xref: /openbmc/linux/kernel/printk/printk.c (revision c0decac1)
1 /*
2  *  linux/kernel/printk.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  *
6  * Modified to make sys_syslog() more flexible: added commands to
7  * return the last 4k of kernel messages, regardless of whether
8  * they've been read or not.  Added option to suppress kernel printk's
9  * to the console.  Added hook for sending the console messages
10  * elsewhere, in preparation for a serial line console (someday).
11  * Ted Ts'o, 2/11/93.
12  * Modified for sysctl support, 1/8/97, Chris Horn.
13  * Fixed SMP synchronization, 08/08/99, Manfred Spraul
14  *     manfred@colorfullife.com
15  * Rewrote bits to get rid of console_lock
16  *	01Mar01 Andrew Morton
17  */
18 
19 #include <linux/kernel.h>
20 #include <linux/mm.h>
21 #include <linux/tty.h>
22 #include <linux/tty_driver.h>
23 #include <linux/console.h>
24 #include <linux/init.h>
25 #include <linux/jiffies.h>
26 #include <linux/nmi.h>
27 #include <linux/module.h>
28 #include <linux/moduleparam.h>
29 #include <linux/delay.h>
30 #include <linux/smp.h>
31 #include <linux/security.h>
32 #include <linux/bootmem.h>
33 #include <linux/memblock.h>
34 #include <linux/syscalls.h>
35 #include <linux/crash_core.h>
36 #include <linux/kdb.h>
37 #include <linux/ratelimit.h>
38 #include <linux/kmsg_dump.h>
39 #include <linux/syslog.h>
40 #include <linux/cpu.h>
41 #include <linux/notifier.h>
42 #include <linux/rculist.h>
43 #include <linux/poll.h>
44 #include <linux/irq_work.h>
45 #include <linux/ctype.h>
46 #include <linux/uio.h>
47 #include <linux/sched/clock.h>
48 #include <linux/sched/debug.h>
49 #include <linux/sched/task_stack.h>
50 
51 #include <linux/uaccess.h>
52 #include <asm/sections.h>
53 
54 #include <trace/events/initcall.h>
55 #define CREATE_TRACE_POINTS
56 #include <trace/events/printk.h>
57 
58 #include "console_cmdline.h"
59 #include "braille.h"
60 #include "internal.h"
61 
62 int console_printk[4] = {
63 	CONSOLE_LOGLEVEL_DEFAULT,	/* console_loglevel */
64 	MESSAGE_LOGLEVEL_DEFAULT,	/* default_message_loglevel */
65 	CONSOLE_LOGLEVEL_MIN,		/* minimum_console_loglevel */
66 	CONSOLE_LOGLEVEL_DEFAULT,	/* default_console_loglevel */
67 };
68 
69 atomic_t ignore_console_lock_warning __read_mostly = ATOMIC_INIT(0);
70 EXPORT_SYMBOL(ignore_console_lock_warning);
71 
72 /*
73  * Low level drivers may need that to know if they can schedule in
74  * their unblank() callback or not. So let's export it.
75  */
76 int oops_in_progress;
77 EXPORT_SYMBOL(oops_in_progress);
78 
79 /*
80  * console_sem protects the console_drivers list, and also
81  * provides serialisation for access to the entire console
82  * driver system.
83  */
84 static DEFINE_SEMAPHORE(console_sem);
85 struct console *console_drivers;
86 EXPORT_SYMBOL_GPL(console_drivers);
87 
88 #ifdef CONFIG_LOCKDEP
89 static struct lockdep_map console_lock_dep_map = {
90 	.name = "console_lock"
91 };
92 #endif
93 
94 enum devkmsg_log_bits {
95 	__DEVKMSG_LOG_BIT_ON = 0,
96 	__DEVKMSG_LOG_BIT_OFF,
97 	__DEVKMSG_LOG_BIT_LOCK,
98 };
99 
100 enum devkmsg_log_masks {
101 	DEVKMSG_LOG_MASK_ON             = BIT(__DEVKMSG_LOG_BIT_ON),
102 	DEVKMSG_LOG_MASK_OFF            = BIT(__DEVKMSG_LOG_BIT_OFF),
103 	DEVKMSG_LOG_MASK_LOCK           = BIT(__DEVKMSG_LOG_BIT_LOCK),
104 };
105 
106 /* Keep both the 'on' and 'off' bits clear, i.e. ratelimit by default: */
107 #define DEVKMSG_LOG_MASK_DEFAULT	0
108 
109 static unsigned int __read_mostly devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT;
110 
111 static int __control_devkmsg(char *str)
112 {
113 	if (!str)
114 		return -EINVAL;
115 
116 	if (!strncmp(str, "on", 2)) {
117 		devkmsg_log = DEVKMSG_LOG_MASK_ON;
118 		return 2;
119 	} else if (!strncmp(str, "off", 3)) {
120 		devkmsg_log = DEVKMSG_LOG_MASK_OFF;
121 		return 3;
122 	} else if (!strncmp(str, "ratelimit", 9)) {
123 		devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT;
124 		return 9;
125 	}
126 	return -EINVAL;
127 }
128 
129 static int __init control_devkmsg(char *str)
130 {
131 	if (__control_devkmsg(str) < 0)
132 		return 1;
133 
134 	/*
135 	 * Set sysctl string accordingly:
136 	 */
137 	if (devkmsg_log == DEVKMSG_LOG_MASK_ON)
138 		strcpy(devkmsg_log_str, "on");
139 	else if (devkmsg_log == DEVKMSG_LOG_MASK_OFF)
140 		strcpy(devkmsg_log_str, "off");
141 	/* else "ratelimit" which is set by default. */
142 
143 	/*
144 	 * Sysctl cannot change it anymore. The kernel command line setting of
145 	 * this parameter is to force the setting to be permanent throughout the
146 	 * runtime of the system. This is a precation measure against userspace
147 	 * trying to be a smarta** and attempting to change it up on us.
148 	 */
149 	devkmsg_log |= DEVKMSG_LOG_MASK_LOCK;
150 
151 	return 0;
152 }
153 __setup("printk.devkmsg=", control_devkmsg);
154 
155 char devkmsg_log_str[DEVKMSG_STR_MAX_SIZE] = "ratelimit";
156 
157 int devkmsg_sysctl_set_loglvl(struct ctl_table *table, int write,
158 			      void __user *buffer, size_t *lenp, loff_t *ppos)
159 {
160 	char old_str[DEVKMSG_STR_MAX_SIZE];
161 	unsigned int old;
162 	int err;
163 
164 	if (write) {
165 		if (devkmsg_log & DEVKMSG_LOG_MASK_LOCK)
166 			return -EINVAL;
167 
168 		old = devkmsg_log;
169 		strncpy(old_str, devkmsg_log_str, DEVKMSG_STR_MAX_SIZE);
170 	}
171 
172 	err = proc_dostring(table, write, buffer, lenp, ppos);
173 	if (err)
174 		return err;
175 
176 	if (write) {
177 		err = __control_devkmsg(devkmsg_log_str);
178 
179 		/*
180 		 * Do not accept an unknown string OR a known string with
181 		 * trailing crap...
182 		 */
183 		if (err < 0 || (err + 1 != *lenp)) {
184 
185 			/* ... and restore old setting. */
186 			devkmsg_log = old;
187 			strncpy(devkmsg_log_str, old_str, DEVKMSG_STR_MAX_SIZE);
188 
189 			return -EINVAL;
190 		}
191 	}
192 
193 	return 0;
194 }
195 
196 /*
197  * Number of registered extended console drivers.
198  *
199  * If extended consoles are present, in-kernel cont reassembly is disabled
200  * and each fragment is stored as a separate log entry with proper
201  * continuation flag so that every emitted message has full metadata.  This
202  * doesn't change the result for regular consoles or /proc/kmsg.  For
203  * /dev/kmsg, as long as the reader concatenates messages according to
204  * consecutive continuation flags, the end result should be the same too.
205  */
206 static int nr_ext_console_drivers;
207 
208 /*
209  * Helper macros to handle lockdep when locking/unlocking console_sem. We use
210  * macros instead of functions so that _RET_IP_ contains useful information.
211  */
212 #define down_console_sem() do { \
213 	down(&console_sem);\
214 	mutex_acquire(&console_lock_dep_map, 0, 0, _RET_IP_);\
215 } while (0)
216 
217 static int __down_trylock_console_sem(unsigned long ip)
218 {
219 	int lock_failed;
220 	unsigned long flags;
221 
222 	/*
223 	 * Here and in __up_console_sem() we need to be in safe mode,
224 	 * because spindump/WARN/etc from under console ->lock will
225 	 * deadlock in printk()->down_trylock_console_sem() otherwise.
226 	 */
227 	printk_safe_enter_irqsave(flags);
228 	lock_failed = down_trylock(&console_sem);
229 	printk_safe_exit_irqrestore(flags);
230 
231 	if (lock_failed)
232 		return 1;
233 	mutex_acquire(&console_lock_dep_map, 0, 1, ip);
234 	return 0;
235 }
236 #define down_trylock_console_sem() __down_trylock_console_sem(_RET_IP_)
237 
238 static void __up_console_sem(unsigned long ip)
239 {
240 	unsigned long flags;
241 
242 	mutex_release(&console_lock_dep_map, 1, ip);
243 
244 	printk_safe_enter_irqsave(flags);
245 	up(&console_sem);
246 	printk_safe_exit_irqrestore(flags);
247 }
248 #define up_console_sem() __up_console_sem(_RET_IP_)
249 
250 /*
251  * This is used for debugging the mess that is the VT code by
252  * keeping track if we have the console semaphore held. It's
253  * definitely not the perfect debug tool (we don't know if _WE_
254  * hold it and are racing, but it helps tracking those weird code
255  * paths in the console code where we end up in places I want
256  * locked without the console sempahore held).
257  */
258 static int console_locked, console_suspended;
259 
260 /*
261  * If exclusive_console is non-NULL then only this console is to be printed to.
262  */
263 static struct console *exclusive_console;
264 
265 /*
266  *	Array of consoles built from command line options (console=)
267  */
268 
269 #define MAX_CMDLINECONSOLES 8
270 
271 static struct console_cmdline console_cmdline[MAX_CMDLINECONSOLES];
272 
273 static int preferred_console = -1;
274 int console_set_on_cmdline;
275 EXPORT_SYMBOL(console_set_on_cmdline);
276 
277 /* Flag: console code may call schedule() */
278 static int console_may_schedule;
279 
280 enum con_msg_format_flags {
281 	MSG_FORMAT_DEFAULT	= 0,
282 	MSG_FORMAT_SYSLOG	= (1 << 0),
283 };
284 
285 static int console_msg_format = MSG_FORMAT_DEFAULT;
286 
287 /*
288  * The printk log buffer consists of a chain of concatenated variable
289  * length records. Every record starts with a record header, containing
290  * the overall length of the record.
291  *
292  * The heads to the first and last entry in the buffer, as well as the
293  * sequence numbers of these entries are maintained when messages are
294  * stored.
295  *
296  * If the heads indicate available messages, the length in the header
297  * tells the start next message. A length == 0 for the next message
298  * indicates a wrap-around to the beginning of the buffer.
299  *
300  * Every record carries the monotonic timestamp in microseconds, as well as
301  * the standard userspace syslog level and syslog facility. The usual
302  * kernel messages use LOG_KERN; userspace-injected messages always carry
303  * a matching syslog facility, by default LOG_USER. The origin of every
304  * message can be reliably determined that way.
305  *
306  * The human readable log message directly follows the message header. The
307  * length of the message text is stored in the header, the stored message
308  * is not terminated.
309  *
310  * Optionally, a message can carry a dictionary of properties (key/value pairs),
311  * to provide userspace with a machine-readable message context.
312  *
313  * Examples for well-defined, commonly used property names are:
314  *   DEVICE=b12:8               device identifier
315  *                                b12:8         block dev_t
316  *                                c127:3        char dev_t
317  *                                n8            netdev ifindex
318  *                                +sound:card0  subsystem:devname
319  *   SUBSYSTEM=pci              driver-core subsystem name
320  *
321  * Valid characters in property names are [a-zA-Z0-9.-_]. The plain text value
322  * follows directly after a '=' character. Every property is terminated by
323  * a '\0' character. The last property is not terminated.
324  *
325  * Example of a message structure:
326  *   0000  ff 8f 00 00 00 00 00 00      monotonic time in nsec
327  *   0008  34 00                        record is 52 bytes long
328  *   000a        0b 00                  text is 11 bytes long
329  *   000c              1f 00            dictionary is 23 bytes long
330  *   000e                    03 00      LOG_KERN (facility) LOG_ERR (level)
331  *   0010  69 74 27 73 20 61 20 6c      "it's a l"
332  *         69 6e 65                     "ine"
333  *   001b           44 45 56 49 43      "DEVIC"
334  *         45 3d 62 38 3a 32 00 44      "E=b8:2\0D"
335  *         52 49 56 45 52 3d 62 75      "RIVER=bu"
336  *         67                           "g"
337  *   0032     00 00 00                  padding to next message header
338  *
339  * The 'struct printk_log' buffer header must never be directly exported to
340  * userspace, it is a kernel-private implementation detail that might
341  * need to be changed in the future, when the requirements change.
342  *
343  * /dev/kmsg exports the structured data in the following line format:
344  *   "<level>,<sequnum>,<timestamp>,<contflag>[,additional_values, ... ];<message text>\n"
345  *
346  * Users of the export format should ignore possible additional values
347  * separated by ',', and find the message after the ';' character.
348  *
349  * The optional key/value pairs are attached as continuation lines starting
350  * with a space character and terminated by a newline. All possible
351  * non-prinatable characters are escaped in the "\xff" notation.
352  */
353 
354 enum log_flags {
355 	LOG_NOCONS	= 1,	/* suppress print, do not print to console */
356 	LOG_NEWLINE	= 2,	/* text ended with a newline */
357 	LOG_PREFIX	= 4,	/* text started with a prefix */
358 	LOG_CONT	= 8,	/* text is a fragment of a continuation line */
359 };
360 
361 struct printk_log {
362 	u64 ts_nsec;		/* timestamp in nanoseconds */
363 	u16 len;		/* length of entire record */
364 	u16 text_len;		/* length of text buffer */
365 	u16 dict_len;		/* length of dictionary buffer */
366 	u8 facility;		/* syslog facility */
367 	u8 flags:5;		/* internal record flags */
368 	u8 level:3;		/* syslog level */
369 }
370 #ifdef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
371 __packed __aligned(4)
372 #endif
373 ;
374 
375 /*
376  * The logbuf_lock protects kmsg buffer, indices, counters.  This can be taken
377  * within the scheduler's rq lock. It must be released before calling
378  * console_unlock() or anything else that might wake up a process.
