1 /* 2 * linux/kernel/printk.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 * 6 * Modified to make sys_syslog() more flexible: added commands to 7 * return the last 4k of kernel messages, regardless of whether 8 * they've been read or not. Added option to suppress kernel printk's 9 * to the console. Added hook for sending the console messages 10 * elsewhere, in preparation for a serial line console (someday). 11 * Ted Ts'o, 2/11/93. 12 * Modified for sysctl support, 1/8/97, Chris Horn. 13 * Fixed SMP synchronization, 08/08/99, Manfred Spraul 14 * manfred@colorfullife.com 15 * Rewrote bits to get rid of console_lock 16 * 01Mar01 Andrew Morton 17 */ 18 19 #include <linux/kernel.h> 20 #include <linux/mm.h> 21 #include <linux/tty.h> 22 #include <linux/tty_driver.h> 23 #include <linux/console.h> 24 #include <linux/init.h> 25 #include <linux/jiffies.h> 26 #include <linux/nmi.h> 27 #include <linux/module.h> 28 #include <linux/moduleparam.h> 29 #include <linux/delay.h> 30 #include <linux/smp.h> 31 #include <linux/security.h> 32 #include <linux/bootmem.h> 33 #include <linux/memblock.h> 34 #include <linux/syscalls.h> 35 #include <linux/crash_core.h> 36 #include <linux/kdb.h> 37 #include <linux/ratelimit.h> 38 #include <linux/kmsg_dump.h> 39 #include <linux/syslog.h> 40 #include <linux/cpu.h> 41 #include <linux/notifier.h> 42 #include <linux/rculist.h> 43 #include <linux/poll.h> 44 #include <linux/irq_work.h> 45 #include <linux/ctype.h> 46 #include <linux/uio.h> 47 #include <linux/sched/clock.h> 48 #include <linux/sched/debug.h> 49 #include <linux/sched/task_stack.h> 50 51 #include <linux/uaccess.h> 52 #include <asm/sections.h> 53 54 #define CREATE_TRACE_POINTS 55 #include <trace/events/printk.h> 56 57 #include "console_cmdline.h" 58 #include "braille.h" 59 #include "internal.h" 60 61 int console_printk[4] = { 62 CONSOLE_LOGLEVEL_DEFAULT, /* console_loglevel */ 63 MESSAGE_LOGLEVEL_DEFAULT, /* default_message_loglevel */ 64 CONSOLE_LOGLEVEL_MIN, /* minimum_console_loglevel */ 65 CONSOLE_LOGLEVEL_DEFAULT, /* default_console_loglevel */ 66 }; 67 68 /* 69 * Low level drivers may need that to know if they can schedule in 70 * their unblank() callback or not. So let's export it. 71 */ 72 int oops_in_progress; 73 EXPORT_SYMBOL(oops_in_progress); 74 75 /* 76 * console_sem protects the console_drivers list, and also 77 * provides serialisation for access to the entire console 78 * driver system. 79 */ 80 static DEFINE_SEMAPHORE(console_sem); 81 struct console *console_drivers; 82 EXPORT_SYMBOL_GPL(console_drivers); 83 84 #ifdef CONFIG_LOCKDEP 85 static struct lockdep_map console_lock_dep_map = { 86 .name = "console_lock" 87 }; 88 #endif 89 90 enum devkmsg_log_bits { 91 __DEVKMSG_LOG_BIT_ON = 0, 92 __DEVKMSG_LOG_BIT_OFF, 93 __DEVKMSG_LOG_BIT_LOCK, 94 }; 95 96 enum devkmsg_log_masks { 97 DEVKMSG_LOG_MASK_ON = BIT(__DEVKMSG_LOG_BIT_ON), 98 DEVKMSG_LOG_MASK_OFF = BIT(__DEVKMSG_LOG_BIT_OFF), 99 DEVKMSG_LOG_MASK_LOCK = BIT(__DEVKMSG_LOG_BIT_LOCK), 100 }; 101 102 /* Keep both the 'on' and 'off' bits clear, i.e. ratelimit by default: */ 103 #define DEVKMSG_LOG_MASK_DEFAULT 0 104 105 static unsigned int __read_mostly devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT; 106 107 static int __control_devkmsg(char *str) 108 { 109 if (!str) 110 return -EINVAL; 111 112 if (!strncmp(str, "on", 2)) { 113 devkmsg_log = DEVKMSG_LOG_MASK_ON; 114 return 2; 115 } else if (!strncmp(str, "off", 3)) { 116 devkmsg_log = DEVKMSG_LOG_MASK_OFF; 117 return 3; 118 } else if (!strncmp(str, "ratelimit", 9)) { 119 devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT; 120 return 9; 121 } 122 return -EINVAL; 123 } 124 125 static int __init control_devkmsg(char *str) 126 { 127 if (__control_devkmsg(str) < 0) 128 return 1; 129 130 /* 131 * Set sysctl string accordingly: 132 */ 133 if (devkmsg_log == DEVKMSG_LOG_MASK_ON) 134 strcpy(devkmsg_log_str, "on"); 135 else if (devkmsg_log == DEVKMSG_LOG_MASK_OFF) 136 strcpy(devkmsg_log_str, "off"); 137 /* else "ratelimit" which is set by default. */ 138 139 /* 140 * Sysctl cannot change it anymore. The kernel command line setting of 141 * this parameter is to force the setting to be permanent throughout the 142 * runtime of the system. This is a precation measure against userspace 143 * trying to be a smarta** and attempting to change it up on us. 144 */ 145 devkmsg_log |= DEVKMSG_LOG_MASK_LOCK; 146 147 return 0; 148 } 149 __setup("printk.devkmsg=", control_devkmsg); 150 151 char devkmsg_log_str[DEVKMSG_STR_MAX_SIZE] = "ratelimit"; 152 153 int devkmsg_sysctl_set_loglvl(struct ctl_table *table, int write, 154 void __user *buffer, size_t *lenp, loff_t *ppos) 155 { 156 char old_str[DEVKMSG_STR_MAX_SIZE]; 157 unsigned int old; 158 int err; 159 160 if (write) { 161 if (devkmsg_log & DEVKMSG_LOG_MASK_LOCK) 162 return -EINVAL; 163 164 old = devkmsg_log; 165 strncpy(old_str, devkmsg_log_str, DEVKMSG_STR_MAX_SIZE); 166 } 167 168 err = proc_dostring(table, write, buffer, lenp, ppos); 169 if (err) 170 return err; 171 172 if (write) { 173 err = __control_devkmsg(devkmsg_log_str); 174 175 /* 176 * Do not accept an unknown string OR a known string with 177 * trailing crap... 178 */ 179 if (err < 0 || (err + 1 != *lenp)) { 180 181 /* ... and restore old setting. */ 182 devkmsg_log = old; 183 strncpy(devkmsg_log_str, old_str, DEVKMSG_STR_MAX_SIZE); 184 185 return -EINVAL; 186 } 187 } 188 189 return 0; 190 } 191 192 /* 193 * Number of registered extended console drivers. 