1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/printk.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 * 7 * Modified to make sys_syslog() more flexible: added commands to 8 * return the last 4k of kernel messages, regardless of whether 9 * they've been read or not. Added option to suppress kernel printk's 10 * to the console. Added hook for sending the console messages 11 * elsewhere, in preparation for a serial line console (someday). 12 * Ted Ts'o, 2/11/93. 13 * Modified for sysctl support, 1/8/97, Chris Horn. 14 * Fixed SMP synchronization, 08/08/99, Manfred Spraul 15 * manfred@colorfullife.com 16 * Rewrote bits to get rid of console_lock 17 * 01Mar01 Andrew Morton 18 */ 19 20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 21 22 #include <linux/kernel.h> 23 #include <linux/mm.h> 24 #include <linux/tty.h> 25 #include <linux/tty_driver.h> 26 #include <linux/console.h> 27 #include <linux/init.h> 28 #include <linux/jiffies.h> 29 #include <linux/nmi.h> 30 #include <linux/module.h> 31 #include <linux/moduleparam.h> 32 #include <linux/delay.h> 33 #include <linux/smp.h> 34 #include <linux/security.h> 35 #include <linux/memblock.h> 36 #include <linux/syscalls.h> 37 #include <linux/crash_core.h> 38 #include <linux/ratelimit.h> 39 #include <linux/kmsg_dump.h> 40 #include <linux/syslog.h> 41 #include <linux/cpu.h> 42 #include <linux/rculist.h> 43 #include <linux/poll.h> 44 #include <linux/irq_work.h> 45 #include <linux/ctype.h> 46 #include <linux/uio.h> 47 #include <linux/sched/clock.h> 48 #include <linux/sched/debug.h> 49 #include <linux/sched/task_stack.h> 50 51 #include <linux/uaccess.h> 52 #include <asm/sections.h> 53 54 #include <trace/events/initcall.h> 55 #define CREATE_TRACE_POINTS 56 #include <trace/events/printk.h> 57 58 #include "printk_ringbuffer.h" 59 #include "console_cmdline.h" 60 #include "braille.h" 61 #include "internal.h" 62 63 int console_printk[4] = { 64 CONSOLE_LOGLEVEL_DEFAULT, /* console_loglevel */ 65 MESSAGE_LOGLEVEL_DEFAULT, /* default_message_loglevel */ 66 CONSOLE_LOGLEVEL_MIN, /* minimum_console_loglevel */ 67 CONSOLE_LOGLEVEL_DEFAULT, /* default_console_loglevel */ 68 }; 69 EXPORT_SYMBOL_GPL(console_printk); 70 71 atomic_t ignore_console_lock_warning __read_mostly = ATOMIC_INIT(0); 72 EXPORT_SYMBOL(ignore_console_lock_warning); 73 74 /* 75 * Low level drivers may need that to know if they can schedule in 76 * their unblank() callback or not. So let's export it. 77 */ 78 int oops_in_progress; 79 EXPORT_SYMBOL(oops_in_progress); 80 81 /* 82 * console_sem protects the console_drivers list, and also 83 * provides serialisation for access to the entire console 84 * driver system. 85 */ 86 static DEFINE_SEMAPHORE(console_sem); 87 struct console *console_drivers; 88 EXPORT_SYMBOL_GPL(console_drivers); 89 90 /* 91 * System may need to suppress printk message under certain 92 * circumstances, like after kernel panic happens. 93 */ 94 int __read_mostly suppress_printk; 95 96 #ifdef CONFIG_LOCKDEP 97 static struct lockdep_map console_lock_dep_map = { 98 .name = "console_lock" 99 }; 100 #endif 101 102 enum devkmsg_log_bits { 103 __DEVKMSG_LOG_BIT_ON = 0, 104 __DEVKMSG_LOG_BIT_OFF, 105 __DEVKMSG_LOG_BIT_LOCK, 106 }; 107 108 enum devkmsg_log_masks { 109 DEVKMSG_LOG_MASK_ON = BIT(__DEVKMSG_LOG_BIT_ON), 110 DEVKMSG_LOG_MASK_OFF = BIT(__DEVKMSG_LOG_BIT_OFF), 111 DEVKMSG_LOG_MASK_LOCK = BIT(__DEVKMSG_LOG_BIT_LOCK), 112 }; 113 114 /* Keep both the 'on' and 'off' bits clear, i.e. ratelimit by default: */ 115 #define DEVKMSG_LOG_MASK_DEFAULT 0 116 117 static unsigned int __read_mostly devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT; 118 119 static int __control_devkmsg(char *str) 120 { 121 size_t len; 122 123 if (!str) 124 return -EINVAL; 125 126 len = str_has_prefix(str, "on"); 127 if (len) { 128 devkmsg_log = DEVKMSG_LOG_MASK_ON; 129 return len; 130 } 131 132 len = str_has_prefix(str, "off"); 133 if (len) { 134 devkmsg_log = DEVKMSG_LOG_MASK_OFF; 135 return len; 136 } 137 138 len = str_has_prefix(str, "ratelimit"); 139 if (len) { 140 devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT; 141 return len; 142 } 143 144 return -EINVAL; 145 } 146 147 static int __init control_devkmsg(char *str) 148 { 149 if (__control_devkmsg(str) < 0) 150 return 1; 151 152 /* 153 * Set sysctl string accordingly: 154 */ 155 if (devkmsg_log == DEVKMSG_LOG_MASK_ON) 156 strcpy(devkmsg_log_str, "on"); 157 else if (devkmsg_log == DEVKMSG_LOG_MASK_OFF) 158 strcpy(devkmsg_log_str, "off"); 159 /* else "ratelimit" which is set by default. */ 160 161 /* 162 * Sysctl cannot change it anymore. The kernel command line setting of 163 * this parameter is to force the setting to be permanent throughout the 164 * runtime of the system. This is a precation measure against userspace 165 * trying to be a smarta** and attempting to change it up on us. 166 */ 167 devkmsg_log |= DEVKMSG_LOG_MASK_LOCK; 168 169 return 0; 170 } 171 __setup("printk.devkmsg=", control_devkmsg); 172 173 char devkmsg_log_str[DEVKMSG_STR_MAX_SIZE] = "ratelimit"; 174 175 int devkmsg_sysctl_set_loglvl(struct ctl_table *table, int write, 176 void *buffer, size_t *lenp, loff_t *ppos) 177 { 178 char old_str[DEVKMSG_STR_MAX_SIZE]; 179 unsigned int old; 180 int err; 181 182 if (write) { 183 if (devkmsg_log & DEVKMSG_LOG_MASK_LOCK) 184 return -EINVAL; 185 186 old = devkmsg_log; 187 strncpy(old_str, devkmsg_log_str, DEVKMSG_STR_MAX_SIZE); 188 } 189 190 err = proc_dostring(table, write, buffer, lenp, ppos); 191 if (err) 192 return err; 193 194 if (write) { 195 err = __control_devkmsg(devkmsg_log_str); 196 197 /* 198 * Do not accept an unknown string OR a known string with 199 * trailing crap... 200 */ 201 if (err < 0 || (err + 1 != *lenp)) { 202 203 /* ... and restore old setting. */ 204 devkmsg_log = old; 205 strncpy(devkmsg_log_str, old_str, DEVKMSG_STR_MAX_SIZE); 206 207 return -EINVAL; 208 } 209 } 210 211 return 0; 212 } 213 214 /* Number of registered extended console drivers. */ 215 static int nr_ext_console_drivers; 216 217 /* 218 * Helper macros to handle lockdep when locking/unlocking console_sem. We use 219 * macros instead of functions so that _RET_IP_ contains useful information. 220 */ 221 #define down_console_sem() do { \ 222 down(&console_sem);\ 223 mutex_acquire(&console_lock_dep_map, 0, 0, _RET_IP_);\ 224 } while (0) 225 226 static int __down_trylock_console_sem(unsigned long ip) 227 { 228 int lock_failed; 229 unsigned long flags; 230 231 /* 232 * Here and in __up_console_sem() we need to be in safe mode, 233 * because spindump/WARN/etc from under console ->lock will 234 * deadlock in printk()->down_trylock_console_sem() otherwise. 235 */ 236 printk_safe_enter_irqsave(flags); 237 lock_failed = down_trylock(&console_sem); 238 printk_safe_exit_irqrestore(flags); 239 240 if (lock_failed) 241 return 1; 242 mutex_acquire(&console_lock_dep_map, 0, 1, ip); 243 return 0; 244 } 245 #define down_trylock_console_sem() __down_trylock_console_sem(_RET_IP_) 246 247 static void __up_console_sem(unsigned long ip) 248 { 249 unsigned long flags; 250 251 mutex_release(&console_lock_dep_map, ip); 252 253 printk_safe_enter_irqsave(flags); 254 up(&console_sem); 255 printk_safe_exit_irqrestore(flags); 256 } 257 #define up_console_sem() __up_console_sem(_RET_IP_) 258 259 /* 260 * This is used for debugging the mess that is the VT code by 261 * keeping track if we have the console semaphore held. It's 262 * definitely not the perfect debug tool (we don't know if _WE_ 263 * hold it and are racing, but it helps tracking those weird code 264 * paths in the console code where we end up in places I want 265 * locked without the console sempahore held). 266 */ 267 static int console_locked, console_suspended; 268 269 /* 270 * If exclusive_console is non-NULL then only this console is to be printed to. 271 */ 272 static struct console *exclusive_console; 273 274 /* 275 * Array of consoles built from command line options (console=) 276 */ 277 278 #define MAX_CMDLINECONSOLES 8 279 280 static struct console_cmdline console_cmdline[MAX_CMDLINECONSOLES]; 281 282 static int preferred_console = -1; 283 static bool has_preferred_console; 284 int console_set_on_cmdline; 285 EXPORT_SYMBOL(console_set_on_cmdline); 286 287 /* Flag: console code may call schedule() */ 288 static int console_may_schedule; 289 290 enum con_msg_format_flags { 291 MSG_FORMAT_DEFAULT = 0, 292 MSG_FORMAT_SYSLOG = (1 << 0), 293 }; 294 295 static int console_msg_format = MSG_FORMAT_DEFAULT; 296 297 /* 298 * The printk log buffer consists of a sequenced collection of records, each 299 * containing variable length message text. Every record also contains its 300 * own meta-data (@info). 301 * 302 * Every record meta-data carries the timestamp in microseconds, as well as 303 * the standard userspace syslog level and syslog facility. The usual kernel 304 * messages use LOG_KERN; userspace-injected messages always carry a matching 305 * syslog facility, by default LOG_USER. The origin of every message can be 306 * reliably determined that way. 307 * 308 * The human readable log message of a record is available in @text, the 309 * length of the message text in @text_len. The stored message is not 310 * terminated. 311 * 312 * Optionally, a record can carry a dictionary of properties (key/value 313 * pairs), to provide userspace with a machine-readable message context. 314 * 315 * Examples for well-defined, commonly used property names are: 316 * DEVICE=b12:8 device identifier 317 * b12:8 block dev_t 318 * c127:3 char dev_t 319 * n8 netdev ifindex 320 * +sound:card0 subsystem:devname 321 * SUBSYSTEM=pci driver-core subsystem name 322 * 323 * Valid characters in property names are [a-zA-Z0-9.-_]. Property names 324 * and values are terminated by a '\0' character. 325 * 326 * Example of record values: 327 * record.text_buf = "it's a line" (unterminated) 328 * record.info.seq = 56 329 * record.info.ts_nsec = 36863 330 * record.info.text_len = 11 331 * record.info.facility = 0 (LOG_KERN) 332 * record.info.flags = 0 333 * record.info.level = 3 (LOG_ERR) 334 * record.info.caller_id = 299 (task 299) 335 * record.info.dev_info.subsystem = "pci" (terminated) 336 * record.info.dev_info.device = "+pci:0000:00:01.0" (terminated) 337 * 338 * The 'struct printk_info' buffer must never be directly exported to 339 * userspace, it is a kernel-private implementation detail that might 340 * need to be changed in the future, when the requirements change. 341 * 342 * /dev/kmsg exports the structured data in the following line format: 343 * "<level>,<sequnum>,<timestamp>,<contflag>[,additional_values, ... ];<message text>\n" 344 * 345 * Users of the export format should ignore possible additional values 346 * separated by ',', and find the message after the ';' character. 347 * 348 * The optional key/value pairs are attached as continuation lines starting 349 * with a space character and terminated by a newline. All possible 350 * non-prinatable characters are escaped in the "\xff" notation. 351 */ 352 353 enum log_flags { 354 LOG_NEWLINE = 2, /* text ended with a newline */ 355 LOG_CONT = 8, /* text is a fragment of a continuation line */ 356 }; 357 358 /* 359 * The logbuf_lock protects kmsg buffer, indices, counters. This can be taken 360 * within the scheduler's rq lock. It must be released before calling 361 * console_unlock() or anything else that might wake up a process. 362 */ 363 DEFINE_RAW_SPINLOCK(logbuf_lock); 364 365 /* 366 * Helper macros to lock/unlock logbuf_lock and switch between 367 * printk-safe/unsafe modes. 368 */ 369 #define logbuf_lock_irq() \ 370 do { \ 371 printk_safe_enter_irq(); \ 372 raw_spin_lock(&logbuf_lock); \ 373 } while (0) 374 375 #define logbuf_unlock_irq() \ 376 do { \ 377 raw_spin_unlock(&logbuf_lock); \ 378 printk_safe_exit_irq(); \ 379 } while (0) 380 381 #define logbuf_lock_irqsave(flags) \ 382 do { \ 383 printk_safe_enter_irqsave(flags); \ 384 raw_spin_lock(&logbuf_lock); \ 385 } while (0) 386 387 #define logbuf_unlock_irqrestore(flags) \ 388 do { \ 389 raw_spin_unlock(&logbuf_lock); \ 390 printk_safe_exit_irqrestore(flags); \ 391 } while (0) 392 393 #ifdef CONFIG_PRINTK 394 DECLARE_WAIT_QUEUE_HEAD(log_wait); 395 /* the next printk record to read by syslog(READ) or /proc/kmsg */ 396 static u64 syslog_seq; 397 static size_t syslog_partial; 398 static bool syslog_time; 399 400 /* the next printk record to write to the console */ 401 static u64 console_seq; 402 static u64 exclusive_console_stop_seq; 403 static unsigned long console_dropped; 404 405 /* the next printk record to read after the last 'clear' command */ 406 static u64 clear_seq; 407 408 #ifdef CONFIG_PRINTK_CALLER 409 #define PREFIX_MAX 48 410 #else 411 #define PREFIX_MAX 32 412 #endif 413 #define LOG_LINE_MAX (1024 - PREFIX_MAX) 414 415 #define LOG_LEVEL(v) ((v) & 0x07) 416 #define LOG_FACILITY(v) ((v) >> 3 & 0xff) 417 418 /* record buffer */ 419 #define LOG_ALIGN __alignof__(unsigned long) 420 #define __LOG_BUF_LEN (1 << CONFIG_LOG_BUF_SHIFT) 421 #define LOG_BUF_LEN_MAX (u32)(1 << 31) 422 static char __log_buf[__LOG_BUF_LEN] __aligned(LOG_ALIGN); 423 static char *log_buf = __log_buf; 424 static u32 log_buf_len = __LOG_BUF_LEN; 425 426 /* 427 * Define the average message size. This only affects the number of 428 * descriptors that will be available. Underestimating is better than 429 * overestimating (too many available descriptors is better than not enough). 