1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/printk.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 * 7 * Modified to make sys_syslog() more flexible: added commands to 8 * return the last 4k of kernel messages, regardless of whether 9 * they've been read or not. Added option to suppress kernel printk's 10 * to the console. Added hook for sending the console messages 11 * elsewhere, in preparation for a serial line console (someday). 12 * Ted Ts'o, 2/11/93. 13 * Modified for sysctl support, 1/8/97, Chris Horn. 14 * Fixed SMP synchronization, 08/08/99, Manfred Spraul 15 * manfred@colorfullife.com 16 * Rewrote bits to get rid of console_lock 17 * 01Mar01 Andrew Morton 18 */ 19 20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 21 22 #include <linux/kernel.h> 23 #include <linux/mm.h> 24 #include <linux/tty.h> 25 #include <linux/tty_driver.h> 26 #include <linux/console.h> 27 #include <linux/init.h> 28 #include <linux/jiffies.h> 29 #include <linux/nmi.h> 30 #include <linux/module.h> 31 #include <linux/moduleparam.h> 32 #include <linux/delay.h> 33 #include <linux/smp.h> 34 #include <linux/security.h> 35 #include <linux/memblock.h> 36 #include <linux/syscalls.h> 37 #include <linux/crash_core.h> 38 #include <linux/kdb.h> 39 #include <linux/ratelimit.h> 40 #include <linux/kmsg_dump.h> 41 #include <linux/syslog.h> 42 #include <linux/cpu.h> 43 #include <linux/rculist.h> 44 #include <linux/poll.h> 45 #include <linux/irq_work.h> 46 #include <linux/ctype.h> 47 #include <linux/uio.h> 48 #include <linux/sched/clock.h> 49 #include <linux/sched/debug.h> 50 #include <linux/sched/task_stack.h> 51 52 #include <linux/uaccess.h> 53 #include <asm/sections.h> 54 55 #include <trace/events/initcall.h> 56 #define CREATE_TRACE_POINTS 57 #include <trace/events/printk.h> 58 59 #include "console_cmdline.h" 60 #include "braille.h" 61 #include "internal.h" 62 63 int console_printk[4] = { 64 CONSOLE_LOGLEVEL_DEFAULT, /* console_loglevel */ 65 MESSAGE_LOGLEVEL_DEFAULT, /* default_message_loglevel */ 66 CONSOLE_LOGLEVEL_MIN, /* minimum_console_loglevel */ 67 CONSOLE_LOGLEVEL_DEFAULT, /* default_console_loglevel */ 68 }; 69 EXPORT_SYMBOL_GPL(console_printk); 70 71 atomic_t ignore_console_lock_warning __read_mostly = ATOMIC_INIT(0); 72 EXPORT_SYMBOL(ignore_console_lock_warning); 73 74 /* 75 * Low level drivers may need that to know if they can schedule in 76 * their unblank() callback or not. So let's export it. 77 */ 78 int oops_in_progress; 79 EXPORT_SYMBOL(oops_in_progress); 80 81 /* 82 * console_sem protects the console_drivers list, and also 83 * provides serialisation for access to the entire console 84 * driver system. 85 */ 86 static DEFINE_SEMAPHORE(console_sem); 87 struct console *console_drivers; 88 EXPORT_SYMBOL_GPL(console_drivers); 89 90 /* 91 * System may need to suppress printk message under certain 92 * circumstances, like after kernel panic happens. 93 */ 94 int __read_mostly suppress_printk; 95 96 #ifdef CONFIG_LOCKDEP 97 static struct lockdep_map console_lock_dep_map = { 98 .name = "console_lock" 99 }; 100 #endif 101 102 enum devkmsg_log_bits { 103 __DEVKMSG_LOG_BIT_ON = 0, 104 __DEVKMSG_LOG_BIT_OFF, 105 __DEVKMSG_LOG_BIT_LOCK, 106 }; 107 108 enum devkmsg_log_masks { 109 DEVKMSG_LOG_MASK_ON = BIT(__DEVKMSG_LOG_BIT_ON), 110 DEVKMSG_LOG_MASK_OFF = BIT(__DEVKMSG_LOG_BIT_OFF), 111 DEVKMSG_LOG_MASK_LOCK = BIT(__DEVKMSG_LOG_BIT_LOCK), 112 }; 113 114 /* Keep both the 'on' and 'off' bits clear, i.e. ratelimit by default: */ 115 #define DEVKMSG_LOG_MASK_DEFAULT 0 116 117 static unsigned int __read_mostly devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT; 118 119 static int __control_devkmsg(char *str) 120 { 121 size_t len; 122 123 if (!str) 124 return -EINVAL; 125 126 len = str_has_prefix(str, "on"); 127 if (len) { 128 devkmsg_log = DEVKMSG_LOG_MASK_ON; 129 return len; 130 } 131 132 len = str_has_prefix(str, "off"); 133 if (len) { 134 devkmsg_log = DEVKMSG_LOG_MASK_OFF; 135 return len; 136 } 137 138 len = str_has_prefix(str, "ratelimit"); 139 if (len) { 140 devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT; 141 return len; 142 } 143 144 return -EINVAL; 145 } 146 147 static int __init control_devkmsg(char *str) 148 { 149 if (__control_devkmsg(str) < 0) 150 return 1; 151 152 /* 153 * Set sysctl string accordingly: 154 */ 155 if (devkmsg_log == DEVKMSG_LOG_MASK_ON) 156 strcpy(devkmsg_log_str, "on"); 157 else if (devkmsg_log == DEVKMSG_LOG_MASK_OFF) 158 strcpy(devkmsg_log_str, "off"); 159 /* else "ratelimit" which is set by default. */ 160 161 /* 162 * Sysctl cannot change it anymore. The kernel command line setting of 163 * this parameter is to force the setting to be permanent throughout the 164 * runtime of the system. This is a precation measure against userspace 165 * trying to be a smarta** and attempting to change it up on us. 166 */ 167 devkmsg_log |= DEVKMSG_LOG_MASK_LOCK; 168 169 return 0; 170 } 171 __setup("printk.devkmsg=", control_devkmsg); 172 173 char devkmsg_log_str[DEVKMSG_STR_MAX_SIZE] = "ratelimit"; 174 175 int devkmsg_sysctl_set_loglvl(struct ctl_table *table, int write, 176 void *buffer, size_t *lenp, loff_t *ppos) 177 { 178 char old_str[DEVKMSG_STR_MAX_SIZE]; 179 unsigned int old; 180 int err; 181 182 if (write) { 183 if (devkmsg_log & DEVKMSG_LOG_MASK_LOCK) 184 return -EINVAL; 185 186 old = devkmsg_log; 187 strncpy(old_str, devkmsg_log_str, DEVKMSG_STR_MAX_SIZE); 188 } 189 190 err = proc_dostring(table, write, buffer, lenp, ppos); 191 if (err) 192 return err; 193 194 if (write) { 195 err = __control_devkmsg(devkmsg_log_str); 196 197 /* 198 * Do not accept an unknown string OR a known string with 199 * trailing crap... 200 */ 201 if (err < 0 || (err + 1 != *lenp)) { 202 203 /* ... and restore old setting. */ 204 devkmsg_log = old; 205 strncpy(devkmsg_log_str, old_str, DEVKMSG_STR_MAX_SIZE); 206 207 return -EINVAL; 208 } 209 } 210 211 return 0; 212 } 213 214 /* Number of registered extended console drivers. */ 215 static int nr_ext_console_drivers; 216 217 /* 218 * Helper macros to handle lockdep when locking/unlocking console_sem. We use 219 * macros instead of functions so that _RET_IP_ contains useful information. 220 */ 221 #define down_console_sem() do { \ 222 down(&console_sem);\ 223 mutex_acquire(&console_lock_dep_map, 0, 0, _RET_IP_);\ 224 } while (0) 225 226 static int __down_trylock_console_sem(unsigned long ip) 227 { 228 int lock_failed; 229 unsigned long flags; 230 231 /* 232 * Here and in __up_console_sem() we need to be in safe mode, 233 * because spindump/WARN/etc from under console ->lock will 234 * deadlock in printk()->down_trylock_console_sem() otherwise. 235 */ 236 printk_safe_enter_irqsave(flags); 237 lock_failed = down_trylock(&console_sem); 238 printk_safe_exit_irqrestore(flags); 239 240 if (lock_failed) 241 return 1; 242 mutex_acquire(&console_lock_dep_map, 0, 1, ip); 243 return 0; 244 } 245 #define down_trylock_console_sem() __down_trylock_console_sem(_RET_IP_) 246 247 static void __up_console_sem(unsigned long ip) 248 { 249 unsigned long flags; 250 251 mutex_release(&console_lock_dep_map, ip); 252 253 printk_safe_enter_irqsave(flags); 254 up(&console_sem); 255 printk_safe_exit_irqrestore(flags); 256 } 257 #define up_console_sem() __up_console_sem(_RET_IP_) 258 259 /* 260 * This is used for debugging the mess that is the VT code by 261 * keeping track if we have the console semaphore held. It's 262 * definitely not the perfect debug tool (we don't know if _WE_ 263 * hold it and are racing, but it helps tracking those weird code 264 * paths in the console code where we end up in places I want 265 * locked without the console sempahore held). 266 */ 267 static int console_locked, console_suspended; 268 269 /* 270 * If exclusive_console is non-NULL then only this console is to be printed to. 271 */ 272 static struct console *exclusive_console; 273 274 /* 275 * Array of consoles built from command line options (console=) 276 */ 277 278 #define MAX_CMDLINECONSOLES 8 279 280 static struct console_cmdline console_cmdline[MAX_CMDLINECONSOLES]; 281 282 static int preferred_console = -1; 283 static bool has_preferred_console; 284 int console_set_on_cmdline; 285 EXPORT_SYMBOL(console_set_on_cmdline); 286 287 /* Flag: console code may call schedule() */ 288 static int console_may_schedule; 289 290 enum con_msg_format_flags { 291 MSG_FORMAT_DEFAULT = 0, 292 MSG_FORMAT_SYSLOG = (1 << 0), 293 }; 294 295 static int console_msg_format = MSG_FORMAT_DEFAULT; 296 297 /* 298 * The printk log buffer consists of a chain of concatenated variable 299 * length records. Every record starts with a record header, containing 300 * the overall length of the record. 301 * 302 * The heads to the first and last entry in the buffer, as well as the 303 * sequence numbers of these entries are maintained when messages are 304 * stored. 305 * 306 * If the heads indicate available messages, the length in the header 307 * tells the start next message. A length == 0 for the next message 308 * indicates a wrap-around to the beginning of the buffer. 309 * 310 * Every record carries the monotonic timestamp in microseconds, as well as 311 * the standard userspace syslog level and syslog facility. The usual 312 * kernel messages use LOG_KERN; userspace-injected messages always carry 313 * a matching syslog facility, by default LOG_USER. The origin of every 314 * message can be reliably determined that way. 315 * 316 * The human readable log message directly follows the message header. The 317 * length of the message text is stored in the header, the stored message 318 * is not terminated. 319 * 320 * Optionally, a message can carry a dictionary of properties (key/value pairs), 321 * to provide userspace with a machine-readable message context. 322 * 323 * Examples for well-defined, commonly used property names are: 324 * DEVICE=b12:8 device identifier 325 * b12:8 block dev_t 326 * c127:3 char dev_t 327 * n8 netdev ifindex 328 * +sound:card0 subsystem:devname 329 * SUBSYSTEM=pci driver-core subsystem name 330 * 331 * Valid characters in property names are [a-zA-Z0-9.-_]. The plain text value 332 * follows directly after a '=' character. Every property is terminated by 333 * a '\0' character. The last property is not terminated. 334 * 335 * Example of a message structure: 336 * 0000 ff 8f 00 00 00 00 00 00 monotonic time in nsec 337 * 0008 34 00 record is 52 bytes long 338 * 000a 0b 00 text is 11 bytes long 339 * 000c 1f 00 dictionary is 23 bytes long 340 * 000e 03 00 LOG_KERN (facility) LOG_ERR (level) 341 * 0010 69 74 27 73 20 61 20 6c "it's a l" 342 * 69 6e 65 "ine" 343 * 001b 44 45 56 49 43 "DEVIC" 344 * 45 3d 62 38 3a 32 00 44 "E=b8:2\0D" 345 * 52 49 56 45 52 3d 62 75 "RIVER=bu" 346 * 67 "g" 347 * 0032 00 00 00 padding to next message header 348 * 349 * The 'struct printk_log' buffer header must never be directly exported to 350 * userspace, it is a kernel-private implementation detail that might 351 * need to be changed in the future, when the requirements change. 352 * 353 * /dev/kmsg exports the structured data in the following line format: 354 * "<level>,<sequnum>,<timestamp>,<contflag>[,additional_values, ... ];<message text>\n" 355 * 356 * Users of the export format should ignore possible additional values 357 * separated by ',', and find the message after the ';' character. 358 * 359 * The optional key/value pairs are attached as continuation lines starting 360 * with a space character and terminated by a newline. All possible 361 * non-prinatable characters are escaped in the "\xff" notation. 362 */ 363 364 enum log_flags { 365 LOG_NEWLINE = 2, /* text ended with a newline */ 366 LOG_CONT = 8, /* text is a fragment of a continuation line */ 367 }; 368 369 struct printk_log { 370 u64 ts_nsec; /* timestamp in nanoseconds */ 371 u16 len; /* length of entire record */ 372 u16 text_len; /* length of text buffer */ 373 u16 dict_len; /* length of dictionary buffer */ 374 u8 facility; /* syslog facility */ 375 u8 flags:5; /* internal record flags */ 376 u8 level:3; /* syslog level */ 377 #ifdef CONFIG_PRINTK_CALLER 378 u32 caller_id; /* thread id or processor id */ 379 #endif 380 } 381 #ifdef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS 382 __packed __aligned(4) 383 #endif 384 ; 385 386 /* 387 * The logbuf_lock protects kmsg buffer, indices, counters. This can be taken 388 * within the scheduler's rq lock. It must be released before calling 389 * console_unlock() or anything else that might wake up a process. 390 */ 391 DEFINE_RAW_SPINLOCK(logbuf_lock); 392 393 /* 394 * Helper macros to lock/unlock logbuf_lock and switch between 395 * printk-safe/unsafe modes. 