xref: /openbmc/linux/kernel/printk/printk.c (revision b5265c81)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/printk.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  *
7  * Modified to make sys_syslog() more flexible: added commands to
8  * return the last 4k of kernel messages, regardless of whether
9  * they've been read or not.  Added option to suppress kernel printk's
10  * to the console.  Added hook for sending the console messages
11  * elsewhere, in preparation for a serial line console (someday).
12  * Ted Ts'o, 2/11/93.
13  * Modified for sysctl support, 1/8/97, Chris Horn.
14  * Fixed SMP synchronization, 08/08/99, Manfred Spraul
15  *     manfred@colorfullife.com
16  * Rewrote bits to get rid of console_lock
17  *	01Mar01 Andrew Morton
18  */
19 
20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
21 
22 #include <linux/kernel.h>
23 #include <linux/mm.h>
24 #include <linux/tty.h>
25 #include <linux/tty_driver.h>
26 #include <linux/console.h>
27 #include <linux/init.h>
28 #include <linux/jiffies.h>
29 #include <linux/nmi.h>
30 #include <linux/module.h>
31 #include <linux/moduleparam.h>
32 #include <linux/delay.h>
33 #include <linux/smp.h>
34 #include <linux/security.h>
35 #include <linux/memblock.h>
36 #include <linux/syscalls.h>
37 #include <linux/crash_core.h>
38 #include <linux/kdb.h>
39 #include <linux/ratelimit.h>
40 #include <linux/kmsg_dump.h>
41 #include <linux/syslog.h>
42 #include <linux/cpu.h>
43 #include <linux/rculist.h>
44 #include <linux/poll.h>
45 #include <linux/irq_work.h>
46 #include <linux/ctype.h>
47 #include <linux/uio.h>
48 #include <linux/sched/clock.h>
49 #include <linux/sched/debug.h>
50 #include <linux/sched/task_stack.h>
51 
52 #include <linux/uaccess.h>
53 #include <asm/sections.h>
54 
55 #include <trace/events/initcall.h>
56 #define CREATE_TRACE_POINTS
57 #include <trace/events/printk.h>
58 
59 #include "console_cmdline.h"
60 #include "braille.h"
61 #include "internal.h"
62 
63 int console_printk[4] = {
64 	CONSOLE_LOGLEVEL_DEFAULT,	/* console_loglevel */
65 	MESSAGE_LOGLEVEL_DEFAULT,	/* default_message_loglevel */
66 	CONSOLE_LOGLEVEL_MIN,		/* minimum_console_loglevel */
67 	CONSOLE_LOGLEVEL_DEFAULT,	/* default_console_loglevel */
68 };
69 EXPORT_SYMBOL_GPL(console_printk);
70 
71 atomic_t ignore_console_lock_warning __read_mostly = ATOMIC_INIT(0);
72 EXPORT_SYMBOL(ignore_console_lock_warning);
73 
74 /*
75  * Low level drivers may need that to know if they can schedule in
76  * their unblank() callback or not. So let's export it.
77  */
78 int oops_in_progress;
79 EXPORT_SYMBOL(oops_in_progress);
80 
81 /*
82  * console_sem protects the console_drivers list, and also
83  * provides serialisation for access to the entire console
84  * driver system.
85  */
86 static DEFINE_SEMAPHORE(console_sem);
87 struct console *console_drivers;
88 EXPORT_SYMBOL_GPL(console_drivers);
89 
90 /*
91  * System may need to suppress printk message under certain
92  * circumstances, like after kernel panic happens.
93  */
94 int __read_mostly suppress_printk;
95 
96 #ifdef CONFIG_LOCKDEP
97 static struct lockdep_map console_lock_dep_map = {
98 	.name = "console_lock"
99 };
100 #endif
101 
102 enum devkmsg_log_bits {
103 	__DEVKMSG_LOG_BIT_ON = 0,
104 	__DEVKMSG_LOG_BIT_OFF,
105 	__DEVKMSG_LOG_BIT_LOCK,
106 };
107 
108 enum devkmsg_log_masks {
109 	DEVKMSG_LOG_MASK_ON             = BIT(__DEVKMSG_LOG_BIT_ON),
110 	DEVKMSG_LOG_MASK_OFF            = BIT(__DEVKMSG_LOG_BIT_OFF),
111 	DEVKMSG_LOG_MASK_LOCK           = BIT(__DEVKMSG_LOG_BIT_LOCK),
112 };
113 
114 /* Keep both the 'on' and 'off' bits clear, i.e. ratelimit by default: */
115 #define DEVKMSG_LOG_MASK_DEFAULT	0
116 
117 static unsigned int __read_mostly devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT;
118 
119 static int __control_devkmsg(char *str)
120 {
121 	size_t len;
122 
123 	if (!str)
124 		return -EINVAL;
125 
126 	len = str_has_prefix(str, "on");
127 	if (len) {
128 		devkmsg_log = DEVKMSG_LOG_MASK_ON;
129 		return len;
130 	}
131 
132 	len = str_has_prefix(str, "off");
133 	if (len) {
134 		devkmsg_log = DEVKMSG_LOG_MASK_OFF;
135 		return len;
136 	}
137 
138 	len = str_has_prefix(str, "ratelimit");
139 	if (len) {
140 		devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT;
141 		return len;
142 	}
143 
144 	return -EINVAL;
145 }
146 
147 static int __init control_devkmsg(char *str)
148 {
149 	if (__control_devkmsg(str) < 0)
150 		return 1;
151 
152 	/*
153 	 * Set sysctl string accordingly:
154 	 */
155 	if (devkmsg_log == DEVKMSG_LOG_MASK_ON)
156 		strcpy(devkmsg_log_str, "on");
157 	else if (devkmsg_log == DEVKMSG_LOG_MASK_OFF)
158 		strcpy(devkmsg_log_str, "off");
159 	/* else "ratelimit" which is set by default. */
160 
161 	/*
162 	 * Sysctl cannot change it anymore. The kernel command line setting of
163 	 * this parameter is to force the setting to be permanent throughout the
164 	 * runtime of the system. This is a precation measure against userspace
165 	 * trying to be a smarta** and attempting to change it up on us.
166 	 */
167 	devkmsg_log |= DEVKMSG_LOG_MASK_LOCK;
168 
169 	return 0;
170 }
171 __setup("printk.devkmsg=", control_devkmsg);
172 
173 char devkmsg_log_str[DEVKMSG_STR_MAX_SIZE] = "ratelimit";
174 
175 int devkmsg_sysctl_set_loglvl(struct ctl_table *table, int write,
176 			      void *buffer, size_t *lenp, loff_t *ppos)
177 {
178 	char old_str[DEVKMSG_STR_MAX_SIZE];
179 	unsigned int old;
180 	int err;
181 
182 	if (write) {
183 		if (devkmsg_log & DEVKMSG_LOG_MASK_LOCK)
184 			return -EINVAL;
185 
186 		old = devkmsg_log;
187 		strncpy(old_str, devkmsg_log_str, DEVKMSG_STR_MAX_SIZE);
188 	}
189 
190 	err = proc_dostring(table, write, buffer, lenp, ppos);
191 	if (err)
192 		return err;
193 
194 	if (write) {
195 		err = __control_devkmsg(devkmsg_log_str);
196 
197 		/*
198 		 * Do not accept an unknown string OR a known string with
199 		 * trailing crap...
200 		 */
201 		if (err < 0 || (err + 1 != *lenp)) {
202 
203 			/* ... and restore old setting. */
204 			devkmsg_log = old;
205 			strncpy(devkmsg_log_str, old_str, DEVKMSG_STR_MAX_SIZE);
206 
207 			return -EINVAL;
208 		}
209 	}
210 
211 	return 0;
212 }
213 
214 /* Number of registered extended console drivers. */
215 static int nr_ext_console_drivers;
216 
217 /*
218  * Helper macros to handle lockdep when locking/unlocking console_sem. We use
219  * macros instead of functions so that _RET_IP_ contains useful information.
220  */
221 #define down_console_sem() do { \
222 	down(&console_sem);\
223 	mutex_acquire(&console_lock_dep_map, 0, 0, _RET_IP_);\
224 } while (0)
225 
226 static int __down_trylock_console_sem(unsigned long ip)
227 {
228 	int lock_failed;
229 	unsigned long flags;
230 
231 	/*
232 	 * Here and in __up_console_sem() we need to be in safe mode,
233 	 * because spindump/WARN/etc from under console ->lock will
234 	 * deadlock in printk()->down_trylock_console_sem() otherwise.
235 	 */
236 	printk_safe_enter_irqsave(flags);
237 	lock_failed = down_trylock(&console_sem);
238 	printk_safe_exit_irqrestore(flags);
239 
240 	if (lock_failed)
241 		return 1;
242 	mutex_acquire(&console_lock_dep_map, 0, 1, ip);
243 	return 0;
244 }
245 #define down_trylock_console_sem() __down_trylock_console_sem(_RET_IP_)
246 
247 static void __up_console_sem(unsigned long ip)
248 {
249 	unsigned long flags;
250 
251 	mutex_release(&console_lock_dep_map, ip);
252 
253 	printk_safe_enter_irqsave(flags);
254 	up(&console_sem);
255 	printk_safe_exit_irqrestore(flags);
256 }
257 #define up_console_sem() __up_console_sem(_RET_IP_)
258 
259 /*
260  * This is used for debugging the mess that is the VT code by
261  * keeping track if we have the console semaphore held. It's
262  * definitely not the perfect debug tool (we don't know if _WE_
263  * hold it and are racing, but it helps tracking those weird code
264  * paths in the console code where we end up in places I want
265  * locked without the console sempahore held).
266  */
267 static int console_locked, console_suspended;
268 
269 /*
270  * If exclusive_console is non-NULL then only this console is to be printed to.
271  */
272 static struct console *exclusive_console;
273 
274 /*
275  *	Array of consoles built from command line options (console=)
276  */
277 
278 #define MAX_CMDLINECONSOLES 8
279 
280 static struct console_cmdline console_cmdline[MAX_CMDLINECONSOLES];
281 
282 static int preferred_console = -1;
283 static bool has_preferred_console;
284 int console_set_on_cmdline;
285 EXPORT_SYMBOL(console_set_on_cmdline);
286 
287 /* Flag: console code may call schedule() */
288 static int console_may_schedule;
289 
290 enum con_msg_format_flags {
291 	MSG_FORMAT_DEFAULT	= 0,
292 	MSG_FORMAT_SYSLOG	= (1 << 0),
293 };
294 
295 static int console_msg_format = MSG_FORMAT_DEFAULT;
296 
297 /*
298  * The printk log buffer consists of a chain of concatenated variable
299  * length records. Every record starts with a record header, containing
300  * the overall length of the record.
301  *
302  * The heads to the first and last entry in the buffer, as well as the
303  * sequence numbers of these entries are maintained when messages are
304  * stored.
305  *
306  * If the heads indicate available messages, the length in the header
307  * tells the start next message. A length == 0 for the next message
308  * indicates a wrap-around to the beginning of the buffer.
309  *
310  * Every record carries the monotonic timestamp in microseconds, as well as
311  * the standard userspace syslog level and syslog facility. The usual
312  * kernel messages use LOG_KERN; userspace-injected messages always carry
313  * a matching syslog facility, by default LOG_USER. The origin of every
314  * message can be reliably determined that way.
315  *
316  * The human readable log message directly follows the message header. The
317  * length of the message text is stored in the header, the stored message
318  * is not terminated.
319  *
320  * Optionally, a message can carry a dictionary of properties (key/value pairs),
321  * to provide userspace with a machine-readable message context.
322  *
323  * Examples for well-defined, commonly used property names are:
324  *   DEVICE=b12:8               device identifier
325  *                                b12:8         block dev_t
326  *                                c127:3        char dev_t
327  *                                n8            netdev ifindex
328  *                                +sound:card0  subsystem:devname
329  *   SUBSYSTEM=pci              driver-core subsystem name
330  *
331  * Valid characters in property names are [a-zA-Z0-9.-_]. The plain text value
332  * follows directly after a '=' character. Every property is terminated by
333  * a '\0' character. The last property is not terminated.
334  *
335  * Example of a message structure:
336  *   0000  ff 8f 00 00 00 00 00 00      monotonic time in nsec
337  *   0008  34 00                        record is 52 bytes long
338  *   000a        0b 00                  text is 11 bytes long
339  *   000c              1f 00            dictionary is 23 bytes long
340  *   000e                    03 00      LOG_KERN (facility) LOG_ERR (level)
341  *   0010  69 74 27 73 20 61 20 6c      "it's a l"
342  *         69 6e 65                     "ine"
343  *   001b           44 45 56 49 43      "DEVIC"
344  *         45 3d 62 38 3a 32 00 44      "E=b8:2\0D"
345  *         52 49 56 45 52 3d 62 75      "RIVER=bu"
346  *         67                           "g"
347  *   0032     00 00 00                  padding to next message header
348  *
349  * The 'struct printk_log' buffer header must never be directly exported to
350  * userspace, it is a kernel-private implementation detail that might
351  * need to be changed in the future, when the requirements change.
352  *
353  * /dev/kmsg exports the structured data in the following line format:
354  *   "<level>,<sequnum>,<timestamp>,<contflag>[,additional_values, ... ];<message text>\n"
355  *
356  * Users of the export format should ignore possible additional values
357  * separated by ',', and find the message after the ';' character.
358  *
359  * The optional key/value pairs are attached as continuation lines starting
360  * with a space character and terminated by a newline. All possible
361  * non-prinatable characters are escaped in the "\xff" notation.
362  */
363 
364 enum log_flags {
365 	LOG_NEWLINE	= 2,	/* text ended with a newline */
366 	LOG_CONT	= 8,	/* text is a fragment of a continuation line */
367 };
368 
369 struct printk_log {
370 	u64 ts_nsec;		/* timestamp in nanoseconds */
371 	u16 len;		/* length of entire record */
372 	u16 text_len;		/* length of text buffer */
373 	u16 dict_len;		/* length of dictionary buffer */
374 	u8 facility;		/* syslog facility */
375 	u8 flags:5;		/* internal record flags */
376 	u8 level:3;		/* syslog level */
377 #ifdef CONFIG_PRINTK_CALLER
378 	u32 caller_id;            /* thread id or processor id */
379 #endif
380 }
381 #ifdef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
382 __packed __aligned(4)
383 #endif
384 ;
385 
386 /*
387  * The logbuf_lock protects kmsg buffer, indices, counters.  This can be taken
388  * within the scheduler's rq lock. It must be released before calling
389  * console_unlock() or anything else that might wake up a process.
390  */
391 DEFINE_RAW_SPINLOCK(logbuf_lock);
392 
393 /*
394  * Helper macros to lock/unlock logbuf_lock and switch between
395  * printk-safe/unsafe modes.
