xref: /openbmc/linux/kernel/printk/printk.c (revision b240b419db5d624ce7a5a397d6f62a1a686009ec)
1 /*
2  *  linux/kernel/printk.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  *
6  * Modified to make sys_syslog() more flexible: added commands to
7  * return the last 4k of kernel messages, regardless of whether
8  * they've been read or not.  Added option to suppress kernel printk's
9  * to the console.  Added hook for sending the console messages
10  * elsewhere, in preparation for a serial line console (someday).
11  * Ted Ts'o, 2/11/93.
12  * Modified for sysctl support, 1/8/97, Chris Horn.
13  * Fixed SMP synchronization, 08/08/99, Manfred Spraul
14  *     manfred@colorfullife.com
15  * Rewrote bits to get rid of console_lock
16  *	01Mar01 Andrew Morton
17  */
18 
19 #include <linux/kernel.h>
20 #include <linux/mm.h>
21 #include <linux/tty.h>
22 #include <linux/tty_driver.h>
23 #include <linux/console.h>
24 #include <linux/init.h>
25 #include <linux/jiffies.h>
26 #include <linux/nmi.h>
27 #include <linux/module.h>
28 #include <linux/moduleparam.h>
29 #include <linux/delay.h>
30 #include <linux/smp.h>
31 #include <linux/security.h>
32 #include <linux/bootmem.h>
33 #include <linux/memblock.h>
34 #include <linux/syscalls.h>
35 #include <linux/crash_core.h>
36 #include <linux/kdb.h>
37 #include <linux/ratelimit.h>
38 #include <linux/kmsg_dump.h>
39 #include <linux/syslog.h>
40 #include <linux/cpu.h>
41 #include <linux/notifier.h>
42 #include <linux/rculist.h>
43 #include <linux/poll.h>
44 #include <linux/irq_work.h>
45 #include <linux/ctype.h>
46 #include <linux/uio.h>
47 #include <linux/sched/clock.h>
48 #include <linux/sched/debug.h>
49 #include <linux/sched/task_stack.h>
50 
51 #include <linux/uaccess.h>
52 #include <asm/sections.h>
53 
54 #define CREATE_TRACE_POINTS
55 #include <trace/events/printk.h>
56 
57 #include "console_cmdline.h"
58 #include "braille.h"
59 #include "internal.h"
60 
61 int console_printk[4] = {
62 	CONSOLE_LOGLEVEL_DEFAULT,	/* console_loglevel */
63 	MESSAGE_LOGLEVEL_DEFAULT,	/* default_message_loglevel */
64 	CONSOLE_LOGLEVEL_MIN,		/* minimum_console_loglevel */
65 	CONSOLE_LOGLEVEL_DEFAULT,	/* default_console_loglevel */
66 };
67 
68 /*
69  * Low level drivers may need that to know if they can schedule in
70  * their unblank() callback or not. So let's export it.
71  */
72 int oops_in_progress;
73 EXPORT_SYMBOL(oops_in_progress);
74 
75 /*
76  * console_sem protects the console_drivers list, and also
77  * provides serialisation for access to the entire console
78  * driver system.
79  */
80 static DEFINE_SEMAPHORE(console_sem);
81 struct console *console_drivers;
82 EXPORT_SYMBOL_GPL(console_drivers);
83 
84 #ifdef CONFIG_LOCKDEP
85 static struct lockdep_map console_lock_dep_map = {
86 	.name = "console_lock"
87 };
88 #endif
89 
90 enum devkmsg_log_bits {
91 	__DEVKMSG_LOG_BIT_ON = 0,
92 	__DEVKMSG_LOG_BIT_OFF,
93 	__DEVKMSG_LOG_BIT_LOCK,
94 };
95 
96 enum devkmsg_log_masks {
97 	DEVKMSG_LOG_MASK_ON             = BIT(__DEVKMSG_LOG_BIT_ON),
98 	DEVKMSG_LOG_MASK_OFF            = BIT(__DEVKMSG_LOG_BIT_OFF),
99 	DEVKMSG_LOG_MASK_LOCK           = BIT(__DEVKMSG_LOG_BIT_LOCK),
100 };
101 
102 /* Keep both the 'on' and 'off' bits clear, i.e. ratelimit by default: */
103 #define DEVKMSG_LOG_MASK_DEFAULT	0
104 
105 static unsigned int __read_mostly devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT;
106 
107 static int __control_devkmsg(char *str)
108 {
109 	if (!str)
110 		return -EINVAL;
111 
112 	if (!strncmp(str, "on", 2)) {
113 		devkmsg_log = DEVKMSG_LOG_MASK_ON;
114 		return 2;
115 	} else if (!strncmp(str, "off", 3)) {
116 		devkmsg_log = DEVKMSG_LOG_MASK_OFF;
117 		return 3;
118 	} else if (!strncmp(str, "ratelimit", 9)) {
119 		devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT;
120 		return 9;
121 	}
122 	return -EINVAL;
123 }
124 
125 static int __init control_devkmsg(char *str)
126 {
127 	if (__control_devkmsg(str) < 0)
128 		return 1;
129 
130 	/*
131 	 * Set sysctl string accordingly:
132 	 */
133 	if (devkmsg_log == DEVKMSG_LOG_MASK_ON)
134 		strcpy(devkmsg_log_str, "on");
135 	else if (devkmsg_log == DEVKMSG_LOG_MASK_OFF)
136 		strcpy(devkmsg_log_str, "off");
137 	/* else "ratelimit" which is set by default. */
138 
139 	/*
140 	 * Sysctl cannot change it anymore. The kernel command line setting of
141 	 * this parameter is to force the setting to be permanent throughout the
142 	 * runtime of the system. This is a precation measure against userspace
143 	 * trying to be a smarta** and attempting to change it up on us.
144 	 */
145 	devkmsg_log |= DEVKMSG_LOG_MASK_LOCK;
146 
147 	return 0;
148 }
149 __setup("printk.devkmsg=", control_devkmsg);
150 
151 char devkmsg_log_str[DEVKMSG_STR_MAX_SIZE] = "ratelimit";
152 
153 int devkmsg_sysctl_set_loglvl(struct ctl_table *table, int write,
154 			      void __user *buffer, size_t *lenp, loff_t *ppos)
155 {
156 	char old_str[DEVKMSG_STR_MAX_SIZE];
157 	unsigned int old;
158 	int err;
159 
160 	if (write) {
161 		if (devkmsg_log & DEVKMSG_LOG_MASK_LOCK)
162 			return -EINVAL;
163 
164 		old = devkmsg_log;
165 		strncpy(old_str, devkmsg_log_str, DEVKMSG_STR_MAX_SIZE);
166 	}
167 
168 	err = proc_dostring(table, write, buffer, lenp, ppos);
169 	if (err)
170 		return err;
171 
172 	if (write) {
173 		err = __control_devkmsg(devkmsg_log_str);
174 
175 		/*
176 		 * Do not accept an unknown string OR a known string with
177 		 * trailing crap...
178 		 */
179 		if (err < 0 || (err + 1 != *lenp)) {
180 
181 			/* ... and restore old setting. */
182 			devkmsg_log = old;
183 			strncpy(devkmsg_log_str, old_str, DEVKMSG_STR_MAX_SIZE);
184 
185 			return -EINVAL;
186 		}
187 	}
188 
189 	return 0;
190 }
191 
192 /*
193  * Number of registered extended console drivers.
194  *
195  * If extended consoles are present, in-kernel cont reassembly is disabled
196  * and each fragment is stored as a separate log entry with proper
197  * continuation flag so that every emitted message has full metadata.  This
198  * doesn't change the result for regular consoles or /proc/kmsg.  For
199  * /dev/kmsg, as long as the reader concatenates messages according to
200  * consecutive continuation flags, the end result should be the same too.
201  */
202 static int nr_ext_console_drivers;
203 
204 /*
205  * Helper macros to handle lockdep when locking/unlocking console_sem. We use
206  * macros instead of functions so that _RET_IP_ contains useful information.
207  */
208 #define down_console_sem() do { \
209 	down(&console_sem);\
210 	mutex_acquire(&console_lock_dep_map, 0, 0, _RET_IP_);\
211 } while (0)
212 
213 static int __down_trylock_console_sem(unsigned long ip)
214 {
215 	int lock_failed;
216 	unsigned long flags;
217 
218 	/*
219 	 * Here and in __up_console_sem() we need to be in safe mode,
220 	 * because spindump/WARN/etc from under console ->lock will
221 	 * deadlock in printk()->down_trylock_console_sem() otherwise.
222 	 */
223 	printk_safe_enter_irqsave(flags);
224 	lock_failed = down_trylock(&console_sem);
225 	printk_safe_exit_irqrestore(flags);
226 
227 	if (lock_failed)
228 		return 1;
229 	mutex_acquire(&console_lock_dep_map, 0, 1, ip);
230 	return 0;
231 }
232 #define down_trylock_console_sem() __down_trylock_console_sem(_RET_IP_)
233 
234 static void __up_console_sem(unsigned long ip)
235 {
236 	unsigned long flags;
237 
238 	mutex_release(&console_lock_dep_map, 1, ip);
239 
240 	printk_safe_enter_irqsave(flags);
241 	up(&console_sem);
242 	printk_safe_exit_irqrestore(flags);
243 }
244 #define up_console_sem() __up_console_sem(_RET_IP_)
245 
246 /*
247  * This is used for debugging the mess that is the VT code by
248  * keeping track if we have the console semaphore held. It's
249  * definitely not the perfect debug tool (we don't know if _WE_
250  * hold it and are racing, but it helps tracking those weird code
251  * paths in the console code where we end up in places I want
252  * locked without the console sempahore held).
253  */
254 static int console_locked, console_suspended;
255 
256 /*
257  * If exclusive_console is non-NULL then only this console is to be printed to.
258  */
259 static struct console *exclusive_console;
260 
261 /*
262  *	Array of consoles built from command line options (console=)
263  */
264 
265 #define MAX_CMDLINECONSOLES 8
266 
267 static struct console_cmdline console_cmdline[MAX_CMDLINECONSOLES];
268 
269 static int preferred_console = -1;
270 int console_set_on_cmdline;
271 EXPORT_SYMBOL(console_set_on_cmdline);
272 
273 /* Flag: console code may call schedule() */
274 static int console_may_schedule;
275 
276 enum con_msg_format_flags {
277 	MSG_FORMAT_DEFAULT	= 0,
278 	MSG_FORMAT_SYSLOG	= (1 << 0),
279 };
280 
281 static int console_msg_format = MSG_FORMAT_DEFAULT;
282 
283 /*
284  * The printk log buffer consists of a chain of concatenated variable
285  * length records. Every record starts with a record header, containing
286  * the overall length of the record.
287  *
288  * The heads to the first and last entry in the buffer, as well as the
289  * sequence numbers of these entries are maintained when messages are
290  * stored.
291  *
292  * If the heads indicate available messages, the length in the header
293  * tells the start next message. A length == 0 for the next message
294  * indicates a wrap-around to the beginning of the buffer.
295  *
296  * Every record carries the monotonic timestamp in microseconds, as well as
297  * the standard userspace syslog level and syslog facility. The usual
298  * kernel messages use LOG_KERN; userspace-injected messages always carry
299  * a matching syslog facility, by default LOG_USER. The origin of every
300  * message can be reliably determined that way.
301  *
302  * The human readable log message directly follows the message header. The
303  * length of the message text is stored in the header, the stored message
304  * is not terminated.
305  *
306  * Optionally, a message can carry a dictionary of properties (key/value pairs),
307  * to provide userspace with a machine-readable message context.
308  *
309  * Examples for well-defined, commonly used property names are:
310  *   DEVICE=b12:8               device identifier
311  *                                b12:8         block dev_t
312  *                                c127:3        char dev_t
313  *                                n8            netdev ifindex
314  *                                +sound:card0  subsystem:devname
315  *   SUBSYSTEM=pci              driver-core subsystem name
316  *
317  * Valid characters in property names are [a-zA-Z0-9.-_]. The plain text value
318  * follows directly after a '=' character. Every property is terminated by
319  * a '\0' character. The last property is not terminated.
320  *
321  * Example of a message structure:
322  *   0000  ff 8f 00 00 00 00 00 00      monotonic time in nsec
323  *   0008  34 00                        record is 52 bytes long
324  *   000a        0b 00                  text is 11 bytes long
325  *   000c              1f 00            dictionary is 23 bytes long
326  *   000e                    03 00      LOG_KERN (facility) LOG_ERR (level)
327  *   0010  69 74 27 73 20 61 20 6c      "it's a l"
328  *         69 6e 65                     "ine"
329  *   001b           44 45 56 49 43      "DEVIC"
330  *         45 3d 62 38 3a 32 00 44      "E=b8:2\0D"
331  *         52 49 56 45 52 3d 62 75      "RIVER=bu"
332  *         67                           "g"
333  *   0032     00 00 00                  padding to next message header
334  *
335  * The 'struct printk_log' buffer header must never be directly exported to
336  * userspace, it is a kernel-private implementation detail that might
337  * need to be changed in the future, when the requirements change.
338  *
339  * /dev/kmsg exports the structured data in the following line format:
340  *   "<level>,<sequnum>,<timestamp>,<contflag>[,additional_values, ... ];<message text>\n"
341  *
342  * Users of the export format should ignore possible additional values
343  * separated by ',', and find the message after the ';' character.
344  *
345  * The optional key/value pairs are attached as continuation lines starting
346  * with a space character and terminated by a newline. All possible
347  * non-prinatable characters are escaped in the "\xff" notation.
348  */
349 
350 enum log_flags {
351 	LOG_NOCONS	= 1,	/* already flushed, do not print to console */
352 	LOG_NEWLINE	= 2,	/* text ended with a newline */
353 	LOG_PREFIX	= 4,	/* text started with a prefix */
354 	LOG_CONT	= 8,	/* text is a fragment of a continuation line */
355 };
356 
357 struct printk_log {
358 	u64 ts_nsec;		/* timestamp in nanoseconds */
359 	u16 len;		/* length of entire record */
360 	u16 text_len;		/* length of text buffer */
361 	u16 dict_len;		/* length of dictionary buffer */
362 	u8 facility;		/* syslog facility */
363 	u8 flags:5;		/* internal record flags */
364 	u8 level:3;		/* syslog level */
365 }
366 #ifdef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
367 __packed __aligned(4)
368 #endif
369 ;
370 
371 /*
372  * The logbuf_lock protects kmsg buffer, indices, counters.  This can be taken
373  * within the scheduler's rq lock. It must be released before calling
374  * console_unlock() or anything else that might wake up a process.