396 */ 397 #define logbuf_lock_irq() \ 398 do { \ 399 printk_safe_enter_irq(); \ 400 raw_spin_lock(&logbuf_lock); \ 401 } while (0) 402 403 #define logbuf_unlock_irq() \ 404 do { \ 405 raw_spin_unlock(&logbuf_lock); \ 406 printk_safe_exit_irq(); \ 407 } while (0) 408 409 #define logbuf_lock_irqsave(flags) \ 410 do { \ 411 printk_safe_enter_irqsave(flags); \ 412 raw_spin_lock(&logbuf_lock); \ 413 } while (0) 414 415 #define logbuf_unlock_irqrestore(flags) \ 416 do { \ 417 raw_spin_unlock(&logbuf_lock); \ 418 printk_safe_exit_irqrestore(flags); \ 419 } while (0) 420 421 #ifdef CONFIG_PRINTK 422 DECLARE_WAIT_QUEUE_HEAD(log_wait); 423 /* the next printk record to read by syslog(READ) or /proc/kmsg */ 424 static u64 syslog_seq; 425 static u32 syslog_idx; 426 static size_t syslog_partial; 427 static bool syslog_time; 428 429 /* index and sequence number of the first record stored in the buffer */ 430 static u64 log_first_seq; 431 static u32 log_first_idx; 432 433 /* index and sequence number of the next record to store in the buffer */ 434 static u64 log_next_seq; 435 static u32 log_next_idx; 436 437 /* the next printk record to write to the console */ 438 static u64 console_seq; 439 static u32 console_idx; 440 static u64 exclusive_console_stop_seq; 441 442 /* the next printk record to read after the last 'clear' command */ 443 static u64 clear_seq; 444 static u32 clear_idx; 445 446 #ifdef CONFIG_PRINTK_CALLER 447 #define PREFIX_MAX 48 448 #else 449 #define PREFIX_MAX 32 450 #endif 451 #define LOG_LINE_MAX (1024 - PREFIX_MAX) 452 453 #define LOG_LEVEL(v) ((v) & 0x07) 454 #define LOG_FACILITY(v) ((v) >> 3 & 0xff) 455 456 /* record buffer */ 457 #define LOG_ALIGN __alignof__(struct printk_log) 458 #define __LOG_BUF_LEN (1 << CONFIG_LOG_BUF_SHIFT) 459 #define LOG_BUF_LEN_MAX (u32)(1 << 31) 460 static char __log_buf[__LOG_BUF_LEN] __aligned(LOG_ALIGN); 461 static char *log_buf = __log_buf; 462 static u32 log_buf_len = __LOG_BUF_LEN; 463 464 /* 465 * We cannot access per-CPU data (e.g. per-CPU flush irq_work) before 466 * per_cpu_areas are initialised. This variable is set to true when 467 * it's safe to access per-CPU data. 468 */ 469 static bool __printk_percpu_data_ready __read_mostly; 470 471 bool printk_percpu_data_ready(void) 472 { 473 return __printk_percpu_data_ready; 474 } 475 476 /* Return log buffer address */ 477 char *log_buf_addr_get(void) 478 { 479 return log_buf; 480 } 481 482 /* Return log buffer size */ 483 u32 log_buf_len_get(void) 484 { 485 return log_buf_len; 486 } 487 488 /* human readable text of the record */ 489 static char *log_text(const struct printk_log *msg) 490 { 491 return (char *)msg + sizeof(struct printk_log); 492 } 493 494 /* optional key/value pair dictionary attached to the record */ 495 static char *log_dict(const struct printk_log *msg) 496 { 497 return (char *)msg + sizeof(struct printk_log) + msg->text_len; 498 } 499 500 /* get record by index; idx must point to valid msg */ 501 static struct printk_log *log_from_idx(u32 idx) 502 { 503 struct printk_log *msg = (struct printk_log *)(log_buf + idx); 504 505 /* 506 * A length == 0 record is the end of buffer marker. Wrap around and 507 * read the message at the start of the buffer. 508 */ 509 if (!msg->len) 510 return (struct printk_log *)log_buf; 511 return msg; 512 } 513 514 /* get next record; idx must point to valid msg */ 515 static u32 log_next(u32 idx) 516 { 517 struct printk_log *msg = (struct printk_log *)(log_buf + idx); 518 519 /* length == 0 indicates the end of the buffer; wrap */ 520 /* 521 * A length == 0 record is the end of buffer marker. Wrap around and 522 * read the message at the start of the buffer as *this* one, and 523 * return the one after that. 524 */ 525 if (!msg->len) { 526 msg = (struct printk_log *)log_buf; 527 return msg->len; 528 } 529 return idx + msg->len; 530 } 531 532 /* 533 * Check whether there is enough free space for the given message. 534 * 535 * The same values of first_idx and next_idx mean that the buffer 536 * is either empty or full. 537 * 538 * If the buffer is empty, we must respect the position of the indexes. 539 * They cannot be reset to the beginning of the buffer. 540 */ 541 static int logbuf_has_space(u32 msg_size, bool empty) 542 { 543 u32 free; 544 545 if (log_next_idx > log_first_idx || empty) 546 free = max(log_buf_len - log_next_idx, log_first_idx); 547 else 548 free = log_first_idx - log_next_idx; 549 550 /* 551 * We need space also for an empty header that signalizes wrapping 552 * of the buffer. 553 */ 554 return free >= msg_size + sizeof(struct printk_log); 555 } 556 557 static int log_make_free_space(u32 msg_size) 558 { 559 while (log_first_seq < log_next_seq && 560 !logbuf_has_space(msg_size, false)) { 561 /* drop old messages until we have enough contiguous space */ 562 log_first_idx = log_next(log_first_idx); 563 log_first_seq++; 564 } 565 566 if (clear_seq < log_first_seq) { 567 clear_seq = log_first_seq; 568 clear_idx = log_first_idx; 569 } 570 571 /* sequence numbers are equal, so the log buffer is empty */ 572 if (logbuf_has_space(msg_size, log_first_seq == log_next_seq)) 573 return 0; 574 575 return -ENOMEM; 576 } 577 578 /* compute the message size including the padding bytes */ 579 static u32 msg_used_size(u16 text_len, u16 dict_len, u32 *pad_len) 580 { 581 u32 size; 582 583 size = sizeof(struct printk_log) + text_len + dict_len; 584 *pad_len = (-size) & (LOG_ALIGN - 1); 585 size += *pad_len; 586 587 return size; 588 } 589 590 /* 591 * Define how much of the log buffer we could take at maximum. The value 592 * must be greater than two. Note that only half of the buffer is available 593 * when the index points to the middle. 594 */ 595 #define MAX_LOG_TAKE_PART 4 596 static const char trunc_msg[] = "<truncated>"; 597 598 static u32 truncate_msg(u16 *text_len, u16 *trunc_msg_len, 599 u16 *dict_len, u32 *pad_len) 600 { 601 /* 602 * The message should not take the whole buffer. Otherwise, it might 603 * get removed too soon. 604 */ 605 u32 max_text_len = log_buf_len / MAX_LOG_TAKE_PART; 606 if (*text_len > max_text_len) 607 *text_len = max_text_len; 608 /* enable the warning message */ 609 *trunc_msg_len = strlen(trunc_msg); 610 /* disable the "dict" completely */ 611 *dict_len = 0; 612 /* compute the size again, count also the warning message */ 613 return msg_used_size(*text_len + *trunc_msg_len, 0, pad_len); 614 } 615 616 /* insert record into the buffer, discard old ones, update heads */ 617 static int log_store(u32 caller_id, int facility, int level, 618 enum log_flags flags, u64 ts_nsec, 619 const char *dict, u16 dict_len, 620 const char *text, u16 text_len) 621 { 622 struct printk_log *msg; 623 u32 size, pad_len; 624 u16 trunc_msg_len = 0; 625 626 /* number of '\0' padding bytes to next message */ 627 size = msg_used_size(text_len, dict_len, &pad_len); 628 629 if (log_make_free_space(size)) { 630 /* truncate the message if it is too long for empty buffer */ 631 size = truncate_msg(&text_len, &trunc_msg_len, 632 &dict_len, &pad_len); 633 /* survive when the log buffer is too small for trunc_msg */ 634 if (log_make_free_space(size)) 635 return 0; 636 } 637 638 if (log_next_idx + size + sizeof(struct printk_log) > log_buf_len) { 639 /* 640 * This message + an additional empty header does not fit 641 * at the end of the buffer. Add an empty header with len == 0 642 * to signify a wrap around. 643 */ 644 memset(log_buf + log_next_idx, 0, sizeof(struct printk_log)); 645 log_next_idx = 0; 646 } 647 648 /* fill message */ 649 msg = (struct printk_log *)(log_buf + log_next_idx); 650 memcpy(log_text(msg), text, text_len); 651 msg->text_len = text_len; 652 if (trunc_msg_len) { 653 memcpy(log_text(msg) + text_len, trunc_msg, trunc_msg_len); 654 msg->text_len += trunc_msg_len; 655 } 656 memcpy(log_dict(msg), dict, dict_len); 657 msg->dict_len = dict_len; 658 msg->facility = facility; 659 msg->level = level & 7; 660 msg->flags = flags & 0x1f; 661 if (ts_nsec > 0) 662 msg->ts_nsec = ts_nsec; 663 else 664 msg->ts_nsec = local_clock(); 665 #ifdef CONFIG_PRINTK_CALLER 666 msg->caller_id = caller_id; 667 #endif 668 memset(log_dict(msg) + dict_len, 0, pad_len); 669 msg->len = size; 670 671 /* insert message */ 672 log_next_idx += msg->len; 673 log_next_seq++; 674 675 return msg->text_len; 676 } 677 678 int dmesg_restrict = IS_ENABLED(CONFIG_SECURITY_DMESG_RESTRICT); 679 680 static int syslog_action_restricted(int type) 681 { 682 if (dmesg_restrict) 683 return 1; 684 /* 685 * Unless restricted, we allow "read all" and "get buffer size" 686 * for everybody. 687 */ 688 return type != SYSLOG_ACTION_READ_ALL && 689 type != SYSLOG_ACTION_SIZE_BUFFER; 690 } 691 692 static int check_syslog_permissions(int type, int source) 693 { 694 /* 695 * If this is from /proc/kmsg and we've already opened it, then we've 696 * already done the capabilities checks at open time. 697 */ 698 if (source == SYSLOG_FROM_PROC && type != SYSLOG_ACTION_OPEN) 699 goto ok; 700 701 if (syslog_action_restricted(type)) { 702 if (capable(CAP_SYSLOG)) 703 goto ok; 704 /* 705 * For historical reasons, accept CAP_SYS_ADMIN too, with 706 * a warning. 707 */ 708 if (capable(CAP_SYS_ADMIN)) { 709 pr_warn_once("%s (%d): Attempt to access syslog with " 710 "CAP_SYS_ADMIN but no CAP_SYSLOG " 711 "(deprecated).\n", 712 current->comm, task_pid_nr(current)); 713 goto ok; 714 } 715 return -EPERM; 716 } 717 ok: 718 return security_syslog(type); 719 } 720 721 static void append_char(char **pp, char *e, char c) 722 { 723 if (*pp < e) 724 *(*pp)++ = c; 725 } 726 727 static ssize_t msg_print_ext_header(char *buf, size_t size, 728 struct printk_log *msg, u64 seq) 729 { 730 u64 ts_usec = msg->ts_nsec; 731 char caller[20]; 732 #ifdef CONFIG_PRINTK_CALLER 733 u32 id = msg->caller_id; 734 735 snprintf(caller, sizeof(caller), ",caller=%c%u", 736 id & 0x80000000 ? 'C' : 'T', id & ~0x80000000); 737 #else 738 caller[0] = '\0'; 739 #endif 740 741 do_div(ts_usec, 1000); 742 743 return scnprintf(buf, size, "%u,%llu,%llu,%c%s;", 744 (msg->facility << 3) | msg->level, seq, ts_usec, 745 msg->flags & LOG_CONT ? 'c' : '-', caller); 746 } 747 748 static ssize_t msg_print_ext_body(char *buf, size_t size, 749 char *dict, size_t dict_len, 750 char *text, size_t text_len) 751 { 752 char *p = buf, *e = buf + size; 753 size_t i; 754 755 /* escape non-printable characters */ 756 for (i = 0; i < text_len; i++) { 757 unsigned char c = text[i]; 758 759 if (c < ' ' || c >= 127 || c == '\\') 760 p += scnprintf(p, e - p, "\\x%02x", c); 761 else 762 append_char(&p, e, c); 763 } 764 append_char(&p, e, '\n'); 765 766 if (dict_len) { 767 bool line = true; 768 769 for (i = 0; i < dict_len; i++) { 770 unsigned char c = dict[i]; 771 772 if (line) { 773 append_char(&p, e, ' '); 774 line = false; 775 } 776 777 if (c == '\0') { 778 append_char(&p, e, '\n'); 779 line = true; 780 continue; 781 } 782 783 if (c < ' ' || c >= 127 || c == '\\') { 784 p += scnprintf(p, e - p, "\\x%02x", c); 785 continue; 786 } 787 788 append_char(&p, e, c); 789 } 790 append_char(&p, e, '\n'); 791 } 792 793 return p - buf; 794 } 795 796 /* /dev/kmsg - userspace message inject/listen interface */ 797 struct devkmsg_user { 798 u64 seq; 799 u32 idx; 800 struct ratelimit_state rs; 801 struct mutex lock; 802 char buf[CONSOLE_EXT_LOG_MAX]; 803 }; 804 805 static __printf(3, 4) __cold 806 int devkmsg_emit(int facility, int level, const char *fmt, ...) 807 { 808 va_list args; 809 int r; 810 811 va_start(args, fmt); 812 r = vprintk_emit(facility, level, NULL, 0, fmt, args); 813 va_end(args); 814 815 return r; 816 } 817 818 static ssize_t devkmsg_write(struct kiocb *iocb, struct iov_iter *from) 819 { 820 char *buf, *line; 821 int level = default_message_loglevel; 822 int facility = 1; /* LOG_USER */ 823 struct file *file = iocb->ki_filp; 824 struct devkmsg_user *user = file->private_data; 825 size_t len = iov_iter_count(from); 826 ssize_t ret = len; 827 828 if (!user || len > LOG_LINE_MAX) 829 return -EINVAL; 830 831 /* Ignore when user logging is disabled. */ 832 if (devkmsg_log & DEVKMSG_LOG_MASK_OFF) 833 return len; 834 835 /* Ratelimit when not explicitly enabled. */ 836 if (!(devkmsg_log & DEVKMSG_LOG_MASK_ON)) { 837 if (!___ratelimit(&user->rs, current->comm)) 838 return ret; 839 } 840 841 buf = kmalloc(len+1, GFP_KERNEL); 842 if (buf == NULL) 843 return -ENOMEM; 844 845 buf[len] = '\0'; 846 if (!copy_from_iter_full(buf, len, from)) { 847 kfree(buf); 848 return -EFAULT; 849 } 850 851 /* 852 * Extract and skip the syslog prefix <[0-9]*>. Coming from userspace 853 * the decimal value represents 32bit, the lower 3 bit are the log 854 * level, the rest are the log facility. 