396  */
397 #define logbuf_lock_irq()				\
398 	do {						\
399 		printk_safe_enter_irq();		\
400 		raw_spin_lock(&logbuf_lock);		\
401 	} while (0)
402 
403 #define logbuf_unlock_irq()				\
404 	do {						\
405 		raw_spin_unlock(&logbuf_lock);		\
406 		printk_safe_exit_irq();			\
407 	} while (0)
408 
409 #define logbuf_lock_irqsave(flags)			\
410 	do {						\
411 		printk_safe_enter_irqsave(flags);	\
412 		raw_spin_lock(&logbuf_lock);		\
413 	} while (0)
414 
415 #define logbuf_unlock_irqrestore(flags)		\
416 	do {						\
417 		raw_spin_unlock(&logbuf_lock);		\
418 		printk_safe_exit_irqrestore(flags);	\
419 	} while (0)
420 
421 #ifdef CONFIG_PRINTK
422 DECLARE_WAIT_QUEUE_HEAD(log_wait);
423 /* the next printk record to read by syslog(READ) or /proc/kmsg */
424 static u64 syslog_seq;
425 static u32 syslog_idx;
426 static size_t syslog_partial;
427 static bool syslog_time;
428 
429 /* index and sequence number of the first record stored in the buffer */
430 static u64 log_first_seq;
431 static u32 log_first_idx;
432 
433 /* index and sequence number of the next record to store in the buffer */
434 static u64 log_next_seq;
435 static u32 log_next_idx;
436 
437 /* the next printk record to write to the console */
438 static u64 console_seq;
439 static u32 console_idx;
440 static u64 exclusive_console_stop_seq;
441 
442 /* the next printk record to read after the last 'clear' command */
443 static u64 clear_seq;
444 static u32 clear_idx;
445 
446 #ifdef CONFIG_PRINTK_CALLER
447 #define PREFIX_MAX		48
448 #else
449 #define PREFIX_MAX		32
450 #endif
451 #define LOG_LINE_MAX		(1024 - PREFIX_MAX)
452 
453 #define LOG_LEVEL(v)		((v) & 0x07)
454 #define LOG_FACILITY(v)		((v) >> 3 & 0xff)
455 
456 /* record buffer */
457 #define LOG_ALIGN __alignof__(struct printk_log)
458 #define __LOG_BUF_LEN (1 << CONFIG_LOG_BUF_SHIFT)
459 #define LOG_BUF_LEN_MAX (u32)(1 << 31)
460 static char __log_buf[__LOG_BUF_LEN] __aligned(LOG_ALIGN);
461 static char *log_buf = __log_buf;
462 static u32 log_buf_len = __LOG_BUF_LEN;
463 
464 /*
465  * We cannot access per-CPU data (e.g. per-CPU flush irq_work) before
466  * per_cpu_areas are initialised. This variable is set to true when
467  * it's safe to access per-CPU data.
468  */
469 static bool __printk_percpu_data_ready __read_mostly;
470 
471 bool printk_percpu_data_ready(void)
472 {
473 	return __printk_percpu_data_ready;
474 }
475 
476 /* Return log buffer address */
477 char *log_buf_addr_get(void)
478 {
479 	return log_buf;
480 }
481 
482 /* Return log buffer size */
483 u32 log_buf_len_get(void)
484 {
485 	return log_buf_len;
486 }
487 
488 /* human readable text of the record */
489 static char *log_text(const struct printk_log *msg)
490 {
491 	return (char *)msg + sizeof(struct printk_log);
492 }
493 
494 /* optional key/value pair dictionary attached to the record */
495 static char *log_dict(const struct printk_log *msg)
496 {
497 	return (char *)msg + sizeof(struct printk_log) + msg->text_len;
498 }
499 
500 /* get record by index; idx must point to valid msg */
501 static struct printk_log *log_from_idx(u32 idx)
502 {
503 	struct printk_log *msg = (struct printk_log *)(log_buf + idx);
504 
505 	/*
506 	 * A length == 0 record is the end of buffer marker. Wrap around and
507 	 * read the message at the start of the buffer.
508 	 */
509 	if (!msg->len)
510 		return (struct printk_log *)log_buf;
511 	return msg;
512 }
513 
514 /* get next record; idx must point to valid msg */
515 static u32 log_next(u32 idx)
516 {
517 	struct printk_log *msg = (struct printk_log *)(log_buf + idx);
518 
519 	/* length == 0 indicates the end of the buffer; wrap */
520 	/*
521 	 * A length == 0 record is the end of buffer marker. Wrap around and
522 	 * read the message at the start of the buffer as *this* one, and
523 	 * return the one after that.
524 	 */
525 	if (!msg->len) {
526 		msg = (struct printk_log *)log_buf;
527 		return msg->len;
528 	}
529 	return idx + msg->len;
530 }
531 
532 /*
533  * Check whether there is enough free space for the given message.
534  *
535  * The same values of first_idx and next_idx mean that the buffer
536  * is either empty or full.
537  *
538  * If the buffer is empty, we must respect the position of the indexes.
539  * They cannot be reset to the beginning of the buffer.
540  */
541 static int logbuf_has_space(u32 msg_size, bool empty)
542 {
543 	u32 free;
544 
545 	if (log_next_idx > log_first_idx || empty)
546 		free = max(log_buf_len - log_next_idx, log_first_idx);
547 	else
548 		free = log_first_idx - log_next_idx;
549 
550 	/*
551 	 * We need space also for an empty header that signalizes wrapping
552 	 * of the buffer.
553 	 */
554 	return free >= msg_size + sizeof(struct printk_log);
555 }
556 
557 static int log_make_free_space(u32 msg_size)
558 {
559 	while (log_first_seq < log_next_seq &&
560 	       !logbuf_has_space(msg_size, false)) {
561 		/* drop old messages until we have enough contiguous space */
562 		log_first_idx = log_next(log_first_idx);
563 		log_first_seq++;
564 	}
565 
566 	if (clear_seq < log_first_seq) {
567 		clear_seq = log_first_seq;
568 		clear_idx = log_first_idx;
569 	}
570 
571 	/* sequence numbers are equal, so the log buffer is empty */
572 	if (logbuf_has_space(msg_size, log_first_seq == log_next_seq))
573 		return 0;
574 
575 	return -ENOMEM;
576 }
577 
578 /* compute the message size including the padding bytes */
579 static u32 msg_used_size(u16 text_len, u16 dict_len, u32 *pad_len)
580 {
581 	u32 size;
582 
583 	size = sizeof(struct printk_log) + text_len + dict_len;
584 	*pad_len = (-size) & (LOG_ALIGN - 1);
585 	size += *pad_len;
586 
587 	return size;
588 }
589 
590 /*
591  * Define how much of the log buffer we could take at maximum. The value
592  * must be greater than two. Note that only half of the buffer is available
593  * when the index points to the middle.
594  */
595 #define MAX_LOG_TAKE_PART 4
596 static const char trunc_msg[] = "<truncated>";
597 
598 static u32 truncate_msg(u16 *text_len, u16 *trunc_msg_len,
599 			u16 *dict_len, u32 *pad_len)
600 {
601 	/*
602 	 * The message should not take the whole buffer. Otherwise, it might
603 	 * get removed too soon.
604 	 */
605 	u32 max_text_len = log_buf_len / MAX_LOG_TAKE_PART;
606 	if (*text_len > max_text_len)
607 		*text_len = max_text_len;
608 	/* enable the warning message */
609 	*trunc_msg_len = strlen(trunc_msg);
610 	/* disable the "dict" completely */
611 	*dict_len = 0;
612 	/* compute the size again, count also the warning message */
613 	return msg_used_size(*text_len + *trunc_msg_len, 0, pad_len);
614 }
615 
616 /* insert record into the buffer, discard old ones, update heads */
617 static int log_store(u32 caller_id, int facility, int level,
618 		     enum log_flags flags, u64 ts_nsec,
619 		     const char *dict, u16 dict_len,
620 		     const char *text, u16 text_len)
621 {
622 	struct printk_log *msg;
623 	u32 size, pad_len;
624 	u16 trunc_msg_len = 0;
625 
626 	/* number of '\0' padding bytes to next message */
627 	size = msg_used_size(text_len, dict_len, &pad_len);
628 
629 	if (log_make_free_space(size)) {
630 		/* truncate the message if it is too long for empty buffer */
631 		size = truncate_msg(&text_len, &trunc_msg_len,
632 				    &dict_len, &pad_len);
633 		/* survive when the log buffer is too small for trunc_msg */
634 		if (log_make_free_space(size))
635 			return 0;
636 	}
637 
638 	if (log_next_idx + size + sizeof(struct printk_log) > log_buf_len) {
639 		/*
640 		 * This message + an additional empty header does not fit
641 		 * at the end of the buffer. Add an empty header with len == 0
642 		 * to signify a wrap around.
643 		 */
644 		memset(log_buf + log_next_idx, 0, sizeof(struct printk_log));
645 		log_next_idx = 0;
646 	}
647 
648 	/* fill message */
649 	msg = (struct printk_log *)(log_buf + log_next_idx);
650 	memcpy(log_text(msg), text, text_len);
651 	msg->text_len = text_len;
652 	if (trunc_msg_len) {
653 		memcpy(log_text(msg) + text_len, trunc_msg, trunc_msg_len);
654 		msg->text_len += trunc_msg_len;
655 	}
656 	memcpy(log_dict(msg), dict, dict_len);
657 	msg->dict_len = dict_len;
658 	msg->facility = facility;
659 	msg->level = level & 7;
660 	msg->flags = flags & 0x1f;
661 	if (ts_nsec > 0)
662 		msg->ts_nsec = ts_nsec;
663 	else
664 		msg->ts_nsec = local_clock();
665 #ifdef CONFIG_PRINTK_CALLER
666 	msg->caller_id = caller_id;
667 #endif
668 	memset(log_dict(msg) + dict_len, 0, pad_len);
669 	msg->len = size;
670 
671 	/* insert message */
672 	log_next_idx += msg->len;
673 	log_next_seq++;
674 
675 	return msg->text_len;
676 }
677 
678 int dmesg_restrict = IS_ENABLED(CONFIG_SECURITY_DMESG_RESTRICT);
679 
680 static int syslog_action_restricted(int type)
681 {
682 	if (dmesg_restrict)
683 		return 1;
684 	/*
685 	 * Unless restricted, we allow "read all" and "get buffer size"
686 	 * for everybody.
687 	 */
688 	return type != SYSLOG_ACTION_READ_ALL &&
689 	       type != SYSLOG_ACTION_SIZE_BUFFER;
690 }
691 
692 static int check_syslog_permissions(int type, int source)
693 {
694 	/*
695 	 * If this is from /proc/kmsg and we've already opened it, then we've
696 	 * already done the capabilities checks at open time.
697 	 */
698 	if (source == SYSLOG_FROM_PROC && type != SYSLOG_ACTION_OPEN)
699 		goto ok;
700 
701 	if (syslog_action_restricted(type)) {
702 		if (capable(CAP_SYSLOG))
703 			goto ok;
704 		/*
705 		 * For historical reasons, accept CAP_SYS_ADMIN too, with
706 		 * a warning.
707 		 */
708 		if (capable(CAP_SYS_ADMIN)) {
709 			pr_warn_once("%s (%d): Attempt to access syslog with "
710 				     "CAP_SYS_ADMIN but no CAP_SYSLOG "
711 				     "(deprecated).\n",
712 				 current->comm, task_pid_nr(current));
713 			goto ok;
714 		}
715 		return -EPERM;
716 	}
717 ok:
718 	return security_syslog(type);
719 }
720 
721 static void append_char(char **pp, char *e, char c)
722 {
723 	if (*pp < e)
724 		*(*pp)++ = c;
725 }
726 
727 static ssize_t msg_print_ext_header(char *buf, size_t size,
728 				    struct printk_log *msg, u64 seq)
729 {
730 	u64 ts_usec = msg->ts_nsec;
731 	char caller[20];
732 #ifdef CONFIG_PRINTK_CALLER
733 	u32 id = msg->caller_id;
734 
735 	snprintf(caller, sizeof(caller), ",caller=%c%u",
736 		 id & 0x80000000 ? 'C' : 'T', id & ~0x80000000);
737 #else
738 	caller[0] = '\0';
739 #endif
740 
741 	do_div(ts_usec, 1000);
742 
743 	return scnprintf(buf, size, "%u,%llu,%llu,%c%s;",
744 			 (msg->facility << 3) | msg->level, seq, ts_usec,
745 			 msg->flags & LOG_CONT ? 'c' : '-', caller);
746 }
747 
748 static ssize_t msg_print_ext_body(char *buf, size_t size,
749 				  char *dict, size_t dict_len,
750 				  char *text, size_t text_len)
751 {
752 	char *p = buf, *e = buf + size;
753 	size_t i;
754 
755 	/* escape non-printable characters */
756 	for (i = 0; i < text_len; i++) {
757 		unsigned char c = text[i];
758 
759 		if (c < ' ' || c >= 127 || c == '\\')
760 			p += scnprintf(p, e - p, "\\x%02x", c);
761 		else
762 			append_char(&p, e, c);
763 	}
764 	append_char(&p, e, '\n');
765 
766 	if (dict_len) {
767 		bool line = true;
768 
769 		for (i = 0; i < dict_len; i++) {
770 			unsigned char c = dict[i];
771 
772 			if (line) {
773 				append_char(&p, e, ' ');
774 				line = false;
775 			}
776 
777 			if (c == '\0') {
778 				append_char(&p, e, '\n');
779 				line = true;
780 				continue;
781 			}
782 
783 			if (c < ' ' || c >= 127 || c == '\\') {
784 				p += scnprintf(p, e - p, "\\x%02x", c);
785 				continue;
786 			}
787 
788 			append_char(&p, e, c);
789 		}
790 		append_char(&p, e, '\n');
791 	}
792 
793 	return p - buf;
794 }
795 
796 /* /dev/kmsg - userspace message inject/listen interface */
797 struct devkmsg_user {
798 	u64 seq;
799 	u32 idx;
800 	struct ratelimit_state rs;
801 	struct mutex lock;
802 	char buf[CONSOLE_EXT_LOG_MAX];
803 };
804 
805 static __printf(3, 4) __cold
806 int devkmsg_emit(int facility, int level, const char *fmt, ...)
807 {
808 	va_list args;
809 	int r;
810 
811 	va_start(args, fmt);
812 	r = vprintk_emit(facility, level, NULL, 0, fmt, args);
813 	va_end(args);
814 
815 	return r;
816 }
817 
818 static ssize_t devkmsg_write(struct kiocb *iocb, struct iov_iter *from)
819 {
820 	char *buf, *line;
821 	int level = default_message_loglevel;
822 	int facility = 1;	/* LOG_USER */
823 	struct file *file = iocb->ki_filp;
824 	struct devkmsg_user *user = file->private_data;
825 	size_t len = iov_iter_count(from);
826 	ssize_t ret = len;
827 
828 	if (!user || len > LOG_LINE_MAX)
829 		return -EINVAL;
830 
831 	/* Ignore when user logging is disabled. */
832 	if (devkmsg_log & DEVKMSG_LOG_MASK_OFF)
833 		return len;
834 
835 	/* Ratelimit when not explicitly enabled. */
836 	if (!(devkmsg_log & DEVKMSG_LOG_MASK_ON)) {
837 		if (!___ratelimit(&user->rs, current->comm))
838 			return ret;
839 	}
840 
841 	buf = kmalloc(len+1, GFP_KERNEL);
842 	if (buf == NULL)
843 		return -ENOMEM;
844 
845 	buf[len] = '\0';
846 	if (!copy_from_iter_full(buf, len, from)) {
847 		kfree(buf);
848 		return -EFAULT;
849 	}
850 
851 	/*
852 	 * Extract and skip the syslog prefix <[0-9]*>. Coming from userspace
853 	 * the decimal value represents 32bit, the lower 3 bit are the log
854 	 * level, the rest are the log facility.
855 	 *
856 	 * If no prefix or no userspace facility is specified, we
857 	 * enforce LOG_USER, to be able to reliably distinguish
858 	 * kernel-generated messages from userspace-injected ones.