430 */ 431 #define PRB_AVGBITS 5 /* 32 character average length */ 432 433 #if CONFIG_LOG_BUF_SHIFT <= PRB_AVGBITS 434 #error CONFIG_LOG_BUF_SHIFT value too small. 435 #endif 436 _DEFINE_PRINTKRB(printk_rb_static, CONFIG_LOG_BUF_SHIFT - PRB_AVGBITS, 437 PRB_AVGBITS, &__log_buf[0]); 438 439 static struct printk_ringbuffer printk_rb_dynamic; 440 441 static struct printk_ringbuffer *prb = &printk_rb_static; 442 443 /* 444 * We cannot access per-CPU data (e.g. per-CPU flush irq_work) before 445 * per_cpu_areas are initialised. This variable is set to true when 446 * it's safe to access per-CPU data. 447 */ 448 static bool __printk_percpu_data_ready __read_mostly; 449 450 bool printk_percpu_data_ready(void) 451 { 452 return __printk_percpu_data_ready; 453 } 454 455 /* Return log buffer address */ 456 char *log_buf_addr_get(void) 457 { 458 return log_buf; 459 } 460 461 /* Return log buffer size */ 462 u32 log_buf_len_get(void) 463 { 464 return log_buf_len; 465 } 466 467 /* 468 * Define how much of the log buffer we could take at maximum. The value 469 * must be greater than two. Note that only half of the buffer is available 470 * when the index points to the middle. 471 */ 472 #define MAX_LOG_TAKE_PART 4 473 static const char trunc_msg[] = "<truncated>"; 474 475 static void truncate_msg(u16 *text_len, u16 *trunc_msg_len) 476 { 477 /* 478 * The message should not take the whole buffer. Otherwise, it might 479 * get removed too soon. 480 */ 481 u32 max_text_len = log_buf_len / MAX_LOG_TAKE_PART; 482 483 if (*text_len > max_text_len) 484 *text_len = max_text_len; 485 486 /* enable the warning message (if there is room) */ 487 *trunc_msg_len = strlen(trunc_msg); 488 if (*text_len >= *trunc_msg_len) 489 *text_len -= *trunc_msg_len; 490 else 491 *trunc_msg_len = 0; 492 } 493 494 int dmesg_restrict = IS_ENABLED(CONFIG_SECURITY_DMESG_RESTRICT); 495 496 static int syslog_action_restricted(int type) 497 { 498 if (dmesg_restrict) 499 return 1; 500 /* 501 * Unless restricted, we allow "read all" and "get buffer size" 502 * for everybody. 503 */ 504 return type != SYSLOG_ACTION_READ_ALL && 505 type != SYSLOG_ACTION_SIZE_BUFFER; 506 } 507 508 static int check_syslog_permissions(int type, int source) 509 { 510 /* 511 * If this is from /proc/kmsg and we've already opened it, then we've 512 * already done the capabilities checks at open time. 513 */ 514 if (source == SYSLOG_FROM_PROC && type != SYSLOG_ACTION_OPEN) 515 goto ok; 516 517 if (syslog_action_restricted(type)) { 518 if (capable(CAP_SYSLOG)) 519 goto ok; 520 /* 521 * For historical reasons, accept CAP_SYS_ADMIN too, with 522 * a warning. 523 */ 524 if (capable(CAP_SYS_ADMIN)) { 525 pr_warn_once("%s (%d): Attempt to access syslog with " 526 "CAP_SYS_ADMIN but no CAP_SYSLOG " 527 "(deprecated).\n", 528 current->comm, task_pid_nr(current)); 529 goto ok; 530 } 531 return -EPERM; 532 } 533 ok: 534 return security_syslog(type); 535 } 536 537 static void append_char(char **pp, char *e, char c) 538 { 539 if (*pp < e) 540 *(*pp)++ = c; 541 } 542 543 static ssize_t info_print_ext_header(char *buf, size_t size, 544 struct printk_info *info) 545 { 546 u64 ts_usec = info->ts_nsec; 547 char caller[20]; 548 #ifdef CONFIG_PRINTK_CALLER 549 u32 id = info->caller_id; 550 551 snprintf(caller, sizeof(caller), ",caller=%c%u", 552 id & 0x80000000 ? 'C' : 'T', id & ~0x80000000); 553 #else 554 caller[0] = '\0'; 555 #endif 556 557 do_div(ts_usec, 1000); 558 559 return scnprintf(buf, size, "%u,%llu,%llu,%c%s;", 560 (info->facility << 3) | info->level, info->seq, 561 ts_usec, info->flags & LOG_CONT ? 'c' : '-', caller); 562 } 563 564 static ssize_t msg_add_ext_text(char *buf, size_t size, 565 const char *text, size_t text_len, 566 unsigned char endc) 567 { 568 char *p = buf, *e = buf + size; 569 size_t i; 570 571 /* escape non-printable characters */ 572 for (i = 0; i < text_len; i++) { 573 unsigned char c = text[i]; 574 575 if (c < ' ' || c >= 127 || c == '\\') 576 p += scnprintf(p, e - p, "\\x%02x", c); 577 else 578 append_char(&p, e, c); 579 } 580 append_char(&p, e, endc); 581 582 return p - buf; 583 } 584 585 static ssize_t msg_add_dict_text(char *buf, size_t size, 586 const char *key, const char *val) 587 { 588 size_t val_len = strlen(val); 589 ssize_t len; 590 591 if (!val_len) 592 return 0; 593 594 len = msg_add_ext_text(buf, size, "", 0, ' '); /* dict prefix */ 595 len += msg_add_ext_text(buf + len, size - len, key, strlen(key), '='); 596 len += msg_add_ext_text(buf + len, size - len, val, val_len, '\n'); 597 598 return len; 599 } 600 601 static ssize_t msg_print_ext_body(char *buf, size_t size, 602 char *text, size_t text_len, 603 struct dev_printk_info *dev_info) 604 { 605 ssize_t len; 606 607 len = msg_add_ext_text(buf, size, text, text_len, '\n'); 608 609 if (!dev_info) 610 goto out; 611 612 len += msg_add_dict_text(buf + len, size - len, "SUBSYSTEM", 613 dev_info->subsystem); 614 len += msg_add_dict_text(buf + len, size - len, "DEVICE", 615 dev_info->device); 616 out: 617 return len; 618 } 619 620 /* /dev/kmsg - userspace message inject/listen interface */ 621 struct devkmsg_user { 622 u64 seq; 623 struct ratelimit_state rs; 624 struct mutex lock; 625 char buf[CONSOLE_EXT_LOG_MAX]; 626 627 struct printk_info info; 628 char text_buf[CONSOLE_EXT_LOG_MAX]; 629 struct printk_record record; 630 }; 631 632 static __printf(3, 4) __cold 633 int devkmsg_emit(int facility, int level, const char *fmt, ...) 634 { 635 va_list args; 636 int r; 637 638 va_start(args, fmt); 639 r = vprintk_emit(facility, level, NULL, fmt, args); 640 va_end(args); 641 642 return r; 643 } 644 645 static ssize_t devkmsg_write(struct kiocb *iocb, struct iov_iter *from) 646 { 647 char *buf, *line; 648 int level = default_message_loglevel; 649 int facility = 1; /* LOG_USER */ 650 struct file *file = iocb->ki_filp; 651 struct devkmsg_user *user = file->private_data; 652 size_t len = iov_iter_count(from); 653 ssize_t ret = len; 654 655 if (!user || len > LOG_LINE_MAX) 656 return -EINVAL; 657 658 /* Ignore when user logging is disabled. */ 659 if (devkmsg_log & DEVKMSG_LOG_MASK_OFF) 660 return len; 661 662 /* Ratelimit when not explicitly enabled. */ 663 if (!(devkmsg_log & DEVKMSG_LOG_MASK_ON)) { 664 if (!___ratelimit(&user->rs, current->comm)) 665 return ret; 666 } 667 668 buf = kmalloc(len+1, GFP_KERNEL); 669 if (buf == NULL) 670 return -ENOMEM; 671 672 buf[len] = '\0'; 673 if (!copy_from_iter_full(buf, len, from)) { 674 kfree(buf); 675 return -EFAULT; 676 } 677 678 /* 679 * Extract and skip the syslog prefix <[0-9]*>. Coming from userspace 680 * the decimal value represents 32bit, the lower 3 bit are the log 681 * level, the rest are the log facility. 682 * 683 * If no prefix or no userspace facility is specified, we 684 * enforce LOG_USER, to be able to reliably distinguish 685 * kernel-generated messages from userspace-injected ones. 686 */ 687 line = buf; 688 if (line[0] == '<') { 689 char *endp = NULL; 690 unsigned int u; 691 692 u = simple_strtoul(line + 1, &endp, 10); 693 if (endp && endp[0] == '>') { 694 level = LOG_LEVEL(u); 695 if (LOG_FACILITY(u) != 0) 696 facility = LOG_FACILITY(u); 697 endp++; 698 line = endp; 699 } 700 } 701 702 devkmsg_emit(facility, level, "%s", line); 703 kfree(buf); 704 return ret; 705 } 706 707 static ssize_t devkmsg_read(struct file *file, char __user *buf, 708 size_t count, loff_t *ppos) 709 { 710 struct devkmsg_user *user = file->private_data; 711 struct printk_record *r = &user->record; 712 size_t len; 713 ssize_t ret; 714 715 if (!user) 716 return -EBADF; 717 718 ret = mutex_lock_interruptible(&user->lock); 719 if (ret) 720 return ret; 721 722 logbuf_lock_irq(); 723 if (!prb_read_valid(prb, user->seq, r)) { 724 if (file->f_flags & O_NONBLOCK) { 725 ret = -EAGAIN; 726 logbuf_unlock_irq(); 727 goto out; 728 } 729 730 logbuf_unlock_irq(); 731 ret = wait_event_interruptible(log_wait, 732 prb_read_valid(prb, user->seq, r)); 733 if (ret) 734 goto out; 735 logbuf_lock_irq(); 736 } 737 738 if (user->seq < prb_first_valid_seq(prb)) { 739 /* our last seen message is gone, return error and reset */ 740 user->seq = prb_first_valid_seq(prb); 741 ret = -EPIPE; 742 logbuf_unlock_irq(); 743 goto out; 744 } 745 746 len = info_print_ext_header(user->buf, sizeof(user->buf), r->info); 747 len += msg_print_ext_body(user->buf + len, sizeof(user->buf) - len, 748 &r->text_buf[0], r->info->text_len, 749 &r->info->dev_info); 750 751 user->seq = r->info->seq + 1; 752 logbuf_unlock_irq(); 753 754 if (len > count) { 755 ret = -EINVAL; 756 goto out; 757 } 758 759 if (copy_to_user(buf, user->buf, len)) { 760 ret = -EFAULT; 761 goto out; 762 } 763 ret = len; 764 out: 765 mutex_unlock(&user->lock); 766 return ret; 767 } 768 769 /* 770 * Be careful when modifying this function!!! 771 * 772 * Only few operations are supported because the device works only with the 773 * entire variable length messages (records). Non-standard values are 774 * returned in the other cases and has been this way for quite some time. 775 * User space applications might depend on this behavior. 776 */ 777 static loff_t devkmsg_llseek(struct file *file, loff_t offset, int whence) 778 { 779 struct devkmsg_user *user = file->private_data; 780 loff_t ret = 0; 781 782 if (!user) 783 return -EBADF; 784 if (offset) 785 return -ESPIPE; 786 787 logbuf_lock_irq(); 788 switch (whence) { 789 case SEEK_SET: 790 /* the first record */ 791 user->seq = prb_first_valid_seq(prb); 792 break; 793 case SEEK_DATA: 794 /* 795 * The first record after the last SYSLOG_ACTION_CLEAR, 796 * like issued by 'dmesg -c'. Reading /dev/kmsg itself 797 * changes no global state, and does not clear anything. 798 */ 799 user->seq = clear_seq; 800 break; 801 case SEEK_END: 802 /* after the last record */ 803 user->seq = prb_next_seq(prb); 804 break; 805 default: 806 ret = -EINVAL; 807 } 808 logbuf_unlock_irq(); 809 return ret; 810 } 811 812 static __poll_t devkmsg_poll(struct file *file, poll_table *wait) 813 { 814 struct devkmsg_user *user = file->private_data; 815 __poll_t ret = 0; 816 817 if (!user) 818 return EPOLLERR|EPOLLNVAL; 819 820 poll_wait(file, &log_wait, wait); 821 822 logbuf_lock_irq(); 823 if (prb_read_valid(prb, user->seq, NULL)) { 824 /* return error when data has vanished underneath us */ 825 if (user->seq < prb_first_valid_seq(prb)) 826 ret = EPOLLIN|EPOLLRDNORM|EPOLLERR|EPOLLPRI; 827 else 828 ret = EPOLLIN|EPOLLRDNORM; 829 } 830 logbuf_unlock_irq(); 831 832 return ret; 833 } 834 835 static int devkmsg_open(struct inode *inode, struct file *file) 836 { 837 struct devkmsg_user *user; 838 int err; 839 840 if (devkmsg_log & DEVKMSG_LOG_MASK_OFF) 841 return -EPERM; 842 843 /* write-only does not need any file context */ 844 if ((file->f_flags & O_ACCMODE) != O_WRONLY) { 845 err = check_syslog_permissions(SYSLOG_ACTION_READ_ALL, 846 SYSLOG_FROM_READER); 847 if (err) 848 return err; 849 } 850 851 user = kmalloc(sizeof(struct devkmsg_user), GFP_KERNEL); 852 if (!user) 853 return -ENOMEM; 854 855 ratelimit_default_init(&user->rs); 856 ratelimit_set_flags(&user->rs, RATELIMIT_MSG_ON_RELEASE); 857 858 mutex_init(&user->lock); 859 860 prb_rec_init_rd(&user->record, &user->info, 861 &user->text_buf[0], sizeof(user->text_buf)); 862 863 logbuf_lock_irq(); 864 user->seq = prb_first_valid_seq(prb); 865 logbuf_unlock_irq(); 866 867 file->private_data = user; 868 return 0; 869 } 870 871 static int devkmsg_release(struct inode *inode, struct file *file) 872 { 873 struct devkmsg_user *user = file->private_data; 874 875 if (!user) 876 return 0; 877 878 ratelimit_state_exit(&user->rs); 879 880 mutex_destroy(&user->lock); 881 kfree(user); 882 return 0; 883 } 884 885 const struct file_operations kmsg_fops = { 886 .open = devkmsg_open, 887 .read = devkmsg_read, 888 .write_iter = devkmsg_write, 889 .llseek = devkmsg_llseek, 890 .poll = devkmsg_poll, 891 .release = devkmsg_release, 892 }; 893 894 #ifdef CONFIG_CRASH_CORE 895 /* 896 * This appends the listed symbols to /proc/vmcore 897 * 898 * /proc/vmcore is used by various utilities, like crash and makedumpfile to 899 * obtain access to symbols that are otherwise very difficult to locate. These 900 * symbols are specifically used so that utilities can access and extract the 901 * dmesg log from a vmcore file after a crash. 