379  */
380 DEFINE_RAW_SPINLOCK(logbuf_lock);
381 
382 /*
383  * Helper macros to lock/unlock logbuf_lock and switch between
384  * printk-safe/unsafe modes.
385  */
386 #define logbuf_lock_irq()				\
387 	do {						\
388 		printk_safe_enter_irq();		\
389 		raw_spin_lock(&logbuf_lock);		\
390 	} while (0)
391 
392 #define logbuf_unlock_irq()				\
393 	do {						\
394 		raw_spin_unlock(&logbuf_lock);		\
395 		printk_safe_exit_irq();			\
396 	} while (0)
397 
398 #define logbuf_lock_irqsave(flags)			\
399 	do {						\
400 		printk_safe_enter_irqsave(flags);	\
401 		raw_spin_lock(&logbuf_lock);		\
402 	} while (0)
403 
404 #define logbuf_unlock_irqrestore(flags)		\
405 	do {						\
406 		raw_spin_unlock(&logbuf_lock);		\
407 		printk_safe_exit_irqrestore(flags);	\
408 	} while (0)
409 
410 #ifdef CONFIG_PRINTK
411 DECLARE_WAIT_QUEUE_HEAD(log_wait);
412 /* the next printk record to read by syslog(READ) or /proc/kmsg */
413 static u64 syslog_seq;
414 static u32 syslog_idx;
415 static size_t syslog_partial;
416 
417 /* index and sequence number of the first record stored in the buffer */
418 static u64 log_first_seq;
419 static u32 log_first_idx;
420 
421 /* index and sequence number of the next record to store in the buffer */
422 static u64 log_next_seq;
423 static u32 log_next_idx;
424 
425 /* the next printk record to write to the console */
426 static u64 console_seq;
427 static u32 console_idx;
428 
429 /* the next printk record to read after the last 'clear' command */
430 static u64 clear_seq;
431 static u32 clear_idx;
432 
433 #define PREFIX_MAX		32
434 #define LOG_LINE_MAX		(1024 - PREFIX_MAX)
435 
436 #define LOG_LEVEL(v)		((v) & 0x07)
437 #define LOG_FACILITY(v)		((v) >> 3 & 0xff)
438 
439 /* record buffer */
440 #define LOG_ALIGN __alignof__(struct printk_log)
441 #define __LOG_BUF_LEN (1 << CONFIG_LOG_BUF_SHIFT)
442 static char __log_buf[__LOG_BUF_LEN] __aligned(LOG_ALIGN);
443 static char *log_buf = __log_buf;
444 static u32 log_buf_len = __LOG_BUF_LEN;
445 
446 /* Return log buffer address */
447 char *log_buf_addr_get(void)
448 {
449 	return log_buf;
450 }
451 
452 /* Return log buffer size */
453 u32 log_buf_len_get(void)
454 {
455 	return log_buf_len;
456 }
457 
458 /* human readable text of the record */
459 static char *log_text(const struct printk_log *msg)
460 {
461 	return (char *)msg + sizeof(struct printk_log);
462 }
463 
464 /* optional key/value pair dictionary attached to the record */
465 static char *log_dict(const struct printk_log *msg)
466 {
467 	return (char *)msg + sizeof(struct printk_log) + msg->text_len;
468 }
469 
470 /* get record by index; idx must point to valid msg */
471 static struct printk_log *log_from_idx(u32 idx)
472 {
473 	struct printk_log *msg = (struct printk_log *)(log_buf + idx);
474 
475 	/*
476 	 * A length == 0 record is the end of buffer marker. Wrap around and
477 	 * read the message at the start of the buffer.
478 	 */
479 	if (!msg->len)
480 		return (struct printk_log *)log_buf;
481 	return msg;
482 }
483 
484 /* get next record; idx must point to valid msg */
485 static u32 log_next(u32 idx)
486 {
487 	struct printk_log *msg = (struct printk_log *)(log_buf + idx);
488 
489 	/* length == 0 indicates the end of the buffer; wrap */
490 	/*
491 	 * A length == 0 record is the end of buffer marker. Wrap around and
492 	 * read the message at the start of the buffer as *this* one, and
493 	 * return the one after that.
494 	 */
495 	if (!msg->len) {
496 		msg = (struct printk_log *)log_buf;
497 		return msg->len;
498 	}
499 	return idx + msg->len;
500 }
501 
502 /*
503  * Check whether there is enough free space for the given message.
504  *
505  * The same values of first_idx and next_idx mean that the buffer
506  * is either empty or full.
507  *
508  * If the buffer is empty, we must respect the position of the indexes.
509  * They cannot be reset to the beginning of the buffer.
510  */
511 static int logbuf_has_space(u32 msg_size, bool empty)
512 {
513 	u32 free;
514 
515 	if (log_next_idx > log_first_idx || empty)
516 		free = max(log_buf_len - log_next_idx, log_first_idx);
517 	else
518 		free = log_first_idx - log_next_idx;
519 
520 	/*
521 	 * We need space also for an empty header that signalizes wrapping
522 	 * of the buffer.
523 	 */
524 	return free >= msg_size + sizeof(struct printk_log);
525 }
526 
527 static int log_make_free_space(u32 msg_size)
528 {
529 	while (log_first_seq < log_next_seq &&
530 	       !logbuf_has_space(msg_size, false)) {
531 		/* drop old messages until we have enough contiguous space */
532 		log_first_idx = log_next(log_first_idx);
533 		log_first_seq++;
534 	}
535 
536 	if (clear_seq < log_first_seq) {
537 		clear_seq = log_first_seq;
538 		clear_idx = log_first_idx;
539 	}
540 
541 	/* sequence numbers are equal, so the log buffer is empty */
542 	if (logbuf_has_space(msg_size, log_first_seq == log_next_seq))
543 		return 0;
544 
545 	return -ENOMEM;
546 }
547 
548 /* compute the message size including the padding bytes */
549 static u32 msg_used_size(u16 text_len, u16 dict_len, u32 *pad_len)
550 {
551 	u32 size;
552 
553 	size = sizeof(struct printk_log) + text_len + dict_len;
554 	*pad_len = (-size) & (LOG_ALIGN - 1);
555 	size += *pad_len;
556 
557 	return size;
558 }
559 
560 /*
561  * Define how much of the log buffer we could take at maximum. The value
562  * must be greater than two. Note that only half of the buffer is available
563  * when the index points to the middle.
564  */
565 #define MAX_LOG_TAKE_PART 4
566 static const char trunc_msg[] = "<truncated>";
567 
568 static u32 truncate_msg(u16 *text_len, u16 *trunc_msg_len,
569 			u16 *dict_len, u32 *pad_len)
570 {
571 	/*
572 	 * The message should not take the whole buffer. Otherwise, it might
573 	 * get removed too soon.
574 	 */
575 	u32 max_text_len = log_buf_len / MAX_LOG_TAKE_PART;
576 	if (*text_len > max_text_len)
577 		*text_len = max_text_len;
578 	/* enable the warning message */
579 	*trunc_msg_len = strlen(trunc_msg);
580 	/* disable the "dict" completely */
581 	*dict_len = 0;
582 	/* compute the size again, count also the warning message */
583 	return msg_used_size(*text_len + *trunc_msg_len, 0, pad_len);
584 }
585 
586 /* insert record into the buffer, discard old ones, update heads */
587 static int log_store(int facility, int level,
588 		     enum log_flags flags, u64 ts_nsec,
589 		     const char *dict, u16 dict_len,
590 		     const char *text, u16 text_len)
591 {
592 	struct printk_log *msg;
593 	u32 size, pad_len;
594 	u16 trunc_msg_len = 0;
595 
596 	/* number of '\0' padding bytes to next message */
597 	size = msg_used_size(text_len, dict_len, &pad_len);
598 
599 	if (log_make_free_space(size)) {
600 		/* truncate the message if it is too long for empty buffer */
601 		size = truncate_msg(&text_len, &trunc_msg_len,
602 				    &dict_len, &pad_len);
603 		/* survive when the log buffer is too small for trunc_msg */
604 		if (log_make_free_space(size))
605 			return 0;
606 	}
607 
608 	if (log_next_idx + size + sizeof(struct printk_log) > log_buf_len) {
609 		/*
610 		 * This message + an additional empty header does not fit
611 		 * at the end of the buffer. Add an empty header with len == 0
612 		 * to signify a wrap around.
613 		 */
614 		memset(log_buf + log_next_idx, 0, sizeof(struct printk_log));
615 		log_next_idx = 0;
616 	}
617 
618 	/* fill message */
619 	msg = (struct printk_log *)(log_buf + log_next_idx);
620 	memcpy(log_text(msg), text, text_len);
621 	msg->text_len = text_len;
622 	if (trunc_msg_len) {
623 		memcpy(log_text(msg) + text_len, trunc_msg, trunc_msg_len);
624 		msg->text_len += trunc_msg_len;
625 	}
626 	memcpy(log_dict(msg), dict, dict_len);
627 	msg->dict_len = dict_len;
628 	msg->facility = facility;
629 	msg->level = level & 7;
630 	msg->flags = flags & 0x1f;
631 	if (ts_nsec > 0)
632 		msg->ts_nsec = ts_nsec;
633 	else
634 		msg->ts_nsec = local_clock();
635 	memset(log_dict(msg) + dict_len, 0, pad_len);
636 	msg->len = size;
637 
638 	/* insert message */
639 	log_next_idx += msg->len;
640 	log_next_seq++;
641 
642 	return msg->text_len;
643 }
644 
645 int dmesg_restrict = IS_ENABLED(CONFIG_SECURITY_DMESG_RESTRICT);
646 
647 static int syslog_action_restricted(int type)
648 {
649 	if (dmesg_restrict)
650 		return 1;
651 	/*
652 	 * Unless restricted, we allow "read all" and "get buffer size"
653 	 * for everybody.
654 	 */
655 	return type != SYSLOG_ACTION_READ_ALL &&
656 	       type != SYSLOG_ACTION_SIZE_BUFFER;
657 }
658 
659 static int check_syslog_permissions(int type, int source)
660 {
661 	/*
662 	 * If this is from /proc/kmsg and we've already opened it, then we've
663 	 * already done the capabilities checks at open time.
664 	 */
665 	if (source == SYSLOG_FROM_PROC && type != SYSLOG_ACTION_OPEN)
666 		goto ok;
667 
668 	if (syslog_action_restricted(type)) {
669 		if (capable(CAP_SYSLOG))
670 			goto ok;
671 		/*
672 		 * For historical reasons, accept CAP_SYS_ADMIN too, with
673 		 * a warning.
674 		 */
675 		if (capable(CAP_SYS_ADMIN)) {
676 			pr_warn_once("%s (%d): Attempt to access syslog with "
677 				     "CAP_SYS_ADMIN but no CAP_SYSLOG "
678 				     "(deprecated).\n",
679 				 current->comm, task_pid_nr(current));
680 			goto ok;
681 		}
682 		return -EPERM;
683 	}
684 ok:
685 	return security_syslog(type);
686 }
687 
688 static void append_char(char **pp, char *e, char c)
689 {
690 	if (*pp < e)
691 		*(*pp)++ = c;
692 }
693 
694 static ssize_t msg_print_ext_header(char *buf, size_t size,
695 				    struct printk_log *msg, u64 seq)
696 {
697 	u64 ts_usec = msg->ts_nsec;
698 
699 	do_div(ts_usec, 1000);
700 
701 	return scnprintf(buf, size, "%u,%llu,%llu,%c;",
702 		       (msg->facility << 3) | msg->level, seq, ts_usec,
703 		       msg->flags & LOG_CONT ? 'c' : '-');
704 }
705 
706 static ssize_t msg_print_ext_body(char *buf, size_t size,
707 				  char *dict, size_t dict_len,
708 				  char *text, size_t text_len)
709 {
710 	char *p = buf, *e = buf + size;
711 	size_t i;
712 
713 	/* escape non-printable characters */
714 	for (i = 0; i < text_len; i++) {
715 		unsigned char c = text[i];
716 
717 		if (c < ' ' || c >= 127 || c == '\\')
718 			p += scnprintf(p, e - p, "\\x%02x", c);
719 		else
720 			append_char(&p, e, c);
721 	}
722 	append_char(&p, e, '\n');
723 
724 	if (dict_len) {
725 		bool line = true;
726 
727 		for (i = 0; i < dict_len; i++) {
728 			unsigned char c = dict[i];
729 
730 			if (line) {
731 				append_char(&p, e, ' ');
732 				line = false;
733 			}
734 
735 			if (c == '\0') {
736 				append_char(&p, e, '\n');
737 				line = true;
738 				continue;
739 			}
740 
741 			if (c < ' ' || c >= 127 || c == '\\') {
742 				p += scnprintf(p, e - p, "\\x%02x", c);
743 				continue;
744 			}
745 
746 			append_char(&p, e, c);
747 		}
748 		append_char(&p, e, '\n');
749 	}
750 
751 	return p - buf;
752 }
753 
754 /* /dev/kmsg - userspace message inject/listen interface */
755 struct devkmsg_user {
756 	u64 seq;
757 	u32 idx;
758 	struct ratelimit_state rs;
759 	struct mutex lock;
760 	char buf[CONSOLE_EXT_LOG_MAX];
761 };
762 
763 static ssize_t devkmsg_write(struct kiocb *iocb, struct iov_iter *from)
764 {
765 	char *buf, *line;
766 	int level = default_message_loglevel;
767 	int facility = 1;	/* LOG_USER */
768 	struct file *file = iocb->ki_filp;
769 	struct devkmsg_user *user = file->private_data;
770 	size_t len = iov_iter_count(from);
771 	ssize_t ret = len;
772 
773 	if (!user || len > LOG_LINE_MAX)
774 		return -EINVAL;
775 
776 	/* Ignore when user logging is disabled. */
777 	if (devkmsg_log & DEVKMSG_LOG_MASK_OFF)
778 		return len;
779 
780 	/* Ratelimit when not explicitly enabled. */
781 	if (!(devkmsg_log & DEVKMSG_LOG_MASK_ON)) {
782 		if (!___ratelimit(&user->rs, current->comm))
783 			return ret;
784 	}
785 
786 	buf = kmalloc(len+1, GFP_KERNEL);
787 	if (buf == NULL)
788 		return -ENOMEM;
789 
790 	buf[len] = '\0';
791 	if (!copy_from_iter_full(buf, len, from)) {
792 		kfree(buf);
793 		return -EFAULT;
794 	}
795 
796 	/*
797 	 * Extract and skip the syslog prefix <[0-9]*>. Coming from userspace
798 	 * the decimal value represents 32bit, the lower 3 bit are the log
799 	 * level, the rest are the log facility.