194 * 195 * If extended consoles are present, in-kernel cont reassembly is disabled 196 * and each fragment is stored as a separate log entry with proper 197 * continuation flag so that every emitted message has full metadata. This 198 * doesn't change the result for regular consoles or /proc/kmsg. For 199 * /dev/kmsg, as long as the reader concatenates messages according to 200 * consecutive continuation flags, the end result should be the same too. 201 */ 202 static int nr_ext_console_drivers; 203 204 /* 205 * Helper macros to handle lockdep when locking/unlocking console_sem. We use 206 * macros instead of functions so that _RET_IP_ contains useful information. 207 */ 208 #define down_console_sem() do { \ 209 down(&console_sem);\ 210 mutex_acquire(&console_lock_dep_map, 0, 0, _RET_IP_);\ 211 } while (0) 212 213 static int __down_trylock_console_sem(unsigned long ip) 214 { 215 int lock_failed; 216 unsigned long flags; 217 218 /* 219 * Here and in __up_console_sem() we need to be in safe mode, 220 * because spindump/WARN/etc from under console ->lock will 221 * deadlock in printk()->down_trylock_console_sem() otherwise. 222 */ 223 printk_safe_enter_irqsave(flags); 224 lock_failed = down_trylock(&console_sem); 225 printk_safe_exit_irqrestore(flags); 226 227 if (lock_failed) 228 return 1; 229 mutex_acquire(&console_lock_dep_map, 0, 1, ip); 230 return 0; 231 } 232 #define down_trylock_console_sem() __down_trylock_console_sem(_RET_IP_) 233 234 static void __up_console_sem(unsigned long ip) 235 { 236 unsigned long flags; 237 238 mutex_release(&console_lock_dep_map, 1, ip); 239 240 printk_safe_enter_irqsave(flags); 241 up(&console_sem); 242 printk_safe_exit_irqrestore(flags); 243 } 244 #define up_console_sem() __up_console_sem(_RET_IP_) 245 246 /* 247 * This is used for debugging the mess that is the VT code by 248 * keeping track if we have the console semaphore held. It's 249 * definitely not the perfect debug tool (we don't know if _WE_ 250 * hold it and are racing, but it helps tracking those weird code 251 * paths in the console code where we end up in places I want 252 * locked without the console sempahore held). 253 */ 254 static int console_locked, console_suspended; 255 256 /* 257 * If exclusive_console is non-NULL then only this console is to be printed to. 258 */ 259 static struct console *exclusive_console; 260 261 /* 262 * Array of consoles built from command line options (console=) 263 */ 264 265 #define MAX_CMDLINECONSOLES 8 266 267 static struct console_cmdline console_cmdline[MAX_CMDLINECONSOLES]; 268 269 static int preferred_console = -1; 270 int console_set_on_cmdline; 271 EXPORT_SYMBOL(console_set_on_cmdline); 272 273 /* Flag: console code may call schedule() */ 274 static int console_may_schedule; 275 276 enum con_msg_format_flags { 277 MSG_FORMAT_DEFAULT = 0, 278 MSG_FORMAT_SYSLOG = (1 << 0), 279 }; 280 281 static int console_msg_format = MSG_FORMAT_DEFAULT; 282 283 /* 284 * The printk log buffer consists of a chain of concatenated variable 285 * length records. Every record starts with a record header, containing 286 * the overall length of the record. 287 * 288 * The heads to the first and last entry in the buffer, as well as the 289 * sequence numbers of these entries are maintained when messages are 290 * stored. 291 * 292 * If the heads indicate available messages, the length in the header 293 * tells the start next message. A length == 0 for the next message 294 * indicates a wrap-around to the beginning of the buffer. 295 * 296 * Every record carries the monotonic timestamp in microseconds, as well as 297 * the standard userspace syslog level and syslog facility. The usual 298 * kernel messages use LOG_KERN; userspace-injected messages always carry 299 * a matching syslog facility, by default LOG_USER. The origin of every 300 * message can be reliably determined that way. 301 * 302 * The human readable log message directly follows the message header. The 303 * length of the message text is stored in the header, the stored message 304 * is not terminated. 305 * 306 * Optionally, a message can carry a dictionary of properties (key/value pairs), 307 * to provide userspace with a machine-readable message context. 308 * 309 * Examples for well-defined, commonly used property names are: 310 * DEVICE=b12:8 device identifier 311 * b12:8 block dev_t 312 * c127:3 char dev_t 313 * n8 netdev ifindex 314 * +sound:card0 subsystem:devname 315 * SUBSYSTEM=pci driver-core subsystem name 316 * 317 * Valid characters in property names are [a-zA-Z0-9.