *from)
724 {
725 	char *buf, *line;
726 	int level = default_message_loglevel;
727 	int facility = 1;	/* LOG_USER */
728 	struct file *file = iocb->ki_filp;
729 	struct devkmsg_user *user = file->private_data;
730 	size_t len = iov_iter_count(from);
731 	ssize_t ret = len;
732 
733 	if (!user || len > LOG_LINE_MAX)
734 		return -EINVAL;
735 
736 	/* Ignore when user logging is disabled. */
737 	if (devkmsg_log & DEVKMSG_LOG_MASK_OFF)
738 		return len;
739 
740 	/* Ratelimit when not explicitly enabled. */
741 	if (!(devkmsg_log & DEVKMSG_LOG_MASK_ON)) {
742 		if (!___ratelimit(&user->rs, current->comm))
743 			return ret;
744 	}
745 
746 	buf = kmalloc(len+1, GFP_KERNEL);
747 	if (buf == NULL)
748 		return -ENOMEM;
749 
750 	buf[len] = '\0';
751 	if (copy_from_iter(buf, len, from) != len) {
752 		kfree(buf);
753 		return -EFAULT;
754 	}
755 
756 	/*
757 	 * Extract and skip the syslog prefix <[0-9]*>. Coming from userspace
758 	 * the decimal value represents 32bit, the lower 3 bit are the log
759 	 * level, the rest are the log facility.
760 	 *
761 	 * If no prefix or no userspace facility is specified, we
762 	 * enforce LOG_USER, to be able to reliably distinguish
763 	 * kernel-generated messages from userspace-injected ones.
764 	 */
765 	line = buf;
766 	if (line[0] == '<') {
767 		char *endp = NULL;
768 		unsigned int u;
769 
770 		u = simple_strtoul(line + 1, &endp, 10);
771 		if (endp && endp[0] == '>') {
772 			level = LOG_LEVEL(u);
773 			if (LOG_FACILITY(u) != 0)
774 				facility = LOG_FACILITY(u);
775 			endp++;
776 			len -= endp - line;
777 			line = endp;
778 		}
779 	}
780 
781 	printk_emit(facility, level, NULL, 0, "%s", line);
782 	kfree(buf);
783 	return ret;
784 }
785 
786 static ssize_t devkmsg_read(struct file *file, char __user *buf,
787 			    size_t count, loff_t *ppos)
788 {
789 	struct devkmsg_user *user = file->private_data;
790 	struct printk_log *msg;
791 	size_t len;
792 	ssize_t ret;
793 
794 	if (!user)
795 		return -EBADF;
796 
797 	ret = mutex_lock_interruptible(&user->lock);
798 	if (ret)
799 		return ret;
800 	raw_spin_lock_irq(&logbuf_lock);
801 	while (user->seq == log_next_seq) {
802 		if (file->f_flags & O_NONBLOCK) {
803 			ret = -EAGAIN;
804 			raw_spin_unlock_irq(&logbuf_lock);
805 			goto out;
806 		}
807 
808 		raw_spin_unlock_irq(&logbuf_lock);
809 		ret = wait_event_interruptible(log_wait,
810 					       user->seq != log_next_seq);
811 		if (ret)
812 			goto out;
813 		raw_spin_lock_irq(&logbuf_lock);
814 	}
815 
816 	if (user->seq < log_first_seq) {
817 		/* our last seen message is gone, return error and reset */
818 		user->idx = log_first_idx;
819 		user->seq = log_first_seq;
820 		ret = -EPIPE;
821 		raw_spin_unlock_irq(&logbuf_lock);
822 		goto out;
823 	}
824 
825 	msg = log_from_idx(user->idx);
826 	len = msg_print_ext_header(user->buf, sizeof(user->buf),
827 				   msg, user->seq, user->prev);
828 	len += msg_print_ext_body(user->buf + len, sizeof(user->buf) - len,
829 				  log_dict(msg), msg->dict_len,
830 				  log_text(msg), msg->text_len);
831 
832 	user->prev = msg->flags;
833 	user->idx = log_next(user->idx);
834 	user->seq++;
835 	raw_spin_unlock_irq(&logbuf_lock);
836 
837 	if (len > count) {
838 		ret = -EINVAL;
839 		goto out;
840 	}
841 
842 	if (copy_to_user(buf, user->buf, len)) {
843 		ret = -EFAULT;
844 		goto out;
845 	}
846 	ret = len;
847 out:
848 	mutex_unlock(&user->lock);
849 	return ret;
850 }
851 
852 static loff_t devkmsg_llseek(struct file *file, loff_t offset, int whence)
853 {
854 	struct devkmsg_user *user = file->private_data;
855 	loff_t ret = 0;
856 
857 	if (!user)
858 		return -EBADF;
859 	if (offset)
860 		return -ESPIPE;
861 
862 	raw_spin_lock_irq(&logbuf_lock);
863 	switch (whence) {
864 	case SEEK_SET:
865 		/* the first record */
866 		user->idx = log_first_idx;
867 		user->seq = log_first_seq;
868 		break;
869 	case SEEK_DATA:
870 		/*
871 		 * The first record after the last SYSLOG_ACTION_CLEAR,
872 		 * like issued by 'dmesg -c'. Reading /dev/kmsg itself
873 		 * changes no global state, and does not clear anything.
874 		 */
875 		user->idx = clear_idx;
876 		user->seq = clear_seq;
877 		break;
878 	case SEEK_END:
879 		/* after the last record */
880 		user->idx = log_next_idx;
881 		user->seq = log_next_seq;
882 		break;
883 	default:
884 		ret = -EINVAL;
885 	}
886 	raw_spin_unlock_irq(&logbuf_lock);
887 	return ret;
888 }
889 
890 static unsigned int devkmsg_poll(struct file *file, poll_table *wait)
891 {
892 	struct devkmsg_user *user = file->private_data;
893 	int ret = 0;
894 
895 	if (!user)
896 		return POLLERR|POLLNVAL;
897 
898 	poll_wait(file, &log_wait, wait);
899 
900 	raw_spin_lock_irq(&logbuf_lock);
901 	if (user->seq < log_next_seq) {
902 		/* return error when data has vanished underneath us */
903 		if (user->seq < log_first_seq)
904 			ret = POLLIN|POLLRDNORM|POLLERR|POLLPRI;
905 		else
906 			ret = POLLIN|POLLRDNORM;
907 	}
908 	raw_spin_unlock_irq(&logbuf_lock);
909 
910 	return ret;
911 }
912 
913 static int devkmsg_open(struct inode *inode, struct file *file)
914 {
915 	struct devkmsg_user *user;
916 	int err;
917 
918 	if (devkmsg_log & DEVKMSG_LOG_MASK_OFF)
919 		return -EPERM;
920 
921 	/* write-only does not need any file context */
922 	if ((file->f_flags & O_ACCMODE) != O_WRONLY) {
923 		err = check_syslog_permissions(SYSLOG_ACTION_READ_ALL,
924 					       SYSLOG_FROM_READER);
925 		if (err)
926 			return err;
927 	}
928 
929 	user = kmalloc(sizeof(struct devkmsg_user), GFP_KERNEL);
930 	if (!user)
931 		return -ENOMEM;
932 
933 	ratelimit_default_init(&user->rs);
934 	ratelimit_set_flags(&user->rs, RATELIMIT_MSG_ON_RELEASE);
935 
936 	mutex_init(&user->lock);
937 
938 	raw_spin_lock_irq(&logbuf_lock);
939 	user->idx = log_first_idx;
940 	user->seq = log_first_seq;
941 	raw_spin_unlock_irq(&logbuf_lock);
942 
943 	file->private_data = user;
944 	return 0;
945 }
946 
947 static int devkmsg_release(struct inode *inode, struct file *file)
948 {
949 	struct devkmsg_user *user = file->private_data;
950 
951 	if (!user)
952 		return 0;
953 
954 	ratelimit_state_exit(&user->rs);
955 
956 	mutex_destroy(&user->lock);
957 	kfree(user);
958 	return 0;
959 }
960 
961 const struct file_operations kmsg_fops = {
962 	.open = devkmsg_open,
963 	.read = devkmsg_read,
964 	.write_iter = devkmsg_write,
965 	.llseek = devkmsg_llseek,
966 	.poll = devkmsg_poll,
967 	.release = devkmsg_release,
968 };
969 
970 #ifdef CONFIG_KEXEC_CORE
971 /*
972  * This appends the listed symbols to /proc/vmcore
973  *
974  * /proc/vmcore is used by various utilities, like crash and makedumpfile to
975  * obtain access to symbols that are otherwise very difficult to locate.  These
976  * symbols are specifically used so that utilities can access and extract the
977  * dmesg log from a vmcore file after a crash.
978  */
979 void log_buf_kexec_setup(void)
980 {
981 	VMCOREINFO_SYMBOL(log_buf);
982 	VMCOREINFO_SYMBOL(log_buf_len);
983 	VMCOREINFO_SYMBOL(log_first_idx);
984 	VMCOREINFO_SYMBOL(clear_idx);
985 	VMCOREINFO_SYMBOL(log_next_idx);
986 	/*
987 	 * Export struct printk_log size and field offsets. User space tools can
988 	 * parse it and detect any changes to structure down the line.
989 	 */
990 	VMCOREINFO_STRUCT_SIZE(printk_log);
991 	VMCOREINFO_OFFSET(printk_log, ts_nsec);
992 	VMCOREINFO_OFFSET(printk_log, len);
993 	VMCOREINFO_OFFSET(printk_log, text_len);
994 	VMCOREINFO_OFFSET(printk_log, dict_len);
995 }
996 #endif
997 
998 /* requested log_buf_len from kernel cmdline */
999 static unsigned long __initdata new_log_buf_len;
1000 
1001 /* we practice scaling the ring buffer by powers of 2 */
1002 static void __init log_buf_len_update(unsigned size)
1003 {
1004 	if (size)
1005 		size = roundup_pow_of_two(size);
1006 	if (size > log_buf_len)
1007 		new_log_buf_len = size;
1008 }
1009 
1010 /* save requested log_buf_len since it's too early to process it */
1011 static int __init log_buf_len_setup(char *str)
1012 {
1013 	unsigned size = memparse(str, &str);
1014 
1015 	log_buf_len_update(size);
1016 
1017 	return 0;
1018 }
1019 early_param("log_buf_len", log_buf_len_setup);
1020 
1021 #ifdef CONFIG_SMP
1022 #define __LOG_CPU_MAX_BUF_LEN (1 << CONFIG_LOG_CPU_MAX_BUF_SHIFT)
1023 
1024 static void __init log_buf_add_cpu(void)
1025 {
1026 	unsigned int cpu_extra;
1027 
1028 	/*
1029 	 * archs should set up cpu_possible_bits properly with
1030 	 * set_cpu_possible() after setup_arch() but just in
1031 	 * case lets ensure this is valid.