902 */ 903 void log_buf_vmcoreinfo_setup(void) 904 { 905 struct dev_printk_info *dev_info = NULL; 906 907 VMCOREINFO_SYMBOL(prb); 908 VMCOREINFO_SYMBOL(printk_rb_static); 909 VMCOREINFO_SYMBOL(clear_seq); 910 911 /* 912 * Export struct size and field offsets. User space tools can 913 * parse it and detect any changes to structure down the line. 914 */ 915 916 VMCOREINFO_STRUCT_SIZE(printk_ringbuffer); 917 VMCOREINFO_OFFSET(printk_ringbuffer, desc_ring); 918 VMCOREINFO_OFFSET(printk_ringbuffer, text_data_ring); 919 VMCOREINFO_OFFSET(printk_ringbuffer, fail); 920 921 VMCOREINFO_STRUCT_SIZE(prb_desc_ring); 922 VMCOREINFO_OFFSET(prb_desc_ring, count_bits); 923 VMCOREINFO_OFFSET(prb_desc_ring, descs); 924 VMCOREINFO_OFFSET(prb_desc_ring, infos); 925 VMCOREINFO_OFFSET(prb_desc_ring, head_id); 926 VMCOREINFO_OFFSET(prb_desc_ring, tail_id); 927 928 VMCOREINFO_STRUCT_SIZE(prb_desc); 929 VMCOREINFO_OFFSET(prb_desc, state_var); 930 VMCOREINFO_OFFSET(prb_desc, text_blk_lpos); 931 932 VMCOREINFO_STRUCT_SIZE(prb_data_blk_lpos); 933 VMCOREINFO_OFFSET(prb_data_blk_lpos, begin); 934 VMCOREINFO_OFFSET(prb_data_blk_lpos, next); 935 936 VMCOREINFO_STRUCT_SIZE(printk_info); 937 VMCOREINFO_OFFSET(printk_info, seq); 938 VMCOREINFO_OFFSET(printk_info, ts_nsec); 939 VMCOREINFO_OFFSET(printk_info, text_len); 940 VMCOREINFO_OFFSET(printk_info, caller_id); 941 VMCOREINFO_OFFSET(printk_info, dev_info); 942 943 VMCOREINFO_STRUCT_SIZE(dev_printk_info); 944 VMCOREINFO_OFFSET(dev_printk_info, subsystem); 945 VMCOREINFO_LENGTH(printk_info_subsystem, sizeof(dev_info->subsystem)); 946 VMCOREINFO_OFFSET(dev_printk_info, device); 947 VMCOREINFO_LENGTH(printk_info_device, sizeof(dev_info->device)); 948 949 VMCOREINFO_STRUCT_SIZE(prb_data_ring); 950 VMCOREINFO_OFFSET(prb_data_ring, size_bits); 951 VMCOREINFO_OFFSET(prb_data_ring, data); 952 VMCOREINFO_OFFSET(prb_data_ring, head_lpos); 953 VMCOREINFO_OFFSET(prb_data_ring, tail_lpos); 954 955 VMCOREINFO_SIZE(atomic_long_t); 956 VMCOREINFO_TYPE_OFFSET(atomic_long_t, counter); 957 } 958 #endif 959 960 /* requested log_buf_len from kernel cmdline */ 961 static unsigned long __initdata new_log_buf_len; 962 963 /* we practice scaling the ring buffer by powers of 2 */ 964 static void __init log_buf_len_update(u64 size) 965 { 966 if (size > (u64)LOG_BUF_LEN_MAX) { 967 size = (u64)LOG_BUF_LEN_MAX; 968 pr_err("log_buf over 2G is not supported.\n"); 969 } 970 971 if (size) 972 size = roundup_pow_of_two(size); 973 if (size > log_buf_len) 974 new_log_buf_len = (unsigned long)size; 975 } 976 977 /* save requested log_buf_len since it's too early to process it */ 978 static int __init log_buf_len_setup(char *str) 979 { 980 u64 size; 981 982 if (!str) 983 return -EINVAL; 984 985 size = memparse(str, &str); 986 987 log_buf_len_update(size); 988 989 return 0; 990 } 991 early_param("log_buf_len", log_buf_len_setup); 992 993 #ifdef CONFIG_SMP 994 #define __LOG_CPU_MAX_BUF_LEN (1 << CONFIG_LOG_CPU_MAX_BUF_SHIFT) 995 996 static void __init log_buf_add_cpu(void) 997 { 998 unsigned int cpu_extra; 999 1000 /* 1001 * archs should set up cpu_possible_bits properly with 1002 * set_cpu_possible() after setup_arch() but just in 1003 * case lets ensure this is valid. 1004 */ 1005 if (num_possible_cpus() == 1) 1006 return; 1007 1008 cpu_extra = (num_possible_cpus() - 1) * __LOG_CPU_MAX_BUF_LEN; 1009 1010 /* by default this will only continue through for large > 64 CPUs */ 1011 if (cpu_extra <= __LOG_BUF_LEN / 2) 1012 return; 1013 1014 pr_info("log_buf_len individual max cpu contribution: %d bytes\n", 1015 __LOG_CPU_MAX_BUF_LEN); 1016 pr_info("log_buf_len total cpu_extra contributions: %d bytes\n", 1017 cpu_extra); 1018 pr_info("log_buf_len min size: %d bytes\n", __LOG_BUF_LEN); 1019 1020 log_buf_len_update(cpu_extra + __LOG_BUF_LEN); 1021 } 1022 #else /* !CONFIG_SMP */ 1023 static inline void log_buf_add_cpu(void) {} 1024 #endif /* CONFIG_SMP */ 1025 1026 static void __init set_percpu_data_ready(void) 1027 { 1028 printk_safe_init(); 1029 /* Make sure we set this flag only after printk_safe() init is done */ 1030 barrier(); 1031 __printk_percpu_data_ready = true; 1032 } 1033 1034 static unsigned int __init add_to_rb(struct printk_ringbuffer *rb, 1035 struct printk_record *r) 1036 { 1037 struct prb_reserved_entry e; 1038 struct printk_record dest_r; 1039 1040 prb_rec_init_wr(&dest_r, r->info->text_len); 1041 1042 if (!prb_reserve(&e, rb, &dest_r)) 1043 return 0; 1044 1045 memcpy(&dest_r.text_buf[0], &r->text_buf[0], r->info->text_len); 1046 dest_r.info->text_len = r->info->text_len; 1047 dest_r.info->facility = r->info->facility; 1048 dest_r.info->level = r->info->level; 1049 dest_r.info->flags = r->info->flags; 1050 dest_r.info->ts_nsec = r->info->ts_nsec; 1051 dest_r.info->caller_id = r->info->caller_id; 1052 memcpy(&dest_r.info->dev_info, &r->info->dev_info, sizeof(dest_r.info->dev_info)); 1053 1054 prb_final_commit(&e); 1055 1056 return prb_record_text_space(&e); 1057 } 1058 1059 static char setup_text_buf[LOG_LINE_MAX] __initdata; 1060 1061 void __init setup_log_buf(int early) 1062 { 1063 struct printk_info *new_infos; 1064 unsigned int new_descs_count; 1065 struct prb_desc *new_descs; 1066 struct printk_info info; 1067 struct printk_record r; 1068 size_t new_descs_size; 1069 size_t new_infos_size; 1070 unsigned long flags; 1071 char *new_log_buf; 1072 unsigned int free; 1073 u64 seq; 1074 1075 /* 1076 * Some archs call setup_log_buf() multiple times - first is very 1077 * early, e.g. from setup_arch(), and second - when percpu_areas 1078 * are initialised. 1079 */ 1080 if (!early) 1081 set_percpu_data_ready(); 1082 1083 if (log_buf != __log_buf) 1084 return; 1085 1086 if (!early && !new_log_buf_len) 1087 log_buf_add_cpu(); 1088 1089 if (!new_log_buf_len) 1090 return; 1091 1092 new_descs_count = new_log_buf_len >> PRB_AVGBITS; 1093 if (new_descs_count == 0) { 1094 pr_err("new_log_buf_len: %lu too small\n", new_log_buf_len); 1095 return; 1096 } 1097 1098 new_log_buf = memblock_alloc(new_log_buf_len, LOG_ALIGN); 1099 if (unlikely(!new_log_buf)) { 1100 pr_err("log_buf_len: %lu text bytes not available\n", 1101 new_log_buf_len); 1102 return; 1103 } 1104 1105 new_descs_size = new_descs_count * sizeof(struct prb_desc); 1106 new_descs = memblock_alloc(new_descs_size, LOG_ALIGN); 1107 if (unlikely(!new_descs)) { 1108 pr_err("log_buf_len: %zu desc bytes not available\n", 1109 new_descs_size); 1110 goto err_free_log_buf; 1111 } 1112 1113 new_infos_size = new_descs_count * sizeof(struct printk_info); 1114 new_infos = memblock_alloc(new_infos_size, LOG_ALIGN); 1115 if (unlikely(!new_infos)) { 1116 pr_err("log_buf_len: %zu info bytes not available\n", 1117 new_infos_size); 1118 goto err_free_descs; 1119 } 1120 1121 prb_rec_init_rd(&r, &info, &setup_text_buf[0], sizeof(setup_text_buf)); 1122 1123 prb_init(&printk_rb_dynamic, 1124 new_log_buf, ilog2(new_log_buf_len), 1125 new_descs, ilog2(new_descs_count), 1126 new_infos); 1127 1128 printk_safe_enter_irqsave(flags); 1129 1130 log_buf_len = new_log_buf_len; 1131 log_buf = new_log_buf; 1132 new_log_buf_len = 0; 1133 1134 free = __LOG_BUF_LEN; 1135 prb_for_each_record(0, &printk_rb_static, seq, &r) 1136 free -= add_to_rb(&printk_rb_dynamic, &r); 1137 1138 /* 1139 * This is early enough that everything is still running on the 1140 * boot CPU and interrupts are disabled. So no new messages will 1141 * appear during the transition to the dynamic buffer. 1142 */ 1143 prb = &printk_rb_dynamic; 1144 1145 printk_safe_exit_irqrestore(flags); 1146 1147 if (seq != prb_next_seq(&printk_rb_static)) { 1148 pr_err("dropped %llu messages\n", 1149 prb_next_seq(&printk_rb_static) - seq); 1150 } 1151 1152 pr_info("log_buf_len: %u bytes\n", log_buf_len); 1153 pr_info("early log buf free: %u(%u%%)\n", 1154 free, (free * 100) / __LOG_BUF_LEN); 1155 return; 1156 1157 err_free_descs: 1158 memblock_free(__pa(new_descs), new_descs_size); 1159 err_free_log_buf: 1160 memblock_free(__pa(new_log_buf), new_log_buf_len); 1161 } 1162 1163 static bool __read_mostly ignore_loglevel; 1164 1165 static int __init ignore_loglevel_setup(char *str) 1166 { 1167 ignore_loglevel = true; 1168 pr_info("debug: ignoring loglevel setting.\n"); 1169 1170 return 0; 1171 } 1172 1173 early_param("ignore_loglevel", ignore_loglevel_setup); 1174 module_param(ignore_loglevel, bool, S_IRUGO | S_IWUSR); 1175 MODULE_PARM_DESC(ignore_loglevel, 1176 "ignore loglevel setting (prints all kernel messages to the console)"); 1177 1178 static bool suppress_message_printing(int level) 1179 { 1180 return (level >= console_loglevel && !ignore_loglevel); 1181 } 1182 1183 #ifdef CONFIG_BOOT_PRINTK_DELAY 1184 1185 static int boot_delay; /* msecs delay after each printk during bootup */ 1186 static unsigned long long loops_per_msec; /* based on boot_delay */ 1187 1188 static int __init boot_delay_setup(char *str) 1189 { 1190 unsigned long lpj; 1191 1192 lpj = preset_lpj ? preset_lpj : 1000000; /* some guess */ 1193 loops_per_msec = (unsigned long long)lpj / 1000 * HZ; 1194 1195 get_option(&str, &boot_delay); 1196 if (boot_delay > 10 * 1000) 1197 boot_delay = 0; 1198 1199 pr_debug("boot_delay: %u, preset_lpj: %ld, lpj: %lu, " 1200 "HZ: %d, loops_per_msec: %llu\n", 1201 boot_delay, preset_lpj, lpj, HZ, loops_per_msec); 1202 return 0; 1203 } 1204 early_param("boot_delay", boot_delay_setup); 1205 1206 static void boot_delay_msec(int level) 1207 { 1208 unsigned long long k; 1209 unsigned long timeout; 1210 1211 if ((boot_delay == 0 || system_state >= SYSTEM_RUNNING) 1212 || suppress_message_printing(level)) { 1213 return; 1214 } 1215 1216 k = (unsigned long long)loops_per_msec * boot_delay; 1217 1218 timeout = jiffies + msecs_to_jiffies(boot_delay); 1219 while (k) { 1220 k--; 1221 cpu_relax(); 1222 /* 1223 * use (volatile) jiffies to prevent 1224 * compiler reduction; loop termination via jiffies 1225 * is secondary and may or may not happen. 1226 */ 1227 if (time_after(jiffies, timeout)) 1228 break; 1229 touch_nmi_watchdog(); 1230 } 1231 } 1232 #else 1233 static inline void boot_delay_msec(int level) 1234 { 1235 } 1236 #endif 1237 1238 static bool printk_time = IS_ENABLED(CONFIG_PRINTK_TIME); 1239 module_param_named(time, printk_time, bool, S_IRUGO | S_IWUSR); 1240 1241 static size_t print_syslog(unsigned int level, char *buf) 1242 { 1243 return sprintf(buf, "<%u>", level); 1244 } 1245 1246 static size_t print_time(u64 ts, char *buf) 1247 { 1248 unsigned long rem_nsec = do_div(ts, 1000000000); 1249 1250 return sprintf(buf, "[%5lu.%06lu]", 1251 (unsigned long)ts, rem_nsec / 1000); 1252 } 1253 1254 #ifdef CONFIG_PRINTK_CALLER 1255 static size_t print_caller(u32 id, char *buf) 1256 { 1257 char caller[12]; 1258 1259 snprintf(caller, sizeof(caller), "%c%u", 1260 id & 0x80000000 ? 'C' : 'T', id & ~0x80000000); 1261 return sprintf(buf, "[%6s]", caller); 1262 } 1263 #else 1264 #define print_caller(id, buf) 0 1265 #endif 1266 1267 static size_t info_print_prefix(const struct printk_info *info, bool syslog, 1268 bool time, char *buf) 1269 { 1270 size_t len = 0; 1271 1272 if (syslog) 1273 len = print_syslog((info->facility << 3) | info->level, buf); 1274 1275 if (time) 1276 len += print_time(info->ts_nsec, buf + len); 1277 1278 len += print_caller(info->caller_id, buf + len); 1279 1280 if (IS_ENABLED(CONFIG_PRINTK_CALLER) || time) { 1281 buf[len++] = ' '; 1282 buf[len] = '\0'; 1283 } 1284 1285 return len; 1286 } 1287 1288 /* 1289 * Prepare the record for printing. The text is shifted within the given 1290 * buffer to avoid a need for another one. The following operations are 1291 * done: 1292 * 1293 * - Add prefix for each line. 1294 * - Drop truncated lines that no longer fit into the buffer. 1295 * - Add the trailing newline that has been removed in vprintk_store(). 1296 * - Add a string terminator. 1297 * 1298 * Since the produced string is always terminated, the maximum possible 1299 * return value is @r->text_buf_size - 1; 1300 * 1301 * Return: The length of the updated/prepared text, including the added 1302 * prefixes and the newline. The terminator is not counted. The dropped 1303 * line(s) are not counted. 1304 */ 1305 static size_t record_print_text(struct printk_record *r, bool syslog, 1306 bool time) 1307 { 1308 size_t text_len = r->info->text_len; 1309 size_t buf_size = r->text_buf_size; 1310 char *text = r->text_buf; 1311 char prefix[PREFIX_MAX]; 1312 bool truncated = false; 1313 size_t prefix_len; 1314 size_t line_len; 1315 size_t len = 0; 1316 char *next; 1317 1318 /* 1319 * If the message was truncated because the buffer was not large 1320 * enough, treat the available text as if it were the full text. 1321 */ 1322 if (text_len > buf_size) 1323 text_len = buf_size; 1324 1325 prefix_len = info_print_prefix(r->info, syslog, time, prefix); 1326 1327 /* 1328 * @text_len: bytes of unprocessed text 1329 * @line_len: bytes of current line _without_ newline 1330 * @text: pointer to beginning of current line 1331 * @len: number of bytes prepared in r->text_buf 1332 */ 1333 for (;;) { 1334 next = memchr(text, '\n', text_len); 1335 if (next) { 1336 line_len = next - text; 1337 } else { 1338 /* Drop truncated line(s). */ 1339 if (truncated) 1340 break; 1341 line_len = text_len; 1342 } 1343 1344 /* 1345 * Truncate the text if there is not enough space to add the 1346 * prefix and a trailing newline and a terminator. 