855 * 856 * If no prefix or no userspace facility is specified, we 857 * enforce LOG_USER, to be able to reliably distinguish 858 * kernel-generated messages from userspace-injected ones. 859 */ 860 line = buf; 861 if (line[0] == '<') { 862 char *endp = NULL; 863 unsigned int u; 864 865 u = simple_strtoul(line + 1, &endp, 10); 866 if (endp && endp[0] == '>') { 867 level = LOG_LEVEL(u); 868 if (LOG_FACILITY(u) != 0) 869 facility = LOG_FACILITY(u); 870 endp++; 871 len -= endp - line; 872 line = endp; 873 } 874 } 875 876 devkmsg_emit(facility, level, "%s", line); 877 kfree(buf); 878 return ret; 879 } 880 881 static ssize_t devkmsg_read(struct file *file, char __user *buf, 882 size_t count, loff_t *ppos) 883 { 884 struct devkmsg_user *user = file->private_data; 885 struct printk_log *msg; 886 size_t len; 887 ssize_t ret; 888 889 if (!user) 890 return -EBADF; 891 892 ret = mutex_lock_interruptible(&user->lock); 893 if (ret) 894 return ret; 895 896 logbuf_lock_irq(); 897 while (user->seq == log_next_seq) { 898 if (file->f_flags & O_NONBLOCK) { 899 ret = -EAGAIN; 900 logbuf_unlock_irq(); 901 goto out; 902 } 903 904 logbuf_unlock_irq(); 905 ret = wait_event_interruptible(log_wait, 906 user->seq != log_next_seq); 907 if (ret) 908 goto out; 909 logbuf_lock_irq(); 910 } 911 912 if (user->seq < log_first_seq) { 913 /* our last seen message is gone, return error and reset */ 914 user->idx = log_first_idx; 915 user->seq = log_first_seq; 916 ret = -EPIPE; 917 logbuf_unlock_irq(); 918 goto out; 919 } 920 921 msg = log_from_idx(user->idx); 922 len = msg_print_ext_header(user->buf, sizeof(user->buf), 923 msg, user->seq); 924 len += msg_print_ext_body(user->buf + len, sizeof(user->buf) - len, 925 log_dict(msg), msg->dict_len, 926 log_text(msg), msg->text_len); 927 928 user->idx = log_next(user->idx); 929 user->seq++; 930 logbuf_unlock_irq(); 931 932 if (len > count) { 933 ret = -EINVAL; 934 goto out; 935 } 936 937 if (copy_to_user(buf, user->buf, len)) { 938 ret = -EFAULT; 939 goto out; 940 } 941 ret = len; 942 out: 943 mutex_unlock(&user->lock); 944 return ret; 945 } 946 947 static loff_t devkmsg_llseek(struct file *file, loff_t offset, int whence) 948 { 949 struct devkmsg_user *user = file->private_data; 950 loff_t ret = 0; 951 952 if (!user) 953 return -EBADF; 954 if (offset) 955 return -ESPIPE; 956 957 logbuf_lock_irq(); 958 switch (whence) { 959 case SEEK_SET: 960 /* the first record */ 961 user->idx = log_first_idx; 962 user->seq = log_first_seq; 963 break; 964 case SEEK_DATA: 965 /* 966 * The first record after the last SYSLOG_ACTION_CLEAR, 967 * like issued by 'dmesg -c'. Reading /dev/kmsg itself 968 * changes no global state, and does not clear anything. 969 */ 970 user->idx = clear_idx; 971 user->seq = clear_seq; 972 break; 973 case SEEK_END: 974 /* after the last record */ 975 user->idx = log_next_idx; 976 user->seq = log_next_seq; 977 break; 978 case SEEK_CUR: 979 /* 980 * It isn't supported due to the record nature of this 981 * interface: _SET _DATA and _END point to very specific 982 * record positions, while _CUR would be more useful in case 983 * of a byte-based log. Because of that, return the default 984 * errno value for invalid seek operation. 985 */ 986 ret = -ESPIPE; 987 break; 988 default: 989 ret = -EINVAL; 990 } 991 logbuf_unlock_irq(); 992 return ret; 993 } 994 995 static __poll_t devkmsg_poll(struct file *file, poll_table *wait) 996 { 997 struct devkmsg_user *user = file->private_data; 998 __poll_t ret = 0; 999 1000 if (!user) 1001 return EPOLLERR|EPOLLNVAL; 1002 1003 poll_wait(file, &log_wait, wait); 1004 1005 logbuf_lock_irq(); 1006 if (user->seq < log_next_seq) { 1007 /* return error when data has vanished underneath us */ 1008 if (user->seq < log_first_seq) 1009 ret = EPOLLIN|EPOLLRDNORM|EPOLLERR|EPOLLPRI; 1010 else 1011 ret = EPOLLIN|EPOLLRDNORM; 1012 } 1013 logbuf_unlock_irq(); 1014 1015 return ret; 1016 } 1017 1018 static int devkmsg_open(struct inode *inode, struct file *file) 1019 { 1020 struct devkmsg_user *user; 1021 int err; 1022 1023 if (devkmsg_log & DEVKMSG_LOG_MASK_OFF) 1024 return -EPERM; 1025 1026 /* write-only does not need any file context */ 1027 if ((file->f_flags & O_ACCMODE) != O_WRONLY) { 1028 err = check_syslog_permissions(SYSLOG_ACTION_READ_ALL, 1029 SYSLOG_FROM_READER); 1030 if (err) 1031 return err; 1032 } 1033 1034 user = kmalloc(sizeof(struct devkmsg_user), GFP_KERNEL); 1035 if (!user) 1036 return -ENOMEM; 1037 1038 ratelimit_default_init(&user->rs); 1039 ratelimit_set_flags(&user->rs, RATELIMIT_MSG_ON_RELEASE); 1040 1041 mutex_init(&user->lock); 1042 1043 logbuf_lock_irq(); 1044 user->idx = log_first_idx; 1045 user->seq = log_first_seq; 1046 logbuf_unlock_irq(); 1047 1048 file->private_data = user; 1049 return 0; 1050 } 1051 1052 static int devkmsg_release(struct inode *inode, struct file *file) 1053 { 1054 struct devkmsg_user *user = file->private_data; 1055 1056 if (!user) 1057 return 0; 1058 1059 ratelimit_state_exit(&user->rs); 1060 1061 mutex_destroy(&user->lock); 1062 kfree(user); 1063 return 0; 1064 } 1065 1066 const struct file_operations kmsg_fops = { 1067 .open = devkmsg_open, 1068 .read = devkmsg_read, 1069 .write_iter = devkmsg_write, 1070 .llseek = devkmsg_llseek, 1071 .poll = devkmsg_poll, 1072 .release = devkmsg_release, 1073 }; 1074 1075 #ifdef CONFIG_CRASH_CORE 1076 /* 1077 * This appends the listed symbols to /proc/vmcore 1078 * 1079 * /proc/vmcore is used by various utilities, like crash and makedumpfile to 1080 * obtain access to symbols that are otherwise very difficult to locate. These 1081 * symbols are specifically used so that utilities can access and extract the 1082 * dmesg log from a vmcore file after a crash. 1083 */ 1084 void log_buf_vmcoreinfo_setup(void) 1085 { 1086 VMCOREINFO_SYMBOL(log_buf); 1087 VMCOREINFO_SYMBOL(log_buf_len); 1088 VMCOREINFO_SYMBOL(log_first_idx); 1089 VMCOREINFO_SYMBOL(clear_idx); 1090 VMCOREINFO_SYMBOL(log_next_idx); 1091 /* 1092 * Export struct printk_log size and field offsets. User space tools can 1093 * parse it and detect any changes to structure down the line. 1094 */ 1095 VMCOREINFO_STRUCT_SIZE(printk_log); 1096 VMCOREINFO_OFFSET(printk_log, ts_nsec); 1097 VMCOREINFO_OFFSET(printk_log, len); 1098 VMCOREINFO_OFFSET(printk_log, text_len); 1099 VMCOREINFO_OFFSET(printk_log, dict_len); 1100 #ifdef CONFIG_PRINTK_CALLER 1101 VMCOREINFO_OFFSET(printk_log, caller_id); 1102 #endif 1103 } 1104 #endif 1105 1106 /* requested log_buf_len from kernel cmdline */ 1107 static unsigned long __initdata new_log_buf_len; 1108 1109 /* we practice scaling the ring buffer by powers of 2 */ 1110 static void __init log_buf_len_update(u64 size) 1111 { 1112 if (size > (u64)LOG_BUF_LEN_MAX) { 1113 size = (u64)LOG_BUF_LEN_MAX; 1114 pr_err("log_buf over 2G is not supported.\n"); 1115 } 1116 1117 if (size) 1118 size = roundup_pow_of_two(size); 1119 if (size > log_buf_len) 1120 new_log_buf_len = (unsigned long)size; 1121 } 1122 1123 /* save requested log_buf_len since it's too early to process it */ 1124 static int __init log_buf_len_setup(char *str) 1125 { 1126 u64 size; 1127 1128 if (!str) 1129 return -EINVAL; 1130 1131 size = memparse(str, &str); 1132 1133 log_buf_len_update(size); 1134 1135 return 0; 1136 } 1137 early_param("log_buf_len", log_buf_len_setup); 1138 1139 #ifdef CONFIG_SMP 1140 #define __LOG_CPU_MAX_BUF_LEN (1 << CONFIG_LOG_CPU_MAX_BUF_SHIFT) 1141 1142 static void __init log_buf_add_cpu(void) 1143 { 1144 unsigned int cpu_extra; 1145 1146 /* 1147 * archs should set up cpu_possible_bits properly with 1148 * set_cpu_possible() after setup_arch() but just in 1149 * case lets ensure this is valid. 1150 */ 1151 if (num_possible_cpus() == 1) 1152 return; 1153 1154 cpu_extra = (num_possible_cpus() - 1) * __LOG_CPU_MAX_BUF_LEN; 1155 1156 /* by default this will only continue through for large > 64 CPUs */ 1157 if (cpu_extra <= __LOG_BUF_LEN / 2) 1158 return; 1159 1160 pr_info("log_buf_len individual max cpu contribution: %d bytes\n", 1161 __LOG_CPU_MAX_BUF_LEN); 1162 pr_info("log_buf_len total cpu_extra contributions: %d bytes\n", 1163 cpu_extra); 1164 pr_info("log_buf_len min size: %d bytes\n", __LOG_BUF_LEN); 1165 1166 log_buf_len_update(cpu_extra + __LOG_BUF_LEN); 1167 } 1168 #else /* !CONFIG_SMP */ 1169 static inline void log_buf_add_cpu(void) {} 1170 #endif /* CONFIG_SMP */ 1171 1172 static void __init set_percpu_data_ready(void) 1173 { 1174 printk_safe_init(); 1175 /* Make sure we set this flag only after printk_safe() init is done */ 1176 barrier(); 1177 __printk_percpu_data_ready = true; 1178 } 1179 1180 void __init setup_log_buf(int early) 1181 { 1182 unsigned long flags; 1183 char *new_log_buf; 1184 unsigned int free; 1185 1186 /* 1187 * Some archs call setup_log_buf() multiple times - first is very 1188 * early, e.g. from setup_arch(), and second - when percpu_areas 1189 * are initialised. 1190 */ 1191 if (!early) 1192 set_percpu_data_ready(); 1193 1194 if (log_buf != __log_buf) 1195 return; 1196 1197 if (!early && !new_log_buf_len) 1198 log_buf_add_cpu(); 1199 1200 if (!new_log_buf_len) 1201 return; 1202 1203 new_log_buf = memblock_alloc(new_log_buf_len, LOG_ALIGN); 1204 if (unlikely(!new_log_buf)) { 1205 pr_err("log_buf_len: %lu bytes not available\n", 1206 new_log_buf_len); 1207 return; 1208 } 1209 1210 logbuf_lock_irqsave(flags); 1211 log_buf_len = new_log_buf_len; 1212 log_buf = new_log_buf; 1213 new_log_buf_len = 0; 1214 free = __LOG_BUF_LEN - log_next_idx; 1215 memcpy(log_buf, __log_buf, __LOG_BUF_LEN); 1216 logbuf_unlock_irqrestore(flags); 1217 1218 pr_info("log_buf_len: %u bytes\n", log_buf_len); 1219 pr_info("early log buf free: %u(%u%%)\n", 1220 free, (free * 100) / __LOG_BUF_LEN); 1221 } 1222 1223 static bool __read_mostly ignore_loglevel; 1224 1225 static int __init ignore_loglevel_setup(char *str) 1226 { 1227 ignore_loglevel = true; 1228 pr_info("debug: ignoring loglevel setting.\n"); 1229 1230 return 0; 1231 } 1232 1233 early_param("ignore_loglevel", ignore_loglevel_setup); 1234 module_param(ignore_loglevel, bool, S_IRUGO | S_IWUSR); 1235 MODULE_PARM_DESC(ignore_loglevel, 1236 "ignore loglevel setting (prints all kernel messages to the console)"); 1237 1238 static bool suppress_message_printing(int level) 1239 { 1240 return (level >= console_loglevel && !ignore_loglevel); 1241 } 1242 1243 #ifdef CONFIG_BOOT_PRINTK_DELAY 1244 1245 static int boot_delay; /* msecs delay after each printk during bootup */ 1246 static unsigned long long loops_per_msec; /* based on boot_delay */ 1247 1248 static int __init boot_delay_setup(char *str) 1249 { 1250 unsigned long lpj; 1251 1252 lpj = preset_lpj ? preset_lpj : 1000000; /* some guess */ 1253 loops_per_msec = (unsigned long long)lpj / 1000 * HZ; 1254 1255 get_option(&str, &boot_delay); 1256 if (boot_delay > 10 * 1000) 1257 boot_delay = 0; 1258 1259 pr_debug("boot_delay: %u, preset_lpj: %ld, lpj: %lu, " 1260 "HZ: %d, loops_per_msec: %llu\n", 1261 boot_delay, preset_lpj, lpj, HZ, loops_per_msec); 1262 return 0; 1263 } 1264 early_param("boot_delay", boot_delay_setup); 1265 1266 static void boot_delay_msec(int level) 1267 { 1268 unsigned long long k; 1269 unsigned long timeout; 1270 1271 if ((boot_delay == 0 || system_state >= SYSTEM_RUNNING) 1272 || suppress_message_printing(level)) { 1273 return; 1274 } 1275 1276 k = (unsigned long long)loops_per_msec * boot_delay; 1277 1278 timeout = jiffies + msecs_to_jiffies(boot_delay); 1279 while (k) { 1280 k--; 1281 cpu_relax(); 1282 /* 1283 * use (volatile) jiffies to prevent 1284 * compiler reduction; loop termination via jiffies 1285 * is secondary and may or may not happen. 1286 */ 1287 if (time_after(jiffies, timeout)) 1288 break; 1289 touch_nmi_watchdog(); 1290 } 1291 } 1292 #else 1293 static inline void boot_delay_msec(int level) 1294 { 1295 } 1296 #endif 1297 1298 static bool printk_time = IS_ENABLED(CONFIG_PRINTK_TIME); 1299 module_param_named(time, printk_time, bool, S_IRUGO | S_IWUSR); 1300 1301 static size_t print_syslog(unsigned int level, char *buf) 1302 { 1303 return sprintf(buf, "<%u>", level); 1304 } 1305 1306 static size_t print_time(u64 ts, char *buf) 1307 { 1308 unsigned long rem_nsec = do_div(ts, 1000000000); 1309 1310 return sprintf(buf, "[%5lu.%06lu]", 1311 (unsigned long)ts, rem_nsec / 1000); 1312 } 1313 1314 #ifdef CONFIG_PRINTK_CALLER 1315 static size_t print_caller(u32 id, char *buf) 1316 { 1317 char caller[12]; 1318 1319 snprintf(caller, sizeof(caller), "%c%u", 1320 id & 0x80000000 ? 