-_]. The plain text value 318 * follows directly after a '=' character. Every property is terminated by 319 * a '\0' character. The last property is not terminated. 320 * 321 * Example of a message structure: 322 * 0000 ff 8f 00 00 00 00 00 00 monotonic time in nsec 323 * 0008 34 00 record is 52 bytes long 324 * 000a 0b 00 text is 11 bytes long 325 * 000c 1f 00 dictionary is 23 bytes long 326 * 000e 03 00 LOG_KERN (facility) LOG_ERR (level) 327 * 0010 69 74 27 73 20 61 20 6c "it's a l" 328 * 69 6e 65 "ine" 329 * 001b 44 45 56 49 43 "DEVIC" 330 * 45 3d 62 38 3a 32 00 44 "E=b8:2\0D" 331 * 52 49 56 45 52 3d 62 75 "RIVER=bu" 332 * 67 "g" 333 * 0032 00 00 00 padding to next message header 334 * 335 * The 'struct printk_log' buffer header must never be directly exported to 336 * userspace, it is a kernel-private implementation detail that might 337 * need to be changed in the future, when the requirements change. 338 * 339 * /dev/kmsg exports the structured data in the following line format: 340 * "<level>,<sequnum>,<timestamp>,<contflag>[,additional_values, ... ];<message text>\n" 341 * 342 * Users of the export format should ignore possible additional values 343 * separated by ',', and find the message after the ';' character. 344 * 345 * The optional key/value pairs are attached as continuation lines starting 346 * with a space character and terminated by a newline. All possible 347 * non-prinatable characters are escaped in the "\xff" notation. 348 */ 349 350 enum log_flags { 351 LOG_NOCONS = 1, /* already flushed, do not print to console */ 352 LOG_NEWLINE = 2, /* text ended with a newline */ 353 LOG_PREFIX = 4, /* text started with a prefix */ 354 LOG_CONT = 8, /* text is a fragment of a continuation line */ 355 }; 356 357 struct printk_log { 358 u64 ts_nsec; /* timestamp in nanoseconds */ 359 u16 len; /* length of entire record */ 360 u16 text_len; /* length of text buffer */ 361 u16 dict_len; /* length of dictionary buffer */ 362 u8 facility; /* syslog facility */ 363 u8 flags:5; /* internal record flags */ 364 u8 level:3; /* syslog level */ 365 } 366 #ifdef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS 367 __packed __aligned(4) 368 #endif 369 ; 370 371 /* 372 * The logbuf_lock protects kmsg buffer, indices, counters. This can be taken 373 * within the scheduler's rq lock. It must be released before calling 374 * console_unlock() or anything else that might wake up a process. 375 */ 376 DEFINE_RAW_SPINLOCK(logbuf_lock); 377 378 /* 379 * Helper macros to lock/unlock logbuf_lock and switch between 380 * printk-safe/unsafe modes. 381 */ 382 #define logbuf_lock_irq() \ 383 do { \ 384 printk_safe_enter_irq(); \ 385 raw_spin_lock(&logbuf_lock); \ 386 } while (0) 387 388 #define logbuf_unlock_irq() \ 389 do { \ 390 raw_spin_unlock(&logbuf_lock); \ 391 printk_safe_exit_irq(); \ 392 } while (0) 393 394 #define logbuf_lock_irqsave(flags) \ 395 do { \ 396 printk_safe_enter_irqsave(flags); \ 397 raw_spin_lock(&logbuf_lock); \ 398 } while (0) 399 400 #define logbuf_unlock_irqrestore(flags) \ 401 do { \ 402 raw_spin_unlock(&logbuf_lock); \ 403 printk_safe_exit_irqrestore(flags); \ 404 } while (0) 405 406 #ifdef CONFIG_PRINTK 407 DECLARE_WAIT_QUEUE_HEAD(log_wait); 408 /* the next printk record to read by syslog(READ) or /proc/kmsg */ 409 static u64 syslog_seq; 410 static u32 syslog_idx; 411 static size_t syslog_partial; 412 413 /* index and sequence number of the first record stored in the buffer */ 414 static u64 log_first_seq; 415 static u32 log_first_idx; 416 417 /* index and sequence number of the next record to store in the buffer */ 418 static u64 log_next_seq; 419 static u32 log_next_idx; 420 421 /* the next printk record to write to the console */ 422 static u64 console_seq; 423 static u32 console_idx; 424 425 /* the next printk record to read after the last 'clear' command */ 426 static u64 clear_seq; 427 static u32 clear_idx; 428 429 #define PREFIX_MAX 32 430 #define LOG_LINE_MAX (1024 - PREFIX_MAX) 431 432 #define LOG_LEVEL(v) ((v) & 0x07) 433 #define LOG_FACILITY(v) ((v) >> 3 & 0xff) 434 435 /* record buffer */ 436 #define LOG_ALIGN __alignof__(struct printk_log) 437 #define __LOG_BUF_LEN (1 << CONFIG_LOG_BUF_SHIFT) 438 static char __log_buf[__LOG_BUF_LEN] __aligned(LOG_ALIGN); 439 static char *log_buf = __log_buf; 440 static u32 log_buf_len = __LOG_BUF_LEN; 441 442 /* Return log buffer address */ 443 char *log_buf_addr_get(void) 444 { 445 return log_buf; 446 } 447 448 /* Return log buffer size */ 449 u32 log_buf_len_get(void) 450 { 451 return log_buf_len; 452 } 453 454 /* human readable text of the record */ 455 static char *log_text(const struct printk_log *msg) 456 { 457 return (char *)msg + sizeof(struct printk_log); 458 } 459 460 /* optional key/value pair dictionary attached to the record */ 461 static char *log_dict(const struct printk_log *msg) 462 { 463 return (char *)msg + sizeof(struct printk_log) + msg->text_len; 464 } 465 466 /* get record by index; idx must point to valid msg */ 467 static struct printk_log *log_from_idx(u32 idx) 468 { 469 struct printk_log *msg = (struct printk_log *)(log_buf + idx); 470 471 /* 472 * A length == 0 record is the end of buffer marker. Wrap around and 473 * read the message at the start of the buffer. 