1032 	 */
1033 	if (num_possible_cpus() == 1)
1034 		return;
1035 
1036 	cpu_extra = (num_possible_cpus() - 1) * __LOG_CPU_MAX_BUF_LEN;
1037 
1038 	/* by default this will only continue through for large > 64 CPUs */
1039 	if (cpu_extra <= __LOG_BUF_LEN / 2)
1040 		return;
1041 
1042 	pr_info("log_buf_len individual max cpu contribution: %d bytes\n",
1043 		__LOG_CPU_MAX_BUF_LEN);
1044 	pr_info("log_buf_len total cpu_extra contributions: %d bytes\n",
1045 		cpu_extra);
1046 	pr_info("log_buf_len min size: %d bytes\n", __LOG_BUF_LEN);
1047 
1048 	log_buf_len_update(cpu_extra + __LOG_BUF_LEN);
1049 }
1050 #else /* !CONFIG_SMP */
1051 static inline void log_buf_add_cpu(void) {}
1052 #endif /* CONFIG_SMP */
1053 
1054 void __init setup_log_buf(int early)
1055 {
1056 	unsigned long flags;
1057 	char *new_log_buf;
1058 	int free;
1059 
1060 	if (log_buf != __log_buf)
1061 		return;
1062 
1063 	if (!early && !new_log_buf_len)
1064 		log_buf_add_cpu();
1065 
1066 	if (!new_log_buf_len)
1067 		return;
1068 
1069 	if (early) {
1070 		new_log_buf =
1071 			memblock_virt_alloc(new_log_buf_len, LOG_ALIGN);
1072 	} else {
1073 		new_log_buf = memblock_virt_alloc_nopanic(new_log_buf_len,
1074 							  LOG_ALIGN);
1075 	}
1076 
1077 	if (unlikely(!new_log_buf)) {
1078 		pr_err("log_buf_len: %ld bytes not available\n",
1079 			new_log_buf_len);
1080 		return;
1081 	}
1082 
1083 	raw_spin_lock_irqsave(&logbuf_lock, flags);
1084 	log_buf_len = new_log_buf_len;
1085 	log_buf = new_log_buf;
1086 	new_log_buf_len = 0;
1087 	free = __LOG_BUF_LEN - log_next_idx;
1088 	memcpy(log_buf, __log_buf, __LOG_BUF_LEN);
1089 	raw_spin_unlock_irqrestore(&logbuf_lock, flags);
1090 
1091 	pr_info("log_buf_len: %d bytes\n", log_buf_len);
1092 	pr_info("early log buf free: %d(%d%%)\n",
1093 		free, (free * 100) / __LOG_BUF_LEN);
1094 }
1095 
1096 static bool __read_mostly ignore_loglevel;
1097 
1098 static int __init ignore_loglevel_setup(char *str)
1099 {
1100 	ignore_loglevel = true;
1101 	pr_info("debug: ignoring loglevel setting.\n");
1102 
1103 	return 0;
1104 }
1105 
1106 early_param("ignore_loglevel", ignore_loglevel_setup);
1107 module_param(ignore_loglevel, bool, S_IRUGO | S_IWUSR);
1108 MODULE_PARM_DESC(ignore_loglevel,
1109 		 "ignore loglevel setting (prints all kernel messages to the console)");
1110 
1111 static bool suppress_message_printing(int level)
1112 {
1113 	return (level >= console_loglevel && !ignore_loglevel);
1114 }
1115 
1116 #ifdef CONFIG_BOOT_PRINTK_DELAY
1117 
1118 static int boot_delay; /* msecs delay after each printk during bootup */
1119 static unsigned long long loops_per_msec;	/* based on boot_delay */
1120 
1121 static int __init boot_delay_setup(char *str)
1122 {
1123 	unsigned long lpj;
1124 
1125 	lpj = preset_lpj ? preset_lpj : 1000000;	/* some guess */
1126 	loops_per_msec = (unsigned long long)lpj / 1000 * HZ;
1127 
1128 	get_option(&str, &boot_delay);
1129 	if (boot_delay > 10 * 1000)
1130 		boot_delay = 0;
1131 
1132 	pr_debug("boot_delay: %u, preset_lpj: %ld, lpj: %lu, "
1133 		"HZ: %d, loops_per_msec: %llu\n",
1134 		boot_delay, preset_lpj, lpj, HZ, loops_per_msec);
1135 	return 0;
1136 }
1137 early_param("boot_delay", boot_delay_setup);
1138 
1139 static void boot_delay_msec(int level)
1140 {
1141 	unsigned long long k;
1142 	unsigned long timeout;
1143 
1144 	if ((boot_delay == 0 || system_state != SYSTEM_BOOTING)
1145 		|| suppress_message_printing(level)) {
1146 		return;
1147 	}
1148 
1149 	k = (unsigned long long)loops_per_msec * boot_delay;
1150 
1151 	timeout = jiffies + msecs_to_jiffies(boot_delay);
1152 	while (k) {
1153 		k--;
1154 		cpu_relax();
1155 		/*
1156 		 * use (volatile) jiffies to prevent
1157 		 * compiler reduction; loop termination via jiffies
1158 		 * is secondary and may or may not happen.
1159 		 */
1160 		if (time_after(jiffies, timeout))
1161 			break;
1162 		touch_nmi_watchdog();
1163 	}
1164 }
1165 #else
1166 static inline void boot_delay_msec(int level)
1167 {
1168 }
1169 #endif
1170 
1171 static bool printk_time = IS_ENABLED(CONFIG_PRINTK_TIME);
1172 module_param_named(time, printk_time, bool, S_IRUGO | S_IWUSR);
1173 
1174 static size_t print_time(u64 ts, char *buf)
1175 {
1176 	unsigned long rem_nsec;
1177 
1178 	if (!printk_time)
1179 		return 0;
1180 
1181 	rem_nsec = do_div(ts, 1000000000);
1182 
1183 	if (!buf)
1184 		return snprintf(NULL, 0, "[%5lu.000000] ", (unsigned long)ts);
1185 
1186 	return sprintf(buf, "[%5lu.%06lu] ",
1187 		       (unsigned long)ts, rem_nsec / 1000);
1188 }
1189 
1190 static size_t print_prefix(const struct printk_log *msg, bool syslog, char *buf)
1191 {
1192 	size_t len = 0;
1193 	unsigned int prefix = (msg->facility << 3) | msg->level;
1194 
1195 	if (syslog) {
1196 		if (buf) {
1197 			len += sprintf(buf, "<%u>", prefix);
1198 		} else {
1199 			len += 3;
1200 			if (prefix > 999)
1201 				len += 3;
1202 			else if (prefix > 99)
1203 				len += 2;
1204 			else if (prefix > 9)
1205 				len++;
1206 		}
1207 	}
1208 
1209 	len += print_time(msg->ts_nsec, buf ? buf + len : NULL);
1210 	return len;
1211 }
1212 
1213 static size_t msg_print_text(const struct printk_log *msg, enum log_flags prev,
1214 			     bool syslog, char *buf, size_t size)
1215 {
1216 	const char *text = log_text(msg);
1217 	size_t text_size = msg->text_len;
1218 	bool prefix = true;
1219 	bool newline = true;
1220 	size_t len = 0;
1221 
1222 	if ((prev & LOG_CONT) && !(msg->flags & LOG_PREFIX))
1223 		prefix = false;
1224 
1225 	if (msg->flags & LOG_CONT) {
1226 		if ((prev & LOG_CONT) && !(prev & LOG_NEWLINE))
1227 			prefix = false;
1228 
1229 		if (!(msg->flags & LOG_NEWLINE))
1230 			newline = false;
1231 	}
1232 
1233 	do {
1234 		const char *next = memchr(text, '\n', text_size);
1235 		size_t text_len;
1236 
1237 		if (next) {
1238 			text_len = next - text;
1239 			next++;
1240 			text_size -= next - text;
1241 		} else {
1242 			text_len = text_size;
1243 		}
1244 
1245 		if (buf) {
1246 			if (print_prefix(msg, syslog, NULL) +
1247 			    text_len + 1 >= size - len)
1248 				break;
1249 
1250 			if (prefix)
1251 				len += print_prefix(msg, syslog, buf + len);
1252 			memcpy(buf + len, text, text_len);
1253 			len += text_len;
1254 			if (next || newline)
1255 				buf[len++] = '\n';
1256 		} else {
1257 			/* SYSLOG_ACTION_* buffer size only calculation */
1258 			if (prefix)
1259 				len += print_prefix(msg, syslog, NULL);
1260 			len += text_len;
1261 			if (next || newline)
1262 				len++;
1263 		}
1264 
1265 		prefix = true;
1266 		text = next;
1267 	} while (text);
1268 
1269 	return len;
1270 }
1271 
1272 static int syslog_print(char __user *buf, int size)
1273 {
1274 	char *text;
1275 	struct printk_log *msg;
1276 	int len = 0;
1277 
1278 	text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
1279 	if (!text)
1280 		return -ENOMEM;
1281 
1282 	while (size > 0) {
1283 		size_t n;
1284 		size_t skip;
1285 
1286 		raw_spin_lock_irq(&logbuf_lock);
1287 		if (syslog_seq < log_first_seq) {
1288 			/* messages are gone, move to first one */
1289 			syslog_seq = log_first_seq;
1290 			syslog_idx = log_first_idx;
1291 			syslog_prev = 0;
1292 			syslog_partial = 0;
1293 		}
1294 		if (syslog_seq == log_next_seq) {
1295 			raw_spin_unlock_irq(&logbuf_lock);
1296 			break;
1297 		}
1298 
1299 		skip = syslog_partial;
1300 		msg = log_from_idx(syslog_idx);
1301 		n = msg_print_text(msg, syslog_prev, true, text,
1302 				   LOG_LINE_MAX + PREFIX_MAX);
1303 		if (n - syslog_partial <= size) {
1304 			/* message fits into buffer, move forward */
1305 			syslog_idx = log_next(syslog_idx);
1306 			syslog_seq++;
1307 			syslog_prev = msg->flags;
1308 			n -= syslog_partial;
1309 			syslog_partial = 0;
1310 		} else if (!len){
1311 			/* partial read(), remember position */
1312 			n = size;
1313 			syslog_partial += n;
1314 		} else
1315 			n = 0;
1316 		raw_spin_unlock_irq(&logbuf_lock);
1317 
1318 		if (!n)
1319 			break;
1320 
1321 		if (copy_to_user(buf, text + skip, n)) {
1322 			if (!len)
1323 				len = -EFAULT;
1324 			break;
1325 		}
1326 
1327 		len += n;
1328 		size -= n;
1329 		buf += n;
1330 	}
1331 
1332 	kfree(text);
1333 	return len;
1334 }
1335 
1336 static int syslog_print_all(char __user *buf, int size, bool clear)
1337 {
1338 	char *text;
1339 	int len = 0;
1340 
1341 	text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
1342 	if (!text)
1343 		return -ENOMEM;
1344 
1345 	raw_spin_lock_irq(&logbuf_lock);
1346 	if (buf) {
1347 		u64 next_seq;
1348 		u64 seq;
1349 		u32 idx;
1350 		enum log_flags prev;
1351 
1352 		/*
1353 		 * Find first record that fits, including all following records,
1354 		 * into the user-provided buffer for this dump.