'C' : 'T', id & ~0x80000000); 1321 return sprintf(buf, "[%6s]", caller); 1322 } 1323 #else 1324 #define print_caller(id, buf) 0 1325 #endif 1326 1327 static size_t print_prefix(const struct printk_log *msg, bool syslog, 1328 bool time, char *buf) 1329 { 1330 size_t len = 0; 1331 1332 if (syslog) 1333 len = print_syslog((msg->facility << 3) | msg->level, buf); 1334 1335 if (time) 1336 len += print_time(msg->ts_nsec, buf + len); 1337 1338 len += print_caller(msg->caller_id, buf + len); 1339 1340 if (IS_ENABLED(CONFIG_PRINTK_CALLER) || time) { 1341 buf[len++] = ' '; 1342 buf[len] = '\0'; 1343 } 1344 1345 return len; 1346 } 1347 1348 static size_t msg_print_text(const struct printk_log *msg, bool syslog, 1349 bool time, char *buf, size_t size) 1350 { 1351 const char *text = log_text(msg); 1352 size_t text_size = msg->text_len; 1353 size_t len = 0; 1354 char prefix[PREFIX_MAX]; 1355 const size_t prefix_len = print_prefix(msg, syslog, time, prefix); 1356 1357 do { 1358 const char *next = memchr(text, '\n', text_size); 1359 size_t text_len; 1360 1361 if (next) { 1362 text_len = next - text; 1363 next++; 1364 text_size -= next - text; 1365 } else { 1366 text_len = text_size; 1367 } 1368 1369 if (buf) { 1370 if (prefix_len + text_len + 1 >= size - len) 1371 break; 1372 1373 memcpy(buf + len, prefix, prefix_len); 1374 len += prefix_len; 1375 memcpy(buf + len, text, text_len); 1376 len += text_len; 1377 buf[len++] = '\n'; 1378 } else { 1379 /* SYSLOG_ACTION_* buffer size only calculation */ 1380 len += prefix_len + text_len + 1; 1381 } 1382 1383 text = next; 1384 } while (text); 1385 1386 return len; 1387 } 1388 1389 static int syslog_print(char __user *buf, int size) 1390 { 1391 char *text; 1392 struct printk_log *msg; 1393 int len = 0; 1394 1395 text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL); 1396 if (!text) 1397 return -ENOMEM; 1398 1399 while (size > 0) { 1400 size_t n; 1401 size_t skip; 1402 1403 logbuf_lock_irq(); 1404 if (syslog_seq < log_first_seq) { 1405 /* messages are gone, move to first one */ 1406 syslog_seq = log_first_seq; 1407 syslog_idx = log_first_idx; 1408 syslog_partial = 0; 1409 } 1410 if (syslog_seq == log_next_seq) { 1411 logbuf_unlock_irq(); 1412 break; 1413 } 1414 1415 /* 1416 * To keep reading/counting partial line consistent, 1417 * use printk_time value as of the beginning of a line. 1418 */ 1419 if (!syslog_partial) 1420 syslog_time = printk_time; 1421 1422 skip = syslog_partial; 1423 msg = log_from_idx(syslog_idx); 1424 n = msg_print_text(msg, true, syslog_time, text, 1425 LOG_LINE_MAX + PREFIX_MAX); 1426 if (n - syslog_partial <= size) { 1427 /* message fits into buffer, move forward */ 1428 syslog_idx = log_next(syslog_idx); 1429 syslog_seq++; 1430 n -= syslog_partial; 1431 syslog_partial = 0; 1432 } else if (!len){ 1433 /* partial read(), remember position */ 1434 n = size; 1435 syslog_partial += n; 1436 } else 1437 n = 0; 1438 logbuf_unlock_irq(); 1439 1440 if (!n) 1441 break; 1442 1443 if (copy_to_user(buf, text + skip, n)) { 1444 if (!len) 1445 len = -EFAULT; 1446 break; 1447 } 1448 1449 len += n; 1450 size -= n; 1451 buf += n; 1452 } 1453 1454 kfree(text); 1455 return len; 1456 } 1457 1458 static int syslog_print_all(char __user *buf, int size, bool clear) 1459 { 1460 char *text; 1461 int len = 0; 1462 u64 next_seq; 1463 u64 seq; 1464 u32 idx; 1465 bool time; 1466 1467 text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL); 1468 if (!text) 1469 return -ENOMEM; 1470 1471 time = printk_time; 1472 logbuf_lock_irq(); 1473 /* 1474 * Find first record that fits, including all following records, 1475 * into the user-provided buffer for this dump. 1476 */ 1477 seq = clear_seq; 1478 idx = clear_idx; 1479 while (seq < log_next_seq) { 1480 struct printk_log *msg = log_from_idx(idx); 1481 1482 len += msg_print_text(msg, true, time, NULL, 0); 1483 idx = log_next(idx); 1484 seq++; 1485 } 1486 1487 /* move first record forward until length fits into the buffer */ 1488 seq = clear_seq; 1489 idx = clear_idx; 1490 while (len > size && seq < log_next_seq) { 1491 struct printk_log *msg = log_from_idx(idx); 1492 1493 len -= msg_print_text(msg, true, time, NULL, 0); 1494 idx = log_next(idx); 1495 seq++; 1496 } 1497 1498 /* last message fitting into this dump */ 1499 next_seq = log_next_seq; 1500 1501 len = 0; 1502 while (len >= 0 && seq < next_seq) { 1503 struct printk_log *msg = log_from_idx(idx); 1504 int textlen = msg_print_text(msg, true, time, text, 1505 LOG_LINE_MAX + PREFIX_MAX); 1506 1507 idx = log_next(idx); 1508 seq++; 1509 1510 logbuf_unlock_irq(); 1511 if (copy_to_user(buf + len, text, textlen)) 1512 len = -EFAULT; 1513 else 1514 len += textlen; 1515 logbuf_lock_irq(); 1516 1517 if (seq < log_first_seq) { 1518 /* messages are gone, move to next one */ 1519 seq = log_first_seq; 1520 idx = log_first_idx; 1521 } 1522 } 1523 1524 if (clear) { 1525 clear_seq = log_next_seq; 1526 clear_idx = log_next_idx; 1527 } 1528 logbuf_unlock_irq(); 1529 1530 kfree(text); 1531 return len; 1532 } 1533 1534 static void syslog_clear(void) 1535 { 1536 logbuf_lock_irq(); 1537 clear_seq = log_next_seq; 1538 clear_idx = log_next_idx; 1539 logbuf_unlock_irq(); 1540 } 1541 1542 int do_syslog(int type, char __user *buf, int len, int source) 1543 { 1544 bool clear = false; 1545 static int saved_console_loglevel = LOGLEVEL_DEFAULT; 1546 int error; 1547 1548 error = check_syslog_permissions(type, source); 1549 if (error) 1550 return error; 1551 1552 switch (type) { 1553 case SYSLOG_ACTION_CLOSE: /* Close log */ 1554 break; 1555 case SYSLOG_ACTION_OPEN: /* Open log */ 1556 break; 1557 case SYSLOG_ACTION_READ: /* Read from log */ 1558 if (!buf || len < 0) 1559 return -EINVAL; 1560 if (!len) 1561 return 0; 1562 if (!access_ok(buf, len)) 1563 return -EFAULT; 1564 error = wait_event_interruptible(log_wait, 1565 syslog_seq != log_next_seq); 1566 if (error) 1567 return error; 1568 error = syslog_print(buf, len); 1569 break; 1570 /* Read/clear last kernel messages */ 1571 case SYSLOG_ACTION_READ_CLEAR: 1572 clear = true; 1573 /* FALL THRU */ 1574 /* Read last kernel messages */ 1575 case SYSLOG_ACTION_READ_ALL: 1576 if (!buf || len < 0) 1577 return -EINVAL; 1578 if (!len) 1579 return 0; 1580 if (!access_ok(buf, len)) 1581 return -EFAULT; 1582 error = syslog_print_all(buf, len, clear); 1583 break; 1584 /* Clear ring buffer */ 1585 case SYSLOG_ACTION_CLEAR: 1586 syslog_clear(); 1587 break; 1588 /* Disable logging to console */ 1589 case SYSLOG_ACTION_CONSOLE_OFF: 1590 if (saved_console_loglevel == LOGLEVEL_DEFAULT) 1591 saved_console_loglevel = console_loglevel; 1592 console_loglevel = minimum_console_loglevel; 1593 break; 1594 /* Enable logging to console */ 1595 case SYSLOG_ACTION_CONSOLE_ON: 1596 if (saved_console_loglevel != LOGLEVEL_DEFAULT) { 1597 console_loglevel = saved_console_loglevel; 1598 saved_console_loglevel = LOGLEVEL_DEFAULT; 1599 } 1600 break; 1601 /* Set level of messages printed to console */ 1602 case SYSLOG_ACTION_CONSOLE_LEVEL: 1603 if (len < 1 || len > 8) 1604 return -EINVAL; 1605 if (len < minimum_console_loglevel) 1606 len = minimum_console_loglevel; 1607 console_loglevel = len; 1608 /* Implicitly re-enable logging to console */ 1609 saved_console_loglevel = LOGLEVEL_DEFAULT; 1610 break; 1611 /* Number of chars in the log buffer */ 1612 case SYSLOG_ACTION_SIZE_UNREAD: 1613 logbuf_lock_irq(); 1614 if (syslog_seq < log_first_seq) { 1615 /* messages are gone, move to first one */ 1616 syslog_seq = log_first_seq; 1617 syslog_idx = log_first_idx; 1618 syslog_partial = 0; 1619 } 1620 if (source == SYSLOG_FROM_PROC) { 1621 /* 1622 * Short-cut for poll(/"proc/kmsg") which simply checks 1623 * for pending data, not the size; return the count of 1624 * records, not the length. 1625 */ 1626 error = log_next_seq - syslog_seq; 1627 } else { 1628 u64 seq = syslog_seq; 1629 u32 idx = syslog_idx; 1630 bool time = syslog_partial ? syslog_time : printk_time; 1631 1632 while (seq < log_next_seq) { 1633 struct printk_log *msg = log_from_idx(idx); 1634 1635 error += msg_print_text(msg, true, time, NULL, 1636 0); 1637 time = printk_time; 1638 idx = log_next(idx); 1639 seq++; 1640 } 1641 error -= syslog_partial; 1642 } 1643 logbuf_unlock_irq(); 1644 break; 1645 /* Size of the log buffer */ 1646 case SYSLOG_ACTION_SIZE_BUFFER: 1647 error = log_buf_len; 1648 break; 1649 default: 1650 error = -EINVAL; 1651 break; 1652 } 1653 1654 return error; 1655 } 1656 1657 SYSCALL_DEFINE3(syslog, int, type, char __user *, buf, int, len) 1658 { 1659 return do_syslog(type, buf, len, SYSLOG_FROM_READER); 1660 } 1661 1662 /* 1663 * Special console_lock variants that help to reduce the risk of soft-lockups. 1664 * They allow to pass console_lock to another printk() call using a busy wait. 1665 */ 1666 1667 #ifdef CONFIG_LOCKDEP 1668 static struct lockdep_map console_owner_dep_map = { 1669 .name = "console_owner" 1670 }; 1671 #endif 1672 1673 static DEFINE_RAW_SPINLOCK(console_owner_lock); 1674 static struct task_struct *console_owner; 1675 static bool console_waiter; 1676 1677 /** 1678 * console_lock_spinning_enable - mark beginning of code where another 1679 * thread might safely busy wait 1680 * 1681 * This basically converts console_lock into a spinlock. This marks 1682 * the section where the console_lock owner can not sleep, because 1683 * there may be a waiter spinning (like a spinlock). Also it must be 1684 * ready to hand over the lock at the end of the section. 1685 */ 1686 static void console_lock_spinning_enable(void) 1687 { 1688 raw_spin_lock(&console_owner_lock); 1689 console_owner = current; 1690 raw_spin_unlock(&console_owner_lock); 1691 1692 /* The waiter may spin on us after setting console_owner */ 1693 spin_acquire(&console_owner_dep_map, 0, 0, _THIS_IP_); 1694 } 1695 1696 /** 1697 * console_lock_spinning_disable_and_check - mark end of code where another 1698 * thread was able to busy wait and check if there is a waiter 1699 * 1700 * This is called at the end of the section where spinning is allowed. 1701 * It has two functions. First, it is a signal that it is no longer 1702 * safe to start busy waiting for the lock. Second, it checks if 1703 * there is a busy waiter and passes the lock rights to her. 1704 * 1705 * Important: Callers lose the lock if there was a busy waiter. 1706 * They must not touch items synchronized by console_lock 1707 * in this case. 1708 * 1709 * Return: 1 if the lock rights were passed, 0 otherwise. 1710 */ 1711 static int console_lock_spinning_disable_and_check(void) 1712 { 1713 int waiter; 1714 1715 raw_spin_lock(&console_owner_lock); 1716 waiter = READ_ONCE(console_waiter); 1717 console_owner = NULL; 1718 raw_spin_unlock(&console_owner_lock); 1719 1720 if (!waiter) { 1721 spin_release(&console_owner_dep_map, _THIS_IP_); 1722 return 0; 1723 } 1724 1725 /* The waiter is now free to continue */ 1726 WRITE_ONCE(console_waiter, false); 1727 1728 spin_release(&console_owner_dep_map, _THIS_IP_); 1729 1730 /* 1731 * Hand off console_lock to waiter. The waiter will perform 1732 * the up(). After this, the waiter is the console_lock owner. 1733 */ 1734 mutex_release(&console_lock_dep_map, _THIS_IP_); 1735 return 1; 1736 } 1737 1738 /** 1739 * console_trylock_spinning - try to get console_lock by busy waiting 1740 * 1741 * This allows to busy wait for the console_lock when the current 1742 * owner is running in specially marked sections. It means that 1743 * the current owner is running and cannot reschedule until it 1744 * is ready to lose the lock. 1745 * 1746 * Return: 1 if we got the lock, 0 othrewise 1747 */ 1748 static int console_trylock_spinning(void) 1749 { 1750 struct task_struct *owner = NULL; 1751 bool waiter; 1752 bool spin = false; 1753 unsigned long flags; 1754 1755 if (console_trylock()) 1756 return 1; 1757 1758 printk_safe_enter_irqsave(flags); 1759 1760 raw_spin_lock(&console_owner_lock); 1761 owner = READ_ONCE(console_owner); 1762 waiter = READ_ONCE(console_waiter); 1763 if (!waiter && owner && owner != current) { 1764 WRITE_ONCE(console_waiter, true); 1765 spin = true; 1766 } 1767 raw_spin_unlock(&console_owner_lock); 1768 1769 /* 1770 * If there is an active printk() writing to the 1771 * consoles, instead of having it write our data too, 1772 * see if we can offload that load from the active 1773 * printer, and do some printing ourselves. 1774 * Go into a spin only if there isn't already a waiter 1775 * spinning, and there is an active printer, and 1776 * that active printer isn't us (recursive printk?). 