474 */ 475 if (!msg->len) 476 return (struct printk_log *)log_buf; 477 return msg; 478 } 479 480 /* get next record; idx must point to valid msg */ 481 static u32 log_next(u32 idx) 482 { 483 struct printk_log *msg = (struct printk_log *)(log_buf + idx); 484 485 /* length == 0 indicates the end of the buffer; wrap */ 486 /* 487 * A length == 0 record is the end of buffer marker. Wrap around and 488 * read the message at the start of the buffer as *this* one, and 489 * return the one after that. 490 */ 491 if (!msg->len) { 492 msg = (struct printk_log *)log_buf; 493 return msg->len; 494 } 495 return idx + msg->len; 496 } 497 498 /* 499 * Check whether there is enough free space for the given message. 500 * 501 * The same values of first_idx and next_idx mean that the buffer 502 * is either empty or full. 503 * 504 * If the buffer is empty, we must respect the position of the indexes. 505 * They cannot be reset to the beginning of the buffer. 506 */ 507 static int logbuf_has_space(u32 msg_size, bool empty) 508 { 509 u32 free; 510 511 if (log_next_idx > log_first_idx || empty) 512 free = max(log_buf_len - log_next_idx, log_first_idx); 513 else 514 free = log_first_idx - log_next_idx; 515 516 /* 517 * We need space also for an empty header that signalizes wrapping 518 * of the buffer. 519 */ 520 return free >= msg_size + sizeof(struct printk_log); 521 } 522 523 static int log_make_free_space(u32 msg_size) 524 { 525 while (log_first_seq < log_next_seq && 526 !logbuf_has_space(msg_size, false)) { 527 /* drop old messages until we have enough contiguous space */ 528 log_first_idx = log_next(log_first_idx); 529 log_first_seq++; 530 } 531 532 if (clear_seq < log_first_seq) { 533 clear_seq = log_first_seq; 534 clear_idx = log_first_idx; 535 } 536 537 /* sequence numbers are equal, so the log buffer is empty */ 538 if (logbuf_has_space(msg_size, log_first_seq == log_next_seq)) 539 return 0; 540 541 return -ENOMEM; 542 } 543 544 /* compute the message size including the padding bytes */ 545 static u32 msg_used_size(u16 text_len, u16 dict_len, u32 *pad_len) 546 { 547 u32 size; 548 549 size = sizeof(struct printk_log) + text_len + dict_len; 550 *pad_len = (-size) & (LOG_ALIGN - 1); 551 size += *pad_len; 552 553 return size; 554 } 555 556 /* 557 * Define how much of the log buffer we could take at maximum. The value 558 * must be greater than two. Note that only half of the buffer is available 559 * when the index points to the middle. 560 */ 561 #define MAX_LOG_TAKE_PART 4 562 static const char trunc_msg[] = "<truncated>"; 563 564 static u32 truncate_msg(u16 *text_len, u16 *trunc_msg_len, 565 u16 *dict_len, u32 *pad_len) 566 { 567 /* 568 * The message should not take the whole buffer. Otherwise, it might 569 * get removed too soon. 570 */ 571 u32 max_text_len = log_buf_len / MAX_LOG_TAKE_PART; 572 if (*text_len > max_text_len) 573 *text_len = max_text_len; 574 /* enable the warning message */ 575 *trunc_msg_len = strlen(trunc_msg); 576 /* disable the "dict" completely */ 577 *dict_len = 0; 578 /* compute the size again, count also the warning message */ 579 return msg_used_size(*text_len + *trunc_msg_len, 0, pad_len); 580 } 581 582 /* insert record into the buffer, discard old ones, update heads */ 583 static int log_store(int facility, int level, 584 enum log_flags flags, u64 ts_nsec, 585 const char *dict, u16 dict_len, 586 const char *text, u16 text_len) 587 { 588 struct printk_log *msg; 589 u32 size, pad_len; 590 u16 trunc_msg_len = 0; 591 592 /* number of '\0' padding bytes to next message */ 593 size = msg_used_size(text_len, dict_len, &pad_len); 594 595 if (log_make_free_space(size)) { 596 /* truncate the message if it is too long for empty buffer */ 597 size = truncate_msg(&text_len, &trunc_msg_len, 598 &dict_len, &pad_len); 599 /* survive when the log buffer is too small for trunc_msg */ 600 if (log_make_free_space(size)) 601 return 0; 602 } 603 604 if (log_next_idx + size + sizeof(struct printk_log) > log_buf_len) { 605 /* 606 * This message + an additional empty header does not fit 607 * at the end of the buffer. Add an empty header with len == 0 608 * to signify a wrap around. 609 */ 610 memset(log_buf + log_next_idx, 0, sizeof(struct printk_log)); 611 log_next_idx = 0; 612 } 613 614 /* fill message */ 615 msg = (struct printk_log *)(log_buf + log_next_idx); 616 memcpy(log_text(msg), text, text_len); 617 msg->text_len = text_len; 618 if (trunc_msg_len) { 619 memcpy(log_text(msg) + text_len, trunc_msg, trunc_msg_len); 620 msg->text_len += trunc_msg_len; 621 } 622 memcpy(log_dict(msg), dict, dict_len); 623 msg->dict_len = dict_len; 624 msg->facility = facility; 625 msg->level = level & 7; 626 msg->flags = flags & 0x1f; 627 if (ts_nsec > 0) 628 msg->ts_nsec = ts_nsec; 629 else 630 msg->ts_nsec = local_clock(); 631 memset(log_dict(msg) + dict_len, 0, pad_len); 632 msg->len = size; 633 634 /* insert message */ 635 log_next_idx += msg->len; 636 log_next_seq++; 637 638 return msg->text_len; 639 } 640 641 int dmesg_restrict = IS_ENABLED(CONFIG_SECURITY_DMESG_RESTRICT); 642 643 static int syslog_action_restricted(int type) 644 { 645 if (dmesg_restrict) 646 return 1; 647 /* 648 * Unless restricted, we allow "read all" and "get buffer size" 649 * for everybody. 