1 /* 2 * linux/kernel/printk.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 * 6 * Modified to make sys_syslog() more flexible: added commands to 7 * return the last 4k of kernel messages, regardless of whether 8 * they've been read or not. Added option to suppress kernel printk's 9 * to the console. Added hook for sending the console messages 10 * elsewhere, in preparation for a serial line console (someday). 11 * Ted Ts'o, 2/11/93. 12 * Modified for sysctl support, 1/8/97, Chris Horn. 13 * Fixed SMP synchronization, 08/08/99, Manfred Spraul 14 * manfred@colorfullife.com 15 * Rewrote bits to get rid of console_lock 16 * 01Mar01 Andrew Morton 17 */ 18 19 #include <linux/kernel.h> 20 #include <linux/mm.h> 21 #include <linux/tty.h> 22 #include <linux/tty_driver.h> 23 #include <linux/console.h> 24 #include <linux/init.h> 25 #include <linux/jiffies.h> 26 #include <linux/nmi.h> 27 #include <linux/module.h> 28 #include <linux/moduleparam.h> 29 #include <linux/delay.h> 30 #include <linux/smp.h> 31 #include <linux/security.h> 32 #include <linux/bootmem.h> 33 #include <linux/memblock.h> 34 #include <linux/syscalls.h> 35 #include <linux/kexec.h> 36 #include <linux/kdb.h> 37 #include <linux/ratelimit.h> 38 #include <linux/kmsg_dump.h> 39 #include <linux/syslog.h> 40 #include <linux/cpu.h> 41 #include <linux/notifier.h> 42 #include <linux/rculist.h> 43 #include <linux/poll.h> 44 #include <linux/irq_work.h> 45 #include <linux/utsname.h> 46 #include <linux/ctype.h> 47 #include <linux/uio.h> 48 49 #include <asm/uaccess.h> 50 #include <asm/sections.h> 51 52 #define CREATE_TRACE_POINTS 53 #include <trace/events/printk.h> 54 55 #include "console_cmdline.h" 56 #include "braille.h" 57 #include "internal.h" 58 59 int console_printk[4] = { 60 CONSOLE_LOGLEVEL_DEFAULT, /* console_loglevel */ 61 MESSAGE_LOGLEVEL_DEFAULT, /* default_message_loglevel */ 62 CONSOLE_LOGLEVEL_MIN, /* minimum_console_loglevel */ 63 CONSOLE_LOGLEVEL_DEFAULT, /* default_console_loglevel */ 64 }; 65 66 /* 67 * Low level drivers may need that to know if they can schedule in 68 * their unblank() callback or not. So let's export it. 69 */ 70 int oops_in_progress; 71 EXPORT_SYMBOL(oops_in_progress); 72 73 /* 74 * console_sem protects the console_drivers list, and also 75 * provides serialisation for access to the entire console 76 * driver system. 77 */ 78 static DEFINE_SEMAPHORE(console_sem); 79 struct console *console_drivers; 80 EXPORT_SYMBOL_GPL(console_drivers); 81 82 #ifdef CONFIG_LOCKDEP 83 static struct lockdep_map console_lock_dep_map = { 84 .name = "console_lock" 85 }; 86 #endif 87 88 enum devkmsg_log_bits { 89 __DEVKMSG_LOG_BIT_ON = 0, 90 __DEVKMSG_LOG_BIT_OFF, 91 __DEVKMSG_LOG_BIT_LOCK, 92 }; 93 94 enum devkmsg_log_masks { 95 DEVKMSG_LOG_MASK_ON = BIT(__DEVKMSG_LOG_BIT_ON), 96 DEVKMSG_LOG_MASK_OFF = BIT(__DEVKMSG_LOG_BIT_OFF), 97 DEVKMSG_LOG_MASK_LOCK = BIT(__DEVKMSG_LOG_BIT_LOCK), 98 }; 99 100 /* Keep both the 'on' and 'off' bits clear, i.e. ratelimit by default: */ 101 #define DEVKMSG_LOG_MASK_DEFAULT 0 102 103 static unsigned int __read_mostly devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT; 104 105 static int __control_devkmsg(char *str) 106 { 107 if (!str) 108 return -EINVAL; 109 110 if (!strncmp(str, "on", 2)) { 111 devkmsg_log = DEVKMSG_LOG_MASK_ON; 112 return 2; 113 } else if (!strncmp(str, "off", 3)) { 114 devkmsg_log = DEVKMSG_LOG_MASK_OFF; 115 return 3; 116 } else if (!strncmp(str, "ratelimit", 9)) { 117 devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT; 118 return 9; 119 } 120 return -EINVAL; 121 } 122 123 static int __init control_devkmsg(char *str) 124 { 125 if (__control_devkmsg(str) < 0) 126 return 1; 127 128 /* 129 * Set sysctl string accordingly: 130 */ 131 if (devkmsg_log == DEVKMSG_LOG_MASK_ON) { 132 memset(devkmsg_log_str, 0, DEVKMSG_STR_MAX_SIZE); 133 strncpy(devkmsg_log_str, "on", 2); 134 } else if (devkmsg_log == DEVKMSG_LOG_MASK_OFF) { 135 memset(devkmsg_log_str, 0, DEVKMSG_STR_MAX_SIZE); 136 strncpy(devkmsg_log_str, "off", 3); 137 } 138 /* else "ratelimit" which is set by default. */ 139 140 /* 141 * Sysctl cannot change it anymore. The kernel command line setting of 142 * this parameter is to force the setting to be permanent throughout the 143 * runtime of the system. This is a precation measure against userspace 144 * trying to be a smarta** and attempting to change it up on us. 145 */ 146 devkmsg_log |= DEVKMSG_LOG_MASK_LOCK; 147 148 return 0; 149 } 150 __setup("printk.devkmsg=", control_devkmsg); 151 152 char devkmsg_log_str[DEVKMSG_STR_MAX_SIZE] = "ratelimit"; 153 154 int devkmsg_sysctl_set_loglvl(struct ctl_table *table, int write, 155 void __user *buffer, size_t *lenp, loff_t *ppos) 156 { 157 char old_str[DEVKMSG_STR_MAX_SIZE]; 158 unsigned int old; 159 int err; 160 161 if (write) { 162 if (devkmsg_log & DEVKMSG_LOG_MASK_LOCK) 163 return -EINVAL; 164 165 old = devkmsg_log; 166 strncpy(old_str, devkmsg_log_str, DEVKMSG_STR_MAX_SIZE); 167 } 168 169 err = proc_dostring(table, write, buffer, lenp, ppos); 170 if (err) 171 return err; 172 173 if (write) { 174 err = __control_devkmsg(devkmsg_log_str); 175 176 /* 177 * Do not accept an unknown string OR a known string with 178 * trailing crap... 179 */ 180 if (err < 0 || (err + 1 != *lenp)) { 181 182 /* ... and restore old setting. */ 183 devkmsg_log = old; 184 strncpy(devkmsg_log_str, old_str, DEVKMSG_STR_MAX_SIZE); 185 186 return -EINVAL; 187 } 188 } 189 190 return 0; 191 } 192 193 /* 194 * Number of registered extended console drivers. 195 * 196 * If extended consoles are present, in-kernel cont reassembly is disabled 197 * and each fragment is stored as a separate log entry with proper 198 * continuation flag so that every emitted message has full metadata. This 199 * doesn't change the result for regular consoles or /proc/kmsg. For 200 * /dev/kmsg, as long as the reader concatenates messages according to 201 * consecutive continuation flags, the end result should be the same too. 202 */ 203 static int nr_ext_console_drivers; 204 205 /* 206 * Helper macros to handle lockdep when locking/unlocking console_sem. We use 207 * macros instead of functions so that _RET_IP_ contains useful information. 208 */ 209 #define down_console_sem() do { \ 210 down(&console_sem);\ 211 mutex_acquire(&console_lock_dep_map, 0, 0, _RET_IP_);\ 212 } while (0) 213 214 static int __down_trylock_console_sem(unsigned long ip) 215 { 216 if (down_trylock(&console_sem)) 217 return 1; 218 mutex_acquire(&console_lock_dep_map, 0, 1, ip); 219 return 0; 220 } 221 #define down_trylock_console_sem() __down_trylock_console_sem(_RET_IP_) 222 223 #define up_console_sem() do { \ 224 mutex_release(&console_lock_dep_map, 1, _RET_IP_);\ 225 up(&console_sem);\ 226 } while (0) 227 228 /* 229 * This is used for debugging the mess that is the VT code by 230 * keeping track if we have the console semaphore held. It's 231 * definitely not the perfect debug tool (we don't know if _WE_ 232 * hold it and are racing, but it helps tracking those weird code 233 * paths in the console code where we end up in places I want 234 * locked without the console sempahore held). 235 */ 236 static int console_locked, console_suspended; 237 238 /* 239 * If exclusive_console is non-NULL then only this console is to be printed to. 240 */ 241 static struct console *exclusive_console; 242 243 /* 244 * Array of consoles built from command line options (console=) 245 */ 246 247 #define MAX_CMDLINECONSOLES 8 248 249 static struct console_cmdline console_cmdline[MAX_CMDLINECONSOLES]; 250 251 static int selected_console = -1; 252 static int preferred_console = -1; 253 int console_set_on_cmdline; 254 EXPORT_SYMBOL(console_set_on_cmdline); 255 256 /* Flag: console code may call schedule() */ 257 static int console_may_schedule; 258 259 /* 260 * The printk log buffer consists of a chain of concatenated variable 261 * length records. Every record starts with a record header, containing 262 * the overall length of the record. 263 * 264 * The heads to the first and last entry in the buffer, as well as the 265 * sequence numbers of these entries are maintained when messages are 266 * stored. 267 * 268 * If the heads indicate available messages, the length in the header 269 * tells the start next message. A length == 0 for the next message 270 * indicates a wrap-around to the beginning of the buffer. 271 * 272 * Every record carries the monotonic timestamp in microseconds, as well as 273 * the standard userspace syslog level and syslog facility. The usual 274 * kernel messages use LOG_KERN; userspace-injected messages always carry 275 * a matching syslog facility, by default LOG_USER. The origin of every 276 * message can be reliably determined that way. 277 * 278 * The human readable log message directly follows the message header. The 279 * length of the message text is stored in the header, the stored message 280 * is not terminated. 281 * 282 * Optionally, a message can carry a dictionary of properties (key/value pairs), 283 * to provide userspace with a machine-readable message context. 284 * 285 * Examples for well-defined, commonly used property names are: 286 * DEVICE=b12:8 device identifier 287 * b12:8 block dev_t 288 * c127:3 char dev_t 289 * n8 netdev ifindex 290 * +sound:card0 subsystem:devname 291 * SUBSYSTEM=pci driver-core subsystem name 292 * 293 * Valid characters in property names are [a-zA-Z0-9.-_]. The plain text value 294 * follows directly after a '=' character. Every property is terminated by 295 * a '\0' character. The last property is not terminated. 296 * 297 * Example of a message structure: 298 * 0000 ff 8f 00 00 00 00 00 00 monotonic time in nsec 299 * 0008 34 00 record is 52 bytes long 300 * 000a 0b 00 text is 11 bytes long 301 * 000c 1f 00 dictionary is 23 bytes long 302 * 000e 03 00 LOG_KERN (facility) LOG_ERR (level) 303 * 0010 69 74 27 73 20 61 20 6c "it's a l" 304 * 69 6e 65 "ine" 305 * 001b 44 45 56 49 43 "DEVIC" 306 * 45 3d 62 38 3a 32 00 44 "E=b8:2\0D" 307 * 52 49 56 45 52 3d 62 75 "RIVER=bu" 308 * 67 "g" 309 * 0032 00 00 00 padding to next message header 310 * 311 * The 'struct printk_log' buffer header must never be directly exported to 312 * userspace, it is a kernel-private implementation detail that might 313 * need to be changed in the future, when the requirements change. 314 * 315 * /dev/kmsg exports the structured data in the following line format: 316 * "<level>,<sequnum>,<timestamp>,<contflag>[,additional_values, ... ];<message text>\n" 317 * 318 * Users of the export format should ignore possible additional values 319 * separated by ',', and find the message after the ';' character. 320 * 321 * The optional key/value pairs are attached as continuation lines starting 322 * with a space character and terminated by a newline. All possible 323 * non-prinatable characters are escaped in the "\xff" notation. 324 */ 325 326 enum log_flags { 327 LOG_NOCONS = 1, /* already flushed, do not print to console */ 328 LOG_NEWLINE = 2, /* text ended with a newline */ 329 LOG_PREFIX = 4, /* text started with a prefix */ 330 LOG_CONT = 8, /* text is a fragment of a continuation line */ 331 }; 332 333 struct printk_log { 334 u64 ts_nsec; /* timestamp in nanoseconds */ 335 u16 len; /* length of entire record */ 336 u16 text_len; /* length of text buffer */ 337 u16 dict_len; /* length of dictionary buffer */ 338 u8 facility; /* syslog facility */ 339 u8 flags:5; /* internal record flags */ 340 u8 level:3; /* syslog level */ 341 } 342 #ifdef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS 343 __packed __aligned(4) 344 #endif 345 ; 346 347 /* 348 * The logbuf_lock protects kmsg buffer, indices, counters. This can be taken 349 * within the scheduler's rq lock. It must be released before calling 350 * console_unlock() or anything else that might wake up a process. 