1347 */ 1348 if (len + prefix_len + text_len + 1 + 1 > buf_size) { 1349 /* Drop even the current line if no space. */ 1350 if (len + prefix_len + line_len + 1 + 1 > buf_size) 1351 break; 1352 1353 text_len = buf_size - len - prefix_len - 1 - 1; 1354 truncated = true; 1355 } 1356 1357 memmove(text + prefix_len, text, text_len); 1358 memcpy(text, prefix, prefix_len); 1359 1360 /* 1361 * Increment the prepared length to include the text and 1362 * prefix that were just moved+copied. Also increment for the 1363 * newline at the end of this line. If this is the last line, 1364 * there is no newline, but it will be added immediately below. 1365 */ 1366 len += prefix_len + line_len + 1; 1367 if (text_len == line_len) { 1368 /* 1369 * This is the last line. Add the trailing newline 1370 * removed in vprintk_store(). 1371 */ 1372 text[prefix_len + line_len] = '\n'; 1373 break; 1374 } 1375 1376 /* 1377 * Advance beyond the added prefix and the related line with 1378 * its newline. 1379 */ 1380 text += prefix_len + line_len + 1; 1381 1382 /* 1383 * The remaining text has only decreased by the line with its 1384 * newline. 1385 * 1386 * Note that @text_len can become zero. It happens when @text 1387 * ended with a newline (either due to truncation or the 1388 * original string ending with "\n\n"). The loop is correctly 1389 * repeated and (if not truncated) an empty line with a prefix 1390 * will be prepared. 1391 */ 1392 text_len -= line_len + 1; 1393 } 1394 1395 /* 1396 * If a buffer was provided, it will be terminated. Space for the 1397 * string terminator is guaranteed to be available. The terminator is 1398 * not counted in the return value. 1399 */ 1400 if (buf_size > 0) 1401 r->text_buf[len] = 0; 1402 1403 return len; 1404 } 1405 1406 static size_t get_record_print_text_size(struct printk_info *info, 1407 unsigned int line_count, 1408 bool syslog, bool time) 1409 { 1410 char prefix[PREFIX_MAX]; 1411 size_t prefix_len; 1412 1413 prefix_len = info_print_prefix(info, syslog, time, prefix); 1414 1415 /* 1416 * Each line will be preceded with a prefix. The intermediate 1417 * newlines are already within the text, but a final trailing 1418 * newline will be added. 1419 */ 1420 return ((prefix_len * line_count) + info->text_len + 1); 1421 } 1422 1423 static int syslog_print(char __user *buf, int size) 1424 { 1425 struct printk_info info; 1426 struct printk_record r; 1427 char *text; 1428 int len = 0; 1429 1430 text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL); 1431 if (!text) 1432 return -ENOMEM; 1433 1434 prb_rec_init_rd(&r, &info, text, LOG_LINE_MAX + PREFIX_MAX); 1435 1436 while (size > 0) { 1437 size_t n; 1438 size_t skip; 1439 1440 logbuf_lock_irq(); 1441 if (!prb_read_valid(prb, syslog_seq, &r)) { 1442 logbuf_unlock_irq(); 1443 break; 1444 } 1445 if (r.info->seq != syslog_seq) { 1446 /* message is gone, move to next valid one */ 1447 syslog_seq = r.info->seq; 1448 syslog_partial = 0; 1449 } 1450 1451 /* 1452 * To keep reading/counting partial line consistent, 1453 * use printk_time value as of the beginning of a line. 1454 */ 1455 if (!syslog_partial) 1456 syslog_time = printk_time; 1457 1458 skip = syslog_partial; 1459 n = record_print_text(&r, true, syslog_time); 1460 if (n - syslog_partial <= size) { 1461 /* message fits into buffer, move forward */ 1462 syslog_seq = r.info->seq + 1; 1463 n -= syslog_partial; 1464 syslog_partial = 0; 1465 } else if (!len){ 1466 /* partial read(), remember position */ 1467 n = size; 1468 syslog_partial += n; 1469 } else 1470 n = 0; 1471 logbuf_unlock_irq(); 1472 1473 if (!n) 1474 break; 1475 1476 if (copy_to_user(buf, text + skip, n)) { 1477 if (!len) 1478 len = -EFAULT; 1479 break; 1480 } 1481 1482 len += n; 1483 size -= n; 1484 buf += n; 1485 } 1486 1487 kfree(text); 1488 return len; 1489 } 1490 1491 static int syslog_print_all(char __user *buf, int size, bool clear) 1492 { 1493 struct printk_info info; 1494 unsigned int line_count; 1495 struct printk_record r; 1496 char *text; 1497 int len = 0; 1498 u64 seq; 1499 bool time; 1500 1501 text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL); 1502 if (!text) 1503 return -ENOMEM; 1504 1505 time = printk_time; 1506 logbuf_lock_irq(); 1507 /* 1508 * Find first record that fits, including all following records, 1509 * into the user-provided buffer for this dump. 1510 */ 1511 prb_for_each_info(clear_seq, prb, seq, &info, &line_count) 1512 len += get_record_print_text_size(&info, line_count, true, time); 1513 1514 /* move first record forward until length fits into the buffer */ 1515 prb_for_each_info(clear_seq, prb, seq, &info, &line_count) { 1516 if (len <= size) 1517 break; 1518 len -= get_record_print_text_size(&info, line_count, true, time); 1519 } 1520 1521 prb_rec_init_rd(&r, &info, text, LOG_LINE_MAX + PREFIX_MAX); 1522 1523 len = 0; 1524 prb_for_each_record(seq, prb, seq, &r) { 1525 int textlen; 1526 1527 textlen = record_print_text(&r, true, time); 1528 1529 if (len + textlen > size) { 1530 seq--; 1531 break; 1532 } 1533 1534 logbuf_unlock_irq(); 1535 if (copy_to_user(buf + len, text, textlen)) 1536 len = -EFAULT; 1537 else 1538 len += textlen; 1539 logbuf_lock_irq(); 1540 1541 if (len < 0) 1542 break; 1543 } 1544 1545 if (clear) 1546 clear_seq = seq; 1547 logbuf_unlock_irq(); 1548 1549 kfree(text); 1550 return len; 1551 } 1552 1553 static void syslog_clear(void) 1554 { 1555 logbuf_lock_irq(); 1556 clear_seq = prb_next_seq(prb); 1557 logbuf_unlock_irq(); 1558 } 1559 1560 int do_syslog(int type, char __user *buf, int len, int source) 1561 { 1562 bool clear = false; 1563 static int saved_console_loglevel = LOGLEVEL_DEFAULT; 1564 int error; 1565 1566 error = check_syslog_permissions(type, source); 1567 if (error) 1568 return error; 1569 1570 switch (type) { 1571 case SYSLOG_ACTION_CLOSE: /* Close log */ 1572 break; 1573 case SYSLOG_ACTION_OPEN: /* Open log */ 1574 break; 1575 case SYSLOG_ACTION_READ: /* Read from log */ 1576 if (!buf || len < 0) 1577 return -EINVAL; 1578 if (!len) 1579 return 0; 1580 if (!access_ok(buf, len)) 1581 return -EFAULT; 1582 error = wait_event_interruptible(log_wait, 1583 prb_read_valid(prb, syslog_seq, NULL)); 1584 if (error) 1585 return error; 1586 error = syslog_print(buf, len); 1587 break; 1588 /* Read/clear last kernel messages */ 1589 case SYSLOG_ACTION_READ_CLEAR: 1590 clear = true; 1591 fallthrough; 1592 /* Read last kernel messages */ 1593 case SYSLOG_ACTION_READ_ALL: 1594 if (!buf || len < 0) 1595 return -EINVAL; 1596 if (!len) 1597 return 0; 1598 if (!access_ok(buf, len)) 1599 return -EFAULT; 1600 error = syslog_print_all(buf, len, clear); 1601 break; 1602 /* Clear ring buffer */ 1603 case SYSLOG_ACTION_CLEAR: 1604 syslog_clear(); 1605 break; 1606 /* Disable logging to console */ 1607 case SYSLOG_ACTION_CONSOLE_OFF: 1608 if (saved_console_loglevel == LOGLEVEL_DEFAULT) 1609 saved_console_loglevel = console_loglevel; 1610 console_loglevel = minimum_console_loglevel; 1611 break; 1612 /* Enable logging to console */ 1613 case SYSLOG_ACTION_CONSOLE_ON: 1614 if (saved_console_loglevel != LOGLEVEL_DEFAULT) { 1615 console_loglevel = saved_console_loglevel; 1616 saved_console_loglevel = LOGLEVEL_DEFAULT; 1617 } 1618 break; 1619 /* Set level of messages printed to console */ 1620 case SYSLOG_ACTION_CONSOLE_LEVEL: 1621 if (len < 1 || len > 8) 1622 return -EINVAL; 1623 if (len < minimum_console_loglevel) 1624 len = minimum_console_loglevel; 1625 console_loglevel = len; 1626 /* Implicitly re-enable logging to console */ 1627 saved_console_loglevel = LOGLEVEL_DEFAULT; 1628 break; 1629 /* Number of chars in the log buffer */ 1630 case SYSLOG_ACTION_SIZE_UNREAD: 1631 logbuf_lock_irq(); 1632 if (syslog_seq < prb_first_valid_seq(prb)) { 1633 /* messages are gone, move to first one */ 1634 syslog_seq = prb_first_valid_seq(prb); 1635 syslog_partial = 0; 1636 } 1637 if (source == SYSLOG_FROM_PROC) { 1638 /* 1639 * Short-cut for poll(/"proc/kmsg") which simply checks 1640 * for pending data, not the size; return the count of 1641 * records, not the length. 1642 */ 1643 error = prb_next_seq(prb) - syslog_seq; 1644 } else { 1645 bool time = syslog_partial ? syslog_time : printk_time; 1646 struct printk_info info; 1647 unsigned int line_count; 1648 u64 seq; 1649 1650 prb_for_each_info(syslog_seq, prb, seq, &info, 1651 &line_count) { 1652 error += get_record_print_text_size(&info, line_count, 1653 true, time); 1654 time = printk_time; 1655 } 1656 error -= syslog_partial; 1657 } 1658 logbuf_unlock_irq(); 1659 break; 1660 /* Size of the log buffer */ 1661 case SYSLOG_ACTION_SIZE_BUFFER: 1662 error = log_buf_len; 1663 break; 1664 default: 1665 error = -EINVAL; 1666 break; 1667 } 1668 1669 return error; 1670 } 1671 1672 SYSCALL_DEFINE3(syslog, int, type, char __user *, buf, int, len) 1673 { 1674 return do_syslog(type, buf, len, SYSLOG_FROM_READER); 1675 } 1676 1677 /* 1678 * Special console_lock variants that help to reduce the risk of soft-lockups. 1679 * They allow to pass console_lock to another printk() call using a busy wait. 1680 */ 1681 1682 #ifdef CONFIG_LOCKDEP 1683 static struct lockdep_map console_owner_dep_map = { 1684 .name = "console_owner" 1685 }; 1686 #endif 1687 1688 static DEFINE_RAW_SPINLOCK(console_owner_lock); 1689 static struct task_struct *console_owner; 1690 static bool console_waiter; 1691 1692 /** 1693 * console_lock_spinning_enable - mark beginning of code where another 1694 * thread might safely busy wait 1695 * 1696 * This basically converts console_lock into a spinlock. This marks 1697 * the section where the console_lock owner can not sleep, because 1698 * there may be a waiter spinning (like a spinlock). Also it must be 1699 * ready to hand over the lock at the end of the section. 1700 */ 1701 static void console_lock_spinning_enable(void) 1702 { 1703 raw_spin_lock(&console_owner_lock); 1704 console_owner = current; 1705 raw_spin_unlock(&console_owner_lock); 1706 1707 /* The waiter may spin on us after setting console_owner */ 1708 spin_acquire(&console_owner_dep_map, 0, 0, _THIS_IP_); 1709 } 1710 1711 /** 1712 * console_lock_spinning_disable_and_check - mark end of code where another 1713 * thread was able to busy wait and check if there is a waiter 1714 * 1715 * This is called at the end of the section where spinning is allowed. 1716 * It has two functions. First, it is a signal that it is no longer 1717 * safe to start busy waiting for the lock. Second, it checks if 1718 * there is a busy waiter and passes the lock rights to her. 1719 * 1720 * Important: Callers lose the lock if there was a busy waiter. 1721 * They must not touch items synchronized by console_lock 1722 * in this case. 1723 * 1724 * Return: 1 if the lock rights were passed, 0 otherwise. 1725 */ 1726 static int console_lock_spinning_disable_and_check(void) 1727 { 1728 int waiter; 1729 1730 raw_spin_lock(&console_owner_lock); 1731 waiter = READ_ONCE(console_waiter); 1732 console_owner = NULL; 1733 raw_spin_unlock(&console_owner_lock); 1734 1735 if (!waiter) { 1736 spin_release(&console_owner_dep_map, _THIS_IP_); 1737 return 0; 1738 } 1739 1740 /* The waiter is now free to continue */ 1741 WRITE_ONCE(console_waiter, false); 1742 1743 spin_release(&console_owner_dep_map, _THIS_IP_); 1744 1745 /* 1746 * Hand off console_lock to waiter. The waiter will perform 1747 * the up(). After this, the waiter is the console_lock owner. 1748 */ 1749 mutex_release(&console_lock_dep_map, _THIS_IP_); 1750 return 1; 1751 } 1752 1753 /** 1754 * console_trylock_spinning - try to get console_lock by busy waiting 1755 * 1756 * This allows to busy wait for the console_lock when the current 1757 * owner is running in specially marked sections. It means that 1758 * the current owner is running and cannot reschedule until it 1759 * is ready to lose the lock. 1760 * 1761 * Return: 1 if we got the lock, 0 othrewise 1762 */ 1763 static int console_trylock_spinning(void) 1764 { 1765 struct task_struct *owner = NULL; 1766 bool waiter; 1767 bool spin = false; 1768 unsigned long flags; 1769 1770 if (console_trylock()) 1771 return 1; 1772 1773 printk_safe_enter_irqsave(flags); 1774 1775 raw_spin_lock(&console_owner_lock); 1776 owner = READ_ONCE(console_owner); 1777 waiter = READ_ONCE(console_waiter); 1778 if (!waiter && owner && owner != current) { 1779 WRITE_ONCE(console_waiter, true); 1780 spin = true; 1781 } 1782 raw_spin_unlock(&console_owner_lock); 1783 1784 /* 1785 * If there is an active printk() writing to the 1786 * consoles, instead of having it write our data too, 1787 * see if we can offload that load from the active 1788 * printer, and do some printing ourselves. 