859 	 */
860 	line = buf;
861 	if (line[0] == '<') {
862 		char *endp = NULL;
863 		unsigned int u;
864 
865 		u = simple_strtoul(line + 1, &endp, 10);
866 		if (endp && endp[0] == '>') {
867 			level = LOG_LEVEL(u);
868 			if (LOG_FACILITY(u) != 0)
869 				facility = LOG_FACILITY(u);
870 			endp++;
871 			len -= endp - line;
872 			line = endp;
873 		}
874 	}
875 
876 	devkmsg_emit(facility, level, "%s", line);
877 	kfree(buf);
878 	return ret;
879 }
880 
881 static ssize_t devkmsg_read(struct file *file, char __user *buf,
882 			    size_t count, loff_t *ppos)
883 {
884 	struct devkmsg_user *user = file->private_data;
885 	struct printk_log *msg;
886 	size_t len;
887 	ssize_t ret;
888 
889 	if (!user)
890 		return -EBADF;
891 
892 	ret = mutex_lock_interruptible(&user->lock);
893 	if (ret)
894 		return ret;
895 
896 	logbuf_lock_irq();
897 	while (user->seq == log_next_seq) {
898 		if (file->f_flags & O_NONBLOCK) {
899 			ret = -EAGAIN;
900 			logbuf_unlock_irq();
901 			goto out;
902 		}
903 
904 		logbuf_unlock_irq();
905 		ret = wait_event_interruptible(log_wait,
906 					       user->seq != log_next_seq);
907 		if (ret)
908 			goto out;
909 		logbuf_lock_irq();
910 	}
911 
912 	if (user->seq < log_first_seq) {
913 		/* our last seen message is gone, return error and reset */
914 		user->idx = log_first_idx;
915 		user->seq = log_first_seq;
916 		ret = -EPIPE;
917 		logbuf_unlock_irq();
918 		goto out;
919 	}
920 
921 	msg = log_from_idx(user->idx);
922 	len = msg_print_ext_header(user->buf, sizeof(user->buf),
923 				   msg, user->seq);
924 	len += msg_print_ext_body(user->buf + len, sizeof(user->buf) - len,
925 				  log_dict(msg), msg->dict_len,
926 				  log_text(msg), msg->text_len);
927 
928 	user->idx = log_next(user->idx);
929 	user->seq++;
930 	logbuf_unlock_irq();
931 
932 	if (len > count) {
933 		ret = -EINVAL;
934 		goto out;
935 	}
936 
937 	if (copy_to_user(buf, user->buf, len)) {
938 		ret = -EFAULT;
939 		goto out;
940 	}
941 	ret = len;
942 out:
943 	mutex_unlock(&user->lock);
944 	return ret;
945 }
946 
947 static loff_t devkmsg_llseek(struct file *file, loff_t offset, int whence)
948 {
949 	struct devkmsg_user *user = file->private_data;
950 	loff_t ret = 0;
951 
952 	if (!user)
953 		return -EBADF;
954 	if (offset)
955 		return -ESPIPE;
956 
957 	logbuf_lock_irq();
958 	switch (whence) {
959 	case SEEK_SET:
960 		/* the first record */
961 		user->idx = log_first_idx;
962 		user->seq = log_first_seq;
963 		break;
964 	case SEEK_DATA:
965 		/*
966 		 * The first record after the last SYSLOG_ACTION_CLEAR,
967 		 * like issued by 'dmesg -c'. Reading /dev/kmsg itself
968 		 * changes no global state, and does not clear anything.
969 		 */
970 		user->idx = clear_idx;
971 		user->seq = clear_seq;
972 		break;
973 	case SEEK_END:
974 		/* after the last record */
975 		user->idx = log_next_idx;
976 		user->seq = log_next_seq;
977 		break;
978 	case SEEK_CUR:
979 		/*
980 		 * It isn't supported due to the record nature of this
981 		 * interface: _SET _DATA and _END point to very specific
982 		 * record positions, while _CUR would be more useful in case
983 		 * of a byte-based log. Because of that, return the default
984 		 * errno value for invalid seek operation.
985 		 */
986 		ret = -ESPIPE;
987 		break;
988 	default:
989 		ret = -EINVAL;
990 	}
991 	logbuf_unlock_irq();
992 	return ret;
993 }
994 
995 static __poll_t devkmsg_poll(struct file *file, poll_table *wait)
996 {
997 	struct devkmsg_user *user = file->private_data;
998 	__poll_t ret = 0;
999 
1000 	if (!user)
1001 		return EPOLLERR|EPOLLNVAL;
1002 
1003 	poll_wait(file, &log_wait, wait);
1004 
1005 	logbuf_lock_irq();
1006 	if (user->seq < log_next_seq) {
1007 		/* return error when data has vanished underneath us */
1008 		if (user->seq < log_first_seq)
1009 			ret = EPOLLIN|EPOLLRDNORM|EPOLLERR|EPOLLPRI;
1010 		else
1011 			ret = EPOLLIN|EPOLLRDNORM;
1012 	}
1013 	logbuf_unlock_irq();
1014 
1015 	return ret;
1016 }
1017 
1018 static int devkmsg_open(struct inode *inode, struct file *file)
1019 {
1020 	struct devkmsg_user *user;
1021 	int err;
1022 
1023 	if (devkmsg_log & DEVKMSG_LOG_MASK_OFF)
1024 		return -EPERM;
1025 
1026 	/* write-only does not need any file context */
1027 	if ((file->f_flags & O_ACCMODE) != O_WRONLY) {
1028 		err = check_syslog_permissions(SYSLOG_ACTION_READ_ALL,
1029 					       SYSLOG_FROM_READER);
1030 		if (err)
1031 			return err;
1032 	}
1033 
1034 	user = kmalloc(sizeof(struct devkmsg_user), GFP_KERNEL);
1035 	if (!user)
1036 		return -ENOMEM;
1037 
1038 	ratelimit_default_init(&user->rs);
1039 	ratelimit_set_flags(&user->rs, RATELIMIT_MSG_ON_RELEASE);
1040 
1041 	mutex_init(&user->lock);
1042 
1043 	logbuf_lock_irq();
1044 	user->idx = log_first_idx;
1045 	user->seq = log_first_seq;
1046 	logbuf_unlock_irq();
1047 
1048 	file->private_data = user;
1049 	return 0;
1050 }
1051 
1052 static int devkmsg_release(struct inode *inode, struct file *file)
1053 {
1054 	struct devkmsg_user *user = file->private_data;
1055 
1056 	if (!user)
1057 		return 0;
1058 
1059 	ratelimit_state_exit(&user->rs);
1060 
1061 	mutex_destroy(&user->lock);
1062 	kfree(user);
1063 	return 0;
1064 }
1065 
1066 const struct file_operations kmsg_fops = {
1067 	.open = devkmsg_open,
1068 	.read = devkmsg_read,
1069 	.write_iter = devkmsg_write,
1070 	.llseek = devkmsg_llseek,
1071 	.poll = devkmsg_poll,
1072 	.release = devkmsg_release,
1073 };
1074 
1075 #ifdef CONFIG_CRASH_CORE
1076 /*
1077  * This appends the listed symbols to /proc/vmcore
1078  *
1079  * /proc/vmcore is used by various utilities, like crash and makedumpfile to
1080  * obtain access to symbols that are otherwise very difficult to locate.  These
1081  * symbols are specifically used so that utilities can access and extract the
1082  * dmesg log from a vmcore file after a crash.
1083  */
1084 void log_buf_vmcoreinfo_setup(void)
1085 {
1086 	VMCOREINFO_SYMBOL(log_buf);
1087 	VMCOREINFO_SYMBOL(log_buf_len);
1088 	VMCOREINFO_SYMBOL(log_first_idx);
1089 	VMCOREINFO_SYMBOL(clear_idx);
1090 	VMCOREINFO_SYMBOL(log_next_idx);
1091 	/*
1092 	 * Export struct printk_log size and field offsets. User space tools can
1093 	 * parse it and detect any changes to structure down the line.
1094 	 */
1095 	VMCOREINFO_STRUCT_SIZE(printk_log);
1096 	VMCOREINFO_OFFSET(printk_log, ts_nsec);
1097 	VMCOREINFO_OFFSET(printk_log, len);
1098 	VMCOREINFO_OFFSET(printk_log, text_len);
1099 	VMCOREINFO_OFFSET(printk_log, dict_len);
1100 #ifdef CONFIG_PRINTK_CALLER
1101 	VMCOREINFO_OFFSET(printk_log, caller_id);
1102 #endif
1103 }
1104 #endif
1105 
1106 /* requested log_buf_len from kernel cmdline */
1107 static unsigned long __initdata new_log_buf_len;
1108 
1109 /* we practice scaling the ring buffer by powers of 2 */
1110 static void __init log_buf_len_update(u64 size)
1111 {
1112 	if (size > (u64)LOG_BUF_LEN_MAX) {
1113 		size = (u64)LOG_BUF_LEN_MAX;
1114 		pr_err("log_buf over 2G is not supported.\n");
1115 	}
1116 
1117 	if (size)
1118 		size = roundup_pow_of_two(size);
1119 	if (size > log_buf_len)
1120 		new_log_buf_len = (unsigned long)size;
1121 }
1122 
1123 /* save requested log_buf_len since it's too early to process it */
1124 static int __init log_buf_len_setup(char *str)
1125 {
1126 	u64 size;
1127 
1128 	if (!str)
1129 		return -EINVAL;
1130 
1131 	size = memparse(str, &str);
1132 
1133 	log_buf_len_update(size);
1134 
1135 	return 0;
1136 }
1137 early_param("log_buf_len", log_buf_len_setup);
1138 
1139 #ifdef CONFIG_SMP
1140 #define __LOG_CPU_MAX_BUF_LEN (1 << CONFIG_LOG_CPU_MAX_BUF_SHIFT)
1141 
1142 static void __init log_buf_add_cpu(void)
1143 {
1144 	unsigned int cpu_extra;
1145 
1146 	/*
1147 	 * archs should set up cpu_possible_bits properly with
1148 	 * set_cpu_possible() after setup_arch() but just in
1149 	 * case lets ensure this is valid.
1150 	 */
1151 	if (num_possible_cpus() == 1)
1152 		return;
1153 
1154 	cpu_extra = (num_possible_cpus() - 1) * __LOG_CPU_MAX_BUF_LEN;
1155 
1156 	/* by default this will only continue through for large > 64 CPUs */
1157 	if (cpu_extra <= __LOG_BUF_LEN / 2)
1158 		return;
1159 
1160 	pr_info("log_buf_len individual max cpu contribution: %d bytes\n",
1161 		__LOG_CPU_MAX_BUF_LEN);
1162 	pr_info("log_buf_len total cpu_extra contributions: %d bytes\n",
1163 		cpu_extra);
1164 	pr_info("log_buf_len min size: %d bytes\n", __LOG_BUF_LEN);
1165 
1166 	log_buf_len_update(cpu_extra + __LOG_BUF_LEN);
1167 }
1168 #else /* !CONFIG_SMP */
1169 static inline void log_buf_add_cpu(void) {}
1170 #endif /* CONFIG_SMP */
1171 
1172 static void __init set_percpu_data_ready(void)
1173 {
1174 	printk_safe_init();
1175 	/* Make sure we set this flag only after printk_safe() init is done */
1176 	barrier();
1177 	__printk_percpu_data_ready = true;
1178 }
1179 
1180 void __init setup_log_buf(int early)
1181 {
1182 	unsigned long flags;
1183 	char *new_log_buf;
1184 	unsigned int free;
1185 
1186 	/*
1187 	 * Some archs call setup_log_buf() multiple times - first is very
1188 	 * early, e.g. from setup_arch(), and second - when percpu_areas
1189 	 * are initialised.
1190 	 */
1191 	if (!early)
1192 		set_percpu_data_ready();
1193 
1194 	if (log_buf != __log_buf)
1195 		return;
1196 
1197 	if (!early && !new_log_buf_len)
1198 		log_buf_add_cpu();
1199 
1200 	if (!new_log_buf_len)
1201 		return;
1202 
1203 	new_log_buf = memblock_alloc(new_log_buf_len, LOG_ALIGN);
1204 	if (unlikely(!new_log_buf)) {
1205 		pr_err("log_buf_len: %lu bytes not available\n",
1206 			new_log_buf_len);
1207 		return;
1208 	}
1209 
1210 	logbuf_lock_irqsave(flags);
1211 	log_buf_len = new_log_buf_len;
1212 	log_buf = new_log_buf;
1213 	new_log_buf_len = 0;
1214 	free = __LOG_BUF_LEN - log_next_idx;
1215 	memcpy(log_buf, __log_buf, __LOG_BUF_LEN);
1216 	logbuf_unlock_irqrestore(flags);
1217 
1218 	pr_info("log_buf_len: %u bytes\n", log_buf_len);
1219 	pr_info("early log buf free: %u(%u%%)\n",
1220 		free, (free * 100) / __LOG_BUF_LEN);
1221 }
1222 
1223 static bool __read_mostly ignore_loglevel;
1224 
1225 static int __init ignore_loglevel_setup(char *str)
1226 {
1227 	ignore_loglevel = true;
1228 	pr_info("debug: ignoring loglevel setting.\n");
1229 
1230 	return 0;
1231 }
1232 
1233 early_param("ignore_loglevel", ignore_loglevel_setup);
1234 module_param(ignore_loglevel, bool, S_IRUGO | S_IWUSR);
1235 MODULE_PARM_DESC(ignore_loglevel,
1236 		 "ignore loglevel setting (prints all kernel messages to the console)");
1237 
1238 static bool suppress_message_printing(int level)
1239 {
1240 	return (level >= console_loglevel && !ignore_loglevel);
1241 }
1242 
1243 #ifdef CONFIG_BOOT_PRINTK_DELAY
1244 
1245 static int boot_delay; /* msecs delay after each printk during bootup */
1246 static unsigned long long loops_per_msec;	/* based on boot_delay */
1247 
1248 static int __init boot_delay_setup(char *str)
1249 {
1250 	unsigned long lpj;
1251 
1252 	lpj = preset_lpj ? preset_lpj : 1000000;	/* some guess */
1253 	loops_per_msec = (unsigned long long)lpj / 1000 * HZ;
1254 
1255 	get_option(&str, &boot_delay);
1256 	if (boot_delay > 10 * 1000)
1257 		boot_delay = 0;
1258 
1259 	pr_debug("boot_delay: %u, preset_lpj: %ld, lpj: %lu, "
1260 		"HZ: %d, loops_per_msec: %llu\n",
1261 		boot_delay, preset_lpj, lpj, HZ, loops_per_msec);
1262 	return 0;
1263 }
1264 early_param("boot_delay", boot_delay_setup);
1265 
1266 static void boot_delay_msec(int level)
1267 {
1268 	unsigned long long k;
1269 	unsigned long timeout;
1270 
1271 	if ((boot_delay == 0 || system_state >= SYSTEM_RUNNING)
1272 		|| suppress_message_printing(level)) {
1273 		return;
1274 	}
1275 
1276 	k = (unsigned long long)loops_per_msec * boot_delay;
1277 
1278 	timeout = jiffies + msecs_to_jiffies(boot_delay);
1279 	while (k) {
1280 		k--;
1281 		cpu_relax();
1282 		/*
1283 		 * use (volatile) jiffies to prevent
1284 		 * compiler reduction; loop termination via jiffies
1285 		 * is secondary and may or may not happen.