351 */ 352 DEFINE_RAW_SPINLOCK(logbuf_lock); 353 354 #ifdef CONFIG_PRINTK 355 DECLARE_WAIT_QUEUE_HEAD(log_wait); 356 /* the next printk record to read by syslog(READ) or /proc/kmsg */ 357 static u64 syslog_seq; 358 static u32 syslog_idx; 359 static enum log_flags syslog_prev; 360 static size_t syslog_partial; 361 362 /* index and sequence number of the first record stored in the buffer */ 363 static u64 log_first_seq; 364 static u32 log_first_idx; 365 366 /* index and sequence number of the next record to store in the buffer */ 367 static u64 log_next_seq; 368 static u32 log_next_idx; 369 370 /* the next printk record to write to the console */ 371 static u64 console_seq; 372 static u32 console_idx; 373 static enum log_flags console_prev; 374 375 /* the next printk record to read after the last 'clear' command */ 376 static u64 clear_seq; 377 static u32 clear_idx; 378 379 #define PREFIX_MAX 32 380 #define LOG_LINE_MAX (1024 - PREFIX_MAX) 381 382 #define LOG_LEVEL(v) ((v) & 0x07) 383 #define LOG_FACILITY(v) ((v) >> 3 & 0xff) 384 385 /* record buffer */ 386 #define LOG_ALIGN __alignof__(struct printk_log) 387 #define __LOG_BUF_LEN (1 << CONFIG_LOG_BUF_SHIFT) 388 static char __log_buf[__LOG_BUF_LEN] __aligned(LOG_ALIGN); 389 static char *log_buf = __log_buf; 390 static u32 log_buf_len = __LOG_BUF_LEN; 391 392 /* Return log buffer address */ 393 char *log_buf_addr_get(void) 394 { 395 return log_buf; 396 } 397 398 /* Return log buffer size */ 399 u32 log_buf_len_get(void) 400 { 401 return log_buf_len; 402 } 403 404 /* human readable text of the record */ 405 static char *log_text(const struct printk_log *msg) 406 { 407 return (char *)msg + sizeof(struct printk_log); 408 } 409 410 /* optional key/value pair dictionary attached to the record */ 411 static char *log_dict(const struct printk_log *msg) 412 { 413 return (char *)msg + sizeof(struct printk_log) + msg->text_len; 414 } 415 416 /* get record by index; idx must point to valid msg */ 417 static struct printk_log *log_from_idx(u32 idx) 418 { 419 struct printk_log *msg = (struct printk_log *)(log_buf + idx); 420 421 /* 422 * A length == 0 record is the end of buffer marker. Wrap around and 423 * read the message at the start of the buffer. 424 */ 425 if (!msg->len) 426 return (struct printk_log *)log_buf; 427 return msg; 428 } 429 430 /* get next record; idx must point to valid msg */ 431 static u32 log_next(u32 idx) 432 { 433 struct printk_log *msg = (struct printk_log *)(log_buf + idx); 434 435 /* length == 0 indicates the end of the buffer; wrap */ 436 /* 437 * A length == 0 record is the end of buffer marker. Wrap around and 438 * read the message at the start of the buffer as *this* one, and 439 * return the one after that. 440 */ 441 if (!msg->len) { 442 msg = (struct printk_log *)log_buf; 443 return msg->len; 444 } 445 return idx + msg->len; 446 } 447 448 /* 449 * Check whether there is enough free space for the given message. 450 * 451 * The same values of first_idx and next_idx mean that the buffer 452 * is either empty or full. 453 * 454 * If the buffer is empty, we must respect the position of the indexes. 455 * They cannot be reset to the beginning of the buffer. 456 */ 457 static int logbuf_has_space(u32 msg_size, bool empty) 458 { 459 u32 free; 460 461 if (log_next_idx > log_first_idx || empty) 462 free = max(log_buf_len - log_next_idx, log_first_idx); 463 else 464 free = log_first_idx - log_next_idx; 465 466 /* 467 * We need space also for an empty header that signalizes wrapping 468 * of the buffer. 469 */ 470 return free >= msg_size + sizeof(struct printk_log); 471 } 472 473 static int log_make_free_space(u32 msg_size) 474 { 475 while (log_first_seq < log_next_seq && 476 !logbuf_has_space(msg_size, false)) { 477 /* drop old messages until we have enough contiguous space */ 478 log_first_idx = log_next(log_first_idx); 479 log_first_seq++; 480 } 481 482 if (clear_seq < log_first_seq) { 483 clear_seq = log_first_seq; 484 clear_idx = log_first_idx; 485 } 486 487 /* sequence numbers are equal, so the log buffer is empty */ 488 if (logbuf_has_space(msg_size, log_first_seq == log_next_seq)) 489 return 0; 490 491 return -ENOMEM; 492 } 493 494 /* compute the message size including the padding bytes */ 495 static u32 msg_used_size(u16 text_len, u16 dict_len, u32 *pad_len) 496 { 497 u32 size; 498 499 size = sizeof(struct printk_log) + text_len + dict_len; 500 *pad_len = (-size) & (LOG_ALIGN - 1); 501 size += *pad_len; 502 503 return size; 504 } 505 506 /* 507 * Define how much of the log buffer we could take at maximum. The value 508 * must be greater than two. Note that only half of the buffer is available 509 * when the index points to the middle. 510 */ 511 #define MAX_LOG_TAKE_PART 4 512 static const char trunc_msg[] = "<truncated>"; 513 514 static u32 truncate_msg(u16 *text_len, u16 *trunc_msg_len, 515 u16 *dict_len, u32 *pad_len) 516 { 517 /* 518 * The message should not take the whole buffer. Otherwise, it might 519 * get removed too soon. 520 */ 521 u32 max_text_len = log_buf_len / MAX_LOG_TAKE_PART; 522 if (*text_len > max_text_len) 523 *text_len = max_text_len; 524 /* enable the warning message */ 525 *trunc_msg_len = strlen(trunc_msg); 526 /* disable the "dict" completely */ 527 *dict_len = 0; 528 /* compute the size again, count also the warning message */ 529 return msg_used_size(*text_len + *trunc_msg_len, 0, pad_len); 530 } 531 532 /* insert record into the buffer, discard old ones, update heads */ 533 static int log_store(int facility, int level, 534 enum log_flags flags, u64 ts_nsec, 535 const char *dict, u16 dict_len, 536 const char *text, u16 text_len) 537 { 538 struct printk_log *msg; 539 u32 size, pad_len; 540 u16 trunc_msg_len = 0; 541 542 /* number of '\0' padding bytes to next message */ 543 size = msg_used_size(text_len, dict_len, &pad_len); 544 545 if (log_make_free_space(size)) { 546 /* truncate the message if it is too long for empty buffer */ 547 size = truncate_msg(&text_len, &trunc_msg_len, 548 &dict_len, &pad_len); 549 /* survive when the log buffer is too small for trunc_msg */ 550 if (log_make_free_space(size)) 551 return 0; 552 } 553 554 if (log_next_idx + size + sizeof(struct printk_log) > log_buf_len) { 555 /* 556 * This message + an additional empty header does not fit 557 * at the end of the buffer. Add an empty header with len == 0 558 * to signify a wrap around. 559 */ 560 memset(log_buf + log_next_idx, 0, sizeof(struct printk_log)); 561 log_next_idx = 0; 562 } 563 564 /* fill message */ 565 msg = (struct printk_log *)(log_buf + log_next_idx); 566 memcpy(log_text(msg), text, text_len); 567 msg->text_len = text_len; 568 if (trunc_msg_len) { 569 memcpy(log_text(msg) + text_len, trunc_msg, trunc_msg_len); 570 msg->text_len += trunc_msg_len; 571 } 572 memcpy(log_dict(msg), dict, dict_len); 573 msg->dict_len = dict_len; 574 msg->facility = facility; 575 msg->level = level & 7; 576 msg->flags = flags & 0x1f; 577 if (ts_nsec > 0) 578 msg->ts_nsec = ts_nsec; 579 else 580 msg->ts_nsec = local_clock(); 581 memset(log_dict(msg) + dict_len, 0, pad_len); 582 msg->len = size; 583 584 /* insert message */ 585 log_next_idx += msg->len; 586 log_next_seq++; 587 588 return msg->text_len; 589 } 590 591 int dmesg_restrict = IS_ENABLED(CONFIG_SECURITY_DMESG_RESTRICT); 592 593 static int syslog_action_restricted(int type) 594 { 595 if (dmesg_restrict) 596 return 1; 597 /* 598 * Unless restricted, we allow "read all" and "get buffer size" 599 * for everybody. 600 */ 601 return type != SYSLOG_ACTION_READ_ALL && 602 type != SYSLOG_ACTION_SIZE_BUFFER; 603 } 604 605 int check_syslog_permissions(int type, int source) 606 { 607 /* 608 * If this is from /proc/kmsg and we've already opened it, then we've 609 * already done the capabilities checks at open time. 610 */ 611 if (source == SYSLOG_FROM_PROC && type != SYSLOG_ACTION_OPEN) 612 goto ok; 613 614 if (syslog_action_restricted(type)) { 615 if (capable(CAP_SYSLOG)) 616 goto ok; 617 /* 618 * For historical reasons, accept CAP_SYS_ADMIN too, with 619 * a warning. 620 */ 621 if (capable(CAP_SYS_ADMIN)) { 622 pr_warn_once("%s (%d): Attempt to access syslog with " 623 "CAP_SYS_ADMIN but no CAP_SYSLOG " 624 "(deprecated).\n", 625 current->comm, task_pid_nr(current)); 626 goto ok; 627 } 628 return -EPERM; 629 } 630 ok: 631 return security_syslog(type); 632 } 633 EXPORT_SYMBOL_GPL(check_syslog_permissions); 634 635 static void append_char(char **pp, char *e, char c) 636 { 637 if (*pp < e) 638 *(*pp)++ = c; 639 } 640 641 static ssize_t msg_print_ext_header(char *buf, size_t size, 642 struct printk_log *msg, u64 seq, 643 enum log_flags prev_flags) 644 { 645 u64 ts_usec = msg->ts_nsec; 646 char cont = '-'; 647 648 do_div(ts_usec, 1000); 649 650 /* 651 * If we couldn't merge continuation line fragments during the print, 652 * export the stored flags to allow an optional external merge of the 653 * records. Merging the records isn't always neccessarily correct, like 654 * when we hit a race during printing. In most cases though, it produces 655 * better readable output. 'c' in the record flags mark the first 656 * fragment of a line, '+' the following. 657 */ 658 if (msg->flags & LOG_CONT) 659 cont = (prev_flags & LOG_CONT) ? '+' : 'c'; 660 661 return scnprintf(buf, size, "%u,%llu,%llu,%c;", 662 (msg->facility << 3) | msg->level, seq, ts_usec, cont); 663 } 664 665 static ssize_t msg_print_ext_body(char *buf, size_t size, 666 char *dict, size_t dict_len, 667 char *text, size_t text_len) 668 { 669 char *p = buf, *e = buf + size; 670 size_t i; 671 672 /* escape non-printable characters */ 673 for (i = 0; i < text_len; i++) { 674 unsigned char c = text[i]; 675 676 if (c < ' ' || c >= 127 || c == '\\') 677 p += scnprintf(p, e - p, "\\x%02x", c); 678 else 679 append_char(&p, e, c); 680 } 681 append_char(&p, e, '\n'); 682 683 if (dict_len) { 684 bool line = true; 685 686 for (i = 0; i < dict_len; i++) { 687 unsigned char c = dict[i]; 688 689 if (line) { 690 append_char(&p, e, ' '); 691 line = false; 692 } 693 694 if (c == '\0') { 695 append_char(&p, e, '\n'); 696 line = true; 697 continue; 698 } 699 700 if (c < ' ' || c >= 127 || c == '\\') { 701 p += scnprintf(p, e - p, "\\x%02x", c); 702 continue; 703 } 704 705 append_char(&p, e, c); 706 } 707 append_char(&p, e, '\n'); 708 } 709 710 return p - buf; 711 } 712 713 /* /dev/kmsg - userspace message inject/listen interface */ 714 struct devkmsg_user { 715 u64 seq; 716 u32 idx; 717 enum log_flags prev; 718 struct ratelimit_state rs; 719 struct mutex lock; 720 char buf[CONSOLE_EXT_LOG_MAX]; 721 }; 722 723 static ssize_t devkmsg_write(struct kiocb *iocb, struct iov_iter *from) 724 { 725 char *buf, *line; 726 int level = default_message_loglevel; 727 int facility = 1; /* LOG_USER */ 728 struct file *file = iocb->ki_filp; 729 struct devkmsg_user *user = file->private_data; 730 size_t len = iov_iter_count(from); 731 ssize_t ret = len; 732 733 if (!user || len > LOG_LINE_MAX) 734 return -EINVAL; 735 736 /* Ignore when user logging is disabled. */ 737 if (devkmsg_log & DEVKMSG_LOG_MASK_OFF) 738 return len; 739 740 /* Ratelimit when not explicitly enabled. */ 741 if (!(devkmsg_log & DEVKMSG_LOG_MASK_ON)) { 742 if (!___ratelimit(&user->rs, current->comm)) 743 return ret; 744 } 745 746 buf = kmalloc(len+1, GFP_KERNEL); 747 if (buf == NULL) 748 return -ENOMEM; 749 750 buf[len] = '\0'; 751 if (copy_from_iter(buf, len, from) != len) { 752 kfree(buf); 753 return -EFAULT; 754 } 755 756 /* 757 * Extract and skip the syslog prefix <[0-9]*>. Coming from userspace 758 * the decimal value represents 32bit, the lower 3 bit are the log 759 * level, the rest are the log facility. 