1789 * Go into a spin only if there isn't already a waiter 1790 * spinning, and there is an active printer, and 1791 * that active printer isn't us (recursive printk?). 1792 */ 1793 if (!spin) { 1794 printk_safe_exit_irqrestore(flags); 1795 return 0; 1796 } 1797 1798 /* We spin waiting for the owner to release us */ 1799 spin_acquire(&console_owner_dep_map, 0, 0, _THIS_IP_); 1800 /* Owner will clear console_waiter on hand off */ 1801 while (READ_ONCE(console_waiter)) 1802 cpu_relax(); 1803 spin_release(&console_owner_dep_map, _THIS_IP_); 1804 1805 printk_safe_exit_irqrestore(flags); 1806 /* 1807 * The owner passed the console lock to us. 1808 * Since we did not spin on console lock, annotate 1809 * this as a trylock. Otherwise lockdep will 1810 * complain. 1811 */ 1812 mutex_acquire(&console_lock_dep_map, 0, 1, _THIS_IP_); 1813 1814 return 1; 1815 } 1816 1817 /* 1818 * Call the console drivers, asking them to write out 1819 * log_buf[start] to log_buf[end - 1]. 1820 * The console_lock must be held. 1821 */ 1822 static void call_console_drivers(const char *ext_text, size_t ext_len, 1823 const char *text, size_t len) 1824 { 1825 static char dropped_text[64]; 1826 size_t dropped_len = 0; 1827 struct console *con; 1828 1829 trace_console_rcuidle(text, len); 1830 1831 if (!console_drivers) 1832 return; 1833 1834 if (console_dropped) { 1835 dropped_len = snprintf(dropped_text, sizeof(dropped_text), 1836 "** %lu printk messages dropped **\n", 1837 console_dropped); 1838 console_dropped = 0; 1839 } 1840 1841 for_each_console(con) { 1842 if (exclusive_console && con != exclusive_console) 1843 continue; 1844 if (!(con->flags & CON_ENABLED)) 1845 continue; 1846 if (!con->write) 1847 continue; 1848 if (!cpu_online(smp_processor_id()) && 1849 !(con->flags & CON_ANYTIME)) 1850 continue; 1851 if (con->flags & CON_EXTENDED) 1852 con->write(con, ext_text, ext_len); 1853 else { 1854 if (dropped_len) 1855 con->write(con, dropped_text, dropped_len); 1856 con->write(con, text, len); 1857 } 1858 } 1859 } 1860 1861 int printk_delay_msec __read_mostly; 1862 1863 static inline void printk_delay(void) 1864 { 1865 if (unlikely(printk_delay_msec)) { 1866 int m = printk_delay_msec; 1867 1868 while (m--) { 1869 mdelay(1); 1870 touch_nmi_watchdog(); 1871 } 1872 } 1873 } 1874 1875 static inline u32 printk_caller_id(void) 1876 { 1877 return in_task() ? task_pid_nr(current) : 1878 0x80000000 + raw_smp_processor_id(); 1879 } 1880 1881 /** 1882 * parse_prefix - Parse level and control flags. 1883 * 1884 * @text: The terminated text message. 1885 * @level: A pointer to the current level value, will be updated. 1886 * @lflags: A pointer to the current log flags, will be updated. 1887 * 1888 * @level may be NULL if the caller is not interested in the parsed value. 1889 * Otherwise the variable pointed to by @level must be set to 1890 * LOGLEVEL_DEFAULT in order to be updated with the parsed value. 1891 * 1892 * @lflags may be NULL if the caller is not interested in the parsed value. 1893 * Otherwise the variable pointed to by @lflags will be OR'd with the parsed 1894 * value. 1895 * 1896 * Return: The length of the parsed level and control flags. 1897 */ 1898 static u16 parse_prefix(char *text, int *level, enum log_flags *lflags) 1899 { 1900 u16 prefix_len = 0; 1901 int kern_level; 1902 1903 while (*text) { 1904 kern_level = printk_get_level(text); 1905 if (!kern_level) 1906 break; 1907 1908 switch (kern_level) { 1909 case '0' ... '7': 1910 if (level && *level == LOGLEVEL_DEFAULT) 1911 *level = kern_level - '0'; 1912 break; 1913 case 'c': /* KERN_CONT */ 1914 if (lflags) 1915 *lflags |= LOG_CONT; 1916 } 1917 1918 prefix_len += 2; 1919 text += 2; 1920 } 1921 1922 return prefix_len; 1923 } 1924 1925 static u16 printk_sprint(char *text, u16 size, int facility, enum log_flags *lflags, 1926 const char *fmt, va_list args) 1927 { 1928 u16 text_len; 1929 1930 text_len = vscnprintf(text, size, fmt, args); 1931 1932 /* Mark and strip a trailing newline. */ 1933 if (text_len && text[text_len - 1] == '\n') { 1934 text_len--; 1935 *lflags |= LOG_NEWLINE; 1936 } 1937 1938 /* Strip log level and control flags. */ 1939 if (facility == 0) { 1940 u16 prefix_len; 1941 1942 prefix_len = parse_prefix(text, NULL, NULL); 1943 if (prefix_len) { 1944 text_len -= prefix_len; 1945 memmove(text, text + prefix_len, text_len); 1946 } 1947 } 1948 1949 return text_len; 1950 } 1951 1952 __printf(4, 0) 1953 int vprintk_store(int facility, int level, 1954 const struct dev_printk_info *dev_info, 1955 const char *fmt, va_list args) 1956 { 1957 const u32 caller_id = printk_caller_id(); 1958 struct prb_reserved_entry e; 1959 enum log_flags lflags = 0; 1960 struct printk_record r; 1961 u16 trunc_msg_len = 0; 1962 char prefix_buf[8]; 1963 u16 reserve_size; 1964 va_list args2; 1965 u16 text_len; 1966 u64 ts_nsec; 1967 1968 /* 1969 * Since the duration of printk() can vary depending on the message 1970 * and state of the ringbuffer, grab the timestamp now so that it is 1971 * close to the call of printk(). This provides a more deterministic 1972 * timestamp with respect to the caller. 1973 */ 1974 ts_nsec = local_clock(); 1975 1976 /* 1977 * The sprintf needs to come first since the syslog prefix might be 1978 * passed in as a parameter. An extra byte must be reserved so that 1979 * later the vscnprintf() into the reserved buffer has room for the 1980 * terminating '\0', which is not counted by vsnprintf(). 1981 */ 1982 va_copy(args2, args); 1983 reserve_size = vsnprintf(&prefix_buf[0], sizeof(prefix_buf), fmt, args2) + 1; 1984 va_end(args2); 1985 1986 if (reserve_size > LOG_LINE_MAX) 1987 reserve_size = LOG_LINE_MAX; 1988 1989 /* Extract log level or control flags. */ 1990 if (facility == 0) 1991 parse_prefix(&prefix_buf[0], &level, &lflags); 1992 1993 if (level == LOGLEVEL_DEFAULT) 1994 level = default_message_loglevel; 1995 1996 if (dev_info) 1997 lflags |= LOG_NEWLINE; 1998 1999 if (lflags & LOG_CONT) { 2000 prb_rec_init_wr(&r, reserve_size); 2001 if (prb_reserve_in_last(&e, prb, &r, caller_id, LOG_LINE_MAX)) { 2002 text_len = printk_sprint(&r.text_buf[r.info->text_len], reserve_size, 2003 facility, &lflags, fmt, args); 2004 r.info->text_len += text_len; 2005 2006 if (lflags & LOG_NEWLINE) { 2007 r.info->flags |= LOG_NEWLINE; 2008 prb_final_commit(&e); 2009 } else { 2010 prb_commit(&e); 2011 } 2012 2013 return text_len; 2014 } 2015 } 2016 2017 /* 2018 * Explicitly initialize the record before every prb_reserve() call. 2019 * prb_reserve_in_last() and prb_reserve() purposely invalidate the 2020 * structure when they fail. 2021 */ 2022 prb_rec_init_wr(&r, reserve_size); 2023 if (!prb_reserve(&e, prb, &r)) { 2024 /* truncate the message if it is too long for empty buffer */ 2025 truncate_msg(&reserve_size, &trunc_msg_len); 2026 2027 prb_rec_init_wr(&r, reserve_size + trunc_msg_len); 2028 if (!prb_reserve(&e, prb, &r)) 2029 return 0; 2030 } 2031 2032 /* fill message */ 2033 text_len = printk_sprint(&r.text_buf[0], reserve_size, facility, &lflags, fmt, args); 2034 if (trunc_msg_len) 2035 memcpy(&r.text_buf[text_len], trunc_msg, trunc_msg_len); 2036 r.info->text_len = text_len + trunc_msg_len; 2037 r.info->facility = facility; 2038 r.info->level = level & 7; 2039 r.info->flags = lflags & 0x1f; 2040 r.info->ts_nsec = ts_nsec; 2041 r.info->caller_id = caller_id; 2042 if (dev_info) 2043 memcpy(&r.info->dev_info, dev_info, sizeof(r.info->dev_info)); 2044 2045 /* A message without a trailing newline can be continued. */ 2046 if (!(lflags & LOG_NEWLINE)) 2047 prb_commit(&e); 2048 else 2049 prb_final_commit(&e); 2050 2051 return (text_len + trunc_msg_len); 2052 } 2053 2054 asmlinkage int vprintk_emit(int facility, int level, 2055 const struct dev_printk_info *dev_info, 2056 const char *fmt, va_list args) 2057 { 2058 int printed_len; 2059 bool in_sched = false; 2060 unsigned long flags; 2061 2062 /* Suppress unimportant messages after panic happens */ 2063 if (unlikely(suppress_printk)) 2064 return 0; 2065 2066 if (level == LOGLEVEL_SCHED) { 2067 level = LOGLEVEL_DEFAULT; 2068 in_sched = true; 2069 } 2070 2071 boot_delay_msec(level); 2072 printk_delay(); 2073 2074 printk_safe_enter_irqsave(flags); 2075 printed_len = vprintk_store(facility, level, dev_info, fmt, args); 2076 printk_safe_exit_irqrestore(flags); 2077 2078 /* If called from the scheduler, we can not call up(). */ 2079 if (!in_sched) { 2080 /* 2081 * Disable preemption to avoid being preempted while holding 2082 * console_sem which would prevent anyone from printing to 2083 * console 2084 */ 2085 preempt_disable(); 2086 /* 2087 * Try to acquire and then immediately release the console 2088 * semaphore. The release will print out buffers and wake up 2089 * /dev/kmsg and syslog() users. 2090 */ 2091 if (console_trylock_spinning()) 2092 console_unlock(); 2093 preempt_enable(); 2094 } 2095 2096 wake_up_klogd(); 2097 return printed_len; 2098 } 2099 EXPORT_SYMBOL(vprintk_emit); 2100 2101 asmlinkage int vprintk(const char *fmt, va_list args) 2102 { 2103 return vprintk_func(fmt, args); 2104 } 2105 EXPORT_SYMBOL(vprintk); 2106 2107 int vprintk_default(const char *fmt, va_list args) 2108 { 2109 return vprintk_emit(0, LOGLEVEL_DEFAULT, NULL, fmt, args); 2110 } 2111 EXPORT_SYMBOL_GPL(vprintk_default); 2112 2113 /** 2114 * printk - print a kernel message 2115 * @fmt: format string 2116 * 2117 * This is printk(). It can be called from any context. We want it to work. 2118 * 2119 * We try to grab the console_lock. If we succeed, it's easy - we log the 2120 * output and call the console drivers. If we fail to get the semaphore, we 2121 * place the output into the log buffer and return. The current holder of 2122 * the console_sem will notice the new output in console_unlock(); and will 2123 * send it to the consoles before releasing the lock. 2124 * 2125 * One effect of this deferred printing is that code which calls printk() and 2126 * then changes console_loglevel may break. This is because console_loglevel 2127 * is inspected when the actual printing occurs. 2128 * 2129 * See also: 2130 * printf(3) 2131 * 2132 * See the vsnprintf() documentation for format string extensions over C99. 2133 */ 2134 asmlinkage __visible int printk(const char *fmt, ...) 2135 { 2136 va_list args; 2137 int r; 2138 2139 va_start(args, fmt); 2140 r = vprintk_func(fmt, args); 2141 va_end(args); 2142 2143 return r; 2144 } 2145 EXPORT_SYMBOL(printk); 2146 2147 #else /* CONFIG_PRINTK */ 2148 2149 #define LOG_LINE_MAX 0 2150 #define PREFIX_MAX 0 2151 #define printk_time false 2152 2153 #define prb_read_valid(rb, seq, r) false 2154 #define prb_first_valid_seq(rb) 0 2155 2156 static u64 syslog_seq; 2157 static u64 console_seq; 2158 static u64 exclusive_console_stop_seq; 2159 static unsigned long console_dropped; 2160 2161 static size_t record_print_text(const struct printk_record *r, 2162 bool syslog, bool time) 2163 { 2164 return 0; 2165 } 2166 static ssize_t info_print_ext_header(char *buf, size_t size, 2167 struct printk_info *info) 2168 { 2169 return 0; 2170 } 2171 static ssize_t msg_print_ext_body(char *buf, size_t size, 2172 char *text, size_t text_len, 2173 struct dev_printk_info *dev_info) { return 0; } 2174 static void console_lock_spinning_enable(void) { } 2175 static int console_lock_spinning_disable_and_check(void) { return 0; } 2176 static void call_console_drivers(const char *ext_text, size_t ext_len, 2177 const char *text, size_t len) {} 2178 static bool suppress_message_printing(int level) { return false; } 2179 2180 #endif /* CONFIG_PRINTK */ 2181 2182 #ifdef CONFIG_EARLY_PRINTK 2183 struct console *early_console; 2184 2185 asmlinkage __visible void early_printk(const char *fmt, ...) 2186 { 2187 va_list ap; 2188 char buf[512]; 2189 int n; 2190 2191 if (!early_console) 2192 return; 2193 2194 va_start(ap, fmt); 2195 n = vscnprintf(buf, sizeof(buf), fmt, ap); 2196 va_end(ap); 2197 2198 early_console->write(early_console, buf, n); 2199 } 2200 #endif 2201 2202 static int __add_preferred_console(char *name, int idx, char *options, 2203 char *brl_options, bool user_specified) 2204 { 2205 struct console_cmdline *c; 2206 int i; 2207 2208 /* 2209 * See if this tty is not yet registered, and 2210 * if we have a slot free. 2211 */ 2212 for (i = 0, c = console_cmdline; 2213 i < MAX_CMDLINECONSOLES && c->name[0]; 2214 i++, c++) { 2215 if (strcmp(c->name, name) == 0 && c->index == idx) { 2216 if (!brl_options) 2217 preferred_console = i; 2218 if (user_specified) 2219 c->user_specified = true; 2220 return 0; 2221 } 2222 } 2223 if (i == MAX_CMDLINECONSOLES) 2224 return -E2BIG; 2225 if (!brl_options) 2226 preferred_console = i; 2227 strlcpy(c->name, name, sizeof(c->name)); 2228 c->options = options; 2229 c->user_specified = user_specified; 2230 braille_set_options(c, brl_options); 2231 2232 c->index = idx; 2233 return 0; 2234 } 2235 2236 static int __init console_msg_format_setup(char *str) 2237 { 2238 if (!strcmp(str, "syslog")) 2239 console_msg_format = MSG_FORMAT_SYSLOG; 2240 if (!strcmp(str, "default")) 2241 console_msg_format = MSG_FORMAT_DEFAULT; 2242 return 1; 2243 } 2244 __setup("console_msg_format=", console_msg_format_setup); 2245 2246 /* 2247 * Set up a console. Called via do_early_param() in init/main.c 2248 * for each "console=" parameter in the boot command line. 2249 */ 2250 static int __init console_setup(char *str) 2251 { 2252 char buf[sizeof(console_cmdline[0].name) + 4]; /* 4 for "ttyS" */ 2253 char *s, *options, *brl_options = NULL; 2254 int idx; 2255 2256 /* 2257 * console="" or console=null have been suggested as a way to 2258 * disable console output. Use ttynull that has been created 2259 * for exacly this purpose. 