375  */
376 DEFINE_RAW_SPINLOCK(logbuf_lock);
377 
378 /*
379  * Helper macros to lock/unlock logbuf_lock and switch between
380  * printk-safe/unsafe modes.
381  */
382 #define logbuf_lock_irq()				\
383 	do {						\
384 		printk_safe_enter_irq();		\
385 		raw_spin_lock(&logbuf_lock);		\
386 	} while (0)
387 
388 #define logbuf_unlock_irq()				\
389 	do {						\
390 		raw_spin_unlock(&logbuf_lock);		\
391 		printk_safe_exit_irq();			\
392 	} while (0)
393 
394 #define logbuf_lock_irqsave(flags)			\
395 	do {						\
396 		printk_safe_enter_irqsave(flags);	\
397 		raw_spin_lock(&logbuf_lock);		\
398 	} while (0)
399 
400 #define logbuf_unlock_irqrestore(flags)		\
401 	do {						\
402 		raw_spin_unlock(&logbuf_lock);		\
403 		printk_safe_exit_irqrestore(flags);	\
404 	} while (0)
405 
406 #ifdef CONFIG_PRINTK
407 DECLARE_WAIT_QUEUE_HEAD(log_wait);
408 /* the next printk record to read by syslog(READ) or /proc/kmsg */
409 static u64 syslog_seq;
410 static u32 syslog_idx;
411 static size_t syslog_partial;
412 
413 /* index and sequence number of the first record stored in the buffer */
414 static u64 log_first_seq;
415 static u32 log_first_idx;
416 
417 /* index and sequence number of the next record to store in the buffer */
418 static u64 log_next_seq;
419 static u32 log_next_idx;
420 
421 /* the next printk record to write to the console */
422 static u64 console_seq;
423 static u32 console_idx;
424 
425 /* the next printk record to read after the last 'clear' command */
426 static u64 clear_seq;
427 static u32 clear_idx;
428 
429 #define PREFIX_MAX		32
430 #define LOG_LINE_MAX		(1024 - PREFIX_MAX)
431 
432 #define LOG_LEVEL(v)		((v) & 0x07)
433 #define LOG_FACILITY(v)		((v) >> 3 & 0xff)
434 
435 /* record buffer */
436 #define LOG_ALIGN __alignof__(struct printk_log)
437 #define __LOG_BUF_LEN (1 << CONFIG_LOG_BUF_SHIFT)
438 static char __log_buf[__LOG_BUF_LEN] __aligned(LOG_ALIGN);
439 static char *log_buf = __log_buf;
440 static u32 log_buf_len = __LOG_BUF_LEN;
441 
442 /* Return log buffer address */
443 char *log_buf_addr_get(void)
444 {
445 	return log_buf;
446 }
447 
448 /* Return log buffer size */
449 u32 log_buf_len_get(void)
450 {
451 	return log_buf_len;
452 }
453 
454 /* human readable text of the record */
455 static char *log_text(const struct printk_log *msg)
456 {
457 	return (char *)msg + sizeof(struct printk_log);
458 }
459 
460 /* optional key/value pair dictionary attached to the record */
461 static char *log_dict(const struct printk_log *msg)
462 {
463 	return (char *)msg + sizeof(struct printk_log) + msg->text_len;
464 }
465 
466 /* get record by index; idx must point to valid msg */
467 static struct printk_log *log_from_idx(u32 idx)
468 {
469 	struct printk_log *msg = (struct printk_log *)(log_buf + idx);
470 
471 	/*
472 	 * A length == 0 record is the end of buffer marker. Wrap around and
473 	 * read the message at the start of the buffer.
474 	 */
475 	if (!msg->len)
476 		return (struct printk_log *)log_buf;
477 	return msg;
478 }
479 
480 /* get next record; idx must point to valid msg */
481 static u32 log_next(u32 idx)
482 {
483 	struct printk_log *msg = (struct printk_log *)(log_buf + idx);
484 
485 	/* length == 0 indicates the end of the buffer; wrap */
486 	/*
487 	 * A length == 0 record is the end of buffer marker. Wrap around and
488 	 * read the message at the start of the buffer as *this* one, and
489 	 * return the one after that.
490 	 */
491 	if (!msg->len) {
492 		msg = (struct printk_log *)log_buf;
493 		return msg->len;
494 	}
495 	return idx + msg->len;
496 }
497 
498 /*
499  * Check whether there is enough free space for the given message.
500  *
501  * The same values of first_idx and next_idx mean that the buffer
502  * is either empty or full.
503  *
504  * If the buffer is empty, we must respect the position of the indexes.
505  * They cannot be reset to the beginning of the buffer.
506  */
507 static int logbuf_has_space(u32 msg_size, bool empty)
508 {
509 	u32 free;
510 
511 	if (log_next_idx > log_first_idx || empty)
512 		free = max(log_buf_len - log_next_idx, log_first_idx);
513 	else
514 		free = log_first_idx - log_next_idx;
515 
516 	/*
517 	 * We need space also for an empty header that signalizes wrapping
518 	 * of the buffer.
519 	 */
520 	return free >= msg_size + sizeof(struct printk_log);
521 }
522 
523 static int log_make_free_space(u32 msg_size)
524 {
525 	while (log_first_seq < log_next_seq &&
526 	       !logbuf_has_space(msg_size, false)) {
527 		/* drop old messages until we have enough contiguous space */
528 		log_first_idx = log_next(log_first_idx);
529 		log_first_seq++;
530 	}
531 
532 	if (clear_seq < log_first_seq) {
533 		clear_seq = log_first_seq;
534 		clear_idx = log_first_idx;
535 	}
536 
537 	/* sequence numbers are equal, so the log buffer is empty */
538 	if (logbuf_has_space(msg_size, log_first_seq == log_next_seq))
539 		return 0;
540 
541 	return -ENOMEM;
542 }
543 
544 /* compute the message size including the padding bytes */
545 static u32 msg_used_size(u16 text_len, u16 dict_len, u32 *pad_len)
546 {
547 	u32 size;
548 
549 	size = sizeof(struct printk_log) + text_len + dict_len;
550 	*pad_len = (-size) & (LOG_ALIGN - 1);
551 	size += *pad_len;
552 
553 	return size;
554 }
555 
556 /*
557  * Define how much of the log buffer we could take at maximum. The value
558  * must be greater than two. Note that only half of the buffer is available
559  * when the index points to the middle.
560  */
561 #define MAX_LOG_TAKE_PART 4
562 static const char trunc_msg[] = "<truncated>";
563 
564 static u32 truncate_msg(u16 *text_len, u16 *trunc_msg_len,
565 			u16 *dict_len, u32 *pad_len)
566 {
567 	/*
568 	 * The message should not take the whole buffer. Otherwise, it might
569 	 * get removed too soon.
570 	 */
571 	u32 max_text_len = log_buf_len / MAX_LOG_TAKE_PART;
572 	if (*text_len > max_text_len)
573 		*text_len = max_text_len;
574 	/* enable the warning message */
575 	*trunc_msg_len = strlen(trunc_msg);
576 	/* disable the "dict" completely */
577 	*dict_len = 0;
578 	/* compute the size again, count also the warning message */
579 	return msg_used_size(*text_len + *trunc_msg_len, 0, pad_len);
580 }
581 
582 /* insert record into the buffer, discard old ones, update heads */
583 static int log_store(int facility, int level,
584 		     enum log_flags flags, u64 ts_nsec,
585 		     const char *dict, u16 dict_len,
586 		     const char *text, u16 text_len)
587 {
588 	struct printk_log *msg;
589 	u32 size, pad_len;
590 	u16 trunc_msg_len = 0;
591 
592 	/* number of '\0' padding bytes to next message */
593 	size = msg_used_size(text_len, dict_len, &pad_len);
594 
595 	if (log_make_free_space(size)) {
596 		/* truncate the message if it is too long for empty buffer */
597 		size = truncate_msg(&text_len, &trunc_msg_len,
598 				    &dict_len, &pad_len);
599 		/* survive when the log buffer is too small for trunc_msg */
600 		if (log_make_free_space(size))
601 			return 0;
602 	}
603 
604 	if (log_next_idx + size + sizeof(struct printk_log) > log_buf_len) {
605 		/*
606 		 * This message + an additional empty header does not fit
607 		 * at the end of the buffer. Add an empty header with len == 0
608 		 * to signify a wrap around.
609 		 */
610 		memset(log_buf + log_next_idx, 0, sizeof(struct printk_log));
611 		log_next_idx = 0;
612 	}
613 
614 	/* fill message */
615 	msg = (struct printk_log *)(log_buf + log_next_idx);
616 	memcpy(log_text(msg), text, text_len);
617 	msg->text_len = text_len;
618 	if (trunc_msg_len) {
619 		memcpy(log_text(msg) + text_len, trunc_msg, trunc_msg_len);
620 		msg->text_len += trunc_msg_len;
621 	}
622 	memcpy(log_dict(msg), dict, dict_len);
623 	msg->dict_len = dict_len;
624 	msg->facility = facility;
625 	msg->level = level & 7;
626 	msg->flags = flags & 0x1f;
627 	if (ts_nsec > 0)
628 		msg->ts_nsec = ts_nsec;
629 	else
630 		msg->ts_nsec = local_clock();
631 	memset(log_dict(msg) + dict_len, 0, pad_len);
632 	msg->len = size;
633 
634 	/* insert message */
635 	log_next_idx += msg->len;
636 	log_next_seq++;
637 
638 	return msg->text_len;
639 }
640 
641 int dmesg_restrict = IS_ENABLED(CONFIG_SECURITY_DMESG_RESTRICT);
642 
643 static int syslog_action_restricted(int type)
644 {
645 	if (dmesg_restrict)
646 		return 1;
647 	/*
648 	 * Unless restricted, we allow "read all" and "get buffer size"
649 	 * for everybody.
650 	 */
651 	return type != SYSLOG_ACTION_READ_ALL &&
652 	       type != SYSLOG_ACTION_SIZE_BUFFER;
653 }
654 
655 static int check_syslog_permissions(int type, int source)
656 {
657 	/*
658 	 * If this is from /proc/kmsg and we've already opened it, then we've
659 	 * already done the capabilities checks at open time.
660 	 */
661 	if (source == SYSLOG_FROM_PROC && type != SYSLOG_ACTION_OPEN)
662 		goto ok;
663 
664 	if (syslog_action_restricted(type)) {
665 		if (capable(CAP_SYSLOG))
666 			goto ok;
667 		/*
668 		 * For historical reasons, accept CAP_SYS_ADMIN too, with
669 		 * a warning.
670 		 */
671 		if (capable(CAP_SYS_ADMIN)) {
672 			pr_warn_once("%s (%d): Attempt to access syslog with "
673 				     "CAP_SYS_ADMIN but no CAP_SYSLOG "
674 				     "(deprecated).\n",
675 				 current->comm, task_pid_nr(current));
676 			goto ok;
677 		}
678 		return -EPERM;
679 	}
680 ok:
681 	return security_syslog(type);
682 }
683 
684 static void append_char(char **pp, char *e, char c)
685 {
686 	if (*pp < e)
687 		*(*pp)++ = c;
688 }
689 
690 static ssize_t msg_print_ext_header(char *buf, size_t size,
691 				    struct printk_log *msg, u64 seq)
692 {
693 	u64 ts_usec = msg->ts_nsec;
694 
695 	do_div(ts_usec, 1000);
696 
697 	return scnprintf(buf, size, "%u,%llu,%llu,%c;",
698 		       (msg->facility << 3) | msg->level, seq, ts_usec,
699 		       msg->flags & LOG_CONT ? 'c' : '-');
700 }
701 
702 static ssize_t msg_print_ext_body(char *buf, size_t size,
703 				  char *dict, size_t dict_len,
704 				  char *text, size_t text_len)
705 {
706 	char *p = buf, *e = buf + size;
707 	size_t i;
708 
709 	/* escape non-printable characters */
710 	for (i = 0; i < text_len; i++) {
711 		unsigned char c = text[i];
712 
713 		if (c < ' ' || c >= 127 || c == '\\')
714 			p += scnprintf(p, e - p, "\\x%02x", c);
715 		else
716 			append_char(&p, e, c);
717 	}
718 	append_char(&p, e, '\n');
719 
720 	if (dict_len) {
721 		bool line = true;
722 
723 		for (i = 0; i < dict_len; i++) {
724 			unsigned char c = dict[i];
725 
726 			if (line) {
727 				append_char(&p, e, ' ');
728 				line = false;
729 			}
730 
731 			if (c == '\0') {
732 				append_char(&p, e, '\n');
733 				line = true;
734 				continue;
735 			}
736 
737 			if (c < ' ' || c >= 127 || c == '\\') {
738 				p += scnprintf(p, e - p, "\\x%02x", c);
739 				continue;
740 			}
741 
742 			append_char(&p, e, c);
743 		}
744 		append_char(&p, e, '\n');
745 	}
746 
747 	return p - buf;
748 }
749 
750 /* /dev/kmsg - userspace message inject/listen interface */
751 struct devkmsg_user {
752 	u64 seq;
753 	u32 idx;
754 	struct ratelimit_state rs;
755 	struct mutex lock;
756 	char buf[CONSOLE_EXT_LOG_MAX];
757 };
758 
759 static ssize_t devkmsg_write(struct kiocb *iocb, struct iov_iter *from)
760 {
761 	char *buf, *line;
762 	int level = default_message_loglevel;
763 	int facility = 1;	/* LOG_USER */
764 	struct file *file = iocb->ki_filp;
765 	struct devkmsg_user *user = file->private_data;
766 	size_t len = iov_iter_count(from);
767 	ssize_t ret = len;
768 
769 	if (!user || len > LOG_LINE_MAX)
770 		return -EINVAL;
771 
772 	/* Ignore when user logging is disabled. */
773 	if (devkmsg_log & DEVKMSG_LOG_MASK_OFF)
774 		return len;
775 
776 	/* Ratelimit when not explicitly enabled. */
777 	if (!(devkmsg_log & DEVKMSG_LOG_MASK_ON)) {
778 		if (!___ratelimit(&user->rs, current->comm))
779 			return ret;
780 	}
781 
782 	buf = kmalloc(len+1, GFP_KERNEL);
783 	if (buf == NULL)
784 		return -ENOMEM;
785 
786 	buf[len] = '\0';
787 	if (!copy_from_iter_full(buf, len, from)) {
788 		kfree(buf);
789 		return -EFAULT;
790 	}
791 
792 	/*
793 	 * Extract and skip the syslog prefix <[0-9]*>. Coming from userspace
794 	 * the decimal value represents 32bit, the lower 3 bit are the log
795 	 * level, the rest are the log facility.