1286 		 */
1287 		if (time_after(jiffies, timeout))
1288 			break;
1289 		touch_nmi_watchdog();
1290 	}
1291 }
1292 #else
1293 static inline void boot_delay_msec(int level)
1294 {
1295 }
1296 #endif
1297 
1298 static bool printk_time = IS_ENABLED(CONFIG_PRINTK_TIME);
1299 module_param_named(time, printk_time, bool, S_IRUGO | S_IWUSR);
1300 
1301 static size_t print_syslog(unsigned int level, char *buf)
1302 {
1303 	return sprintf(buf, "<%u>", level);
1304 }
1305 
1306 static size_t print_time(u64 ts, char *buf)
1307 {
1308 	unsigned long rem_nsec = do_div(ts, 1000000000);
1309 
1310 	return sprintf(buf, "[%5lu.%06lu]",
1311 		       (unsigned long)ts, rem_nsec / 1000);
1312 }
1313 
1314 #ifdef CONFIG_PRINTK_CALLER
1315 static size_t print_caller(u32 id, char *buf)
1316 {
1317 	char caller[12];
1318 
1319 	snprintf(caller, sizeof(caller), "%c%u",
1320 		 id & 0x80000000 ? 'C' : 'T', id & ~0x80000000);
1321 	return sprintf(buf, "[%6s]", caller);
1322 }
1323 #else
1324 #define print_caller(id, buf) 0
1325 #endif
1326 
1327 static size_t print_prefix(const struct printk_log *msg, bool syslog,
1328 			   bool time, char *buf)
1329 {
1330 	size_t len = 0;
1331 
1332 	if (syslog)
1333 		len = print_syslog((msg->facility << 3) | msg->level, buf);
1334 
1335 	if (time)
1336 		len += print_time(msg->ts_nsec, buf + len);
1337 
1338 	len += print_caller(msg->caller_id, buf + len);
1339 
1340 	if (IS_ENABLED(CONFIG_PRINTK_CALLER) || time) {
1341 		buf[len++] = ' ';
1342 		buf[len] = '\0';
1343 	}
1344 
1345 	return len;
1346 }
1347 
1348 static size_t msg_print_text(const struct printk_log *msg, bool syslog,
1349 			     bool time, char *buf, size_t size)
1350 {
1351 	const char *text = log_text(msg);
1352 	size_t text_size = msg->text_len;
1353 	size_t len = 0;
1354 	char prefix[PREFIX_MAX];
1355 	const size_t prefix_len = print_prefix(msg, syslog, time, prefix);
1356 
1357 	do {
1358 		const char *next = memchr(text, '\n', text_size);
1359 		size_t text_len;
1360 
1361 		if (next) {
1362 			text_len = next - text;
1363 			next++;
1364 			text_size -= next - text;
1365 		} else {
1366 			text_len = text_size;
1367 		}
1368 
1369 		if (buf) {
1370 			if (prefix_len + text_len + 1 >= size - len)
1371 				break;
1372 
1373 			memcpy(buf + len, prefix, prefix_len);
1374 			len += prefix_len;
1375 			memcpy(buf + len, text, text_len);
1376 			len += text_len;
1377 			buf[len++] = '\n';
1378 		} else {
1379 			/* SYSLOG_ACTION_* buffer size only calculation */
1380 			len += prefix_len + text_len + 1;
1381 		}
1382 
1383 		text = next;
1384 	} while (text);
1385 
1386 	return len;
1387 }
1388 
1389 static int syslog_print(char __user *buf, int size)
1390 {
1391 	char *text;
1392 	struct printk_log *msg;
1393 	int len = 0;
1394 
1395 	text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
1396 	if (!text)
1397 		return -ENOMEM;
1398 
1399 	while (size > 0) {
1400 		size_t n;
1401 		size_t skip;
1402 
1403 		logbuf_lock_irq();
1404 		if (syslog_seq < log_first_seq) {
1405 			/* messages are gone, move to first one */
1406 			syslog_seq = log_first_seq;
1407 			syslog_idx = log_first_idx;
1408 			syslog_partial = 0;
1409 		}
1410 		if (syslog_seq == log_next_seq) {
1411 			logbuf_unlock_irq();
1412 			break;
1413 		}
1414 
1415 		/*
1416 		 * To keep reading/counting partial line consistent,
1417 		 * use printk_time value as of the beginning of a line.
1418 		 */
1419 		if (!syslog_partial)
1420 			syslog_time = printk_time;
1421 
1422 		skip = syslog_partial;
1423 		msg = log_from_idx(syslog_idx);
1424 		n = msg_print_text(msg, true, syslog_time, text,
1425 				   LOG_LINE_MAX + PREFIX_MAX);
1426 		if (n - syslog_partial <= size) {
1427 			/* message fits into buffer, move forward */
1428 			syslog_idx = log_next(syslog_idx);
1429 			syslog_seq++;
1430 			n -= syslog_partial;
1431 			syslog_partial = 0;
1432 		} else if (!len){
1433 			/* partial read(), remember position */
1434 			n = size;
1435 			syslog_partial += n;
1436 		} else
1437 			n = 0;
1438 		logbuf_unlock_irq();
1439 
1440 		if (!n)
1441 			break;
1442 
1443 		if (copy_to_user(buf, text + skip, n)) {
1444 			if (!len)
1445 				len = -EFAULT;
1446 			break;
1447 		}
1448 
1449 		len += n;
1450 		size -= n;
1451 		buf += n;
1452 	}
1453 
1454 	kfree(text);
1455 	return len;
1456 }
1457 
1458 static int syslog_print_all(char __user *buf, int size, bool clear)
1459 {
1460 	char *text;
1461 	int len = 0;
1462 	u64 next_seq;
1463 	u64 seq;
1464 	u32 idx;
1465 	bool time;
1466 
1467 	text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
1468 	if (!text)
1469 		return -ENOMEM;
1470 
1471 	time = printk_time;
1472 	logbuf_lock_irq();
1473 	/*
1474 	 * Find first record that fits, including all following records,
1475 	 * into the user-provided buffer for this dump.
1476 	 */
1477 	seq = clear_seq;
1478 	idx = clear_idx;
1479 	while (seq < log_next_seq) {
1480 		struct printk_log *msg = log_from_idx(idx);
1481 
1482 		len += msg_print_text(msg, true, time, NULL, 0);
1483 		idx = log_next(idx);
1484 		seq++;
1485 	}
1486 
1487 	/* move first record forward until length fits into the buffer */
1488 	seq = clear_seq;
1489 	idx = clear_idx;
1490 	while (len > size && seq < log_next_seq) {
1491 		struct printk_log *msg = log_from_idx(idx);
1492 
1493 		len -= msg_print_text(msg, true, time, NULL, 0);
1494 		idx = log_next(idx);
1495 		seq++;
1496 	}
1497 
1498 	/* last message fitting into this dump */
1499 	next_seq = log_next_seq;
1500 
1501 	len = 0;
1502 	while (len >= 0 && seq < next_seq) {
1503 		struct printk_log *msg = log_from_idx(idx);
1504 		int textlen = msg_print_text(msg, true, time, text,
1505 					     LOG_LINE_MAX + PREFIX_MAX);
1506 
1507 		idx = log_next(idx);
1508 		seq++;
1509 
1510 		logbuf_unlock_irq();
1511 		if (copy_to_user(buf + len, text, textlen))
1512 			len = -EFAULT;
1513 		else
1514 			len += textlen;
1515 		logbuf_lock_irq();
1516 
1517 		if (seq < log_first_seq) {
1518 			/* messages are gone, move to next one */
1519 			seq = log_first_seq;
1520 			idx = log_first_idx;
1521 		}
1522 	}
1523 
1524 	if (clear) {
1525 		clear_seq = log_next_seq;
1526 		clear_idx = log_next_idx;
1527 	}
1528 	logbuf_unlock_irq();
1529 
1530 	kfree(text);
1531 	return len;
1532 }
1533 
1534 static void syslog_clear(void)
1535 {
1536 	logbuf_lock_irq();
1537 	clear_seq = log_next_seq;
1538 	clear_idx = log_next_idx;
1539 	logbuf_unlock_irq();
1540 }
1541 
1542 int do_syslog(int type, char __user *buf, int len, int source)
1543 {
1544 	bool clear = false;
1545 	static int saved_console_loglevel = LOGLEVEL_DEFAULT;
1546 	int error;
1547 
1548 	error = check_syslog_permissions(type, source);
1549 	if (error)
1550 		return error;
1551 
1552 	switch (type) {
1553 	case SYSLOG_ACTION_CLOSE:	/* Close log */
1554 		break;
1555 	case SYSLOG_ACTION_OPEN:	/* Open log */
1556 		break;
1557 	case SYSLOG_ACTION_READ:	/* Read from log */
1558 		if (!buf || len < 0)
1559 			return -EINVAL;
1560 		if (!len)
1561 			return 0;
1562 		if (!access_ok(buf, len))
1563 			return -EFAULT;
1564 		error = wait_event_interruptible(log_wait,
1565 						 syslog_seq != log_next_seq);
1566 		if (error)
1567 			return error;
1568 		error = syslog_print(buf, len);
1569 		break;
1570 	/* Read/clear last kernel messages */
1571 	case SYSLOG_ACTION_READ_CLEAR:
1572 		clear = true;
1573 		/* FALL THRU */
1574 	/* Read last kernel messages */
1575 	case SYSLOG_ACTION_READ_ALL:
1576 		if (!buf || len < 0)
1577 			return -EINVAL;
1578 		if (!len)
1579 			return 0;
1580 		if (!access_ok(buf, len))
1581 			return -EFAULT;
1582 		error = syslog_print_all(buf, len, clear);
1583 		break;
1584 	/* Clear ring buffer */
1585 	case SYSLOG_ACTION_CLEAR:
1586 		syslog_clear();
1587 		break;
1588 	/* Disable logging to console */
1589 	case SYSLOG_ACTION_CONSOLE_OFF:
1590 		if (saved_console_loglevel == LOGLEVEL_DEFAULT)
1591 			saved_console_loglevel = console_loglevel;
1592 		console_loglevel = minimum_console_loglevel;
1593 		break;
1594 	/* Enable logging to console */
1595 	case SYSLOG_ACTION_CONSOLE_ON:
1596 		if (saved_console_loglevel != LOGLEVEL_DEFAULT) {
1597 			console_loglevel = saved_console_loglevel;
1598 			saved_console_loglevel = LOGLEVEL_DEFAULT;
1599 		}
1600 		break;
1601 	/* Set level of messages printed to console */
1602 	case SYSLOG_ACTION_CONSOLE_LEVEL:
1603 		if (len < 1 || len > 8)
1604 			return -EINVAL;
1605 		if (len < minimum_console_loglevel)
1606 			len = minimum_console_loglevel;
1607 		console_loglevel = len;
1608 		/* Implicitly re-enable logging to console */
1609 		saved_console_loglevel = LOGLEVEL_DEFAULT;
1610 		break;
1611 	/* Number of chars in the log buffer */
1612 	case SYSLOG_ACTION_SIZE_UNREAD:
1613 		logbuf_lock_irq();
1614 		if (syslog_seq < log_first_seq) {
1615 			/* messages are gone, move to first one */
1616 			syslog_seq = log_first_seq;
1617 			syslog_idx = log_first_idx;
1618 			syslog_partial = 0;
1619 		}
1620 		if (source == SYSLOG_FROM_PROC) {
1621 			/*
1622 			 * Short-cut for poll(/"proc/kmsg") which simply checks
1623 			 * for pending data, not the size; return the count of
1624 			 * records, not the length.
1625 			 */
1626 			error = log_next_seq - syslog_seq;
1627 		} else {
1628 			u64 seq = syslog_seq;
1629 			u32 idx = syslog_idx;
1630 			bool time = syslog_partial ? syslog_time : printk_time;
1631 
1632 			while (seq < log_next_seq) {
1633 				struct printk_log *msg = log_from_idx(idx);
1634 
1635 				error += msg_print_text(msg, true, time, NULL,
1636 							0);
1637 				time = printk_time;
1638 				idx = log_next(idx);
1639 				seq++;
1640 			}
1641 			error -= syslog_partial;
1642 		}
1643 		logbuf_unlock_irq();
1644 		break;
1645 	/* Size of the log buffer */
1646 	case SYSLOG_ACTION_SIZE_BUFFER:
1647 		error = log_buf_len;
1648 		break;
1649 	default:
1650 		error = -EINVAL;
1651 		break;
1652 	}
1653 
1654 	return error;
1655 }
1656 
1657 SYSCALL_DEFINE3(syslog, int, type, char __user *, buf, int, len)
1658 {
1659 	return do_syslog(type, buf, len, SYSLOG_FROM_READER);
1660 }
1661 
1662 /*
1663  * Special console_lock variants that help to reduce the risk of soft-lockups.
1664  * They allow to pass console_lock to another printk() call using a busy wait.
1665  */
1666 
1667 #ifdef CONFIG_LOCKDEP
1668 static struct lockdep_map console_owner_dep_map = {
1669 	.name = "console_owner"
1670 };
1671 #endif
1672 
1673 static DEFINE_RAW_SPINLOCK(console_owner_lock);
1674 static struct task_struct *console_owner;
1675 static bool console_waiter;
1676 
1677 /**
1678  * console_lock_spinning_enable - mark beginning of code where another
1679  *	thread might safely busy wait
1680  *
1681  * This basically converts console_lock into a spinlock. This marks
1682  * the section where the console_lock owner can not sleep, because
1683  * there may be a waiter spinning (like a spinlock). Also it must be
1684  * ready to hand over the lock at the end of the section.
1685  */
1686 static void console_lock_spinning_enable(void)
1687 {
1688 	raw_spin_lock(&console_owner_lock);
1689 	console_owner = current;
1690 	raw_spin_unlock(&console_owner_lock);
1691 
1692 	/* The waiter may spin on us after setting console_owner */
1693 	spin_acquire(&console_owner_dep_map, 0, 0, _THIS_IP_);
1694 }
1695 
1696 /**
1697  * console_lock_spinning_disable_and_check - mark end of code where another
1698  *	thread was able to busy wait and check if there is a waiter
1699  *
1700  * This is called at the end of the section where spinning is allowed.
1701  * It has two functions. First, it is a signal that it is no longer
1702  * safe to start busy waiting for the lock. Second, it checks if
1703  * there is a busy waiter and passes the lock rights to her.
1704  *
1705  * Important: Callers lose the lock if there was a busy waiter.
1706  *	They must not touch items synchronized by console_lock
1707  *	in this case.
1708  *
1709  * Return: 1 if the lock rights were passed, 0 otherwise.
1710  */
1711 static int console_lock_spinning_disable_and_check(void)
1712 {
1713 	int waiter;
1714 
1715 	raw_spin_lock(&console_owner_lock);
1716 	waiter = READ_ONCE(console_waiter);
1717 	console_owner = NULL;
1718 	raw_spin_unlock(&console_owner_lock);
1719 
1720 	if (!waiter) {
1721 		spin_release(&console_owner_dep_map, _THIS_IP_);
1722 		return 0;
1723 	}
1724 
1725 	/* The waiter is now free to continue */
1726 	WRITE_ONCE(console_waiter, false);
1727 
1728 	spin_release(&console_owner_dep_map, _THIS_IP_);
1729 
1730 	/*
1731 	 * Hand off console_lock to waiter. The waiter will perform
1732 	 * the up(). After this, the waiter is the console_lock owner.
1733 	 */
1734 	mutex_release(&console_lock_dep_map, _THIS_IP_);
1735 	return 1;
1736 }
1737 
1738 /**
1739  * console_trylock_spinning - try to get console_lock by busy waiting
1740  *
1741  * This allows to busy wait for the console_lock when the current
1742  * owner is running in specially marked sections. It means that
1743  * the current owner is running and cannot reschedule until it
1744  * is ready to lose the lock.