800 	 *
801 	 * If no prefix or no userspace facility is specified, we
802 	 * enforce LOG_USER, to be able to reliably distinguish
803 	 * kernel-generated messages from userspace-injected ones.
804 	 */
805 	line = buf;
806 	if (line[0] == '<') {
807 		char *endp = NULL;
808 		unsigned int u;
809 
810 		u = simple_strtoul(line + 1, &endp, 10);
811 		if (endp && endp[0] == '>') {
812 			level = LOG_LEVEL(u);
813 			if (LOG_FACILITY(u) != 0)
814 				facility = LOG_FACILITY(u);
815 			endp++;
816 			len -= endp - line;
817 			line = endp;
818 		}
819 	}
820 
821 	printk_emit(facility, level, NULL, 0, "%s", line);
822 	kfree(buf);
823 	return ret;
824 }
825 
826 static ssize_t devkmsg_read(struct file *file, char __user *buf,
827 			    size_t count, loff_t *ppos)
828 {
829 	struct devkmsg_user *user = file->private_data;
830 	struct printk_log *msg;
831 	size_t len;
832 	ssize_t ret;
833 
834 	if (!user)
835 		return -EBADF;
836 
837 	ret = mutex_lock_interruptible(&user->lock);
838 	if (ret)
839 		return ret;
840 
841 	logbuf_lock_irq();
842 	while (user->seq == log_next_seq) {
843 		if (file->f_flags & O_NONBLOCK) {
844 			ret = -EAGAIN;
845 			logbuf_unlock_irq();
846 			goto out;
847 		}
848 
849 		logbuf_unlock_irq();
850 		ret = wait_event_interruptible(log_wait,
851 					       user->seq != log_next_seq);
852 		if (ret)
853 			goto out;
854 		logbuf_lock_irq();
855 	}
856 
857 	if (user->seq < log_first_seq) {
858 		/* our last seen message is gone, return error and reset */
859 		user->idx = log_first_idx;
860 		user->seq = log_first_seq;
861 		ret = -EPIPE;
862 		logbuf_unlock_irq();
863 		goto out;
864 	}
865 
866 	msg = log_from_idx(user->idx);
867 	len = msg_print_ext_header(user->buf, sizeof(user->buf),
868 				   msg, user->seq);
869 	len += msg_print_ext_body(user->buf + len, sizeof(user->buf) - len,
870 				  log_dict(msg), msg->dict_len,
871 				  log_text(msg), msg->text_len);
872 
873 	user->idx = log_next(user->idx);
874 	user->seq++;
875 	logbuf_unlock_irq();
876 
877 	if (len > count) {
878 		ret = -EINVAL;
879 		goto out;
880 	}
881 
882 	if (copy_to_user(buf, user->buf, len)) {
883 		ret = -EFAULT;
884 		goto out;
885 	}
886 	ret = len;
887 out:
888 	mutex_unlock(&user->lock);
889 	return ret;
890 }
891 
892 static loff_t devkmsg_llseek(struct file *file, loff_t offset, int whence)
893 {
894 	struct devkmsg_user *user = file->private_data;
895 	loff_t ret = 0;
896 
897 	if (!user)
898 		return -EBADF;
899 	if (offset)
900 		return -ESPIPE;
901 
902 	logbuf_lock_irq();
903 	switch (whence) {
904 	case SEEK_SET:
905 		/* the first record */
906 		user->idx = log_first_idx;
907 		user->seq = log_first_seq;
908 		break;
909 	case SEEK_DATA:
910 		/*
911 		 * The first record after the last SYSLOG_ACTION_CLEAR,
912 		 * like issued by 'dmesg -c'. Reading /dev/kmsg itself
913 		 * changes no global state, and does not clear anything.
914 		 */
915 		user->idx = clear_idx;
916 		user->seq = clear_seq;
917 		break;
918 	case SEEK_END:
919 		/* after the last record */
920 		user->idx = log_next_idx;
921 		user->seq = log_next_seq;
922 		break;
923 	default:
924 		ret = -EINVAL;
925 	}
926 	logbuf_unlock_irq();
927 	return ret;
928 }
929 
930 static __poll_t devkmsg_poll(struct file *file, poll_table *wait)
931 {
932 	struct devkmsg_user *user = file->private_data;
933 	__poll_t ret = 0;
934 
935 	if (!user)
936 		return EPOLLERR|EPOLLNVAL;
937 
938 	poll_wait(file, &log_wait, wait);
939 
940 	logbuf_lock_irq();
941 	if (user->seq < log_next_seq) {
942 		/* return error when data has vanished underneath us */
943 		if (user->seq < log_first_seq)
944 			ret = EPOLLIN|EPOLLRDNORM|EPOLLERR|EPOLLPRI;
945 		else
946 			ret = EPOLLIN|EPOLLRDNORM;
947 	}
948 	logbuf_unlock_irq();
949 
950 	return ret;
951 }
952 
953 static int devkmsg_open(struct inode *inode, struct file *file)
954 {
955 	struct devkmsg_user *user;
956 	int err;
957 
958 	if (devkmsg_log & DEVKMSG_LOG_MASK_OFF)
959 		return -EPERM;
960 
961 	/* write-only does not need any file context */
962 	if ((file->f_flags & O_ACCMODE) != O_WRONLY) {
963 		err = check_syslog_permissions(SYSLOG_ACTION_READ_ALL,
964 					       SYSLOG_FROM_READER);
965 		if (err)
966 			return err;
967 	}
968 
969 	user = kmalloc(sizeof(struct devkmsg_user), GFP_KERNEL);
970 	if (!user)
971 		return -ENOMEM;
972 
973 	ratelimit_default_init(&user->rs);
974 	ratelimit_set_flags(&user->rs, RATELIMIT_MSG_ON_RELEASE);
975 
976 	mutex_init(&user->lock);
977 
978 	logbuf_lock_irq();
979 	user->idx = log_first_idx;
980 	user->seq = log_first_seq;
981 	logbuf_unlock_irq();
982 
983 	file->private_data = user;
984 	return 0;
985 }
986 
987 static int devkmsg_release(struct inode *inode, struct file *file)
988 {
989 	struct devkmsg_user *user = file->private_data;
990 
991 	if (!user)
992 		return 0;
993 
994 	ratelimit_state_exit(&user->rs);
995 
996 	mutex_destroy(&user->lock);
997 	kfree(user);
998 	return 0;
999 }
1000 
1001 const struct file_operations kmsg_fops = {
1002 	.open = devkmsg_open,
1003 	.read = devkmsg_read,
1004 	.write_iter = devkmsg_write,
1005 	.llseek = devkmsg_llseek,
1006 	.poll = devkmsg_poll,
1007 	.release = devkmsg_release,
1008 };
1009 
1010 #ifdef CONFIG_CRASH_CORE
1011 /*
1012  * This appends the listed symbols to /proc/vmcore
1013  *
1014  * /proc/vmcore is used by various utilities, like crash and makedumpfile to
1015  * obtain access to symbols that are otherwise very difficult to locate.  These
1016  * symbols are specifically used so that utilities can access and extract the
1017  * dmesg log from a vmcore file after a crash.
1018  */
1019 void log_buf_vmcoreinfo_setup(void)
1020 {
1021 	VMCOREINFO_SYMBOL(log_buf);
1022 	VMCOREINFO_SYMBOL(log_buf_len);
1023 	VMCOREINFO_SYMBOL(log_first_idx);
1024 	VMCOREINFO_SYMBOL(clear_idx);
1025 	VMCOREINFO_SYMBOL(log_next_idx);
1026 	/*
1027 	 * Export struct printk_log size and field offsets. User space tools can
1028 	 * parse it and detect any changes to structure down the line.
1029 	 */
1030 	VMCOREINFO_STRUCT_SIZE(printk_log);
1031 	VMCOREINFO_OFFSET(printk_log, ts_nsec);
1032 	VMCOREINFO_OFFSET(printk_log, len);
1033 	VMCOREINFO_OFFSET(printk_log, text_len);
1034 	VMCOREINFO_OFFSET(printk_log, dict_len);
1035 }
1036 #endif
1037 
1038 /* requested log_buf_len from kernel cmdline */
1039 static unsigned long __initdata new_log_buf_len;
1040 
1041 /* we practice scaling the ring buffer by powers of 2 */
1042 static void __init log_buf_len_update(unsigned size)
1043 {
1044 	if (size)
1045 		size = roundup_pow_of_two(size);
1046 	if (size > log_buf_len)
1047 		new_log_buf_len = size;
1048 }
1049 
1050 /* save requested log_buf_len since it's too early to process it */
1051 static int __init log_buf_len_setup(char *str)
1052 {
1053 	unsigned size = memparse(str, &str);
1054 
1055 	log_buf_len_update(size);
1056 
1057 	return 0;
1058 }
1059 early_param("log_buf_len", log_buf_len_setup);
1060 
1061 #ifdef CONFIG_SMP
1062 #define __LOG_CPU_MAX_BUF_LEN (1 << CONFIG_LOG_CPU_MAX_BUF_SHIFT)
1063 
1064 static void __init log_buf_add_cpu(void)
1065 {
1066 	unsigned int cpu_extra;
1067 
1068 	/*
1069 	 * archs should set up cpu_possible_bits properly with
1070 	 * set_cpu_possible() after setup_arch() but just in
1071 	 * case lets ensure this is valid.
1072 	 */
1073 	if (num_possible_cpus() == 1)
1074 		return;
1075 
1076 	cpu_extra = (num_possible_cpus() - 1) * __LOG_CPU_MAX_BUF_LEN;
1077 
1078 	/* by default this will only continue through for large > 64 CPUs */
1079 	if (cpu_extra <= __LOG_BUF_LEN / 2)
1080 		return;
1081 
1082 	pr_info("log_buf_len individual max cpu contribution: %d bytes\n",
1083 		__LOG_CPU_MAX_BUF_LEN);
1084 	pr_info("log_buf_len total cpu_extra contributions: %d bytes\n",
1085 		cpu_extra);
1086 	pr_info("log_buf_len min size: %d bytes\n", __LOG_BUF_LEN);
1087 
1088 	log_buf_len_update(cpu_extra + __LOG_BUF_LEN);
1089 }
1090 #else /* !CONFIG_SMP */
1091 static inline void log_buf_add_cpu(void) {}
1092 #endif /* CONFIG_SMP */
1093 
1094 void __init setup_log_buf(int early)
1095 {
1096 	unsigned long flags;
1097 	char *new_log_buf;
1098 	int free;
1099 
1100 	if (log_buf != __log_buf)
1101 		return;
1102 
1103 	if (!early && !new_log_buf_len)
1104 		log_buf_add_cpu();
1105 
1106 	if (!new_log_buf_len)
1107 		return;
1108 
1109 	if (early) {
1110 		new_log_buf =
1111 			memblock_virt_alloc(new_log_buf_len, LOG_ALIGN);
1112 	} else {
1113 		new_log_buf = memblock_virt_alloc_nopanic(new_log_buf_len,
1114 							  LOG_ALIGN);
1115 	}
1116 
1117 	if (unlikely(!new_log_buf)) {
1118 		pr_err("log_buf_len: %ld bytes not available\n",
1119 			new_log_buf_len);
1120 		return;
1121 	}
1122 
1123 	logbuf_lock_irqsave(flags);
1124 	log_buf_len = new_log_buf_len;
1125 	log_buf = new_log_buf;
1126 	new_log_buf_len = 0;
1127 	free = __LOG_BUF_LEN - log_next_idx;
1128 	memcpy(log_buf, __log_buf, __LOG_BUF_LEN);
1129 	logbuf_unlock_irqrestore(flags);
1130 
1131 	pr_info("log_buf_len: %d bytes\n", log_buf_len);
1132 	pr_info("early log buf free: %d(%d%%)\n",
1133 		free, (free * 100) / __LOG_BUF_LEN);
1134 }
1135 
1136 static bool __read_mostly ignore_loglevel;
1137 
1138 static int __init ignore_loglevel_setup(char *str)
1139 {
1140 	ignore_loglevel = true;
1141 	pr_info("debug: ignoring loglevel setting.\n");
1142 
1143 	return 0;
1144 }
1145 
1146 early_param("ignore_loglevel", ignore_loglevel_setup);
1147 module_param(ignore_loglevel, bool, S_IRUGO | S_IWUSR);
1148 MODULE_PARM_DESC(ignore_loglevel,
1149 		 "ignore loglevel setting (prints all kernel messages to the console)");
1150 
1151 static bool suppress_message_printing(int level)
1152 {
1153 	return (level >= console_loglevel && !ignore_loglevel);
1154 }
1155 
1156 #ifdef CONFIG_BOOT_PRINTK_DELAY
1157 
1158 static int boot_delay; /* msecs delay after each printk during bootup */
1159 static unsigned long long loops_per_msec;	/* based on boot_delay */
1160 
1161 static int __init boot_delay_setup(char *str)
1162 {
1163 	unsigned long lpj;
1164 
1165 	lpj = preset_lpj ? preset_lpj : 1000000;	/* some guess */
1166 	loops_per_msec = (unsigned long long)lpj / 1000 * HZ;
1167 
1168 	get_option(&str, &boot_delay);
1169 	if (boot_delay > 10 * 1000)
1170 		boot_delay = 0;
1171 
1172 	pr_debug("boot_delay: %u, preset_lpj: %ld, lpj: %lu, "
1173 		"HZ: %d, loops_per_msec: %llu\n",
1174 		boot_delay, preset_lpj, lpj, HZ, loops_per_msec);
1175 	return 0;
1176 }
1177 early_param("boot_delay", boot_delay_setup);
1178 
1179 static void boot_delay_msec(int level)
1180 {
1181 	unsigned long long k;
1182 	unsigned long timeout;
1183 
1184 	if ((boot_delay == 0 || system_state >= SYSTEM_RUNNING)
1185 		|| suppress_message_printing(level)) {
1186 		return;
1187 	}
1188 
1189 	k = (unsigned long long)loops_per_msec * boot_delay;
1190 
1191 	timeout = jiffies + msecs_to_jiffies(boot_delay);
1192 	while (k) {
1193 		k--;
1194 		cpu_relax();
1195 		/*
1196 		 * use (volatile) jiffies to prevent
1197 		 * compiler reduction; loop termination via jiffies
1198 		 * is secondary and may or may not happen.