1777 */ 1778 if (!spin) { 1779 printk_safe_exit_irqrestore(flags); 1780 return 0; 1781 } 1782 1783 /* We spin waiting for the owner to release us */ 1784 spin_acquire(&console_owner_dep_map, 0, 0, _THIS_IP_); 1785 /* Owner will clear console_waiter on hand off */ 1786 while (READ_ONCE(console_waiter)) 1787 cpu_relax(); 1788 spin_release(&console_owner_dep_map, _THIS_IP_); 1789 1790 printk_safe_exit_irqrestore(flags); 1791 /* 1792 * The owner passed the console lock to us. 1793 * Since we did not spin on console lock, annotate 1794 * this as a trylock. Otherwise lockdep will 1795 * complain. 1796 */ 1797 mutex_acquire(&console_lock_dep_map, 0, 1, _THIS_IP_); 1798 1799 return 1; 1800 } 1801 1802 /* 1803 * Call the console drivers, asking them to write out 1804 * log_buf[start] to log_buf[end - 1]. 1805 * The console_lock must be held. 1806 */ 1807 static void call_console_drivers(const char *ext_text, size_t ext_len, 1808 const char *text, size_t len) 1809 { 1810 struct console *con; 1811 1812 trace_console_rcuidle(text, len); 1813 1814 for_each_console(con) { 1815 if (exclusive_console && con != exclusive_console) 1816 continue; 1817 if (!(con->flags & CON_ENABLED)) 1818 continue; 1819 if (!con->write) 1820 continue; 1821 if (!cpu_online(smp_processor_id()) && 1822 !(con->flags & CON_ANYTIME)) 1823 continue; 1824 if (con->flags & CON_EXTENDED) 1825 con->write(con, ext_text, ext_len); 1826 else 1827 con->write(con, text, len); 1828 } 1829 } 1830 1831 int printk_delay_msec __read_mostly; 1832 1833 static inline void printk_delay(void) 1834 { 1835 if (unlikely(printk_delay_msec)) { 1836 int m = printk_delay_msec; 1837 1838 while (m--) { 1839 mdelay(1); 1840 touch_nmi_watchdog(); 1841 } 1842 } 1843 } 1844 1845 static inline u32 printk_caller_id(void) 1846 { 1847 return in_task() ? task_pid_nr(current) : 1848 0x80000000 + raw_smp_processor_id(); 1849 } 1850 1851 /* 1852 * Continuation lines are buffered, and not committed to the record buffer 1853 * until the line is complete, or a race forces it. The line fragments 1854 * though, are printed immediately to the consoles to ensure everything has 1855 * reached the console in case of a kernel crash. 1856 */ 1857 static struct cont { 1858 char buf[LOG_LINE_MAX]; 1859 size_t len; /* length == 0 means unused buffer */ 1860 u32 caller_id; /* printk_caller_id() of first print */ 1861 u64 ts_nsec; /* time of first print */ 1862 u8 level; /* log level of first message */ 1863 u8 facility; /* log facility of first message */ 1864 enum log_flags flags; /* prefix, newline flags */ 1865 } cont; 1866 1867 static void cont_flush(void) 1868 { 1869 if (cont.len == 0) 1870 return; 1871 1872 log_store(cont.caller_id, cont.facility, cont.level, cont.flags, 1873 cont.ts_nsec, NULL, 0, cont.buf, cont.len); 1874 cont.len = 0; 1875 } 1876 1877 static bool cont_add(u32 caller_id, int facility, int level, 1878 enum log_flags flags, const char *text, size_t len) 1879 { 1880 /* If the line gets too long, split it up in separate records. */ 1881 if (cont.len + len > sizeof(cont.buf)) { 1882 cont_flush(); 1883 return false; 1884 } 1885 1886 if (!cont.len) { 1887 cont.facility = facility; 1888 cont.level = level; 1889 cont.caller_id = caller_id; 1890 cont.ts_nsec = local_clock(); 1891 cont.flags = flags; 1892 } 1893 1894 memcpy(cont.buf + cont.len, text, len); 1895 cont.len += len; 1896 1897 // The original flags come from the first line, 1898 // but later continuations can add a newline. 1899 if (flags & LOG_NEWLINE) { 1900 cont.flags |= LOG_NEWLINE; 1901 cont_flush(); 1902 } 1903 1904 return true; 1905 } 1906 1907 static size_t log_output(int facility, int level, enum log_flags lflags, const char *dict, size_t dictlen, char *text, size_t text_len) 1908 { 1909 const u32 caller_id = printk_caller_id(); 1910 1911 /* 1912 * If an earlier line was buffered, and we're a continuation 1913 * write from the same context, try to add it to the buffer. 1914 */ 1915 if (cont.len) { 1916 if (cont.caller_id == caller_id && (lflags & LOG_CONT)) { 1917 if (cont_add(caller_id, facility, level, lflags, text, text_len)) 1918 return text_len; 1919 } 1920 /* Otherwise, make sure it's flushed */ 1921 cont_flush(); 1922 } 1923 1924 /* Skip empty continuation lines that couldn't be added - they just flush */ 1925 if (!text_len && (lflags & LOG_CONT)) 1926 return 0; 1927 1928 /* If it doesn't end in a newline, try to buffer the current line */ 1929 if (!(lflags & LOG_NEWLINE)) { 1930 if (cont_add(caller_id, facility, level, lflags, text, text_len)) 1931 return text_len; 1932 } 1933 1934 /* Store it in the record log */ 1935 return log_store(caller_id, facility, level, lflags, 0, 1936 dict, dictlen, text, text_len); 1937 } 1938 1939 /* Must be called under logbuf_lock. */ 1940 int vprintk_store(int facility, int level, 1941 const char *dict, size_t dictlen, 1942 const char *fmt, va_list args) 1943 { 1944 static char textbuf[LOG_LINE_MAX]; 1945 char *text = textbuf; 1946 size_t text_len; 1947 enum log_flags lflags = 0; 1948 1949 /* 1950 * The printf needs to come first; we need the syslog 1951 * prefix which might be passed-in as a parameter. 1952 */ 1953 text_len = vscnprintf(text, sizeof(textbuf), fmt, args); 1954 1955 /* mark and strip a trailing newline */ 1956 if (text_len && text[text_len-1] == '\n') { 1957 text_len--; 1958 lflags |= LOG_NEWLINE; 1959 } 1960 1961 /* strip kernel syslog prefix and extract log level or control flags */ 1962 if (facility == 0) { 1963 int kern_level; 1964 1965 while ((kern_level = printk_get_level(text)) != 0) { 1966 switch (kern_level) { 1967 case '0' ... '7': 1968 if (level == LOGLEVEL_DEFAULT) 1969 level = kern_level - '0'; 1970 break; 1971 case 'c': /* KERN_CONT */ 1972 lflags |= LOG_CONT; 1973 } 1974 1975 text_len -= 2; 1976 text += 2; 1977 } 1978 } 1979 1980 if (level == LOGLEVEL_DEFAULT) 1981 level = default_message_loglevel; 1982 1983 if (dict) 1984 lflags |= LOG_NEWLINE; 1985 1986 return log_output(facility, level, lflags, 1987 dict, dictlen, text, text_len); 1988 } 1989 1990 asmlinkage int vprintk_emit(int facility, int level, 1991 const char *dict, size_t dictlen, 1992 const char *fmt, va_list args) 1993 { 1994 int printed_len; 1995 bool in_sched = false, pending_output; 1996 unsigned long flags; 1997 u64 curr_log_seq; 1998 1999 /* Suppress unimportant messages after panic happens */ 2000 if (unlikely(suppress_printk)) 2001 return 0; 2002 2003 if (level == LOGLEVEL_SCHED) { 2004 level = LOGLEVEL_DEFAULT; 2005 in_sched = true; 2006 } 2007 2008 boot_delay_msec(level); 2009 printk_delay(); 2010 2011 /* This stops the holder of console_sem just where we want him */ 2012 logbuf_lock_irqsave(flags); 2013 curr_log_seq = log_next_seq; 2014 printed_len = vprintk_store(facility, level, dict, dictlen, fmt, args); 2015 pending_output = (curr_log_seq != log_next_seq); 2016 logbuf_unlock_irqrestore(flags); 2017 2018 /* If called from the scheduler, we can not call up(). */ 2019 if (!in_sched && pending_output) { 2020 /* 2021 * Disable preemption to avoid being preempted while holding 2022 * console_sem which would prevent anyone from printing to 2023 * console 2024 */ 2025 preempt_disable(); 2026 /* 2027 * Try to acquire and then immediately release the console 2028 * semaphore. The release will print out buffers and wake up 2029 * /dev/kmsg and syslog() users. 2030 */ 2031 if (console_trylock_spinning()) 2032 console_unlock(); 2033 preempt_enable(); 2034 } 2035 2036 if (pending_output) 2037 wake_up_klogd(); 2038 return printed_len; 2039 } 2040 EXPORT_SYMBOL(vprintk_emit); 2041 2042 asmlinkage int vprintk(const char *fmt, va_list args) 2043 { 2044 return vprintk_func(fmt, args); 2045 } 2046 EXPORT_SYMBOL(vprintk); 2047 2048 int vprintk_default(const char *fmt, va_list args) 2049 { 2050 int r; 2051 2052 #ifdef CONFIG_KGDB_KDB 2053 /* Allow to pass printk() to kdb but avoid a recursion. */ 2054 if (unlikely(kdb_trap_printk && kdb_printf_cpu < 0)) { 2055 r = vkdb_printf(KDB_MSGSRC_PRINTK, fmt, args); 2056 return r; 2057 } 2058 #endif 2059 r = vprintk_emit(0, LOGLEVEL_DEFAULT, NULL, 0, fmt, args); 2060 2061 return r; 2062 } 2063 EXPORT_SYMBOL_GPL(vprintk_default); 2064 2065 /** 2066 * printk - print a kernel message 2067 * @fmt: format string 2068 * 2069 * This is printk(). It can be called from any context. We want it to work. 2070 * 2071 * We try to grab the console_lock. If we succeed, it's easy - we log the 2072 * output and call the console drivers. If we fail to get the semaphore, we 2073 * place the output into the log buffer and return. The current holder of 2074 * the console_sem will notice the new output in console_unlock(); and will 2075 * send it to the consoles before releasing the lock. 2076 * 2077 * One effect of this deferred printing is that code which calls printk() and 2078 * then changes console_loglevel may break. This is because console_loglevel 2079 * is inspected when the actual printing occurs. 2080 * 2081 * See also: 2082 * printf(3) 2083 * 2084 * See the vsnprintf() documentation for format string extensions over C99. 2085 */ 2086 asmlinkage __visible int printk(const char *fmt, ...) 2087 { 2088 va_list args; 2089 int r; 2090 2091 va_start(args, fmt); 2092 r = vprintk_func(fmt, args); 2093 va_end(args); 2094 2095 return r; 2096 } 2097 EXPORT_SYMBOL(printk); 2098 2099 #else /* CONFIG_PRINTK */ 2100 2101 #define LOG_LINE_MAX 0 2102 #define PREFIX_MAX 0 2103 #define printk_time false 2104 2105 static u64 syslog_seq; 2106 static u32 syslog_idx; 2107 static u64 console_seq; 2108 static u32 console_idx; 2109 static u64 exclusive_console_stop_seq; 2110 static u64 log_first_seq; 2111 static u32 log_first_idx; 2112 static u64 log_next_seq; 2113 static char *log_text(const struct printk_log *msg) { return NULL; } 2114 static char *log_dict(const struct printk_log *msg) { return NULL; } 2115 static struct printk_log *log_from_idx(u32 idx) { return NULL; } 2116 static u32 log_next(u32 idx) { return 0; } 2117 static ssize_t msg_print_ext_header(char *buf, size_t size, 2118 struct printk_log *msg, 2119 u64 seq) { return 0; } 2120 static ssize_t msg_print_ext_body(char *buf, size_t size, 2121 char *dict, size_t dict_len, 2122 char *text, size_t text_len) { return 0; } 2123 static void console_lock_spinning_enable(void) { } 2124 static int console_lock_spinning_disable_and_check(void) { return 0; } 2125 static void call_console_drivers(const char *ext_text, size_t ext_len, 2126 const char *text, size_t len) {} 2127 static size_t msg_print_text(const struct printk_log *msg, bool syslog, 2128 bool time, char *buf, size_t size) { return 0; } 2129 static bool suppress_message_printing(int level) { return false; } 2130 2131 #endif /* CONFIG_PRINTK */ 2132 2133 #ifdef CONFIG_EARLY_PRINTK 2134 struct console *early_console; 2135 2136 asmlinkage __visible void early_printk(const char *fmt, ...) 2137 { 2138 va_list ap; 2139 char buf[512]; 2140 int n; 2141 2142 if (!early_console) 2143 return; 2144 2145 va_start(ap, fmt); 2146 n = vscnprintf(buf, sizeof(buf), fmt, ap); 2147 va_end(ap); 2148 2149 early_console->write(early_console, buf, n); 2150 } 2151 #endif 2152 2153 static int __add_preferred_console(char *name, int idx, char *options, 2154 char *brl_options, bool user_specified) 2155 { 2156 struct console_cmdline *c; 2157 int i; 2158 2159 /* 2160 * See if this tty is not yet registered, and 2161 * if we have a slot free. 2162 */ 2163 for (i = 0, c = console_cmdline; 2164 i < MAX_CMDLINECONSOLES && c->name[0]; 2165 i++, c++) { 2166 if (strcmp(c->name, name) == 0 && c->index == idx) { 2167 if (!brl_options) 2168 preferred_console = i; 2169 if (user_specified) 2170 c->user_specified = true; 2171 return 0; 2172 } 2173 } 2174 if (i == MAX_CMDLINECONSOLES) 2175 return -E2BIG; 2176 if (!brl_options) 2177 preferred_console = i; 2178 strlcpy(c->name, name, sizeof(c->name)); 2179 c->options = options; 2180 c->user_specified = user_specified; 2181 braille_set_options(c, brl_options); 2182 2183 c->index = idx; 2184 return 0; 2185 } 2186 2187 static int __init console_msg_format_setup(char *str) 2188 { 2189 if (!strcmp(str, "syslog")) 2190 console_msg_format = MSG_FORMAT_SYSLOG; 2191 if (!strcmp(str, "default")) 2192 console_msg_format = MSG_FORMAT_DEFAULT; 2193 return 1; 2194 } 2195 __setup("console_msg_format=", console_msg_format_setup); 2196 2197 /* 2198 * Set up a console. Called via do_early_param() in init/main.c 2199 * for each "console=" parameter in the boot command line. 2200 */ 2201 static int __init console_setup(char *str) 2202 { 2203 char buf[sizeof(console_cmdline[0].name) + 4]; /* 4 for "ttyS" */ 2204 char *s, *options, *brl_options = NULL; 2205 int idx; 2206 2207 if (str[0] == 0) 2208 return 1; 2209 2210 if (_braille_console_setup(&str, &brl_options)) 2211 return 1; 2212 2213 /* 2214 * Decode str into name, index, options. 