1745  *
1746  * Return: 1 if we got the lock, 0 othrewise
1747  */
1748 static int console_trylock_spinning(void)
1749 {
1750 	struct task_struct *owner = NULL;
1751 	bool waiter;
1752 	bool spin = false;
1753 	unsigned long flags;
1754 
1755 	if (console_trylock())
1756 		return 1;
1757 
1758 	printk_safe_enter_irqsave(flags);
1759 
1760 	raw_spin_lock(&console_owner_lock);
1761 	owner = READ_ONCE(console_owner);
1762 	waiter = READ_ONCE(console_waiter);
1763 	if (!waiter && owner && owner != current) {
1764 		WRITE_ONCE(console_waiter, true);
1765 		spin = true;
1766 	}
1767 	raw_spin_unlock(&console_owner_lock);
1768 
1769 	/*
1770 	 * If there is an active printk() writing to the
1771 	 * consoles, instead of having it write our data too,
1772 	 * see if we can offload that load from the active
1773 	 * printer, and do some printing ourselves.
1774 	 * Go into a spin only if there isn't already a waiter
1775 	 * spinning, and there is an active printer, and
1776 	 * that active printer isn't us (recursive printk?).
1777 	 */
1778 	if (!spin) {
1779 		printk_safe_exit_irqrestore(flags);
1780 		return 0;
1781 	}
1782 
1783 	/* We spin waiting for the owner to release us */
1784 	spin_acquire(&console_owner_dep_map, 0, 0, _THIS_IP_);
1785 	/* Owner will clear console_waiter on hand off */
1786 	while (READ_ONCE(console_waiter))
1787 		cpu_relax();
1788 	spin_release(&console_owner_dep_map, _THIS_IP_);
1789 
1790 	printk_safe_exit_irqrestore(flags);
1791 	/*
1792 	 * The owner passed the console lock to us.
1793 	 * Since we did not spin on console lock, annotate
1794 	 * this as a trylock. Otherwise lockdep will
1795 	 * complain.
1796 	 */
1797 	mutex_acquire(&console_lock_dep_map, 0, 1, _THIS_IP_);
1798 
1799 	return 1;
1800 }
1801 
1802 /*
1803  * Call the console drivers, asking them to write out
1804  * log_buf[start] to log_buf[end - 1].
1805  * The console_lock must be held.
1806  */
1807 static void call_console_drivers(const char *ext_text, size_t ext_len,
1808 				 const char *text, size_t len)
1809 {
1810 	struct console *con;
1811 
1812 	trace_console_rcuidle(text, len);
1813 
1814 	for_each_console(con) {
1815 		if (exclusive_console && con != exclusive_console)
1816 			continue;
1817 		if (!(con->flags & CON_ENABLED))
1818 			continue;
1819 		if (!con->write)
1820 			continue;
1821 		if (!cpu_online(smp_processor_id()) &&
1822 		    !(con->flags & CON_ANYTIME))
1823 			continue;
1824 		if (con->flags & CON_EXTENDED)
1825 			con->write(con, ext_text, ext_len);
1826 		else
1827 			con->write(con, text, len);
1828 	}
1829 }
1830 
1831 int printk_delay_msec __read_mostly;
1832 
1833 static inline void printk_delay(void)
1834 {
1835 	if (unlikely(printk_delay_msec)) {
1836 		int m = printk_delay_msec;
1837 
1838 		while (m--) {
1839 			mdelay(1);
1840 			touch_nmi_watchdog();
1841 		}
1842 	}
1843 }
1844 
1845 static inline u32 printk_caller_id(void)
1846 {
1847 	return in_task() ? task_pid_nr(current) :
1848 		0x80000000 + raw_smp_processor_id();
1849 }
1850 
1851 /*
1852  * Continuation lines are buffered, and not committed to the record buffer
1853  * until the line is complete, or a race forces it. The line fragments
1854  * though, are printed immediately to the consoles to ensure everything has
1855  * reached the console in case of a kernel crash.
1856  */
1857 static struct cont {
1858 	char buf[LOG_LINE_MAX];
1859 	size_t len;			/* length == 0 means unused buffer */
1860 	u32 caller_id;			/* printk_caller_id() of first print */
1861 	u64 ts_nsec;			/* time of first print */
1862 	u8 level;			/* log level of first message */
1863 	u8 facility;			/* log facility of first message */
1864 	enum log_flags flags;		/* prefix, newline flags */
1865 } cont;
1866 
1867 static void cont_flush(void)
1868 {
1869 	if (cont.len == 0)
1870 		return;
1871 
1872 	log_store(cont.caller_id, cont.facility, cont.level, cont.flags,
1873 		  cont.ts_nsec, NULL, 0, cont.buf, cont.len);
1874 	cont.len = 0;
1875 }
1876 
1877 static bool cont_add(u32 caller_id, int facility, int level,
1878 		     enum log_flags flags, const char *text, size_t len)
1879 {
1880 	/* If the line gets too long, split it up in separate records. */
1881 	if (cont.len + len > sizeof(cont.buf)) {
1882 		cont_flush();
1883 		return false;
1884 	}
1885 
1886 	if (!cont.len) {
1887 		cont.facility = facility;
1888 		cont.level = level;
1889 		cont.caller_id = caller_id;
1890 		cont.ts_nsec = local_clock();
1891 		cont.flags = flags;
1892 	}
1893 
1894 	memcpy(cont.buf + cont.len, text, len);
1895 	cont.len += len;
1896 
1897 	// The original flags come from the first line,
1898 	// but later continuations can add a newline.
1899 	if (flags & LOG_NEWLINE) {
1900 		cont.flags |= LOG_NEWLINE;
1901 		cont_flush();
1902 	}
1903 
1904 	return true;
1905 }
1906 
1907 static size_t log_output(int facility, int level, enum log_flags lflags, const char *dict, size_t dictlen, char *text, size_t text_len)
1908 {
1909 	const u32 caller_id = printk_caller_id();
1910 
1911 	/*
1912 	 * If an earlier line was buffered, and we're a continuation
1913 	 * write from the same context, try to add it to the buffer.
1914 	 */
1915 	if (cont.len) {
1916 		if (cont.caller_id == caller_id && (lflags & LOG_CONT)) {
1917 			if (cont_add(caller_id, facility, level, lflags, text, text_len))
1918 				return text_len;
1919 		}
1920 		/* Otherwise, make sure it's flushed */
1921 		cont_flush();
1922 	}
1923 
1924 	/* Skip empty continuation lines that couldn't be added - they just flush */
1925 	if (!text_len && (lflags & LOG_CONT))
1926 		return 0;
1927 
1928 	/* If it doesn't end in a newline, try to buffer the current line */
1929 	if (!(lflags & LOG_NEWLINE)) {
1930 		if (cont_add(caller_id, facility, level, lflags, text, text_len))
1931 			return text_len;
1932 	}
1933 
1934 	/* Store it in the record log */
1935 	return log_store(caller_id, facility, level, lflags, 0,
1936 			 dict, dictlen, text, text_len);
1937 }
1938 
1939 /* Must be called under logbuf_lock. */
1940 int vprintk_store(int facility, int level,
1941 		  const char *dict, size_t dictlen,
1942 		  const char *fmt, va_list args)
1943 {
1944 	static char textbuf[LOG_LINE_MAX];
1945 	char *text = textbuf;
1946 	size_t text_len;
1947 	enum log_flags lflags = 0;
1948 
1949 	/*
1950 	 * The printf needs to come first; we need the syslog
1951 	 * prefix which might be passed-in as a parameter.
1952 	 */
1953 	text_len = vscnprintf(text, sizeof(textbuf), fmt, args);
1954 
1955 	/* mark and strip a trailing newline */
1956 	if (text_len && text[text_len-1] == '\n') {
1957 		text_len--;
1958 		lflags |= LOG_NEWLINE;
1959 	}
1960 
1961 	/* strip kernel syslog prefix and extract log level or control flags */
1962 	if (facility == 0) {
1963 		int kern_level;
1964 
1965 		while ((kern_level = printk_get_level(text)) != 0) {
1966 			switch (kern_level) {
1967 			case '0' ... '7':
1968 				if (level == LOGLEVEL_DEFAULT)
1969 					level = kern_level - '0';
1970 				break;
1971 			case 'c':	/* KERN_CONT */
1972 				lflags |= LOG_CONT;
1973 			}
1974 
1975 			text_len -= 2;
1976 			text += 2;
1977 		}
1978 	}
1979 
1980 	if (level == LOGLEVEL_DEFAULT)
1981 		level = default_message_loglevel;
1982 
1983 	if (dict)
1984 		lflags |= LOG_NEWLINE;
1985 
1986 	return log_output(facility, level, lflags,
1987 			  dict, dictlen, text, text_len);
1988 }
1989 
1990 asmlinkage int vprintk_emit(int facility, int level,
1991 			    const char *dict, size_t dictlen,
1992 			    const char *fmt, va_list args)
1993 {
1994 	int printed_len;
1995 	bool in_sched = false, pending_output;
1996 	unsigned long flags;
1997 	u64 curr_log_seq;
1998 
1999 	/* Suppress unimportant messages after panic happens */
2000 	if (unlikely(suppress_printk))
2001 		return 0;
2002 
2003 	if (level == LOGLEVEL_SCHED) {
2004 		level = LOGLEVEL_DEFAULT;
2005 		in_sched = true;
2006 	}
2007 
2008 	boot_delay_msec(level);
2009 	printk_delay();
2010 
2011 	/* This stops the holder of console_sem just where we want him */
2012 	logbuf_lock_irqsave(flags);
2013 	curr_log_seq = log_next_seq;
2014 	printed_len = vprintk_store(facility, level, dict, dictlen, fmt, args);
2015 	pending_output = (curr_log_seq != log_next_seq);
2016 	logbuf_unlock_irqrestore(flags);
2017 
2018 	/* If called from the scheduler, we can not call up(). */
2019 	if (!in_sched && pending_output) {
2020 		/*
2021 		 * Disable preemption to avoid being preempted while holding
2022 		 * console_sem which would prevent anyone from printing to
2023 		 * console
2024 		 */
2025 		preempt_disable();
2026 		/*
2027 		 * Try to acquire and then immediately release the console
2028 		 * semaphore.  The release will print out buffers and wake up
2029 		 * /dev/kmsg and syslog() users.
2030 		 */
2031 		if (console_trylock_spinning())
2032 			console_unlock();
2033 		preempt_enable();
2034 	}
2035 
2036 	if (pending_output)
2037 		wake_up_klogd();
2038 	return printed_len;
2039 }
2040 EXPORT_SYMBOL(vprintk_emit);
2041 
2042 asmlinkage int vprintk(const char *fmt, va_list args)
2043 {
2044 	return vprintk_func(fmt, args);
2045 }
2046 EXPORT_SYMBOL(vprintk);
2047 
2048 int vprintk_default(const char *fmt, va_list args)
2049 {
2050 	int r;
2051 
2052 #ifdef CONFIG_KGDB_KDB
2053 	/* Allow to pass printk() to kdb but avoid a recursion. */
2054 	if (unlikely(kdb_trap_printk && kdb_printf_cpu < 0)) {
2055 		r = vkdb_printf(KDB_MSGSRC_PRINTK, fmt, args);
2056 		return r;
2057 	}
2058 #endif
2059 	r = vprintk_emit(0, LOGLEVEL_DEFAULT, NULL, 0, fmt, args);
2060 
2061 	return r;
2062 }
2063 EXPORT_SYMBOL_GPL(vprintk_default);
2064 
2065 /**
2066  * printk - print a kernel message
2067  * @fmt: format string
2068  *
2069  * This is printk(). It can be called from any context. We want it to work.
2070  *
2071  * We try to grab the console_lock. If we succeed, it's easy - we log the
2072  * output and call the console drivers.  If we fail to get the semaphore, we
2073  * place the output into the log buffer and return. The current holder of
2074  * the console_sem will notice the new output in console_unlock(); and will
2075  * send it to the consoles before releasing the lock.
2076  *
2077  * One effect of this deferred printing is that code which calls printk() and
2078  * then changes console_loglevel may break. This is because console_loglevel
2079  * is inspected when the actual printing occurs.
2080  *
2081  * See also:
2082  * printf(3)
2083  *
2084  * See the vsnprintf() documentation for format string extensions over C99.
2085  */
2086 asmlinkage __visible int printk(const char *fmt, ...)
2087 {
2088 	va_list args;
2089 	int r;
2090 
2091 	va_start(args, fmt);
2092 	r = vprintk_func(fmt, args);
2093 	va_end(args);
2094 
2095 	return r;
2096 }
2097 EXPORT_SYMBOL(printk);
2098 
2099 #else /* CONFIG_PRINTK */
2100 
2101 #define LOG_LINE_MAX		0
2102 #define PREFIX_MAX		0
2103 #define printk_time		false
2104 
2105 static u64 syslog_seq;
2106 static u32 syslog_idx;
2107 static u64 console_seq;
2108 static u32 console_idx;
2109 static u64 exclusive_console_stop_seq;
2110 static u64 log_first_seq;
2111 static u32 log_first_idx;
2112 static u64 log_next_seq;
2113 static char *log_text(const struct printk_log *msg) { return NULL; }
2114 static char *log_dict(const struct printk_log *msg) { return NULL; }
2115 static struct printk_log *log_from_idx(u32 idx) { return NULL; }
2116 static u32 log_next(u32 idx) { return 0; }
2117 static ssize_t msg_print_ext_header(char *buf, size_t size,
2118 				    struct printk_log *msg,
2119 				    u64 seq) { return 0; }
2120 static ssize_t msg_print_ext_body(char *buf, size_t size,
2121 				  char *dict, size_t dict_len,
2122 				  char *text, size_t text_len) { return 0; }
2123 static void console_lock_spinning_enable(void) { }
2124 static int console_lock_spinning_disable_and_check(void) { return 0; }
2125 static void call_console_drivers(const char *ext_text, size_t ext_len,
2126 				 const char *text, size_t len) {}
2127 static size_t msg_print_text(const struct printk_log *msg, bool syslog,
2128 			     bool time, char *buf, size_t size) { return 0; }
2129 static bool suppress_message_printing(int level) { return false; }
2130 
2131 #endif /* CONFIG_PRINTK */
2132 
2133 #ifdef CONFIG_EARLY_PRINTK
2134 struct console *early_console;
2135 
2136 asmlinkage __visible void early_printk(const char *fmt, ...)
2137 {
2138 	va_list ap;
2139 	char buf[512];
2140 	int n;
2141 
2142 	if (!early_console)
2143 		return;
2144 
2145 	va_start(ap, fmt);
2146 	n = vscnprintf(buf, sizeof(buf), fmt, ap);
2147 	va_end(ap);
2148 
2149 	early_console->write(early_console, buf, n);
2150 }
2151 #endif
2152 
2153 static int __add_preferred_console(char *name, int idx, char *options,
2154 				   char *brl_options, bool user_specified)
2155 {
2156 	struct console_cmdline *c;
2157 	int i;
2158 
2159 	/*
2160 	 *	See if this tty is not yet registered, and
2161 	 *	if we have a slot free.