1355 		 */
1356 		seq = clear_seq;
1357 		idx = clear_idx;
1358 		prev = 0;
1359 		while (seq < log_next_seq) {
1360 			struct printk_log *msg = log_from_idx(idx);
1361 
1362 			len += msg_print_text(msg, prev, true, NULL, 0);
1363 			prev = msg->flags;
1364 			idx = log_next(idx);
1365 			seq++;
1366 		}
1367 
1368 		/* move first record forward until length fits into the buffer */
1369 		seq = clear_seq;
1370 		idx = clear_idx;
1371 		prev = 0;
1372 		while (len > size && seq < log_next_seq) {
1373 			struct printk_log *msg = log_from_idx(idx);
1374 
1375 			len -= msg_print_text(msg, prev, true, NULL, 0);
1376 			prev = msg->flags;
1377 			idx = log_next(idx);
1378 			seq++;
1379 		}
1380 
1381 		/* last message fitting into this dump */
1382 		next_seq = log_next_seq;
1383 
1384 		len = 0;
1385 		while (len >= 0 && seq < next_seq) {
1386 			struct printk_log *msg = log_from_idx(idx);
1387 			int textlen;
1388 
1389 			textlen = msg_print_text(msg, prev, true, text,
1390 						 LOG_LINE_MAX + PREFIX_MAX);
1391 			if (textlen < 0) {
1392 				len = textlen;
1393 				break;
1394 			}
1395 			idx = log_next(idx);
1396 			seq++;
1397 			prev = msg->flags;
1398 
1399 			raw_spin_unlock_irq(&logbuf_lock);
1400 			if (copy_to_user(buf + len, text, textlen))
1401 				len = -EFAULT;
1402 			else
1403 				len += textlen;
1404 			raw_spin_lock_irq(&logbuf_lock);
1405 
1406 			if (seq < log_first_seq) {
1407 				/* messages are gone, move to next one */
1408 				seq = log_first_seq;
1409 				idx = log_first_idx;
1410 				prev = 0;
1411 			}
1412 		}
1413 	}
1414 
1415 	if (clear) {
1416 		clear_seq = log_next_seq;
1417 		clear_idx = log_next_idx;
1418 	}
1419 	raw_spin_unlock_irq(&logbuf_lock);
1420 
1421 	kfree(text);
1422 	return len;
1423 }
1424 
1425 int do_syslog(int type, char __user *buf, int len, int source)
1426 {
1427 	bool clear = false;
1428 	static int saved_console_loglevel = LOGLEVEL_DEFAULT;
1429 	int error;
1430 
1431 	error = check_syslog_permissions(type, source);
1432 	if (error)
1433 		goto out;
1434 
1435 	switch (type) {
1436 	case SYSLOG_ACTION_CLOSE:	/* Close log */
1437 		break;
1438 	case SYSLOG_ACTION_OPEN:	/* Open log */
1439 		break;
1440 	case SYSLOG_ACTION_READ:	/* Read from log */
1441 		error = -EINVAL;
1442 		if (!buf || len < 0)
1443 			goto out;
1444 		error = 0;
1445 		if (!len)
1446 			goto out;
1447 		if (!access_ok(VERIFY_WRITE, buf, len)) {
1448 			error = -EFAULT;
1449 			goto out;
1450 		}
1451 		error = wait_event_interruptible(log_wait,
1452 						 syslog_seq != log_next_seq);
1453 		if (error)
1454 			goto out;
1455 		error = syslog_print(buf, len);
1456 		break;
1457 	/* Read/clear last kernel messages */
1458 	case SYSLOG_ACTION_READ_CLEAR:
1459 		clear = true;
1460 		/* FALL THRU */
1461 	/* Read last kernel messages */
1462 	case SYSLOG_ACTION_READ_ALL:
1463 		error = -EINVAL;
1464 		if (!buf || len < 0)
1465 			goto out;
1466 		error = 0;
1467 		if (!len)
1468 			goto out;
1469 		if (!access_ok(VERIFY_WRITE, buf, len)) {
1470 			error = -EFAULT;
1471 			goto out;
1472 		}
1473 		error = syslog_print_all(buf, len, clear);
1474 		break;
1475 	/* Clear ring buffer */
1476 	case SYSLOG_ACTION_CLEAR:
1477 		syslog_print_all(NULL, 0, true);
1478 		break;
1479 	/* Disable logging to console */
1480 	case SYSLOG_ACTION_CONSOLE_OFF:
1481 		if (saved_console_loglevel == LOGLEVEL_DEFAULT)
1482 			saved_console_loglevel = console_loglevel;
1483 		console_loglevel = minimum_console_loglevel;
1484 		break;
1485 	/* Enable logging to console */
1486 	case SYSLOG_ACTION_CONSOLE_ON:
1487 		if (saved_console_loglevel != LOGLEVEL_DEFAULT) {
1488 			console_loglevel = saved_console_loglevel;
1489 			saved_console_loglevel = LOGLEVEL_DEFAULT;
1490 		}
1491 		break;
1492 	/* Set level of messages printed to console */
1493 	case SYSLOG_ACTION_CONSOLE_LEVEL:
1494 		error = -EINVAL;
1495 		if (len < 1 || len > 8)
1496 			goto out;
1497 		if (len < minimum_console_loglevel)
1498 			len = minimum_console_loglevel;
1499 		console_loglevel = len;
1500 		/* Implicitly re-enable logging to console */
1501 		saved_console_loglevel = LOGLEVEL_DEFAULT;
1502 		error = 0;
1503 		break;
1504 	/* Number of chars in the log buffer */
1505 	case SYSLOG_ACTION_SIZE_UNREAD:
1506 		raw_spin_lock_irq(&logbuf_lock);
1507 		if (syslog_seq < log_first_seq) {
1508 			/* messages are gone, move to first one */
1509 			syslog_seq = log_first_seq;
1510 			syslog_idx = log_first_idx;
1511 			syslog_prev = 0;
1512 			syslog_partial = 0;
1513 		}
1514 		if (source == SYSLOG_FROM_PROC) {
1515 			/*
1516 			 * Short-cut for poll(/"proc/kmsg") which simply checks
1517 			 * for pending data, not the size; return the count of
1518 			 * records, not the length.
1519 			 */
1520 			error = log_next_seq - syslog_seq;
1521 		} else {
1522 			u64 seq = syslog_seq;
1523 			u32 idx = syslog_idx;
1524 			enum log_flags prev = syslog_prev;
1525 
1526 			error = 0;
1527 			while (seq < log_next_seq) {
1528 				struct printk_log *msg = log_from_idx(idx);
1529 
1530 				error += msg_print_text(msg, prev, true, NULL, 0);
1531 				idx = log_next(idx);
1532 				seq++;
1533 				prev = msg->flags;
1534 			}
1535 			error -= syslog_partial;
1536 		}
1537 		raw_spin_unlock_irq(&logbuf_lock);
1538 		break;
1539 	/* Size of the log buffer */
1540 	case SYSLOG_ACTION_SIZE_BUFFER:
1541 		error = log_buf_len;
1542 		break;
1543 	default:
1544 		error = -EINVAL;
1545 		break;
1546 	}
1547 out:
1548 	return error;
1549 }
1550 
1551 SYSCALL_DEFINE3(syslog, int, type, char __user *, buf, int, len)
1552 {
1553 	return do_syslog(type, buf, len, SYSLOG_FROM_READER);
1554 }
1555 
1556 /*
1557  * Call the console drivers, asking them to write out
1558  * log_buf[start] to log_buf[end - 1].
1559  * The console_lock must be held.
1560  */
1561 static void call_console_drivers(int level,
1562 				 const char *ext_text, size_t ext_len,
1563 				 const char *text, size_t len)
1564 {
1565 	struct console *con;
1566 
1567 	trace_console(text, len);
1568 
1569 	if (!console_drivers)
1570 		return;
1571 
1572 	for_each_console(con) {
1573 		if (exclusive_console && con != exclusive_console)
1574 			continue;
1575 		if (!(con->flags & CON_ENABLED))
1576 			continue;
1577 		if (!con->write)
1578 			continue;
1579 		if (!cpu_online(smp_processor_id()) &&
1580 		    !(con->flags & CON_ANYTIME))
1581 			continue;
1582 		if (con->flags & CON_EXTENDED)
1583 			con->write(con, ext_text, ext_len);
1584 		else
1585 			con->write(con, text, len);
1586 	}
1587 }
1588 
1589 /*
1590  * Zap console related locks when oopsing.
1591  * To leave time for slow consoles to print a full oops,
1592  * only zap at most once every 30 seconds.
1593  */
1594 static void zap_locks(void)
1595 {
1596 	static unsigned long oops_timestamp;
1597 
1598 	if (time_after_eq(jiffies, oops_timestamp) &&
1599 	    !time_after(jiffies, oops_timestamp + 30 * HZ))
1600 		return;
1601 
1602 	oops_timestamp = jiffies;
1603 
1604 	debug_locks_off();
1605 	/* If a crash is occurring, make sure we can't deadlock */
1606 	raw_spin_lock_init(&logbuf_lock);
1607 	/* And make sure that we print immediately */
1608 	sema_init(&console_sem, 1);
1609 }
1610 
1611 int printk_delay_msec __read_mostly;
1612 
1613 static inline void printk_delay(void)
1614 {
1615 	if (unlikely(printk_delay_msec)) {
1616 		int m = printk_delay_msec;
1617 
1618 		while (m--) {
1619 			mdelay(1);
1620 			touch_nmi_watchdog();
1621 		}
1622 	}
1623 }
1624 
1625 /*
1626  * Continuation lines are buffered, and not committed to the record buffer
1627  * until the line is complete, or a race forces it. The line fragments
1628  * though, are printed immediately to the consoles to ensure everything has
1629  * reached the console in case of a kernel crash.
1630  */
1631 static struct cont {
1632 	char buf[LOG_LINE_MAX];
1633 	size_t len;			/* length == 0 means unused buffer */
1634 	size_t cons;			/* bytes written to console */
1635 	struct task_struct *owner;	/* task of first print*/
1636 	u64 ts_nsec;			/* time of first print */
1637 	u8 level;			/* log level of first message */
1638 	u8 facility;			/* log facility of first message */
1639 	enum log_flags flags;		/* prefix, newline flags */
1640 	bool flushed:1;			/* buffer sealed and committed */
1641 } cont;
1642 
1643 static void cont_flush(void)
1644 {
1645 	if (cont.flushed)
1646 		return;
1647 	if (cont.len == 0)
1648 		return;
1649 	if (cont.cons) {
1650 		/*
1651 		 * If a fragment of this line was directly flushed to the
1652 		 * console; wait for the console to pick up the rest of the
1653 		 * line. LOG_NOCONS suppresses a duplicated output.
1654 		 */
1655 		log_store(cont.facility, cont.level, cont.flags | LOG_NOCONS,
1656 			  cont.ts_nsec, NULL, 0, cont.buf, cont.len);
1657 		cont.flushed = true;
1658 	} else {
1659 		/*
1660 		 * If no fragment of this line ever reached the console,
1661 		 * just submit it to the store and free the buffer.
1662 		 */
1663 		log_store(cont.facility, cont.level, cont.flags, 0,
1664 			  NULL, 0, cont.buf, cont.len);
1665 		cont.len = 0;
1666 	}
1667 }
1668 
1669 static bool cont_add(int facility, int level, enum log_flags flags, const char *text, size_t len)
1670 {
1671 	if (cont.len && cont.flushed)
1672 		return false;
1673 
1674 	/*
1675 	 * If ext consoles are present, flush and skip in-kernel
1676 	 * continuation.  See nr_ext_console_drivers definition.  Also, if
1677 	 * the line gets too long, split it up in separate records.
1678 	 */
1679 	if (nr_ext_console_drivers || cont.len + len > sizeof(cont.buf)) {
1680 		cont_flush();
1681 		return false;
1682 	}
1683 
1684 	if (!cont.len) {
1685 		cont.facility = facility;
1686 		cont.level = level;
1687 		cont.owner = current;
1688 		cont.ts_nsec = local_clock();
1689 		cont.flags = flags;
1690 		cont.cons = 0;
1691 		cont.flushed = false;
1692 	}
1693 
1694 	memcpy(cont.buf + cont.len, text, len);
1695 	cont.len += len;
1696 
1697 	// The original flags come from the first line,
1698 	// but later continuations can add a newline.