1199 		 */
1200 		if (time_after(jiffies, timeout))
1201 			break;
1202 		touch_nmi_watchdog();
1203 	}
1204 }
1205 #else
1206 static inline void boot_delay_msec(int level)
1207 {
1208 }
1209 #endif
1210 
1211 static bool printk_time = IS_ENABLED(CONFIG_PRINTK_TIME);
1212 module_param_named(time, printk_time, bool, S_IRUGO | S_IWUSR);
1213 
1214 static size_t print_time(u64 ts, char *buf)
1215 {
1216 	unsigned long rem_nsec;
1217 
1218 	if (!printk_time)
1219 		return 0;
1220 
1221 	rem_nsec = do_div(ts, 1000000000);
1222 
1223 	if (!buf)
1224 		return snprintf(NULL, 0, "[%5lu.000000] ", (unsigned long)ts);
1225 
1226 	return sprintf(buf, "[%5lu.%06lu] ",
1227 		       (unsigned long)ts, rem_nsec / 1000);
1228 }
1229 
1230 static size_t print_prefix(const struct printk_log *msg, bool syslog, char *buf)
1231 {
1232 	size_t len = 0;
1233 	unsigned int prefix = (msg->facility << 3) | msg->level;
1234 
1235 	if (syslog) {
1236 		if (buf) {
1237 			len += sprintf(buf, "<%u>", prefix);
1238 		} else {
1239 			len += 3;
1240 			if (prefix > 999)
1241 				len += 3;
1242 			else if (prefix > 99)
1243 				len += 2;
1244 			else if (prefix > 9)
1245 				len++;
1246 		}
1247 	}
1248 
1249 	len += print_time(msg->ts_nsec, buf ? buf + len : NULL);
1250 	return len;
1251 }
1252 
1253 static size_t msg_print_text(const struct printk_log *msg, bool syslog, char *buf, size_t size)
1254 {
1255 	const char *text = log_text(msg);
1256 	size_t text_size = msg->text_len;
1257 	size_t len = 0;
1258 
1259 	do {
1260 		const char *next = memchr(text, '\n', text_size);
1261 		size_t text_len;
1262 
1263 		if (next) {
1264 			text_len = next - text;
1265 			next++;
1266 			text_size -= next - text;
1267 		} else {
1268 			text_len = text_size;
1269 		}
1270 
1271 		if (buf) {
1272 			if (print_prefix(msg, syslog, NULL) +
1273 			    text_len + 1 >= size - len)
1274 				break;
1275 
1276 			len += print_prefix(msg, syslog, buf + len);
1277 			memcpy(buf + len, text, text_len);
1278 			len += text_len;
1279 			buf[len++] = '\n';
1280 		} else {
1281 			/* SYSLOG_ACTION_* buffer size only calculation */
1282 			len += print_prefix(msg, syslog, NULL);
1283 			len += text_len;
1284 			len++;
1285 		}
1286 
1287 		text = next;
1288 	} while (text);
1289 
1290 	return len;
1291 }
1292 
1293 static int syslog_print(char __user *buf, int size)
1294 {
1295 	char *text;
1296 	struct printk_log *msg;
1297 	int len = 0;
1298 
1299 	text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
1300 	if (!text)
1301 		return -ENOMEM;
1302 
1303 	while (size > 0) {
1304 		size_t n;
1305 		size_t skip;
1306 
1307 		logbuf_lock_irq();
1308 		if (syslog_seq < log_first_seq) {
1309 			/* messages are gone, move to first one */
1310 			syslog_seq = log_first_seq;
1311 			syslog_idx = log_first_idx;
1312 			syslog_partial = 0;
1313 		}
1314 		if (syslog_seq == log_next_seq) {
1315 			logbuf_unlock_irq();
1316 			break;
1317 		}
1318 
1319 		skip = syslog_partial;
1320 		msg = log_from_idx(syslog_idx);
1321 		n = msg_print_text(msg, true, text, LOG_LINE_MAX + PREFIX_MAX);
1322 		if (n - syslog_partial <= size) {
1323 			/* message fits into buffer, move forward */
1324 			syslog_idx = log_next(syslog_idx);
1325 			syslog_seq++;
1326 			n -= syslog_partial;
1327 			syslog_partial = 0;
1328 		} else if (!len){
1329 			/* partial read(), remember position */
1330 			n = size;
1331 			syslog_partial += n;
1332 		} else
1333 			n = 0;
1334 		logbuf_unlock_irq();
1335 
1336 		if (!n)
1337 			break;
1338 
1339 		if (copy_to_user(buf, text + skip, n)) {
1340 			if (!len)
1341 				len = -EFAULT;
1342 			break;
1343 		}
1344 
1345 		len += n;
1346 		size -= n;
1347 		buf += n;
1348 	}
1349 
1350 	kfree(text);
1351 	return len;
1352 }
1353 
1354 static int syslog_print_all(char __user *buf, int size, bool clear)
1355 {
1356 	char *text;
1357 	int len = 0;
1358 	u64 next_seq;
1359 	u64 seq;
1360 	u32 idx;
1361 
1362 	text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
1363 	if (!text)
1364 		return -ENOMEM;
1365 
1366 	logbuf_lock_irq();
1367 	/*
1368 	 * Find first record that fits, including all following records,
1369 	 * into the user-provided buffer for this dump.
1370 	 */
1371 	seq = clear_seq;
1372 	idx = clear_idx;
1373 	while (seq < log_next_seq) {
1374 		struct printk_log *msg = log_from_idx(idx);
1375 
1376 		len += msg_print_text(msg, true, NULL, 0);
1377 		idx = log_next(idx);
1378 		seq++;
1379 	}
1380 
1381 	/* move first record forward until length fits into the buffer */
1382 	seq = clear_seq;
1383 	idx = clear_idx;
1384 	while (len > size && seq < log_next_seq) {
1385 		struct printk_log *msg = log_from_idx(idx);
1386 
1387 		len -= msg_print_text(msg, true, NULL, 0);
1388 		idx = log_next(idx);
1389 		seq++;
1390 	}
1391 
1392 	/* last message fitting into this dump */
1393 	next_seq = log_next_seq;
1394 
1395 	len = 0;
1396 	while (len >= 0 && seq < next_seq) {
1397 		struct printk_log *msg = log_from_idx(idx);
1398 		int textlen;
1399 
1400 		textlen = msg_print_text(msg, true, text,
1401 					 LOG_LINE_MAX + PREFIX_MAX);
1402 		if (textlen < 0) {
1403 			len = textlen;
1404 			break;
1405 		}
1406 		idx = log_next(idx);
1407 		seq++;
1408 
1409 		logbuf_unlock_irq();
1410 		if (copy_to_user(buf + len, text, textlen))
1411 			len = -EFAULT;
1412 		else
1413 			len += textlen;
1414 		logbuf_lock_irq();
1415 
1416 		if (seq < log_first_seq) {
1417 			/* messages are gone, move to next one */
1418 			seq = log_first_seq;
1419 			idx = log_first_idx;
1420 		}
1421 	}
1422 
1423 	if (clear) {
1424 		clear_seq = log_next_seq;
1425 		clear_idx = log_next_idx;
1426 	}
1427 	logbuf_unlock_irq();
1428 
1429 	kfree(text);
1430 	return len;
1431 }
1432 
1433 static void syslog_clear(void)
1434 {
1435 	logbuf_lock_irq();
1436 	clear_seq = log_next_seq;
1437 	clear_idx = log_next_idx;
1438 	logbuf_unlock_irq();
1439 }
1440 
1441 int do_syslog(int type, char __user *buf, int len, int source)
1442 {
1443 	bool clear = false;
1444 	static int saved_console_loglevel = LOGLEVEL_DEFAULT;
1445 	int error;
1446 
1447 	error = check_syslog_permissions(type, source);
1448 	if (error)
1449 		return error;
1450 
1451 	switch (type) {
1452 	case SYSLOG_ACTION_CLOSE:	/* Close log */
1453 		break;
1454 	case SYSLOG_ACTION_OPEN:	/* Open log */
1455 		break;
1456 	case SYSLOG_ACTION_READ:	/* Read from log */
1457 		if (!buf || len < 0)
1458 			return -EINVAL;
1459 		if (!len)
1460 			return 0;
1461 		if (!access_ok(VERIFY_WRITE, buf, len))
1462 			return -EFAULT;
1463 		error = wait_event_interruptible(log_wait,
1464 						 syslog_seq != log_next_seq);
1465 		if (error)
1466 			return error;
1467 		error = syslog_print(buf, len);
1468 		break;
1469 	/* Read/clear last kernel messages */
1470 	case SYSLOG_ACTION_READ_CLEAR:
1471 		clear = true;
1472 		/* FALL THRU */
1473 	/* Read last kernel messages */
1474 	case SYSLOG_ACTION_READ_ALL:
1475 		if (!buf || len < 0)
1476 			return -EINVAL;
1477 		if (!len)
1478 			return 0;
1479 		if (!access_ok(VERIFY_WRITE, buf, len))
1480 			return -EFAULT;
1481 		error = syslog_print_all(buf, len, clear);
1482 		break;
1483 	/* Clear ring buffer */
1484 	case SYSLOG_ACTION_CLEAR:
1485 		syslog_clear();
1486 		break;
1487 	/* Disable logging to console */
1488 	case SYSLOG_ACTION_CONSOLE_OFF:
1489 		if (saved_console_loglevel == LOGLEVEL_DEFAULT)
1490 			saved_console_loglevel = console_loglevel;
1491 		console_loglevel = minimum_console_loglevel;
1492 		break;
1493 	/* Enable logging to console */
1494 	case SYSLOG_ACTION_CONSOLE_ON:
1495 		if (saved_console_loglevel != LOGLEVEL_DEFAULT) {
1496 			console_loglevel = saved_console_loglevel;
1497 			saved_console_loglevel = LOGLEVEL_DEFAULT;
1498 		}
1499 		break;
1500 	/* Set level of messages printed to console */
1501 	case SYSLOG_ACTION_CONSOLE_LEVEL:
1502 		if (len < 1 || len > 8)
1503 			return -EINVAL;
1504 		if (len < minimum_console_loglevel)
1505 			len = minimum_console_loglevel;
1506 		console_loglevel = len;
1507 		/* Implicitly re-enable logging to console */
1508 		saved_console_loglevel = LOGLEVEL_DEFAULT;
1509 		break;
1510 	/* Number of chars in the log buffer */
1511 	case SYSLOG_ACTION_SIZE_UNREAD:
1512 		logbuf_lock_irq();
1513 		if (syslog_seq < log_first_seq) {
1514 			/* messages are gone, move to first one */
1515 			syslog_seq = log_first_seq;
1516 			syslog_idx = log_first_idx;
1517 			syslog_partial = 0;
1518 		}
1519 		if (source == SYSLOG_FROM_PROC) {
1520 			/*
1521 			 * Short-cut for poll(/"proc/kmsg") which simply checks
1522 			 * for pending data, not the size; return the count of
1523 			 * records, not the length.
1524 			 */
1525 			error = log_next_seq - syslog_seq;
1526 		} else {
1527 			u64 seq = syslog_seq;
1528 			u32 idx = syslog_idx;
1529 
1530 			while (seq < log_next_seq) {
1531 				struct printk_log *msg = log_from_idx(idx);
1532 
1533 				error += msg_print_text(msg, true, NULL, 0);
1534 				idx = log_next(idx);
1535 				seq++;
1536 			}
1537 			error -= syslog_partial;
1538 		}
1539 		logbuf_unlock_irq();
1540 		break;
1541 	/* Size of the log buffer */
1542 	case SYSLOG_ACTION_SIZE_BUFFER:
1543 		error = log_buf_len;
1544 		break;
1545 	default:
1546 		error = -EINVAL;
1547 		break;
1548 	}
1549 
1550 	return error;
1551 }
1552 
1553 SYSCALL_DEFINE3(syslog, int, type, char __user *, buf, int, len)
1554 {
1555 	return do_syslog(type, buf, len, SYSLOG_FROM_READER);
1556 }
1557 
1558 /*
1559  * Special console_lock variants that help to reduce the risk of soft-lockups.
1560  * They allow to pass console_lock to another printk() call using a busy wait.
1561  */
1562 
1563 #ifdef CONFIG_LOCKDEP
1564 static struct lockdep_map console_owner_dep_map = {
1565 	.name = "console_owner"
1566 };
1567 #endif
1568 
1569 static DEFINE_RAW_SPINLOCK(console_owner_lock);
1570 static struct task_struct *console_owner;
1571 static bool console_waiter;
1572 
1573 /**
1574  * console_lock_spinning_enable - mark beginning of code where another
1575  *	thread might safely busy wait
1576  *
1577  * This basically converts console_lock into a spinlock. This marks
1578  * the section where the console_lock owner can not sleep, because
1579  * there may be a waiter spinning (like a spinlock). Also it must be
1580  * ready to hand over the lock at the end of the section.
1581  */
1582 static void console_lock_spinning_enable(void)
1583 {
1584 	raw_spin_lock(&console_owner_lock);
1585 	console_owner = current;
1586 	raw_spin_unlock(&console_owner_lock);
1587 
1588 	/* The waiter may spin on us after setting console_owner */
1589 	spin_acquire(&console_owner_dep_map, 0, 0, _THIS_IP_);
1590 }
1591 
1592 /**
1593  * console_lock_spinning_disable_and_check - mark end of code where another
1594  *	thread was able to busy wait and check if there is a waiter
1595  *
1596  * This is called at the end of the section where spinning is allowed.
1597  * It has two functions. First, it is a signal that it is no longer
1598  * safe to start busy waiting for the lock. Second, it checks if
1599  * there is a busy waiter and passes the lock rights to her.
1600  *
1601  * Important: Callers lose the lock if there was a busy waiter.
1602  *	They must not touch items synchronized by console_lock
1603  *	in this case.
1604  *
1605  * Return: 1 if the lock rights were passed, 0 otherwise.
1606  */
1607 static int console_lock_spinning_disable_and_check(void)
1608 {
1609 	int waiter;
1610 
1611 	raw_spin_lock(&console_owner_lock);
1612 	waiter = READ_ONCE(console_waiter);
1613 	console_owner = NULL;
1614 	raw_spin_unlock(&console_owner_lock);
1615 
1616 	if (!waiter) {
1617 		spin_release(&console_owner_dep_map, 1, _THIS_IP_);
1618 		return 0;
1619 	}
1620 
1621 	/* The waiter is now free to continue */
1622 	WRITE_ONCE(console_waiter, false);
1623 
1624 	spin_release(&console_owner_dep_map, 1, _THIS_IP_);
1625 
1626 	/*
1627 	 * Hand off console_lock to waiter. The waiter will perform
1628 	 * the up(). After this, the waiter is the console_lock owner.
1629 	 */
1630 	mutex_release(&console_lock_dep_map, 1, _THIS_IP_);
1631 	return 1;
1632 }
1633 
1634 /**
1635  * console_trylock_spinning - try to get console_lock by busy waiting
1636  *
1637  * This allows to busy wait for the console_lock when the current
1638  * owner is running in specially marked sections. It means that
1639  * the current owner is running and cannot reschedule until it
1640  * is ready to lose the lock.