796 	 *
797 	 * If no prefix or no userspace facility is specified, we
798 	 * enforce LOG_USER, to be able to reliably distinguish
799 	 * kernel-generated messages from userspace-injected ones.
800 	 */
801 	line = buf;
802 	if (line[0] == '<') {
803 		char *endp = NULL;
804 		unsigned int u;
805 
806 		u = simple_strtoul(line + 1, &endp, 10);
807 		if (endp && endp[0] == '>') {
808 			level = LOG_LEVEL(u);
809 			if (LOG_FACILITY(u) != 0)
810 				facility = LOG_FACILITY(u);
811 			endp++;
812 			len -= endp - line;
813 			line = endp;
814 		}
815 	}
816 
817 	printk_emit(facility, level, NULL, 0, "%s", line);
818 	kfree(buf);
819 	return ret;
820 }
821 
822 static ssize_t devkmsg_read(struct file *file, char __user *buf,
823 			    size_t count, loff_t *ppos)
824 {
825 	struct devkmsg_user *user = file->private_data;
826 	struct printk_log *msg;
827 	size_t len;
828 	ssize_t ret;
829 
830 	if (!user)
831 		return -EBADF;
832 
833 	ret = mutex_lock_interruptible(&user->lock);
834 	if (ret)
835 		return ret;
836 
837 	logbuf_lock_irq();
838 	while (user->seq == log_next_seq) {
839 		if (file->f_flags & O_NONBLOCK) {
840 			ret = -EAGAIN;
841 			logbuf_unlock_irq();
842 			goto out;
843 		}
844 
845 		logbuf_unlock_irq();
846 		ret = wait_event_interruptible(log_wait,
847 					       user->seq != log_next_seq);
848 		if (ret)
849 			goto out;
850 		logbuf_lock_irq();
851 	}
852 
853 	if (user->seq < log_first_seq) {
854 		/* our last seen message is gone, return error and reset */
855 		user->idx = log_first_idx;
856 		user->seq = log_first_seq;
857 		ret = -EPIPE;
858 		logbuf_unlock_irq();
859 		goto out;
860 	}
861 
862 	msg = log_from_idx(user->idx);
863 	len = msg_print_ext_header(user->buf, sizeof(user->buf),
864 				   msg, user->seq);
865 	len += msg_print_ext_body(user->buf + len, sizeof(user->buf) - len,
866 				  log_dict(msg), msg->dict_len,
867 				  log_text(msg), msg->text_len);
868 
869 	user->idx = log_next(user->idx);
870 	user->seq++;
871 	logbuf_unlock_irq();
872 
873 	if (len > count) {
874 		ret = -EINVAL;
875 		goto out;
876 	}
877 
878 	if (copy_to_user(buf, user->buf, len)) {
879 		ret = -EFAULT;
880 		goto out;
881 	}
882 	ret = len;
883 out:
884 	mutex_unlock(&user->lock);
885 	return ret;
886 }
887 
888 static loff_t devkmsg_llseek(struct file *file, loff_t offset, int whence)
889 {
890 	struct devkmsg_user *user = file->private_data;
891 	loff_t ret = 0;
892 
893 	if (!user)
894 		return -EBADF;
895 	if (offset)
896 		return -ESPIPE;
897 
898 	logbuf_lock_irq();
899 	switch (whence) {
900 	case SEEK_SET:
901 		/* the first record */
902 		user->idx = log_first_idx;
903 		user->seq = log_first_seq;
904 		break;
905 	case SEEK_DATA:
906 		/*
907 		 * The first record after the last SYSLOG_ACTION_CLEAR,
908 		 * like issued by 'dmesg -c'. Reading /dev/kmsg itself
909 		 * changes no global state, and does not clear anything.
910 		 */
911 		user->idx = clear_idx;
912 		user->seq = clear_seq;
913 		break;
914 	case SEEK_END:
915 		/* after the last record */
916 		user->idx = log_next_idx;
917 		user->seq = log_next_seq;
918 		break;
919 	default:
920 		ret = -EINVAL;
921 	}
922 	logbuf_unlock_irq();
923 	return ret;
924 }
925 
926 static __poll_t devkmsg_poll(struct file *file, poll_table *wait)
927 {
928 	struct devkmsg_user *user = file->private_data;
929 	__poll_t ret = 0;
930 
931 	if (!user)
932 		return EPOLLERR|EPOLLNVAL;
933 
934 	poll_wait(file, &log_wait, wait);
935 
936 	logbuf_lock_irq();
937 	if (user->seq < log_next_seq) {
938 		/* return error when data has vanished underneath us */
939 		if (user->seq < log_first_seq)
940 			ret = EPOLLIN|EPOLLRDNORM|EPOLLERR|EPOLLPRI;
941 		else
942 			ret = EPOLLIN|EPOLLRDNORM;
943 	}
944 	logbuf_unlock_irq();
945 
946 	return ret;
947 }
948 
949 static int devkmsg_open(struct inode *inode, struct file *file)
950 {
951 	struct devkmsg_user *user;
952 	int err;
953 
954 	if (devkmsg_log & DEVKMSG_LOG_MASK_OFF)
955 		return -EPERM;
956 
957 	/* write-only does not need any file context */
958 	if ((file->f_flags & O_ACCMODE) != O_WRONLY) {
959 		err = check_syslog_permissions(SYSLOG_ACTION_READ_ALL,
960 					       SYSLOG_FROM_READER);
961 		if (err)
962 			return err;
963 	}
964 
965 	user = kmalloc(sizeof(struct devkmsg_user), GFP_KERNEL);
966 	if (!user)
967 		return -ENOMEM;
968 
969 	ratelimit_default_init(&user->rs);
970 	ratelimit_set_flags(&user->rs, RATELIMIT_MSG_ON_RELEASE);
971 
972 	mutex_init(&user->lock);
973 
974 	logbuf_lock_irq();
975 	user->idx = log_first_idx;
976 	user->seq = log_first_seq;
977 	logbuf_unlock_irq();
978 
979 	file->private_data = user;
980 	return 0;
981 }
982 
983 static int devkmsg_release(struct inode *inode, struct file *file)
984 {
985 	struct devkmsg_user *user = file->private_data;
986 
987 	if (!user)
988 		return 0;
989 
990 	ratelimit_state_exit(&user->rs);
991 
992 	mutex_destroy(&user->lock);
993 	kfree(user);
994 	return 0;
995 }
996 
997 const struct file_operations kmsg_fops = {
998 	.open = devkmsg_open,
999 	.read = devkmsg_read,
1000 	.write_iter = devkmsg_write,
1001 	.llseek = devkmsg_llseek,
1002 	.poll = devkmsg_poll,
1003 	.release = devkmsg_release,
1004 };
1005 
1006 #ifdef CONFIG_CRASH_CORE
1007 /*
1008  * This appends the listed symbols to /proc/vmcore
1009  *
1010  * /proc/vmcore is used by various utilities, like crash and makedumpfile to
1011  * obtain access to symbols that are otherwise very difficult to locate.  These
1012  * symbols are specifically used so that utilities can access and extract the
1013  * dmesg log from a vmcore file after a crash.
1014  */
1015 void log_buf_vmcoreinfo_setup(void)
1016 {
1017 	VMCOREINFO_SYMBOL(log_buf);
1018 	VMCOREINFO_SYMBOL(log_buf_len);
1019 	VMCOREINFO_SYMBOL(log_first_idx);
1020 	VMCOREINFO_SYMBOL(clear_idx);
1021 	VMCOREINFO_SYMBOL(log_next_idx);
1022 	/*
1023 	 * Export struct printk_log size and field offsets. User space tools can
1024 	 * parse it and detect any changes to structure down the line.
1025 	 */
1026 	VMCOREINFO_STRUCT_SIZE(printk_log);
1027 	VMCOREINFO_OFFSET(printk_log, ts_nsec);
1028 	VMCOREINFO_OFFSET(printk_log, len);
1029 	VMCOREINFO_OFFSET(printk_log, text_len);
1030 	VMCOREINFO_OFFSET(printk_log, dict_len);
1031 }
1032 #endif
1033 
1034 /* requested log_buf_len from kernel cmdline */
1035 static unsigned long __initdata new_log_buf_len;
1036 
1037 /* we practice scaling the ring buffer by powers of 2 */
1038 static void __init log_buf_len_update(unsigned size)
1039 {
1040 	if (size)
1041 		size = roundup_pow_of_two(size);
1042 	if (size > log_buf_len)
1043 		new_log_buf_len = size;
1044 }
1045 
1046 /* save requested log_buf_len since it's too early to process it */
1047 static int __init log_buf_len_setup(char *str)
1048 {
1049 	unsigned size = memparse(str, &str);
1050 
1051 	log_buf_len_update(size);
1052 
1053 	return 0;
1054 }
1055 early_param("log_buf_len", log_buf_len_setup);
1056 
1057 #ifdef CONFIG_SMP
1058 #define __LOG_CPU_MAX_BUF_LEN (1 << CONFIG_LOG_CPU_MAX_BUF_SHIFT)
1059 
1060 static void __init log_buf_add_cpu(void)
1061 {
1062 	unsigned int cpu_extra;
1063 
1064 	/*
1065 	 * archs should set up cpu_possible_bits properly with
1066 	 * set_cpu_possible() after setup_arch() but just in
1067 	 * case lets ensure this is valid.
1068 	 */
1069 	if (num_possible_cpus() == 1)
1070 		return;
1071 
1072 	cpu_extra = (num_possible_cpus() - 1) * __LOG_CPU_MAX_BUF_LEN;
1073 
1074 	/* by default this will only continue through for large > 64 CPUs */
1075 	if (cpu_extra <= __LOG_BUF_LEN / 2)
1076 		return;
1077 
1078 	pr_info("log_buf_len individual max cpu contribution: %d bytes\n",
1079 		__LOG_CPU_MAX_BUF_LEN);
1080 	pr_info("log_buf_len total cpu_extra contributions: %d bytes\n",
1081 		cpu_extra);
1082 	pr_info("log_buf_len min size: %d bytes\n", __LOG_BUF_LEN);
1083 
1084 	log_buf_len_update(cpu_extra + __LOG_BUF_LEN);
1085 }
1086 #else /* !CONFIG_SMP */
1087 static inline void log_buf_add_cpu(void) {}
1088 #endif /* CONFIG_SMP */
1089 
1090 void __init setup_log_buf(int early)
1091 {
1092 	unsigned long flags;
1093 	char *new_log_buf;
1094 	int free;
1095 
1096 	if (log_buf != __log_buf)
1097 		return;
1098 
1099 	if (!early && !new_log_buf_len)
1100 		log_buf_add_cpu();
1101 
1102 	if (!new_log_buf_len)
1103 		return;
1104 
1105 	if (early) {
1106 		new_log_buf =
1107 			memblock_virt_alloc(new_log_buf_len, LOG_ALIGN);
1108 	} else {
1109 		new_log_buf = memblock_virt_alloc_nopanic(new_log_buf_len,
1110 							  LOG_ALIGN);
1111 	}
1112 
1113 	if (unlikely(!new_log_buf)) {
1114 		pr_err("log_buf_len: %ld bytes not available\n",
1115 			new_log_buf_len);
1116 		return;
1117 	}
1118 
1119 	logbuf_lock_irqsave(flags);
1120 	log_buf_len = new_log_buf_len;
1121 	log_buf = new_log_buf;
1122 	new_log_buf_len = 0;
1123 	free = __LOG_BUF_LEN - log_next_idx;
1124 	memcpy(log_buf, __log_buf, __LOG_BUF_LEN);
1125 	logbuf_unlock_irqrestore(flags);
1126 
1127 	pr_info("log_buf_len: %d bytes\n", log_buf_len);
1128 	pr_info("early log buf free: %d(%d%%)\n",
1129 		free, (free * 100) / __LOG_BUF_LEN);
1130 }
1131 
1132 static bool __read_mostly ignore_loglevel;
1133 
1134 static int __init ignore_loglevel_setup(char *str)
1135 {
1136 	ignore_loglevel = true;
1137 	pr_info("debug: ignoring loglevel setting.\n");
1138 
1139 	return 0;
1140 }
1141 
1142 early_param("ignore_loglevel", ignore_loglevel_setup);
1143 module_param(ignore_loglevel, bool, S_IRUGO | S_IWUSR);
1144 MODULE_PARM_DESC(ignore_loglevel,
1145 		 "ignore loglevel setting (prints all kernel messages to the console)");
1146 
1147 static bool suppress_message_printing(int level)
1148 {
1149 	return (level >= console_loglevel && !ignore_loglevel);
1150 }
1151 
1152 #ifdef CONFIG_BOOT_PRINTK_DELAY
1153 
1154 static int boot_delay; /* msecs delay after each printk during bootup */
1155 static unsigned long long loops_per_msec;	/* based on boot_delay */
1156 
1157 static int __init boot_delay_setup(char *str)
1158 {
1159 	unsigned long lpj;
1160 
1161 	lpj = preset_lpj ? preset_lpj : 1000000;	/* some guess */
1162 	loops_per_msec = (unsigned long long)lpj / 1000 * HZ;
1163 
1164 	get_option(&str, &boot_delay);
1165 	if (boot_delay > 10 * 1000)
1166 		boot_delay = 0;
1167 
1168 	pr_debug("boot_delay: %u, preset_lpj: %ld, lpj: %lu, "
1169 		"HZ: %d, loops_per_msec: %llu\n",
1170 		boot_delay, preset_lpj, lpj, HZ, loops_per_msec);
1171 	return 0;
1172 }
1173 early_param("boot_delay", boot_delay_setup);
1174 
1175 static void boot_delay_msec(int level)
1176 {
1177 	unsigned long long k;
1178 	unsigned long timeout;
1179 
1180 	if ((boot_delay == 0 || system_state >= SYSTEM_RUNNING)
1181 		|| suppress_message_printing(level)) {
1182 		return;
1183 	}
1184 
1185 	k = (unsigned long long)loops_per_msec * boot_delay;
1186 
1187 	timeout = jiffies + msecs_to_jiffies(boot_delay);
1188 	while (k) {
1189 		k--;
1190 		cpu_relax();
1191 		/*
1192 		 * use (volatile) jiffies to prevent
1193 		 * compiler reduction; loop termination via jiffies
1194 		 * is secondary and may or may not happen.