1699 	if (flags & LOG_NEWLINE) {
1700 		cont.flags |= LOG_NEWLINE;
1701 		cont_flush();
1702 	}
1703 
1704 	if (cont.len > (sizeof(cont.buf) * 80) / 100)
1705 		cont_flush();
1706 
1707 	return true;
1708 }
1709 
1710 static size_t cont_print_text(char *text, size_t size)
1711 {
1712 	size_t textlen = 0;
1713 	size_t len;
1714 
1715 	if (cont.cons == 0 && (console_prev & LOG_NEWLINE)) {
1716 		textlen += print_time(cont.ts_nsec, text);
1717 		size -= textlen;
1718 	}
1719 
1720 	len = cont.len - cont.cons;
1721 	if (len > 0) {
1722 		if (len+1 > size)
1723 			len = size-1;
1724 		memcpy(text + textlen, cont.buf + cont.cons, len);
1725 		textlen += len;
1726 		cont.cons = cont.len;
1727 	}
1728 
1729 	if (cont.flushed) {
1730 		if (cont.flags & LOG_NEWLINE)
1731 			text[textlen++] = '\n';
1732 		/* got everything, release buffer */
1733 		cont.len = 0;
1734 	}
1735 	return textlen;
1736 }
1737 
1738 static size_t log_output(int facility, int level, enum log_flags lflags, const char *dict, size_t dictlen, char *text, size_t text_len)
1739 {
1740 	/*
1741 	 * If an earlier line was buffered, and we're a continuation
1742 	 * write from the same process, try to add it to the buffer.
1743 	 */
1744 	if (cont.len) {
1745 		if (cont.owner == current && (lflags & LOG_CONT)) {
1746 			if (cont_add(facility, level, lflags, text, text_len))
1747 				return text_len;
1748 		}
1749 		/* Otherwise, make sure it's flushed */
1750 		cont_flush();
1751 	}
1752 
1753 	/* Skip empty continuation lines that couldn't be added - they just flush */
1754 	if (!text_len && (lflags & LOG_CONT))
1755 		return 0;
1756 
1757 	/* If it doesn't end in a newline, try to buffer the current line */
1758 	if (!(lflags & LOG_NEWLINE)) {
1759 		if (cont_add(facility, level, lflags, text, text_len))
1760 			return text_len;
1761 	}
1762 
1763 	/* Store it in the record log */
1764 	return log_store(facility, level, lflags, 0, dict, dictlen, text, text_len);
1765 }
1766 
1767 asmlinkage int vprintk_emit(int facility, int level,
1768 			    const char *dict, size_t dictlen,
1769 			    const char *fmt, va_list args)
1770 {
1771 	static bool recursion_bug;
1772 	static char textbuf[LOG_LINE_MAX];
1773 	char *text = textbuf;
1774 	size_t text_len = 0;
1775 	enum log_flags lflags = 0;
1776 	unsigned long flags;
1777 	int this_cpu;
1778 	int printed_len = 0;
1779 	int nmi_message_lost;
1780 	bool in_sched = false;
1781 	/* cpu currently holding logbuf_lock in this function */
1782 	static unsigned int logbuf_cpu = UINT_MAX;
1783 
1784 	if (level == LOGLEVEL_SCHED) {
1785 		level = LOGLEVEL_DEFAULT;
1786 		in_sched = true;
1787 	}
1788 
1789 	boot_delay_msec(level);
1790 	printk_delay();
1791 
1792 	local_irq_save(flags);
1793 	this_cpu = smp_processor_id();
1794 
1795 	/*
1796 	 * Ouch, printk recursed into itself!
1797 	 */
1798 	if (unlikely(logbuf_cpu == this_cpu)) {
1799 		/*
1800 		 * If a crash is occurring during printk() on this CPU,
1801 		 * then try to get the crash message out but make sure
1802 		 * we can't deadlock. Otherwise just return to avoid the
1803 		 * recursion and return - but flag the recursion so that
1804 		 * it can be printed at the next appropriate moment:
1805 		 */
1806 		if (!oops_in_progress && !lockdep_recursing(current)) {
1807 			recursion_bug = true;
1808 			local_irq_restore(flags);
1809 			return 0;
1810 		}
1811 		zap_locks();
1812 	}
1813 
1814 	lockdep_off();
1815 	/* This stops the holder of console_sem just where we want him */
1816 	raw_spin_lock(&logbuf_lock);
1817 	logbuf_cpu = this_cpu;
1818 
1819 	if (unlikely(recursion_bug)) {
1820 		static const char recursion_msg[] =
1821 			"BUG: recent printk recursion!";
1822 
1823 		recursion_bug = false;
1824 		/* emit KERN_CRIT message */
1825 		printed_len += log_store(0, 2, LOG_PREFIX|LOG_NEWLINE, 0,
1826 					 NULL, 0, recursion_msg,
1827 					 strlen(recursion_msg));
1828 	}
1829 
1830 	nmi_message_lost = get_nmi_message_lost();
1831 	if (unlikely(nmi_message_lost)) {
1832 		text_len = scnprintf(textbuf, sizeof(textbuf),
1833 				     "BAD LUCK: lost %d message(s) from NMI context!",
1834 				     nmi_message_lost);
1835 		printed_len += log_store(0, 2, LOG_PREFIX|LOG_NEWLINE, 0,
1836 					 NULL, 0, textbuf, text_len);
1837 	}
1838 
1839 	/*
1840 	 * The printf needs to come first; we need the syslog
1841 	 * prefix which might be passed-in as a parameter.
1842 	 */
1843 	text_len = vscnprintf(text, sizeof(textbuf), fmt, args);
1844 
1845 	/* mark and strip a trailing newline */
1846 	if (text_len && text[text_len-1] == '\n') {
1847 		text_len--;
1848 		lflags |= LOG_NEWLINE;
1849 	}
1850 
1851 	/* strip kernel syslog prefix and extract log level or control flags */
1852 	if (facility == 0) {
1853 		int kern_level;
1854 
1855 		while ((kern_level = printk_get_level(text)) != 0) {
1856 			switch (kern_level) {
1857 			case '0' ... '7':
1858 				if (level == LOGLEVEL_DEFAULT)
1859 					level = kern_level - '0';
1860 				/* fallthrough */
1861 			case 'd':	/* KERN_DEFAULT */
1862 				lflags |= LOG_PREFIX;
1863 				break;
1864 			case 'c':	/* KERN_CONT */
1865 				lflags |= LOG_CONT;
1866 			}
1867 
1868 			text_len -= 2;
1869 			text += 2;
1870 		}
1871 	}
1872 
1873 	if (level == LOGLEVEL_DEFAULT)
1874 		level = default_message_loglevel;
1875 
1876 	if (dict)
1877 		lflags |= LOG_PREFIX|LOG_NEWLINE;
1878 
1879 	printed_len += log_output(facility, level, lflags, dict, dictlen, text, text_len);
1880 
1881 	logbuf_cpu = UINT_MAX;
1882 	raw_spin_unlock(&logbuf_lock);
1883 	lockdep_on();
1884 	local_irq_restore(flags);
1885 
1886 	/* If called from the scheduler, we can not call up(). */
1887 	if (!in_sched) {
1888 		lockdep_off();
1889 		/*
1890 		 * Try to acquire and then immediately release the console
1891 		 * semaphore.  The release will print out buffers and wake up
1892 		 * /dev/kmsg and syslog() users.
1893 		 */
1894 		if (console_trylock())
1895 			console_unlock();
1896 		lockdep_on();
1897 	}
1898 
1899 	return printed_len;
1900 }
1901 EXPORT_SYMBOL(vprintk_emit);
1902 
1903 asmlinkage int vprintk(const char *fmt, va_list args)
1904 {
1905 	return vprintk_emit(0, LOGLEVEL_DEFAULT, NULL, 0, fmt, args);
1906 }
1907 EXPORT_SYMBOL(vprintk);
1908 
1909 asmlinkage int printk_emit(int facility, int level,
1910 			   const char *dict, size_t dictlen,
1911 			   const char *fmt, ...)
1912 {
1913 	va_list args;
1914 	int r;
1915 
1916 	va_start(args, fmt);
1917 	r = vprintk_emit(facility, level, dict, dictlen, fmt, args);
1918 	va_end(args);
1919 
1920 	return r;
1921 }
1922 EXPORT_SYMBOL(printk_emit);
1923 
1924 int vprintk_default(const char *fmt, va_list args)
1925 {
1926 	int r;
1927 
1928 #ifdef CONFIG_KGDB_KDB
1929 	if (unlikely(kdb_trap_printk)) {
1930 		r = vkdb_printf(KDB_MSGSRC_PRINTK, fmt, args);
1931 		return r;
1932 	}
1933 #endif
1934 	r = vprintk_emit(0, LOGLEVEL_DEFAULT, NULL, 0, fmt, args);
1935 
1936 	return r;
1937 }
1938 EXPORT_SYMBOL_GPL(vprintk_default);
1939 
1940 /**
1941  * printk - print a kernel message
1942  * @fmt: format string
1943  *
1944  * This is printk(). It can be called from any context. We want it to work.
1945  *
1946  * We try to grab the console_lock. If we succeed, it's easy - we log the
1947  * output and call the console drivers.  If we fail to get the semaphore, we
1948  * place the output into the log buffer and return. The current holder of
1949  * the console_sem will notice the new output in console_unlock(); and will
1950  * send it to the consoles before releasing the lock.
1951  *
1952  * One effect of this deferred printing is that code which calls printk() and
1953  * then changes console_loglevel may break. This is because console_loglevel
1954  * is inspected when the actual printing occurs.
1955  *
1956  * See also:
1957  * printf(3)
1958  *
1959  * See the vsnprintf() documentation for format string extensions over C99.
1960  */
1961 asmlinkage __visible int printk(const char *fmt, ...)
1962 {
1963 	va_list args;
1964 	int r;
1965 
1966 	va_start(args, fmt);
1967 	r = vprintk_func(fmt, args);
1968 	va_end(args);
1969 
1970 	return r;
1971 }
1972 EXPORT_SYMBOL(printk);
1973 
1974 #else /* CONFIG_PRINTK */
1975 
1976 #define LOG_LINE_MAX		0
1977 #define PREFIX_MAX		0
1978 
1979 static u64 syslog_seq;
1980 static u32 syslog_idx;
1981 static u64 console_seq;
1982 static u32 console_idx;
1983 static enum log_flags syslog_prev;
1984 static u64 log_first_seq;
1985 static u32 log_first_idx;
1986 static u64 log_next_seq;
1987 static enum log_flags console_prev;
1988 static struct cont {
1989 	size_t len;
1990 	size_t cons;
1991 	u8 level;
1992 	bool flushed:1;
1993 } cont;
1994 static char *log_text(const struct printk_log *msg) { return NULL; }
1995 static char *log_dict(const struct printk_log *msg) { return NULL; }
1996 static struct printk_log *log_from_idx(u32 idx) { return NULL; }
1997 static u32 log_next(u32 idx) { return 0; }
1998 static ssize_t msg_print_ext_header(char *buf, size_t size,
1999 				    struct printk_log *msg, u64 seq,
2000 				    enum log_flags prev_flags) { return 0; }
2001 static ssize_t msg_print_ext_body(char *buf, size_t size,
2002 				  char *dict, size_t dict_len,
2003 				  char *text, size_t text_len) { return 0; }
2004 static void call_console_drivers(int level,
2005 				 const char *ext_text, size_t ext_len,
2006 				 const char *text, size_t len) {}
2007 static size_t msg_print_text(const struct printk_log *msg, enum log_flags prev,
2008 			     bool syslog, char *buf, size_t size) { return 0; }
2009 static size_t cont_print_text(char *text, size_t size) { return 0; }
2010 static bool suppress_message_printing(int level) { return false; }
2011 
2012 /* Still needs to be defined for users */
2013 DEFINE_PER_CPU(printk_func_t, printk_func);
2014 
2015 #endif /* CONFIG_PRINTK */
2016 
2017 #ifdef CONFIG_EARLY_PRINTK
2018 struct console *early_console;
2019 
2020 asmlinkage __visible void early_printk(const char *fmt, ...)