1641  *
1642  * Return: 1 if we got the lock, 0 othrewise
1643  */
1644 static int console_trylock_spinning(void)
1645 {
1646 	struct task_struct *owner = NULL;
1647 	bool waiter;
1648 	bool spin = false;
1649 	unsigned long flags;
1650 
1651 	if (console_trylock())
1652 		return 1;
1653 
1654 	printk_safe_enter_irqsave(flags);
1655 
1656 	raw_spin_lock(&console_owner_lock);
1657 	owner = READ_ONCE(console_owner);
1658 	waiter = READ_ONCE(console_waiter);
1659 	if (!waiter && owner && owner != current) {
1660 		WRITE_ONCE(console_waiter, true);
1661 		spin = true;
1662 	}
1663 	raw_spin_unlock(&console_owner_lock);
1664 
1665 	/*
1666 	 * If there is an active printk() writing to the
1667 	 * consoles, instead of having it write our data too,
1668 	 * see if we can offload that load from the active
1669 	 * printer, and do some printing ourselves.
1670 	 * Go into a spin only if there isn't already a waiter
1671 	 * spinning, and there is an active printer, and
1672 	 * that active printer isn't us (recursive printk?).
1673 	 */
1674 	if (!spin) {
1675 		printk_safe_exit_irqrestore(flags);
1676 		return 0;
1677 	}
1678 
1679 	/* We spin waiting for the owner to release us */
1680 	spin_acquire(&console_owner_dep_map, 0, 0, _THIS_IP_);
1681 	/* Owner will clear console_waiter on hand off */
1682 	while (READ_ONCE(console_waiter))
1683 		cpu_relax();
1684 	spin_release(&console_owner_dep_map, 1, _THIS_IP_);
1685 
1686 	printk_safe_exit_irqrestore(flags);
1687 	/*
1688 	 * The owner passed the console lock to us.
1689 	 * Since we did not spin on console lock, annotate
1690 	 * this as a trylock. Otherwise lockdep will
1691 	 * complain.
1692 	 */
1693 	mutex_acquire(&console_lock_dep_map, 0, 1, _THIS_IP_);
1694 
1695 	return 1;
1696 }
1697 
1698 /*
1699  * Call the console drivers, asking them to write out
1700  * log_buf[start] to log_buf[end - 1].
1701  * The console_lock must be held.
1702  */
1703 static void call_console_drivers(const char *ext_text, size_t ext_len,
1704 				 const char *text, size_t len)
1705 {
1706 	struct console *con;
1707 
1708 	trace_console_rcuidle(text, len);
1709 
1710 	if (!console_drivers)
1711 		return;
1712 
1713 	for_each_console(con) {
1714 		if (exclusive_console && con != exclusive_console)
1715 			continue;
1716 		if (!(con->flags & CON_ENABLED))
1717 			continue;
1718 		if (!con->write)
1719 			continue;
1720 		if (!cpu_online(smp_processor_id()) &&
1721 		    !(con->flags & CON_ANYTIME))
1722 			continue;
1723 		if (con->flags & CON_EXTENDED)
1724 			con->write(con, ext_text, ext_len);
1725 		else
1726 			con->write(con, text, len);
1727 	}
1728 }
1729 
1730 int printk_delay_msec __read_mostly;
1731 
1732 static inline void printk_delay(void)
1733 {
1734 	if (unlikely(printk_delay_msec)) {
1735 		int m = printk_delay_msec;
1736 
1737 		while (m--) {
1738 			mdelay(1);
1739 			touch_nmi_watchdog();
1740 		}
1741 	}
1742 }
1743 
1744 /*
1745  * Continuation lines are buffered, and not committed to the record buffer
1746  * until the line is complete, or a race forces it. The line fragments
1747  * though, are printed immediately to the consoles to ensure everything has
1748  * reached the console in case of a kernel crash.
1749  */
1750 static struct cont {
1751 	char buf[LOG_LINE_MAX];
1752 	size_t len;			/* length == 0 means unused buffer */
1753 	struct task_struct *owner;	/* task of first print*/
1754 	u64 ts_nsec;			/* time of first print */
1755 	u8 level;			/* log level of first message */
1756 	u8 facility;			/* log facility of first message */
1757 	enum log_flags flags;		/* prefix, newline flags */
1758 } cont;
1759 
1760 static void cont_flush(void)
1761 {
1762 	if (cont.len == 0)
1763 		return;
1764 
1765 	log_store(cont.facility, cont.level, cont.flags, cont.ts_nsec,
1766 		  NULL, 0, cont.buf, cont.len);
1767 	cont.len = 0;
1768 }
1769 
1770 static bool cont_add(int facility, int level, enum log_flags flags, const char *text, size_t len)
1771 {
1772 	/*
1773 	 * If ext consoles are present, flush and skip in-kernel
1774 	 * continuation.  See nr_ext_console_drivers definition.  Also, if
1775 	 * the line gets too long, split it up in separate records.
1776 	 */
1777 	if (nr_ext_console_drivers || cont.len + len > sizeof(cont.buf)) {
1778 		cont_flush();
1779 		return false;
1780 	}
1781 
1782 	if (!cont.len) {
1783 		cont.facility = facility;
1784 		cont.level = level;
1785 		cont.owner = current;
1786 		cont.ts_nsec = local_clock();
1787 		cont.flags = flags;
1788 	}
1789 
1790 	memcpy(cont.buf + cont.len, text, len);
1791 	cont.len += len;
1792 
1793 	// The original flags come from the first line,
1794 	// but later continuations can add a newline.
1795 	if (flags & LOG_NEWLINE) {
1796 		cont.flags |= LOG_NEWLINE;
1797 		cont_flush();
1798 	}
1799 
1800 	if (cont.len > (sizeof(cont.buf) * 80) / 100)
1801 		cont_flush();
1802 
1803 	return true;
1804 }
1805 
1806 static size_t log_output(int facility, int level, enum log_flags lflags, const char *dict, size_t dictlen, char *text, size_t text_len)
1807 {
1808 	/*
1809 	 * If an earlier line was buffered, and we're a continuation
1810 	 * write from the same process, try to add it to the buffer.
1811 	 */
1812 	if (cont.len) {
1813 		if (cont.owner == current && (lflags & LOG_CONT)) {
1814 			if (cont_add(facility, level, lflags, text, text_len))
1815 				return text_len;
1816 		}
1817 		/* Otherwise, make sure it's flushed */
1818 		cont_flush();
1819 	}
1820 
1821 	/* Skip empty continuation lines that couldn't be added - they just flush */
1822 	if (!text_len && (lflags & LOG_CONT))
1823 		return 0;
1824 
1825 	/* If it doesn't end in a newline, try to buffer the current line */
1826 	if (!(lflags & LOG_NEWLINE)) {
1827 		if (cont_add(facility, level, lflags, text, text_len))
1828 			return text_len;
1829 	}
1830 
1831 	/* Store it in the record log */
1832 	return log_store(facility, level, lflags, 0, dict, dictlen, text, text_len);
1833 }
1834 
1835 /* Must be called under logbuf_lock. */
1836 int vprintk_store(int facility, int level,
1837 		  const char *dict, size_t dictlen,
1838 		  const char *fmt, va_list args)
1839 {
1840 	static char textbuf[LOG_LINE_MAX];
1841 	char *text = textbuf;
1842 	size_t text_len;
1843 	enum log_flags lflags = 0;
1844 
1845 	/*
1846 	 * The printf needs to come first; we need the syslog
1847 	 * prefix which might be passed-in as a parameter.
1848 	 */
1849 	text_len = vscnprintf(text, sizeof(textbuf), fmt, args);
1850 
1851 	/* mark and strip a trailing newline */
1852 	if (text_len && text[text_len-1] == '\n') {
1853 		text_len--;
1854 		lflags |= LOG_NEWLINE;
1855 	}
1856 
1857 	/* strip kernel syslog prefix and extract log level or control flags */
1858 	if (facility == 0) {
1859 		int kern_level;
1860 
1861 		while ((kern_level = printk_get_level(text)) != 0) {
1862 			switch (kern_level) {
1863 			case '0' ... '7':
1864 				if (level == LOGLEVEL_DEFAULT)
1865 					level = kern_level - '0';
1866 				/* fallthrough */
1867 			case 'd':	/* KERN_DEFAULT */
1868 				lflags |= LOG_PREFIX;
1869 				break;
1870 			case 'c':	/* KERN_CONT */
1871 				lflags |= LOG_CONT;
1872 			}
1873 
1874 			text_len -= 2;
1875 			text += 2;
1876 		}
1877 	}
1878 
1879 	if (level == LOGLEVEL_DEFAULT)
1880 		level = default_message_loglevel;
1881 
1882 	if (dict)
1883 		lflags |= LOG_PREFIX|LOG_NEWLINE;
1884 
1885 	if (suppress_message_printing(level))
1886 		lflags |= LOG_NOCONS;
1887 
1888 	return log_output(facility, level, lflags,
1889 			  dict, dictlen, text, text_len);
1890 }
1891 
1892 asmlinkage int vprintk_emit(int facility, int level,
1893 			    const char *dict, size_t dictlen,
1894 			    const char *fmt, va_list args)
1895 {
1896 	int printed_len;
1897 	bool in_sched = false;
1898 	unsigned long flags;
1899 
1900 	if (level == LOGLEVEL_SCHED) {
1901 		level = LOGLEVEL_DEFAULT;
1902 		in_sched = true;
1903 	}
1904 
1905 	boot_delay_msec(level);
1906 	printk_delay();
1907 
1908 	/* This stops the holder of console_sem just where we want him */
1909 	logbuf_lock_irqsave(flags);
1910 	printed_len = vprintk_store(facility, level, dict, dictlen, fmt, args);
1911 	logbuf_unlock_irqrestore(flags);
1912 
1913 	/* If called from the scheduler, we can not call up(). */
1914 	if (!in_sched) {
1915 		/*
1916 		 * Disable preemption to avoid being preempted while holding
1917 		 * console_sem which would prevent anyone from printing to
1918 		 * console
1919 		 */
1920 		preempt_disable();
1921 		/*
1922 		 * Try to acquire and then immediately release the console
1923 		 * semaphore.  The release will print out buffers and wake up
1924 		 * /dev/kmsg and syslog() users.
1925 		 */
1926 		if (console_trylock_spinning())
1927 			console_unlock();
1928 		preempt_enable();
1929 	}
1930 
1931 	wake_up_klogd();
1932 	return printed_len;
1933 }
1934 EXPORT_SYMBOL(vprintk_emit);
1935 
1936 asmlinkage int vprintk(const char *fmt, va_list args)
1937 {
1938 	return vprintk_func(fmt, args);
1939 }
1940 EXPORT_SYMBOL(vprintk);
1941 
1942 asmlinkage int printk_emit(int facility, int level,
1943 			   const char *dict, size_t dictlen,
1944 			   const char *fmt, ...)
1945 {
1946 	va_list args;
1947 	int r;
1948 
1949 	va_start(args, fmt);
1950 	r = vprintk_emit(facility, level, dict, dictlen, fmt, args);
1951 	va_end(args);
1952 
1953 	return r;
1954 }
1955 EXPORT_SYMBOL(printk_emit);
1956 
1957 int vprintk_default(const char *fmt, va_list args)
1958 {
1959 	int r;
1960 
1961 #ifdef CONFIG_KGDB_KDB
1962 	/* Allow to pass printk() to kdb but avoid a recursion. */
1963 	if (unlikely(kdb_trap_printk && kdb_printf_cpu < 0)) {
1964 		r = vkdb_printf(KDB_MSGSRC_PRINTK, fmt, args);
1965 		return r;
1966 	}
1967 #endif
1968 	r = vprintk_emit(0, LOGLEVEL_DEFAULT, NULL, 0, fmt, args);
1969 
1970 	return r;
1971 }
1972 EXPORT_SYMBOL_GPL(vprintk_default);
1973 
1974 /**
1975  * printk - print a kernel message
1976  * @fmt: format string
1977  *
1978  * This is printk(). It can be called from any context. We want it to work.
1979  *
1980  * We try to grab the console_lock. If we succeed, it's easy - we log the
1981  * output and call the console drivers.  If we fail to get the semaphore, we
1982  * place the output into the log buffer and return. The current holder of
1983  * the console_sem will notice the new output in console_unlock(); and will
1984  * send it to the consoles before releasing the lock.
1985  *
1986  * One effect of this deferred printing is that code which calls printk() and
1987  * then changes console_loglevel may break. This is because console_loglevel
1988  * is inspected when the actual printing occurs.
1989  *
1990  * See also:
1991  * printf(3)
1992  *
1993  * See the vsnprintf() documentation for format string extensions over C99.
1994  */
1995 asmlinkage __visible int printk(const char *fmt, ...)
1996 {
1997 	va_list args;
1998 	int r;
1999 
2000 	va_start(args, fmt);
2001 	r = vprintk_func(fmt, args);
2002 	va_end(args);
2003 
2004 	return r;
2005 }
2006 EXPORT_SYMBOL(printk);
2007 
2008 #else /* CONFIG_PRINTK */
2009 
2010 #define LOG_LINE_MAX		0
2011 #define PREFIX_MAX		0
2012 
2013 static u64 syslog_seq;
2014 static u32 syslog_idx;
2015 static u64 console_seq;
2016 static u32 console_idx;
2017 static u64 log_first_seq;
2018 static u32 log_first_idx;
2019 static u64 log_next_seq;
2020 static char *log_text(const struct printk_log *msg) { return NULL; }
2021 static char *log_dict(const struct printk_log *msg) { return NULL; }
2022 static struct printk_log *log_from_idx(u32 idx) { return NULL; }
2023 static u32 log_next(u32 idx) { return 0; }
2024 static ssize_t msg_print_ext_header(char *buf, size_t size,
2025 				    struct printk_log *msg,
2026 				    u64 seq) { return 0; }
2027 static ssize_t msg_print_ext_body(char *buf, size_t size,
2028 				  char *dict, size_t dict_len,
2029 				  char *text, size_t text_len) { return 0; }
2030 static void console_lock_spinning_enable(void) { }
2031 static int console_lock_spinning_disable_and_check(void) { return 0; }
2032 static void call_console_drivers(const char *ext_text, size_t ext_len,
2033 				 const char *text, size_t len) {}
2034 static size_t msg_print_text(const struct printk_log *msg,
2035 			     bool syslog, char *buf, size_t size) { return 0; }
2036 
2037 #endif /* CONFIG_PRINTK */
2038 
2039 #ifdef CONFIG_EARLY_PRINTK
2040 struct console *early_console;
2041 
2042 asmlinkage __visible void early_printk(const char *fmt, ...)