760 * 761 * If no prefix or no userspace facility is specified, we 762 * enforce LOG_USER, to be able to reliably distinguish 763 * kernel-generated messages from userspace-injected ones. 764 */ 765 line = buf; 766 if (line[0] == '<') { 767 char *endp = NULL; 768 unsigned int u; 769 770 u = simple_strtoul(line + 1, &endp, 10); 771 if (endp && endp[0] == '>') { 772 level = LOG_LEVEL(u); 773 if (LOG_FACILITY(u) != 0) 774 facility = LOG_FACILITY(u); 775 endp++; 776 len -= endp - line; 777 line = endp; 778 } 779 } 780 781 printk_emit(facility, level, NULL, 0, "%s", line); 782 kfree(buf); 783 return ret; 784 } 785 786 static ssize_t devkmsg_read(struct file *file, char __user *buf, 787 size_t count, loff_t *ppos) 788 { 789 struct devkmsg_user *user = file->private_data; 790 struct printk_log *msg; 791 size_t len; 792 ssize_t ret; 793 794 if (!user) 795 return -EBADF; 796 797 ret = mutex_lock_interruptible(&user->lock); 798 if (ret) 799 return ret; 800 raw_spin_lock_irq(&logbuf_lock); 801 while (user->seq == log_next_seq) { 802 if (file->f_flags & O_NONBLOCK) { 803 ret = -EAGAIN; 804 raw_spin_unlock_irq(&logbuf_lock); 805 goto out; 806 } 807 808 raw_spin_unlock_irq(&logbuf_lock); 809 ret = wait_event_interruptible(log_wait, 810 user->seq != log_next_seq); 811 if (ret) 812 goto out; 813 raw_spin_lock_irq(&logbuf_lock); 814 } 815 816 if (user->seq < log_first_seq) { 817 /* our last seen message is gone, return error and reset */ 818 user->idx = log_first_idx; 819 user->seq = log_first_seq; 820 ret = -EPIPE; 821 raw_spin_unlock_irq(&logbuf_lock); 822 goto out; 823 } 824 825 msg = log_from_idx(user->idx); 826 len = msg_print_ext_header(user->buf, sizeof(user->buf), 827 msg, user->seq, user->prev); 828 len += msg_print_ext_body(user->buf + len, sizeof(user->buf) - len, 829 log_dict(msg), msg->dict_len, 830 log_text(msg), msg->text_len); 831 832 user->prev = msg->flags; 833 user->idx = log_next(user->idx); 834 user->seq++; 835 raw_spin_unlock_irq(&logbuf_lock); 836 837 if (len > count) { 838 ret = -EINVAL; 839 goto out; 840 } 841 842 if (copy_to_user(buf, user->buf, len)) { 843 ret = -EFAULT; 844 goto out; 845 } 846 ret = len; 847 out: 848 mutex_unlock(&user->lock); 849 return ret; 850 } 851 852 static loff_t devkmsg_llseek(struct file *file, loff_t offset, int whence) 853 { 854 struct devkmsg_user *user = file->private_data; 855 loff_t ret = 0; 856 857 if (!user) 858 return -EBADF; 859 if (offset) 860 return -ESPIPE; 861 862 raw_spin_lock_irq(&logbuf_lock); 863 switch (whence) { 864 case SEEK_SET: 865 /* the first record */ 866 user->idx = log_first_idx; 867 user->seq = log_first_seq; 868 break; 869 case SEEK_DATA: 870 /* 871 * The first record after the last SYSLOG_ACTION_CLEAR, 872 * like issued by 'dmesg -c'. Reading /dev/kmsg itself 873 * changes no global state, and does not clear anything. 874 */ 875 user->idx = clear_idx; 876 user->seq = clear_seq; 877 break; 878 case SEEK_END: 879 /* after the last record */ 880 user->idx = log_next_idx; 881 user->seq = log_next_seq; 882 break; 883 default: 884 ret = -EINVAL; 885 } 886 raw_spin_unlock_irq(&logbuf_lock); 887 return ret; 888 } 889 890 static unsigned int devkmsg_poll(struct file *file, poll_table *wait) 891 { 892 struct devkmsg_user *user = file->private_data; 893 int ret = 0; 894 895 if (!user) 896 return POLLERR|POLLNVAL; 897 898 poll_wait(file, &log_wait, wait); 899 900 raw_spin_lock_irq(&logbuf_lock); 901 if (user->seq < log_next_seq) { 902 /* return error when data has vanished underneath us */ 903 if (user->seq < log_first_seq) 904 ret = POLLIN|POLLRDNORM|POLLERR|POLLPRI; 905 else 906 ret = POLLIN|POLLRDNORM; 907 } 908 raw_spin_unlock_irq(&logbuf_lock); 909 910 return ret; 911 } 912 913 static int devkmsg_open(struct inode *inode, struct file *file) 914 { 915 struct devkmsg_user *user; 916 int err; 917 918 if (devkmsg_log & DEVKMSG_LOG_MASK_OFF) 919 return -EPERM; 920 921 /* write-only does not need any file context */ 922 if ((file->f_flags & O_ACCMODE) != O_WRONLY) { 923 err = check_syslog_permissions(SYSLOG_ACTION_READ_ALL, 924 SYSLOG_FROM_READER); 925 if (err) 926 return err; 927 } 928 929 user = kmalloc(sizeof(struct devkmsg_user), GFP_KERNEL); 930 if (!user) 931 return -ENOMEM; 932 933 ratelimit_default_init(&user->rs); 934 ratelimit_set_flags(&user->rs, RATELIMIT_MSG_ON_RELEASE); 935 936 mutex_init(&user->lock); 937 938 raw_spin_lock_irq(&logbuf_lock); 939 user->idx = log_first_idx; 940 user->seq = log_first_seq; 941 raw_spin_unlock_irq(&logbuf_lock); 942 943 file->private_data = user; 944 return 0; 945 } 946 947 static int devkmsg_release(struct inode *inode, struct file *file) 948 { 949 struct devkmsg_user *user = file->private_data; 950 951 if (!user) 952 return 0; 953 954 ratelimit_state_exit(&user->rs); 955 956 mutex_destroy(&user->lock); 957 kfree(user); 958 return 0; 959 } 960 961 const struct file_operations kmsg_fops = { 962 .open = devkmsg_open, 963 .read = devkmsg_read, 964 .write_iter = devkmsg_write, 965 .llseek = devkmsg_llseek, 966 .poll = devkmsg_poll, 967 .release = devkmsg_release, 968 }; 969 970 #ifdef CONFIG_KEXEC_CORE 971 /* 972 * This appends the listed symbols to /proc/vmcore 973 * 974 * /proc/vmcore is used by various utilities, like crash and makedumpfile to 975 * obtain access to symbols that are otherwise very difficult to locate. These 976 * symbols are specifically used so that utilities can access and extract the 977 * dmesg log from a vmcore file after a crash. 978 */ 979 void log_buf_kexec_setup(void) 980 { 981 VMCOREINFO_SYMBOL(log_buf); 982 VMCOREINFO_SYMBOL(log_buf_len); 983 VMCOREINFO_SYMBOL(log_first_idx); 984 VMCOREINFO_SYMBOL(clear_idx); 985 VMCOREINFO_SYMBOL(log_next_idx); 986 /* 987 * Export struct printk_log size and field offsets. User space tools can 988 * parse it and detect any changes to structure down the line. 989 */ 990 VMCOREINFO_STRUCT_SIZE(printk_log); 991 VMCOREINFO_OFFSET(printk_log, ts_nsec); 992 VMCOREINFO_OFFSET(printk_log, len); 993 VMCOREINFO_OFFSET(printk_log, text_len); 994 VMCOREINFO_OFFSET(printk_log, dict_len); 995 } 996 #endif 997 998 /* requested log_buf_len from kernel cmdline */ 999 static unsigned long __initdata new_log_buf_len; 1000 1001 /* we practice scaling the ring buffer by powers of 2 */ 1002 static void __init log_buf_len_update(unsigned size) 1003 { 1004 if (size) 1005 size = roundup_pow_of_two(size); 1006 if (size > log_buf_len) 1007 new_log_buf_len = size; 1008 } 1009 1010 /* save requested log_buf_len since it's too early to process it */ 1011 static int __init log_buf_len_setup(char *str) 1012 { 1013 unsigned size = memparse(str, &str); 1014 1015 log_buf_len_update(size); 1016 1017 return 0; 1018 } 1019 early_param("log_buf_len", log_buf_len_setup); 1020 1021 #ifdef CONFIG_SMP 1022 #define __LOG_CPU_MAX_BUF_LEN (1 << CONFIG_LOG_CPU_MAX_BUF_SHIFT) 1023 1024 static void __init log_buf_add_cpu(void) 1025 { 1026 unsigned int cpu_extra; 1027 1028 /* 1029 * archs should set up cpu_possible_bits properly with 1030 * set_cpu_possible() after setup_arch() but just in 1031 * case lets ensure this is valid. 1032 */ 1033 if (num_possible_cpus() == 1) 1034 return; 1035 1036 cpu_extra = (num_possible_cpus() - 1) * __LOG_CPU_MAX_BUF_LEN; 1037 1038 /* by default this will only continue through for large > 64 CPUs */ 1039 if (cpu_extra <= __LOG_BUF_LEN / 2) 1040 return; 1041 1042 pr_info("log_buf_len individual max cpu contribution: %d bytes\n", 1043 __LOG_CPU_MAX_BUF_LEN); 1044 pr_info("log_buf_len total cpu_extra contributions: %d bytes\n", 1045 cpu_extra); 1046 pr_info("log_buf_len min size: %d bytes\n", __LOG_BUF_LEN); 1047 1048 log_buf_len_update(cpu_extra + __LOG_BUF_LEN); 1049 } 1050 #else /* !CONFIG_SMP */ 1051 static inline void log_buf_add_cpu(void) {} 1052 #endif /* CONFIG_SMP */ 1053 1054 void __init setup_log_buf(int early) 1055 { 1056 unsigned long flags; 1057 char *new_log_buf; 1058 int free; 1059 1060 if (log_buf != __log_buf) 1061 return; 1062 1063 if (!early && !new_log_buf_len) 1064 log_buf_add_cpu(); 1065 1066 if (!new_log_buf_len) 1067 return; 1068 1069 if (early) { 1070 new_log_buf = 1071 memblock_virt_alloc(new_log_buf_len, LOG_ALIGN); 1072 } else { 1073 new_log_buf = memblock_virt_alloc_nopanic(new_log_buf_len, 1074 LOG_ALIGN); 1075 } 1076 1077 if (unlikely(!new_log_buf)) { 1078 pr_err("log_buf_len: %ld bytes not available\n", 1079 new_log_buf_len); 1080 return; 1081 } 1082 1083 raw_spin_lock_irqsave(&logbuf_lock, flags); 1084 log_buf_len = new_log_buf_len; 1085 log_buf = new_log_buf; 1086 new_log_buf_len = 0; 1087 free = __LOG_BUF_LEN - log_next_idx; 1088 memcpy(log_buf, __log_buf, __LOG_BUF_LEN); 1089 raw_spin_unlock_irqrestore(&logbuf_lock, flags); 1090 1091 pr_info("log_buf_len: %d bytes\n", log_buf_len); 1092 pr_info("early log buf free: %d(%d%%)\n", 1093 free, (free * 100) / __LOG_BUF_LEN); 1094 } 1095 1096 static bool __read_mostly ignore_loglevel; 1097 1098 static int __init ignore_loglevel_setup(char *str) 1099 { 1100 ignore_loglevel = true; 1101 pr_info("debug: ignoring loglevel setting.\n"); 1102 1103 return 0; 1104 } 1105 1106 early_param("ignore_loglevel", ignore_loglevel_setup); 1107 module_param(ignore_loglevel, bool, S_IRUGO | S_IWUSR); 1108 MODULE_PARM_DESC(ignore_loglevel, 1109 "ignore loglevel setting (prints all kernel messages to the console)"); 1110 1111 static bool suppress_message_printing(int level) 1112 { 1113 return (level >= console_loglevel && !ignore_loglevel); 1114 } 1115 1116 #ifdef CONFIG_BOOT_PRINTK_DELAY 1117 1118 static int boot_delay; /* msecs delay after each printk during bootup */ 1119 static unsigned long long loops_per_msec; /* based on boot_delay */ 1120 1121 static int __init boot_delay_setup(char *str) 1122 { 1123 unsigned long lpj; 1124 1125 lpj = preset_lpj ? preset_lpj : 1000000; /* some guess */ 1126 loops_per_msec = (unsigned long long)lpj / 1000 * HZ; 1127 1128 get_option(&str, &boot_delay); 1129 if (boot_delay > 10 * 1000) 1130 boot_delay = 0; 1131 1132 pr_debug("boot_delay: %u, preset_lpj: %ld, lpj: %lu, " 1133 "HZ: %d, loops_per_msec: %llu\n", 1134 boot_delay, preset_lpj, lpj, HZ, loops_per_msec); 1135 return 0; 1136 } 1137 early_param("boot_delay", boot_delay_setup); 1138 1139 static void boot_delay_msec(int level) 1140 { 1141 unsigned long long k; 1142 unsigned long timeout; 1143 1144 if ((boot_delay == 0 || system_state != SYSTEM_BOOTING) 1145 || suppress_message_printing(level)) { 1146 return; 1147 } 1148 1149 k = (unsigned long long)loops_per_msec * boot_delay; 1150 1151 timeout = jiffies + msecs_to_jiffies(boot_delay); 1152 while (k) { 1153 k--; 1154 cpu_relax(); 1155 /* 1156 * use (volatile) jiffies to prevent 1157 * compiler reduction; loop termination via jiffies 1158 * is secondary and may or may not happen. 1159 */ 1160 if (time_after(jiffies, timeout)) 1161 break; 1162 touch_nmi_watchdog(); 1163 } 1164 } 1165 #else 1166 static inline void boot_delay_msec(int level) 1167 { 1168 } 1169 #endif 1170 1171 static bool printk_time = IS_ENABLED(CONFIG_PRINTK_TIME); 1172 module_param_named(time, printk_time, bool, S_IRUGO | S_IWUSR); 1173 1174 static size_t print_time(u64 ts, char *buf) 1175 { 1176 unsigned long rem_nsec; 1177 1178 if (!printk_time) 1179 return 0; 1180 1181 rem_nsec = do_div(ts, 1000000000); 1182 1183 if (!buf) 1184 return snprintf(NULL, 0, "[%5lu.000000] ", (unsigned long)ts); 1185 1186 return sprintf(buf, "[%5lu.%06lu] ", 1187 (unsigned long)ts, rem_nsec / 1000); 1188 } 1189 1190 static size_t print_prefix(const struct printk_log *msg, bool syslog, char *buf) 1191 { 1192 size_t len = 0; 1193 unsigned int prefix = (msg->facility << 3) | msg->level; 1194 1195 if (syslog) { 1196 if (buf) { 1197 len += sprintf(buf, "<%u>", prefix); 1198 } else { 1199 len += 3; 1200 if (prefix > 999) 1201 len += 3; 1202 else if (prefix > 99) 1203 len += 2; 1204 else if (prefix > 9) 1205 len++; 1206 } 1207 } 1208 1209 len += print_time(msg->ts_nsec, buf ? buf + len : NULL); 1210 return len; 1211 } 1212 1213 static size_t msg_print_text(const struct printk_log *msg, enum log_flags prev, 1214 bool syslog, char *buf, size_t size) 1215 { 1216 const char *text = log_text(msg); 1217 size_t text_size = msg->text_len; 1218 bool prefix = true; 1219 bool newline = true; 1220 size_t len = 0; 1221 1222 if ((prev & LOG_CONT) && !(msg->flags & LOG_PREFIX)) 1223 prefix = false; 1224 1225 if (msg->flags & LOG_CONT) { 1226 if ((prev & LOG_CONT) && !(prev & LOG_NEWLINE)) 1227 prefix = false; 1228 1229 if (!