1195 		 */
1196 		if (time_after(jiffies, timeout))
1197 			break;
1198 		touch_nmi_watchdog();
1199 	}
1200 }
1201 #else
1202 static inline void boot_delay_msec(int level)
1203 {
1204 }
1205 #endif
1206 
1207 static bool printk_time = IS_ENABLED(CONFIG_PRINTK_TIME);
1208 module_param_named(time, printk_time, bool, S_IRUGO | S_IWUSR);
1209 
1210 static size_t print_time(u64 ts, char *buf)
1211 {
1212 	unsigned long rem_nsec;
1213 
1214 	if (!printk_time)
1215 		return 0;
1216 
1217 	rem_nsec = do_div(ts, 1000000000);
1218 
1219 	if (!buf)
1220 		return snprintf(NULL, 0, "[%5lu.000000] ", (unsigned long)ts);
1221 
1222 	return sprintf(buf, "[%5lu.%06lu] ",
1223 		       (unsigned long)ts, rem_nsec / 1000);
1224 }
1225 
1226 static size_t print_prefix(const struct printk_log *msg, bool syslog, char *buf)
1227 {
1228 	size_t len = 0;
1229 	unsigned int prefix = (msg->facility << 3) | msg->level;
1230 
1231 	if (syslog) {
1232 		if (buf) {
1233 			len += sprintf(buf, "<%u>", prefix);
1234 		} else {
1235 			len += 3;
1236 			if (prefix > 999)
1237 				len += 3;
1238 			else if (prefix > 99)
1239 				len += 2;
1240 			else if (prefix > 9)
1241 				len++;
1242 		}
1243 	}
1244 
1245 	len += print_time(msg->ts_nsec, buf ? buf + len : NULL);
1246 	return len;
1247 }
1248 
1249 static size_t msg_print_text(const struct printk_log *msg, bool syslog, char *buf, size_t size)
1250 {
1251 	const char *text = log_text(msg);
1252 	size_t text_size = msg->text_len;
1253 	size_t len = 0;
1254 
1255 	do {
1256 		const char *next = memchr(text, '\n', text_size);
1257 		size_t text_len;
1258 
1259 		if (next) {
1260 			text_len = next - text;
1261 			next++;
1262 			text_size -= next - text;
1263 		} else {
1264 			text_len = text_size;
1265 		}
1266 
1267 		if (buf) {
1268 			if (print_prefix(msg, syslog, NULL) +
1269 			    text_len + 1 >= size - len)
1270 				break;
1271 
1272 			len += print_prefix(msg, syslog, buf + len);
1273 			memcpy(buf + len, text, text_len);
1274 			len += text_len;
1275 			buf[len++] = '\n';
1276 		} else {
1277 			/* SYSLOG_ACTION_* buffer size only calculation */
1278 			len += print_prefix(msg, syslog, NULL);
1279 			len += text_len;
1280 			len++;
1281 		}
1282 
1283 		text = next;
1284 	} while (text);
1285 
1286 	return len;
1287 }
1288 
1289 static int syslog_print(char __user *buf, int size)
1290 {
1291 	char *text;
1292 	struct printk_log *msg;
1293 	int len = 0;
1294 
1295 	text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
1296 	if (!text)
1297 		return -ENOMEM;
1298 
1299 	while (size > 0) {
1300 		size_t n;
1301 		size_t skip;
1302 
1303 		logbuf_lock_irq();
1304 		if (syslog_seq < log_first_seq) {
1305 			/* messages are gone, move to first one */
1306 			syslog_seq = log_first_seq;
1307 			syslog_idx = log_first_idx;
1308 			syslog_partial = 0;
1309 		}
1310 		if (syslog_seq == log_next_seq) {
1311 			logbuf_unlock_irq();
1312 			break;
1313 		}
1314 
1315 		skip = syslog_partial;
1316 		msg = log_from_idx(syslog_idx);
1317 		n = msg_print_text(msg, true, text, LOG_LINE_MAX + PREFIX_MAX);
1318 		if (n - syslog_partial <= size) {
1319 			/* message fits into buffer, move forward */
1320 			syslog_idx = log_next(syslog_idx);
1321 			syslog_seq++;
1322 			n -= syslog_partial;
1323 			syslog_partial = 0;
1324 		} else if (!len){
1325 			/* partial read(), remember position */
1326 			n = size;
1327 			syslog_partial += n;
1328 		} else
1329 			n = 0;
1330 		logbuf_unlock_irq();
1331 
1332 		if (!n)
1333 			break;
1334 
1335 		if (copy_to_user(buf, text + skip, n)) {
1336 			if (!len)
1337 				len = -EFAULT;
1338 			break;
1339 		}
1340 
1341 		len += n;
1342 		size -= n;
1343 		buf += n;
1344 	}
1345 
1346 	kfree(text);
1347 	return len;
1348 }
1349 
1350 static int syslog_print_all(char __user *buf, int size, bool clear)
1351 {
1352 	char *text;
1353 	int len = 0;
1354 
1355 	text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
1356 	if (!text)
1357 		return -ENOMEM;
1358 
1359 	logbuf_lock_irq();
1360 	if (buf) {
1361 		u64 next_seq;
1362 		u64 seq;
1363 		u32 idx;
1364 
1365 		/*
1366 		 * Find first record that fits, including all following records,
1367 		 * into the user-provided buffer for this dump.
1368 		 */
1369 		seq = clear_seq;
1370 		idx = clear_idx;
1371 		while (seq < log_next_seq) {
1372 			struct printk_log *msg = log_from_idx(idx);
1373 
1374 			len += msg_print_text(msg, true, NULL, 0);
1375 			idx = log_next(idx);
1376 			seq++;
1377 		}
1378 
1379 		/* move first record forward until length fits into the buffer */
1380 		seq = clear_seq;
1381 		idx = clear_idx;
1382 		while (len > size && seq < log_next_seq) {
1383 			struct printk_log *msg = log_from_idx(idx);
1384 
1385 			len -= msg_print_text(msg, true, NULL, 0);
1386 			idx = log_next(idx);
1387 			seq++;
1388 		}
1389 
1390 		/* last message fitting into this dump */
1391 		next_seq = log_next_seq;
1392 
1393 		len = 0;
1394 		while (len >= 0 && seq < next_seq) {
1395 			struct printk_log *msg = log_from_idx(idx);
1396 			int textlen;
1397 
1398 			textlen = msg_print_text(msg, true, text,
1399 						 LOG_LINE_MAX + PREFIX_MAX);
1400 			if (textlen < 0) {
1401 				len = textlen;
1402 				break;
1403 			}
1404 			idx = log_next(idx);
1405 			seq++;
1406 
1407 			logbuf_unlock_irq();
1408 			if (copy_to_user(buf + len, text, textlen))
1409 				len = -EFAULT;
1410 			else
1411 				len += textlen;
1412 			logbuf_lock_irq();
1413 
1414 			if (seq < log_first_seq) {
1415 				/* messages are gone, move to next one */
1416 				seq = log_first_seq;
1417 				idx = log_first_idx;
1418 			}
1419 		}
1420 	}
1421 
1422 	if (clear) {
1423 		clear_seq = log_next_seq;
1424 		clear_idx = log_next_idx;
1425 	}
1426 	logbuf_unlock_irq();
1427 
1428 	kfree(text);
1429 	return len;
1430 }
1431 
1432 int do_syslog(int type, char __user *buf, int len, int source)
1433 {
1434 	bool clear = false;
1435 	static int saved_console_loglevel = LOGLEVEL_DEFAULT;
1436 	int error;
1437 
1438 	error = check_syslog_permissions(type, source);
1439 	if (error)
1440 		return error;
1441 
1442 	switch (type) {
1443 	case SYSLOG_ACTION_CLOSE:	/* Close log */
1444 		break;
1445 	case SYSLOG_ACTION_OPEN:	/* Open log */
1446 		break;
1447 	case SYSLOG_ACTION_READ:	/* Read from log */
1448 		if (!buf || len < 0)
1449 			return -EINVAL;
1450 		if (!len)
1451 			return 0;
1452 		if (!access_ok(VERIFY_WRITE, buf, len))
1453 			return -EFAULT;
1454 		error = wait_event_interruptible(log_wait,
1455 						 syslog_seq != log_next_seq);
1456 		if (error)
1457 			return error;
1458 		error = syslog_print(buf, len);
1459 		break;
1460 	/* Read/clear last kernel messages */
1461 	case SYSLOG_ACTION_READ_CLEAR:
1462 		clear = true;
1463 		/* FALL THRU */
1464 	/* Read last kernel messages */
1465 	case SYSLOG_ACTION_READ_ALL:
1466 		if (!buf || len < 0)
1467 			return -EINVAL;
1468 		if (!len)
1469 			return 0;
1470 		if (!access_ok(VERIFY_WRITE, buf, len))
1471 			return -EFAULT;
1472 		error = syslog_print_all(buf, len, clear);
1473 		break;
1474 	/* Clear ring buffer */
1475 	case SYSLOG_ACTION_CLEAR:
1476 		syslog_print_all(NULL, 0, true);
1477 		break;
1478 	/* Disable logging to console */
1479 	case SYSLOG_ACTION_CONSOLE_OFF:
1480 		if (saved_console_loglevel == LOGLEVEL_DEFAULT)
1481 			saved_console_loglevel = console_loglevel;
1482 		console_loglevel = minimum_console_loglevel;
1483 		break;
1484 	/* Enable logging to console */
1485 	case SYSLOG_ACTION_CONSOLE_ON:
1486 		if (saved_console_loglevel != LOGLEVEL_DEFAULT) {
1487 			console_loglevel = saved_console_loglevel;
1488 			saved_console_loglevel = LOGLEVEL_DEFAULT;
1489 		}
1490 		break;
1491 	/* Set level of messages printed to console */
1492 	case SYSLOG_ACTION_CONSOLE_LEVEL:
1493 		if (len < 1 || len > 8)
1494 			return -EINVAL;
1495 		if (len < minimum_console_loglevel)
1496 			len = minimum_console_loglevel;
1497 		console_loglevel = len;
1498 		/* Implicitly re-enable logging to console */
1499 		saved_console_loglevel = LOGLEVEL_DEFAULT;
1500 		break;
1501 	/* Number of chars in the log buffer */
1502 	case SYSLOG_ACTION_SIZE_UNREAD:
1503 		logbuf_lock_irq();
1504 		if (syslog_seq < log_first_seq) {
1505 			/* messages are gone, move to first one */
1506 			syslog_seq = log_first_seq;
1507 			syslog_idx = log_first_idx;
1508 			syslog_partial = 0;
1509 		}
1510 		if (source == SYSLOG_FROM_PROC) {
1511 			/*
1512 			 * Short-cut for poll(/"proc/kmsg") which simply checks
1513 			 * for pending data, not the size; return the count of
1514 			 * records, not the length.
1515 			 */
1516 			error = log_next_seq - syslog_seq;
1517 		} else {
1518 			u64 seq = syslog_seq;
1519 			u32 idx = syslog_idx;
1520 
1521 			while (seq < log_next_seq) {
1522 				struct printk_log *msg = log_from_idx(idx);
1523 
1524 				error += msg_print_text(msg, true, NULL, 0);
1525 				idx = log_next(idx);
1526 				seq++;
1527 			}
1528 			error -= syslog_partial;
1529 		}
1530 		logbuf_unlock_irq();
1531 		break;
1532 	/* Size of the log buffer */
1533 	case SYSLOG_ACTION_SIZE_BUFFER:
1534 		error = log_buf_len;
1535 		break;
1536 	default:
1537 		error = -EINVAL;
1538 		break;
1539 	}
1540 
1541 	return error;
1542 }
1543 
1544 SYSCALL_DEFINE3(syslog, int, type, char __user *, buf, int, len)
1545 {
1546 	return do_syslog(type, buf, len, SYSLOG_FROM_READER);
1547 }
1548 
1549 /*
1550  * Special console_lock variants that help to reduce the risk of soft-lockups.
1551  * They allow to pass console_lock to another printk() call using a busy wait.
1552  */
1553 
1554 #ifdef CONFIG_LOCKDEP
1555 static struct lockdep_map console_owner_dep_map = {
1556 	.name = "console_owner"
1557 };
1558 #endif
1559 
1560 static DEFINE_RAW_SPINLOCK(console_owner_lock);
1561 static struct task_struct *console_owner;
1562 static bool console_waiter;
1563 
1564 /**
1565  * console_lock_spinning_enable - mark beginning of code where another
1566  *	thread might safely busy wait
1567  *
1568  * This basically converts console_lock into a spinlock. This marks
1569  * the section where the console_lock owner can not sleep, because
1570  * there may be a waiter spinning (like a spinlock). Also it must be
1571  * ready to hand over the lock at the end of the section.
1572  */
1573 static void console_lock_spinning_enable(void)
1574 {
1575 	raw_spin_lock(&console_owner_lock);
1576 	console_owner = current;
1577 	raw_spin_unlock(&console_owner_lock);
1578 
1579 	/* The waiter may spin on us after setting console_owner */
1580 	spin_acquire(&console_owner_dep_map, 0, 0, _THIS_IP_);
1581 }
1582 
1583 /**
1584  * console_lock_spinning_disable_and_check - mark end of code where another
1585  *	thread was able to busy wait and check if there is a waiter
1586  *
1587  * This is called at the end of the section where spinning is allowed.
1588  * It has two functions. First, it is a signal that it is no longer
1589  * safe to start busy waiting for the lock. Second, it checks if
1590  * there is a busy waiter and passes the lock rights to her.
1591  *
1592  * Important: Callers lose the lock if there was a busy waiter.
1593  *	They must not touch items synchronized by console_lock
1594  *	in this case.
1595  *
1596  * Return: 1 if the lock rights were passed, 0 otherwise.
1597  */
1598 static int console_lock_spinning_disable_and_check(void)
1599 {
1600 	int waiter;
1601 
1602 	raw_spin_lock(&console_owner_lock);
1603 	waiter = READ_ONCE(console_waiter);
1604 	console_owner = NULL;
1605 	raw_spin_unlock(&console_owner_lock);
1606 
1607 	if (!waiter) {
1608 		spin_release(&console_owner_dep_map, 1, _THIS_IP_);
1609 		return 0;
1610 	}
1611 
1612 	/* The waiter is now free to continue */
1613 	WRITE_ONCE(console_waiter, false);
1614 
1615 	spin_release(&console_owner_dep_map, 1, _THIS_IP_);
1616 
1617 	/*
1618 	 * Hand off console_lock to waiter. The waiter will perform
1619 	 * the up(). After this, the waiter is the console_lock owner.
1620 	 */
1621 	mutex_release(&console_lock_dep_map, 1, _THIS_IP_);
1622 	return 1;
1623 }
1624 
1625 /**
1626  * console_trylock_spinning - try to get console_lock by busy waiting
1627  *
1628  * This allows to busy wait for the console_lock when the current
1629  * owner is running in specially marked sections. It means that
1630  * the current owner is running and cannot reschedule until it
1631  * is ready to lose the lock.