2215 */ 2216 if (str[0] >= '0' && str[0] <= '9') { 2217 strcpy(buf, "ttyS"); 2218 strncpy(buf + 4, str, sizeof(buf) - 5); 2219 } else { 2220 strncpy(buf, str, sizeof(buf) - 1); 2221 } 2222 buf[sizeof(buf) - 1] = 0; 2223 options = strchr(str, ','); 2224 if (options) 2225 *(options++) = 0; 2226 #ifdef __sparc__ 2227 if (!strcmp(str, "ttya")) 2228 strcpy(buf, "ttyS0"); 2229 if (!strcmp(str, "ttyb")) 2230 strcpy(buf, "ttyS1"); 2231 #endif 2232 for (s = buf; *s; s++) 2233 if (isdigit(*s) || *s == ',') 2234 break; 2235 idx = simple_strtoul(s, NULL, 10); 2236 *s = 0; 2237 2238 __add_preferred_console(buf, idx, options, brl_options, true); 2239 console_set_on_cmdline = 1; 2240 return 1; 2241 } 2242 __setup("console=", console_setup); 2243 2244 /** 2245 * add_preferred_console - add a device to the list of preferred consoles. 2246 * @name: device name 2247 * @idx: device index 2248 * @options: options for this console 2249 * 2250 * The last preferred console added will be used for kernel messages 2251 * and stdin/out/err for init. Normally this is used by console_setup 2252 * above to handle user-supplied console arguments; however it can also 2253 * be used by arch-specific code either to override the user or more 2254 * commonly to provide a default console (ie from PROM variables) when 2255 * the user has not supplied one. 2256 */ 2257 int add_preferred_console(char *name, int idx, char *options) 2258 { 2259 return __add_preferred_console(name, idx, options, NULL, false); 2260 } 2261 2262 bool console_suspend_enabled = true; 2263 EXPORT_SYMBOL(console_suspend_enabled); 2264 2265 static int __init console_suspend_disable(char *str) 2266 { 2267 console_suspend_enabled = false; 2268 return 1; 2269 } 2270 __setup("no_console_suspend", console_suspend_disable); 2271 module_param_named(console_suspend, console_suspend_enabled, 2272 bool, S_IRUGO | S_IWUSR); 2273 MODULE_PARM_DESC(console_suspend, "suspend console during suspend" 2274 " and hibernate operations"); 2275 2276 /** 2277 * suspend_console - suspend the console subsystem 2278 * 2279 * This disables printk() while we go into suspend states 2280 */ 2281 void suspend_console(void) 2282 { 2283 if (!console_suspend_enabled) 2284 return; 2285 pr_info("Suspending console(s) (use no_console_suspend to debug)\n"); 2286 console_lock(); 2287 console_suspended = 1; 2288 up_console_sem(); 2289 } 2290 2291 void resume_console(void) 2292 { 2293 if (!console_suspend_enabled) 2294 return; 2295 down_console_sem(); 2296 console_suspended = 0; 2297 console_unlock(); 2298 } 2299 2300 /** 2301 * console_cpu_notify - print deferred console messages after CPU hotplug 2302 * @cpu: unused 2303 * 2304 * If printk() is called from a CPU that is not online yet, the messages 2305 * will be printed on the console only if there are CON_ANYTIME consoles. 2306 * This function is called when a new CPU comes online (or fails to come 2307 * up) or goes offline. 2308 */ 2309 static int console_cpu_notify(unsigned int cpu) 2310 { 2311 if (!cpuhp_tasks_frozen) { 2312 /* If trylock fails, someone else is doing the printing */ 2313 if (console_trylock()) 2314 console_unlock(); 2315 } 2316 return 0; 2317 } 2318 2319 /** 2320 * console_lock - lock the console system for exclusive use. 2321 * 2322 * Acquires a lock which guarantees that the caller has 2323 * exclusive access to the console system and the console_drivers list. 2324 * 2325 * Can sleep, returns nothing. 2326 */ 2327 void console_lock(void) 2328 { 2329 might_sleep(); 2330 2331 down_console_sem(); 2332 if (console_suspended) 2333 return; 2334 console_locked = 1; 2335 console_may_schedule = 1; 2336 } 2337 EXPORT_SYMBOL(console_lock); 2338 2339 /** 2340 * console_trylock - try to lock the console system for exclusive use. 2341 * 2342 * Try to acquire a lock which guarantees that the caller has exclusive 2343 * access to the console system and the console_drivers list. 2344 * 2345 * returns 1 on success, and 0 on failure to acquire the lock. 2346 */ 2347 int console_trylock(void) 2348 { 2349 if (down_trylock_console_sem()) 2350 return 0; 2351 if (console_suspended) { 2352 up_console_sem(); 2353 return 0; 2354 } 2355 console_locked = 1; 2356 console_may_schedule = 0; 2357 return 1; 2358 } 2359 EXPORT_SYMBOL(console_trylock); 2360 2361 int is_console_locked(void) 2362 { 2363 return console_locked; 2364 } 2365 EXPORT_SYMBOL(is_console_locked); 2366 2367 /* 2368 * Check if we have any console that is capable of printing while cpu is 2369 * booting or shutting down. Requires console_sem. 2370 */ 2371 static int have_callable_console(void) 2372 { 2373 struct console *con; 2374 2375 for_each_console(con) 2376 if ((con->flags & CON_ENABLED) && 2377 (con->flags & CON_ANYTIME)) 2378 return 1; 2379 2380 return 0; 2381 } 2382 2383 /* 2384 * Can we actually use the console at this time on this cpu? 2385 * 2386 * Console drivers may assume that per-cpu resources have been allocated. So 2387 * unless they're explicitly marked as being able to cope (CON_ANYTIME) don't 2388 * call them until this CPU is officially up. 2389 */ 2390 static inline int can_use_console(void) 2391 { 2392 return cpu_online(raw_smp_processor_id()) || have_callable_console(); 2393 } 2394 2395 /** 2396 * console_unlock - unlock the console system 2397 * 2398 * Releases the console_lock which the caller holds on the console system 2399 * and the console driver list. 2400 * 2401 * While the console_lock was held, console output may have been buffered 2402 * by printk(). If this is the case, console_unlock(); emits 2403 * the output prior to releasing the lock. 2404 * 2405 * If there is output waiting, we wake /dev/kmsg and syslog() users. 2406 * 2407 * console_unlock(); may be called from any context. 2408 */ 2409 void console_unlock(void) 2410 { 2411 static char ext_text[CONSOLE_EXT_LOG_MAX]; 2412 static char text[LOG_LINE_MAX + PREFIX_MAX]; 2413 unsigned long flags; 2414 bool do_cond_resched, retry; 2415 2416 if (console_suspended) { 2417 up_console_sem(); 2418 return; 2419 } 2420 2421 /* 2422 * Console drivers are called with interrupts disabled, so 2423 * @console_may_schedule should be cleared before; however, we may 2424 * end up dumping a lot of lines, for example, if called from 2425 * console registration path, and should invoke cond_resched() 2426 * between lines if allowable. Not doing so can cause a very long 2427 * scheduling stall on a slow console leading to RCU stall and 2428 * softlockup warnings which exacerbate the issue with more 2429 * messages practically incapacitating the system. 2430 * 2431 * console_trylock() is not able to detect the preemptive 2432 * context reliably. Therefore the value must be stored before 2433 * and cleared after the the "again" goto label. 2434 */ 2435 do_cond_resched = console_may_schedule; 2436 again: 2437 console_may_schedule = 0; 2438 2439 /* 2440 * We released the console_sem lock, so we need to recheck if 2441 * cpu is online and (if not) is there at least one CON_ANYTIME 2442 * console. 2443 */ 2444 if (!can_use_console()) { 2445 console_locked = 0; 2446 up_console_sem(); 2447 return; 2448 } 2449 2450 for (;;) { 2451 struct printk_log *msg; 2452 size_t ext_len = 0; 2453 size_t len; 2454 2455 printk_safe_enter_irqsave(flags); 2456 raw_spin_lock(&logbuf_lock); 2457 if (console_seq < log_first_seq) { 2458 len = snprintf(text, sizeof(text), 2459 "** %llu printk messages dropped **\n", 2460 log_first_seq - console_seq); 2461 2462 /* messages are gone, move to first one */ 2463 console_seq = log_first_seq; 2464 console_idx = log_first_idx; 2465 } else { 2466 len = 0; 2467 } 2468 skip: 2469 if (console_seq == log_next_seq) 2470 break; 2471 2472 msg = log_from_idx(console_idx); 2473 if (suppress_message_printing(msg->level)) { 2474 /* 2475 * Skip record we have buffered and already printed 2476 * directly to the console when we received it, and 2477 * record that has level above the console loglevel. 2478 */ 2479 console_idx = log_next(console_idx); 2480 console_seq++; 2481 goto skip; 2482 } 2483 2484 /* Output to all consoles once old messages replayed. */ 2485 if (unlikely(exclusive_console && 2486 console_seq >= exclusive_console_stop_seq)) { 2487 exclusive_console = NULL; 2488 } 2489 2490 len += msg_print_text(msg, 2491 console_msg_format & MSG_FORMAT_SYSLOG, 2492 printk_time, text + len, sizeof(text) - len); 2493 if (nr_ext_console_drivers) { 2494 ext_len = msg_print_ext_header(ext_text, 2495 sizeof(ext_text), 2496 msg, console_seq); 2497 ext_len += msg_print_ext_body(ext_text + ext_len, 2498 sizeof(ext_text) - ext_len, 2499 log_dict(msg), msg->dict_len, 2500 log_text(msg), msg->text_len); 2501 } 2502 console_idx = log_next(console_idx); 2503 console_seq++; 2504 raw_spin_unlock(&logbuf_lock); 2505 2506 /* 2507 * While actively printing out messages, if another printk() 2508 * were to occur on another CPU, it may wait for this one to 2509 * finish. This task can not be preempted if there is a 2510 * waiter waiting to take over. 2511 */ 2512 console_lock_spinning_enable(); 2513 2514 stop_critical_timings(); /* don't trace print latency */ 2515 call_console_drivers(ext_text, ext_len, text, len); 2516 start_critical_timings(); 2517 2518 if (console_lock_spinning_disable_and_check()) { 2519 printk_safe_exit_irqrestore(flags); 2520 return; 2521 } 2522 2523 printk_safe_exit_irqrestore(flags); 2524 2525 if (do_cond_resched) 2526 cond_resched(); 2527 } 2528 2529 console_locked = 0; 2530 2531 raw_spin_unlock(&logbuf_lock); 2532 2533 up_console_sem(); 2534 2535 /* 2536 * Someone could have filled up the buffer again, so re-check if there's 2537 * something to flush. In case we cannot trylock the console_sem again, 2538 * there's a new owner and the console_unlock() from them will do the 2539 * flush, no worries. 2540 */ 2541 raw_spin_lock(&logbuf_lock); 2542 retry = console_seq != log_next_seq; 2543 raw_spin_unlock(&logbuf_lock); 2544 printk_safe_exit_irqrestore(flags); 2545 2546 if (retry && console_trylock()) 2547 goto again; 2548 } 2549 EXPORT_SYMBOL(console_unlock); 2550 2551 /** 2552 * console_conditional_schedule - yield the CPU if required 2553 * 2554 * If the console code is currently allowed to sleep, and 2555 * if this CPU should yield the CPU to another task, do 2556 * so here. 2557 * 2558 * Must be called within console_lock();. 2559 */ 2560 void __sched console_conditional_schedule(void) 2561 { 2562 if (console_may_schedule) 2563 cond_resched(); 2564 } 2565 EXPORT_SYMBOL(console_conditional_schedule); 2566 2567 void console_unblank(void) 2568 { 2569 struct console *c; 2570 2571 /* 2572 * console_unblank can no longer be called in interrupt context unless 2573 * oops_in_progress is set to 1.. 2574 */ 2575 if (oops_in_progress) { 2576 if (down_trylock_console_sem() != 0) 2577 return; 2578 } else 2579 console_lock(); 2580 2581 console_locked = 1; 2582 console_may_schedule = 0; 2583 for_each_console(c) 2584 if ((c->flags & CON_ENABLED) && c->unblank) 2585 c->unblank(); 2586 console_unlock(); 2587 } 2588 2589 /** 2590 * console_flush_on_panic - flush console content on panic 2591 * @mode: flush all messages in buffer or just the pending ones 2592 * 2593 * Immediately output all pending messages no matter what. 2594 */ 2595 void console_flush_on_panic(enum con_flush_mode mode) 2596 { 2597 /* 2598 * If someone else is holding the console lock, trylock will fail 2599 * and may_schedule may be set. Ignore and proceed to unlock so 2600 * that messages are flushed out. As this can be called from any 2601 * context and we don't want to get preempted while flushing, 2602 * ensure may_schedule is cleared. 2603 */ 2604 console_trylock(); 2605 console_may_schedule = 0; 2606 2607 if (mode == CONSOLE_REPLAY_ALL) { 2608 unsigned long flags; 2609 2610 logbuf_lock_irqsave(flags); 2611 console_seq = log_first_seq; 2612 console_idx = log_first_idx; 2613 logbuf_unlock_irqrestore(flags); 2614 } 2615 console_unlock(); 2616 } 2617 2618 /* 2619 * Return the console tty driver structure and its associated index 2620 */ 2621 struct tty_driver *console_device(int *index) 2622 { 2623 struct console *c; 2624 struct tty_driver *driver = NULL; 2625 2626 console_lock(); 2627 for_each_console(c) { 2628 if (!c->device) 2629 continue; 2630 driver = c->device(c, index); 2631 if (driver) 2632 break; 2633 } 2634 console_unlock(); 2635 return driver; 2636 } 2637 2638 /* 2639 * Prevent further output on the passed console device so that (for example) 2640 * serial drivers can disable console output before suspending a port, and can 2641 * re-enable output afterwards. 