2021 {
2022 	va_list ap;
2023 	char buf[512];
2024 	int n;
2025 
2026 	if (!early_console)
2027 		return;
2028 
2029 	va_start(ap, fmt);
2030 	n = vscnprintf(buf, sizeof(buf), fmt, ap);
2031 	va_end(ap);
2032 
2033 	early_console->write(early_console, buf, n);
2034 }
2035 #endif
2036 
2037 static int __add_preferred_console(char *name, int idx, char *options,
2038 				   char *brl_options)
2039 {
2040 	struct console_cmdline *c;
2041 	int i;
2042 
2043 	/*
2044 	 *	See if this tty is not yet registered, and
2045 	 *	if we have a slot free.
2046 	 */
2047 	for (i = 0, c = console_cmdline;
2048 	     i < MAX_CMDLINECONSOLES && c->name[0];
2049 	     i++, c++) {
2050 		if (strcmp(c->name, name) == 0 && c->index == idx) {
2051 			if (!brl_options)
2052 				selected_console = i;
2053 			return 0;
2054 		}
2055 	}
2056 	if (i == MAX_CMDLINECONSOLES)
2057 		return -E2BIG;
2058 	if (!brl_options)
2059 		selected_console = i;
2060 	strlcpy(c->name, name, sizeof(c->name));
2061 	c->options = options;
2062 	braille_set_options(c, brl_options);
2063 
2064 	c->index = idx;
2065 	return 0;
2066 }
2067 /*
2068  * Set up a console.  Called via do_early_param() in init/main.c
2069  * for each "console=" parameter in the boot command line.
2070  */
2071 static int __init console_setup(char *str)
2072 {
2073 	char buf[sizeof(console_cmdline[0].name) + 4]; /* 4 for "ttyS" */
2074 	char *s, *options, *brl_options = NULL;
2075 	int idx;
2076 
2077 	if (_braille_console_setup(&str, &brl_options))
2078 		return 1;
2079 
2080 	/*
2081 	 * Decode str into name, index, options.
2082 	 */
2083 	if (str[0] >= '0' && str[0] <= '9') {
2084 		strcpy(buf, "ttyS");
2085 		strncpy(buf + 4, str, sizeof(buf) - 5);
2086 	} else {
2087 		strncpy(buf, str, sizeof(buf) - 1);
2088 	}
2089 	buf[sizeof(buf) - 1] = 0;
2090 	options = strchr(str, ',');
2091 	if (options)
2092 		*(options++) = 0;
2093 #ifdef __sparc__
2094 	if (!strcmp(str, "ttya"))
2095 		strcpy(buf, "ttyS0");
2096 	if (!strcmp(str, "ttyb"))
2097 		strcpy(buf, "ttyS1");
2098 #endif
2099 	for (s = buf; *s; s++)
2100 		if (isdigit(*s) || *s == ',')
2101 			break;
2102 	idx = simple_strtoul(s, NULL, 10);
2103 	*s = 0;
2104 
2105 	__add_preferred_console(buf, idx, options, brl_options);
2106 	console_set_on_cmdline = 1;
2107 	return 1;
2108 }
2109 __setup("console=", console_setup);
2110 
2111 /**
2112  * add_preferred_console - add a device to the list of preferred consoles.
2113  * @name: device name
2114  * @idx: device index
2115  * @options: options for this console
2116  *
2117  * The last preferred console added will be used for kernel messages
2118  * and stdin/out/err for init.  Normally this is used by console_setup
2119  * above to handle user-supplied console arguments; however it can also
2120  * be used by arch-specific code either to override the user or more
2121  * commonly to provide a default console (ie from PROM variables) when
2122  * the user has not supplied one.
2123  */
2124 int add_preferred_console(char *name, int idx, char *options)
2125 {
2126 	return __add_preferred_console(name, idx, options, NULL);
2127 }
2128 
2129 bool console_suspend_enabled = true;
2130 EXPORT_SYMBOL(console_suspend_enabled);
2131 
2132 static int __init console_suspend_disable(char *str)
2133 {
2134 	console_suspend_enabled = false;
2135 	return 1;
2136 }
2137 __setup("no_console_suspend", console_suspend_disable);
2138 module_param_named(console_suspend, console_suspend_enabled,
2139 		bool, S_IRUGO | S_IWUSR);
2140 MODULE_PARM_DESC(console_suspend, "suspend console during suspend"
2141 	" and hibernate operations");
2142 
2143 /**
2144  * suspend_console - suspend the console subsystem
2145  *
2146  * This disables printk() while we go into suspend states
2147  */
2148 void suspend_console(void)
2149 {
2150 	if (!console_suspend_enabled)
2151 		return;
2152 	printk("Suspending console(s) (use no_console_suspend to debug)\n");
2153 	console_lock();
2154 	console_suspended = 1;
2155 	up_console_sem();
2156 }
2157 
2158 void resume_console(void)
2159 {
2160 	if (!console_suspend_enabled)
2161 		return;
2162 	down_console_sem();
2163 	console_suspended = 0;
2164 	console_unlock();
2165 }
2166 
2167 /**
2168  * console_cpu_notify - print deferred console messages after CPU hotplug
2169  * @self: notifier struct
2170  * @action: CPU hotplug event
2171  * @hcpu: unused
2172  *
2173  * If printk() is called from a CPU that is not online yet, the messages
2174  * will be spooled but will not show up on the console.  This function is
2175  * called when a new CPU comes online (or fails to come up), and ensures
2176  * that any such output gets printed.
2177  */
2178 static int console_cpu_notify(struct notifier_block *self,
2179 	unsigned long action, void *hcpu)
2180 {
2181 	switch (action) {
2182 	case CPU_ONLINE:
2183 	case CPU_DEAD:
2184 	case CPU_DOWN_FAILED:
2185 	case CPU_UP_CANCELED:
2186 		console_lock();
2187 		console_unlock();
2188 	}
2189 	return NOTIFY_OK;
2190 }
2191 
2192 /**
2193  * console_lock - lock the console system for exclusive use.
2194  *
2195  * Acquires a lock which guarantees that the caller has
2196  * exclusive access to the console system and the console_drivers list.
2197  *
2198  * Can sleep, returns nothing.
2199  */
2200 void console_lock(void)
2201 {
2202 	might_sleep();
2203 
2204 	down_console_sem();
2205 	if (console_suspended)
2206 		return;
2207 	console_locked = 1;
2208 	console_may_schedule = 1;
2209 }
2210 EXPORT_SYMBOL(console_lock);
2211 
2212 /**
2213  * console_trylock - try to lock the console system for exclusive use.
2214  *
2215  * Try to acquire a lock which guarantees that the caller has exclusive
2216  * access to the console system and the console_drivers list.
2217  *
2218  * returns 1 on success, and 0 on failure to acquire the lock.
2219  */
2220 int console_trylock(void)
2221 {
2222 	if (down_trylock_console_sem())
2223 		return 0;
2224 	if (console_suspended) {
2225 		up_console_sem();
2226 		return 0;
2227 	}
2228 	console_locked = 1;
2229 	/*
2230 	 * When PREEMPT_COUNT disabled we can't reliably detect if it's
2231 	 * safe to schedule (e.g. calling printk while holding a spin_lock),
2232 	 * because preempt_disable()/preempt_enable() are just barriers there
2233 	 * and preempt_count() is always 0.
2234 	 *
2235 	 * RCU read sections have a separate preemption counter when
2236 	 * PREEMPT_RCU enabled thus we must take extra care and check
2237 	 * rcu_preempt_depth(), otherwise RCU read sections modify
2238 	 * preempt_count().
2239 	 */
2240 	console_may_schedule = !oops_in_progress &&
2241 			preemptible() &&
2242 			!rcu_preempt_depth();
2243 	return 1;
2244 }
2245 EXPORT_SYMBOL(console_trylock);
2246 
2247 int is_console_locked(void)
2248 {
2249 	return console_locked;
2250 }
2251 
2252 /*
2253  * Check if we have any console that is capable of printing while cpu is
2254  * booting or shutting down. Requires console_sem.
2255  */
2256 static int have_callable_console(void)
2257 {
2258 	struct console *con;
2259 
2260 	for_each_console(con)
2261 		if ((con->flags & CON_ENABLED) &&
2262 				(con->flags & CON_ANYTIME))
2263 			return 1;
2264 
2265 	return 0;
2266 }
2267 
2268 /*
2269  * Can we actually use the console at this time on this cpu?
2270  *
2271  * Console drivers may assume that per-cpu resources have been allocated. So
2272  * unless they're explicitly marked as being able to cope (CON_ANYTIME) don't
2273  * call them until this CPU is officially up.
2274  */
2275 static inline int can_use_console(void)
2276 {
2277 	return cpu_online(raw_smp_processor_id()) || have_callable_console();
2278 }
2279 
2280 static void console_cont_flush(char *text, size_t size)
2281 {
2282 	unsigned long flags;
2283 	size_t len;
2284 
2285 	raw_spin_lock_irqsave(&logbuf_lock, flags);
2286 
2287 	if (!cont.len)
2288 		goto out;
2289 
2290 	if (suppress_message_printing(cont.level)) {
2291 		cont.cons = cont.len;
2292 		if (cont.flushed)
2293 			cont.len = 0;
2294 		goto out;
2295 	}
2296 
2297 	/*
2298 	 * We still queue earlier records, likely because the console was
2299 	 * busy. The earlier ones need to be printed before this one, we
2300 	 * did not flush any fragment so far, so just let it queue up.
2301 	 */
2302 	if (console_seq < log_next_seq && !cont.cons)
2303 		goto out;
2304 
2305 	len = cont_print_text(text, size);
2306 	raw_spin_unlock(&logbuf_lock);
2307 	stop_critical_timings();
2308 	call_console_drivers(cont.level, NULL, 0, text, len);
2309 	start_critical_timings();
2310 	local_irq_restore(flags);
2311 	return;
2312 out:
2313 	raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2314 }
2315 
2316 /**
2317  * console_unlock - unlock the console system
2318  *
2319  * Releases the console_lock which the caller holds on the console system
2320  * and the console driver list.
2321  *
2322  * While the console_lock was held, console output may have been buffered
2323  * by printk().  If this is the case, console_unlock(); emits
2324  * the output prior to releasing the lock.
2325  *
2326  * If there is output waiting, we wake /dev/kmsg and syslog() users.
2327  *
2328  * console_unlock(); may be called from any context.
2329  */
2330 void console_unlock(void)
2331 {
2332 	static char ext_text[CONSOLE_EXT_LOG_MAX];
2333 	static char text[LOG_LINE_MAX + PREFIX_MAX];
2334 	static u64 seen_seq;
2335 	unsigned long flags;
2336 	bool wake_klogd = false;
2337 	bool do_cond_resched, retry;
2338 
2339 	if (console_suspended) {
2340 		up_console_sem();
2341 		return;
2342 	}
2343 
2344 	/*
2345 	 * Console drivers are called under logbuf_lock, so
2346 	 * @console_may_schedule should be cleared before; however, we may
2347 	 * end up dumping a lot of lines, for example, if called from
2348 	 * console registration path, and should invoke cond_resched()
2349 	 * between lines if allowable.  Not doing so can cause a very long
2350 	 * scheduling stall on a slow console leading to RCU stall and
2351 	 * softlockup warnings which exacerbate the issue with more
2352 	 * messages practically incapacitating the system.
2353 	 */
2354 	do_cond_resched = console_may_schedule;
2355 	console_may_schedule = 0;
2356 
2357 again:
2358 	/*
2359 	 * We released the console_sem lock, so we need to recheck if
2360 	 * cpu is online and (if not) is there at least one CON_ANYTIME
2361 	 * console.