650 */ 651 return type != SYSLOG_ACTION_READ_ALL && 652 type != SYSLOG_ACTION_SIZE_BUFFER; 653 } 654 655 static int check_syslog_permissions(int type, int source) 656 { 657 /* 658 * If this is from /proc/kmsg and we've already opened it, then we've 659 * already done the capabilities checks at open time. 660 */ 661 if (source == SYSLOG_FROM_PROC && type != SYSLOG_ACTION_OPEN) 662 goto ok; 663 664 if (syslog_action_restricted(type)) { 665 if (capable(CAP_SYSLOG)) 666 goto ok; 667 /* 668 * For historical reasons, accept CAP_SYS_ADMIN too, with 669 * a warning. 670 */ 671 if (capable(CAP_SYS_ADMIN)) { 672 pr_warn_once("%s (%d): Attempt to access syslog with " 673 "CAP_SYS_ADMIN but no CAP_SYSLOG " 674 "(deprecated).\n", 675 current->comm, task_pid_nr(current)); 676 goto ok; 677 } 678 return -EPERM; 679 } 680 ok: 681 return security_syslog(type); 682 } 683 684 static void append_char(char **pp, char *e, char c) 685 { 686 if (*pp < e) 687 *(*pp)++ = c; 688 } 689 690 static ssize_t msg_print_ext_header(char *buf, size_t size, 691 struct printk_log *msg, u64 seq) 692 { 693 u64 ts_usec = msg->ts_nsec; 694 695 do_div(ts_usec, 1000); 696 697 return scnprintf(buf, size, "%u,%llu,%llu,%c;", 698 (msg->facility << 3) | msg->level, seq, ts_usec, 699 msg->flags & LOG_CONT ? 'c' : '-'); 700 } 701 702 static ssize_t msg_print_ext_body(char *buf, size_t size, 703 char *dict, size_t dict_len, 704 char *text, size_t text_len) 705 { 706 char *p = buf, *e = buf + size; 707 size_t i; 708 709 /* escape non-printable characters */ 710 for (i = 0; i < text_len; i++) { 711 unsigned char c = text[i]; 712 713 if (c < ' ' || c >= 127 || c == '\\') 714 p += scnprintf(p, e - p, "\\x%02x", c); 715 else 716 append_char(&p, e, c); 717 } 718 append_char(&p, e, '\n'); 719 720 if (dict_len) { 721 bool line = true; 722 723 for (i = 0; i < dict_len; i++) { 724 unsigned char c = dict[i]; 725 726 if (line) { 727 append_char(&p, e, ' '); 728 line = false; 729 } 730 731 if (c == '\0') { 732 append_char(&p, e, '\n'); 733 line = true; 734 continue; 735 } 736 737 if (c < ' ' || c >= 127 || c == '\\') { 738 p += scnprintf(p, e - p, "\\x%02x", c); 739 continue; 740 } 741 742 append_char(&p, e, c); 743 } 744 append_char(&p, e, '\n'); 745 } 746 747 return p - buf; 748 } 749 750 /* /dev/kmsg - userspace message inject/listen interface */ 751 struct devkmsg_user { 752 u64 seq; 753 u32 idx; 754 struct ratelimit_state rs; 755 struct mutex lock; 756 char buf[CONSOLE_EXT_LOG_MAX]; 757 }; 758 759 static ssize_t devkmsg_write(struct kiocb *iocb, struct iov_iter *from) 760 { 761 char *buf, *line; 762 int level = default_message_loglevel; 763 int facility = 1; /* LOG_USER */ 764 struct file *file = iocb->ki_filp; 765 struct devkmsg_user *user = file->private_data; 766 size_t len = iov_iter_count(from); 767 ssize_t ret = len; 768 769 if (!user || len > LOG_LINE_MAX) 770 return -EINVAL; 771 772 /* Ignore when user logging is disabled. */ 773 if (devkmsg_log & DEVKMSG_LOG_MASK_OFF) 774 return len; 775 776 /* Ratelimit when not explicitly enabled. */ 777 if (!(devkmsg_log & DEVKMSG_LOG_MASK_ON)) { 778 if (!___ratelimit(&user->rs, current->comm)) 779 return ret; 780 } 781 782 buf = kmalloc(len+1, GFP_KERNEL); 783 if (buf == NULL) 784 return -ENOMEM; 785 786 buf[len] = '\0'; 787 if (!copy_from_iter_full(buf, len, from)) { 788 kfree(buf); 789 return -EFAULT; 790 } 791 792 /* 793 * Extract and skip the syslog prefix <[0-9]*>. Coming from userspace 794 * the decimal value represents 32bit, the lower 3 bit are the log 795 * level, the rest are the log facility. 796 * 797 * If no prefix or no userspace facility is specified, we 798 * enforce LOG_USER, to be able to reliably distinguish 799 * kernel-generated messages from userspace-injected ones. 800 */ 801 line = buf; 802 if (line[0] == '<') { 803 char *endp = NULL; 804 unsigned int u; 805 806 u = simple_strtoul(line + 1, &endp, 10); 807 if (endp && endp[0] == '>') { 808 level = LOG_LEVEL(u); 809 if (LOG_FACILITY(u) != 0) 810 facility = LOG_FACILITY(u); 811 endp++; 812 len -= endp - line; 813 line = endp; 814 } 815 } 816 817 printk_emit(facility, level, NULL, 0, "%s", line); 818 kfree(buf); 819 return ret; 820 } 821 822 static ssize_t devkmsg_read(struct file *file, char __user *buf, 823 size_t count, loff_t *ppos) 824 { 825 struct devkmsg_user *user = file->private_data; 826 struct printk_log *msg; 827 size_t len; 828 ssize_t ret; 829 830 if (!user) 831 return -EBADF; 832 833 ret = mutex_lock_interruptible(&user->lock); 834 if (ret) 