2043 {
2044 	va_list ap;
2045 	char buf[512];
2046 	int n;
2047 
2048 	if (!early_console)
2049 		return;
2050 
2051 	va_start(ap, fmt);
2052 	n = vscnprintf(buf, sizeof(buf), fmt, ap);
2053 	va_end(ap);
2054 
2055 	early_console->write(early_console, buf, n);
2056 }
2057 #endif
2058 
2059 static int __add_preferred_console(char *name, int idx, char *options,
2060 				   char *brl_options)
2061 {
2062 	struct console_cmdline *c;
2063 	int i;
2064 
2065 	/*
2066 	 *	See if this tty is not yet registered, and
2067 	 *	if we have a slot free.
2068 	 */
2069 	for (i = 0, c = console_cmdline;
2070 	     i < MAX_CMDLINECONSOLES && c->name[0];
2071 	     i++, c++) {
2072 		if (strcmp(c->name, name) == 0 && c->index == idx) {
2073 			if (!brl_options)
2074 				preferred_console = i;
2075 			return 0;
2076 		}
2077 	}
2078 	if (i == MAX_CMDLINECONSOLES)
2079 		return -E2BIG;
2080 	if (!brl_options)
2081 		preferred_console = i;
2082 	strlcpy(c->name, name, sizeof(c->name));
2083 	c->options = options;
2084 	braille_set_options(c, brl_options);
2085 
2086 	c->index = idx;
2087 	return 0;
2088 }
2089 
2090 static int __init console_msg_format_setup(char *str)
2091 {
2092 	if (!strcmp(str, "syslog"))
2093 		console_msg_format = MSG_FORMAT_SYSLOG;
2094 	if (!strcmp(str, "default"))
2095 		console_msg_format = MSG_FORMAT_DEFAULT;
2096 	return 1;
2097 }
2098 __setup("console_msg_format=", console_msg_format_setup);
2099 
2100 /*
2101  * Set up a console.  Called via do_early_param() in init/main.c
2102  * for each "console=" parameter in the boot command line.
2103  */
2104 static int __init console_setup(char *str)
2105 {
2106 	char buf[sizeof(console_cmdline[0].name) + 4]; /* 4 for "ttyS" */
2107 	char *s, *options, *brl_options = NULL;
2108 	int idx;
2109 
2110 	if (_braille_console_setup(&str, &brl_options))
2111 		return 1;
2112 
2113 	/*
2114 	 * Decode str into name, index, options.
2115 	 */
2116 	if (str[0] >= '0' && str[0] <= '9') {
2117 		strcpy(buf, "ttyS");
2118 		strncpy(buf + 4, str, sizeof(buf) - 5);
2119 	} else {
2120 		strncpy(buf, str, sizeof(buf) - 1);
2121 	}
2122 	buf[sizeof(buf) - 1] = 0;
2123 	options = strchr(str, ',');
2124 	if (options)
2125 		*(options++) = 0;
2126 #ifdef __sparc__
2127 	if (!strcmp(str, "ttya"))
2128 		strcpy(buf, "ttyS0");
2129 	if (!strcmp(str, "ttyb"))
2130 		strcpy(buf, "ttyS1");
2131 #endif
2132 	for (s = buf; *s; s++)
2133 		if (isdigit(*s) || *s == ',')
2134 			break;
2135 	idx = simple_strtoul(s, NULL, 10);
2136 	*s = 0;
2137 
2138 	__add_preferred_console(buf, idx, options, brl_options);
2139 	console_set_on_cmdline = 1;
2140 	return 1;
2141 }
2142 __setup("console=", console_setup);
2143 
2144 /**
2145  * add_preferred_console - add a device to the list of preferred consoles.
2146  * @name: device name
2147  * @idx: device index
2148  * @options: options for this console
2149  *
2150  * The last preferred console added will be used for kernel messages
2151  * and stdin/out/err for init.  Normally this is used by console_setup
2152  * above to handle user-supplied console arguments; however it can also
2153  * be used by arch-specific code either to override the user or more
2154  * commonly to provide a default console (ie from PROM variables) when
2155  * the user has not supplied one.
2156  */
2157 int add_preferred_console(char *name, int idx, char *options)
2158 {
2159 	return __add_preferred_console(name, idx, options, NULL);
2160 }
2161 
2162 bool console_suspend_enabled = true;
2163 EXPORT_SYMBOL(console_suspend_enabled);
2164 
2165 static int __init console_suspend_disable(char *str)
2166 {
2167 	console_suspend_enabled = false;
2168 	return 1;
2169 }
2170 __setup("no_console_suspend", console_suspend_disable);
2171 module_param_named(console_suspend, console_suspend_enabled,
2172 		bool, S_IRUGO | S_IWUSR);
2173 MODULE_PARM_DESC(console_suspend, "suspend console during suspend"
2174 	" and hibernate operations");
2175 
2176 /**
2177  * suspend_console - suspend the console subsystem
2178  *
2179  * This disables printk() while we go into suspend states
2180  */
2181 void suspend_console(void)
2182 {
2183 	if (!console_suspend_enabled)
2184 		return;
2185 	pr_info("Suspending console(s) (use no_console_suspend to debug)\n");
2186 	console_lock();
2187 	console_suspended = 1;
2188 	up_console_sem();
2189 }
2190 
2191 void resume_console(void)
2192 {
2193 	if (!console_suspend_enabled)
2194 		return;
2195 	down_console_sem();
2196 	console_suspended = 0;
2197 	console_unlock();
2198 }
2199 
2200 /**
2201  * console_cpu_notify - print deferred console messages after CPU hotplug
2202  * @cpu: unused
2203  *
2204  * If printk() is called from a CPU that is not online yet, the messages
2205  * will be printed on the console only if there are CON_ANYTIME consoles.
2206  * This function is called when a new CPU comes online (or fails to come
2207  * up) or goes offline.
2208  */
2209 static int console_cpu_notify(unsigned int cpu)
2210 {
2211 	if (!cpuhp_tasks_frozen) {
2212 		/* If trylock fails, someone else is doing the printing */
2213 		if (console_trylock())
2214 			console_unlock();
2215 	}
2216 	return 0;
2217 }
2218 
2219 /**
2220  * console_lock - lock the console system for exclusive use.
2221  *
2222  * Acquires a lock which guarantees that the caller has
2223  * exclusive access to the console system and the console_drivers list.
2224  *
2225  * Can sleep, returns nothing.
2226  */
2227 void console_lock(void)
2228 {
2229 	might_sleep();
2230 
2231 	down_console_sem();
2232 	if (console_suspended)
2233 		return;
2234 	console_locked = 1;
2235 	console_may_schedule = 1;
2236 }
2237 EXPORT_SYMBOL(console_lock);
2238 
2239 /**
2240  * console_trylock - try to lock the console system for exclusive use.
2241  *
2242  * Try to acquire a lock which guarantees that the caller has exclusive
2243  * access to the console system and the console_drivers list.
2244  *
2245  * returns 1 on success, and 0 on failure to acquire the lock.
2246  */
2247 int console_trylock(void)
2248 {
2249 	if (down_trylock_console_sem())
2250 		return 0;
2251 	if (console_suspended) {
2252 		up_console_sem();
2253 		return 0;
2254 	}
2255 	console_locked = 1;
2256 	console_may_schedule = 0;
2257 	return 1;
2258 }
2259 EXPORT_SYMBOL(console_trylock);
2260 
2261 int is_console_locked(void)
2262 {
2263 	return console_locked;
2264 }
2265 EXPORT_SYMBOL(is_console_locked);
2266 
2267 /*
2268  * Check if we have any console that is capable of printing while cpu is
2269  * booting or shutting down. Requires console_sem.
2270  */
2271 static int have_callable_console(void)
2272 {
2273 	struct console *con;
2274 
2275 	for_each_console(con)
2276 		if ((con->flags & CON_ENABLED) &&
2277 				(con->flags & CON_ANYTIME))
2278 			return 1;
2279 
2280 	return 0;
2281 }
2282 
2283 /*
2284  * Can we actually use the console at this time on this cpu?
2285  *
2286  * Console drivers may assume that per-cpu resources have been allocated. So
2287  * unless they're explicitly marked as being able to cope (CON_ANYTIME) don't
2288  * call them until this CPU is officially up.
2289  */
2290 static inline int can_use_console(void)
2291 {
2292 	return cpu_online(raw_smp_processor_id()) || have_callable_console();
2293 }
2294 
2295 /**
2296  * console_unlock - unlock the console system
2297  *
2298  * Releases the console_lock which the caller holds on the console system
2299  * and the console driver list.
2300  *
2301  * While the console_lock was held, console output may have been buffered
2302  * by printk().  If this is the case, console_unlock(); emits
2303  * the output prior to releasing the lock.
2304  *
2305  * If there is output waiting, we wake /dev/kmsg and syslog() users.
2306  *
2307  * console_unlock(); may be called from any context.
2308  */
2309 void console_unlock(void)
2310 {
2311 	static char ext_text[CONSOLE_EXT_LOG_MAX];
2312 	static char text[LOG_LINE_MAX + PREFIX_MAX];
2313 	unsigned long flags;
2314 	bool do_cond_resched, retry;
2315 
2316 	if (console_suspended) {
2317 		up_console_sem();
2318 		return;
2319 	}
2320 
2321 	/*
2322 	 * Console drivers are called with interrupts disabled, so
2323 	 * @console_may_schedule should be cleared before; however, we may
2324 	 * end up dumping a lot of lines, for example, if called from
2325 	 * console registration path, and should invoke cond_resched()
2326 	 * between lines if allowable.  Not doing so can cause a very long
2327 	 * scheduling stall on a slow console leading to RCU stall and
2328 	 * softlockup warnings which exacerbate the issue with more
2329 	 * messages practically incapacitating the system.
2330 	 *
2331 	 * console_trylock() is not able to detect the preemptive
2332 	 * context reliably. Therefore the value must be stored before
2333 	 * and cleared after the the "again" goto label.
2334 	 */
2335 	do_cond_resched = console_may_schedule;
2336 again:
2337 	console_may_schedule = 0;
2338 
2339 	/*
2340 	 * We released the console_sem lock, so we need to recheck if
2341 	 * cpu is online and (if not) is there at least one CON_ANYTIME
2342 	 * console.
2343 	 */
2344 	if (!can_use_console()) {
2345 		console_locked = 0;
2346 		up_console_sem();
2347 		return;
2348 	}
2349 
2350 	for (;;) {
2351 		struct printk_log *msg;
2352 		size_t ext_len = 0;
2353 		size_t len;
2354 
2355 		printk_safe_enter_irqsave(flags);
2356 		raw_spin_lock(&logbuf_lock);
2357 		if (console_seq < log_first_seq) {
2358 			len = sprintf(text, "** %u printk messages dropped **\n",
2359 				      (unsigned)(log_first_seq - console_seq));
2360 
2361 			/* messages are gone, move to first one */
2362 			console_seq = log_first_seq;
2363 			console_idx = log_first_idx;
2364 		} else {
2365 			len = 0;
2366 		}
2367 skip:
2368 		if (console_seq == log_next_seq)
2369 			break;
2370 
2371 		msg = log_from_idx(console_idx);
2372 		if (msg->flags & LOG_NOCONS) {
2373 			/*
2374 			 * Skip record if !ignore_loglevel, and
2375 			 * record has level above the console loglevel.
2376 			 */
2377 			console_idx = log_next(console_idx);
2378 			console_seq++;
2379 			goto skip;
2380 		}
2381 
2382 		len += msg_print_text(msg,
2383 				console_msg_format & MSG_FORMAT_SYSLOG,
2384 				text + len,
2385 				sizeof(text) - len);
2386 		if (nr_ext_console_drivers) {
2387 			ext_len = msg_print_ext_header(ext_text,
2388 						sizeof(ext_text),
2389 						msg, console_seq);
2390 			ext_len += msg_print_ext_body(ext_text + ext_len,
2391 						sizeof(ext_text) - ext_len,
2392 						log_dict(msg), msg->dict_len,
2393 						log_text(msg), msg->text_len);
2394 		}
2395 		console_idx = log_next(console_idx);
2396 		console_seq++;
2397 		raw_spin_unlock(&logbuf_lock);
2398 
2399 		/*
2400 		 * While actively printing out messages, if another printk()
2401 		 * were to occur on another CPU, it may wait for this one to
2402 		 * finish. This task can not be preempted if there is a
2403 		 * waiter waiting to take over.
2404 		 */
2405 		console_lock_spinning_enable();
2406 
2407 		stop_critical_timings();	/* don't trace print latency */
2408 		call_console_drivers(ext_text, ext_len, text, len);
2409 		start_critical_timings();
2410 
2411 		if (console_lock_spinning_disable_and_check()) {
2412 			printk_safe_exit_irqrestore(flags);
2413 			return;
2414 		}
2415 
2416 		printk_safe_exit_irqrestore(flags);
2417 
2418 		if (do_cond_resched)
2419 			cond_resched();
2420 	}
2421 
2422 	console_locked = 0;
2423 
2424 	/* Release the exclusive_console once it is used */
2425 	if (unlikely(exclusive_console))
2426 		exclusive_console = NULL;
2427 
2428 	raw_spin_unlock(&logbuf_lock);
2429 
2430 	up_console_sem();
2431 
2432 	/*
2433 	 * Someone could have filled up the buffer again, so re-check if there's
2434 	 * something to flush. In case we cannot trylock the console_sem again,
2435 	 * there's a new owner and the console_unlock() from them will do the
2436 	 * flush, no worries.
2437 	 */
2438 	raw_spin_lock(&logbuf_lock);
2439 	retry = console_seq != log_next_seq;
2440 	raw_spin_unlock(&logbuf_lock);
2441 	printk_safe_exit_irqrestore(flags);
2442 
2443 	if (retry && console_trylock())
2444 		goto again;
2445 }
2446 EXPORT_SYMBOL(console_unlock);
2447 
2448 /**
2449  * console_conditional_schedule - yield the CPU if required
2450  *
2451  * If the console code is currently allowed to sleep, and
2452  * if this CPU should yield the CPU to another task, do
2453  * so here.
2454  *
2455  * Must be called within console_lock();.
2456  */
2457 void __sched console_conditional_schedule(void)
2458 {
2459 	if (console_may_schedule)
2460 		cond_resched();
2461 }
2462 EXPORT_SYMBOL(console_conditional_schedule);
2463 
2464 void console_unblank(void)
2465 {
2466 	struct console *c;
2467 
2468 	/*
2469 	 * console_unblank can no longer be called in interrupt context unless
2470 	 * oops_in_progress is set to 1..