2162 	 */
2163 	for (i = 0, c = console_cmdline;
2164 	     i < MAX_CMDLINECONSOLES && c->name[0];
2165 	     i++, c++) {
2166 		if (strcmp(c->name, name) == 0 && c->index == idx) {
2167 			if (!brl_options)
2168 				preferred_console = i;
2169 			if (user_specified)
2170 				c->user_specified = true;
2171 			return 0;
2172 		}
2173 	}
2174 	if (i == MAX_CMDLINECONSOLES)
2175 		return -E2BIG;
2176 	if (!brl_options)
2177 		preferred_console = i;
2178 	strlcpy(c->name, name, sizeof(c->name));
2179 	c->options = options;
2180 	c->user_specified = user_specified;
2181 	braille_set_options(c, brl_options);
2182 
2183 	c->index = idx;
2184 	return 0;
2185 }
2186 
2187 static int __init console_msg_format_setup(char *str)
2188 {
2189 	if (!strcmp(str, "syslog"))
2190 		console_msg_format = MSG_FORMAT_SYSLOG;
2191 	if (!strcmp(str, "default"))
2192 		console_msg_format = MSG_FORMAT_DEFAULT;
2193 	return 1;
2194 }
2195 __setup("console_msg_format=", console_msg_format_setup);
2196 
2197 /*
2198  * Set up a console.  Called via do_early_param() in init/main.c
2199  * for each "console=" parameter in the boot command line.
2200  */
2201 static int __init console_setup(char *str)
2202 {
2203 	char buf[sizeof(console_cmdline[0].name) + 4]; /* 4 for "ttyS" */
2204 	char *s, *options, *brl_options = NULL;
2205 	int idx;
2206 
2207 	if (str[0] == 0)
2208 		return 1;
2209 
2210 	if (_braille_console_setup(&str, &brl_options))
2211 		return 1;
2212 
2213 	/*
2214 	 * Decode str into name, index, options.
2215 	 */
2216 	if (str[0] >= '0' && str[0] <= '9') {
2217 		strcpy(buf, "ttyS");
2218 		strncpy(buf + 4, str, sizeof(buf) - 5);
2219 	} else {
2220 		strncpy(buf, str, sizeof(buf) - 1);
2221 	}
2222 	buf[sizeof(buf) - 1] = 0;
2223 	options = strchr(str, ',');
2224 	if (options)
2225 		*(options++) = 0;
2226 #ifdef __sparc__
2227 	if (!strcmp(str, "ttya"))
2228 		strcpy(buf, "ttyS0");
2229 	if (!strcmp(str, "ttyb"))
2230 		strcpy(buf, "ttyS1");
2231 #endif
2232 	for (s = buf; *s; s++)
2233 		if (isdigit(*s) || *s == ',')
2234 			break;
2235 	idx = simple_strtoul(s, NULL, 10);
2236 	*s = 0;
2237 
2238 	__add_preferred_console(buf, idx, options, brl_options, true);
2239 	console_set_on_cmdline = 1;
2240 	return 1;
2241 }
2242 __setup("console=", console_setup);
2243 
2244 /**
2245  * add_preferred_console - add a device to the list of preferred consoles.
2246  * @name: device name
2247  * @idx: device index
2248  * @options: options for this console
2249  *
2250  * The last preferred console added will be used for kernel messages
2251  * and stdin/out/err for init.  Normally this is used by console_setup
2252  * above to handle user-supplied console arguments; however it can also
2253  * be used by arch-specific code either to override the user or more
2254  * commonly to provide a default console (ie from PROM variables) when
2255  * the user has not supplied one.
2256  */
2257 int add_preferred_console(char *name, int idx, char *options)
2258 {
2259 	return __add_preferred_console(name, idx, options, NULL, false);
2260 }
2261 
2262 bool console_suspend_enabled = true;
2263 EXPORT_SYMBOL(console_suspend_enabled);
2264 
2265 static int __init console_suspend_disable(char *str)
2266 {
2267 	console_suspend_enabled = false;
2268 	return 1;
2269 }
2270 __setup("no_console_suspend", console_suspend_disable);
2271 module_param_named(console_suspend, console_suspend_enabled,
2272 		bool, S_IRUGO | S_IWUSR);
2273 MODULE_PARM_DESC(console_suspend, "suspend console during suspend"
2274 	" and hibernate operations");
2275 
2276 /**
2277  * suspend_console - suspend the console subsystem
2278  *
2279  * This disables printk() while we go into suspend states
2280  */
2281 void suspend_console(void)
2282 {
2283 	if (!console_suspend_enabled)
2284 		return;
2285 	pr_info("Suspending console(s) (use no_console_suspend to debug)\n");
2286 	console_lock();
2287 	console_suspended = 1;
2288 	up_console_sem();
2289 }
2290 
2291 void resume_console(void)
2292 {
2293 	if (!console_suspend_enabled)
2294 		return;
2295 	down_console_sem();
2296 	console_suspended = 0;
2297 	console_unlock();
2298 }
2299 
2300 /**
2301  * console_cpu_notify - print deferred console messages after CPU hotplug
2302  * @cpu: unused
2303  *
2304  * If printk() is called from a CPU that is not online yet, the messages
2305  * will be printed on the console only if there are CON_ANYTIME consoles.
2306  * This function is called when a new CPU comes online (or fails to come
2307  * up) or goes offline.
2308  */
2309 static int console_cpu_notify(unsigned int cpu)
2310 {
2311 	if (!cpuhp_tasks_frozen) {
2312 		/* If trylock fails, someone else is doing the printing */
2313 		if (console_trylock())
2314 			console_unlock();
2315 	}
2316 	return 0;
2317 }
2318 
2319 /**
2320  * console_lock - lock the console system for exclusive use.
2321  *
2322  * Acquires a lock which guarantees that the caller has
2323  * exclusive access to the console system and the console_drivers list.
2324  *
2325  * Can sleep, returns nothing.
2326  */
2327 void console_lock(void)
2328 {
2329 	might_sleep();
2330 
2331 	down_console_sem();
2332 	if (console_suspended)
2333 		return;
2334 	console_locked = 1;
2335 	console_may_schedule = 1;
2336 }
2337 EXPORT_SYMBOL(console_lock);
2338 
2339 /**
2340  * console_trylock - try to lock the console system for exclusive use.
2341  *
2342  * Try to acquire a lock which guarantees that the caller has exclusive
2343  * access to the console system and the console_drivers list.
2344  *
2345  * returns 1 on success, and 0 on failure to acquire the lock.
2346  */
2347 int console_trylock(void)
2348 {
2349 	if (down_trylock_console_sem())
2350 		return 0;
2351 	if (console_suspended) {
2352 		up_console_sem();
2353 		return 0;
2354 	}
2355 	console_locked = 1;
2356 	console_may_schedule = 0;
2357 	return 1;
2358 }
2359 EXPORT_SYMBOL(console_trylock);
2360 
2361 int is_console_locked(void)
2362 {
2363 	return console_locked;
2364 }
2365 EXPORT_SYMBOL(is_console_locked);
2366 
2367 /*
2368  * Check if we have any console that is capable of printing while cpu is
2369  * booting or shutting down. Requires console_sem.
2370  */
2371 static int have_callable_console(void)
2372 {
2373 	struct console *con;
2374 
2375 	for_each_console(con)
2376 		if ((con->flags & CON_ENABLED) &&
2377 				(con->flags & CON_ANYTIME))
2378 			return 1;
2379 
2380 	return 0;
2381 }
2382 
2383 /*
2384  * Can we actually use the console at this time on this cpu?
2385  *
2386  * Console drivers may assume that per-cpu resources have been allocated. So
2387  * unless they're explicitly marked as being able to cope (CON_ANYTIME) don't
2388  * call them until this CPU is officially up.
2389  */
2390 static inline int can_use_console(void)
2391 {
2392 	return cpu_online(raw_smp_processor_id()) || have_callable_console();
2393 }
2394 
2395 /**
2396  * console_unlock - unlock the console system
2397  *
2398  * Releases the console_lock which the caller holds on the console system
2399  * and the console driver list.
2400  *
2401  * While the console_lock was held, console output may have been buffered
2402  * by printk().  If this is the case, console_unlock(); emits
2403  * the output prior to releasing the lock.
2404  *
2405  * If there is output waiting, we wake /dev/kmsg and syslog() users.
2406  *
2407  * console_unlock(); may be called from any context.
2408  */
2409 void console_unlock(void)
2410 {
2411 	static char ext_text[CONSOLE_EXT_LOG_MAX];
2412 	static char text[LOG_LINE_MAX + PREFIX_MAX];
2413 	unsigned long flags;
2414 	bool do_cond_resched, retry;
2415 
2416 	if (console_suspended) {
2417 		up_console_sem();
2418 		return;
2419 	}
2420 
2421 	/*
2422 	 * Console drivers are called with interrupts disabled, so
2423 	 * @console_may_schedule should be cleared before; however, we may
2424 	 * end up dumping a lot of lines, for example, if called from
2425 	 * console registration path, and should invoke cond_resched()
2426 	 * between lines if allowable.  Not doing so can cause a very long
2427 	 * scheduling stall on a slow console leading to RCU stall and
2428 	 * softlockup warnings which exacerbate the issue with more
2429 	 * messages practically incapacitating the system.
2430 	 *
2431 	 * console_trylock() is not able to detect the preemptive
2432 	 * context reliably. Therefore the value must be stored before
2433 	 * and cleared after the the "again" goto label.
2434 	 */
2435 	do_cond_resched = console_may_schedule;
2436 again:
2437 	console_may_schedule = 0;
2438 
2439 	/*
2440 	 * We released the console_sem lock, so we need to recheck if
2441 	 * cpu is online and (if not) is there at least one CON_ANYTIME
2442 	 * console.
2443 	 */
2444 	if (!can_use_console()) {
2445 		console_locked = 0;
2446 		up_console_sem();
2447 		return;
2448 	}
2449 
2450 	for (;;) {
2451 		struct printk_log *msg;
2452 		size_t ext_len = 0;
2453 		size_t len;
2454 
2455 		printk_safe_enter_irqsave(flags);
2456 		raw_spin_lock(&logbuf_lock);
2457 		if (console_seq < log_first_seq) {
2458 			len = snprintf(text, sizeof(text),
2459 				       "** %llu printk messages dropped **\n",
2460 				       log_first_seq - console_seq);
2461 
2462 			/* messages are gone, move to first one */
2463 			console_seq = log_first_seq;
2464 			console_idx = log_first_idx;
2465 		} else {
2466 			len = 0;
2467 		}
2468 skip:
2469 		if (console_seq == log_next_seq)
2470 			break;
2471 
2472 		msg = log_from_idx(console_idx);
2473 		if (suppress_message_printing(msg->level)) {
2474 			/*
2475 			 * Skip record we have buffered and already printed
2476 			 * directly to the console when we received it, and
2477 			 * record that has level above the console loglevel.
2478 			 */
2479 			console_idx = log_next(console_idx);
2480 			console_seq++;
2481 			goto skip;
2482 		}
2483 
2484 		/* Output to all consoles once old messages replayed. */
2485 		if (unlikely(exclusive_console &&
2486 			     console_seq >= exclusive_console_stop_seq)) {
2487 			exclusive_console = NULL;
2488 		}
2489 
2490 		len += msg_print_text(msg,
2491 				console_msg_format & MSG_FORMAT_SYSLOG,
2492 				printk_time, text + len, sizeof(text) - len);
2493 		if (nr_ext_console_drivers) {
2494 			ext_len = msg_print_ext_header(ext_text,
2495 						sizeof(ext_text),
2496 						msg, console_seq);
2497 			ext_len += msg_print_ext_body(ext_text + ext_len,
2498 						sizeof(ext_text) - ext_len,
2499 						log_dict(msg), msg->dict_len,
2500 						log_text(msg), msg->text_len);
2501 		}
2502 		console_idx = log_next(console_idx);
2503 		console_seq++;
2504 		raw_spin_unlock(&logbuf_lock);
2505 
2506 		/*
2507 		 * While actively printing out messages, if another printk()
2508 		 * were to occur on another CPU, it may wait for this one to
2509 		 * finish. This task can not be preempted if there is a
2510 		 * waiter waiting to take over.
2511 		 */
2512 		console_lock_spinning_enable();
2513 
2514 		stop_critical_timings();	/* don't trace print latency */
2515 		call_console_drivers(ext_text, ext_len, text, len);
2516 		start_critical_timings();
2517 
2518 		if (console_lock_spinning_disable_and_check()) {
2519 			printk_safe_exit_irqrestore(flags);
2520 			return;
2521 		}
2522 
2523 		printk_safe_exit_irqrestore(flags);
2524 
2525 		if (do_cond_resched)
2526 			cond_resched();
2527 	}
2528 
2529 	console_locked = 0;
2530 
2531 	raw_spin_unlock(&logbuf_lock);
2532 
2533 	up_console_sem();
2534 
2535 	/*
2536 	 * Someone could have filled up the buffer again, so re-check if there's
2537 	 * something to flush. In case we cannot trylock the console_sem again,
2538 	 * there's a new owner and the console_unlock() from them will do the
2539 	 * flush, no worries.
2540 	 */
2541 	raw_spin_lock(&logbuf_lock);
2542 	retry = console_seq != log_next_seq;
2543 	raw_spin_unlock(&logbuf_lock);
2544 	printk_safe_exit_irqrestore(flags);
2545 
2546 	if (retry && console_trylock())
2547 		goto again;
2548 }
2549 EXPORT_SYMBOL(console_unlock);
2550 
2551 /**
2552  * console_conditional_schedule - yield the CPU if required
2553  *
2554  * If the console code is currently allowed to sleep, and
2555  * if this CPU should yield the CPU to another task, do
2556  * so here.
2557  *
2558  * Must be called within console_lock();.
2559  */
2560 void __sched console_conditional_schedule(void)
2561 {
2562 	if (console_may_schedule)
2563 		cond_resched();
2564 }
2565 EXPORT_SYMBOL(console_conditional_schedule);
2566 
2567 void console_unblank(void)
2568 {
2569 	struct console *c;
2570 
2571 	/*
2572 	 * console_unblank can no longer be called in interrupt context unless
2573 	 * oops_in_progress is set to 1..
2574 	 */
2575 	if (oops_in_progress) {
2576 		if (down_trylock_console_sem() != 0)
2577 			return;
2578 	} else
2579 		console_lock();
2580 
2581 	console_locked = 1;
2582 	console_may_schedule = 0;
2583 	for_each_console(c)
2584 		if ((c->flags & CON_ENABLED) && c->unblank)
2585 			c->unblank();
2586 	console_unlock();
2587 }
2588 
2589 /**
2590  * console_flush_on_panic - flush console content on panic
2591  * @mode: flush all messages in buffer or just the pending ones
2592  *
2593  * Immediately output all pending messages no matter what.
2594  */
2595 void console_flush_on_panic(enum con_flush_mode mode)
2596 {
2597 	/*
2598 	 * If someone else is holding the console lock, trylock will fail
2599 	 * and may_schedule may be set.  Ignore and proceed to unlock so
2600 	 * that messages are flushed out.  As this can be called from any
2601 	 * context and we don't want to get preempted while flushing,
2602 	 * ensure may_schedule is cleared.