(msg->flags & LOG_NEWLINE)) 1230 newline = false; 1231 } 1232 1233 do { 1234 const char *next = memchr(text, '\n', text_size); 1235 size_t text_len; 1236 1237 if (next) { 1238 text_len = next - text; 1239 next++; 1240 text_size -= next - text; 1241 } else { 1242 text_len = text_size; 1243 } 1244 1245 if (buf) { 1246 if (print_prefix(msg, syslog, NULL) + 1247 text_len + 1 >= size - len) 1248 break; 1249 1250 if (prefix) 1251 len += print_prefix(msg, syslog, buf + len); 1252 memcpy(buf + len, text, text_len); 1253 len += text_len; 1254 if (next || newline) 1255 buf[len++] = '\n'; 1256 } else { 1257 /* SYSLOG_ACTION_* buffer size only calculation */ 1258 if (prefix) 1259 len += print_prefix(msg, syslog, NULL); 1260 len += text_len; 1261 if (next || newline) 1262 len++; 1263 } 1264 1265 prefix = true; 1266 text = next; 1267 } while (text); 1268 1269 return len; 1270 } 1271 1272 static int syslog_print(char __user *buf, int size) 1273 { 1274 char *text; 1275 struct printk_log *msg; 1276 int len = 0; 1277 1278 text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL); 1279 if (!text) 1280 return -ENOMEM; 1281 1282 while (size > 0) { 1283 size_t n; 1284 size_t skip; 1285 1286 raw_spin_lock_irq(&logbuf_lock); 1287 if (syslog_seq < log_first_seq) { 1288 /* messages are gone, move to first one */ 1289 syslog_seq = log_first_seq; 1290 syslog_idx = log_first_idx; 1291 syslog_prev = 0; 1292 syslog_partial = 0; 1293 } 1294 if (syslog_seq == log_next_seq) { 1295 raw_spin_unlock_irq(&logbuf_lock); 1296 break; 1297 } 1298 1299 skip = syslog_partial; 1300 msg = log_from_idx(syslog_idx); 1301 n = msg_print_text(msg, syslog_prev, true, text, 1302 LOG_LINE_MAX + PREFIX_MAX); 1303 if (n - syslog_partial <= size) { 1304 /* message fits into buffer, move forward */ 1305 syslog_idx = log_next(syslog_idx); 1306 syslog_seq++; 1307 syslog_prev = msg->flags; 1308 n -= syslog_partial; 1309 syslog_partial = 0; 1310 } else if (!len){ 1311 /* partial read(), remember position */ 1312 n = size; 1313 syslog_partial += n; 1314 } else 1315 n = 0; 1316 raw_spin_unlock_irq(&logbuf_lock); 1317 1318 if (!n) 1319 break; 1320 1321 if (copy_to_user(buf, text + skip, n)) { 1322 if (!len) 1323 len = -EFAULT; 1324 break; 1325 } 1326 1327 len += n; 1328 size -= n; 1329 buf += n; 1330 } 1331 1332 kfree(text); 1333 return len; 1334 } 1335 1336 static int syslog_print_all(char __user *buf, int size, bool clear) 1337 { 1338 char *text; 1339 int len = 0; 1340 1341 text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL); 1342 if (!text) 1343 return -ENOMEM; 1344 1345 raw_spin_lock_irq(&logbuf_lock); 1346 if (buf) { 1347 u64 next_seq; 1348 u64 seq; 1349 u32 idx; 1350 enum log_flags prev; 1351 1352 /* 1353 * Find first record that fits, including all following records, 1354 * into the user-provided buffer for this dump. 1355 */ 1356 seq = clear_seq; 1357 idx = clear_idx; 1358 prev = 0; 1359 while (seq < log_next_seq) { 1360 struct printk_log *msg = log_from_idx(idx); 1361 1362 len += msg_print_text(msg, prev, true, NULL, 0); 1363 prev = msg->flags; 1364 idx = log_next(idx); 1365 seq++; 1366 } 1367 1368 /* move first record forward until length fits into the buffer */ 1369 seq = clear_seq; 1370 idx = clear_idx; 1371 prev = 0; 1372 while (len > size && seq < log_next_seq) { 1373 struct printk_log *msg = log_from_idx(idx); 1374 1375 len -= msg_print_text(msg, prev, true, NULL, 0); 1376 prev = msg->flags; 1377 idx = log_next(idx); 1378 seq++; 1379 } 1380 1381 /* last message fitting into this dump */ 1382 next_seq = log_next_seq; 1383 1384 len = 0; 1385 while (len >= 0 && seq < next_seq) { 1386 struct printk_log *msg = log_from_idx(idx); 1387 int textlen; 1388 1389 textlen = msg_print_text(msg, prev, true, text, 1390 LOG_LINE_MAX + PREFIX_MAX); 1391 if (textlen < 0) { 1392 len = textlen; 1393 break; 1394 } 1395 idx = log_next(idx); 1396 seq++; 1397 prev = msg->flags; 1398 1399 raw_spin_unlock_irq(&logbuf_lock); 1400 if (copy_to_user(buf + len, text, textlen)) 1401 len = -EFAULT; 1402 else 1403 len += textlen; 1404 raw_spin_lock_irq(&logbuf_lock); 1405 1406 if (seq < log_first_seq) { 1407 /* messages are gone, move to next one */ 1408 seq = log_first_seq; 1409 idx = log_first_idx; 1410 prev = 0; 1411 } 1412 } 1413 } 1414 1415 if (clear) { 1416 clear_seq = log_next_seq; 1417 clear_idx = log_next_idx; 1418 } 1419 raw_spin_unlock_irq(&logbuf_lock); 1420 1421 kfree(text); 1422 return len; 1423 } 1424 1425 int do_syslog(int type, char __user *buf, int len, int source) 1426 { 1427 bool clear = false; 1428 static int saved_console_loglevel = LOGLEVEL_DEFAULT; 1429 int error; 1430 1431 error = check_syslog_permissions(type, source); 1432 if (error) 1433 goto out; 1434 1435 switch (type) { 1436 case SYSLOG_ACTION_CLOSE: /* Close log */ 1437 break; 1438 case SYSLOG_ACTION_OPEN: /* Open log */ 1439 break; 1440 case SYSLOG_ACTION_READ: /* Read from log */ 1441 error = -EINVAL; 1442 if (!buf || len < 0) 1443 goto out; 1444 error = 0; 1445 if (!len) 1446 goto out; 1447 if (!access_ok(VERIFY_WRITE, buf, len)) { 1448 error = -EFAULT; 1449 goto out; 1450 } 1451 error = wait_event_interruptible(log_wait, 1452 syslog_seq != log_next_seq); 1453 if (error) 1454 goto out; 1455 error = syslog_print(buf, len); 1456 break; 1457 /* Read/clear last kernel messages */ 1458 case SYSLOG_ACTION_READ_CLEAR: 1459 clear = true; 1460 /* FALL THRU */ 1461 /* Read last kernel messages */ 1462 case SYSLOG_ACTION_READ_ALL: 1463 error = -EINVAL; 1464 if (!buf || len < 0) 1465 goto out; 1466 error = 0; 1467 if (!len) 1468 goto out; 1469 if (!access_ok(VERIFY_WRITE, buf, len)) { 1470 error = -EFAULT; 1471 goto out; 1472 } 1473 error = syslog_print_all(buf, len, clear); 1474 break; 1475 /* Clear ring buffer */ 1476 case SYSLOG_ACTION_CLEAR: 1477 syslog_print_all(NULL, 0, true); 1478 break; 1479 /* Disable logging to console */ 1480 case SYSLOG_ACTION_CONSOLE_OFF: 1481 if (saved_console_loglevel == LOGLEVEL_DEFAULT) 1482 saved_console_loglevel = console_loglevel; 1483 console_loglevel = minimum_console_loglevel; 1484 break; 1485 /* Enable logging to console */ 1486 case SYSLOG_ACTION_CONSOLE_ON: 1487 if (saved_console_loglevel != LOGLEVEL_DEFAULT) { 1488 console_loglevel = saved_console_loglevel; 1489 saved_console_loglevel = LOGLEVEL_DEFAULT; 1490 } 1491 break; 1492 /* Set level of messages printed to console */ 1493 case SYSLOG_ACTION_CONSOLE_LEVEL: 1494 error = -EINVAL; 1495 if (len < 1 || len > 8) 1496 goto out; 1497 if (len < minimum_console_loglevel) 1498 len = minimum_console_loglevel; 1499 console_loglevel = len; 1500 /* Implicitly re-enable logging to console */ 1501 saved_console_loglevel = LOGLEVEL_DEFAULT; 1502 error = 0; 1503 break; 1504 /* Number of chars in the log buffer */ 1505 case SYSLOG_ACTION_SIZE_UNREAD: 1506 raw_spin_lock_irq(&logbuf_lock); 1507 if (syslog_seq < log_first_seq) { 1508 /* messages are gone, move to first one */ 1509 syslog_seq = log_first_seq; 1510 syslog_idx = log_first_idx; 1511 syslog_prev = 0; 1512 syslog_partial = 0; 1513 } 1514 if (source == SYSLOG_FROM_PROC) { 1515 /* 1516 * Short-cut for poll(/"proc/kmsg") which simply checks 1517 * for pending data, not the size; return the count of 1518 * records, not the length. 1519 */ 1520 error = log_next_seq - syslog_seq; 1521 } else { 1522 u64 seq = syslog_seq; 1523 u32 idx = syslog_idx; 1524 enum log_flags prev = syslog_prev; 1525 1526 error = 0; 1527 while (seq < log_next_seq) { 1528 struct printk_log *msg = log_from_idx(idx); 1529 1530 error += msg_print_text(msg, prev, true, NULL, 0); 1531 idx = log_next(idx); 1532 seq++; 1533 prev = msg->flags; 1534 } 1535 error -= syslog_partial; 1536 } 1537 raw_spin_unlock_irq(&logbuf_lock); 1538 break; 1539 /* Size of the log buffer */ 1540 case SYSLOG_ACTION_SIZE_BUFFER: 1541 error = log_buf_len; 1542 break; 1543 default: 1544 error = -EINVAL; 1545 break; 1546 } 1547 out: 1548 return error; 1549 } 1550 1551 SYSCALL_DEFINE3(syslog, int, type, char __user *, buf, int, len) 1552 { 1553 return do_syslog(type, buf, len, SYSLOG_FROM_READER); 1554 } 1555 1556 /* 1557 * Call the console drivers, asking them to write out 1558 * log_buf[start] to log_buf[end - 1]. 1559 * The console_lock must be held. 1560 */ 1561 static void call_console_drivers(int level, 1562 const char *ext_text, size_t ext_len, 1563 const char *text, size_t len) 1564 { 1565 struct console *con; 1566 1567 trace_console(text, len); 1568 1569 if (!console_drivers) 1570 return; 1571 1572 for_each_console(con) { 1573 if (exclusive_console && con != exclusive_console) 1574 continue; 1575 if (!(con->flags & CON_ENABLED)) 1576 continue; 1577 if (!con->write) 1578 continue; 1579 if (!cpu_online(smp_processor_id()) && 1580 !(con->flags & CON_ANYTIME)) 1581 continue; 1582 if (con->flags & CON_EXTENDED) 1583 con->write(con, ext_text, ext_len); 1584 else 1585 con->write(con, text, len); 1586 } 1587 } 1588 1589 /* 1590 * Zap console related locks when oopsing. 1591 * To leave time for slow consoles to print a full oops, 1592 * only zap at most once every 30 seconds. 1593 */ 1594 static void zap_locks(void) 1595 { 1596 static unsigned long oops_timestamp; 1597 1598 if (time_after_eq(jiffies, oops_timestamp) && 1599 !time_after(jiffies, oops_timestamp + 30 * HZ)) 1600 return; 1601 1602 oops_timestamp = jiffies; 1603 1604 debug_locks_off(); 1605 /* If a crash is occurring, make sure we can't deadlock */ 1606 raw_spin_lock_init(&logbuf_lock); 1607 /* And make sure that we print immediately */ 1608 sema_init(&console_sem, 1); 1609 } 1610 1611 int printk_delay_msec __read_mostly; 1612 1613 static inline void printk_delay(void) 1614 { 1615 if (unlikely(printk_delay_msec)) { 1616 int m = printk_delay_msec; 1617 1618 while (m--) { 1619 mdelay(1); 1620 touch_nmi_watchdog(); 1621 } 1622 } 1623 } 1624 1625 /* 1626 * Continuation lines are buffered, and not committed to the record buffer 1627 * until the line is complete, or a race forces it. The line fragments 1628 * though, are printed immediately to the consoles to ensure everything has 1629 * reached the console in case of a kernel crash. 1630 */ 1631 static struct cont { 1632 char buf[LOG_LINE_MAX]; 1633 size_t len; /* length == 0 means unused buffer */ 1634 size_t cons; /* bytes written to console */ 1635 struct task_struct *owner; /* task of first print*/ 1636 u64 ts_nsec; /* time of first print */ 1637 u8 level; /* log level of first message */ 1638 u8 facility; /* log facility of first message */ 1639 enum log_flags flags; /* prefix, newline flags */ 1640 bool flushed:1; /* buffer sealed and committed */ 1641 } cont; 1642 1643 static void cont_flush(void) 1644 { 1645 if (cont.flushed) 1646 return; 1647 if (cont.len == 0) 1648 return; 1649 if (cont.cons) { 1650 /* 1651 * If a fragment of this line was directly flushed to the 1652 * console; wait for the console to pick up the rest of the 1653 * line. LOG_NOCONS suppresses a duplicated output. 1654 */ 1655 log_store(cont.facility, cont.level, cont.flags | LOG_NOCONS, 1656 cont.ts_nsec, NULL, 0, cont.buf, cont.len); 1657 cont.flushed = true; 1658 } else { 1659 /* 1660 * If no fragment of this line ever reached the console, 1661 * just submit it to the store and free the buffer. 1662 */ 1663 log_store(cont.facility, cont.level, cont.flags, 0, 1664 NULL, 0, cont.buf, cont.len); 1665 cont.len = 0; 1666 } 1667 } 1668 1669 static bool cont_add(int facility, int level, enum log_flags flags, const char *text, size_t len) 1670 { 1671 if (cont.len && cont.flushed) 1672 return false; 1673 1674 /* 1675 * If ext consoles are present, flush and skip in-kernel 1676 * continuation. See nr_ext_console_drivers definition. Also, if 1677 * the line gets too long, split it up in separate records. 1678 */ 1679 if (nr_ext_console_drivers || cont.len + len > sizeof(cont.buf)) { 1680 cont_flush(); 1681 return false; 1682 } 1683 1684 if (!cont.len) { 1685 cont.facility = facility; 1686 cont.level = level; 1687 cont.owner = current; 1688 cont.ts_nsec = local_clock(); 1689 cont.flags = flags; 1690 cont.cons = 0; 1691 cont.flushed = false; 1692 } 1693 1694 memcpy(cont.buf + cont.len, text, len); 1695 cont.len += len; 1696 1697 // The original flags come from the first line, 1698 // but later continuations can add a newline. 