2260 */ 2261 if (str[0] == 0 || strcmp(str, "null") == 0) { 2262 __add_preferred_console("ttynull", 0, NULL, NULL, true); 2263 return 1; 2264 } 2265 2266 if (_braille_console_setup(&str, &brl_options)) 2267 return 1; 2268 2269 /* 2270 * Decode str into name, index, options. 2271 */ 2272 if (str[0] >= '0' && str[0] <= '9') { 2273 strcpy(buf, "ttyS"); 2274 strncpy(buf + 4, str, sizeof(buf) - 5); 2275 } else { 2276 strncpy(buf, str, sizeof(buf) - 1); 2277 } 2278 buf[sizeof(buf) - 1] = 0; 2279 options = strchr(str, ','); 2280 if (options) 2281 *(options++) = 0; 2282 #ifdef __sparc__ 2283 if (!strcmp(str, "ttya")) 2284 strcpy(buf, "ttyS0"); 2285 if (!strcmp(str, "ttyb")) 2286 strcpy(buf, "ttyS1"); 2287 #endif 2288 for (s = buf; *s; s++) 2289 if (isdigit(*s) || *s == ',') 2290 break; 2291 idx = simple_strtoul(s, NULL, 10); 2292 *s = 0; 2293 2294 __add_preferred_console(buf, idx, options, brl_options, true); 2295 console_set_on_cmdline = 1; 2296 return 1; 2297 } 2298 __setup("console=", console_setup); 2299 2300 /** 2301 * add_preferred_console - add a device to the list of preferred consoles. 2302 * @name: device name 2303 * @idx: device index 2304 * @options: options for this console 2305 * 2306 * The last preferred console added will be used for kernel messages 2307 * and stdin/out/err for init. Normally this is used by console_setup 2308 * above to handle user-supplied console arguments; however it can also 2309 * be used by arch-specific code either to override the user or more 2310 * commonly to provide a default console (ie from PROM variables) when 2311 * the user has not supplied one. 2312 */ 2313 int add_preferred_console(char *name, int idx, char *options) 2314 { 2315 return __add_preferred_console(name, idx, options, NULL, false); 2316 } 2317 2318 bool console_suspend_enabled = true; 2319 EXPORT_SYMBOL(console_suspend_enabled); 2320 2321 static int __init console_suspend_disable(char *str) 2322 { 2323 console_suspend_enabled = false; 2324 return 1; 2325 } 2326 __setup("no_console_suspend", console_suspend_disable); 2327 module_param_named(console_suspend, console_suspend_enabled, 2328 bool, S_IRUGO | S_IWUSR); 2329 MODULE_PARM_DESC(console_suspend, "suspend console during suspend" 2330 " and hibernate operations"); 2331 2332 /** 2333 * suspend_console - suspend the console subsystem 2334 * 2335 * This disables printk() while we go into suspend states 2336 */ 2337 void suspend_console(void) 2338 { 2339 if (!console_suspend_enabled) 2340 return; 2341 pr_info("Suspending console(s) (use no_console_suspend to debug)\n"); 2342 console_lock(); 2343 console_suspended = 1; 2344 up_console_sem(); 2345 } 2346 2347 void resume_console(void) 2348 { 2349 if (!console_suspend_enabled) 2350 return; 2351 down_console_sem(); 2352 console_suspended = 0; 2353 console_unlock(); 2354 } 2355 2356 /** 2357 * console_cpu_notify - print deferred console messages after CPU hotplug 2358 * @cpu: unused 2359 * 2360 * If printk() is called from a CPU that is not online yet, the messages 2361 * will be printed on the console only if there are CON_ANYTIME consoles. 2362 * This function is called when a new CPU comes online (or fails to come 2363 * up) or goes offline. 2364 */ 2365 static int console_cpu_notify(unsigned int cpu) 2366 { 2367 if (!cpuhp_tasks_frozen) { 2368 /* If trylock fails, someone else is doing the printing */ 2369 if (console_trylock()) 2370 console_unlock(); 2371 } 2372 return 0; 2373 } 2374 2375 /** 2376 * console_lock - lock the console system for exclusive use. 2377 * 2378 * Acquires a lock which guarantees that the caller has 2379 * exclusive access to the console system and the console_drivers list. 2380 * 2381 * Can sleep, returns nothing. 2382 */ 2383 void console_lock(void) 2384 { 2385 might_sleep(); 2386 2387 down_console_sem(); 2388 if (console_suspended) 2389 return; 2390 console_locked = 1; 2391 console_may_schedule = 1; 2392 } 2393 EXPORT_SYMBOL(console_lock); 2394 2395 /** 2396 * console_trylock - try to lock the console system for exclusive use. 2397 * 2398 * Try to acquire a lock which guarantees that the caller has exclusive 2399 * access to the console system and the console_drivers list. 2400 * 2401 * returns 1 on success, and 0 on failure to acquire the lock. 2402 */ 2403 int console_trylock(void) 2404 { 2405 if (down_trylock_console_sem()) 2406 return 0; 2407 if (console_suspended) { 2408 up_console_sem(); 2409 return 0; 2410 } 2411 console_locked = 1; 2412 console_may_schedule = 0; 2413 return 1; 2414 } 2415 EXPORT_SYMBOL(console_trylock); 2416 2417 int is_console_locked(void) 2418 { 2419 return console_locked; 2420 } 2421 EXPORT_SYMBOL(is_console_locked); 2422 2423 /* 2424 * Check if we have any console that is capable of printing while cpu is 2425 * booting or shutting down. Requires console_sem. 2426 */ 2427 static int have_callable_console(void) 2428 { 2429 struct console *con; 2430 2431 for_each_console(con) 2432 if ((con->flags & CON_ENABLED) && 2433 (con->flags & CON_ANYTIME)) 2434 return 1; 2435 2436 return 0; 2437 } 2438 2439 /* 2440 * Can we actually use the console at this time on this cpu? 2441 * 2442 * Console drivers may assume that per-cpu resources have been allocated. So 2443 * unless they're explicitly marked as being able to cope (CON_ANYTIME) don't 2444 * call them until this CPU is officially up. 2445 */ 2446 static inline int can_use_console(void) 2447 { 2448 return cpu_online(raw_smp_processor_id()) || have_callable_console(); 2449 } 2450 2451 /** 2452 * console_unlock - unlock the console system 2453 * 2454 * Releases the console_lock which the caller holds on the console system 2455 * and the console driver list. 2456 * 2457 * While the console_lock was held, console output may have been buffered 2458 * by printk(). If this is the case, console_unlock(); emits 2459 * the output prior to releasing the lock. 2460 * 2461 * If there is output waiting, we wake /dev/kmsg and syslog() users. 2462 * 2463 * console_unlock(); may be called from any context. 2464 */ 2465 void console_unlock(void) 2466 { 2467 static char ext_text[CONSOLE_EXT_LOG_MAX]; 2468 static char text[LOG_LINE_MAX + PREFIX_MAX]; 2469 unsigned long flags; 2470 bool do_cond_resched, retry; 2471 struct printk_info info; 2472 struct printk_record r; 2473 2474 if (console_suspended) { 2475 up_console_sem(); 2476 return; 2477 } 2478 2479 prb_rec_init_rd(&r, &info, text, sizeof(text)); 2480 2481 /* 2482 * Console drivers are called with interrupts disabled, so 2483 * @console_may_schedule should be cleared before; however, we may 2484 * end up dumping a lot of lines, for example, if called from 2485 * console registration path, and should invoke cond_resched() 2486 * between lines if allowable. Not doing so can cause a very long 2487 * scheduling stall on a slow console leading to RCU stall and 2488 * softlockup warnings which exacerbate the issue with more 2489 * messages practically incapacitating the system. 2490 * 2491 * console_trylock() is not able to detect the preemptive 2492 * context reliably. Therefore the value must be stored before 2493 * and cleared after the "again" goto label. 2494 */ 2495 do_cond_resched = console_may_schedule; 2496 again: 2497 console_may_schedule = 0; 2498 2499 /* 2500 * We released the console_sem lock, so we need to recheck if 2501 * cpu is online and (if not) is there at least one CON_ANYTIME 2502 * console. 2503 */ 2504 if (!can_use_console()) { 2505 console_locked = 0; 2506 up_console_sem(); 2507 return; 2508 } 2509 2510 for (;;) { 2511 size_t ext_len = 0; 2512 size_t len; 2513 2514 printk_safe_enter_irqsave(flags); 2515 raw_spin_lock(&logbuf_lock); 2516 skip: 2517 if (!prb_read_valid(prb, console_seq, &r)) 2518 break; 2519 2520 if (console_seq != r.info->seq) { 2521 console_dropped += r.info->seq - console_seq; 2522 console_seq = r.info->seq; 2523 } 2524 2525 if (suppress_message_printing(r.info->level)) { 2526 /* 2527 * Skip record we have buffered and already printed 2528 * directly to the console when we received it, and 2529 * record that has level above the console loglevel. 2530 */ 2531 console_seq++; 2532 goto skip; 2533 } 2534 2535 /* Output to all consoles once old messages replayed. */ 2536 if (unlikely(exclusive_console && 2537 console_seq >= exclusive_console_stop_seq)) { 2538 exclusive_console = NULL; 2539 } 2540 2541 /* 2542 * Handle extended console text first because later 2543 * record_print_text() will modify the record buffer in-place. 2544 */ 2545 if (nr_ext_console_drivers) { 2546 ext_len = info_print_ext_header(ext_text, 2547 sizeof(ext_text), 2548 r.info); 2549 ext_len += msg_print_ext_body(ext_text + ext_len, 2550 sizeof(ext_text) - ext_len, 2551 &r.text_buf[0], 2552 r.info->text_len, 2553 &r.info->dev_info); 2554 } 2555 len = record_print_text(&r, 2556 console_msg_format & MSG_FORMAT_SYSLOG, 2557 printk_time); 2558 console_seq++; 2559 raw_spin_unlock(&logbuf_lock); 2560 2561 /* 2562 * While actively printing out messages, if another printk() 2563 * were to occur on another CPU, it may wait for this one to 2564 * finish. This task can not be preempted if there is a 2565 * waiter waiting to take over. 2566 */ 2567 console_lock_spinning_enable(); 2568 2569 stop_critical_timings(); /* don't trace print latency */ 2570 call_console_drivers(ext_text, ext_len, text, len); 2571 start_critical_timings(); 2572 2573 if (console_lock_spinning_disable_and_check()) { 2574 printk_safe_exit_irqrestore(flags); 2575 return; 2576 } 2577 2578 printk_safe_exit_irqrestore(flags); 2579 2580 if (do_cond_resched) 2581 cond_resched(); 2582 } 2583 2584 console_locked = 0; 2585 2586 raw_spin_unlock(&logbuf_lock); 2587 2588 up_console_sem(); 2589 2590 /* 2591 * Someone could have filled up the buffer again, so re-check if there's 2592 * something to flush. In case we cannot trylock the console_sem again, 2593 * there's a new owner and the console_unlock() from them will do the 2594 * flush, no worries. 2595 */ 2596 raw_spin_lock(&logbuf_lock); 2597 retry = prb_read_valid(prb, console_seq, NULL); 2598 raw_spin_unlock(&logbuf_lock); 2599 printk_safe_exit_irqrestore(flags); 2600 2601 if (retry && console_trylock()) 2602 goto again; 2603 } 2604 EXPORT_SYMBOL(console_unlock); 2605 2606 /** 2607 * console_conditional_schedule - yield the CPU if required 2608 * 2609 * If the console code is currently allowed to sleep, and 2610 * if this CPU should yield the CPU to another task, do 2611 * so here. 2612 * 2613 * Must be called within console_lock();. 2614 */ 2615 void __sched console_conditional_schedule(void) 2616 { 2617 if (console_may_schedule) 2618 cond_resched(); 2619 } 2620 EXPORT_SYMBOL(console_conditional_schedule); 2621 2622 void console_unblank(void) 2623 { 2624 struct console *c; 2625 2626 /* 2627 * console_unblank can no longer be called in interrupt context unless 2628 * oops_in_progress is set to 1.. 2629 */ 2630 if (oops_in_progress) { 2631 if (down_trylock_console_sem() != 0) 2632 return; 2633 } else 2634 console_lock(); 2635 2636 console_locked = 1; 2637 console_may_schedule = 0; 2638 for_each_console(c) 2639 if ((c->flags & CON_ENABLED) && c->unblank) 2640 c->unblank(); 2641 console_unlock(); 2642 } 2643 2644 /** 2645 * console_flush_on_panic - flush console content on panic 2646 * @mode: flush all messages in buffer or just the pending ones 2647 * 2648 * Immediately output all pending messages no matter what. 2649 */ 2650 void console_flush_on_panic(enum con_flush_mode mode) 2651 { 2652 /* 2653 * If someone else is holding the console lock, trylock will fail 2654 * and may_schedule may be set. Ignore and proceed to unlock so 2655 * that messages are flushed out. As this can be called from any 2656 * context and we don't want to get preempted while flushing, 2657 * ensure may_schedule is cleared. 