1632  *
1633  * Return: 1 if we got the lock, 0 othrewise
1634  */
1635 static int console_trylock_spinning(void)
1636 {
1637 	struct task_struct *owner = NULL;
1638 	bool waiter;
1639 	bool spin = false;
1640 	unsigned long flags;
1641 
1642 	if (console_trylock())
1643 		return 1;
1644 
1645 	printk_safe_enter_irqsave(flags);
1646 
1647 	raw_spin_lock(&console_owner_lock);
1648 	owner = READ_ONCE(console_owner);
1649 	waiter = READ_ONCE(console_waiter);
1650 	if (!waiter && owner && owner != current) {
1651 		WRITE_ONCE(console_waiter, true);
1652 		spin = true;
1653 	}
1654 	raw_spin_unlock(&console_owner_lock);
1655 
1656 	/*
1657 	 * If there is an active printk() writing to the
1658 	 * consoles, instead of having it write our data too,
1659 	 * see if we can offload that load from the active
1660 	 * printer, and do some printing ourselves.
1661 	 * Go into a spin only if there isn't already a waiter
1662 	 * spinning, and there is an active printer, and
1663 	 * that active printer isn't us (recursive printk?).
1664 	 */
1665 	if (!spin) {
1666 		printk_safe_exit_irqrestore(flags);
1667 		return 0;
1668 	}
1669 
1670 	/* We spin waiting for the owner to release us */
1671 	spin_acquire(&console_owner_dep_map, 0, 0, _THIS_IP_);
1672 	/* Owner will clear console_waiter on hand off */
1673 	while (READ_ONCE(console_waiter))
1674 		cpu_relax();
1675 	spin_release(&console_owner_dep_map, 1, _THIS_IP_);
1676 
1677 	printk_safe_exit_irqrestore(flags);
1678 	/*
1679 	 * The owner passed the console lock to us.
1680 	 * Since we did not spin on console lock, annotate
1681 	 * this as a trylock. Otherwise lockdep will
1682 	 * complain.
1683 	 */
1684 	mutex_acquire(&console_lock_dep_map, 0, 1, _THIS_IP_);
1685 
1686 	return 1;
1687 }
1688 
1689 /*
1690  * Call the console drivers, asking them to write out
1691  * log_buf[start] to log_buf[end - 1].
1692  * The console_lock must be held.
1693  */
1694 static void call_console_drivers(const char *ext_text, size_t ext_len,
1695 				 const char *text, size_t len)
1696 {
1697 	struct console *con;
1698 
1699 	trace_console_rcuidle(text, len);
1700 
1701 	if (!console_drivers)
1702 		return;
1703 
1704 	for_each_console(con) {
1705 		if (exclusive_console && con != exclusive_console)
1706 			continue;
1707 		if (!(con->flags & CON_ENABLED))
1708 			continue;
1709 		if (!con->write)
1710 			continue;
1711 		if (!cpu_online(smp_processor_id()) &&
1712 		    !(con->flags & CON_ANYTIME))
1713 			continue;
1714 		if (con->flags & CON_EXTENDED)
1715 			con->write(con, ext_text, ext_len);
1716 		else
1717 			con->write(con, text, len);
1718 	}
1719 }
1720 
1721 int printk_delay_msec __read_mostly;
1722 
1723 static inline void printk_delay(void)
1724 {
1725 	if (unlikely(printk_delay_msec)) {
1726 		int m = printk_delay_msec;
1727 
1728 		while (m--) {
1729 			mdelay(1);
1730 			touch_nmi_watchdog();
1731 		}
1732 	}
1733 }
1734 
1735 /*
1736  * Continuation lines are buffered, and not committed to the record buffer
1737  * until the line is complete, or a race forces it. The line fragments
1738  * though, are printed immediately to the consoles to ensure everything has
1739  * reached the console in case of a kernel crash.
1740  */
1741 static struct cont {
1742 	char buf[LOG_LINE_MAX];
1743 	size_t len;			/* length == 0 means unused buffer */
1744 	struct task_struct *owner;	/* task of first print*/
1745 	u64 ts_nsec;			/* time of first print */
1746 	u8 level;			/* log level of first message */
1747 	u8 facility;			/* log facility of first message */
1748 	enum log_flags flags;		/* prefix, newline flags */
1749 } cont;
1750 
1751 static void cont_flush(void)
1752 {
1753 	if (cont.len == 0)
1754 		return;
1755 
1756 	log_store(cont.facility, cont.level, cont.flags, cont.ts_nsec,
1757 		  NULL, 0, cont.buf, cont.len);
1758 	cont.len = 0;
1759 }
1760 
1761 static bool cont_add(int facility, int level, enum log_flags flags, const char *text, size_t len)
1762 {
1763 	/*
1764 	 * If ext consoles are present, flush and skip in-kernel
1765 	 * continuation.  See nr_ext_console_drivers definition.  Also, if
1766 	 * the line gets too long, split it up in separate records.
1767 	 */
1768 	if (nr_ext_console_drivers || cont.len + len > sizeof(cont.buf)) {
1769 		cont_flush();
1770 		return false;
1771 	}
1772 
1773 	if (!cont.len) {
1774 		cont.facility = facility;
1775 		cont.level = level;
1776 		cont.owner = current;
1777 		cont.ts_nsec = local_clock();
1778 		cont.flags = flags;
1779 	}
1780 
1781 	memcpy(cont.buf + cont.len, text, len);
1782 	cont.len += len;
1783 
1784 	// The original flags come from the first line,
1785 	// but later continuations can add a newline.
1786 	if (flags & LOG_NEWLINE) {
1787 		cont.flags |= LOG_NEWLINE;
1788 		cont_flush();
1789 	}
1790 
1791 	if (cont.len > (sizeof(cont.buf) * 80) / 100)
1792 		cont_flush();
1793 
1794 	return true;
1795 }
1796 
1797 static size_t log_output(int facility, int level, enum log_flags lflags, const char *dict, size_t dictlen, char *text, size_t text_len)
1798 {
1799 	/*
1800 	 * If an earlier line was buffered, and we're a continuation
1801 	 * write from the same process, try to add it to the buffer.
1802 	 */
1803 	if (cont.len) {
1804 		if (cont.owner == current && (lflags & LOG_CONT)) {
1805 			if (cont_add(facility, level, lflags, text, text_len))
1806 				return text_len;
1807 		}
1808 		/* Otherwise, make sure it's flushed */
1809 		cont_flush();
1810 	}
1811 
1812 	/* Skip empty continuation lines that couldn't be added - they just flush */
1813 	if (!text_len && (lflags & LOG_CONT))
1814 		return 0;
1815 
1816 	/* If it doesn't end in a newline, try to buffer the current line */
1817 	if (!(lflags & LOG_NEWLINE)) {
1818 		if (cont_add(facility, level, lflags, text, text_len))
1819 			return text_len;
1820 	}
1821 
1822 	/* Store it in the record log */
1823 	return log_store(facility, level, lflags, 0, dict, dictlen, text, text_len);
1824 }
1825 
1826 asmlinkage int vprintk_emit(int facility, int level,
1827 			    const char *dict, size_t dictlen,
1828 			    const char *fmt, va_list args)
1829 {
1830 	static char textbuf[LOG_LINE_MAX];
1831 	char *text = textbuf;
1832 	size_t text_len;
1833 	enum log_flags lflags = 0;
1834 	unsigned long flags;
1835 	int printed_len;
1836 	bool in_sched = false;
1837 
1838 	if (level == LOGLEVEL_SCHED) {
1839 		level = LOGLEVEL_DEFAULT;
1840 		in_sched = true;
1841 	}
1842 
1843 	boot_delay_msec(level);
1844 	printk_delay();
1845 
1846 	/* This stops the holder of console_sem just where we want him */
1847 	logbuf_lock_irqsave(flags);
1848 	/*
1849 	 * The printf needs to come first; we need the syslog
1850 	 * prefix which might be passed-in as a parameter.
1851 	 */
1852 	text_len = vscnprintf(text, sizeof(textbuf), fmt, args);
1853 
1854 	/* mark and strip a trailing newline */
1855 	if (text_len && text[text_len-1] == '\n') {
1856 		text_len--;
1857 		lflags |= LOG_NEWLINE;
1858 	}
1859 
1860 	/* strip kernel syslog prefix and extract log level or control flags */
1861 	if (facility == 0) {
1862 		int kern_level;
1863 
1864 		while ((kern_level = printk_get_level(text)) != 0) {
1865 			switch (kern_level) {
1866 			case '0' ... '7':
1867 				if (level == LOGLEVEL_DEFAULT)
1868 					level = kern_level - '0';
1869 				/* fallthrough */
1870 			case 'd':	/* KERN_DEFAULT */
1871 				lflags |= LOG_PREFIX;
1872 				break;
1873 			case 'c':	/* KERN_CONT */
1874 				lflags |= LOG_CONT;
1875 			}
1876 
1877 			text_len -= 2;
1878 			text += 2;
1879 		}
1880 	}
1881 
1882 	if (level == LOGLEVEL_DEFAULT)
1883 		level = default_message_loglevel;
1884 
1885 	if (dict)
1886 		lflags |= LOG_PREFIX|LOG_NEWLINE;
1887 
1888 	printed_len = log_output(facility, level, lflags, dict, dictlen, text, text_len);
1889 
1890 	logbuf_unlock_irqrestore(flags);
1891 
1892 	/* If called from the scheduler, we can not call up(). */
1893 	if (!in_sched) {
1894 		/*
1895 		 * Disable preemption to avoid being preempted while holding
1896 		 * console_sem which would prevent anyone from printing to
1897 		 * console
1898 		 */
1899 		preempt_disable();
1900 		/*
1901 		 * Try to acquire and then immediately release the console
1902 		 * semaphore.  The release will print out buffers and wake up
1903 		 * /dev/kmsg and syslog() users.
1904 		 */
1905 		if (console_trylock_spinning())
1906 			console_unlock();
1907 		preempt_enable();
1908 	}
1909 
1910 	return printed_len;
1911 }
1912 EXPORT_SYMBOL(vprintk_emit);
1913 
1914 asmlinkage int vprintk(const char *fmt, va_list args)
1915 {
1916 	return vprintk_func(fmt, args);
1917 }
1918 EXPORT_SYMBOL(vprintk);
1919 
1920 asmlinkage int printk_emit(int facility, int level,
1921 			   const char *dict, size_t dictlen,
1922 			   const char *fmt, ...)
1923 {
1924 	va_list args;
1925 	int r;
1926 
1927 	va_start(args, fmt);
1928 	r = vprintk_emit(facility, level, dict, dictlen, fmt, args);
1929 	va_end(args);
1930 
1931 	return r;
1932 }
1933 EXPORT_SYMBOL(printk_emit);
1934 
1935 int vprintk_default(const char *fmt, va_list args)
1936 {
1937 	int r;
1938 
1939 #ifdef CONFIG_KGDB_KDB
1940 	/* Allow to pass printk() to kdb but avoid a recursion. */
1941 	if (unlikely(kdb_trap_printk && kdb_printf_cpu < 0)) {
1942 		r = vkdb_printf(KDB_MSGSRC_PRINTK, fmt, args);
1943 		return r;
1944 	}
1945 #endif
1946 	r = vprintk_emit(0, LOGLEVEL_DEFAULT, NULL, 0, fmt, args);
1947 
1948 	return r;
1949 }
1950 EXPORT_SYMBOL_GPL(vprintk_default);
1951 
1952 /**
1953  * printk - print a kernel message
1954  * @fmt: format string
1955  *
1956  * This is printk(). It can be called from any context. We want it to work.
1957  *
1958  * We try to grab the console_lock. If we succeed, it's easy - we log the
1959  * output and call the console drivers.  If we fail to get the semaphore, we
1960  * place the output into the log buffer and return. The current holder of
1961  * the console_sem will notice the new output in console_unlock(); and will
1962  * send it to the consoles before releasing the lock.
1963  *
1964  * One effect of this deferred printing is that code which calls printk() and
1965  * then changes console_loglevel may break. This is because console_loglevel
1966  * is inspected when the actual printing occurs.
1967  *
1968  * See also:
1969  * printf(3)
1970  *
1971  * See the vsnprintf() documentation for format string extensions over C99.
1972  */
1973 asmlinkage __visible int printk(const char *fmt, ...)
1974 {
1975 	va_list args;
1976 	int r;
1977 
1978 	va_start(args, fmt);
1979 	r = vprintk_func(fmt, args);
1980 	va_end(args);
1981 
1982 	return r;
1983 }
1984 EXPORT_SYMBOL(printk);
1985 
1986 #else /* CONFIG_PRINTK */
1987 
1988 #define LOG_LINE_MAX		0
1989 #define PREFIX_MAX		0
1990 
1991 static u64 syslog_seq;
1992 static u32 syslog_idx;
1993 static u64 console_seq;
1994 static u32 console_idx;
1995 static u64 log_first_seq;
1996 static u32 log_first_idx;
1997 static u64 log_next_seq;
1998 static char *log_text(const struct printk_log *msg) { return NULL; }
1999 static char *log_dict(const struct printk_log *msg) { return NULL; }
2000 static struct printk_log *log_from_idx(u32 idx) { return NULL; }
2001 static u32 log_next(u32 idx) { return 0; }
2002 static ssize_t msg_print_ext_header(char *buf, size_t size,
2003 				    struct printk_log *msg,
2004 				    u64 seq) { return 0; }
2005 static ssize_t msg_print_ext_body(char *buf, size_t size,
2006 				  char *dict, size_t dict_len,
2007 				  char *text, size_t text_len) { return 0; }
2008 static void console_lock_spinning_enable(void) { }
2009 static int console_lock_spinning_disable_and_check(void) { return 0; }
2010 static void call_console_drivers(const char *ext_text, size_t ext_len,
2011 				 const char *text, size_t len) {}
2012 static size_t msg_print_text(const struct printk_log *msg,
2013 			     bool syslog, char *buf, size_t size) { return 0; }
2014 static bool suppress_message_printing(int level) { return false; }
2015 
2016 #endif /* CONFIG_PRINTK */
2017 
2018 #ifdef CONFIG_EARLY_PRINTK
2019 struct console *early_console;
2020 
2021 asmlinkage __visible void early_printk(const char *fmt, ...)