1699 if (flags & LOG_NEWLINE) { 1700 cont.flags |= LOG_NEWLINE; 1701 cont_flush(); 1702 } 1703 1704 if (cont.len > (sizeof(cont.buf) * 80) / 100) 1705 cont_flush(); 1706 1707 return true; 1708 } 1709 1710 static size_t cont_print_text(char *text, size_t size) 1711 { 1712 size_t textlen = 0; 1713 size_t len; 1714 1715 if (cont.cons == 0 && (console_prev & LOG_NEWLINE)) { 1716 textlen += print_time(cont.ts_nsec, text); 1717 size -= textlen; 1718 } 1719 1720 len = cont.len - cont.cons; 1721 if (len > 0) { 1722 if (len+1 > size) 1723 len = size-1; 1724 memcpy(text + textlen, cont.buf + cont.cons, len); 1725 textlen += len; 1726 cont.cons = cont.len; 1727 } 1728 1729 if (cont.flushed) { 1730 if (cont.flags & LOG_NEWLINE) 1731 text[textlen++] = '\n'; 1732 /* got everything, release buffer */ 1733 cont.len = 0; 1734 } 1735 return textlen; 1736 } 1737 1738 static size_t log_output(int facility, int level, enum log_flags lflags, const char *dict, size_t dictlen, char *text, size_t text_len) 1739 { 1740 /* 1741 * If an earlier line was buffered, and we're a continuation 1742 * write from the same process, try to add it to the buffer. 1743 */ 1744 if (cont.len) { 1745 if (cont.owner == current && (lflags & LOG_CONT)) { 1746 if (cont_add(facility, level, lflags, text, text_len)) 1747 return text_len; 1748 } 1749 /* Otherwise, make sure it's flushed */ 1750 cont_flush(); 1751 } 1752 1753 /* Skip empty continuation lines that couldn't be added - they just flush */ 1754 if (!text_len && (lflags & LOG_CONT)) 1755 return 0; 1756 1757 /* If it doesn't end in a newline, try to buffer the current line */ 1758 if (!(lflags & LOG_NEWLINE)) { 1759 if (cont_add(facility, level, lflags, text, text_len)) 1760 return text_len; 1761 } 1762 1763 /* Store it in the record log */ 1764 return log_store(facility, level, lflags, 0, dict, dictlen, text, text_len); 1765 } 1766 1767 asmlinkage int vprintk_emit(int facility, int level, 1768 const char *dict, size_t dictlen, 1769 const char *fmt, va_list args) 1770 { 1771 static bool recursion_bug; 1772 static char textbuf[LOG_LINE_MAX]; 1773 char *text = textbuf; 1774 size_t text_len = 0; 1775 enum log_flags lflags = 0; 1776 unsigned long flags; 1777 int this_cpu; 1778 int printed_len = 0; 1779 int nmi_message_lost; 1780 bool in_sched = false; 1781 /* cpu currently holding logbuf_lock in this function */ 1782 static unsigned int logbuf_cpu = UINT_MAX; 1783 1784 if (level == LOGLEVEL_SCHED) { 1785 level = LOGLEVEL_DEFAULT; 1786 in_sched = true; 1787 } 1788 1789 boot_delay_msec(level); 1790 printk_delay(); 1791 1792 local_irq_save(flags); 1793 this_cpu = smp_processor_id(); 1794 1795 /* 1796 * Ouch, printk recursed into itself! 1797 */ 1798 if (unlikely(logbuf_cpu == this_cpu)) { 1799 /* 1800 * If a crash is occurring during printk() on this CPU, 1801 * then try to get the crash message out but make sure 1802 * we can't deadlock. Otherwise just return to avoid the 1803 * recursion and return - but flag the recursion so that 1804 * it can be printed at the next appropriate moment: 1805 */ 1806 if (!oops_in_progress && !lockdep_recursing(current)) { 1807 recursion_bug = true; 1808 local_irq_restore(flags); 1809 return 0; 1810 } 1811 zap_locks(); 1812 } 1813 1814 lockdep_off(); 1815 /* This stops the holder of console_sem just where we want him */ 1816 raw_spin_lock(&logbuf_lock); 1817 logbuf_cpu = this_cpu; 1818 1819 if (unlikely(recursion_bug)) { 1820 static const char recursion_msg[] = 1821 "BUG: recent printk recursion!"; 1822 1823 recursion_bug = false; 1824 /* emit KERN_CRIT message */ 1825 printed_len += log_store(0, 2, LOG_PREFIX|LOG_NEWLINE, 0, 1826 NULL, 0, recursion_msg, 1827 strlen(recursion_msg)); 1828 } 1829 1830 nmi_message_lost = get_nmi_message_lost(); 1831 if (unlikely(nmi_message_lost)) { 1832 text_len = scnprintf(textbuf, sizeof(textbuf), 1833 "BAD LUCK: lost %d message(s) from NMI context!", 1834 nmi_message_lost); 1835 printed_len += log_store(0, 2, LOG_PREFIX|LOG_NEWLINE, 0, 1836 NULL, 0, textbuf, text_len); 1837 } 1838 1839 /* 1840 * The printf needs to come first; we need the syslog 1841 * prefix which might be passed-in as a parameter. 1842 */ 1843 text_len = vscnprintf(text, sizeof(textbuf), fmt, args); 1844 1845 /* mark and strip a trailing newline */ 1846 if (text_len && text[text_len-1] == '\n') { 1847 text_len--; 1848 lflags |= LOG_NEWLINE; 1849 } 1850 1851 /* strip kernel syslog prefix and extract log level or control flags */ 1852 if (facility == 0) { 1853 int kern_level; 1854 1855 while ((kern_level = printk_get_level(text)) != 0) { 1856 switch (kern_level) { 1857 case '0' ... '7': 1858 if (level == LOGLEVEL_DEFAULT) 1859 level = kern_level - '0'; 1860 /* fallthrough */ 1861 case 'd': /* KERN_DEFAULT */ 1862 lflags |= LOG_PREFIX; 1863 break; 1864 case 'c': /* KERN_CONT */ 1865 lflags |= LOG_CONT; 1866 } 1867 1868 text_len -= 2; 1869 text += 2; 1870 } 1871 } 1872 1873 if (level == LOGLEVEL_DEFAULT) 1874 level = default_message_loglevel; 1875 1876 if (dict) 1877 lflags |= LOG_PREFIX|LOG_NEWLINE; 1878 1879 printed_len += log_output(facility, level, lflags, dict, dictlen, text, text_len); 1880 1881 logbuf_cpu = UINT_MAX; 1882 raw_spin_unlock(&logbuf_lock); 1883 lockdep_on(); 1884 local_irq_restore(flags); 1885 1886 /* If called from the scheduler, we can not call up(). */ 1887 if (!in_sched) { 1888 lockdep_off(); 1889 /* 1890 * Try to acquire and then immediately release the console 1891 * semaphore. The release will print out buffers and wake up 1892 * /dev/kmsg and syslog() users. 1893 */ 1894 if (console_trylock()) 1895 console_unlock(); 1896 lockdep_on(); 1897 } 1898 1899 return printed_len; 1900 } 1901 EXPORT_SYMBOL(vprintk_emit); 1902 1903 asmlinkage int vprintk(const char *fmt, va_list args) 1904 { 1905 return vprintk_emit(0, LOGLEVEL_DEFAULT, NULL, 0, fmt, args); 1906 } 1907 EXPORT_SYMBOL(vprintk); 1908 1909 asmlinkage int printk_emit(int facility, int level, 1910 const char *dict, size_t dictlen, 1911 const char *fmt, ...) 1912 { 1913 va_list args; 1914 int r; 1915 1916 va_start(args, fmt); 1917 r = vprintk_emit(facility, level, dict, dictlen, fmt, args); 1918 va_end(args); 1919 1920 return r; 1921 } 1922 EXPORT_SYMBOL(printk_emit); 1923 1924 int vprintk_default(const char *fmt, va_list args) 1925 { 1926 int r; 1927 1928 #ifdef CONFIG_KGDB_KDB 1929 if (unlikely(kdb_trap_printk)) { 1930 r = vkdb_printf(KDB_MSGSRC_PRINTK, fmt, args); 1931 return r; 1932 } 1933 #endif 1934 r = vprintk_emit(0, LOGLEVEL_DEFAULT, NULL, 0, fmt, args); 1935 1936 return r; 1937 } 1938 EXPORT_SYMBOL_GPL(vprintk_default); 1939 1940 /** 1941 * printk - print a kernel message 1942 * @fmt: format string 1943 * 1944 * This is printk(). It can be called from any context. We want it to work. 1945 * 1946 * We try to grab the console_lock. If we succeed, it's easy - we log the 1947 * output and call the console drivers. If we fail to get the semaphore, we 1948 * place the output into the log buffer and return. The current holder of 1949 * the console_sem will notice the new output in console_unlock(); and will 1950 * send it to the consoles before releasing the lock. 1951 * 1952 * One effect of this deferred printing is that code which calls printk() and 1953 * then changes console_loglevel may break. This is because console_loglevel 1954 * is inspected when the actual printing occurs. 1955 * 1956 * See also: 1957 * printf(3) 1958 * 1959 * See the vsnprintf() documentation for format string extensions over C99. 1960 */ 1961 asmlinkage __visible int printk(const char *fmt, ...) 1962 { 1963 va_list args; 1964 int r; 1965 1966 va_start(args, fmt); 1967 r = vprintk_func(fmt, args); 1968 va_end(args); 1969 1970 return r; 1971 } 1972 EXPORT_SYMBOL(printk); 1973 1974 #else /* CONFIG_PRINTK */ 1975 1976 #define LOG_LINE_MAX 0 1977 #define PREFIX_MAX 0 1978 1979 static u64 syslog_seq; 1980 static u32 syslog_idx; 1981 static u64 console_seq; 1982 static u32 console_idx; 1983 static enum log_flags syslog_prev; 1984 static u64 log_first_seq; 1985 static u32 log_first_idx; 1986 static u64 log_next_seq; 1987 static enum log_flags console_prev; 1988 static struct cont { 1989 size_t len; 1990 size_t cons; 1991 u8 level; 1992 bool flushed:1; 1993 } cont; 1994 static char *log_text(const struct printk_log *msg) { return NULL; } 1995 static char *log_dict(const struct printk_log *msg) { return NULL; } 1996 static struct printk_log *log_from_idx(u32 idx) { return NULL; } 1997 static u32 log_next(u32 idx) { return 0; } 1998 static ssize_t msg_print_ext_header(char *buf, size_t size, 1999 struct printk_log *msg, u64 seq, 2000 enum log_flags prev_flags) { return 0; } 2001 static ssize_t msg_print_ext_body(char *buf, size_t size, 2002 char *dict, size_t dict_len, 2003 char *text, size_t text_len) { return 0; } 2004 static void call_console_drivers(int level, 2005 const char *ext_text, size_t ext_len, 2006 const char *text, size_t len) {} 2007 static size_t msg_print_text(const struct printk_log *msg, enum log_flags prev, 2008 bool syslog, char *buf, size_t size) { return 0; } 2009 static size_t cont_print_text(char *text, size_t size) { return 0; } 2010 static bool suppress_message_printing(int level) { return false; } 2011 2012 /* Still needs to be defined for users */ 2013 DEFINE_PER_CPU(printk_func_t, printk_func); 2014 2015 #endif /* CONFIG_PRINTK */ 2016 2017 #ifdef CONFIG_EARLY_PRINTK 2018 struct console *early_console; 2019 2020 asmlinkage __visible void early_printk(const char *fmt, ...) 2021 { 2022 va_list ap; 2023 char buf[512]; 2024 int n; 2025 2026 if (!early_console) 2027 return; 2028 2029 va_start(ap, fmt); 2030 n = vscnprintf(buf, sizeof(buf), fmt, ap); 2031 va_end(ap); 2032 2033 early_console->write(early_console, buf, n); 2034 } 2035 #endif 2036 2037 static int __add_preferred_console(char *name, int idx, char *options, 2038 char *brl_options) 2039 { 2040 struct console_cmdline *c; 2041 int i; 2042 2043 /* 2044 * See if this tty is not yet registered, and 2045 * if we have a slot free. 2046 */ 2047 for (i = 0, c = console_cmdline; 2048 i < MAX_CMDLINECONSOLES && c->name[0]; 2049 i++, c++) { 2050 if (strcmp(c->name, name) == 0 && c->index == idx) { 2051 if (!brl_options) 2052 selected_console = i; 2053 return 0; 2054 } 2055 } 2056 if (i == MAX_CMDLINECONSOLES) 2057 return -E2BIG; 2058 if (!brl_options) 2059 selected_console = i; 2060 strlcpy(c->name, name, sizeof(c->name)); 2061 c->options = options; 2062 braille_set_options(c, brl_options); 2063 2064 c->index = idx; 2065 return 0; 2066 } 2067 /* 2068 * Set up a console. Called via do_early_param() in init/main.c 2069 * for each "console=" parameter in the boot command line. 2070 */ 2071 static int __init console_setup(char *str) 2072 { 2073 char buf[sizeof(console_cmdline[0].name) + 4]; /* 4 for "ttyS" */ 2074 char *s, *options, *brl_options = NULL; 2075 int idx; 2076 2077 if (_braille_console_setup(&str, &brl_options)) 2078 return 1; 2079 2080 /* 2081 * Decode str into name, index, options. 2082 */ 2083 if (str[0] >= '0' && str[0] <= '9') { 2084 strcpy(buf, "ttyS"); 2085 strncpy(buf + 4, str, sizeof(buf) - 5); 2086 } else { 2087 strncpy(buf, str, sizeof(buf) - 1); 2088 } 2089 buf[sizeof(buf) - 1] = 0; 2090 options = strchr(str, ','); 2091 if (options) 2092 *(options++) = 0; 2093 #ifdef __sparc__ 2094 if (!strcmp(str, "ttya")) 2095 strcpy(buf, "ttyS0"); 2096 if (!strcmp(str, "ttyb")) 2097 strcpy(buf, "ttyS1"); 2098 #endif 2099 for (s = buf; *s; s++) 2100 if (isdigit(*s) || *s == ',') 2101 break; 2102 idx = simple_strtoul(s, NULL, 10); 2103 *s = 0; 2104 2105 __add_preferred_console(buf, idx, options, brl_options); 2106 console_set_on_cmdline = 1; 2107 return 1; 2108 } 2109 __setup("console=", console_setup); 2110 2111 /** 2112 * add_preferred_console - add a device to the list of preferred consoles. 