2603 	 */
2604 	console_trylock();
2605 	console_may_schedule = 0;
2606 
2607 	if (mode == CONSOLE_REPLAY_ALL) {
2608 		unsigned long flags;
2609 
2610 		logbuf_lock_irqsave(flags);
2611 		console_seq = log_first_seq;
2612 		console_idx = log_first_idx;
2613 		logbuf_unlock_irqrestore(flags);
2614 	}
2615 	console_unlock();
2616 }
2617 
2618 /*
2619  * Return the console tty driver structure and its associated index
2620  */
2621 struct tty_driver *console_device(int *index)
2622 {
2623 	struct console *c;
2624 	struct tty_driver *driver = NULL;
2625 
2626 	console_lock();
2627 	for_each_console(c) {
2628 		if (!c->device)
2629 			continue;
2630 		driver = c->device(c, index);
2631 		if (driver)
2632 			break;
2633 	}
2634 	console_unlock();
2635 	return driver;
2636 }
2637 
2638 /*
2639  * Prevent further output on the passed console device so that (for example)
2640  * serial drivers can disable console output before suspending a port, and can
2641  * re-enable output afterwards.
2642  */
2643 void console_stop(struct console *console)
2644 {
2645 	console_lock();
2646 	console->flags &= ~CON_ENABLED;
2647 	console_unlock();
2648 }
2649 EXPORT_SYMBOL(console_stop);
2650 
2651 void console_start(struct console *console)
2652 {
2653 	console_lock();
2654 	console->flags |= CON_ENABLED;
2655 	console_unlock();
2656 }
2657 EXPORT_SYMBOL(console_start);
2658 
2659 static int __read_mostly keep_bootcon;
2660 
2661 static int __init keep_bootcon_setup(char *str)
2662 {
2663 	keep_bootcon = 1;
2664 	pr_info("debug: skip boot console de-registration.\n");
2665 
2666 	return 0;
2667 }
2668 
2669 early_param("keep_bootcon", keep_bootcon_setup);
2670 
2671 /*
2672  * This is called by register_console() to try to match
2673  * the newly registered console with any of the ones selected
2674  * by either the command line or add_preferred_console() and
2675  * setup/enable it.
2676  *
2677  * Care need to be taken with consoles that are statically
2678  * enabled such as netconsole
2679  */
2680 static int try_enable_new_console(struct console *newcon, bool user_specified)
2681 {
2682 	struct console_cmdline *c;
2683 	int i;
2684 
2685 	for (i = 0, c = console_cmdline;
2686 	     i < MAX_CMDLINECONSOLES && c->name[0];
2687 	     i++, c++) {
2688 		if (c->user_specified != user_specified)
2689 			continue;
2690 		if (!newcon->match ||
2691 		    newcon->match(newcon, c->name, c->index, c->options) != 0) {
2692 			/* default matching */
2693 			BUILD_BUG_ON(sizeof(c->name) != sizeof(newcon->name));
2694 			if (strcmp(c->name, newcon->name) != 0)
2695 				continue;
2696 			if (newcon->index >= 0 &&
2697 			    newcon->index != c->index)
2698 				continue;
2699 			if (newcon->index < 0)
2700 				newcon->index = c->index;
2701 
2702 			if (_braille_register_console(newcon, c))
2703 				return 0;
2704 
2705 			if (newcon->setup &&
2706 			    newcon->setup(newcon, c->options) != 0)
2707 				return -EIO;
2708 		}
2709 		newcon->flags |= CON_ENABLED;
2710 		if (i == preferred_console) {
2711 			newcon->flags |= CON_CONSDEV;
2712 			has_preferred_console = true;
2713 		}
2714 		return 0;
2715 	}
2716 
2717 	/*
2718 	 * Some consoles, such as pstore and netconsole, can be enabled even
2719 	 * without matching. Accept the pre-enabled consoles only when match()
2720 	 * and setup() had a change to be called.
2721 	 */
2722 	if (newcon->flags & CON_ENABLED && c->user_specified ==	user_specified)
2723 		return 0;
2724 
2725 	return -ENOENT;
2726 }
2727 
2728 /*
2729  * The console driver calls this routine during kernel initialization
2730  * to register the console printing procedure with printk() and to
2731  * print any messages that were printed by the kernel before the
2732  * console driver was initialized.
2733  *
2734  * This can happen pretty early during the boot process (because of
2735  * early_printk) - sometimes before setup_arch() completes - be careful
2736  * of what kernel features are used - they may not be initialised yet.
2737  *
2738  * There are two types of consoles - bootconsoles (early_printk) and
2739  * "real" consoles (everything which is not a bootconsole) which are
2740  * handled differently.
2741  *  - Any number of bootconsoles can be registered at any time.
2742  *  - As soon as a "real" console is registered, all bootconsoles
2743  *    will be unregistered automatically.
2744  *  - Once a "real" console is registered, any attempt to register a
2745  *    bootconsoles will be rejected
2746  */
2747 void register_console(struct console *newcon)
2748 {
2749 	unsigned long flags;
2750 	struct console *bcon = NULL;
2751 	int err;
2752 
2753 	for_each_console(bcon) {
2754 		if (WARN(bcon == newcon, "console '%s%d' already registered\n",
2755 					 bcon->name, bcon->index))
2756 			return;
2757 	}
2758 
2759 	/*
2760 	 * before we register a new CON_BOOT console, make sure we don't
2761 	 * already have a valid console
2762 	 */
2763 	if (newcon->flags & CON_BOOT) {
2764 		for_each_console(bcon) {
2765 			if (!(bcon->flags & CON_BOOT)) {
2766 				pr_info("Too late to register bootconsole %s%d\n",
2767 					newcon->name, newcon->index);
2768 				return;
2769 			}
2770 		}
2771 	}
2772 
2773 	if (console_drivers && console_drivers->flags & CON_BOOT)
2774 		bcon = console_drivers;
2775 
2776 	if (!has_preferred_console || bcon || !console_drivers)
2777 		has_preferred_console = preferred_console >= 0;
2778 
2779 	/*
2780 	 *	See if we want to use this console driver. If we
2781 	 *	didn't select a console we take the first one
2782 	 *	that registers here.
2783 	 */
2784 	if (!has_preferred_console) {
2785 		if (newcon->index < 0)
2786 			newcon->index = 0;
2787 		if (newcon->setup == NULL ||
2788 		    newcon->setup(newcon, NULL) == 0) {
2789 			newcon->flags |= CON_ENABLED;
2790 			if (newcon->device) {
2791 				newcon->flags |= CON_CONSDEV;
2792 				has_preferred_console = true;
2793 			}
2794 		}
2795 	}
2796 
2797 	/* See if this console matches one we selected on the command line */
2798 	err = try_enable_new_console(newcon, true);
2799 
2800 	/* If not, try to match against the platform default(s) */
2801 	if (err == -ENOENT)
2802 		err = try_enable_new_console(newcon, false);
2803 
2804 	/* printk() messages are not printed to the Braille console. */
2805 	if (err || newcon->flags & CON_BRL)
2806 		return;
2807 
2808 	/*
2809 	 * If we have a bootconsole, and are switching to a real console,
2810 	 * don't print everything out again, since when the boot console, and
2811 	 * the real console are the same physical device, it's annoying to
2812 	 * see the beginning boot messages twice
2813 	 */
2814 	if (bcon && ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV))
2815 		newcon->flags &= ~CON_PRINTBUFFER;
2816 
2817 	/*
2818 	 *	Put this console in the list - keep the
2819 	 *	preferred driver at the head of the list.
2820 	 */
2821 	console_lock();
2822 	if ((newcon->flags & CON_CONSDEV) || console_drivers == NULL) {
2823 		newcon->next = console_drivers;
2824 		console_drivers = newcon;
2825 		if (newcon->next)
2826 			newcon->next->flags &= ~CON_CONSDEV;
2827 		/* Ensure this flag is always set for the head of the list */
2828 		newcon->flags |= CON_CONSDEV;
2829 	} else {
2830 		newcon->next = console_drivers->next;
2831 		console_drivers->next = newcon;
2832 	}
2833 
2834 	if (newcon->flags & CON_EXTENDED)
2835 		nr_ext_console_drivers++;
2836 
2837 	if (newcon->flags & CON_PRINTBUFFER) {
2838 		/*
2839 		 * console_unlock(); will print out the buffered messages
2840 		 * for us.
2841 		 */
2842 		logbuf_lock_irqsave(flags);
2843 		/*
2844 		 * We're about to replay the log buffer.  Only do this to the
2845 		 * just-registered console to avoid excessive message spam to
2846 		 * the already-registered consoles.
2847 		 *
2848 		 * Set exclusive_console with disabled interrupts to reduce
2849 		 * race window with eventual console_flush_on_panic() that
2850 		 * ignores console_lock.
2851 		 */
2852 		exclusive_console = newcon;
2853 		exclusive_console_stop_seq = console_seq;
2854 		console_seq = syslog_seq;
2855 		console_idx = syslog_idx;
2856 		logbuf_unlock_irqrestore(flags);
2857 	}
2858 	console_unlock();
2859 	console_sysfs_notify();
2860 
2861 	/*
2862 	 * By unregistering the bootconsoles after we enable the real console
2863 	 * we get the "console xxx enabled" message on all the consoles -
2864 	 * boot consoles, real consoles, etc - this is to ensure that end
2865 	 * users know there might be something in the kernel's log buffer that
2866 	 * went to the bootconsole (that they do not see on the real console)
2867 	 */
2868 	pr_info("%sconsole [%s%d] enabled\n",
2869 		(newcon->flags & CON_BOOT) ? "boot" : "" ,
2870 		newcon->name, newcon->index);
2871 	if (bcon &&
2872 	    ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV) &&
2873 	    !keep_bootcon) {
2874 		/* We need to iterate through all boot consoles, to make
2875 		 * sure we print everything out, before we unregister them.
2876 		 */
2877 		for_each_console(bcon)
2878 			if (bcon->flags & CON_BOOT)
2879 				unregister_console(bcon);
2880 	}
2881 }
2882 EXPORT_SYMBOL(register_console);
2883 
2884 int unregister_console(struct console *console)
2885 {
2886 	struct console *con;
2887 	int res;
2888 
2889 	pr_info("%sconsole [%s%d] disabled\n",
2890 		(console->flags & CON_BOOT) ? "boot" : "" ,
2891 		console->name, console->index);
2892 
2893 	res = _braille_unregister_console(console);
2894 	if (res < 0)
2895 		return res;
2896 	if (res > 0)
2897 		return 0;
2898 
2899 	res = -ENODEV;
2900 	console_lock();
2901 	if (console_drivers == console) {
2902 		console_drivers=console->next;
2903 		res = 0;
2904 	} else {
2905 		for_each_console(con) {
2906 			if (con->next == console) {
2907 				con->next = console->next;
2908 				res = 0;
2909 				break;
2910 			}
2911 		}
2912 	}
2913 
2914 	if (res)
2915 		goto out_disable_unlock;
2916 
2917 	if (console->flags & CON_EXTENDED)
2918 		nr_ext_console_drivers--;
2919 
2920 	/*
2921 	 * If this isn't the last console and it has CON_CONSDEV set, we
2922 	 * need to set it on the next preferred console.
2923 	 */
2924 	if (console_drivers != NULL && console->flags & CON_CONSDEV)
2925 		console_drivers->flags |= CON_CONSDEV;
2926 
2927 	console->flags &= ~CON_ENABLED;
2928 	console_unlock();
2929 	console_sysfs_notify();
2930 
2931 	if (console->exit)
2932 		res = console->exit(console);
2933 
2934 	return res;
2935 
2936 out_disable_unlock:
2937 	console->flags &= ~CON_ENABLED;
2938 	console_unlock();
2939 
2940 	return res;
2941 }
2942 EXPORT_SYMBOL(unregister_console);
2943 
2944 /*
2945  * Initialize the console device. This is called *early*, so
2946  * we can't necessarily depend on lots of kernel help here.
2947  * Just do some early initializations, and do the complex setup
2948  * later.
2949  */
2950 void __init console_init(void)
2951 {
2952 	int ret;
2953 	initcall_t call;
2954 	initcall_entry_t *ce;
2955 
2956 	/* Setup the default TTY line discipline. */
2957 	n_tty_init();
2958 
2959 	/*
2960 	 * set up the console device so that later boot sequences can
2961 	 * inform about problems etc..
2962 	 */
2963 	ce = __con_initcall_start;
2964 	trace_initcall_level("console");
2965 	while (ce < __con_initcall_end) {
2966 		call = initcall_from_entry(ce);
2967 		trace_initcall_start(call);
2968 		ret = call();
2969 		trace_initcall_finish(call, ret);
2970 		ce++;
2971 	}
2972 }
2973 
2974 /*
2975  * Some boot consoles access data that is in the init section and which will
2976  * be discarded after the initcalls have been run. To make sure that no code
2977  * will access this data, unregister the boot consoles in a late initcall.
2978  *
2979  * If for some reason, such as deferred probe or the driver being a loadable
2980  * module, the real console hasn't registered yet at this point, there will
2981  * be a brief interval in which no messages are logged to the console, which
2982  * makes it difficult to diagnose problems that occur during this time.
2983  *
2984  * To mitigate this problem somewhat, only unregister consoles whose memory
2985  * intersects with the init section. Note that all other boot consoles will
2986  * get unregistred when the real preferred console is registered.
2987  */
2988 static int __init printk_late_init(void)
2989 {
2990 	struct console *con;
2991 	int ret;
2992 
2993 	for_each_console(con) {
2994 		if (!(con->flags & CON_BOOT))
2995 			continue;
2996 
2997 		/* Check addresses that might be used for enabled consoles. */
2998 		if (init_section_intersects(con, sizeof(*con)) ||
2999 		    init_section_contains(con->write, 0) ||
3000 		    init_section_contains(con->read, 0) ||
3001 		    init_section_contains(con->device, 0) ||
3002 		    init_section_contains(con->unblank, 0) ||
3003 		    init_section_contains(con->data, 0)) {
3004 			/*
3005 			 * Please, consider moving the reported consoles out
3006 			 * of the init section.
3007 			 */
3008 			pr_warn("bootconsole [%s%d] uses init memory and must be disabled even before the real one is ready\n",
3009 				con->name, con->index);
3010 			unregister_console(con);
3011 		}
3012 	}
3013 	ret = cpuhp_setup_state_nocalls(CPUHP_PRINTK_DEAD, "printk:dead", NULL,
3014 					console_cpu_notify);
3015 	WARN_ON(ret < 0);
3016 	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "printk:online",
3017 					console_cpu_notify, NULL);
3018 	WARN_ON(ret < 0);
3019 	return 0;
3020 }
3021 late_initcall(printk_late_init);
3022 
3023 #if defined CONFIG_PRINTK
3024 /*
3025  * Delayed printk version, for scheduler-internal messages:
3026  */
3027 #define PRINTK_PENDING_WAKEUP	0x01
3028 #define PRINTK_PENDING_OUTPUT	0x02
3029 
3030 static DEFINE_PER_CPU(int, printk_pending);
3031 
3032 static void wake_up_klogd_work_func(struct irq_work *irq_work)
3033 {
3034 	int pending = __this_cpu_xchg(printk_pending, 0);
3035 
3036 	if (pending & PRINTK_PENDING_OUTPUT) {
3037 		/* If trylock fails, someone else is doing the printing */
3038 		if (console_trylock())
3039 			console_unlock();
3040 	}
3041 
3042 	if (pending & PRINTK_PENDING_WAKEUP)
3043 		wake_up_interruptible(&log_wait);
3044 }
3045 
3046 static DEFINE_PER_CPU(struct irq_work, wake_up_klogd_work) = {
3047 	.func = wake_up_klogd_work_func,
3048 	.flags = ATOMIC_INIT(IRQ_WORK_LAZY),
3049 };
3050 
3051 void wake_up_klogd(void)
3052 {
3053 	if (!printk_percpu_data_ready())
3054 		return;
3055 
3056 	preempt_disable();
3057 	if (waitqueue_active(&log_wait)) {
3058 		this_cpu_or(printk_pending, PRINTK_PENDING_WAKEUP);
3059 		irq_work_queue(this_cpu_ptr(&wake_up_klogd_work));
3060 	}
3061 	preempt_enable();
3062 }
3063 
3064 void defer_console_output(void)
3065 {
3066 	if (!printk_percpu_data_ready())
3067 		return;
3068 
3069 	preempt_disable();
3070 	__this_cpu_or(printk_pending, PRINTK_PENDING_OUTPUT);
3071 	irq_work_queue(this_cpu_ptr(&wake_up_klogd_work));
3072 	preempt_enable();
3073 }
3074 
3075 int vprintk_deferred(const char *fmt, va_list args)
3076 {
3077 	int r;
3078 
3079 	r = vprintk_emit(0, LOGLEVEL_SCHED, NULL, 0, fmt, args);
3080 	defer_console_output();
3081 
3082 	return r;
3083 }
3084 
3085 int printk_deferred(const char *fmt, ...)