2022 {
2023 	va_list ap;
2024 	char buf[512];
2025 	int n;
2026 
2027 	if (!early_console)
2028 		return;
2029 
2030 	va_start(ap, fmt);
2031 	n = vscnprintf(buf, sizeof(buf), fmt, ap);
2032 	va_end(ap);
2033 
2034 	early_console->write(early_console, buf, n);
2035 }
2036 #endif
2037 
2038 static int __add_preferred_console(char *name, int idx, char *options,
2039 				   char *brl_options)
2040 {
2041 	struct console_cmdline *c;
2042 	int i;
2043 
2044 	/*
2045 	 *	See if this tty is not yet registered, and
2046 	 *	if we have a slot free.
2047 	 */
2048 	for (i = 0, c = console_cmdline;
2049 	     i < MAX_CMDLINECONSOLES && c->name[0];
2050 	     i++, c++) {
2051 		if (strcmp(c->name, name) == 0 && c->index == idx) {
2052 			if (!brl_options)
2053 				preferred_console = i;
2054 			return 0;
2055 		}
2056 	}
2057 	if (i == MAX_CMDLINECONSOLES)
2058 		return -E2BIG;
2059 	if (!brl_options)
2060 		preferred_console = i;
2061 	strlcpy(c->name, name, sizeof(c->name));
2062 	c->options = options;
2063 	braille_set_options(c, brl_options);
2064 
2065 	c->index = idx;
2066 	return 0;
2067 }
2068 
2069 static int __init console_msg_format_setup(char *str)
2070 {
2071 	if (!strcmp(str, "syslog"))
2072 		console_msg_format = MSG_FORMAT_SYSLOG;
2073 	if (!strcmp(str, "default"))
2074 		console_msg_format = MSG_FORMAT_DEFAULT;
2075 	return 1;
2076 }
2077 __setup("console_msg_format=", console_msg_format_setup);
2078 
2079 /*
2080  * Set up a console.  Called via do_early_param() in init/main.c
2081  * for each "console=" parameter in the boot command line.
2082  */
2083 static int __init console_setup(char *str)
2084 {
2085 	char buf[sizeof(console_cmdline[0].name) + 4]; /* 4 for "ttyS" */
2086 	char *s, *options, *brl_options = NULL;
2087 	int idx;
2088 
2089 	if (_braille_console_setup(&str, &brl_options))
2090 		return 1;
2091 
2092 	/*
2093 	 * Decode str into name, index, options.
2094 	 */
2095 	if (str[0] >= '0' && str[0] <= '9') {
2096 		strcpy(buf, "ttyS");
2097 		strncpy(buf + 4, str, sizeof(buf) - 5);
2098 	} else {
2099 		strncpy(buf, str, sizeof(buf) - 1);
2100 	}
2101 	buf[sizeof(buf) - 1] = 0;
2102 	options = strchr(str, ',');
2103 	if (options)
2104 		*(options++) = 0;
2105 #ifdef __sparc__
2106 	if (!strcmp(str, "ttya"))
2107 		strcpy(buf, "ttyS0");
2108 	if (!strcmp(str, "ttyb"))
2109 		strcpy(buf, "ttyS1");
2110 #endif
2111 	for (s = buf; *s; s++)
2112 		if (isdigit(*s) || *s == ',')
2113 			break;
2114 	idx = simple_strtoul(s, NULL, 10);
2115 	*s = 0;
2116 
2117 	__add_preferred_console(buf, idx, options, brl_options);
2118 	console_set_on_cmdline = 1;
2119 	return 1;
2120 }
2121 __setup("console=", console_setup);
2122 
2123 /**
2124  * add_preferred_console - add a device to the list of preferred consoles.
2125  * @name: device name
2126  * @idx: device index
2127  * @options: options for this console
2128  *
2129  * The last preferred console added will be used for kernel messages
2130  * and stdin/out/err for init.  Normally this is used by console_setup
2131  * above to handle user-supplied console arguments; however it can also
2132  * be used by arch-specific code either to override the user or more
2133  * commonly to provide a default console (ie from PROM variables) when
2134  * the user has not supplied one.
2135  */
2136 int add_preferred_console(char *name, int idx, char *options)
2137 {
2138 	return __add_preferred_console(name, idx, options, NULL);
2139 }
2140 
2141 bool console_suspend_enabled = true;
2142 EXPORT_SYMBOL(console_suspend_enabled);
2143 
2144 static int __init console_suspend_disable(char *str)
2145 {
2146 	console_suspend_enabled = false;
2147 	return 1;
2148 }
2149 __setup("no_console_suspend", console_suspend_disable);
2150 module_param_named(console_suspend, console_suspend_enabled,
2151 		bool, S_IRUGO | S_IWUSR);
2152 MODULE_PARM_DESC(console_suspend, "suspend console during suspend"
2153 	" and hibernate operations");
2154 
2155 /**
2156  * suspend_console - suspend the console subsystem
2157  *
2158  * This disables printk() while we go into suspend states
2159  */
2160 void suspend_console(void)
2161 {
2162 	if (!console_suspend_enabled)
2163 		return;
2164 	pr_info("Suspending console(s) (use no_console_suspend to debug)\n");
2165 	console_lock();
2166 	console_suspended = 1;
2167 	up_console_sem();
2168 }
2169 
2170 void resume_console(void)
2171 {
2172 	if (!console_suspend_enabled)
2173 		return;
2174 	down_console_sem();
2175 	console_suspended = 0;
2176 	console_unlock();
2177 }
2178 
2179 /**
2180  * console_cpu_notify - print deferred console messages after CPU hotplug
2181  * @cpu: unused
2182  *
2183  * If printk() is called from a CPU that is not online yet, the messages
2184  * will be printed on the console only if there are CON_ANYTIME consoles.
2185  * This function is called when a new CPU comes online (or fails to come
2186  * up) or goes offline.
2187  */
2188 static int console_cpu_notify(unsigned int cpu)
2189 {
2190 	if (!cpuhp_tasks_frozen) {
2191 		/* If trylock fails, someone else is doing the printing */
2192 		if (console_trylock())
2193 			console_unlock();
2194 	}
2195 	return 0;
2196 }
2197 
2198 /**
2199  * console_lock - lock the console system for exclusive use.
2200  *
2201  * Acquires a lock which guarantees that the caller has
2202  * exclusive access to the console system and the console_drivers list.
2203  *
2204  * Can sleep, returns nothing.
2205  */
2206 void console_lock(void)
2207 {
2208 	might_sleep();
2209 
2210 	down_console_sem();
2211 	if (console_suspended)
2212 		return;
2213 	console_locked = 1;
2214 	console_may_schedule = 1;
2215 }
2216 EXPORT_SYMBOL(console_lock);
2217 
2218 /**
2219  * console_trylock - try to lock the console system for exclusive use.
2220  *
2221  * Try to acquire a lock which guarantees that the caller has exclusive
2222  * access to the console system and the console_drivers list.
2223  *
2224  * returns 1 on success, and 0 on failure to acquire the lock.
2225  */
2226 int console_trylock(void)
2227 {
2228 	if (down_trylock_console_sem())
2229 		return 0;
2230 	if (console_suspended) {
2231 		up_console_sem();
2232 		return 0;
2233 	}
2234 	console_locked = 1;
2235 	console_may_schedule = 0;
2236 	return 1;
2237 }
2238 EXPORT_SYMBOL(console_trylock);
2239 
2240 int is_console_locked(void)
2241 {
2242 	return console_locked;
2243 }
2244 
2245 /*
2246  * Check if we have any console that is capable of printing while cpu is
2247  * booting or shutting down. Requires console_sem.
2248  */
2249 static int have_callable_console(void)
2250 {
2251 	struct console *con;
2252 
2253 	for_each_console(con)
2254 		if ((con->flags & CON_ENABLED) &&
2255 				(con->flags & CON_ANYTIME))
2256 			return 1;
2257 
2258 	return 0;
2259 }
2260 
2261 /*
2262  * Can we actually use the console at this time on this cpu?
2263  *
2264  * Console drivers may assume that per-cpu resources have been allocated. So
2265  * unless they're explicitly marked as being able to cope (CON_ANYTIME) don't
2266  * call them until this CPU is officially up.
2267  */
2268 static inline int can_use_console(void)
2269 {
2270 	return cpu_online(raw_smp_processor_id()) || have_callable_console();
2271 }
2272 
2273 /**
2274  * console_unlock - unlock the console system
2275  *
2276  * Releases the console_lock which the caller holds on the console system
2277  * and the console driver list.
2278  *
2279  * While the console_lock was held, console output may have been buffered
2280  * by printk().  If this is the case, console_unlock(); emits
2281  * the output prior to releasing the lock.
2282  *
2283  * If there is output waiting, we wake /dev/kmsg and syslog() users.
2284  *
2285  * console_unlock(); may be called from any context.
2286  */
2287 void console_unlock(void)
2288 {
2289 	static char ext_text[CONSOLE_EXT_LOG_MAX];
2290 	static char text[LOG_LINE_MAX + PREFIX_MAX];
2291 	static u64 seen_seq;
2292 	unsigned long flags;
2293 	bool wake_klogd = false;
2294 	bool do_cond_resched, retry;
2295 
2296 	if (console_suspended) {
2297 		up_console_sem();
2298 		return;
2299 	}
2300 
2301 	/*
2302 	 * Console drivers are called with interrupts disabled, so
2303 	 * @console_may_schedule should be cleared before; however, we may
2304 	 * end up dumping a lot of lines, for example, if called from
2305 	 * console registration path, and should invoke cond_resched()
2306 	 * between lines if allowable.  Not doing so can cause a very long
2307 	 * scheduling stall on a slow console leading to RCU stall and
2308 	 * softlockup warnings which exacerbate the issue with more
2309 	 * messages practically incapacitating the system.
2310 	 *
2311 	 * console_trylock() is not able to detect the preemptive
2312 	 * context reliably. Therefore the value must be stored before
2313 	 * and cleared after the the "again" goto label.
2314 	 */
2315 	do_cond_resched = console_may_schedule;
2316 again:
2317 	console_may_schedule = 0;
2318 
2319 	/*
2320 	 * We released the console_sem lock, so we need to recheck if
2321 	 * cpu is online and (if not) is there at least one CON_ANYTIME
2322 	 * console.
2323 	 */
2324 	if (!can_use_console()) {
2325 		console_locked = 0;
2326 		up_console_sem();
2327 		return;
2328 	}
2329 
2330 	for (;;) {
2331 		struct printk_log *msg;
2332 		size_t ext_len = 0;
2333 		size_t len;
2334 
2335 		printk_safe_enter_irqsave(flags);
2336 		raw_spin_lock(&logbuf_lock);
2337 		if (seen_seq != log_next_seq) {
2338 			wake_klogd = true;
2339 			seen_seq = log_next_seq;
2340 		}
2341 
2342 		if (console_seq < log_first_seq) {
2343 			len = sprintf(text, "** %u printk messages dropped **\n",
2344 				      (unsigned)(log_first_seq - console_seq));
2345 
2346 			/* messages are gone, move to first one */
2347 			console_seq = log_first_seq;
2348 			console_idx = log_first_idx;
2349 		} else {
2350 			len = 0;
2351 		}
2352 skip:
2353 		if (console_seq == log_next_seq)
2354 			break;
2355 
2356 		msg = log_from_idx(console_idx);
2357 		if (suppress_message_printing(msg->level)) {
2358 			/*
2359 			 * Skip record we have buffered and already printed
2360 			 * directly to the console when we received it, and
2361 			 * record that has level above the console loglevel.
2362 			 */
2363 			console_idx = log_next(console_idx);
2364 			console_seq++;
2365 			goto skip;
2366 		}
2367 
2368 		len += msg_print_text(msg,
2369 				console_msg_format & MSG_FORMAT_SYSLOG,
2370 				text + len,
2371 				sizeof(text) - len);
2372 		if (nr_ext_console_drivers) {
2373 			ext_len = msg_print_ext_header(ext_text,
2374 						sizeof(ext_text),
2375 						msg, console_seq);
2376 			ext_len += msg_print_ext_body(ext_text + ext_len,
2377 						sizeof(ext_text) - ext_len,
2378 						log_dict(msg), msg->dict_len,
2379 						log_text(msg), msg->text_len);
2380 		}
2381 		console_idx = log_next(console_idx);
2382 		console_seq++;
2383 		raw_spin_unlock(&logbuf_lock);
2384 
2385 		/*
2386 		 * While actively printing out messages, if another printk()
2387 		 * were to occur on another CPU, it may wait for this one to
2388 		 * finish. This task can not be preempted if there is a
2389 		 * waiter waiting to take over.
2390 		 */
2391 		console_lock_spinning_enable();
2392 
2393 		stop_critical_timings();	/* don't trace print latency */
2394 		call_console_drivers(ext_text, ext_len, text, len);
2395 		start_critical_timings();
2396 
2397 		if (console_lock_spinning_disable_and_check()) {
2398 			printk_safe_exit_irqrestore(flags);
2399 			goto out;
2400 		}
2401 
2402 		printk_safe_exit_irqrestore(flags);
2403 
2404 		if (do_cond_resched)
2405 			cond_resched();
2406 	}
2407 
2408 	console_locked = 0;
2409 
2410 	/* Release the exclusive_console once it is used */
2411 	if (unlikely(exclusive_console))
2412 		exclusive_console = NULL;
2413 
2414 	raw_spin_unlock(&logbuf_lock);
2415 
2416 	up_console_sem();
2417 
2418 	/*
2419 	 * Someone could have filled up the buffer again, so re-check if there's
2420 	 * something to flush. In case we cannot trylock the console_sem again,
2421 	 * there's a new owner and the console_unlock() from them will do the
2422 	 * flush, no worries.
2423 	 */
2424 	raw_spin_lock(&logbuf_lock);
2425 	retry = console_seq != log_next_seq;
2426 	raw_spin_unlock(&logbuf_lock);
2427 	printk_safe_exit_irqrestore(flags);
2428 
2429 	if (retry && console_trylock())
2430 		goto again;
2431 
2432 out:
2433 	if (wake_klogd)
2434 		wake_up_klogd();
2435 }
2436 EXPORT_SYMBOL(console_unlock);
2437 
2438 /**
2439  * console_conditional_schedule - yield the CPU if required
2440  *
2441  * If the console code is currently allowed to sleep, and
2442  * if this CPU should yield the CPU to another task, do
2443  * so here.
2444  *
2445  * Must be called within console_lock();.
2446  */
2447 void __sched console_conditional_schedule(void)
2448 {
2449 	if (console_may_schedule)
2450 		cond_resched();
2451 }
2452 EXPORT_SYMBOL(console_conditional_schedule);
2453 
2454 void console_unblank(void)
2455 {
2456 	struct console *c;
2457 
2458 	/*
2459 	 * console_unblank can no longer be called in interrupt context unless
2460 	 * oops_in_progress is set to 1..