835 return ret; 836 837 logbuf_lock_irq(); 838 while (user->seq == log_next_seq) { 839 if (file->f_flags & O_NONBLOCK) { 840 ret = -EAGAIN; 841 logbuf_unlock_irq(); 842 goto out; 843 } 844 845 logbuf_unlock_irq(); 846 ret = wait_event_interruptible(log_wait, 847 user->seq != log_next_seq); 848 if (ret) 849 goto out; 850 logbuf_lock_irq(); 851 } 852 853 if (user->seq < log_first_seq) { 854 /* our last seen message is gone, return error and reset */ 855 user->idx = log_first_idx; 856 user->seq = log_first_seq; 857 ret = -EPIPE; 858 logbuf_unlock_irq(); 859 goto out; 860 } 861 862 msg = log_from_idx(user->idx); 863 len = msg_print_ext_header(user->buf, sizeof(user->buf), 864 msg, user->seq); 865 len += msg_print_ext_body(user->buf + len, sizeof(user->buf) - len, 866 log_dict(msg), msg->dict_len, 867 log_text(msg), msg->text_len); 868 869 user->idx = log_next(user->idx); 870 user->seq++; 871 logbuf_unlock_irq(); 872 873 if (len > count) { 874 ret = -EINVAL; 875 goto out; 876 } 877 878 if (copy_to_user(buf, user->buf, len)) { 879 ret = -EFAULT; 880 goto out; 881 } 882 ret = len; 883 out: 884 mutex_unlock(&user->lock); 885 return ret; 886 } 887 888 static loff_t devkmsg_llseek(struct file *file, loff_t offset, int whence) 889 { 890 struct devkmsg_user *user = file->private_data; 891 loff_t ret = 0; 892 893 if (!user) 894 return -EBADF; 895 if (offset) 896 return -ESPIPE; 897 898 logbuf_lock_irq(); 899 switch (whence) { 900 case SEEK_SET: 901 /* the first record */ 902 user->idx = log_first_idx; 903 user->seq = log_first_seq; 904 break; 905 case SEEK_DATA: 906 /* 907 * The first record after the last SYSLOG_ACTION_CLEAR, 908 * like issued by 'dmesg -c'. Reading /dev/kmsg itself 909 * changes no global state, and does not clear anything. 910 */ 911 user->idx = clear_idx; 912 user->seq = clear_seq; 913 break; 914 case SEEK_END: 915 /* after the last record */ 916 user->idx = log_next_idx; 917 user->seq = log_next_seq; 918 break; 919 default: 920 ret = -EINVAL; 921 } 922 logbuf_unlock_irq(); 923 return ret; 924 } 925 926 static __poll_t devkmsg_poll(struct file *file, poll_table *wait) 927 { 928 struct devkmsg_user *user = file->private_data; 929 __poll_t ret = 0; 930 931 if (!user) 932 return EPOLLERR|EPOLLNVAL; 933 934 poll_wait(file, &log_wait, wait); 935 936 logbuf_lock_irq(); 937 if (user->seq < log_next_seq) { 938 /* return error when data has vanished underneath us */ 939 if (user->seq < log_first_seq) 940 ret = EPOLLIN|EPOLLRDNORM|EPOLLERR|EPOLLPRI; 941 else 942 ret = EPOLLIN|EPOLLRDNORM; 943 } 944 logbuf_unlock_irq(); 945 946 return ret; 947 } 948 949 static int devkmsg_open(struct inode *inode, struct file *file) 950 { 951 struct devkmsg_user *user; 952 int err; 953 954 if (devkmsg_log & DEVKMSG_LOG_MASK_OFF) 955 return -EPERM; 956 957 /* write-only does not need any file context */ 958 if ((file->f_flags & O_ACCMODE) != O_WRONLY) { 959 err = check_syslog_permissions(SYSLOG_ACTION_READ_ALL, 960 SYSLOG_FROM_READER); 961 if (err) 962 return err; 963 } 964 965 user = kmalloc(sizeof(struct devkmsg_user), GFP_KERNEL); 966 if (!user) 967 return -ENOMEM; 968 969 ratelimit_default_init(&user->rs); 970 ratelimit_set_flags(&user->rs, RATELIMIT_MSG_ON_RELEASE); 971 972 mutex_init(&user->lock); 973 974 logbuf_lock_irq(); 975 user->idx = log_first_idx; 976 user->seq = log_first_seq; 977 logbuf_unlock_irq(); 978 979 file->private_data = user; 980 return 0; 981 } 982 983 static int devkmsg_release(struct inode *inode, struct file *file) 984 { 985 struct devkmsg_user *user = file->private_data; 986 987 if (!user) 988 return 0; 989 990 ratelimit_state_exit(&user->rs); 991 992 mutex_destroy(&user->lock); 993 kfree(user); 994 return 0; 995 } 996 997 const struct file_operations kmsg_fops = { 998 .open = devkmsg_open, 999 .read = devkmsg_read, 1000 .write_iter = devkmsg_write, 1001 .llseek = devkmsg_llseek, 1002 .poll = devkmsg_poll, 1003 .release = devkmsg_release, 1004 }; 1005 1006 #ifdef CONFIG_CRASH_CORE 1007 /* 1008 * This appends the listed symbols to /proc/vmcore 1009 * 1010 * /proc/vmcore is used by various utilities, like crash and makedumpfile to 1011 * obtain access to symbols that are otherwise very difficult to locate. These 1012 * symbols are specifically used so that utilities can access and extract the 1013 * dmesg log from a vmcore file after a crash. 