2113 * @name: device name 2114 * @idx: device index 2115 * @options: options for this console 2116 * 2117 * The last preferred console added will be used for kernel messages 2118 * and stdin/out/err for init. Normally this is used by console_setup 2119 * above to handle user-supplied console arguments; however it can also 2120 * be used by arch-specific code either to override the user or more 2121 * commonly to provide a default console (ie from PROM variables) when 2122 * the user has not supplied one. 2123 */ 2124 int add_preferred_console(char *name, int idx, char *options) 2125 { 2126 return __add_preferred_console(name, idx, options, NULL); 2127 } 2128 2129 bool console_suspend_enabled = true; 2130 EXPORT_SYMBOL(console_suspend_enabled); 2131 2132 static int __init console_suspend_disable(char *str) 2133 { 2134 console_suspend_enabled = false; 2135 return 1; 2136 } 2137 __setup("no_console_suspend", console_suspend_disable); 2138 module_param_named(console_suspend, console_suspend_enabled, 2139 bool, S_IRUGO | S_IWUSR); 2140 MODULE_PARM_DESC(console_suspend, "suspend console during suspend" 2141 " and hibernate operations"); 2142 2143 /** 2144 * suspend_console - suspend the console subsystem 2145 * 2146 * This disables printk() while we go into suspend states 2147 */ 2148 void suspend_console(void) 2149 { 2150 if (!console_suspend_enabled) 2151 return; 2152 printk("Suspending console(s) (use no_console_suspend to debug)\n"); 2153 console_lock(); 2154 console_suspended = 1; 2155 up_console_sem(); 2156 } 2157 2158 void resume_console(void) 2159 { 2160 if (!console_suspend_enabled) 2161 return; 2162 down_console_sem(); 2163 console_suspended = 0; 2164 console_unlock(); 2165 } 2166 2167 /** 2168 * console_cpu_notify - print deferred console messages after CPU hotplug 2169 * @self: notifier struct 2170 * @action: CPU hotplug event 2171 * @hcpu: unused 2172 * 2173 * If printk() is called from a CPU that is not online yet, the messages 2174 * will be spooled but will not show up on the console. This function is 2175 * called when a new CPU comes online (or fails to come up), and ensures 2176 * that any such output gets printed. 2177 */ 2178 static int console_cpu_notify(struct notifier_block *self, 2179 unsigned long action, void *hcpu) 2180 { 2181 switch (action) { 2182 case CPU_ONLINE: 2183 case CPU_DEAD: 2184 case CPU_DOWN_FAILED: 2185 case CPU_UP_CANCELED: 2186 console_lock(); 2187 console_unlock(); 2188 } 2189 return NOTIFY_OK; 2190 } 2191 2192 /** 2193 * console_lock - lock the console system for exclusive use. 2194 * 2195 * Acquires a lock which guarantees that the caller has 2196 * exclusive access to the console system and the console_drivers list. 2197 * 2198 * Can sleep, returns nothing. 2199 */ 2200 void console_lock(void) 2201 { 2202 might_sleep(); 2203 2204 down_console_sem(); 2205 if (console_suspended) 2206 return; 2207 console_locked = 1; 2208 console_may_schedule = 1; 2209 } 2210 EXPORT_SYMBOL(console_lock); 2211 2212 /** 2213 * console_trylock - try to lock the console system for exclusive use. 2214 * 2215 * Try to acquire a lock which guarantees that the caller has exclusive 2216 * access to the console system and the console_drivers list. 2217 * 2218 * returns 1 on success, and 0 on failure to acquire the lock. 2219 */ 2220 int console_trylock(void) 2221 { 2222 if (down_trylock_console_sem()) 2223 return 0; 2224 if (console_suspended) { 2225 up_console_sem(); 2226 return 0; 2227 } 2228 console_locked = 1; 2229 /* 2230 * When PREEMPT_COUNT disabled we can't reliably detect if it's 2231 * safe to schedule (e.g. calling printk while holding a spin_lock), 2232 * because preempt_disable()/preempt_enable() are just barriers there 2233 * and preempt_count() is always 0. 2234 * 2235 * RCU read sections have a separate preemption counter when 2236 * PREEMPT_RCU enabled thus we must take extra care and check 2237 * rcu_preempt_depth(), otherwise RCU read sections modify 2238 * preempt_count(). 2239 */ 2240 console_may_schedule = !oops_in_progress && 2241 preemptible() && 2242 !rcu_preempt_depth(); 2243 return 1; 2244 } 2245 EXPORT_SYMBOL(console_trylock); 2246 2247 int is_console_locked(void) 2248 { 2249 return console_locked; 2250 } 2251 2252 /* 2253 * Check if we have any console that is capable of printing while cpu is 2254 * booting or shutting down. Requires console_sem. 2255 */ 2256 static int have_callable_console(void) 2257 { 2258 struct console *con; 2259 2260 for_each_console(con) 2261 if ((con->flags & CON_ENABLED) && 2262 (con->flags & CON_ANYTIME)) 2263 return 1; 2264 2265 return 0; 2266 } 2267 2268 /* 2269 * Can we actually use the console at this time on this cpu? 2270 * 2271 * Console drivers may assume that per-cpu resources have been allocated. So 2272 * unless they're explicitly marked as being able to cope (CON_ANYTIME) don't 2273 * call them until this CPU is officially up. 2274 */ 2275 static inline int can_use_console(void) 2276 { 2277 return cpu_online(raw_smp_processor_id()) || have_callable_console(); 2278 } 2279 2280 static void console_cont_flush(char *text, size_t size) 2281 { 2282 unsigned long flags; 2283 size_t len; 2284 2285 raw_spin_lock_irqsave(&logbuf_lock, flags); 2286 2287 if (!cont.len) 2288 goto out; 2289 2290 if (suppress_message_printing(cont.level)) { 2291 cont.cons = cont.len; 2292 if (cont.flushed) 2293 cont.len = 0; 2294 goto out; 2295 } 2296 2297 /* 2298 * We still queue earlier records, likely because the console was 2299 * busy. The earlier ones need to be printed before this one, we 2300 * did not flush any fragment so far, so just let it queue up. 2301 */ 2302 if (console_seq < log_next_seq && !cont.cons) 2303 goto out; 2304 2305 len = cont_print_text(text, size); 2306 raw_spin_unlock(&logbuf_lock); 2307 stop_critical_timings(); 2308 call_console_drivers(cont.level, NULL, 0, text, len); 2309 start_critical_timings(); 2310 local_irq_restore(flags); 2311 return; 2312 out: 2313 raw_spin_unlock_irqrestore(&logbuf_lock, flags); 2314 } 2315 2316 /** 2317 * console_unlock - unlock the console system 2318 * 2319 * Releases the console_lock which the caller holds on the console system 2320 * and the console driver list. 2321 * 2322 * While the console_lock was held, console output may have been buffered 2323 * by printk(). If this is the case, console_unlock(); emits 2324 * the output prior to releasing the lock. 2325 * 2326 * If there is output waiting, we wake /dev/kmsg and syslog() users. 2327 * 2328 * console_unlock(); may be called from any context. 2329 */ 2330 void console_unlock(void) 2331 { 2332 static char ext_text[CONSOLE_EXT_LOG_MAX]; 2333 static char text[LOG_LINE_MAX + PREFIX_MAX]; 2334 static u64 seen_seq; 2335 unsigned long flags; 2336 bool wake_klogd = false; 2337 bool do_cond_resched, retry; 2338 2339 if (console_suspended) { 2340 up_console_sem(); 2341 return; 2342 } 2343 2344 /* 2345 * Console drivers are called under logbuf_lock, so 2346 * @console_may_schedule should be cleared before; however, we may 2347 * end up dumping a lot of lines, for example, if called from 2348 * console registration path, and should invoke cond_resched() 2349 * between lines if allowable. Not doing so can cause a very long 2350 * scheduling stall on a slow console leading to RCU stall and 2351 * softlockup warnings which exacerbate the issue with more 2352 * messages practically incapacitating the system. 2353 */ 2354 do_cond_resched = console_may_schedule; 2355 console_may_schedule = 0; 2356 2357 again: 2358 /* 2359 * We released the console_sem lock, so we need to recheck if 2360 * cpu is online and (if not) is there at least one CON_ANYTIME 2361 * console. 2362 */ 2363 if (!can_use_console()) { 2364 console_locked = 0; 2365 up_console_sem(); 2366 return; 2367 } 2368 2369 /* flush buffered message fragment immediately to console */ 2370 console_cont_flush(text, sizeof(text)); 2371 2372 for (;;) { 2373 struct printk_log *msg; 2374 size_t ext_len = 0; 2375 size_t len; 2376 int level; 2377 2378 raw_spin_lock_irqsave(&logbuf_lock, flags); 2379 if (seen_seq != log_next_seq) { 2380 wake_klogd = true; 2381 seen_seq = log_next_seq; 2382 } 2383 2384 if (console_seq < log_first_seq) { 2385 len = sprintf(text, "** %u printk messages dropped ** ", 2386 (unsigned)(log_first_seq - console_seq)); 2387 2388 /* messages are gone, move to first one */ 2389 console_seq = log_first_seq; 2390 console_idx = log_first_idx; 2391 console_prev = 0; 2392 } else { 2393 len = 0; 2394 } 2395 skip: 2396 if (console_seq == log_next_seq) 2397 break; 2398 2399 msg = log_from_idx(console_idx); 2400 level = msg->level; 2401 if ((msg->flags & LOG_NOCONS) || 2402 suppress_message_printing(level)) { 2403 /* 2404 * Skip record we have buffered and already printed 2405 * directly to the console when we received it, and 2406 * record that has level above the console loglevel. 2407 */ 2408 console_idx = log_next(console_idx); 2409 console_seq++; 2410 /* 2411 * We will get here again when we register a new 2412 * CON_PRINTBUFFER console. Clear the flag so we 2413 * will properly dump everything later. 2414 */ 2415 msg->flags &= ~LOG_NOCONS; 2416 console_prev = msg->flags; 2417 goto skip; 2418 } 2419 2420 len += msg_print_text(msg, console_prev, false, 2421 text + len, sizeof(text) - len); 2422 if (nr_ext_console_drivers) { 2423 ext_len = msg_print_ext_header(ext_text, 2424 sizeof(ext_text), 2425 msg, console_seq, console_prev); 2426 ext_len += msg_print_ext_body(ext_text + ext_len, 2427 sizeof(ext_text) - ext_len, 2428 log_dict(msg), msg->dict_len, 2429 log_text(msg), msg->text_len); 2430 } 2431 console_idx = log_next(console_idx); 2432 console_seq++; 2433 console_prev = msg->flags; 2434 raw_spin_unlock(&logbuf_lock); 2435 2436 stop_critical_timings(); /* don't trace print latency */ 2437 call_console_drivers(level, ext_text, ext_len, text, len); 2438 start_critical_timings(); 2439 local_irq_restore(flags); 2440 2441 if (do_cond_resched) 2442 cond_resched(); 2443 } 2444 console_locked = 0; 2445 2446 /* Release the exclusive_console once it is used */ 2447 if (unlikely(exclusive_console)) 2448 exclusive_console = NULL; 2449 2450 raw_spin_unlock(&logbuf_lock); 2451 2452 up_console_sem(); 2453 2454 /* 2455 * Someone could have filled up the buffer again, so re-check if there's 2456 * something to flush. In case we cannot trylock the console_sem again, 2457 * there's a new owner and the console_unlock() from them will do the 2458 * flush, no worries. 2459 */ 2460 raw_spin_lock(&logbuf_lock); 2461 retry = console_seq != log_next_seq; 2462 raw_spin_unlock_irqrestore(&logbuf_lock, flags); 2463 2464 if (retry && console_trylock()) 2465 goto again; 2466 2467 if (wake_klogd) 2468 wake_up_klogd(); 2469 } 2470 EXPORT_SYMBOL(console_unlock); 2471 2472 /** 2473 * console_conditional_schedule - yield the CPU if required 2474 * 2475 * If the console code is currently allowed to sleep, and 2476 * if this CPU should yield the CPU to another task, do 2477 * so here. 2478 * 2479 * Must be called within console_lock();. 2480 */ 2481 void __sched console_conditional_schedule(void) 2482 { 2483 if (console_may_schedule) 2484 cond_resched(); 2485 } 2486 EXPORT_SYMBOL(console_conditional_schedule); 2487 2488 void console_unblank(void) 2489 { 2490 struct console *c; 2491 2492 /* 2493 * console_unblank can no longer be called in interrupt context unless 2494 * oops_in_progress is set to 1.. 2495 */ 2496 if (oops_in_progress) { 2497 if (down_trylock_console_sem() != 0) 2498 return; 2499 } else 2500 console_lock(); 2501 2502 console_locked = 1; 2503 console_may_schedule = 0; 2504 for_each_console(c) 2505 if ((c->flags & CON_ENABLED) && c->unblank) 2506 c->unblank(); 2507 console_unlock(); 2508 } 2509 2510 /** 2511 * console_flush_on_panic - flush console content on panic 2512 * 2513 * Immediately output all pending messages no matter what. 2514 */ 2515 void console_flush_on_panic(void) 2516 { 2517 /* 2518 * If someone else is holding the console lock, trylock will fail 2519 * and may_schedule may be set. Ignore and proceed to unlock so 2520 * that messages are flushed out. As this can be called from any 2521 * context and we don't want to get preempted while flushing, 2522 * ensure may_schedule is cleared. 