2362 	 */
2363 	if (!can_use_console()) {
2364 		console_locked = 0;
2365 		up_console_sem();
2366 		return;
2367 	}
2368 
2369 	/* flush buffered message fragment immediately to console */
2370 	console_cont_flush(text, sizeof(text));
2371 
2372 	for (;;) {
2373 		struct printk_log *msg;
2374 		size_t ext_len = 0;
2375 		size_t len;
2376 		int level;
2377 
2378 		raw_spin_lock_irqsave(&logbuf_lock, flags);
2379 		if (seen_seq != log_next_seq) {
2380 			wake_klogd = true;
2381 			seen_seq = log_next_seq;
2382 		}
2383 
2384 		if (console_seq < log_first_seq) {
2385 			len = sprintf(text, "** %u printk messages dropped ** ",
2386 				      (unsigned)(log_first_seq - console_seq));
2387 
2388 			/* messages are gone, move to first one */
2389 			console_seq = log_first_seq;
2390 			console_idx = log_first_idx;
2391 			console_prev = 0;
2392 		} else {
2393 			len = 0;
2394 		}
2395 skip:
2396 		if (console_seq == log_next_seq)
2397 			break;
2398 
2399 		msg = log_from_idx(console_idx);
2400 		level = msg->level;
2401 		if ((msg->flags & LOG_NOCONS) ||
2402 				suppress_message_printing(level)) {
2403 			/*
2404 			 * Skip record we have buffered and already printed
2405 			 * directly to the console when we received it, and
2406 			 * record that has level above the console loglevel.
2407 			 */
2408 			console_idx = log_next(console_idx);
2409 			console_seq++;
2410 			/*
2411 			 * We will get here again when we register a new
2412 			 * CON_PRINTBUFFER console. Clear the flag so we
2413 			 * will properly dump everything later.
2414 			 */
2415 			msg->flags &= ~LOG_NOCONS;
2416 			console_prev = msg->flags;
2417 			goto skip;
2418 		}
2419 
2420 		len += msg_print_text(msg, console_prev, false,
2421 				      text + len, sizeof(text) - len);
2422 		if (nr_ext_console_drivers) {
2423 			ext_len = msg_print_ext_header(ext_text,
2424 						sizeof(ext_text),
2425 						msg, console_seq, console_prev);
2426 			ext_len += msg_print_ext_body(ext_text + ext_len,
2427 						sizeof(ext_text) - ext_len,
2428 						log_dict(msg), msg->dict_len,
2429 						log_text(msg), msg->text_len);
2430 		}
2431 		console_idx = log_next(console_idx);
2432 		console_seq++;
2433 		console_prev = msg->flags;
2434 		raw_spin_unlock(&logbuf_lock);
2435 
2436 		stop_critical_timings();	/* don't trace print latency */
2437 		call_console_drivers(level, ext_text, ext_len, text, len);
2438 		start_critical_timings();
2439 		local_irq_restore(flags);
2440 
2441 		if (do_cond_resched)
2442 			cond_resched();
2443 	}
2444 	console_locked = 0;
2445 
2446 	/* Release the exclusive_console once it is used */
2447 	if (unlikely(exclusive_console))
2448 		exclusive_console = NULL;
2449 
2450 	raw_spin_unlock(&logbuf_lock);
2451 
2452 	up_console_sem();
2453 
2454 	/*
2455 	 * Someone could have filled up the buffer again, so re-check if there's
2456 	 * something to flush. In case we cannot trylock the console_sem again,
2457 	 * there's a new owner and the console_unlock() from them will do the
2458 	 * flush, no worries.
2459 	 */
2460 	raw_spin_lock(&logbuf_lock);
2461 	retry = console_seq != log_next_seq;
2462 	raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2463 
2464 	if (retry && console_trylock())
2465 		goto again;
2466 
2467 	if (wake_klogd)
2468 		wake_up_klogd();
2469 }
2470 EXPORT_SYMBOL(console_unlock);
2471 
2472 /**
2473  * console_conditional_schedule - yield the CPU if required
2474  *
2475  * If the console code is currently allowed to sleep, and
2476  * if this CPU should yield the CPU to another task, do
2477  * so here.
2478  *
2479  * Must be called within console_lock();.
2480  */
2481 void __sched console_conditional_schedule(void)
2482 {
2483 	if (console_may_schedule)
2484 		cond_resched();
2485 }
2486 EXPORT_SYMBOL(console_conditional_schedule);
2487 
2488 void console_unblank(void)
2489 {
2490 	struct console *c;
2491 
2492 	/*
2493 	 * console_unblank can no longer be called in interrupt context unless
2494 	 * oops_in_progress is set to 1..
2495 	 */
2496 	if (oops_in_progress) {
2497 		if (down_trylock_console_sem() != 0)
2498 			return;
2499 	} else
2500 		console_lock();
2501 
2502 	console_locked = 1;
2503 	console_may_schedule = 0;
2504 	for_each_console(c)
2505 		if ((c->flags & CON_ENABLED) && c->unblank)
2506 			c->unblank();
2507 	console_unlock();
2508 }
2509 
2510 /**
2511  * console_flush_on_panic - flush console content on panic
2512  *
2513  * Immediately output all pending messages no matter what.
2514  */
2515 void console_flush_on_panic(void)
2516 {
2517 	/*
2518 	 * If someone else is holding the console lock, trylock will fail
2519 	 * and may_schedule may be set.  Ignore and proceed to unlock so
2520 	 * that messages are flushed out.  As this can be called from any
2521 	 * context and we don't want to get preempted while flushing,
2522 	 * ensure may_schedule is cleared.
2523 	 */
2524 	console_trylock();
2525 	console_may_schedule = 0;
2526 	console_unlock();
2527 }
2528 
2529 /*
2530  * Return the console tty driver structure and its associated index
2531  */
2532 struct tty_driver *console_device(int *index)
2533 {
2534 	struct console *c;
2535 	struct tty_driver *driver = NULL;
2536 
2537 	console_lock();
2538 	for_each_console(c) {
2539 		if (!c->device)
2540 			continue;
2541 		driver = c->device(c, index);
2542 		if (driver)
2543 			break;
2544 	}
2545 	console_unlock();
2546 	return driver;
2547 }
2548 
2549 /*
2550  * Prevent further output on the passed console device so that (for example)
2551  * serial drivers can disable console output before suspending a port, and can
2552  * re-enable output afterwards.
2553  */
2554 void console_stop(struct console *console)
2555 {
2556 	console_lock();
2557 	console->flags &= ~CON_ENABLED;
2558 	console_unlock();
2559 }
2560 EXPORT_SYMBOL(console_stop);
2561 
2562 void console_start(struct console *console)
2563 {
2564 	console_lock();
2565 	console->flags |= CON_ENABLED;
2566 	console_unlock();
2567 }
2568 EXPORT_SYMBOL(console_start);
2569 
2570 static int __read_mostly keep_bootcon;
2571 
2572 static int __init keep_bootcon_setup(char *str)
2573 {
2574 	keep_bootcon = 1;
2575 	pr_info("debug: skip boot console de-registration.\n");
2576 
2577 	return 0;
2578 }
2579 
2580 early_param("keep_bootcon", keep_bootcon_setup);
2581 
2582 /*
2583  * The console driver calls this routine during kernel initialization
2584  * to register the console printing procedure with printk() and to
2585  * print any messages that were printed by the kernel before the
2586  * console driver was initialized.
2587  *
2588  * This can happen pretty early during the boot process (because of
2589  * early_printk) - sometimes before setup_arch() completes - be careful
2590  * of what kernel features are used - they may not be initialised yet.
2591  *
2592  * There are two types of consoles - bootconsoles (early_printk) and
2593  * "real" consoles (everything which is not a bootconsole) which are
2594  * handled differently.
2595  *  - Any number of bootconsoles can be registered at any time.
2596  *  - As soon as a "real" console is registered, all bootconsoles
2597  *    will be unregistered automatically.
2598  *  - Once a "real" console is registered, any attempt to register a
2599  *    bootconsoles will be rejected
2600  */
2601 void register_console(struct console *newcon)
2602 {
2603 	int i;
2604 	unsigned long flags;
2605 	struct console *bcon = NULL;
2606 	struct console_cmdline *c;
2607 
2608 	if (console_drivers)
2609 		for_each_console(bcon)
2610 			if (WARN(bcon == newcon,
2611 					"console '%s%d' already registered\n",
2612 					bcon->name, bcon->index))
2613 				return;
2614 
2615 	/*
2616 	 * before we register a new CON_BOOT console, make sure we don't
2617 	 * already have a valid console
2618 	 */
2619 	if (console_drivers && newcon->flags & CON_BOOT) {
2620 		/* find the last or real console */
2621 		for_each_console(bcon) {
2622 			if (!(bcon->flags & CON_BOOT)) {
2623 				pr_info("Too late to register bootconsole %s%d\n",
2624 					newcon->name, newcon->index);
2625 				return;
2626 			}
2627 		}
2628 	}
2629 
2630 	if (console_drivers && console_drivers->flags & CON_BOOT)
2631 		bcon = console_drivers;
2632 
2633 	if (preferred_console < 0 || bcon || !console_drivers)
2634 		preferred_console = selected_console;
2635 
2636 	/*
2637 	 *	See if we want to use this console driver. If we
2638 	 *	didn't select a console we take the first one
2639 	 *	that registers here.
2640 	 */
2641 	if (preferred_console < 0) {
2642 		if (newcon->index < 0)
2643 			newcon->index = 0;
2644 		if (newcon->setup == NULL ||
2645 		    newcon->setup(newcon, NULL) == 0) {
2646 			newcon->flags |= CON_ENABLED;
2647 			if (newcon->device) {
2648 				newcon->flags |= CON_CONSDEV;
2649 				preferred_console = 0;
2650 			}
2651 		}
2652 	}
2653 
2654 	/*
2655 	 *	See if this console matches one we selected on
2656 	 *	the command line.
2657 	 */
2658 	for (i = 0, c = console_cmdline;
2659 	     i < MAX_CMDLINECONSOLES && c->name[0];
2660 	     i++, c++) {
2661 		if (!newcon->match ||
2662 		    newcon->match(newcon, c->name, c->index, c->options) != 0) {
2663 			/* default matching */
2664 			BUILD_BUG_ON(sizeof(c->name) != sizeof(newcon->name));
2665 			if (strcmp(c->name, newcon->name) != 0)
2666 				continue;
2667 			if (newcon->index >= 0 &&
2668 			    newcon->index != c->index)
2669 				continue;
2670 			if (newcon->index < 0)
2671 				newcon->index = c->index;
2672 
2673 			if (_braille_register_console(newcon, c))
2674 				return;
2675 
2676 			if (newcon->setup &&
2677 			    newcon->setup(newcon, c->options) != 0)
2678 				break;
2679 		}
2680 
2681 		newcon->flags |= CON_ENABLED;
2682 		if (i == selected_console) {
2683 			newcon->flags |= CON_CONSDEV;
2684 			preferred_console = selected_console;
2685 		}
2686 		break;
2687 	}
2688 
2689 	if (!(newcon->flags & CON_ENABLED))
2690 		return;
2691 
2692 	/*
2693 	 * If we have a bootconsole, and are switching to a real console,
2694 	 * don't print everything out again, since when the boot console, and
2695 	 * the real console are the same physical device, it's annoying to
2696 	 * see the beginning boot messages twice
2697 	 */
2698 	if (bcon && ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV))
2699 		newcon->flags &= ~CON_PRINTBUFFER;
2700 
2701 	/*
2702 	 *	Put this console in the list - keep the
2703 	 *	preferred driver at the head of the list.