1014 */ 1015 void log_buf_vmcoreinfo_setup(void) 1016 { 1017 VMCOREINFO_SYMBOL(log_buf); 1018 VMCOREINFO_SYMBOL(log_buf_len); 1019 VMCOREINFO_SYMBOL(log_first_idx); 1020 VMCOREINFO_SYMBOL(clear_idx); 1021 VMCOREINFO_SYMBOL(log_next_idx); 1022 /* 1023 * Export struct printk_log size and field offsets. User space tools can 1024 * parse it and detect any changes to structure down the line. 1025 */ 1026 VMCOREINFO_STRUCT_SIZE(printk_log); 1027 VMCOREINFO_OFFSET(printk_log, ts_nsec); 1028 VMCOREINFO_OFFSET(printk_log, len); 1029 VMCOREINFO_OFFSET(printk_log, text_len); 1030 VMCOREINFO_OFFSET(printk_log, dict_len); 1031 } 1032 #endif 1033 1034 /* requested log_buf_len from kernel cmdline */ 1035 static unsigned long __initdata new_log_buf_len; 1036 1037 /* we practice scaling the ring buffer by powers of 2 */ 1038 static void __init log_buf_len_update(unsigned size) 1039 { 1040 if (size) 1041 size = roundup_pow_of_two(size); 1042 if (size > log_buf_len) 1043 new_log_buf_len = size; 1044 } 1045 1046 /* save requested log_buf_len since it's too early to process it */ 1047 static int __init log_buf_len_setup(char *str) 1048 { 1049 unsigned size = memparse(str, &str); 1050 1051 log_buf_len_update(size); 1052 1053 return 0; 1054 } 1055 early_param("log_buf_len", log_buf_len_setup); 1056 1057 #ifdef CONFIG_SMP 1058 #define __LOG_CPU_MAX_BUF_LEN (1 << CONFIG_LOG_CPU_MAX_BUF_SHIFT) 1059 1060 static void __init log_buf_add_cpu(void) 1061 { 1062 unsigned int cpu_extra; 1063 1064 /* 1065 * archs should set up cpu_possible_bits properly with 1066 * set_cpu_possible() after setup_arch() but just in 1067 * case lets ensure this is valid. 1068 */ 1069 if (num_possible_cpus() == 1) 1070 return; 1071 1072 cpu_extra = (num_possible_cpus() - 1) * __LOG_CPU_MAX_BUF_LEN; 1073 1074 /* by default this will only continue through for large > 64 CPUs */ 1075 if (cpu_extra <= __LOG_BUF_LEN / 2) 1076 return; 1077 1078 pr_info("log_buf_len individual max cpu contribution: %d bytes\n", 1079 __LOG_CPU_MAX_BUF_LEN); 1080 pr_info("log_buf_len total cpu_extra contributions: %d bytes\n", 1081 cpu_extra); 1082 pr_info("log_buf_len min size: %d bytes\n", __LOG_BUF_LEN); 1083 1084 log_buf_len_update(cpu_extra + __LOG_BUF_LEN); 1085 } 1086 #else /* !CONFIG_SMP */ 1087 static inline void log_buf_add_cpu(void) {} 1088 #endif /* CONFIG_SMP */ 1089 1090 void __init setup_log_buf(int early) 1091 { 1092 unsigned long flags; 1093 char *new_log_buf; 1094 int free; 1095 1096 if (log_buf != __log_buf) 1097 return; 1098 1099 if (!early && !new_log_buf_len) 1100 log_buf_add_cpu(); 1101 1102 if (!new_log_buf_len) 1103 return; 1104 1105 if (early) { 1106 new_log_buf = 1107 memblock_virt_alloc(new_log_buf_len, LOG_ALIGN); 1108 } else { 1109 new_log_buf = memblock_virt_alloc_nopanic(new_log_buf_len, 1110 LOG_ALIGN); 1111 } 1112 1113 if (unlikely(!new_log_buf)) { 1114 pr_err("log_buf_len: %ld bytes not available\n", 1115 new_log_buf_len); 1116 return; 1117 } 1118 1119 logbuf_lock_irqsave(flags); 1120 log_buf_len = new_log_buf_len; 1121 log_buf = new_log_buf; 1122 new_log_buf_len = 0; 1123 free = __LOG_BUF_LEN - log_next_idx; 1124 memcpy(log_buf, __log_buf, __LOG_BUF_LEN); 1125 logbuf_unlock_irqrestore(flags); 1126 1127 pr_info("log_buf_len: %d bytes\n", log_buf_len); 1128 pr_info("early log buf free: %d(%d%%)\n", 1129 free, (free * 100) / __LOG_BUF_LEN); 1130 } 1131 1132 static bool __read_mostly ignore_loglevel; 1133 1134 static int __init ignore_loglevel_setup(char *str) 1135 { 1136 ignore_loglevel = true; 1137 pr_info("debug: ignoring loglevel setting.\n"); 1138 1139 return 0; 1140 } 1141 1142 early_param("ignore_loglevel", ignore_loglevel_setup); 1143 module_param(ignore_loglevel, bool, S_IRUGO | S_IWUSR); 1144 MODULE_PARM_DESC(ignore_loglevel, 1145 "ignore loglevel setting (prints all kernel messages to the console)"); 1146 1147 static bool suppress_message_printing(int level) 1148 { 1149 return (level >= console_loglevel && !ignore_loglevel); 1150 } 1151 1152 #ifdef CONFIG_BOOT_PRINTK_DELAY 1153 1154 static int boot_delay; /* msecs delay after each printk during bootup */ 1155 static unsigned long long loops_per_msec; /* based on boot_delay */ 1156 1157 static int __init boot_delay_setup(char *str) 1158 { 1159 unsigned long lpj; 1160 1161 lpj = preset_lpj ? preset_lpj : 1000000; /* some guess */ 1162 loops_per_msec = (unsigned long long)lpj / 1000 * HZ; 1163 1164 get_option(&str, &boot_delay); 1165 if (boot_delay > 10 * 1000) 1166 boot_delay = 0; 1167 1168 pr_debug("boot_delay: %u, preset_lpj: %ld, lpj: %lu, " 1169 "HZ: %d, loops_per_msec: %llu\n", 1170 boot_delay, preset_lpj, lpj, HZ, loops_per_msec); 1171 return 0; 1172 } 1173 early_param("boot_delay", boot_delay_setup); 1174 1175 static void boot_delay_msec(int level) 1176 { 1177 unsigned long long k; 1178 unsigned long timeout; 1179 1180 if ((boot_delay == 0 || system_state >= SYSTEM_RUNNING) 1181 || suppress_message_printing(level)) { 1182 return; 1183 } 1184 1185 k = (unsigned long long)loops_per_msec * boot_delay; 1186 1187 timeout = jiffies + msecs_to_jiffies(boot_delay); 1188 while (k) { 1189 k--; 1190 cpu_relax(); 1191 /* 1192 * use (volatile) jiffies to prevent 1193 * compiler reduction; loop termination via jiffies 1194 * is secondary and may or may not happen. 1195 */ 1196 if (time_after(jiffies, timeout)) 1197 break; 1198 touch_nmi_watchdog(); 1199 } 1200 } 1201 #else 1202 static inline void boot_delay_msec(int level) 1203 { 1204 } 1205 #endif 1206 1207 static bool printk_time = IS_ENABLED(CONFIG_PRINTK_TIME); 1208 module_param_named(time, printk_time, bool, S_IRUGO | S_IWUSR); 1209 1210 static size_t print_time(u64 ts, char *buf) 1211 { 1212 unsigned long rem_nsec; 1213 1214 if (!printk_time) 1215 return 0; 1216 1217 rem_nsec = do_div(ts, 1000000000); 1218 1219 if (!buf) 1220 return snprintf(NULL, 0, "[%5lu.000000] ", (unsigned long)ts); 1221 1222 return sprintf(buf, "[%5lu.