2523 */ 2524 console_trylock(); 2525 console_may_schedule = 0; 2526 console_unlock(); 2527 } 2528 2529 /* 2530 * Return the console tty driver structure and its associated index 2531 */ 2532 struct tty_driver *console_device(int *index) 2533 { 2534 struct console *c; 2535 struct tty_driver *driver = NULL; 2536 2537 console_lock(); 2538 for_each_console(c) { 2539 if (!c->device) 2540 continue; 2541 driver = c->device(c, index); 2542 if (driver) 2543 break; 2544 } 2545 console_unlock(); 2546 return driver; 2547 } 2548 2549 /* 2550 * Prevent further output on the passed console device so that (for example) 2551 * serial drivers can disable console output before suspending a port, and can 2552 * re-enable output afterwards. 2553 */ 2554 void console_stop(struct console *console) 2555 { 2556 console_lock(); 2557 console->flags &= ~CON_ENABLED; 2558 console_unlock(); 2559 } 2560 EXPORT_SYMBOL(console_stop); 2561 2562 void console_start(struct console *console) 2563 { 2564 console_lock(); 2565 console->flags |= CON_ENABLED; 2566 console_unlock(); 2567 } 2568 EXPORT_SYMBOL(console_start); 2569 2570 static int __read_mostly keep_bootcon; 2571 2572 static int __init keep_bootcon_setup(char *str) 2573 { 2574 keep_bootcon = 1; 2575 pr_info("debug: skip boot console de-registration.\n"); 2576 2577 return 0; 2578 } 2579 2580 early_param("keep_bootcon", keep_bootcon_setup); 2581 2582 /* 2583 * The console driver calls this routine during kernel initialization 2584 * to register the console printing procedure with printk() and to 2585 * print any messages that were printed by the kernel before the 2586 * console driver was initialized. 2587 * 2588 * This can happen pretty early during the boot process (because of 2589 * early_printk) - sometimes before setup_arch() completes - be careful 2590 * of what kernel features are used - they may not be initialised yet. 2591 * 2592 * There are two types of consoles - bootconsoles (early_printk) and 2593 * "real" consoles (everything which is not a bootconsole) which are 2594 * handled differently. 2595 * - Any number of bootconsoles can be registered at any time. 2596 * - As soon as a "real" console is registered, all bootconsoles 2597 * will be unregistered automatically. 2598 * - Once a "real" console is registered, any attempt to register a 2599 * bootconsoles will be rejected 2600 */ 2601 void register_console(struct console *newcon) 2602 { 2603 int i; 2604 unsigned long flags; 2605 struct console *bcon = NULL; 2606 struct console_cmdline *c; 2607 2608 if (console_drivers) 2609 for_each_console(bcon) 2610 if (WARN(bcon == newcon, 2611 "console '%s%d' already registered\n", 2612 bcon->name, bcon->index)) 2613 return; 2614 2615 /* 2616 * before we register a new CON_BOOT console, make sure we don't 2617 * already have a valid console 2618 */ 2619 if (console_drivers && newcon->flags & CON_BOOT) { 2620 /* find the last or real console */ 2621 for_each_console(bcon) { 2622 if (!(bcon->flags & CON_BOOT)) { 2623 pr_info("Too late to register bootconsole %s%d\n", 2624 newcon->name, newcon->index); 2625 return; 2626 } 2627 } 2628 } 2629 2630 if (console_drivers && console_drivers->flags & CON_BOOT) 2631 bcon = console_drivers; 2632 2633 if (preferred_console < 0 || bcon || !console_drivers) 2634 preferred_console = selected_console; 2635 2636 /* 2637 * See if we want to use this console driver. If we 2638 * didn't select a console we take the first one 2639 * that registers here. 2640 */ 2641 if (preferred_console < 0) { 2642 if (newcon->index < 0) 2643 newcon->index = 0; 2644 if (newcon->setup == NULL || 2645 newcon->setup(newcon, NULL) == 0) { 2646 newcon->flags |= CON_ENABLED; 2647 if (newcon->device) { 2648 newcon->flags |= CON_CONSDEV; 2649 preferred_console = 0; 2650 } 2651 } 2652 } 2653 2654 /* 2655 * See if this console matches one we selected on 2656 * the command line. 2657 */ 2658 for (i = 0, c = console_cmdline; 2659 i < MAX_CMDLINECONSOLES && c->name[0]; 2660 i++, c++) { 2661 if (!newcon->match || 2662 newcon->match(newcon, c->name, c->index, c->options) != 0) { 2663 /* default matching */ 2664 BUILD_BUG_ON(sizeof(c->name) != sizeof(newcon->name)); 2665 if (strcmp(c->name, newcon->name) != 0) 2666 continue; 2667 if (newcon->index >= 0 && 2668 newcon->index != c->index) 2669 continue; 2670 if (newcon->index < 0) 2671 newcon->index = c->index; 2672 2673 if (_braille_register_console(newcon, c)) 2674 return; 2675 2676 if (newcon->setup && 2677 newcon->setup(newcon, c->options) != 0) 2678 break; 2679 } 2680 2681 newcon->flags |= CON_ENABLED; 2682 if (i == selected_console) { 2683 newcon->flags |= CON_CONSDEV; 2684 preferred_console = selected_console; 2685 } 2686 break; 2687 } 2688 2689 if (!(newcon->flags & CON_ENABLED)) 2690 return; 2691 2692 /* 2693 * If we have a bootconsole, and are switching to a real console, 2694 * don't print everything out again, since when the boot console, and 2695 * the real console are the same physical device, it's annoying to 2696 * see the beginning boot messages twice 2697 */ 2698 if (bcon && ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV)) 2699 newcon->flags &= ~CON_PRINTBUFFER; 2700 2701 /* 2702 * Put this console in the list - keep the 2703 * preferred driver at the head of the list. 2704 */ 2705 console_lock(); 2706 if ((newcon->flags & CON_CONSDEV) || console_drivers == NULL) { 2707 newcon->next = console_drivers; 2708 console_drivers = newcon; 2709 if (newcon->next) 2710 newcon->next->flags &= ~CON_CONSDEV; 2711 } else { 2712 newcon->next = console_drivers->next; 2713 console_drivers->next = newcon; 2714 } 2715 2716 if (newcon->flags & CON_EXTENDED) 2717 if (!nr_ext_console_drivers++) 2718 pr_info("printk: continuation disabled due to ext consoles, expect more fragments in /dev/kmsg\n"); 2719 2720 if (newcon->flags & CON_PRINTBUFFER) { 2721 /* 2722 * console_unlock(); will print out the buffered messages 2723 * for us. 2724 */ 2725 raw_spin_lock_irqsave(&logbuf_lock, flags); 2726 console_seq = syslog_seq; 2727 console_idx = syslog_idx; 2728 console_prev = syslog_prev; 2729 raw_spin_unlock_irqrestore(&logbuf_lock, flags); 2730 /* 2731 * We're about to replay the log buffer. Only do this to the 2732 * just-registered console to avoid excessive message spam to 2733 * the already-registered consoles. 2734 */ 2735 exclusive_console = newcon; 2736 } 2737 console_unlock(); 2738 console_sysfs_notify(); 2739 2740 /* 2741 * By unregistering the bootconsoles after we enable the real console 2742 * we get the "console xxx enabled" message on all the consoles - 2743 * boot consoles, real consoles, etc - this is to ensure that end 2744 * users know there might be something in the kernel's log buffer that 2745 * went to the bootconsole (that they do not see on the real console) 2746 */ 2747 pr_info("%sconsole [%s%d] enabled\n", 2748 (newcon->flags & CON_BOOT) ? "boot" : "" , 2749 newcon->name, newcon->index); 2750 if (bcon && 2751 ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV) && 2752 !keep_bootcon) { 2753 /* We need to iterate through all boot consoles, to make 2754 * sure we print everything out, before we unregister them. 2755 */ 2756 for_each_console(bcon) 2757 if (bcon->flags & CON_BOOT) 2758 unregister_console(bcon); 2759 } 2760 } 2761 EXPORT_SYMBOL(register_console); 2762 2763 int unregister_console(struct console *console) 2764 { 2765 struct console *a, *b; 2766 int res; 2767 2768 pr_info("%sconsole [%s%d] disabled\n", 2769 (console->flags & CON_BOOT) ? "boot" : "" , 2770 console->name, console->index); 2771 2772 res = _braille_unregister_console(console); 2773 if (res) 2774 return res; 2775 2776 res = 1; 2777 console_lock(); 2778 if (console_drivers == console) { 2779 console_drivers=console->next; 2780 res = 0; 2781 } else if (console_drivers) { 2782 for (a=console_drivers->next, b=console_drivers ; 2783 a; b=a, a=b->next) { 2784 if (a == console) { 2785 b->next = a->next; 2786 res = 0; 2787 break; 2788 } 2789 } 2790 } 2791 2792 if (!res && (console->flags & CON_EXTENDED)) 2793 nr_ext_console_drivers--; 2794 2795 /* 2796 * If this isn't the last console and it has CON_CONSDEV set, we 2797 * need to set it on the next preferred console. 2798 */ 2799 if (console_drivers != NULL && console->flags & CON_CONSDEV) 2800 console_drivers->flags |= CON_CONSDEV; 2801 2802 console->flags &= ~CON_ENABLED; 2803 console_unlock(); 2804 console_sysfs_notify(); 2805 return res; 2806 } 2807 EXPORT_SYMBOL(unregister_console); 2808 2809 /* 2810 * Some boot consoles access data that is in the init section and which will 2811 * be discarded after the initcalls have been run. To make sure that no code 2812 * will access this data, unregister the boot consoles in a late initcall. 2813 * 2814 * If for some reason, such as deferred probe or the driver being a loadable 2815 * module, the real console hasn't registered yet at this point, there will 2816 * be a brief interval in which no messages are logged to the console, which 2817 * makes it difficult to diagnose problems that occur during this time. 2818 * 2819 * To mitigate this problem somewhat, only unregister consoles whose memory 2820 * intersects with the init section. Note that code exists elsewhere to get 2821 * rid of the boot console as soon as the proper console shows up, so there 2822 * won't be side-effects from postponing the removal. 2823 */ 2824 static int __init printk_late_init(void) 2825 { 2826 struct console *con; 2827 2828 for_each_console(con) { 2829 if (!keep_bootcon && con->flags & CON_BOOT) { 2830 /* 2831 * Make sure to unregister boot consoles whose data 2832 * resides in the init section before the init section 2833 * is discarded. Boot consoles whose data will stick 2834 * around will automatically be unregistered when the 2835 * proper console replaces them. 2836 */ 2837 if (init_section_intersects(con, sizeof(*con))) 2838 unregister_console(con); 2839 } 2840 } 2841 hotcpu_notifier(console_cpu_notify, 0); 2842 return 0; 2843 } 2844 late_initcall(printk_late_init); 2845 2846 #if defined CONFIG_PRINTK 2847 /* 2848 * Delayed printk version, for scheduler-internal messages: 2849 */ 2850 #define PRINTK_PENDING_WAKEUP 0x01 2851 #define PRINTK_PENDING_OUTPUT 0x02 2852 2853 static DEFINE_PER_CPU(int, printk_pending); 2854 2855 static void wake_up_klogd_work_func(struct irq_work *irq_work) 2856 { 2857 int pending = __this_cpu_xchg(printk_pending, 0); 2858 2859 if (pending & PRINTK_PENDING_OUTPUT) { 2860 /* If trylock fails, someone else is doing the printing */ 2861 if (console_trylock()) 2862 console_unlock(); 2863 } 2864 2865 if (pending & PRINTK_PENDING_WAKEUP) 2866 wake_up_interruptible(&log_wait); 2867 } 2868 2869 static DEFINE_PER_CPU(struct irq_work, wake_up_klogd_work) = { 2870 .func = wake_up_klogd_work_func, 2871 .flags = IRQ_WORK_LAZY, 2872 }; 2873 2874 void wake_up_klogd(void) 2875 { 2876 preempt_disable(); 2877 if (waitqueue_active(&log_wait)) { 2878 this_cpu_or(printk_pending, PRINTK_PENDING_WAKEUP); 2879 irq_work_queue(this_cpu_ptr(&wake_up_klogd_work)); 2880 } 2881 preempt_enable(); 2882 } 2883 2884 int printk_deferred(const char *fmt, ...) 2885 { 2886 va_list args; 2887 int r; 2888 2889 preempt_disable(); 2890 va_start(args, fmt); 2891 r = vprintk_emit(0, LOGLEVEL_SCHED, NULL, 0, fmt, args); 2892 va_end(args); 2893 2894 __this_cpu_or(printk_pending, PRINTK_PENDING_OUTPUT); 2895 irq_work_queue(this_cpu_ptr(&wake_up_klogd_work)); 2896 preempt_enable(); 2897 2898 return r; 2899 } 2900 2901 /* 2902 * printk rate limiting, lifted from the networking subsystem. 2903 * 2904 * This enforces a rate limit: not more than 10 kernel messages 2905 * every 5s to make a denial-of-service attack impossible. 2906 */ 2907 DEFINE_RATELIMIT_STATE(printk_ratelimit_state, 5 * HZ, 10); 2908 2909 int __printk_ratelimit(const char *func) 2910 { 2911 return ___ratelimit(&printk_ratelimit_state, func); 2912 } 2913 EXPORT_SYMBOL(__printk_ratelimit); 2914 2915 /** 2916 * printk_timed_ratelimit - caller-controlled printk ratelimiting 2917 * @caller_jiffies: pointer to caller's state 2918 * @interval_msecs: minimum interval between prints 2919 * 2920 * printk_timed_ratelimit() returns true if more than @interval_msecs 2921 * milliseconds have elapsed since the last time printk_timed_ratelimit() 2922 * returned true. 2923 */ 2924 bool printk_timed_ratelimit(unsigned long *caller_jiffies, 2925 unsigned int interval_msecs) 2926 { 2927 unsigned long elapsed = jiffies - *caller_jiffies; 2928 2929 if (*caller_jiffies && elapsed <= msecs_to_jiffies(interval_msecs)) 2930 return false; 2931 2932 *caller_jiffies = jiffies; 2933 return true; 2934 } 2935 EXPORT_SYMBOL(printk_timed_ratelimit); 2936 2937 static DEFINE_SPINLOCK(dump_list_lock); 2938 static LIST_HEAD(dump_list); 2939 2940 /** 2941 * kmsg_dump_register - register a kernel log dumper. 