2658 */ 2659 console_trylock(); 2660 console_may_schedule = 0; 2661 2662 if (mode == CONSOLE_REPLAY_ALL) { 2663 unsigned long flags; 2664 2665 logbuf_lock_irqsave(flags); 2666 console_seq = prb_first_valid_seq(prb); 2667 logbuf_unlock_irqrestore(flags); 2668 } 2669 console_unlock(); 2670 } 2671 2672 /* 2673 * Return the console tty driver structure and its associated index 2674 */ 2675 struct tty_driver *console_device(int *index) 2676 { 2677 struct console *c; 2678 struct tty_driver *driver = NULL; 2679 2680 console_lock(); 2681 for_each_console(c) { 2682 if (!c->device) 2683 continue; 2684 driver = c->device(c, index); 2685 if (driver) 2686 break; 2687 } 2688 console_unlock(); 2689 return driver; 2690 } 2691 2692 /* 2693 * Prevent further output on the passed console device so that (for example) 2694 * serial drivers can disable console output before suspending a port, and can 2695 * re-enable output afterwards. 2696 */ 2697 void console_stop(struct console *console) 2698 { 2699 console_lock(); 2700 console->flags &= ~CON_ENABLED; 2701 console_unlock(); 2702 } 2703 EXPORT_SYMBOL(console_stop); 2704 2705 void console_start(struct console *console) 2706 { 2707 console_lock(); 2708 console->flags |= CON_ENABLED; 2709 console_unlock(); 2710 } 2711 EXPORT_SYMBOL(console_start); 2712 2713 static int __read_mostly keep_bootcon; 2714 2715 static int __init keep_bootcon_setup(char *str) 2716 { 2717 keep_bootcon = 1; 2718 pr_info("debug: skip boot console de-registration.\n"); 2719 2720 return 0; 2721 } 2722 2723 early_param("keep_bootcon", keep_bootcon_setup); 2724 2725 /* 2726 * This is called by register_console() to try to match 2727 * the newly registered console with any of the ones selected 2728 * by either the command line or add_preferred_console() and 2729 * setup/enable it. 2730 * 2731 * Care need to be taken with consoles that are statically 2732 * enabled such as netconsole 2733 */ 2734 static int try_enable_new_console(struct console *newcon, bool user_specified) 2735 { 2736 struct console_cmdline *c; 2737 int i, err; 2738 2739 for (i = 0, c = console_cmdline; 2740 i < MAX_CMDLINECONSOLES && c->name[0]; 2741 i++, c++) { 2742 if (c->user_specified != user_specified) 2743 continue; 2744 if (!newcon->match || 2745 newcon->match(newcon, c->name, c->index, c->options) != 0) { 2746 /* default matching */ 2747 BUILD_BUG_ON(sizeof(c->name) != sizeof(newcon->name)); 2748 if (strcmp(c->name, newcon->name) != 0) 2749 continue; 2750 if (newcon->index >= 0 && 2751 newcon->index != c->index) 2752 continue; 2753 if (newcon->index < 0) 2754 newcon->index = c->index; 2755 2756 if (_braille_register_console(newcon, c)) 2757 return 0; 2758 2759 if (newcon->setup && 2760 (err = newcon->setup(newcon, c->options)) != 0) 2761 return err; 2762 } 2763 newcon->flags |= CON_ENABLED; 2764 if (i == preferred_console) { 2765 newcon->flags |= CON_CONSDEV; 2766 has_preferred_console = true; 2767 } 2768 return 0; 2769 } 2770 2771 /* 2772 * Some consoles, such as pstore and netconsole, can be enabled even 2773 * without matching. Accept the pre-enabled consoles only when match() 2774 * and setup() had a chance to be called. 2775 */ 2776 if (newcon->flags & CON_ENABLED && c->user_specified == user_specified) 2777 return 0; 2778 2779 return -ENOENT; 2780 } 2781 2782 /* 2783 * The console driver calls this routine during kernel initialization 2784 * to register the console printing procedure with printk() and to 2785 * print any messages that were printed by the kernel before the 2786 * console driver was initialized. 2787 * 2788 * This can happen pretty early during the boot process (because of 2789 * early_printk) - sometimes before setup_arch() completes - be careful 2790 * of what kernel features are used - they may not be initialised yet. 2791 * 2792 * There are two types of consoles - bootconsoles (early_printk) and 2793 * "real" consoles (everything which is not a bootconsole) which are 2794 * handled differently. 2795 * - Any number of bootconsoles can be registered at any time. 2796 * - As soon as a "real" console is registered, all bootconsoles 2797 * will be unregistered automatically. 2798 * - Once a "real" console is registered, any attempt to register a 2799 * bootconsoles will be rejected 2800 */ 2801 void register_console(struct console *newcon) 2802 { 2803 unsigned long flags; 2804 struct console *bcon = NULL; 2805 int err; 2806 2807 for_each_console(bcon) { 2808 if (WARN(bcon == newcon, "console '%s%d' already registered\n", 2809 bcon->name, bcon->index)) 2810 return; 2811 } 2812 2813 /* 2814 * before we register a new CON_BOOT console, make sure we don't 2815 * already have a valid console 2816 */ 2817 if (newcon->flags & CON_BOOT) { 2818 for_each_console(bcon) { 2819 if (!(bcon->flags & CON_BOOT)) { 2820 pr_info("Too late to register bootconsole %s%d\n", 2821 newcon->name, newcon->index); 2822 return; 2823 } 2824 } 2825 } 2826 2827 if (console_drivers && console_drivers->flags & CON_BOOT) 2828 bcon = console_drivers; 2829 2830 if (!has_preferred_console || bcon || !console_drivers) 2831 has_preferred_console = preferred_console >= 0; 2832 2833 /* 2834 * See if we want to use this console driver. If we 2835 * didn't select a console we take the first one 2836 * that registers here. 2837 */ 2838 if (!has_preferred_console) { 2839 if (newcon->index < 0) 2840 newcon->index = 0; 2841 if (newcon->setup == NULL || 2842 newcon->setup(newcon, NULL) == 0) { 2843 newcon->flags |= CON_ENABLED; 2844 if (newcon->device) { 2845 newcon->flags |= CON_CONSDEV; 2846 has_preferred_console = true; 2847 } 2848 } 2849 } 2850 2851 /* See if this console matches one we selected on the command line */ 2852 err = try_enable_new_console(newcon, true); 2853 2854 /* If not, try to match against the platform default(s) */ 2855 if (err == -ENOENT) 2856 err = try_enable_new_console(newcon, false); 2857 2858 /* printk() messages are not printed to the Braille console. */ 2859 if (err || newcon->flags & CON_BRL) 2860 return; 2861 2862 /* 2863 * If we have a bootconsole, and are switching to a real console, 2864 * don't print everything out again, since when the boot console, and 2865 * the real console are the same physical device, it's annoying to 2866 * see the beginning boot messages twice 2867 */ 2868 if (bcon && ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV)) 2869 newcon->flags &= ~CON_PRINTBUFFER; 2870 2871 /* 2872 * Put this console in the list - keep the 2873 * preferred driver at the head of the list. 2874 */ 2875 console_lock(); 2876 if ((newcon->flags & CON_CONSDEV) || console_drivers == NULL) { 2877 newcon->next = console_drivers; 2878 console_drivers = newcon; 2879 if (newcon->next) 2880 newcon->next->flags &= ~CON_CONSDEV; 2881 /* Ensure this flag is always set for the head of the list */ 2882 newcon->flags |= CON_CONSDEV; 2883 } else { 2884 newcon->next = console_drivers->next; 2885 console_drivers->next = newcon; 2886 } 2887 2888 if (newcon->flags & CON_EXTENDED) 2889 nr_ext_console_drivers++; 2890 2891 if (newcon->flags & CON_PRINTBUFFER) { 2892 /* 2893 * console_unlock(); will print out the buffered messages 2894 * for us. 2895 */ 2896 logbuf_lock_irqsave(flags); 2897 /* 2898 * We're about to replay the log buffer. Only do this to the 2899 * just-registered console to avoid excessive message spam to 2900 * the already-registered consoles. 2901 * 2902 * Set exclusive_console with disabled interrupts to reduce 2903 * race window with eventual console_flush_on_panic() that 2904 * ignores console_lock. 2905 */ 2906 exclusive_console = newcon; 2907 exclusive_console_stop_seq = console_seq; 2908 console_seq = syslog_seq; 2909 logbuf_unlock_irqrestore(flags); 2910 } 2911 console_unlock(); 2912 console_sysfs_notify(); 2913 2914 /* 2915 * By unregistering the bootconsoles after we enable the real console 2916 * we get the "console xxx enabled" message on all the consoles - 2917 * boot consoles, real consoles, etc - this is to ensure that end 2918 * users know there might be something in the kernel's log buffer that 2919 * went to the bootconsole (that they do not see on the real console) 2920 */ 2921 pr_info("%sconsole [%s%d] enabled\n", 2922 (newcon->flags & CON_BOOT) ? "boot" : "" , 2923 newcon->name, newcon->index); 2924 if (bcon && 2925 ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV) && 2926 !keep_bootcon) { 2927 /* We need to iterate through all boot consoles, to make 2928 * sure we print everything out, before we unregister them. 2929 */ 2930 for_each_console(bcon) 2931 if (bcon->flags & CON_BOOT) 2932 unregister_console(bcon); 2933 } 2934 } 2935 EXPORT_SYMBOL(register_console); 2936 2937 int unregister_console(struct console *console) 2938 { 2939 struct console *con; 2940 int res; 2941 2942 pr_info("%sconsole [%s%d] disabled\n", 2943 (console->flags & CON_BOOT) ? "boot" : "" , 2944 console->name, console->index); 2945 2946 res = _braille_unregister_console(console); 2947 if (res < 0) 2948 return res; 2949 if (res > 0) 2950 return 0; 2951 2952 res = -ENODEV; 2953 console_lock(); 2954 if (console_drivers == console) { 2955 console_drivers=console->next; 2956 res = 0; 2957 } else { 2958 for_each_console(con) { 2959 if (con->next == console) { 2960 con->next = console->next; 2961 res = 0; 2962 break; 2963 } 2964 } 2965 } 2966 2967 if (res) 2968 goto out_disable_unlock; 2969 2970 if (console->flags & CON_EXTENDED) 2971 nr_ext_console_drivers--; 2972 2973 /* 2974 * If this isn't the last console and it has CON_CONSDEV set, we 2975 * need to set it on the next preferred console. 2976 */ 2977 if (console_drivers != NULL && console->flags & CON_CONSDEV) 2978 console_drivers->flags |= CON_CONSDEV; 2979 2980 console->flags &= ~CON_ENABLED; 2981 console_unlock(); 2982 console_sysfs_notify(); 2983 2984 if (console->exit) 2985 res = console->exit(console); 2986 2987 return res; 2988 2989 out_disable_unlock: 2990 console->flags &= ~CON_ENABLED; 2991 console_unlock(); 2992 2993 return res; 2994 } 2995 EXPORT_SYMBOL(unregister_console); 2996 2997 /* 2998 * Initialize the console device. This is called *early*, so 2999 * we can't necessarily depend on lots of kernel help here. 3000 * Just do some early initializations, and do the complex setup 3001 * later. 3002 */ 3003 void __init console_init(void) 3004 { 3005 int ret; 3006 initcall_t call; 3007 initcall_entry_t *ce; 3008 3009 /* Setup the default TTY line discipline. */ 3010 n_tty_init(); 3011 3012 /* 3013 * set up the console device so that later boot sequences can 3014 * inform about problems etc.. 3015 */ 3016 ce = __con_initcall_start; 3017 trace_initcall_level("console"); 3018 while (ce < __con_initcall_end) { 3019 call = initcall_from_entry(ce); 3020 trace_initcall_start(call); 3021 ret = call(); 3022 trace_initcall_finish(call, ret); 3023 ce++; 3024 } 3025 } 3026 3027 /* 3028 * Some boot consoles access data that is in the init section and which will 3029 * be discarded after the initcalls have been run. To make sure that no code 3030 * will access this data, unregister the boot consoles in a late initcall. 3031 * 3032 * If for some reason, such as deferred probe or the driver being a loadable 3033 * module, the real console hasn't registered yet at this point, there will 3034 * be a brief interval in which no messages are logged to the console, which 3035 * makes it difficult to diagnose problems that occur during this time. 3036 * 3037 * To mitigate this problem somewhat, only unregister consoles whose memory 3038 * intersects with the init section. Note that all other boot consoles will 3039 * get unregistred when the real preferred console is registered. 3040 */ 3041 static int __init printk_late_init(void) 3042 { 3043 struct console *con; 3044 int ret; 3045 3046 for_each_console(con) { 3047 if (!(con->flags & CON_BOOT)) 3048 continue; 3049 3050 /* Check addresses that might be used for enabled consoles. */ 3051 if (init_section_intersects(con, sizeof(*con)) || 3052 init_section_contains(con->write, 0) || 3053 init_section_contains(con->read, 0) || 3054 init_section_contains(con->device, 0) || 3055 init_section_contains(con->unblank, 0) || 3056 init_section_contains(con->data, 0)) { 3057 /* 3058 * Please, consider moving the reported consoles out 3059 * of the init section. 