2704 	 */
2705 	console_lock();
2706 	if ((newcon->flags & CON_CONSDEV) || console_drivers == NULL) {
2707 		newcon->next = console_drivers;
2708 		console_drivers = newcon;
2709 		if (newcon->next)
2710 			newcon->next->flags &= ~CON_CONSDEV;
2711 	} else {
2712 		newcon->next = console_drivers->next;
2713 		console_drivers->next = newcon;
2714 	}
2715 
2716 	if (newcon->flags & CON_EXTENDED)
2717 		if (!nr_ext_console_drivers++)
2718 			pr_info("printk: continuation disabled due to ext consoles, expect more fragments in /dev/kmsg\n");
2719 
2720 	if (newcon->flags & CON_PRINTBUFFER) {
2721 		/*
2722 		 * console_unlock(); will print out the buffered messages
2723 		 * for us.
2724 		 */
2725 		raw_spin_lock_irqsave(&logbuf_lock, flags);
2726 		console_seq = syslog_seq;
2727 		console_idx = syslog_idx;
2728 		console_prev = syslog_prev;
2729 		raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2730 		/*
2731 		 * We're about to replay the log buffer.  Only do this to the
2732 		 * just-registered console to avoid excessive message spam to
2733 		 * the already-registered consoles.
2734 		 */
2735 		exclusive_console = newcon;
2736 	}
2737 	console_unlock();
2738 	console_sysfs_notify();
2739 
2740 	/*
2741 	 * By unregistering the bootconsoles after we enable the real console
2742 	 * we get the "console xxx enabled" message on all the consoles -
2743 	 * boot consoles, real consoles, etc - this is to ensure that end
2744 	 * users know there might be something in the kernel's log buffer that
2745 	 * went to the bootconsole (that they do not see on the real console)
2746 	 */
2747 	pr_info("%sconsole [%s%d] enabled\n",
2748 		(newcon->flags & CON_BOOT) ? "boot" : "" ,
2749 		newcon->name, newcon->index);
2750 	if (bcon &&
2751 	    ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV) &&
2752 	    !keep_bootcon) {
2753 		/* We need to iterate through all boot consoles, to make
2754 		 * sure we print everything out, before we unregister them.
2755 		 */
2756 		for_each_console(bcon)
2757 			if (bcon->flags & CON_BOOT)
2758 				unregister_console(bcon);
2759 	}
2760 }
2761 EXPORT_SYMBOL(register_console);
2762 
2763 int unregister_console(struct console *console)
2764 {
2765         struct console *a, *b;
2766 	int res;
2767 
2768 	pr_info("%sconsole [%s%d] disabled\n",
2769 		(console->flags & CON_BOOT) ? "boot" : "" ,
2770 		console->name, console->index);
2771 
2772 	res = _braille_unregister_console(console);
2773 	if (res)
2774 		return res;
2775 
2776 	res = 1;
2777 	console_lock();
2778 	if (console_drivers == console) {
2779 		console_drivers=console->next;
2780 		res = 0;
2781 	} else if (console_drivers) {
2782 		for (a=console_drivers->next, b=console_drivers ;
2783 		     a; b=a, a=b->next) {
2784 			if (a == console) {
2785 				b->next = a->next;
2786 				res = 0;
2787 				break;
2788 			}
2789 		}
2790 	}
2791 
2792 	if (!res && (console->flags & CON_EXTENDED))
2793 		nr_ext_console_drivers--;
2794 
2795 	/*
2796 	 * If this isn't the last console and it has CON_CONSDEV set, we
2797 	 * need to set it on the next preferred console.
2798 	 */
2799 	if (console_drivers != NULL && console->flags & CON_CONSDEV)
2800 		console_drivers->flags |= CON_CONSDEV;
2801 
2802 	console->flags &= ~CON_ENABLED;
2803 	console_unlock();
2804 	console_sysfs_notify();
2805 	return res;
2806 }
2807 EXPORT_SYMBOL(unregister_console);
2808 
2809 /*
2810  * Some boot consoles access data that is in the init section and which will
2811  * be discarded after the initcalls have been run. To make sure that no code
2812  * will access this data, unregister the boot consoles in a late initcall.
2813  *
2814  * If for some reason, such as deferred probe or the driver being a loadable
2815  * module, the real console hasn't registered yet at this point, there will
2816  * be a brief interval in which no messages are logged to the console, which
2817  * makes it difficult to diagnose problems that occur during this time.
2818  *
2819  * To mitigate this problem somewhat, only unregister consoles whose memory
2820  * intersects with the init section. Note that code exists elsewhere to get
2821  * rid of the boot console as soon as the proper console shows up, so there
2822  * won't be side-effects from postponing the removal.
2823  */
2824 static int __init printk_late_init(void)
2825 {
2826 	struct console *con;
2827 
2828 	for_each_console(con) {
2829 		if (!keep_bootcon && con->flags & CON_BOOT) {
2830 			/*
2831 			 * Make sure to unregister boot consoles whose data
2832 			 * resides in the init section before the init section
2833 			 * is discarded. Boot consoles whose data will stick
2834 			 * around will automatically be unregistered when the
2835 			 * proper console replaces them.
2836 			 */
2837 			if (init_section_intersects(con, sizeof(*con)))
2838 				unregister_console(con);
2839 		}
2840 	}
2841 	hotcpu_notifier(console_cpu_notify, 0);
2842 	return 0;
2843 }
2844 late_initcall(printk_late_init);
2845 
2846 #if defined CONFIG_PRINTK
2847 /*
2848  * Delayed printk version, for scheduler-internal messages:
2849  */
2850 #define PRINTK_PENDING_WAKEUP	0x01
2851 #define PRINTK_PENDING_OUTPUT	0x02
2852 
2853 static DEFINE_PER_CPU(int, printk_pending);
2854 
2855 static void wake_up_klogd_work_func(struct irq_work *irq_work)
2856 {
2857 	int pending = __this_cpu_xchg(printk_pending, 0);
2858 
2859 	if (pending & PRINTK_PENDING_OUTPUT) {
2860 		/* If trylock fails, someone else is doing the printing */
2861 		if (console_trylock())
2862 			console_unlock();
2863 	}
2864 
2865 	if (pending & PRINTK_PENDING_WAKEUP)
2866 		wake_up_interruptible(&log_wait);
2867 }
2868 
2869 static DEFINE_PER_CPU(struct irq_work, wake_up_klogd_work) = {
2870 	.func = wake_up_klogd_work_func,
2871 	.flags = IRQ_WORK_LAZY,
2872 };
2873 
2874 void wake_up_klogd(void)
2875 {
2876 	preempt_disable();
2877 	if (waitqueue_active(&log_wait)) {
2878 		this_cpu_or(printk_pending, PRINTK_PENDING_WAKEUP);
2879 		irq_work_queue(this_cpu_ptr(&wake_up_klogd_work));
2880 	}
2881 	preempt_enable();
2882 }
2883 
2884 int printk_deferred(const char *fmt, ...)
2885 {
2886 	va_list args;
2887 	int r;
2888 
2889 	preempt_disable();
2890 	va_start(args, fmt);
2891 	r = vprintk_emit(0, LOGLEVEL_SCHED, NULL, 0, fmt, args);
2892 	va_end(args);
2893 
2894 	__this_cpu_or(printk_pending, PRINTK_PENDING_OUTPUT);
2895 	irq_work_queue(this_cpu_ptr(&wake_up_klogd_work));
2896 	preempt_enable();
2897 
2898 	return r;
2899 }
2900 
2901 /*
2902  * printk rate limiting, lifted from the networking subsystem.
2903  *
2904  * This enforces a rate limit: not more than 10 kernel messages
2905  * every 5s to make a denial-of-service attack impossible.
2906  */
2907 DEFINE_RATELIMIT_STATE(printk_ratelimit_state, 5 * HZ, 10);
2908 
2909 int __printk_ratelimit(const char *func)
2910 {
2911 	return ___ratelimit(&printk_ratelimit_state, func);
2912 }
2913 EXPORT_SYMBOL(__printk_ratelimit);
2914 
2915 /**
2916  * printk_timed_ratelimit - caller-controlled printk ratelimiting
2917  * @caller_jiffies: pointer to caller's state
2918  * @interval_msecs: minimum interval between prints
2919  *
2920  * printk_timed_ratelimit() returns true if more than @interval_msecs
2921  * milliseconds have elapsed since the last time printk_timed_ratelimit()
2922  * returned true.
2923  */
2924 bool printk_timed_ratelimit(unsigned long *caller_jiffies,
2925 			unsigned int interval_msecs)
2926 {
2927 	unsigned long elapsed = jiffies - *caller_jiffies;
2928 
2929 	if (*caller_jiffies && elapsed <= msecs_to_jiffies(interval_msecs))
2930 		return false;
2931 
2932 	*caller_jiffies = jiffies;
2933 	return true;
2934 }
2935 EXPORT_SYMBOL(printk_timed_ratelimit);
2936 
2937 static DEFINE_SPINLOCK(dump_list_lock);
2938 static LIST_HEAD(dump_list);
2939 
2940 /**
2941  * kmsg_dump_register - register a kernel log dumper.
2942  * @dumper: pointer to the kmsg_dumper structure
2943  *
2944  * Adds a kernel log dumper to the system. The dump callback in the
2945  * structure will be called when the kernel oopses or panics and must be
2946  * set. Returns zero on success and %-EINVAL or %-EBUSY otherwise.
2947  */
2948 int kmsg_dump_register(struct kmsg_dumper *dumper)
2949 {
2950 	unsigned long flags;
2951 	int err = -EBUSY;
2952 
2953 	/* The dump callback needs to be set */
2954 	if (!dumper->dump)
2955 		return -EINVAL;
2956 
2957 	spin_lock_irqsave(&dump_list_lock, flags);
2958 	/* Don't allow registering multiple times */
2959 	if (!dumper->registered) {
2960 		dumper->registered = 1;
2961 		list_add_tail_rcu(&dumper->list, &dump_list);
2962 		err = 0;
2963 	}
2964 	spin_unlock_irqrestore(&dump_list_lock, flags);
2965 
2966 	return err;
2967 }
2968 EXPORT_SYMBOL_GPL(kmsg_dump_register);
2969 
2970 /**
2971  * kmsg_dump_unregister - unregister a kmsg dumper.
2972  * @dumper: pointer to the kmsg_dumper structure
2973  *
2974  * Removes a dump device from the system. Returns zero on success and
2975  * %-EINVAL otherwise.
2976  */
2977 int kmsg_dump_unregister(struct kmsg_dumper *dumper)
2978 {
2979 	unsigned long flags;
2980 	int err = -EINVAL;
2981 
2982 	spin_lock_irqsave(&dump_list_lock, flags);
2983 	if (dumper->registered) {
2984 		dumper->registered = 0;
2985 		list_del_rcu(&dumper->list);
2986 		err = 0;
2987 	}
2988 	spin_unlock_irqrestore(&dump_list_lock, flags);
2989 	synchronize_rcu();
2990 
2991 	return err;
2992 }
2993 EXPORT_SYMBOL_GPL(kmsg_dump_unregister);
2994 
2995 static bool always_kmsg_dump;
2996 module_param_named(always_kmsg_dump, always_kmsg_dump, bool, S_IRUGO | S_IWUSR);
2997 
2998 /**
2999  * kmsg_dump - dump kernel log to kernel message dumpers.
3000  * @reason: the reason (oops, panic etc) for dumping
3001  *
3002  * Call each of the registered dumper's dump() callback, which can
3003  * retrieve the kmsg records with kmsg_dump_get_line() or
3004  * kmsg_dump_get_buffer().