2942 * @dumper: pointer to the kmsg_dumper structure 2943 * 2944 * Adds a kernel log dumper to the system. The dump callback in the 2945 * structure will be called when the kernel oopses or panics and must be 2946 * set. Returns zero on success and %-EINVAL or %-EBUSY otherwise. 2947 */ 2948 int kmsg_dump_register(struct kmsg_dumper *dumper) 2949 { 2950 unsigned long flags; 2951 int err = -EBUSY; 2952 2953 /* The dump callback needs to be set */ 2954 if (!dumper->dump) 2955 return -EINVAL; 2956 2957 spin_lock_irqsave(&dump_list_lock, flags); 2958 /* Don't allow registering multiple times */ 2959 if (!dumper->registered) { 2960 dumper->registered = 1; 2961 list_add_tail_rcu(&dumper->list, &dump_list); 2962 err = 0; 2963 } 2964 spin_unlock_irqrestore(&dump_list_lock, flags); 2965 2966 return err; 2967 } 2968 EXPORT_SYMBOL_GPL(kmsg_dump_register); 2969 2970 /** 2971 * kmsg_dump_unregister - unregister a kmsg dumper. 2972 * @dumper: pointer to the kmsg_dumper structure 2973 * 2974 * Removes a dump device from the system. Returns zero on success and 2975 * %-EINVAL otherwise. 2976 */ 2977 int kmsg_dump_unregister(struct kmsg_dumper *dumper) 2978 { 2979 unsigned long flags; 2980 int err = -EINVAL; 2981 2982 spin_lock_irqsave(&dump_list_lock, flags); 2983 if (dumper->registered) { 2984 dumper->registered = 0; 2985 list_del_rcu(&dumper->list); 2986 err = 0; 2987 } 2988 spin_unlock_irqrestore(&dump_list_lock, flags); 2989 synchronize_rcu(); 2990 2991 return err; 2992 } 2993 EXPORT_SYMBOL_GPL(kmsg_dump_unregister); 2994 2995 static bool always_kmsg_dump; 2996 module_param_named(always_kmsg_dump, always_kmsg_dump, bool, S_IRUGO | S_IWUSR); 2997 2998 /** 2999 * kmsg_dump - dump kernel log to kernel message dumpers. 3000 * @reason: the reason (oops, panic etc) for dumping 3001 * 3002 * Call each of the registered dumper's dump() callback, which can 3003 * retrieve the kmsg records with kmsg_dump_get_line() or 3004 * kmsg_dump_get_buffer(). 3005 */ 3006 void kmsg_dump(enum kmsg_dump_reason reason) 3007 { 3008 struct kmsg_dumper *dumper; 3009 unsigned long flags; 3010 3011 if ((reason > KMSG_DUMP_OOPS) && !always_kmsg_dump) 3012 return; 3013 3014 rcu_read_lock(); 3015 list_for_each_entry_rcu(dumper, &dump_list, list) { 3016 if (dumper->max_reason && reason > dumper->max_reason) 3017 continue; 3018 3019 /* initialize iterator with data about the stored records */ 3020 dumper->active = true; 3021 3022 raw_spin_lock_irqsave(&logbuf_lock, flags); 3023 dumper->cur_seq = clear_seq; 3024 dumper->cur_idx = clear_idx; 3025 dumper->next_seq = log_next_seq; 3026 dumper->next_idx = log_next_idx; 3027 raw_spin_unlock_irqrestore(&logbuf_lock, flags); 3028 3029 /* invoke dumper which will iterate over records */ 3030 dumper->dump(dumper, reason); 3031 3032 /* reset iterator */ 3033 dumper->active = false; 3034 } 3035 rcu_read_unlock(); 3036 } 3037 3038 /** 3039 * kmsg_dump_get_line_nolock - retrieve one kmsg log line (unlocked version) 3040 * @dumper: registered kmsg dumper 3041 * @syslog: include the "<4>" prefixes 3042 * @line: buffer to copy the line to 3043 * @size: maximum size of the buffer 3044 * @len: length of line placed into buffer 3045 * 3046 * Start at the beginning of the kmsg buffer, with the oldest kmsg 3047 * record, and copy one record into the provided buffer. 3048 * 3049 * Consecutive calls will return the next available record moving 3050 * towards the end of the buffer with the youngest messages. 3051 * 3052 * A return value of FALSE indicates that there are no more records to 3053 * read. 3054 * 3055 * The function is similar to kmsg_dump_get_line(), but grabs no locks. 3056 */ 3057 bool kmsg_dump_get_line_nolock(struct kmsg_dumper *dumper, bool syslog, 3058 char *line, size_t size, size_t *len) 3059 { 3060 struct printk_log *msg; 3061 size_t l = 0; 3062 bool ret = false; 3063 3064 if (!dumper->active) 3065 goto out; 3066 3067 if (dumper->cur_seq < log_first_seq) { 3068 /* messages are gone, move to first available one */ 3069 dumper->cur_seq = log_first_seq; 3070 dumper->cur_idx = log_first_idx; 3071 } 3072 3073 /* last entry */ 3074 if (dumper->cur_seq >= log_next_seq) 3075 goto out; 3076 3077 msg = log_from_idx(dumper->cur_idx); 3078 l = msg_print_text(msg, 0, syslog, line, size); 3079 3080 dumper->cur_idx = log_next(dumper->cur_idx); 3081 dumper->cur_seq++; 3082 ret = true; 3083 out: 3084 if (len) 3085 *len = l; 3086 return ret; 3087 } 3088 3089 /** 3090 * kmsg_dump_get_line - retrieve one kmsg log line 3091 * @dumper: registered kmsg dumper 3092 * @syslog: include the "<4>" prefixes 3093 * @line: buffer to copy the line to 3094 * @size: maximum size of the buffer 3095 * @len: length of line placed into buffer 3096 * 3097 * Start at the beginning of the kmsg buffer, with the oldest kmsg 3098 * record, and copy one record into the provided buffer. 3099 * 3100 * Consecutive calls will return the next available record moving 3101 * towards the end of the buffer with the youngest messages. 3102 * 3103 * A return value of FALSE indicates that there are no more records to 3104 * read. 3105 */ 3106 bool kmsg_dump_get_line(struct kmsg_dumper *dumper, bool syslog, 3107 char *line, size_t size, size_t *len) 3108 { 3109 unsigned long flags; 3110 bool ret; 3111 3112 raw_spin_lock_irqsave(&logbuf_lock, flags); 3113 ret = kmsg_dump_get_line_nolock(dumper, syslog, line, size, len); 3114 raw_spin_unlock_irqrestore(&logbuf_lock, flags); 3115 3116 return ret; 3117 } 3118 EXPORT_SYMBOL_GPL(kmsg_dump_get_line); 3119 3120 /** 3121 * kmsg_dump_get_buffer - copy kmsg log lines 3122 * @dumper: registered kmsg dumper 3123 * @syslog: include the "<4>" prefixes 3124 * @buf: buffer to copy the line to 3125 * @size: maximum size of the buffer 3126 * @len: length of line placed into buffer 3127 * 3128 * Start at the end of the kmsg buffer and fill the provided buffer 3129 * with as many of the the *youngest* kmsg records that fit into it. 3130 * If the buffer is large enough, all available kmsg records will be 3131 * copied with a single call. 3132 * 3133 * Consecutive calls will fill the buffer with the next block of 3134 * available older records, not including the earlier retrieved ones. 3135 * 3136 * A return value of FALSE indicates that there are no more records to 3137 * read. 3138 */ 3139 bool kmsg_dump_get_buffer(struct kmsg_dumper *dumper, bool syslog, 3140 char *buf, size_t size, size_t *len) 3141 { 3142 unsigned long flags; 3143 u64 seq; 3144 u32 idx; 3145 u64 next_seq; 3146 u32 next_idx; 3147 enum log_flags prev; 3148 size_t l = 0; 3149 bool ret = false; 3150 3151 if (!dumper->active) 3152 goto out; 3153 3154 raw_spin_lock_irqsave(&logbuf_lock, flags); 3155 if (dumper->cur_seq < log_first_seq) { 3156 /* messages are gone, move to first available one */ 3157 dumper->cur_seq = log_first_seq; 3158 dumper->cur_idx = log_first_idx; 3159 } 3160 3161 /* last entry */ 3162 if (dumper->cur_seq >= dumper->next_seq) { 3163 raw_spin_unlock_irqrestore(&logbuf_lock, flags); 3164 goto out; 3165 } 3166 3167 /* calculate length of entire buffer */ 3168 seq = dumper->cur_seq; 3169 idx = dumper->cur_idx; 3170 prev = 0; 3171 while (seq < dumper->next_seq) { 3172 struct printk_log *msg = log_from_idx(idx); 3173 3174 l += msg_print_text(msg, prev, true, NULL, 0); 3175 idx = log_next(idx); 3176 seq++; 3177 prev = msg->flags; 3178 } 3179 3180 /* move first record forward until length fits into the buffer */ 3181 seq = dumper->cur_seq; 3182 idx = dumper->cur_idx; 3183 prev = 0; 3184 while (l > size && seq < dumper->next_seq) { 3185 struct printk_log *msg = log_from_idx(idx); 3186 3187 l -= msg_print_text(msg, prev, true, NULL, 0); 3188 idx = log_next(idx); 3189 seq++; 3190 prev = msg->flags; 3191 } 3192 3193 /* last message in next interation */ 3194 next_seq = seq; 3195 next_idx = idx; 3196 3197 l = 0; 3198 while (seq < dumper->next_seq) { 3199 struct printk_log *msg = log_from_idx(idx); 3200 3201 l += msg_print_text(msg, prev, syslog, buf + l, size - l); 3202 idx = log_next(idx); 3203 seq++; 3204 prev = msg->flags; 3205 } 3206 3207 dumper->next_seq = next_seq; 3208 dumper->next_idx = next_idx; 3209 ret = true; 3210 raw_spin_unlock_irqrestore(&logbuf_lock, flags); 3211 out: 3212 if (len) 3213 *len = l; 3214 return ret; 3215 } 3216 EXPORT_SYMBOL_GPL(kmsg_dump_get_buffer); 3217 3218 /** 3219 * kmsg_dump_rewind_nolock - reset the interator (unlocked version) 3220 * @dumper: registered kmsg dumper 3221 * 3222 * Reset the dumper's iterator so that kmsg_dump_get_line() and 3223 * kmsg_dump_get_buffer() can be called again and used multiple 3224 * times within the same dumper.dump() callback. 3225 * 3226 * The function is similar to kmsg_dump_rewind(), but grabs no locks. 3227 */ 3228 void kmsg_dump_rewind_nolock(struct kmsg_dumper *dumper) 3229 { 3230 dumper->cur_seq = clear_seq; 3231 dumper->cur_idx = clear_idx; 3232 dumper->next_seq = log_next_seq; 3233 dumper->next_idx = log_next_idx; 3234 } 3235 3236 /** 3237 * kmsg_dump_rewind - reset the interator 3238 * @dumper: registered kmsg dumper 3239 * 3240 * Reset the dumper's iterator so that kmsg_dump_get_line() and 3241 * kmsg_dump_get_buffer() can be called again and used multiple 3242 * times within the same dumper.dump() callback. 3243 */ 3244 void kmsg_dump_rewind(struct kmsg_dumper *dumper) 3245 { 3246 unsigned long flags; 3247 3248 raw_spin_lock_irqsave(&logbuf_lock, flags); 3249 kmsg_dump_rewind_nolock(dumper); 3250 raw_spin_unlock_irqrestore(&logbuf_lock, flags); 3251 } 3252 EXPORT_SYMBOL_GPL(kmsg_dump_rewind); 3253 3254 static char dump_stack_arch_desc_str[128]; 3255 3256 /** 3257 * dump_stack_set_arch_desc - set arch-specific str to show with task dumps 3258 * @fmt: printf-style format string 3259 * @...: arguments for the format string 3260 * 3261 * The configured string will be printed right after utsname during task 3262 * dumps. Usually used to add arch-specific system identifiers. If an 3263 * arch wants to make use of such an ID string, it should initialize this 3264 * as soon as possible during boot. 3265 */ 3266 void __init dump_stack_set_arch_desc(const char *fmt, ...) 3267 { 3268 va_list args; 3269 3270 va_start(args, fmt); 3271 vsnprintf(dump_stack_arch_desc_str, sizeof(dump_stack_arch_desc_str), 3272 fmt, args); 3273 va_end(args); 3274 } 3275 3276 /** 3277 * dump_stack_print_info - print generic debug info for dump_stack() 3278 * @log_lvl: log level 3279 * 3280 * Arch-specific dump_stack() implementations can use this function to 3281 * print out the same debug information as the generic dump_stack(). 3282 */ 3283 void dump_stack_print_info(const char *log_lvl) 3284 { 3285 printk("%sCPU: %d PID: %d Comm: %.20s %s %s %.*s\n", 3286 log_lvl, raw_smp_processor_id(), current->pid, current->comm, 3287 print_tainted(), init_utsname()->release, 3288 (int)strcspn(init_utsname()->version, " "), 3289 init_utsname()->version); 3290 3291 if (dump_stack_arch_desc_str[0] != '\0') 3292 printk("%sHardware name: %s\n", 3293 log_lvl, dump_stack_arch_desc_str); 3294 3295 print_worker_info(log_lvl, current); 3296 } 3297 3298 /** 3299 * show_regs_print_info - print generic debug info for show_regs() 3300 * @log_lvl: log level 3301 * 3302 * show_regs() implementations can use this function to print out generic 3303 * debug information. 3304 */ 3305 void show_regs_print_info(const char *log_lvl) 3306 { 3307 dump_stack_print_info(log_lvl); 3308 3309 printk("%stask: %p task.stack: %p\n", 3310 log_lvl, current, task_stack_page(current)); 3311 } 3312 3313 #endif 3314