2461 	 */
2462 	if (oops_in_progress) {
2463 		if (down_trylock_console_sem() != 0)
2464 			return;
2465 	} else
2466 		console_lock();
2467 
2468 	console_locked = 1;
2469 	console_may_schedule = 0;
2470 	for_each_console(c)
2471 		if ((c->flags & CON_ENABLED) && c->unblank)
2472 			c->unblank();
2473 	console_unlock();
2474 }
2475 
2476 /**
2477  * console_flush_on_panic - flush console content on panic
2478  *
2479  * Immediately output all pending messages no matter what.
2480  */
2481 void console_flush_on_panic(void)
2482 {
2483 	/*
2484 	 * If someone else is holding the console lock, trylock will fail
2485 	 * and may_schedule may be set.  Ignore and proceed to unlock so
2486 	 * that messages are flushed out.  As this can be called from any
2487 	 * context and we don't want to get preempted while flushing,
2488 	 * ensure may_schedule is cleared.
2489 	 */
2490 	console_trylock();
2491 	console_may_schedule = 0;
2492 	console_unlock();
2493 }
2494 
2495 /*
2496  * Return the console tty driver structure and its associated index
2497  */
2498 struct tty_driver *console_device(int *index)
2499 {
2500 	struct console *c;
2501 	struct tty_driver *driver = NULL;
2502 
2503 	console_lock();
2504 	for_each_console(c) {
2505 		if (!c->device)
2506 			continue;
2507 		driver = c->device(c, index);
2508 		if (driver)
2509 			break;
2510 	}
2511 	console_unlock();
2512 	return driver;
2513 }
2514 
2515 /*
2516  * Prevent further output on the passed console device so that (for example)
2517  * serial drivers can disable console output before suspending a port, and can
2518  * re-enable output afterwards.
2519  */
2520 void console_stop(struct console *console)
2521 {
2522 	console_lock();
2523 	console->flags &= ~CON_ENABLED;
2524 	console_unlock();
2525 }
2526 EXPORT_SYMBOL(console_stop);
2527 
2528 void console_start(struct console *console)
2529 {
2530 	console_lock();
2531 	console->flags |= CON_ENABLED;
2532 	console_unlock();
2533 }
2534 EXPORT_SYMBOL(console_start);
2535 
2536 static int __read_mostly keep_bootcon;
2537 
2538 static int __init keep_bootcon_setup(char *str)
2539 {
2540 	keep_bootcon = 1;
2541 	pr_info("debug: skip boot console de-registration.\n");
2542 
2543 	return 0;
2544 }
2545 
2546 early_param("keep_bootcon", keep_bootcon_setup);
2547 
2548 /*
2549  * The console driver calls this routine during kernel initialization
2550  * to register the console printing procedure with printk() and to
2551  * print any messages that were printed by the kernel before the
2552  * console driver was initialized.
2553  *
2554  * This can happen pretty early during the boot process (because of
2555  * early_printk) - sometimes before setup_arch() completes - be careful
2556  * of what kernel features are used - they may not be initialised yet.
2557  *
2558  * There are two types of consoles - bootconsoles (early_printk) and
2559  * "real" consoles (everything which is not a bootconsole) which are
2560  * handled differently.
2561  *  - Any number of bootconsoles can be registered at any time.
2562  *  - As soon as a "real" console is registered, all bootconsoles
2563  *    will be unregistered automatically.
2564  *  - Once a "real" console is registered, any attempt to register a
2565  *    bootconsoles will be rejected
2566  */
2567 void register_console(struct console *newcon)
2568 {
2569 	int i;
2570 	unsigned long flags;
2571 	struct console *bcon = NULL;
2572 	struct console_cmdline *c;
2573 	static bool has_preferred;
2574 
2575 	if (console_drivers)
2576 		for_each_console(bcon)
2577 			if (WARN(bcon == newcon,
2578 					"console '%s%d' already registered\n",
2579 					bcon->name, bcon->index))
2580 				return;
2581 
2582 	/*
2583 	 * before we register a new CON_BOOT console, make sure we don't
2584 	 * already have a valid console
2585 	 */
2586 	if (console_drivers && newcon->flags & CON_BOOT) {
2587 		/* find the last or real console */
2588 		for_each_console(bcon) {
2589 			if (!(bcon->flags & CON_BOOT)) {
2590 				pr_info("Too late to register bootconsole %s%d\n",
2591 					newcon->name, newcon->index);
2592 				return;
2593 			}
2594 		}
2595 	}
2596 
2597 	if (console_drivers && console_drivers->flags & CON_BOOT)
2598 		bcon = console_drivers;
2599 
2600 	if (!has_preferred || bcon || !console_drivers)
2601 		has_preferred = preferred_console >= 0;
2602 
2603 	/*
2604 	 *	See if we want to use this console driver. If we
2605 	 *	didn't select a console we take the first one
2606 	 *	that registers here.
2607 	 */
2608 	if (!has_preferred) {
2609 		if (newcon->index < 0)
2610 			newcon->index = 0;
2611 		if (newcon->setup == NULL ||
2612 		    newcon->setup(newcon, NULL) == 0) {
2613 			newcon->flags |= CON_ENABLED;
2614 			if (newcon->device) {
2615 				newcon->flags |= CON_CONSDEV;
2616 				has_preferred = true;
2617 			}
2618 		}
2619 	}
2620 
2621 	/*
2622 	 *	See if this console matches one we selected on
2623 	 *	the command line.
2624 	 */
2625 	for (i = 0, c = console_cmdline;
2626 	     i < MAX_CMDLINECONSOLES && c->name[0];
2627 	     i++, c++) {
2628 		if (!newcon->match ||
2629 		    newcon->match(newcon, c->name, c->index, c->options) != 0) {
2630 			/* default matching */
2631 			BUILD_BUG_ON(sizeof(c->name) != sizeof(newcon->name));
2632 			if (strcmp(c->name, newcon->name) != 0)
2633 				continue;
2634 			if (newcon->index >= 0 &&
2635 			    newcon->index != c->index)
2636 				continue;
2637 			if (newcon->index < 0)
2638 				newcon->index = c->index;
2639 
2640 			if (_braille_register_console(newcon, c))
2641 				return;
2642 
2643 			if (newcon->setup &&
2644 			    newcon->setup(newcon, c->options) != 0)
2645 				break;
2646 		}
2647 
2648 		newcon->flags |= CON_ENABLED;
2649 		if (i == preferred_console) {
2650 			newcon->flags |= CON_CONSDEV;
2651 			has_preferred = true;
2652 		}
2653 		break;
2654 	}
2655 
2656 	if (!(newcon->flags & CON_ENABLED))
2657 		return;
2658 
2659 	/*
2660 	 * If we have a bootconsole, and are switching to a real console,
2661 	 * don't print everything out again, since when the boot console, and
2662 	 * the real console are the same physical device, it's annoying to
2663 	 * see the beginning boot messages twice
2664 	 */
2665 	if (bcon && ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV))
2666 		newcon->flags &= ~CON_PRINTBUFFER;
2667 
2668 	/*
2669 	 *	Put this console in the list - keep the
2670 	 *	preferred driver at the head of the list.
2671 	 */
2672 	console_lock();
2673 	if ((newcon->flags & CON_CONSDEV) || console_drivers == NULL) {
2674 		newcon->next = console_drivers;
2675 		console_drivers = newcon;
2676 		if (newcon->next)
2677 			newcon->next->flags &= ~CON_CONSDEV;
2678 	} else {
2679 		newcon->next = console_drivers->next;
2680 		console_drivers->next = newcon;
2681 	}
2682 
2683 	if (newcon->flags & CON_EXTENDED)
2684 		if (!nr_ext_console_drivers++)
2685 			pr_info("printk: continuation disabled due to ext consoles, expect more fragments in /dev/kmsg\n");
2686 
2687 	if (newcon->flags & CON_PRINTBUFFER) {
2688 		/*
2689 		 * console_unlock(); will print out the buffered messages
2690 		 * for us.
2691 		 */
2692 		logbuf_lock_irqsave(flags);
2693 		console_seq = syslog_seq;
2694 		console_idx = syslog_idx;
2695 		logbuf_unlock_irqrestore(flags);
2696 		/*
2697 		 * We're about to replay the log buffer.  Only do this to the
2698 		 * just-registered console to avoid excessive message spam to
2699 		 * the already-registered consoles.
2700 		 */
2701 		exclusive_console = newcon;
2702 	}
2703 	console_unlock();
2704 	console_sysfs_notify();
2705 
2706 	/*
2707 	 * By unregistering the bootconsoles after we enable the real console
2708 	 * we get the "console xxx enabled" message on all the consoles -
2709 	 * boot consoles, real consoles, etc - this is to ensure that end
2710 	 * users know there might be something in the kernel's log buffer that
2711 	 * went to the bootconsole (that they do not see on the real console)
2712 	 */
2713 	pr_info("%sconsole [%s%d] enabled\n",
2714 		(newcon->flags & CON_BOOT) ? "boot" : "" ,
2715 		newcon->name, newcon->index);
2716 	if (bcon &&
2717 	    ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV) &&
2718 	    !keep_bootcon) {
2719 		/* We need to iterate through all boot consoles, to make
2720 		 * sure we print everything out, before we unregister them.
2721 		 */
2722 		for_each_console(bcon)
2723 			if (bcon->flags & CON_BOOT)
2724 				unregister_console(bcon);
2725 	}
2726 }
2727 EXPORT_SYMBOL(register_console);
2728 
2729 int unregister_console(struct console *console)
2730 {
2731         struct console *a, *b;
2732 	int res;
2733 
2734 	pr_info("%sconsole [%s%d] disabled\n",
2735 		(console->flags & CON_BOOT) ? "boot" : "" ,
2736 		console->name, console->index);
2737 
2738 	res = _braille_unregister_console(console);
2739 	if (res)
2740 		return res;
2741 
2742 	res = 1;
2743 	console_lock();
2744 	if (console_drivers == console) {
2745 		console_drivers=console->next;
2746 		res = 0;
2747 	} else if (console_drivers) {
2748 		for (a=console_drivers->next, b=console_drivers ;
2749 		     a; b=a, a=b->next) {
2750 			if (a == console) {
2751 				b->next = a->next;
2752 				res = 0;
2753 				break;
2754 			}
2755 		}
2756 	}
2757 
2758 	if (!res && (console->flags & CON_EXTENDED))
2759 		nr_ext_console_drivers--;
2760 
2761 	/*
2762 	 * If this isn't the last console and it has CON_CONSDEV set, we
2763 	 * need to set it on the next preferred console.
2764 	 */
2765 	if (console_drivers != NULL && console->flags & CON_CONSDEV)
2766 		console_drivers->flags |= CON_CONSDEV;
2767 
2768 	console->flags &= ~CON_ENABLED;
2769 	console_unlock();
2770 	console_sysfs_notify();
2771 	return res;
2772 }
2773 EXPORT_SYMBOL(unregister_console);
2774 
2775 /*
2776  * Initialize the console device. This is called *early*, so
2777  * we can't necessarily depend on lots of kernel help here.
2778  * Just do some early initializations, and do the complex setup
2779  * later.
2780  */
2781 void __init console_init(void)
2782 {
2783 	initcall_t *call;
2784 
2785 	/* Setup the default TTY line discipline. */
2786 	n_tty_init();
2787 
2788 	/*
2789 	 * set up the console device so that later boot sequences can
2790 	 * inform about problems etc..
2791 	 */
2792 	call = __con_initcall_start;
2793 	while (call < __con_initcall_end) {
2794 		(*call)();
2795 		call++;
2796 	}
2797 }
2798 
2799 /*
2800  * Some boot consoles access data that is in the init section and which will
2801  * be discarded after the initcalls have been run. To make sure that no code
2802  * will access this data, unregister the boot consoles in a late initcall.
2803  *
2804  * If for some reason, such as deferred probe or the driver being a loadable
2805  * module, the real console hasn't registered yet at this point, there will
2806  * be a brief interval in which no messages are logged to the console, which
2807  * makes it difficult to diagnose problems that occur during this time.
2808  *
2809  * To mitigate this problem somewhat, only unregister consoles whose memory
2810  * intersects with the init section. Note that all other boot consoles will
2811  * get unregistred when the real preferred console is registered.
2812  */
2813 static int __init printk_late_init(void)
2814 {
2815 	struct console *con;
2816 	int ret;
2817 
2818 	for_each_console(con) {
2819 		if (!(con->flags & CON_BOOT))
2820 			continue;
2821 
2822 		/* Check addresses that might be used for enabled consoles. */
2823 		if (init_section_intersects(con, sizeof(*con)) ||
2824 		    init_section_contains(con->write, 0) ||
2825 		    init_section_contains(con->read, 0) ||
2826 		    init_section_contains(con->device, 0) ||
2827 		    init_section_contains(con->unblank, 0) ||
2828 		    init_section_contains(con->data, 0)) {
2829 			/*
2830 			 * Please, consider moving the reported consoles out
2831 			 * of the init section.
2832 			 */
2833 			pr_warn("bootconsole [%s%d] uses init memory and must be disabled even before the real one is ready\n",
2834 				con->name, con->index);
2835 			unregister_console(con);
2836 		}
2837 	}
2838 	ret = cpuhp_setup_state_nocalls(CPUHP_PRINTK_DEAD, "printk:dead", NULL,
2839 					console_cpu_notify);
2840 	WARN_ON(ret < 0);
2841 	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "printk:online",
2842 					console_cpu_notify, NULL);
2843 	WARN_ON(ret < 0);
2844 	return 0;
2845 }
2846 late_initcall(printk_late_init);
2847 
2848 #if defined CONFIG_PRINTK
2849 /*
2850  * Delayed printk version, for scheduler-internal messages:
2851  */
2852 #define PRINTK_PENDING_WAKEUP	0x01
2853 #define PRINTK_PENDING_OUTPUT	0x02
2854 
2855 static DEFINE_PER_CPU(int, printk_pending);
2856 
2857 static void wake_up_klogd_work_func(struct irq_work *irq_work)
2858 {
2859 	int pending = __this_cpu_xchg(printk_pending, 0);
2860 
2861 	if (pending & PRINTK_PENDING_OUTPUT) {
2862 		/* If trylock fails, someone else is doing the printing */
2863 		if (console_trylock())
2864 			console_unlock();
2865 	}
2866 
2867 	if (pending & PRINTK_PENDING_WAKEUP)
2868 		wake_up_interruptible(&log_wait);
2869 }
2870 
2871 static DEFINE_PER_CPU(struct irq_work, wake_up_klogd_work) = {
2872 	.func = wake_up_klogd_work_func,
2873 	.flags = IRQ_WORK_LAZY,
2874 };
2875 
2876 void wake_up_klogd(void)
2877 {
2878 	preempt_disable();
2879 	if (waitqueue_active(&log_wait)) {
2880 		this_cpu_or(printk_pending, PRINTK_PENDING_WAKEUP);
2881 		irq_work_queue(this_cpu_ptr(&wake_up_klogd_work));
2882 	}
2883 	preempt_enable();
2884 }
2885 
2886 int vprintk_deferred(const char *fmt, va_list args)
2887 {
2888 	int r;
2889 
2890 	r = vprintk_emit(0, LOGLEVEL_SCHED, NULL, 0, fmt, args);
2891 
2892 	preempt_disable();
2893 	__this_cpu_or(printk_pending, PRINTK_PENDING_OUTPUT);
2894 	irq_work_queue(this_cpu_ptr(&wake_up_klogd_work));
2895 	preempt_enable();
2896 
2897 	return r;
2898 }
2899 
2900 int printk_deferred(const char *fmt, ...)