3005  */
3006 void kmsg_dump(enum kmsg_dump_reason reason)
3007 {
3008 	struct kmsg_dumper *dumper;
3009 	unsigned long flags;
3010 
3011 	if ((reason > KMSG_DUMP_OOPS) && !always_kmsg_dump)
3012 		return;
3013 
3014 	rcu_read_lock();
3015 	list_for_each_entry_rcu(dumper, &dump_list, list) {
3016 		if (dumper->max_reason && reason > dumper->max_reason)
3017 			continue;
3018 
3019 		/* initialize iterator with data about the stored records */
3020 		dumper->active = true;
3021 
3022 		raw_spin_lock_irqsave(&logbuf_lock, flags);
3023 		dumper->cur_seq = clear_seq;
3024 		dumper->cur_idx = clear_idx;
3025 		dumper->next_seq = log_next_seq;
3026 		dumper->next_idx = log_next_idx;
3027 		raw_spin_unlock_irqrestore(&logbuf_lock, flags);
3028 
3029 		/* invoke dumper which will iterate over records */
3030 		dumper->dump(dumper, reason);
3031 
3032 		/* reset iterator */
3033 		dumper->active = false;
3034 	}
3035 	rcu_read_unlock();
3036 }
3037 
3038 /**
3039  * kmsg_dump_get_line_nolock - retrieve one kmsg log line (unlocked version)
3040  * @dumper: registered kmsg dumper
3041  * @syslog: include the "<4>" prefixes
3042  * @line: buffer to copy the line to
3043  * @size: maximum size of the buffer
3044  * @len: length of line placed into buffer
3045  *
3046  * Start at the beginning of the kmsg buffer, with the oldest kmsg
3047  * record, and copy one record into the provided buffer.
3048  *
3049  * Consecutive calls will return the next available record moving
3050  * towards the end of the buffer with the youngest messages.
3051  *
3052  * A return value of FALSE indicates that there are no more records to
3053  * read.
3054  *
3055  * The function is similar to kmsg_dump_get_line(), but grabs no locks.
3056  */
3057 bool kmsg_dump_get_line_nolock(struct kmsg_dumper *dumper, bool syslog,
3058 			       char *line, size_t size, size_t *len)
3059 {
3060 	struct printk_log *msg;
3061 	size_t l = 0;
3062 	bool ret = false;
3063 
3064 	if (!dumper->active)
3065 		goto out;
3066 
3067 	if (dumper->cur_seq < log_first_seq) {
3068 		/* messages are gone, move to first available one */
3069 		dumper->cur_seq = log_first_seq;
3070 		dumper->cur_idx = log_first_idx;
3071 	}
3072 
3073 	/* last entry */
3074 	if (dumper->cur_seq >= log_next_seq)
3075 		goto out;
3076 
3077 	msg = log_from_idx(dumper->cur_idx);
3078 	l = msg_print_text(msg, 0, syslog, line, size);
3079 
3080 	dumper->cur_idx = log_next(dumper->cur_idx);
3081 	dumper->cur_seq++;
3082 	ret = true;
3083 out:
3084 	if (len)
3085 		*len = l;
3086 	return ret;
3087 }
3088 
3089 /**
3090  * kmsg_dump_get_line - retrieve one kmsg log line
3091  * @dumper: registered kmsg dumper
3092  * @syslog: include the "<4>" prefixes
3093  * @line: buffer to copy the line to
3094  * @size: maximum size of the buffer
3095  * @len: length of line placed into buffer
3096  *
3097  * Start at the beginning of the kmsg buffer, with the oldest kmsg
3098  * record, and copy one record into the provided buffer.
3099  *
3100  * Consecutive calls will return the next available record moving
3101  * towards the end of the buffer with the youngest messages.
3102  *
3103  * A return value of FALSE indicates that there are no more records to
3104  * read.
3105  */
3106 bool kmsg_dump_get_line(struct kmsg_dumper *dumper, bool syslog,
3107 			char *line, size_t size, size_t *len)
3108 {
3109 	unsigned long flags;
3110 	bool ret;
3111 
3112 	raw_spin_lock_irqsave(&logbuf_lock, flags);
3113 	ret = kmsg_dump_get_line_nolock(dumper, syslog, line, size, len);
3114 	raw_spin_unlock_irqrestore(&logbuf_lock, flags);
3115 
3116 	return ret;
3117 }
3118 EXPORT_SYMBOL_GPL(kmsg_dump_get_line);
3119 
3120 /**
3121  * kmsg_dump_get_buffer - copy kmsg log lines
3122  * @dumper: registered kmsg dumper
3123  * @syslog: include the "<4>" prefixes
3124  * @buf: buffer to copy the line to
3125  * @size: maximum size of the buffer
3126  * @len: length of line placed into buffer
3127  *
3128  * Start at the end of the kmsg buffer and fill the provided buffer
3129  * with as many of the the *youngest* kmsg records that fit into it.
3130  * If the buffer is large enough, all available kmsg records will be
3131  * copied with a single call.
3132  *
3133  * Consecutive calls will fill the buffer with the next block of
3134  * available older records, not including the earlier retrieved ones.
3135  *
3136  * A return value of FALSE indicates that there are no more records to
3137  * read.
3138  */
3139 bool kmsg_dump_get_buffer(struct kmsg_dumper *dumper, bool syslog,
3140 			  char *buf, size_t size, size_t *len)
3141 {
3142 	unsigned long flags;
3143 	u64 seq;
3144 	u32 idx;
3145 	u64 next_seq;
3146 	u32 next_idx;
3147 	enum log_flags prev;
3148 	size_t l = 0;
3149 	bool ret = false;
3150 
3151 	if (!dumper->active)
3152 		goto out;
3153 
3154 	raw_spin_lock_irqsave(&logbuf_lock, flags);
3155 	if (dumper->cur_seq < log_first_seq) {
3156 		/* messages are gone, move to first available one */
3157 		dumper->cur_seq = log_first_seq;
3158 		dumper->cur_idx = log_first_idx;
3159 	}
3160 
3161 	/* last entry */
3162 	if (dumper->cur_seq >= dumper->next_seq) {
3163 		raw_spin_unlock_irqrestore(&logbuf_lock, flags);
3164 		goto out;
3165 	}
3166 
3167 	/* calculate length of entire buffer */
3168 	seq = dumper->cur_seq;
3169 	idx = dumper->cur_idx;
3170 	prev = 0;
3171 	while (seq < dumper->next_seq) {
3172 		struct printk_log *msg = log_from_idx(idx);
3173 
3174 		l += msg_print_text(msg, prev, true, NULL, 0);
3175 		idx = log_next(idx);
3176 		seq++;
3177 		prev = msg->flags;
3178 	}
3179 
3180 	/* move first record forward until length fits into the buffer */
3181 	seq = dumper->cur_seq;
3182 	idx = dumper->cur_idx;
3183 	prev = 0;
3184 	while (l > size && seq < dumper->next_seq) {
3185 		struct printk_log *msg = log_from_idx(idx);
3186 
3187 		l -= msg_print_text(msg, prev, true, NULL, 0);
3188 		idx = log_next(idx);
3189 		seq++;
3190 		prev = msg->flags;
3191 	}
3192 
3193 	/* last message in next interation */
3194 	next_seq = seq;
3195 	next_idx = idx;
3196 
3197 	l = 0;
3198 	while (seq < dumper->next_seq) {
3199 		struct printk_log *msg = log_from_idx(idx);
3200 
3201 		l += msg_print_text(msg, prev, syslog, buf + l, size - l);
3202 		idx = log_next(idx);
3203 		seq++;
3204 		prev = msg->flags;
3205 	}
3206 
3207 	dumper->next_seq = next_seq;
3208 	dumper->next_idx = next_idx;
3209 	ret = true;
3210 	raw_spin_unlock_irqrestore(&logbuf_lock, flags);
3211 out:
3212 	if (len)
3213 		*len = l;
3214 	return ret;
3215 }
3216 EXPORT_SYMBOL_GPL(kmsg_dump_get_buffer);
3217 
3218 /**
3219  * kmsg_dump_rewind_nolock - reset the interator (unlocked version)
3220  * @dumper: registered kmsg dumper
3221  *
3222  * Reset the dumper's iterator so that kmsg_dump_get_line() and
3223  * kmsg_dump_get_buffer() can be called again and used multiple
3224  * times within the same dumper.dump() callback.
3225  *
3226  * The function is similar to kmsg_dump_rewind(), but grabs no locks.
3227  */
3228 void kmsg_dump_rewind_nolock(struct kmsg_dumper *dumper)
3229 {
3230 	dumper->cur_seq = clear_seq;
3231 	dumper->cur_idx = clear_idx;
3232 	dumper->next_seq = log_next_seq;
3233 	dumper->next_idx = log_next_idx;
3234 }
3235 
3236 /**
3237  * kmsg_dump_rewind - reset the interator
3238  * @dumper: registered kmsg dumper
3239  *
3240  * Reset the dumper's iterator so that kmsg_dump_get_line() and
3241  * kmsg_dump_get_buffer() can be called again and used multiple
3242  * times within the same dumper.dump() callback.
3243  */
3244 void kmsg_dump_rewind(struct kmsg_dumper *dumper)
3245 {
3246 	unsigned long flags;
3247 
3248 	raw_spin_lock_irqsave(&logbuf_lock, flags);
3249 	kmsg_dump_rewind_nolock(dumper);
3250 	raw_spin_unlock_irqrestore(&logbuf_lock, flags);
3251 }
3252 EXPORT_SYMBOL_GPL(kmsg_dump_rewind);
3253 
3254 static char dump_stack_arch_desc_str[128];
3255 
3256 /**
3257  * dump_stack_set_arch_desc - set arch-specific str to show with task dumps
3258  * @fmt: printf-style format string
3259  * @...: arguments for the format string
3260  *
3261  * The configured string will be printed right after utsname during task
3262  * dumps.  Usually used to add arch-specific system identifiers.  If an
3263  * arch wants to make use of such an ID string, it should initialize this
3264  * as soon as possible during boot.
3265  */
3266 void __init dump_stack_set_arch_desc(const char *fmt, ...)
3267 {
3268 	va_list args;
3269 
3270 	va_start(args, fmt);
3271 	vsnprintf(dump_stack_arch_desc_str, sizeof(dump_stack_arch_desc_str),
3272 		  fmt, args);
3273 	va_end(args);
3274 }
3275 
3276 /**
3277  * dump_stack_print_info - print generic debug info for dump_stack()
3278  * @log_lvl: log level
3279  *
3280  * Arch-specific dump_stack() implementations can use this function to
3281  * print out the same debug information as the generic dump_stack().
3282  */
3283 void dump_stack_print_info(const char *log_lvl)
3284 {
3285 	printk("%sCPU: %d PID: %d Comm: %.20s %s %s %.*s\n",
3286 	       log_lvl, raw_smp_processor_id(), current->pid, current->comm,
3287 	       print_tainted(), init_utsname()->release,
3288 	       (int)strcspn(init_utsname()->version, " "),
3289 	       init_utsname()->version);
3290 
3291 	if (dump_stack_arch_desc_str[0] != '\0')
3292 		printk("%sHardware name: %s\n",
3293 		       log_lvl, dump_stack_arch_desc_str);
3294 
3295 	print_worker_info(log_lvl, current);
3296 }
3297 
3298 /**
3299  * show_regs_print_info - print generic debug info for show_regs()
3300  * @log_lvl: log level
3301  *
3302  * show_regs() implementations can use this function to print out generic
3303  * debug information.
3304  */
3305 void show_regs_print_info(const char *log_lvl)
3306 {
3307 	dump_stack_print_info(log_lvl);
3308 
3309 	printk("%stask: %p task.stack: %p\n",
3310 	       log_lvl, current, task_stack_page(current));
3311 }
3312 
3313 #endif
3314