3060 */ 3061 pr_warn("bootconsole [%s%d] uses init memory and must be disabled even before the real one is ready\n", 3062 con->name, con->index); 3063 unregister_console(con); 3064 } 3065 } 3066 ret = cpuhp_setup_state_nocalls(CPUHP_PRINTK_DEAD, "printk:dead", NULL, 3067 console_cpu_notify); 3068 WARN_ON(ret < 0); 3069 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "printk:online", 3070 console_cpu_notify, NULL); 3071 WARN_ON(ret < 0); 3072 return 0; 3073 } 3074 late_initcall(printk_late_init); 3075 3076 #if defined CONFIG_PRINTK 3077 /* 3078 * Delayed printk version, for scheduler-internal messages: 3079 */ 3080 #define PRINTK_PENDING_WAKEUP 0x01 3081 #define PRINTK_PENDING_OUTPUT 0x02 3082 3083 static DEFINE_PER_CPU(int, printk_pending); 3084 3085 static void wake_up_klogd_work_func(struct irq_work *irq_work) 3086 { 3087 int pending = __this_cpu_xchg(printk_pending, 0); 3088 3089 if (pending & PRINTK_PENDING_OUTPUT) { 3090 /* If trylock fails, someone else is doing the printing */ 3091 if (console_trylock()) 3092 console_unlock(); 3093 } 3094 3095 if (pending & PRINTK_PENDING_WAKEUP) 3096 wake_up_interruptible(&log_wait); 3097 } 3098 3099 static DEFINE_PER_CPU(struct irq_work, wake_up_klogd_work) = 3100 IRQ_WORK_INIT_LAZY(wake_up_klogd_work_func); 3101 3102 void wake_up_klogd(void) 3103 { 3104 if (!printk_percpu_data_ready()) 3105 return; 3106 3107 preempt_disable(); 3108 if (waitqueue_active(&log_wait)) { 3109 this_cpu_or(printk_pending, PRINTK_PENDING_WAKEUP); 3110 irq_work_queue(this_cpu_ptr(&wake_up_klogd_work)); 3111 } 3112 preempt_enable(); 3113 } 3114 3115 void defer_console_output(void) 3116 { 3117 if (!printk_percpu_data_ready()) 3118 return; 3119 3120 preempt_disable(); 3121 __this_cpu_or(printk_pending, PRINTK_PENDING_OUTPUT); 3122 irq_work_queue(this_cpu_ptr(&wake_up_klogd_work)); 3123 preempt_enable(); 3124 } 3125 3126 int vprintk_deferred(const char *fmt, va_list args) 3127 { 3128 int r; 3129 3130 r = vprintk_emit(0, LOGLEVEL_SCHED, NULL, fmt, args); 3131 defer_console_output(); 3132 3133 return r; 3134 } 3135 3136 int printk_deferred(const char *fmt, ...) 3137 { 3138 va_list args; 3139 int r; 3140 3141 va_start(args, fmt); 3142 r = vprintk_deferred(fmt, args); 3143 va_end(args); 3144 3145 return r; 3146 } 3147 3148 /* 3149 * printk rate limiting, lifted from the networking subsystem. 3150 * 3151 * This enforces a rate limit: not more than 10 kernel messages 3152 * every 5s to make a denial-of-service attack impossible. 3153 */ 3154 DEFINE_RATELIMIT_STATE(printk_ratelimit_state, 5 * HZ, 10); 3155 3156 int __printk_ratelimit(const char *func) 3157 { 3158 return ___ratelimit(&printk_ratelimit_state, func); 3159 } 3160 EXPORT_SYMBOL(__printk_ratelimit); 3161 3162 /** 3163 * printk_timed_ratelimit - caller-controlled printk ratelimiting 3164 * @caller_jiffies: pointer to caller's state 3165 * @interval_msecs: minimum interval between prints 3166 * 3167 * printk_timed_ratelimit() returns true if more than @interval_msecs 3168 * milliseconds have elapsed since the last time printk_timed_ratelimit() 3169 * returned true. 3170 */ 3171 bool printk_timed_ratelimit(unsigned long *caller_jiffies, 3172 unsigned int interval_msecs) 3173 { 3174 unsigned long elapsed = jiffies - *caller_jiffies; 3175 3176 if (*caller_jiffies && elapsed <= msecs_to_jiffies(interval_msecs)) 3177 return false; 3178 3179 *caller_jiffies = jiffies; 3180 return true; 3181 } 3182 EXPORT_SYMBOL(printk_timed_ratelimit); 3183 3184 static DEFINE_SPINLOCK(dump_list_lock); 3185 static LIST_HEAD(dump_list); 3186 3187 /** 3188 * kmsg_dump_register - register a kernel log dumper. 3189 * @dumper: pointer to the kmsg_dumper structure 3190 * 3191 * Adds a kernel log dumper to the system. The dump callback in the 3192 * structure will be called when the kernel oopses or panics and must be 3193 * set. Returns zero on success and %-EINVAL or %-EBUSY otherwise. 3194 */ 3195 int kmsg_dump_register(struct kmsg_dumper *dumper) 3196 { 3197 unsigned long flags; 3198 int err = -EBUSY; 3199 3200 /* The dump callback needs to be set */ 3201 if (!dumper->dump) 3202 return -EINVAL; 3203 3204 spin_lock_irqsave(&dump_list_lock, flags); 3205 /* Don't allow registering multiple times */ 3206 if (!dumper->registered) { 3207 dumper->registered = 1; 3208 list_add_tail_rcu(&dumper->list, &dump_list); 3209 err = 0; 3210 } 3211 spin_unlock_irqrestore(&dump_list_lock, flags); 3212 3213 return err; 3214 } 3215 EXPORT_SYMBOL_GPL(kmsg_dump_register); 3216 3217 /** 3218 * kmsg_dump_unregister - unregister a kmsg dumper. 3219 * @dumper: pointer to the kmsg_dumper structure 3220 * 3221 * Removes a dump device from the system. Returns zero on success and 3222 * %-EINVAL otherwise. 3223 */ 3224 int kmsg_dump_unregister(struct kmsg_dumper *dumper) 3225 { 3226 unsigned long flags; 3227 int err = -EINVAL; 3228 3229 spin_lock_irqsave(&dump_list_lock, flags); 3230 if (dumper->registered) { 3231 dumper->registered = 0; 3232 list_del_rcu(&dumper->list); 3233 err = 0; 3234 } 3235 spin_unlock_irqrestore(&dump_list_lock, flags); 3236 synchronize_rcu(); 3237 3238 return err; 3239 } 3240 EXPORT_SYMBOL_GPL(kmsg_dump_unregister); 3241 3242 static bool always_kmsg_dump; 3243 module_param_named(always_kmsg_dump, always_kmsg_dump, bool, S_IRUGO | S_IWUSR); 3244 3245 const char *kmsg_dump_reason_str(enum kmsg_dump_reason reason) 3246 { 3247 switch (reason) { 3248 case KMSG_DUMP_PANIC: 3249 return "Panic"; 3250 case KMSG_DUMP_OOPS: 3251 return "Oops"; 3252 case KMSG_DUMP_EMERG: 3253 return "Emergency"; 3254 case KMSG_DUMP_SHUTDOWN: 3255 return "Shutdown"; 3256 default: 3257 return "Unknown"; 3258 } 3259 } 3260 EXPORT_SYMBOL_GPL(kmsg_dump_reason_str); 3261 3262 /** 3263 * kmsg_dump - dump kernel log to kernel message dumpers. 3264 * @reason: the reason (oops, panic etc) for dumping 3265 * 3266 * Call each of the registered dumper's dump() callback, which can 3267 * retrieve the kmsg records with kmsg_dump_get_line() or 3268 * kmsg_dump_get_buffer(). 3269 */ 3270 void kmsg_dump(enum kmsg_dump_reason reason) 3271 { 3272 struct kmsg_dumper *dumper; 3273 unsigned long flags; 3274 3275 rcu_read_lock(); 3276 list_for_each_entry_rcu(dumper, &dump_list, list) { 3277 enum kmsg_dump_reason max_reason = dumper->max_reason; 3278 3279 /* 3280 * If client has not provided a specific max_reason, default 3281 * to KMSG_DUMP_OOPS, unless always_kmsg_dump was set. 3282 */ 3283 if (max_reason == KMSG_DUMP_UNDEF) { 3284 max_reason = always_kmsg_dump ? KMSG_DUMP_MAX : 3285 KMSG_DUMP_OOPS; 3286 } 3287 if (reason > max_reason) 3288 continue; 3289 3290 /* initialize iterator with data about the stored records */ 3291 dumper->active = true; 3292 3293 logbuf_lock_irqsave(flags); 3294 dumper->cur_seq = clear_seq; 3295 dumper->next_seq = prb_next_seq(prb); 3296 logbuf_unlock_irqrestore(flags); 3297 3298 /* invoke dumper which will iterate over records */ 3299 dumper->dump(dumper, reason); 3300 3301 /* reset iterator */ 3302 dumper->active = false; 3303 } 3304 rcu_read_unlock(); 3305 } 3306 3307 /** 3308 * kmsg_dump_get_line_nolock - retrieve one kmsg log line (unlocked version) 3309 * @dumper: registered kmsg dumper 3310 * @syslog: include the "<4>" prefixes 3311 * @line: buffer to copy the line to 3312 * @size: maximum size of the buffer 3313 * @len: length of line placed into buffer 3314 * 3315 * Start at the beginning of the kmsg buffer, with the oldest kmsg 3316 * record, and copy one record into the provided buffer. 3317 * 3318 * Consecutive calls will return the next available record moving 3319 * towards the end of the buffer with the youngest messages. 3320 * 3321 * A return value of FALSE indicates that there are no more records to 3322 * read. 3323 * 3324 * The function is similar to kmsg_dump_get_line(), but grabs no locks. 3325 */ 3326 bool kmsg_dump_get_line_nolock(struct kmsg_dumper *dumper, bool syslog, 3327 char *line, size_t size, size_t *len) 3328 { 3329 struct printk_info info; 3330 unsigned int line_count; 3331 struct printk_record r; 3332 size_t l = 0; 3333 bool ret = false; 3334 3335 prb_rec_init_rd(&r, &info, line, size); 3336 3337 if (!dumper->active) 3338 goto out; 3339 3340 /* Read text or count text lines? */ 3341 if (line) { 3342 if (!prb_read_valid(prb, dumper->cur_seq, &r)) 3343 goto out; 3344 l = record_print_text(&r, syslog, printk_time); 3345 } else { 3346 if (!prb_read_valid_info(prb, dumper->cur_seq, 3347 &info, &line_count)) { 3348 goto out; 3349 } 3350 l = get_record_print_text_size(&info, line_count, syslog, 3351 printk_time); 3352 3353 } 3354 3355 dumper->cur_seq = r.info->seq + 1; 3356 ret = true; 3357 out: 3358 if (len) 3359 *len = l; 3360 return ret; 3361 } 3362 3363 /** 3364 * kmsg_dump_get_line - retrieve one kmsg log line 3365 * @dumper: registered kmsg dumper 3366 * @syslog: include the "<4>" prefixes 3367 * @line: buffer to copy the line to 3368 * @size: maximum size of the buffer 3369 * @len: length of line placed into buffer 3370 * 3371 * Start at the beginning of the kmsg buffer, with the oldest kmsg 3372 * record, and copy one record into the provided buffer. 3373 * 3374 * Consecutive calls will return the next available record moving 3375 * towards the end of the buffer with the youngest messages. 3376 * 3377 * A return value of FALSE indicates that there are no more records to 3378 * read. 3379 */ 3380 bool kmsg_dump_get_line(struct kmsg_dumper *dumper, bool syslog, 3381 char *line, size_t size, size_t *len) 3382 { 3383 unsigned long flags; 3384 bool ret; 3385 3386 logbuf_lock_irqsave(flags); 3387 ret = kmsg_dump_get_line_nolock(dumper, syslog, line, size, len); 3388 logbuf_unlock_irqrestore(flags); 3389 3390 return ret; 3391 } 3392 EXPORT_SYMBOL_GPL(kmsg_dump_get_line); 3393 3394 /** 3395 * kmsg_dump_get_buffer - copy kmsg log lines 3396 * @dumper: registered kmsg dumper 3397 * @syslog: include the "<4>" prefixes 3398 * @buf: buffer to copy the line to 3399 * @size: maximum size of the buffer 3400 * @len: length of line placed into buffer 3401 * 3402 * Start at the end of the kmsg buffer and fill the provided buffer 3403 * with as many of the *youngest* kmsg records that fit into it. 3404 * If the buffer is large enough, all available kmsg records will be 3405 * copied with a single call. 3406 * 3407 * Consecutive calls will fill the buffer with the next block of 3408 * available older records, not including the earlier retrieved ones. 3409 * 3410 * A return value of FALSE indicates that there are no more records to 3411 * read. 3412 */ 3413 bool kmsg_dump_get_buffer(struct kmsg_dumper *dumper, bool syslog, 3414 char *buf, size_t size, size_t *len) 3415 { 3416 struct printk_info info; 3417 unsigned int line_count; 3418 struct printk_record r; 3419 unsigned long flags; 3420 u64 seq; 3421 u64 next_seq; 3422 size_t l = 0; 3423 bool ret = false; 3424 bool time = printk_time; 3425 3426 prb_rec_init_rd(&r, &info, buf, size); 3427 3428 if (!dumper->active || !buf || !size) 3429 goto out; 3430 3431 logbuf_lock_irqsave(flags); 3432 if (dumper->cur_seq < prb_first_valid_seq(prb)) { 3433 /* messages are gone, move to first available one */ 3434 dumper->cur_seq = prb_first_valid_seq(prb); 3435 } 3436 3437 /* last entry */ 3438 if (dumper->cur_seq >= dumper->next_seq) { 3439 logbuf_unlock_irqrestore(flags); 3440 goto out; 3441 } 3442 3443 /* calculate length of entire buffer */ 3444 seq = dumper->cur_seq; 3445 while (prb_read_valid_info(prb, seq, &info, &line_count)) { 3446 if (r.info->seq >= dumper->next_seq) 3447 break; 3448 l += get_record_print_text_size(&info, line_count, syslog, time); 3449 seq = r.info->seq + 1; 3450 } 3451 3452 /* move first record forward until length fits into the buffer */ 3453 seq = dumper->cur_seq; 3454 while (l >= size && prb_read_valid_info(prb, seq, 3455 &info, &line_count)) { 3456 if (r.info->seq >= dumper->next_seq) 3457 break; 3458 l -= get_record_print_text_size(&info, line_count, syslog, time); 3459 seq = r.info->seq + 1; 3460 } 3461 3462 /* last message in next interation */ 3463 next_seq = seq; 3464 3465 /* actually read text into the buffer now */ 3466 l = 0; 3467 while (prb_read_valid(prb, seq, &r)) { 3468 if (r.info->seq >= dumper->next_seq) 3469 break; 3470 3471 l += record_print_text(&r, syslog, time); 3472 3473 /* adjust record to store to remaining buffer space */ 3474 prb_rec_init_rd(&r, &info, buf + l, size - l); 3475 3476 seq = r.info->seq + 1; 3477 } 3478 3479 dumper->next_seq = next_seq; 3480 ret = true; 3481 logbuf_unlock_irqrestore(flags); 3482 out: 3483 if (len) 3484 *len = l; 3485 return ret; 3486 } 3487 EXPORT_SYMBOL_GPL(kmsg_dump_get_buffer); 3488 3489 /** 3490 * kmsg_dump_rewind_nolock - reset the iterator (unlocked version) 3491 * @dumper: registered kmsg dumper 3492 * 3493 * Reset the dumper's iterator so that kmsg_dump_get_line() and 3494 * kmsg_dump_get_buffer() can be called again and used multiple 3495 * times within the same dumper.dump() callback. 3496 * 3497 * The function is similar to kmsg_dump_rewind(), but grabs no locks. 3498 */ 3499 void kmsg_dump_rewind_nolock(struct kmsg_dumper *dumper) 3500 { 3501 dumper->cur_seq = clear_seq; 3502 dumper->next_seq = prb_next_seq(prb); 3503 } 3504 3505 /** 3506 * kmsg_dump_rewind - reset the iterator 3507 * @dumper: registered kmsg dumper 3508 * 3509 * Reset the dumper's iterator so that kmsg_dump_get_line() and 3510 * kmsg_dump_get_buffer() can be called again and used multiple 3511 * times within the same dumper.dump() callback. 3512 */ 3513 void kmsg_dump_rewind(struct kmsg_dumper *dumper) 3514 { 3515 unsigned long flags; 3516 3517 logbuf_lock_irqsave(flags); 3518 kmsg_dump_rewind_nolock(dumper); 3519 logbuf_unlock_irqrestore(flags); 3520 } 3521 EXPORT_SYMBOL_GPL(kmsg_dump_rewind); 3522 3523 #endif 3524