2901 {
2902 	va_list args;
2903 	int r;
2904 
2905 	va_start(args, fmt);
2906 	r = vprintk_deferred(fmt, args);
2907 	va_end(args);
2908 
2909 	return r;
2910 }
2911 
2912 /*
2913  * printk rate limiting, lifted from the networking subsystem.
2914  *
2915  * This enforces a rate limit: not more than 10 kernel messages
2916  * every 5s to make a denial-of-service attack impossible.
2917  */
2918 DEFINE_RATELIMIT_STATE(printk_ratelimit_state, 5 * HZ, 10);
2919 
2920 int __printk_ratelimit(const char *func)
2921 {
2922 	return ___ratelimit(&printk_ratelimit_state, func);
2923 }
2924 EXPORT_SYMBOL(__printk_ratelimit);
2925 
2926 /**
2927  * printk_timed_ratelimit - caller-controlled printk ratelimiting
2928  * @caller_jiffies: pointer to caller's state
2929  * @interval_msecs: minimum interval between prints
2930  *
2931  * printk_timed_ratelimit() returns true if more than @interval_msecs
2932  * milliseconds have elapsed since the last time printk_timed_ratelimit()
2933  * returned true.
2934  */
2935 bool printk_timed_ratelimit(unsigned long *caller_jiffies,
2936 			unsigned int interval_msecs)
2937 {
2938 	unsigned long elapsed = jiffies - *caller_jiffies;
2939 
2940 	if (*caller_jiffies && elapsed <= msecs_to_jiffies(interval_msecs))
2941 		return false;
2942 
2943 	*caller_jiffies = jiffies;
2944 	return true;
2945 }
2946 EXPORT_SYMBOL(printk_timed_ratelimit);
2947 
2948 static DEFINE_SPINLOCK(dump_list_lock);
2949 static LIST_HEAD(dump_list);
2950 
2951 /**
2952  * kmsg_dump_register - register a kernel log dumper.
2953  * @dumper: pointer to the kmsg_dumper structure
2954  *
2955  * Adds a kernel log dumper to the system. The dump callback in the
2956  * structure will be called when the kernel oopses or panics and must be
2957  * set. Returns zero on success and %-EINVAL or %-EBUSY otherwise.
2958  */
2959 int kmsg_dump_register(struct kmsg_dumper *dumper)
2960 {
2961 	unsigned long flags;
2962 	int err = -EBUSY;
2963 
2964 	/* The dump callback needs to be set */
2965 	if (!dumper->dump)
2966 		return -EINVAL;
2967 
2968 	spin_lock_irqsave(&dump_list_lock, flags);
2969 	/* Don't allow registering multiple times */
2970 	if (!dumper->registered) {
2971 		dumper->registered = 1;
2972 		list_add_tail_rcu(&dumper->list, &dump_list);
2973 		err = 0;
2974 	}
2975 	spin_unlock_irqrestore(&dump_list_lock, flags);
2976 
2977 	return err;
2978 }
2979 EXPORT_SYMBOL_GPL(kmsg_dump_register);
2980 
2981 /**
2982  * kmsg_dump_unregister - unregister a kmsg dumper.
2983  * @dumper: pointer to the kmsg_dumper structure
2984  *
2985  * Removes a dump device from the system. Returns zero on success and
2986  * %-EINVAL otherwise.
2987  */
2988 int kmsg_dump_unregister(struct kmsg_dumper *dumper)
2989 {
2990 	unsigned long flags;
2991 	int err = -EINVAL;
2992 
2993 	spin_lock_irqsave(&dump_list_lock, flags);
2994 	if (dumper->registered) {
2995 		dumper->registered = 0;
2996 		list_del_rcu(&dumper->list);
2997 		err = 0;
2998 	}
2999 	spin_unlock_irqrestore(&dump_list_lock, flags);
3000 	synchronize_rcu();
3001 
3002 	return err;
3003 }
3004 EXPORT_SYMBOL_GPL(kmsg_dump_unregister);
3005 
3006 static bool always_kmsg_dump;
3007 module_param_named(always_kmsg_dump, always_kmsg_dump, bool, S_IRUGO | S_IWUSR);
3008 
3009 /**
3010  * kmsg_dump - dump kernel log to kernel message dumpers.
3011  * @reason: the reason (oops, panic etc) for dumping
3012  *
3013  * Call each of the registered dumper's dump() callback, which can
3014  * retrieve the kmsg records with kmsg_dump_get_line() or
3015  * kmsg_dump_get_buffer().
3016  */
3017 void kmsg_dump(enum kmsg_dump_reason reason)
3018 {
3019 	struct kmsg_dumper *dumper;
3020 	unsigned long flags;
3021 
3022 	if ((reason > KMSG_DUMP_OOPS) && !always_kmsg_dump)
3023 		return;
3024 
3025 	rcu_read_lock();
3026 	list_for_each_entry_rcu(dumper, &dump_list, list) {
3027 		if (dumper->max_reason && reason > dumper->max_reason)
3028 			continue;
3029 
3030 		/* initialize iterator with data about the stored records */
3031 		dumper->active = true;
3032 
3033 		logbuf_lock_irqsave(flags);
3034 		dumper->cur_seq = clear_seq;
3035 		dumper->cur_idx = clear_idx;
3036 		dumper->next_seq = log_next_seq;
3037 		dumper->next_idx = log_next_idx;
3038 		logbuf_unlock_irqrestore(flags);
3039 
3040 		/* invoke dumper which will iterate over records */
3041 		dumper->dump(dumper, reason);
3042 
3043 		/* reset iterator */
3044 		dumper->active = false;
3045 	}
3046 	rcu_read_unlock();
3047 }
3048 
3049 /**
3050  * kmsg_dump_get_line_nolock - retrieve one kmsg log line (unlocked version)
3051  * @dumper: registered kmsg dumper
3052  * @syslog: include the "<4>" prefixes
3053  * @line: buffer to copy the line to
3054  * @size: maximum size of the buffer
3055  * @len: length of line placed into buffer
3056  *
3057  * Start at the beginning of the kmsg buffer, with the oldest kmsg
3058  * record, and copy one record into the provided buffer.
3059  *
3060  * Consecutive calls will return the next available record moving
3061  * towards the end of the buffer with the youngest messages.
3062  *
3063  * A return value of FALSE indicates that there are no more records to
3064  * read.
3065  *
3066  * The function is similar to kmsg_dump_get_line(), but grabs no locks.
3067  */
3068 bool kmsg_dump_get_line_nolock(struct kmsg_dumper *dumper, bool syslog,
3069 			       char *line, size_t size, size_t *len)
3070 {
3071 	struct printk_log *msg;
3072 	size_t l = 0;
3073 	bool ret = false;
3074 
3075 	if (!dumper->active)
3076 		goto out;
3077 
3078 	if (dumper->cur_seq < log_first_seq) {
3079 		/* messages are gone, move to first available one */
3080 		dumper->cur_seq = log_first_seq;
3081 		dumper->cur_idx = log_first_idx;
3082 	}
3083 
3084 	/* last entry */
3085 	if (dumper->cur_seq >= log_next_seq)
3086 		goto out;
3087 
3088 	msg = log_from_idx(dumper->cur_idx);
3089 	l = msg_print_text(msg, syslog, line, size);
3090 
3091 	dumper->cur_idx = log_next(dumper->cur_idx);
3092 	dumper->cur_seq++;
3093 	ret = true;
3094 out:
3095 	if (len)
3096 		*len = l;
3097 	return ret;
3098 }
3099 
3100 /**
3101  * kmsg_dump_get_line - retrieve one kmsg log line
3102  * @dumper: registered kmsg dumper
3103  * @syslog: include the "<4>" prefixes
3104  * @line: buffer to copy the line to
3105  * @size: maximum size of the buffer
3106  * @len: length of line placed into buffer
3107  *
3108  * Start at the beginning of the kmsg buffer, with the oldest kmsg
3109  * record, and copy one record into the provided buffer.
3110  *
3111  * Consecutive calls will return the next available record moving
3112  * towards the end of the buffer with the youngest messages.
3113  *
3114  * A return value of FALSE indicates that there are no more records to
3115  * read.
3116  */
3117 bool kmsg_dump_get_line(struct kmsg_dumper *dumper, bool syslog,
3118 			char *line, size_t size, size_t *len)
3119 {
3120 	unsigned long flags;
3121 	bool ret;
3122 
3123 	logbuf_lock_irqsave(flags);
3124 	ret = kmsg_dump_get_line_nolock(dumper, syslog, line, size, len);
3125 	logbuf_unlock_irqrestore(flags);
3126 
3127 	return ret;
3128 }
3129 EXPORT_SYMBOL_GPL(kmsg_dump_get_line);
3130 
3131 /**
3132  * kmsg_dump_get_buffer - copy kmsg log lines
3133  * @dumper: registered kmsg dumper
3134  * @syslog: include the "<4>" prefixes
3135  * @buf: buffer to copy the line to
3136  * @size: maximum size of the buffer
3137  * @len: length of line placed into buffer
3138  *
3139  * Start at the end of the kmsg buffer and fill the provided buffer
3140  * with as many of the the *youngest* kmsg records that fit into it.
3141  * If the buffer is large enough, all available kmsg records will be
3142  * copied with a single call.
3143  *
3144  * Consecutive calls will fill the buffer with the next block of
3145  * available older records, not including the earlier retrieved ones.
3146  *
3147  * A return value of FALSE indicates that there are no more records to
3148  * read.
3149  */
3150 bool kmsg_dump_get_buffer(struct kmsg_dumper *dumper, bool syslog,
3151 			  char *buf, size_t size, size_t *len)
3152 {
3153 	unsigned long flags;
3154 	u64 seq;
3155 	u32 idx;
3156 	u64 next_seq;
3157 	u32 next_idx;
3158 	size_t l = 0;
3159 	bool ret = false;
3160 
3161 	if (!dumper->active)
3162 		goto out;
3163 
3164 	logbuf_lock_irqsave(flags);
3165 	if (dumper->cur_seq < log_first_seq) {
3166 		/* messages are gone, move to first available one */
3167 		dumper->cur_seq = log_first_seq;
3168 		dumper->cur_idx = log_first_idx;
3169 	}
3170 
3171 	/* last entry */
3172 	if (dumper->cur_seq >= dumper->next_seq) {
3173 		logbuf_unlock_irqrestore(flags);
3174 		goto out;
3175 	}
3176 
3177 	/* calculate length of entire buffer */
3178 	seq = dumper->cur_seq;
3179 	idx = dumper->cur_idx;
3180 	while (seq < dumper->next_seq) {
3181 		struct printk_log *msg = log_from_idx(idx);
3182 
3183 		l += msg_print_text(msg, true, NULL, 0);
3184 		idx = log_next(idx);
3185 		seq++;
3186 	}
3187 
3188 	/* move first record forward until length fits into the buffer */
3189 	seq = dumper->cur_seq;
3190 	idx = dumper->cur_idx;
3191 	while (l > size && seq < dumper->next_seq) {
3192 		struct printk_log *msg = log_from_idx(idx);
3193 
3194 		l -= msg_print_text(msg, true, NULL, 0);
3195 		idx = log_next(idx);
3196 		seq++;
3197 	}
3198 
3199 	/* last message in next interation */
3200 	next_seq = seq;
3201 	next_idx = idx;
3202 
3203 	l = 0;
3204 	while (seq < dumper->next_seq) {
3205 		struct printk_log *msg = log_from_idx(idx);
3206 
3207 		l += msg_print_text(msg, syslog, buf + l, size - l);
3208 		idx = log_next(idx);
3209 		seq++;
3210 	}
3211 
3212 	dumper->next_seq = next_seq;
3213 	dumper->next_idx = next_idx;
3214 	ret = true;
3215 	logbuf_unlock_irqrestore(flags);
3216 out:
3217 	if (len)
3218 		*len = l;
3219 	return ret;
3220 }
3221 EXPORT_SYMBOL_GPL(kmsg_dump_get_buffer);
3222 
3223 /**
3224  * kmsg_dump_rewind_nolock - reset the interator (unlocked version)
3225  * @dumper: registered kmsg dumper
3226  *
3227  * Reset the dumper's iterator so that kmsg_dump_get_line() and
3228  * kmsg_dump_get_buffer() can be called again and used multiple
3229  * times within the same dumper.dump() callback.
3230  *
3231  * The function is similar to kmsg_dump_rewind(), but grabs no locks.
3232  */
3233 void kmsg_dump_rewind_nolock(struct kmsg_dumper *dumper)
3234 {
3235 	dumper->cur_seq = clear_seq;
3236 	dumper->cur_idx = clear_idx;
3237 	dumper->next_seq = log_next_seq;
3238 	dumper->next_idx = log_next_idx;
3239 }
3240 
3241 /**
3242  * kmsg_dump_rewind - reset the interator
3243  * @dumper: registered kmsg dumper
3244  *
3245  * Reset the dumper's iterator so that kmsg_dump_get_line() and
3246  * kmsg_dump_get_buffer() can be called again and used multiple
3247  * times within the same dumper.dump() callback.
3248  */
3249 void kmsg_dump_rewind(struct kmsg_dumper *dumper)
3250 {
3251 	unsigned long flags;
3252 
3253 	logbuf_lock_irqsave(flags);
3254 	kmsg_dump_rewind_nolock(dumper);
3255 	logbuf_unlock_irqrestore(flags);
3256 }
3257 EXPORT_SYMBOL_GPL(kmsg_dump_rewind);
3258 
3259 #endif
3260