2642 */ 2643 void console_stop(struct console *console) 2644 { 2645 console_lock(); 2646 console->flags &= ~CON_ENABLED; 2647 console_unlock(); 2648 } 2649 EXPORT_SYMBOL(console_stop); 2650 2651 void console_start(struct console *console) 2652 { 2653 console_lock(); 2654 console->flags |= CON_ENABLED; 2655 console_unlock(); 2656 } 2657 EXPORT_SYMBOL(console_start); 2658 2659 static int __read_mostly keep_bootcon; 2660 2661 static int __init keep_bootcon_setup(char *str) 2662 { 2663 keep_bootcon = 1; 2664 pr_info("debug: skip boot console de-registration.\n"); 2665 2666 return 0; 2667 } 2668 2669 early_param("keep_bootcon", keep_bootcon_setup); 2670 2671 /* 2672 * This is called by register_console() to try to match 2673 * the newly registered console with any of the ones selected 2674 * by either the command line or add_preferred_console() and 2675 * setup/enable it. 2676 * 2677 * Care need to be taken with consoles that are statically 2678 * enabled such as netconsole 2679 */ 2680 static int try_enable_new_console(struct console *newcon, bool user_specified) 2681 { 2682 struct console_cmdline *c; 2683 int i; 2684 2685 for (i = 0, c = console_cmdline; 2686 i < MAX_CMDLINECONSOLES && c->name[0]; 2687 i++, c++) { 2688 if (c->user_specified != user_specified) 2689 continue; 2690 if (!newcon->match || 2691 newcon->match(newcon, c->name, c->index, c->options) != 0) { 2692 /* default matching */ 2693 BUILD_BUG_ON(sizeof(c->name) != sizeof(newcon->name)); 2694 if (strcmp(c->name, newcon->name) != 0) 2695 continue; 2696 if (newcon->index >= 0 && 2697 newcon->index != c->index) 2698 continue; 2699 if (newcon->index < 0) 2700 newcon->index = c->index; 2701 2702 if (_braille_register_console(newcon, c)) 2703 return 0; 2704 2705 if (newcon->setup && 2706 newcon->setup(newcon, c->options) != 0) 2707 return -EIO; 2708 } 2709 newcon->flags |= CON_ENABLED; 2710 if (i == preferred_console) { 2711 newcon->flags |= CON_CONSDEV; 2712 has_preferred_console = true; 2713 } 2714 return 0; 2715 } 2716 2717 /* 2718 * Some consoles, such as pstore and netconsole, can be enabled even 2719 * without matching. Accept the pre-enabled consoles only when match() 2720 * and setup() had a change to be called. 2721 */ 2722 if (newcon->flags & CON_ENABLED && c->user_specified == user_specified) 2723 return 0; 2724 2725 return -ENOENT; 2726 } 2727 2728 /* 2729 * The console driver calls this routine during kernel initialization 2730 * to register the console printing procedure with printk() and to 2731 * print any messages that were printed by the kernel before the 2732 * console driver was initialized. 2733 * 2734 * This can happen pretty early during the boot process (because of 2735 * early_printk) - sometimes before setup_arch() completes - be careful 2736 * of what kernel features are used - they may not be initialised yet. 2737 * 2738 * There are two types of consoles - bootconsoles (early_printk) and 2739 * "real" consoles (everything which is not a bootconsole) which are 2740 * handled differently. 2741 * - Any number of bootconsoles can be registered at any time. 2742 * - As soon as a "real" console is registered, all bootconsoles 2743 * will be unregistered automatically. 2744 * - Once a "real" console is registered, any attempt to register a 2745 * bootconsoles will be rejected 2746 */ 2747 void register_console(struct console *newcon) 2748 { 2749 unsigned long flags; 2750 struct console *bcon = NULL; 2751 int err; 2752 2753 for_each_console(bcon) { 2754 if (WARN(bcon == newcon, "console '%s%d' already registered\n", 2755 bcon->name, bcon->index)) 2756 return; 2757 } 2758 2759 /* 2760 * before we register a new CON_BOOT console, make sure we don't 2761 * already have a valid console 2762 */ 2763 if (newcon->flags & CON_BOOT) { 2764 for_each_console(bcon) { 2765 if (!(bcon->flags & CON_BOOT)) { 2766 pr_info("Too late to register bootconsole %s%d\n", 2767 newcon->name, newcon->index); 2768 return; 2769 } 2770 } 2771 } 2772 2773 if (console_drivers && console_drivers->flags & CON_BOOT) 2774 bcon = console_drivers; 2775 2776 if (!has_preferred_console || bcon || !console_drivers) 2777 has_preferred_console = preferred_console >= 0; 2778 2779 /* 2780 * See if we want to use this console driver. If we 2781 * didn't select a console we take the first one 2782 * that registers here. 2783 */ 2784 if (!has_preferred_console) { 2785 if (newcon->index < 0) 2786 newcon->index = 0; 2787 if (newcon->setup == NULL || 2788 newcon->setup(newcon, NULL) == 0) { 2789 newcon->flags |= CON_ENABLED; 2790 if (newcon->device) { 2791 newcon->flags |= CON_CONSDEV; 2792 has_preferred_console = true; 2793 } 2794 } 2795 } 2796 2797 /* See if this console matches one we selected on the command line */ 2798 err = try_enable_new_console(newcon, true); 2799 2800 /* If not, try to match against the platform default(s) */ 2801 if (err == -ENOENT) 2802 err = try_enable_new_console(newcon, false); 2803 2804 /* printk() messages are not printed to the Braille console. */ 2805 if (err || newcon->flags & CON_BRL) 2806 return; 2807 2808 /* 2809 * If we have a bootconsole, and are switching to a real console, 2810 * don't print everything out again, since when the boot console, and 2811 * the real console are the same physical device, it's annoying to 2812 * see the beginning boot messages twice 2813 */ 2814 if (bcon && ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV)) 2815 newcon->flags &= ~CON_PRINTBUFFER; 2816 2817 /* 2818 * Put this console in the list - keep the 2819 * preferred driver at the head of the list. 2820 */ 2821 console_lock(); 2822 if ((newcon->flags & CON_CONSDEV) || console_drivers == NULL) { 2823 newcon->next = console_drivers; 2824 console_drivers = newcon; 2825 if (newcon->next) 2826 newcon->next->flags &= ~CON_CONSDEV; 2827 /* Ensure this flag is always set for the head of the list */ 2828 newcon->flags |= CON_CONSDEV; 2829 } else { 2830 newcon->next = console_drivers->next; 2831 console_drivers->next = newcon; 2832 } 2833 2834 if (newcon->flags & CON_EXTENDED) 2835 nr_ext_console_drivers++; 2836 2837 if (newcon->flags & CON_PRINTBUFFER) { 2838 /* 2839 * console_unlock(); will print out the buffered messages 2840 * for us. 2841 */ 2842 logbuf_lock_irqsave(flags); 2843 /* 2844 * We're about to replay the log buffer. Only do this to the 2845 * just-registered console to avoid excessive message spam to 2846 * the already-registered consoles. 2847 * 2848 * Set exclusive_console with disabled interrupts to reduce 2849 * race window with eventual console_flush_on_panic() that 2850 * ignores console_lock. 2851 */ 2852 exclusive_console = newcon; 2853 exclusive_console_stop_seq = console_seq; 2854 console_seq = syslog_seq; 2855 console_idx = syslog_idx; 2856 logbuf_unlock_irqrestore(flags); 2857 } 2858 console_unlock(); 2859 console_sysfs_notify(); 2860 2861 /* 2862 * By unregistering the bootconsoles after we enable the real console 2863 * we get the "console xxx enabled" message on all the consoles - 2864 * boot consoles, real consoles, etc - this is to ensure that end 2865 * users know there might be something in the kernel's log buffer that 2866 * went to the bootconsole (that they do not see on the real console) 2867 */ 2868 pr_info("%sconsole [%s%d] enabled\n", 2869 (newcon->flags & CON_BOOT) ? "boot" : "" , 2870 newcon->name, newcon->index); 2871 if (bcon && 2872 ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV) && 2873 !keep_bootcon) { 2874 /* We need to iterate through all boot consoles, to make 2875 * sure we print everything out, before we unregister them. 2876 */ 2877 for_each_console(bcon) 2878 if (bcon->flags & CON_BOOT) 2879 unregister_console(bcon); 2880 } 2881 } 2882 EXPORT_SYMBOL(register_console); 2883 2884 int unregister_console(struct console *console) 2885 { 2886 struct console *con; 2887 int res; 2888 2889 pr_info("%sconsole [%s%d] disabled\n", 2890 (console->flags & CON_BOOT) ? "boot" : "" , 2891 console->name, console->index); 2892 2893 res = _braille_unregister_console(console); 2894 if (res < 0) 2895 return res; 2896 if (res > 0) 2897 return 0; 2898 2899 res = -ENODEV; 2900 console_lock(); 2901 if (console_drivers == console) { 2902 console_drivers=console->next; 2903 res = 0; 2904 } else { 2905 for_each_console(con) { 2906 if (con->next == console) { 2907 con->next = console->next; 2908 res = 0; 2909 break; 2910 } 2911 } 2912 } 2913 2914 if (res) 2915 goto out_disable_unlock; 2916 2917 if (console->flags & CON_EXTENDED) 2918 nr_ext_console_drivers--; 2919 2920 /* 2921 * If this isn't the last console and it has CON_CONSDEV set, we 2922 * need to set it on the next preferred console. 2923 */ 2924 if (console_drivers != NULL && console->flags & CON_CONSDEV) 2925 console_drivers->flags |= CON_CONSDEV; 2926 2927 console->flags &= ~CON_ENABLED; 2928 console_unlock(); 2929 console_sysfs_notify(); 2930 2931 if (console->exit) 2932 res = console->exit(console); 2933 2934 return res; 2935 2936 out_disable_unlock: 2937 console->flags &= ~CON_ENABLED; 2938 console_unlock(); 2939 2940 return res; 2941 } 2942 EXPORT_SYMBOL(unregister_console); 2943 2944 /* 2945 * Initialize the console device. This is called *early*, so 2946 * we can't necessarily depend on lots of kernel help here. 2947 * Just do some early initializations, and do the complex setup 2948 * later. 2949 */ 2950 void __init console_init(void) 2951 { 2952 int ret; 2953 initcall_t call; 2954 initcall_entry_t *ce; 2955 2956 /* Setup the default TTY line discipline. */ 2957 n_tty_init(); 2958 2959 /* 2960 * set up the console device so that later boot sequences can 2961 * inform about problems etc.. 2962 */ 2963 ce = __con_initcall_start; 2964 trace_initcall_level("console"); 2965 while (ce < __con_initcall_end) { 2966 call = initcall_from_entry(ce); 2967 trace_initcall_start(call); 2968 ret = call(); 2969 trace_initcall_finish(call, ret); 2970 ce++; 2971 } 2972 } 2973 2974 /* 2975 * Some boot consoles access data that is in the init section and which will 2976 * be discarded after the initcalls have been run. To make sure that no code 2977 * will access this data, unregister the boot consoles in a late initcall. 2978 * 2979 * If for some reason, such as deferred probe or the driver being a loadable 2980 * module, the real console hasn't registered yet at this point, there will 2981 * be a brief interval in which no messages are logged to the console, which 2982 * makes it difficult to diagnose problems that occur during this time. 2983 * 2984 * To mitigate this problem somewhat, only unregister consoles whose memory 2985 * intersects with the init section. Note that all other boot consoles will 2986 * get unregistred when the real preferred console is registered. 2987 */ 2988 static int __init printk_late_init(void) 2989 { 2990 struct console *con; 2991 int ret; 2992 2993 for_each_console(con) { 2994 if (!(con->flags & CON_BOOT)) 2995 continue; 2996 2997 /* Check addresses that might be used for enabled consoles. */ 2998 if (init_section_intersects(con, sizeof(*con)) || 2999 init_section_contains(con->write, 0) || 3000 init_section_contains(con->read, 0) || 3001 init_section_contains(con->device, 0) || 3002 init_section_contains(con->unblank, 0) || 3003 init_section_contains(con->data, 0)) { 3004 /* 3005 * Please, consider moving the reported consoles out 3006 * of the init section. 