2471 	 */
2472 	if (oops_in_progress) {
2473 		if (down_trylock_console_sem() != 0)
2474 			return;
2475 	} else
2476 		console_lock();
2477 
2478 	console_locked = 1;
2479 	console_may_schedule = 0;
2480 	for_each_console(c)
2481 		if ((c->flags & CON_ENABLED) && c->unblank)
2482 			c->unblank();
2483 	console_unlock();
2484 }
2485 
2486 /**
2487  * console_flush_on_panic - flush console content on panic
2488  *
2489  * Immediately output all pending messages no matter what.
2490  */
2491 void console_flush_on_panic(void)
2492 {
2493 	/*
2494 	 * If someone else is holding the console lock, trylock will fail
2495 	 * and may_schedule may be set.  Ignore and proceed to unlock so
2496 	 * that messages are flushed out.  As this can be called from any
2497 	 * context and we don't want to get preempted while flushing,
2498 	 * ensure may_schedule is cleared.
2499 	 */
2500 	console_trylock();
2501 	console_may_schedule = 0;
2502 	console_unlock();
2503 }
2504 
2505 /*
2506  * Return the console tty driver structure and its associated index
2507  */
2508 struct tty_driver *console_device(int *index)
2509 {
2510 	struct console *c;
2511 	struct tty_driver *driver = NULL;
2512 
2513 	console_lock();
2514 	for_each_console(c) {
2515 		if (!c->device)
2516 			continue;
2517 		driver = c->device(c, index);
2518 		if (driver)
2519 			break;
2520 	}
2521 	console_unlock();
2522 	return driver;
2523 }
2524 
2525 /*
2526  * Prevent further output on the passed console device so that (for example)
2527  * serial drivers can disable console output before suspending a port, and can
2528  * re-enable output afterwards.
2529  */
2530 void console_stop(struct console *console)
2531 {
2532 	console_lock();
2533 	console->flags &= ~CON_ENABLED;
2534 	console_unlock();
2535 }
2536 EXPORT_SYMBOL(console_stop);
2537 
2538 void console_start(struct console *console)
2539 {
2540 	console_lock();
2541 	console->flags |= CON_ENABLED;
2542 	console_unlock();
2543 }
2544 EXPORT_SYMBOL(console_start);
2545 
2546 static int __read_mostly keep_bootcon;
2547 
2548 static int __init keep_bootcon_setup(char *str)
2549 {
2550 	keep_bootcon = 1;
2551 	pr_info("debug: skip boot console de-registration.\n");
2552 
2553 	return 0;
2554 }
2555 
2556 early_param("keep_bootcon", keep_bootcon_setup);
2557 
2558 /*
2559  * The console driver calls this routine during kernel initialization
2560  * to register the console printing procedure with printk() and to
2561  * print any messages that were printed by the kernel before the
2562  * console driver was initialized.
2563  *
2564  * This can happen pretty early during the boot process (because of
2565  * early_printk) - sometimes before setup_arch() completes - be careful
2566  * of what kernel features are used - they may not be initialised yet.
2567  *
2568  * There are two types of consoles - bootconsoles (early_printk) and
2569  * "real" consoles (everything which is not a bootconsole) which are
2570  * handled differently.
2571  *  - Any number of bootconsoles can be registered at any time.
2572  *  - As soon as a "real" console is registered, all bootconsoles
2573  *    will be unregistered automatically.
2574  *  - Once a "real" console is registered, any attempt to register a
2575  *    bootconsoles will be rejected
2576  */
2577 void register_console(struct console *newcon)
2578 {
2579 	int i;
2580 	unsigned long flags;
2581 	struct console *bcon = NULL;
2582 	struct console_cmdline *c;
2583 	static bool has_preferred;
2584 
2585 	if (console_drivers)
2586 		for_each_console(bcon)
2587 			if (WARN(bcon == newcon,
2588 					"console '%s%d' already registered\n",
2589 					bcon->name, bcon->index))
2590 				return;
2591 
2592 	/*
2593 	 * before we register a new CON_BOOT console, make sure we don't
2594 	 * already have a valid console
2595 	 */
2596 	if (console_drivers && newcon->flags & CON_BOOT) {
2597 		/* find the last or real console */
2598 		for_each_console(bcon) {
2599 			if (!(bcon->flags & CON_BOOT)) {
2600 				pr_info("Too late to register bootconsole %s%d\n",
2601 					newcon->name, newcon->index);
2602 				return;
2603 			}
2604 		}
2605 	}
2606 
2607 	if (console_drivers && console_drivers->flags & CON_BOOT)
2608 		bcon = console_drivers;
2609 
2610 	if (!has_preferred || bcon || !console_drivers)
2611 		has_preferred = preferred_console >= 0;
2612 
2613 	/*
2614 	 *	See if we want to use this console driver. If we
2615 	 *	didn't select a console we take the first one
2616 	 *	that registers here.
2617 	 */
2618 	if (!has_preferred) {
2619 		if (newcon->index < 0)
2620 			newcon->index = 0;
2621 		if (newcon->setup == NULL ||
2622 		    newcon->setup(newcon, NULL) == 0) {
2623 			newcon->flags |= CON_ENABLED;
2624 			if (newcon->device) {
2625 				newcon->flags |= CON_CONSDEV;
2626 				has_preferred = true;
2627 			}
2628 		}
2629 	}
2630 
2631 	/*
2632 	 *	See if this console matches one we selected on
2633 	 *	the command line.
2634 	 */
2635 	for (i = 0, c = console_cmdline;
2636 	     i < MAX_CMDLINECONSOLES && c->name[0];
2637 	     i++, c++) {
2638 		if (!newcon->match ||
2639 		    newcon->match(newcon, c->name, c->index, c->options) != 0) {
2640 			/* default matching */
2641 			BUILD_BUG_ON(sizeof(c->name) != sizeof(newcon->name));
2642 			if (strcmp(c->name, newcon->name) != 0)
2643 				continue;
2644 			if (newcon->index >= 0 &&
2645 			    newcon->index != c->index)
2646 				continue;
2647 			if (newcon->index < 0)
2648 				newcon->index = c->index;
2649 
2650 			if (_braille_register_console(newcon, c))
2651 				return;
2652 
2653 			if (newcon->setup &&
2654 			    newcon->setup(newcon, c->options) != 0)
2655 				break;
2656 		}
2657 
2658 		newcon->flags |= CON_ENABLED;
2659 		if (i == preferred_console) {
2660 			newcon->flags |= CON_CONSDEV;
2661 			has_preferred = true;
2662 		}
2663 		break;
2664 	}
2665 
2666 	if (!(newcon->flags & CON_ENABLED))
2667 		return;
2668 
2669 	/*
2670 	 * If we have a bootconsole, and are switching to a real console,
2671 	 * don't print everything out again, since when the boot console, and
2672 	 * the real console are the same physical device, it's annoying to
2673 	 * see the beginning boot messages twice
2674 	 */
2675 	if (bcon && ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV))
2676 		newcon->flags &= ~CON_PRINTBUFFER;
2677 
2678 	/*
2679 	 *	Put this console in the list - keep the
2680 	 *	preferred driver at the head of the list.
2681 	 */
2682 	console_lock();
2683 	if ((newcon->flags & CON_CONSDEV) || console_drivers == NULL) {
2684 		newcon->next = console_drivers;
2685 		console_drivers = newcon;
2686 		if (newcon->next)
2687 			newcon->next->flags &= ~CON_CONSDEV;
2688 	} else {
2689 		newcon->next = console_drivers->next;
2690 		console_drivers->next = newcon;
2691 	}
2692 
2693 	if (newcon->flags & CON_EXTENDED)
2694 		if (!nr_ext_console_drivers++)
2695 			pr_info("printk: continuation disabled due to ext consoles, expect more fragments in /dev/kmsg\n");
2696 
2697 	if (newcon->flags & CON_PRINTBUFFER) {
2698 		/*
2699 		 * console_unlock(); will print out the buffered messages
2700 		 * for us.
2701 		 */
2702 		logbuf_lock_irqsave(flags);
2703 		console_seq = syslog_seq;
2704 		console_idx = syslog_idx;
2705 		logbuf_unlock_irqrestore(flags);
2706 		/*
2707 		 * We're about to replay the log buffer.  Only do this to the
2708 		 * just-registered console to avoid excessive message spam to
2709 		 * the already-registered consoles.
2710 		 */
2711 		exclusive_console = newcon;
2712 	}
2713 	console_unlock();
2714 	console_sysfs_notify();
2715 
2716 	/*
2717 	 * By unregistering the bootconsoles after we enable the real console
2718 	 * we get the "console xxx enabled" message on all the consoles -
2719 	 * boot consoles, real consoles, etc - this is to ensure that end
2720 	 * users know there might be something in the kernel's log buffer that
2721 	 * went to the bootconsole (that they do not see on the real console)
2722 	 */
2723 	pr_info("%sconsole [%s%d] enabled\n",
2724 		(newcon->flags & CON_BOOT) ? "boot" : "" ,
2725 		newcon->name, newcon->index);
2726 	if (bcon &&
2727 	    ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV) &&
2728 	    !keep_bootcon) {
2729 		/* We need to iterate through all boot consoles, to make
2730 		 * sure we print everything out, before we unregister them.
2731 		 */
2732 		for_each_console(bcon)
2733 			if (bcon->flags & CON_BOOT)
2734 				unregister_console(bcon);
2735 	}
2736 }
2737 EXPORT_SYMBOL(register_console);
2738 
2739 int unregister_console(struct console *console)
2740 {
2741         struct console *a, *b;
2742 	int res;
2743 
2744 	pr_info("%sconsole [%s%d] disabled\n",
2745 		(console->flags & CON_BOOT) ? "boot" : "" ,
2746 		console->name, console->index);
2747 
2748 	res = _braille_unregister_console(console);
2749 	if (res)
2750 		return res;
2751 
2752 	res = 1;
2753 	console_lock();
2754 	if (console_drivers == console) {
2755 		console_drivers=console->next;
2756 		res = 0;
2757 	} else if (console_drivers) {
2758 		for (a=console_drivers->next, b=console_drivers ;
2759 		     a; b=a, a=b->next) {
2760 			if (a == console) {
2761 				b->next = a->next;
2762 				res = 0;
2763 				break;
2764 			}
2765 		}
2766 	}
2767 
2768 	if (!res && (console->flags & CON_EXTENDED))
2769 		nr_ext_console_drivers--;
2770 
2771 	/*
2772 	 * If this isn't the last console and it has CON_CONSDEV set, we
2773 	 * need to set it on the next preferred console.
2774 	 */
2775 	if (console_drivers != NULL && console->flags & CON_CONSDEV)
2776 		console_drivers->flags |= CON_CONSDEV;
2777 
2778 	console->flags &= ~CON_ENABLED;
2779 	console_unlock();
2780 	console_sysfs_notify();
2781 	return res;
2782 }
2783 EXPORT_SYMBOL(unregister_console);
2784 
2785 /*
2786  * Initialize the console device. This is called *early*, so
2787  * we can't necessarily depend on lots of kernel help here.
2788  * Just do some early initializations, and do the complex setup
2789  * later.
2790  */
2791 void __init console_init(void)
2792 {
2793 	int ret;
2794 	initcall_t call;
2795 	initcall_entry_t *ce;
2796 
2797 	/* Setup the default TTY line discipline. */
2798 	n_tty_init();
2799 
2800 	/*
2801 	 * set up the console device so that later boot sequences can
2802 	 * inform about problems etc..
2803 	 */
2804 	ce = __con_initcall_start;
2805 	trace_initcall_level("console");
2806 	while (ce < __con_initcall_end) {
2807 		call = initcall_from_entry(ce);
2808 		trace_initcall_start(call);
2809 		ret = call();
2810 		trace_initcall_finish(call, ret);
2811 		ce++;
2812 	}
2813 }
2814 
2815 /*
2816  * Some boot consoles access data that is in the init section and which will
2817  * be discarded after the initcalls have been run. To make sure that no code
2818  * will access this data, unregister the boot consoles in a late initcall.
2819  *
2820  * If for some reason, such as deferred probe or the driver being a loadable
2821  * module, the real console hasn't registered yet at this point, there will
2822  * be a brief interval in which no messages are logged to the console, which
2823  * makes it difficult to diagnose problems that occur during this time.
2824  *
2825  * To mitigate this problem somewhat, only unregister consoles whose memory
2826  * intersects with the init section. Note that all other boot consoles will
2827  * get unregistred when the real preferred console is registered.
2828  */
2829 static int __init printk_late_init(void)
2830 {
2831 	struct console *con;
2832 	int ret;
2833 
2834 	for_each_console(con) {
2835 		if (!(con->flags & CON_BOOT))
2836 			continue;
2837 
2838 		/* Check addresses that might be used for enabled consoles. */
2839 		if (init_section_intersects(con, sizeof(*con)) ||
2840 		    init_section_contains(con->write, 0) ||
2841 		    init_section_contains(con->read, 0) ||
2842 		    init_section_contains(con->device, 0) ||
2843 		    init_section_contains(con->unblank, 0) ||
2844 		    init_section_contains(con->data, 0)) {
2845 			/*
2846 			 * Please, consider moving the reported consoles out
2847 			 * of the init section.
2848 			 */
2849 			pr_warn("bootconsole [%s%d] uses init memory and must be disabled even before the real one is ready\n",
2850 				con->name, con->index);
2851 			unregister_console(con);
2852 		}
2853 	}
2854 	ret = cpuhp_setup_state_nocalls(CPUHP_PRINTK_DEAD, "printk:dead", NULL,
2855 					console_cpu_notify);
2856 	WARN_ON(ret < 0);
2857 	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "printk:online",
2858 					console_cpu_notify, NULL);
2859 	WARN_ON(ret < 0);
2860 	return 0;
2861 }
2862 late_initcall(printk_late_init);
2863 
2864 #if defined CONFIG_PRINTK
2865 /*
2866  * Delayed printk version, for scheduler-internal messages:
2867  */
2868 #define PRINTK_PENDING_WAKEUP	0x01
2869 #define PRINTK_PENDING_OUTPUT	0x02
2870 
2871 static DEFINE_PER_CPU(int, printk_pending);
2872 
2873 static void wake_up_klogd_work_func(struct irq_work *irq_work)
2874 {
2875 	int pending = __this_cpu_xchg(printk_pending, 0);
2876 
2877 	if (pending & PRINTK_PENDING_OUTPUT) {
2878 		/* If trylock fails, someone else is doing the printing */
2879 		if (console_trylock())
2880 			console_unlock();
2881 	}
2882 
2883 	if (pending & PRINTK_PENDING_WAKEUP)
2884 		wake_up_interruptible(&log_wait);
2885 }
2886 
2887 static DEFINE_PER_CPU(struct irq_work, wake_up_klogd_work) = {
2888 	.func = wake_up_klogd_work_func,
2889 	.flags = IRQ_WORK_LAZY,
2890 };
2891 
2892 void wake_up_klogd(void)
2893 {
2894 	preempt_disable();
2895 	if (waitqueue_active(&log_wait)) {
2896 		this_cpu_or(printk_pending, PRINTK_PENDING_WAKEUP);
2897 		irq_work_queue(this_cpu_ptr(&wake_up_klogd_work));
2898 	}
2899 	preempt_enable();
2900 }
2901 
2902 void defer_console_output(void)
2903 {
2904 	preempt_disable();
2905 	__this_cpu_or(printk_pending, PRINTK_PENDING_OUTPUT);
2906 	irq_work_queue(this_cpu_ptr(&wake_up_klogd_work));
2907 	preempt_enable();
2908 }
2909 
2910 int vprintk_deferred(const char *fmt, va_list args)
2911 {
2912 	int r;
2913 
2914 	r = vprintk_emit(0, LOGLEVEL_SCHED, NULL, 0, fmt, args);
2915 	defer_console_output();
2916 
2917 	return r;
2918 }
2919 
2920 int printk_deferred(const char *fmt, ...)