3086 {
3087 	va_list args;
3088 	int r;
3089 
3090 	va_start(args, fmt);
3091 	r = vprintk_deferred(fmt, args);
3092 	va_end(args);
3093 
3094 	return r;
3095 }
3096 
3097 /*
3098  * printk rate limiting, lifted from the networking subsystem.
3099  *
3100  * This enforces a rate limit: not more than 10 kernel messages
3101  * every 5s to make a denial-of-service attack impossible.
3102  */
3103 DEFINE_RATELIMIT_STATE(printk_ratelimit_state, 5 * HZ, 10);
3104 
3105 int __printk_ratelimit(const char *func)
3106 {
3107 	return ___ratelimit(&printk_ratelimit_state, func);
3108 }
3109 EXPORT_SYMBOL(__printk_ratelimit);
3110 
3111 /**
3112  * printk_timed_ratelimit - caller-controlled printk ratelimiting
3113  * @caller_jiffies: pointer to caller's state
3114  * @interval_msecs: minimum interval between prints
3115  *
3116  * printk_timed_ratelimit() returns true if more than @interval_msecs
3117  * milliseconds have elapsed since the last time printk_timed_ratelimit()
3118  * returned true.
3119  */
3120 bool printk_timed_ratelimit(unsigned long *caller_jiffies,
3121 			unsigned int interval_msecs)
3122 {
3123 	unsigned long elapsed = jiffies - *caller_jiffies;
3124 
3125 	if (*caller_jiffies && elapsed <= msecs_to_jiffies(interval_msecs))
3126 		return false;
3127 
3128 	*caller_jiffies = jiffies;
3129 	return true;
3130 }
3131 EXPORT_SYMBOL(printk_timed_ratelimit);
3132 
3133 static DEFINE_SPINLOCK(dump_list_lock);
3134 static LIST_HEAD(dump_list);
3135 
3136 /**
3137  * kmsg_dump_register - register a kernel log dumper.
3138  * @dumper: pointer to the kmsg_dumper structure
3139  *
3140  * Adds a kernel log dumper to the system. The dump callback in the
3141  * structure will be called when the kernel oopses or panics and must be
3142  * set. Returns zero on success and %-EINVAL or %-EBUSY otherwise.
3143  */
3144 int kmsg_dump_register(struct kmsg_dumper *dumper)
3145 {
3146 	unsigned long flags;
3147 	int err = -EBUSY;
3148 
3149 	/* The dump callback needs to be set */
3150 	if (!dumper->dump)
3151 		return -EINVAL;
3152 
3153 	spin_lock_irqsave(&dump_list_lock, flags);
3154 	/* Don't allow registering multiple times */
3155 	if (!dumper->registered) {
3156 		dumper->registered = 1;
3157 		list_add_tail_rcu(&dumper->list, &dump_list);
3158 		err = 0;
3159 	}
3160 	spin_unlock_irqrestore(&dump_list_lock, flags);
3161 
3162 	return err;
3163 }
3164 EXPORT_SYMBOL_GPL(kmsg_dump_register);
3165 
3166 /**
3167  * kmsg_dump_unregister - unregister a kmsg dumper.
3168  * @dumper: pointer to the kmsg_dumper structure
3169  *
3170  * Removes a dump device from the system. Returns zero on success and
3171  * %-EINVAL otherwise.
3172  */
3173 int kmsg_dump_unregister(struct kmsg_dumper *dumper)
3174 {
3175 	unsigned long flags;
3176 	int err = -EINVAL;
3177 
3178 	spin_lock_irqsave(&dump_list_lock, flags);
3179 	if (dumper->registered) {
3180 		dumper->registered = 0;
3181 		list_del_rcu(&dumper->list);
3182 		err = 0;
3183 	}
3184 	spin_unlock_irqrestore(&dump_list_lock, flags);
3185 	synchronize_rcu();
3186 
3187 	return err;
3188 }
3189 EXPORT_SYMBOL_GPL(kmsg_dump_unregister);
3190 
3191 static bool always_kmsg_dump;
3192 module_param_named(always_kmsg_dump, always_kmsg_dump, bool, S_IRUGO | S_IWUSR);
3193 
3194 const char *kmsg_dump_reason_str(enum kmsg_dump_reason reason)
3195 {
3196 	switch (reason) {
3197 	case KMSG_DUMP_PANIC:
3198 		return "Panic";
3199 	case KMSG_DUMP_OOPS:
3200 		return "Oops";
3201 	case KMSG_DUMP_EMERG:
3202 		return "Emergency";
3203 	case KMSG_DUMP_SHUTDOWN:
3204 		return "Shutdown";
3205 	default:
3206 		return "Unknown";
3207 	}
3208 }
3209 EXPORT_SYMBOL_GPL(kmsg_dump_reason_str);
3210 
3211 /**
3212  * kmsg_dump - dump kernel log to kernel message dumpers.
3213  * @reason: the reason (oops, panic etc) for dumping
3214  *
3215  * Call each of the registered dumper's dump() callback, which can
3216  * retrieve the kmsg records with kmsg_dump_get_line() or
3217  * kmsg_dump_get_buffer().
3218  */
3219 void kmsg_dump(enum kmsg_dump_reason reason)
3220 {
3221 	struct kmsg_dumper *dumper;
3222 	unsigned long flags;
3223 
3224 	rcu_read_lock();
3225 	list_for_each_entry_rcu(dumper, &dump_list, list) {
3226 		enum kmsg_dump_reason max_reason = dumper->max_reason;
3227 
3228 		/*
3229 		 * If client has not provided a specific max_reason, default
3230 		 * to KMSG_DUMP_OOPS, unless always_kmsg_dump was set.
3231 		 */
3232 		if (max_reason == KMSG_DUMP_UNDEF) {
3233 			max_reason = always_kmsg_dump ? KMSG_DUMP_MAX :
3234 							KMSG_DUMP_OOPS;
3235 		}
3236 		if (reason > max_reason)
3237 			continue;
3238 
3239 		/* initialize iterator with data about the stored records */
3240 		dumper->active = true;
3241 
3242 		logbuf_lock_irqsave(flags);
3243 		dumper->cur_seq = clear_seq;
3244 		dumper->cur_idx = clear_idx;
3245 		dumper->next_seq = log_next_seq;
3246 		dumper->next_idx = log_next_idx;
3247 		logbuf_unlock_irqrestore(flags);
3248 
3249 		/* invoke dumper which will iterate over records */
3250 		dumper->dump(dumper, reason);
3251 
3252 		/* reset iterator */
3253 		dumper->active = false;
3254 	}
3255 	rcu_read_unlock();
3256 }
3257 
3258 /**
3259  * kmsg_dump_get_line_nolock - retrieve one kmsg log line (unlocked version)
3260  * @dumper: registered kmsg dumper
3261  * @syslog: include the "<4>" prefixes
3262  * @line: buffer to copy the line to
3263  * @size: maximum size of the buffer
3264  * @len: length of line placed into buffer
3265  *
3266  * Start at the beginning of the kmsg buffer, with the oldest kmsg
3267  * record, and copy one record into the provided buffer.
3268  *
3269  * Consecutive calls will return the next available record moving
3270  * towards the end of the buffer with the youngest messages.
3271  *
3272  * A return value of FALSE indicates that there are no more records to
3273  * read.
3274  *
3275  * The function is similar to kmsg_dump_get_line(), but grabs no locks.
3276  */
3277 bool kmsg_dump_get_line_nolock(struct kmsg_dumper *dumper, bool syslog,
3278 			       char *line, size_t size, size_t *len)
3279 {
3280 	struct printk_log *msg;
3281 	size_t l = 0;
3282 	bool ret = false;
3283 
3284 	if (!dumper->active)
3285 		goto out;
3286 
3287 	if (dumper->cur_seq < log_first_seq) {
3288 		/* messages are gone, move to first available one */
3289 		dumper->cur_seq = log_first_seq;
3290 		dumper->cur_idx = log_first_idx;
3291 	}
3292 
3293 	/* last entry */
3294 	if (dumper->cur_seq >= log_next_seq)
3295 		goto out;
3296 
3297 	msg = log_from_idx(dumper->cur_idx);
3298 	l = msg_print_text(msg, syslog, printk_time, line, size);
3299 
3300 	dumper->cur_idx = log_next(dumper->cur_idx);
3301 	dumper->cur_seq++;
3302 	ret = true;
3303 out:
3304 	if (len)
3305 		*len = l;
3306 	return ret;
3307 }
3308 
3309 /**
3310  * kmsg_dump_get_line - retrieve one kmsg log line
3311  * @dumper: registered kmsg dumper
3312  * @syslog: include the "<4>" prefixes
3313  * @line: buffer to copy the line to
3314  * @size: maximum size of the buffer
3315  * @len: length of line placed into buffer
3316  *
3317  * Start at the beginning of the kmsg buffer, with the oldest kmsg
3318  * record, and copy one record into the provided buffer.
3319  *
3320  * Consecutive calls will return the next available record moving
3321  * towards the end of the buffer with the youngest messages.
3322  *
3323  * A return value of FALSE indicates that there are no more records to
3324  * read.
3325  */
3326 bool kmsg_dump_get_line(struct kmsg_dumper *dumper, bool syslog,
3327 			char *line, size_t size, size_t *len)
3328 {
3329 	unsigned long flags;
3330 	bool ret;
3331 
3332 	logbuf_lock_irqsave(flags);
3333 	ret = kmsg_dump_get_line_nolock(dumper, syslog, line, size, len);
3334 	logbuf_unlock_irqrestore(flags);
3335 
3336 	return ret;
3337 }
3338 EXPORT_SYMBOL_GPL(kmsg_dump_get_line);
3339 
3340 /**
3341  * kmsg_dump_get_buffer - copy kmsg log lines
3342  * @dumper: registered kmsg dumper
3343  * @syslog: include the "<4>" prefixes
3344  * @buf: buffer to copy the line to
3345  * @size: maximum size of the buffer
3346  * @len: length of line placed into buffer
3347  *
3348  * Start at the end of the kmsg buffer and fill the provided buffer
3349  * with as many of the the *youngest* kmsg records that fit into it.
3350  * If the buffer is large enough, all available kmsg records will be
3351  * copied with a single call.
3352  *
3353  * Consecutive calls will fill the buffer with the next block of
3354  * available older records, not including the earlier retrieved ones.
3355  *
3356  * A return value of FALSE indicates that there are no more records to
3357  * read.
3358  */
3359 bool kmsg_dump_get_buffer(struct kmsg_dumper *dumper, bool syslog,
3360 			  char *buf, size_t size, size_t *len)
3361 {
3362 	unsigned long flags;
3363 	u64 seq;
3364 	u32 idx;
3365 	u64 next_seq;
3366 	u32 next_idx;
3367 	size_t l = 0;
3368 	bool ret = false;
3369 	bool time = printk_time;
3370 
3371 	if (!dumper->active)
3372 		goto out;
3373 
3374 	logbuf_lock_irqsave(flags);
3375 	if (dumper->cur_seq < log_first_seq) {
3376 		/* messages are gone, move to first available one */
3377 		dumper->cur_seq = log_first_seq;
3378 		dumper->cur_idx = log_first_idx;
3379 	}
3380 
3381 	/* last entry */
3382 	if (dumper->cur_seq >= dumper->next_seq) {
3383 		logbuf_unlock_irqrestore(flags);
3384 		goto out;
3385 	}
3386 
3387 	/* calculate length of entire buffer */
3388 	seq = dumper->cur_seq;
3389 	idx = dumper->cur_idx;
3390 	while (seq < dumper->next_seq) {
3391 		struct printk_log *msg = log_from_idx(idx);
3392 
3393 		l += msg_print_text(msg, true, time, NULL, 0);
3394 		idx = log_next(idx);
3395 		seq++;
3396 	}
3397 
3398 	/* move first record forward until length fits into the buffer */
3399 	seq = dumper->cur_seq;
3400 	idx = dumper->cur_idx;
3401 	while (l >= size && seq < dumper->next_seq) {
3402 		struct printk_log *msg = log_from_idx(idx);
3403 
3404 		l -= msg_print_text(msg, true, time, NULL, 0);
3405 		idx = log_next(idx);
3406 		seq++;
3407 	}
3408 
3409 	/* last message in next interation */
3410 	next_seq = seq;
3411 	next_idx = idx;
3412 
3413 	l = 0;
3414 	while (seq < dumper->next_seq) {
3415 		struct printk_log *msg = log_from_idx(idx);
3416 
3417 		l += msg_print_text(msg, syslog, time, buf + l, size - l);
3418 		idx = log_next(idx);
3419 		seq++;
3420 	}
3421 
3422 	dumper->next_seq = next_seq;
3423 	dumper->next_idx = next_idx;
3424 	ret = true;
3425 	logbuf_unlock_irqrestore(flags);
3426 out:
3427 	if (len)
3428 		*len = l;
3429 	return ret;
3430 }
3431 EXPORT_SYMBOL_GPL(kmsg_dump_get_buffer);
3432 
3433 /**
3434  * kmsg_dump_rewind_nolock - reset the iterator (unlocked version)
3435  * @dumper: registered kmsg dumper
3436  *
3437  * Reset the dumper's iterator so that kmsg_dump_get_line() and
3438  * kmsg_dump_get_buffer() can be called again and used multiple
3439  * times within the same dumper.dump() callback.
3440  *
3441  * The function is similar to kmsg_dump_rewind(), but grabs no locks.
3442  */
3443 void kmsg_dump_rewind_nolock(struct kmsg_dumper *dumper)
3444 {
3445 	dumper->cur_seq = clear_seq;
3446 	dumper->cur_idx = clear_idx;
3447 	dumper->next_seq = log_next_seq;
3448 	dumper->next_idx = log_next_idx;
3449 }
3450 
3451 /**
3452  * kmsg_dump_rewind - reset the iterator
3453  * @dumper: registered kmsg dumper
3454  *
3455  * Reset the dumper's iterator so that kmsg_dump_get_line() and
3456  * kmsg_dump_get_buffer() can be called again and used multiple
3457  * times within the same dumper.dump() callback.
3458  */
3459 void kmsg_dump_rewind(struct kmsg_dumper *dumper)
3460 {
3461 	unsigned long flags;
3462 
3463 	logbuf_lock_irqsave(flags);
3464 	kmsg_dump_rewind_nolock(dumper);
3465 	logbuf_unlock_irqrestore(flags);
3466 }
3467 EXPORT_SYMBOL_GPL(kmsg_dump_rewind);
3468 
3469 #endif
3470