3007 */ 3008 pr_warn("bootconsole [%s%d] uses init memory and must be disabled even before the real one is ready\n", 3009 con->name, con->index); 3010 unregister_console(con); 3011 } 3012 } 3013 ret = cpuhp_setup_state_nocalls(CPUHP_PRINTK_DEAD, "printk:dead", NULL, 3014 console_cpu_notify); 3015 WARN_ON(ret < 0); 3016 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "printk:online", 3017 console_cpu_notify, NULL); 3018 WARN_ON(ret < 0); 3019 return 0; 3020 } 3021 late_initcall(printk_late_init); 3022 3023 #if defined CONFIG_PRINTK 3024 /* 3025 * Delayed printk version, for scheduler-internal messages: 3026 */ 3027 #define PRINTK_PENDING_WAKEUP 0x01 3028 #define PRINTK_PENDING_OUTPUT 0x02 3029 3030 static DEFINE_PER_CPU(int, printk_pending); 3031 3032 static void wake_up_klogd_work_func(struct irq_work *irq_work) 3033 { 3034 int pending = __this_cpu_xchg(printk_pending, 0); 3035 3036 if (pending & PRINTK_PENDING_OUTPUT) { 3037 /* If trylock fails, someone else is doing the printing */ 3038 if (console_trylock()) 3039 console_unlock(); 3040 } 3041 3042 if (pending & PRINTK_PENDING_WAKEUP) 3043 wake_up_interruptible(&log_wait); 3044 } 3045 3046 static DEFINE_PER_CPU(struct irq_work, wake_up_klogd_work) = { 3047 .func = wake_up_klogd_work_func, 3048 .flags = ATOMIC_INIT(IRQ_WORK_LAZY), 3049 }; 3050 3051 void wake_up_klogd(void) 3052 { 3053 if (!printk_percpu_data_ready()) 3054 return; 3055 3056 preempt_disable(); 3057 if (waitqueue_active(&log_wait)) { 3058 this_cpu_or(printk_pending, PRINTK_PENDING_WAKEUP); 3059 irq_work_queue(this_cpu_ptr(&wake_up_klogd_work)); 3060 } 3061 preempt_enable(); 3062 } 3063 3064 void defer_console_output(void) 3065 { 3066 if (!printk_percpu_data_ready()) 3067 return; 3068 3069 preempt_disable(); 3070 __this_cpu_or(printk_pending, PRINTK_PENDING_OUTPUT); 3071 irq_work_queue(this_cpu_ptr(&wake_up_klogd_work)); 3072 preempt_enable(); 3073 } 3074 3075 int vprintk_deferred(const char *fmt, va_list args) 3076 { 3077 int r; 3078 3079 r = vprintk_emit(0, LOGLEVEL_SCHED, NULL, 0, fmt, args); 3080 defer_console_output(); 3081 3082 return r; 3083 } 3084 3085 int printk_deferred(const char *fmt, ...) 3086 { 3087 va_list args; 3088 int r; 3089 3090 va_start(args, fmt); 3091 r = vprintk_deferred(fmt, args); 3092 va_end(args); 3093 3094 return r; 3095 } 3096 3097 /* 3098 * printk rate limiting, lifted from the networking subsystem. 3099 * 3100 * This enforces a rate limit: not more than 10 kernel messages 3101 * every 5s to make a denial-of-service attack impossible. 3102 */ 3103 DEFINE_RATELIMIT_STATE(printk_ratelimit_state, 5 * HZ, 10); 3104 3105 int __printk_ratelimit(const char *func) 3106 { 3107 return ___ratelimit(&printk_ratelimit_state, func); 3108 } 3109 EXPORT_SYMBOL(__printk_ratelimit); 3110 3111 /** 3112 * printk_timed_ratelimit - caller-controlled printk ratelimiting 3113 * @caller_jiffies: pointer to caller's state 3114 * @interval_msecs: minimum interval between prints 3115 * 3116 * printk_timed_ratelimit() returns true if more than @interval_msecs 3117 * milliseconds have elapsed since the last time printk_timed_ratelimit() 3118 * returned true. 3119 */ 3120 bool printk_timed_ratelimit(unsigned long *caller_jiffies, 3121 unsigned int interval_msecs) 3122 { 3123 unsigned long elapsed = jiffies - *caller_jiffies; 3124 3125 if (*caller_jiffies && elapsed <= msecs_to_jiffies(interval_msecs)) 3126 return false; 3127 3128 *caller_jiffies = jiffies; 3129 return true; 3130 } 3131 EXPORT_SYMBOL(printk_timed_ratelimit); 3132 3133 static DEFINE_SPINLOCK(dump_list_lock); 3134 static LIST_HEAD(dump_list); 3135 3136 /** 3137 * kmsg_dump_register - register a kernel log dumper. 3138 * @dumper: pointer to the kmsg_dumper structure 3139 * 3140 * Adds a kernel log dumper to the system. The dump callback in the 3141 * structure will be called when the kernel oopses or panics and must be 3142 * set. Returns zero on success and %-EINVAL or %-EBUSY otherwise. 3143 */ 3144 int kmsg_dump_register(struct kmsg_dumper *dumper) 3145 { 3146 unsigned long flags; 3147 int err = -EBUSY; 3148 3149 /* The dump callback needs to be set */ 3150 if (!dumper->dump) 3151 return -EINVAL; 3152 3153 spin_lock_irqsave(&dump_list_lock, flags); 3154 /* Don't allow registering multiple times */ 3155 if (!dumper->registered) { 3156 dumper->registered = 1; 3157 list_add_tail_rcu(&dumper->list, &dump_list); 3158 err = 0; 3159 } 3160 spin_unlock_irqrestore(&dump_list_lock, flags); 3161 3162 return err; 3163 } 3164 EXPORT_SYMBOL_GPL(kmsg_dump_register); 3165 3166 /** 3167 * kmsg_dump_unregister - unregister a kmsg dumper. 3168 * @dumper: pointer to the kmsg_dumper structure 3169 * 3170 * Removes a dump device from the system. Returns zero on success and 3171 * %-EINVAL otherwise. 3172 */ 3173 int kmsg_dump_unregister(struct kmsg_dumper *dumper) 3174 { 3175 unsigned long flags; 3176 int err = -EINVAL; 3177 3178 spin_lock_irqsave(&dump_list_lock, flags); 3179 if (dumper->registered) { 3180 dumper->registered = 0; 3181 list_del_rcu(&dumper->list); 3182 err = 0; 3183 } 3184 spin_unlock_irqrestore(&dump_list_lock, flags); 3185 synchronize_rcu(); 3186 3187 return err; 3188 } 3189 EXPORT_SYMBOL_GPL(kmsg_dump_unregister); 3190 3191 static bool always_kmsg_dump; 3192 module_param_named(always_kmsg_dump, always_kmsg_dump, bool, S_IRUGO | S_IWUSR); 3193 3194 const char *kmsg_dump_reason_str(enum kmsg_dump_reason reason) 3195 { 3196 switch (reason) { 3197 case KMSG_DUMP_PANIC: 3198 return "Panic"; 3199 case KMSG_DUMP_OOPS: 3200 return "Oops"; 3201 case KMSG_DUMP_EMERG: 3202 return "Emergency"; 3203 case KMSG_DUMP_SHUTDOWN: 3204 return "Shutdown"; 3205 default: 3206 return "Unknown"; 3207 } 3208 } 3209 EXPORT_SYMBOL_GPL(kmsg_dump_reason_str); 3210 3211 /** 3212 * kmsg_dump - dump kernel log to kernel message dumpers. 3213 * @reason: the reason (oops, panic etc) for dumping 3214 * 3215 * Call each of the registered dumper's dump() callback, which can 3216 * retrieve the kmsg records with kmsg_dump_get_line() or 3217 * kmsg_dump_get_buffer(). 3218 */ 3219 void kmsg_dump(enum kmsg_dump_reason reason) 3220 { 3221 struct kmsg_dumper *dumper; 3222 unsigned long flags; 3223 3224 rcu_read_lock(); 3225 list_for_each_entry_rcu(dumper, &dump_list, list) { 3226 enum kmsg_dump_reason max_reason = dumper->max_reason; 3227 3228 /* 3229 * If client has not provided a specific max_reason, default 3230 * to KMSG_DUMP_OOPS, unless always_kmsg_dump was set. 3231 */ 3232 if (max_reason == KMSG_DUMP_UNDEF) { 3233 max_reason = always_kmsg_dump ? KMSG_DUMP_MAX : 3234 KMSG_DUMP_OOPS; 3235 } 3236 if (reason > max_reason) 3237 continue; 3238 3239 /* initialize iterator with data about the stored records */ 3240 dumper->active = true; 3241 3242 logbuf_lock_irqsave(flags); 3243 dumper->cur_seq = clear_seq; 3244 dumper->cur_idx = clear_idx; 3245 dumper->next_seq = log_next_seq; 3246 dumper->next_idx = log_next_idx; 3247 logbuf_unlock_irqrestore(flags); 3248 3249 /* invoke dumper which will iterate over records */ 3250 dumper->dump(dumper, reason); 3251 3252 /* reset iterator */ 3253 dumper->active = false; 3254 } 3255 rcu_read_unlock(); 3256 } 3257 3258 /** 3259 * kmsg_dump_get_line_nolock - retrieve one kmsg log line (unlocked version) 3260 * @dumper: registered kmsg dumper 3261 * @syslog: include the "<4>" prefixes 3262 * @line: buffer to copy the line to 3263 * @size: maximum size of the buffer 3264 * @len: length of line placed into buffer 3265 * 3266 * Start at the beginning of the kmsg buffer, with the oldest kmsg 3267 * record, and copy one record into the provided buffer. 3268 * 3269 * Consecutive calls will return the next available record moving 3270 * towards the end of the buffer with the youngest messages. 3271 * 3272 * A return value of FALSE indicates that there are no more records to 3273 * read. 3274 * 3275 * The function is similar to kmsg_dump_get_line(), but grabs no locks. 3276 */ 3277 bool kmsg_dump_get_line_nolock(struct kmsg_dumper *dumper, bool syslog, 3278 char *line, size_t size, size_t *len) 3279 { 3280 struct printk_log *msg; 3281 size_t l = 0; 3282 bool ret = false; 3283 3284 if (!dumper->active) 3285 goto out; 3286 3287 if (dumper->cur_seq < log_first_seq) { 3288 /* messages are gone, move to first available one */ 3289 dumper->cur_seq = log_first_seq; 3290 dumper->cur_idx = log_first_idx; 3291 } 3292 3293 /* last entry */ 3294 if (dumper->cur_seq >= log_next_seq) 3295 goto out; 3296 3297 msg = log_from_idx(dumper->cur_idx); 3298 l = msg_print_text(msg, syslog, printk_time, line, size); 3299 3300 dumper->cur_idx = log_next(dumper->cur_idx); 3301 dumper->cur_seq++; 3302 ret = true; 3303 out: 3304 if (len) 3305 *len = l; 3306 return ret; 3307 } 3308 3309 /** 3310 * kmsg_dump_get_line - retrieve one kmsg log line 3311 * @dumper: registered kmsg dumper 3312 * @syslog: include the "<4>" prefixes 3313 * @line: buffer to copy the line to 3314 * @size: maximum size of the buffer 3315 * @len: length of line placed into buffer 3316 * 3317 * Start at the beginning of the kmsg buffer, with the oldest kmsg 3318 * record, and copy one record into the provided buffer. 3319 * 3320 * Consecutive calls will return the next available record moving 3321 * towards the end of the buffer with the youngest messages. 3322 * 3323 * A return value of FALSE indicates that there are no more records to 3324 * read. 3325 */ 3326 bool kmsg_dump_get_line(struct kmsg_dumper *dumper, bool syslog, 3327 char *line, size_t size, size_t *len) 3328 { 3329 unsigned long flags; 3330 bool ret; 3331 3332 logbuf_lock_irqsave(flags); 3333 ret = kmsg_dump_get_line_nolock(dumper, syslog, line, size, len); 3334 logbuf_unlock_irqrestore(flags); 3335 3336 return ret; 3337 } 3338 EXPORT_SYMBOL_GPL(kmsg_dump_get_line); 3339 3340 /** 3341 * kmsg_dump_get_buffer - copy kmsg log lines 3342 * @dumper: registered kmsg dumper 3343 * @syslog: include the "<4>" prefixes 3344 * @buf: buffer to copy the line to 3345 * @size: maximum size of the buffer 3346 * @len: length of line placed into buffer 3347 * 3348 * Start at the end of the kmsg buffer and fill the provided buffer 3349 * with as many of the the *youngest* kmsg records that fit into it. 3350 * If the buffer is large enough, all available kmsg records will be 3351 * copied with a single call. 3352 * 3353 * Consecutive calls will fill the buffer with the next block of 3354 * available older records, not including the earlier retrieved ones. 3355 * 3356 * A return value of FALSE indicates that there are no more records to 3357 * read. 3358 */ 3359 bool kmsg_dump_get_buffer(struct kmsg_dumper *dumper, bool syslog, 3360 char *buf, size_t size, size_t *len) 3361 { 3362 unsigned long flags; 3363 u64 seq; 3364 u32 idx; 3365 u64 next_seq; 3366 u32 next_idx; 3367 size_t l = 0; 3368 bool ret = false; 3369 bool time = printk_time; 3370 3371 if (!dumper->active) 3372 goto out; 3373 3374 logbuf_lock_irqsave(flags); 3375 if (dumper->cur_seq < log_first_seq) { 3376 /* messages are gone, move to first available one */ 3377 dumper->cur_seq = log_first_seq; 3378 dumper->cur_idx = log_first_idx; 3379 } 3380 3381 /* last entry */ 3382 if (dumper->cur_seq >= dumper->next_seq) { 3383 logbuf_unlock_irqrestore(flags); 3384 goto out; 3385 } 3386 3387 /* calculate length of entire buffer */ 3388 seq = dumper->cur_seq; 3389 idx = dumper->cur_idx; 3390 while (seq < dumper->next_seq) { 3391 struct printk_log *msg = log_from_idx(idx); 3392 3393 l += msg_print_text(msg, true, time, NULL, 0); 3394 idx = log_next(idx); 3395 seq++; 3396 } 3397 3398 /* move first record forward until length fits into the buffer */ 3399 seq = dumper->cur_seq; 3400 idx = dumper->cur_idx; 3401 while (l >= size && seq < dumper->next_seq) { 3402 struct printk_log *msg = log_from_idx(idx); 3403 3404 l -= msg_print_text(msg, true, time, NULL, 0); 3405 idx = log_next(idx); 3406 seq++; 3407 } 3408 3409 /* last message in next interation */ 3410 next_seq = seq; 3411 next_idx = idx; 3412 3413 l = 0; 3414 while (seq < dumper->next_seq) { 3415 struct printk_log *msg = log_from_idx(idx); 3416 3417 l += msg_print_text(msg, syslog, time, buf + l, size - l); 3418 idx = log_next(idx); 3419 seq++; 3420 } 3421 3422 dumper->next_seq = next_seq; 3423 dumper->next_idx = next_idx; 3424 ret = true; 3425 logbuf_unlock_irqrestore(flags); 3426 out: 3427 if (len) 3428 *len = l; 3429 return ret; 3430 } 3431 EXPORT_SYMBOL_GPL(kmsg_dump_get_buffer); 3432 3433 /** 3434 * kmsg_dump_rewind_nolock - reset the iterator (unlocked version) 3435 * @dumper: registered kmsg dumper 3436 * 3437 * Reset the dumper's iterator so that kmsg_dump_get_line() and 3438 * kmsg_dump_get_buffer() can be called again and used multiple 3439 * times within the same dumper.dump() callback. 3440 * 3441 * The function is similar to kmsg_dump_rewind(), but grabs no locks. 3442 */ 3443 void kmsg_dump_rewind_nolock(struct kmsg_dumper *dumper) 3444 { 3445 dumper->cur_seq = clear_seq; 3446 dumper->cur_idx = clear_idx; 3447 dumper->next_seq = log_next_seq; 3448 dumper->next_idx = log_next_idx; 3449 } 3450 3451 /** 3452 * kmsg_dump_rewind - reset the iterator 3453 * @dumper: registered kmsg dumper 3454 * 3455 * Reset the dumper's iterator so that kmsg_dump_get_line() and 3456 * kmsg_dump_get_buffer() can be called again and used multiple 3457 * times within the same dumper.dump() callback. 3458 */ 3459 void kmsg_dump_rewind(struct kmsg_dumper *dumper) 3460 { 3461 unsigned long flags; 3462 3463 logbuf_lock_irqsave(flags); 3464 kmsg_dump_rewind_nolock(dumper); 3465 logbuf_unlock_irqrestore(flags); 3466 } 3467 EXPORT_SYMBOL_GPL(kmsg_dump_rewind); 3468 3469 #endif 3470