2921 {
2922 	va_list args;
2923 	int r;
2924 
2925 	va_start(args, fmt);
2926 	r = vprintk_deferred(fmt, args);
2927 	va_end(args);
2928 
2929 	return r;
2930 }
2931 
2932 /*
2933  * printk rate limiting, lifted from the networking subsystem.
2934  *
2935  * This enforces a rate limit: not more than 10 kernel messages
2936  * every 5s to make a denial-of-service attack impossible.
2937  */
2938 DEFINE_RATELIMIT_STATE(printk_ratelimit_state, 5 * HZ, 10);
2939 
2940 int __printk_ratelimit(const char *func)
2941 {
2942 	return ___ratelimit(&printk_ratelimit_state, func);
2943 }
2944 EXPORT_SYMBOL(__printk_ratelimit);
2945 
2946 /**
2947  * printk_timed_ratelimit - caller-controlled printk ratelimiting
2948  * @caller_jiffies: pointer to caller's state
2949  * @interval_msecs: minimum interval between prints
2950  *
2951  * printk_timed_ratelimit() returns true if more than @interval_msecs
2952  * milliseconds have elapsed since the last time printk_timed_ratelimit()
2953  * returned true.
2954  */
2955 bool printk_timed_ratelimit(unsigned long *caller_jiffies,
2956 			unsigned int interval_msecs)
2957 {
2958 	unsigned long elapsed = jiffies - *caller_jiffies;
2959 
2960 	if (*caller_jiffies && elapsed <= msecs_to_jiffies(interval_msecs))
2961 		return false;
2962 
2963 	*caller_jiffies = jiffies;
2964 	return true;
2965 }
2966 EXPORT_SYMBOL(printk_timed_ratelimit);
2967 
2968 static DEFINE_SPINLOCK(dump_list_lock);
2969 static LIST_HEAD(dump_list);
2970 
2971 /**
2972  * kmsg_dump_register - register a kernel log dumper.
2973  * @dumper: pointer to the kmsg_dumper structure
2974  *
2975  * Adds a kernel log dumper to the system. The dump callback in the
2976  * structure will be called when the kernel oopses or panics and must be
2977  * set. Returns zero on success and %-EINVAL or %-EBUSY otherwise.
2978  */
2979 int kmsg_dump_register(struct kmsg_dumper *dumper)
2980 {
2981 	unsigned long flags;
2982 	int err = -EBUSY;
2983 
2984 	/* The dump callback needs to be set */
2985 	if (!dumper->dump)
2986 		return -EINVAL;
2987 
2988 	spin_lock_irqsave(&dump_list_lock, flags);
2989 	/* Don't allow registering multiple times */
2990 	if (!dumper->registered) {
2991 		dumper->registered = 1;
2992 		list_add_tail_rcu(&dumper->list, &dump_list);
2993 		err = 0;
2994 	}
2995 	spin_unlock_irqrestore(&dump_list_lock, flags);
2996 
2997 	return err;
2998 }
2999 EXPORT_SYMBOL_GPL(kmsg_dump_register);
3000 
3001 /**
3002  * kmsg_dump_unregister - unregister a kmsg dumper.
3003  * @dumper: pointer to the kmsg_dumper structure
3004  *
3005  * Removes a dump device from the system. Returns zero on success and
3006  * %-EINVAL otherwise.
3007  */
3008 int kmsg_dump_unregister(struct kmsg_dumper *dumper)
3009 {
3010 	unsigned long flags;
3011 	int err = -EINVAL;
3012 
3013 	spin_lock_irqsave(&dump_list_lock, flags);
3014 	if (dumper->registered) {
3015 		dumper->registered = 0;
3016 		list_del_rcu(&dumper->list);
3017 		err = 0;
3018 	}
3019 	spin_unlock_irqrestore(&dump_list_lock, flags);
3020 	synchronize_rcu();
3021 
3022 	return err;
3023 }
3024 EXPORT_SYMBOL_GPL(kmsg_dump_unregister);
3025 
3026 static bool always_kmsg_dump;
3027 module_param_named(always_kmsg_dump, always_kmsg_dump, bool, S_IRUGO | S_IWUSR);
3028 
3029 /**
3030  * kmsg_dump - dump kernel log to kernel message dumpers.
3031  * @reason: the reason (oops, panic etc) for dumping
3032  *
3033  * Call each of the registered dumper's dump() callback, which can
3034  * retrieve the kmsg records with kmsg_dump_get_line() or
3035  * kmsg_dump_get_buffer().
3036  */
3037 void kmsg_dump(enum kmsg_dump_reason reason)
3038 {
3039 	struct kmsg_dumper *dumper;
3040 	unsigned long flags;
3041 
3042 	if ((reason > KMSG_DUMP_OOPS) && !always_kmsg_dump)
3043 		return;
3044 
3045 	rcu_read_lock();
3046 	list_for_each_entry_rcu(dumper, &dump_list, list) {
3047 		if (dumper->max_reason && reason > dumper->max_reason)
3048 			continue;
3049 
3050 		/* initialize iterator with data about the stored records */
3051 		dumper->active = true;
3052 
3053 		logbuf_lock_irqsave(flags);
3054 		dumper->cur_seq = clear_seq;
3055 		dumper->cur_idx = clear_idx;
3056 		dumper->next_seq = log_next_seq;
3057 		dumper->next_idx = log_next_idx;
3058 		logbuf_unlock_irqrestore(flags);
3059 
3060 		/* invoke dumper which will iterate over records */
3061 		dumper->dump(dumper, reason);
3062 
3063 		/* reset iterator */
3064 		dumper->active = false;
3065 	}
3066 	rcu_read_unlock();
3067 }
3068 
3069 /**
3070  * kmsg_dump_get_line_nolock - retrieve one kmsg log line (unlocked version)
3071  * @dumper: registered kmsg dumper
3072  * @syslog: include the "<4>" prefixes
3073  * @line: buffer to copy the line to
3074  * @size: maximum size of the buffer
3075  * @len: length of line placed into buffer
3076  *
3077  * Start at the beginning of the kmsg buffer, with the oldest kmsg
3078  * record, and copy one record into the provided buffer.
3079  *
3080  * Consecutive calls will return the next available record moving
3081  * towards the end of the buffer with the youngest messages.
3082  *
3083  * A return value of FALSE indicates that there are no more records to
3084  * read.
3085  *
3086  * The function is similar to kmsg_dump_get_line(), but grabs no locks.
3087  */
3088 bool kmsg_dump_get_line_nolock(struct kmsg_dumper *dumper, bool syslog,
3089 			       char *line, size_t size, size_t *len)
3090 {
3091 	struct printk_log *msg;
3092 	size_t l = 0;
3093 	bool ret = false;
3094 
3095 	if (!dumper->active)
3096 		goto out;
3097 
3098 	if (dumper->cur_seq < log_first_seq) {
3099 		/* messages are gone, move to first available one */
3100 		dumper->cur_seq = log_first_seq;
3101 		dumper->cur_idx = log_first_idx;
3102 	}
3103 
3104 	/* last entry */
3105 	if (dumper->cur_seq >= log_next_seq)
3106 		goto out;
3107 
3108 	msg = log_from_idx(dumper->cur_idx);
3109 	l = msg_print_text(msg, syslog, line, size);
3110 
3111 	dumper->cur_idx = log_next(dumper->cur_idx);
3112 	dumper->cur_seq++;
3113 	ret = true;
3114 out:
3115 	if (len)
3116 		*len = l;
3117 	return ret;
3118 }
3119 
3120 /**
3121  * kmsg_dump_get_line - retrieve one kmsg log line
3122  * @dumper: registered kmsg dumper
3123  * @syslog: include the "<4>" prefixes
3124  * @line: buffer to copy the line to
3125  * @size: maximum size of the buffer
3126  * @len: length of line placed into buffer
3127  *
3128  * Start at the beginning of the kmsg buffer, with the oldest kmsg
3129  * record, and copy one record into the provided buffer.
3130  *
3131  * Consecutive calls will return the next available record moving
3132  * towards the end of the buffer with the youngest messages.
3133  *
3134  * A return value of FALSE indicates that there are no more records to
3135  * read.
3136  */
3137 bool kmsg_dump_get_line(struct kmsg_dumper *dumper, bool syslog,
3138 			char *line, size_t size, size_t *len)
3139 {
3140 	unsigned long flags;
3141 	bool ret;
3142 
3143 	logbuf_lock_irqsave(flags);
3144 	ret = kmsg_dump_get_line_nolock(dumper, syslog, line, size, len);
3145 	logbuf_unlock_irqrestore(flags);
3146 
3147 	return ret;
3148 }
3149 EXPORT_SYMBOL_GPL(kmsg_dump_get_line);
3150 
3151 /**
3152  * kmsg_dump_get_buffer - copy kmsg log lines
3153  * @dumper: registered kmsg dumper
3154  * @syslog: include the "<4>" prefixes
3155  * @buf: buffer to copy the line to
3156  * @size: maximum size of the buffer
3157  * @len: length of line placed into buffer
3158  *
3159  * Start at the end of the kmsg buffer and fill the provided buffer
3160  * with as many of the the *youngest* kmsg records that fit into it.
3161  * If the buffer is large enough, all available kmsg records will be
3162  * copied with a single call.
3163  *
3164  * Consecutive calls will fill the buffer with the next block of
3165  * available older records, not including the earlier retrieved ones.
3166  *
3167  * A return value of FALSE indicates that there are no more records to
3168  * read.
3169  */
3170 bool kmsg_dump_get_buffer(struct kmsg_dumper *dumper, bool syslog,
3171 			  char *buf, size_t size, size_t *len)
3172 {
3173 	unsigned long flags;
3174 	u64 seq;
3175 	u32 idx;
3176 	u64 next_seq;
3177 	u32 next_idx;
3178 	size_t l = 0;
3179 	bool ret = false;
3180 
3181 	if (!dumper->active)
3182 		goto out;
3183 
3184 	logbuf_lock_irqsave(flags);
3185 	if (dumper->cur_seq < log_first_seq) {
3186 		/* messages are gone, move to first available one */
3187 		dumper->cur_seq = log_first_seq;
3188 		dumper->cur_idx = log_first_idx;
3189 	}
3190 
3191 	/* last entry */
3192 	if (dumper->cur_seq >= dumper->next_seq) {
3193 		logbuf_unlock_irqrestore(flags);
3194 		goto out;
3195 	}
3196 
3197 	/* calculate length of entire buffer */
3198 	seq = dumper->cur_seq;
3199 	idx = dumper->cur_idx;
3200 	while (seq < dumper->next_seq) {
3201 		struct printk_log *msg = log_from_idx(idx);
3202 
3203 		l += msg_print_text(msg, true, NULL, 0);
3204 		idx = log_next(idx);
3205 		seq++;
3206 	}
3207 
3208 	/* move first record forward until length fits into the buffer */
3209 	seq = dumper->cur_seq;
3210 	idx = dumper->cur_idx;
3211 	while (l > size && seq < dumper->next_seq) {
3212 		struct printk_log *msg = log_from_idx(idx);
3213 
3214 		l -= msg_print_text(msg, true, NULL, 0);
3215 		idx = log_next(idx);
3216 		seq++;
3217 	}
3218 
3219 	/* last message in next interation */
3220 	next_seq = seq;
3221 	next_idx = idx;
3222 
3223 	l = 0;
3224 	while (seq < dumper->next_seq) {
3225 		struct printk_log *msg = log_from_idx(idx);
3226 
3227 		l += msg_print_text(msg, syslog, buf + l, size - l);
3228 		idx = log_next(idx);
3229 		seq++;
3230 	}
3231 
3232 	dumper->next_seq = next_seq;
3233 	dumper->next_idx = next_idx;
3234 	ret = true;
3235 	logbuf_unlock_irqrestore(flags);
3236 out:
3237 	if (len)
3238 		*len = l;
3239 	return ret;
3240 }
3241 EXPORT_SYMBOL_GPL(kmsg_dump_get_buffer);
3242 
3243 /**
3244  * kmsg_dump_rewind_nolock - reset the interator (unlocked version)
3245  * @dumper: registered kmsg dumper
3246  *
3247  * Reset the dumper's iterator so that kmsg_dump_get_line() and
3248  * kmsg_dump_get_buffer() can be called again and used multiple
3249  * times within the same dumper.dump() callback.
3250  *
3251  * The function is similar to kmsg_dump_rewind(), but grabs no locks.
3252  */
3253 void kmsg_dump_rewind_nolock(struct kmsg_dumper *dumper)
3254 {
3255 	dumper->cur_seq = clear_seq;
3256 	dumper->cur_idx = clear_idx;
3257 	dumper->next_seq = log_next_seq;
3258 	dumper->next_idx = log_next_idx;
3259 }
3260 
3261 /**
3262  * kmsg_dump_rewind - reset the interator
3263  * @dumper: registered kmsg dumper
3264  *
3265  * Reset the dumper's iterator so that kmsg_dump_get_line() and
3266  * kmsg_dump_get_buffer() can be called again and used multiple
3267  * times within the same dumper.dump() callback.
3268  */
3269 void kmsg_dump_rewind(struct kmsg_dumper *dumper)
3270 {
3271 	unsigned long flags;
3272 
3273 	logbuf_lock_irqsave(flags);
3274 	kmsg_dump_rewind_nolock(dumper);
3275 	logbuf_unlock_irqrestore(flags);
3276 }
3277 EXPORT_SYMBOL_GPL(kmsg_dump_rewind);
3278 
3279 #endif
3280