%06lu] ", 1223 (unsigned long)ts, rem_nsec / 1000); 1224 } 1225 1226 static size_t print_prefix(const struct printk_log *msg, bool syslog, char *buf) 1227 { 1228 size_t len = 0; 1229 unsigned int prefix = (msg->facility << 3) | msg->level; 1230 1231 if (syslog) { 1232 if (buf) { 1233 len += sprintf(buf, "<%u>", prefix); 1234 } else { 1235 len += 3; 1236 if (prefix > 999) 1237 len += 3; 1238 else if (prefix > 99) 1239 len += 2; 1240 else if (prefix > 9) 1241 len++; 1242 } 1243 } 1244 1245 len += print_time(msg->ts_nsec, buf ? buf + len : NULL); 1246 return len; 1247 } 1248 1249 static size_t msg_print_text(const struct printk_log *msg, bool syslog, char *buf, size_t size) 1250 { 1251 const char *text = log_text(msg); 1252 size_t text_size = msg->text_len; 1253 size_t len = 0; 1254 1255 do { 1256 const char *next = memchr(text, '\n', text_size); 1257 size_t text_len; 1258 1259 if (next) { 1260 text_len = next - text; 1261 next++; 1262 text_size -= next - text; 1263 } else { 1264 text_len = text_size; 1265 } 1266 1267 if (buf) { 1268 if (print_prefix(msg, syslog, NULL) + 1269 text_len + 1 >= size - len) 1270 break; 1271 1272 len += print_prefix(msg, syslog, buf + len); 1273 memcpy(buf + len, text, text_len); 1274 len += text_len; 1275 buf[len++] = '\n'; 1276 } else { 1277 /* SYSLOG_ACTION_* buffer size only calculation */ 1278 len += print_prefix(msg, syslog, NULL); 1279 len += text_len; 1280 len++; 1281 } 1282 1283 text = next; 1284 } while (text); 1285 1286 return len; 1287 } 1288 1289 static int syslog_print(char __user *buf, int size) 1290 { 1291 char *text; 1292 struct printk_log *msg; 1293 int len = 0; 1294 1295 text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL); 1296 if (!text) 1297 return -ENOMEM; 1298 1299 while (size > 0) { 1300 size_t n; 1301 size_t skip; 1302 1303 logbuf_lock_irq(); 1304 if (syslog_seq < log_first_seq) { 1305 /* messages are gone, move to first one */ 1306 syslog_seq = log_first_seq; 1307 syslog_idx = log_first_idx; 1308 syslog_partial = 0; 1309 } 1310 if (syslog_seq == log_next_seq) { 1311 logbuf_unlock_irq(); 1312 break; 1313 } 1314 1315 skip = syslog_partial; 1316 msg = log_from_idx(syslog_idx); 1317 n = msg_print_text(msg, true, text, LOG_LINE_MAX + PREFIX_MAX); 1318 if (n - syslog_partial <= size) { 1319 /* message fits into buffer, move forward */ 1320 syslog_idx = log_next(syslog_idx); 1321 syslog_seq++; 1322 n -= syslog_partial; 1323 syslog_partial = 0; 1324 } else if (!len){ 1325 /* partial read(), remember position */ 1326 n = size; 1327 syslog_partial += n; 1328 } else 1329 n = 0; 1330 logbuf_unlock_irq(); 1331 1332 if (!n) 1333 break; 1334 1335 if (copy_to_user(buf, text + skip, n)) { 1336 if (!len) 1337 len = -EFAULT; 1338 break; 1339 } 1340 1341 len += n; 1342 size -= n; 1343 buf += n; 1344 } 1345 1346 kfree(text); 1347 return len; 1348 } 1349 1350 static int syslog_print_all(char __user *buf, int size, bool clear) 1351 { 1352 char *text; 1353 int len = 0; 1354 1355 text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL); 1356 if (!text) 1357 return -ENOMEM; 1358 1359 logbuf_lock_irq(); 1360 if (buf) { 1361 u64 next_seq; 1362 u64 seq; 1363 u32 idx; 1364 1365 /* 1366 * Find first record that fits, including all following records, 1367 * into the user-provided buffer for this dump. 1368 */ 1369 seq = clear_seq; 1370 idx = clear_idx; 1371 while (seq < log_next_seq) { 1372 struct printk_log *msg = log_from_idx(idx); 1373 1374 len += msg_print_text(msg, true, NULL, 0); 1375 idx = log_next(idx); 1376 seq++; 1377 } 1378 1379 /* move first record forward until length fits into the buffer */ 1380 seq = clear_seq; 1381 idx = clear_idx; 1382 while (len > size && seq < log_next_seq) { 1383 struct printk_log *msg = log_from_idx(idx); 1384 1385 len -= msg_print_text(msg, true, NULL, 0); 1386 idx = log_next(idx); 1387 seq++; 1388 } 1389 1390 /* last message fitting into this dump */ 1391 next_seq = log_next_seq; 1392 1393 len = 0; 1394 while (len >= 0 && seq < next_seq) { 1395 struct printk_log *msg = log_from_idx(idx); 1396 int textlen; 1397 1398 textlen = msg_print_text(msg, true, text, 1399 LOG_LINE_MAX + PREFIX_MAX); 1400 if (textlen < 0) { 1401 len = textlen; 1402 break; 1403 } 1404 idx = log_next(idx); 1405 seq++; 1406 1407 logbuf_unlock_irq(); 1408 if (copy_to_user(buf + len, text, textlen)) 1409 len = -EFAULT; 1410 else 1411 len += textlen; 1412 logbuf_lock_irq(); 1413 1414 if (seq < log_first_seq) { 1415 /* messages are gone, move to next one */ 1416 seq = log_first_seq; 1417 idx = log_first_idx; 1418 } 1419 } 1420 } 1421 1422 if (clear) { 1423 clear_seq = log_next_seq; 1424 clear_idx = log_next_idx; 1425 } 1426 logbuf_unlock_irq(); 1427 1428 kfree(text); 1429 return len; 1430 } 1431 1432 int do_syslog(int type, char __user *buf, int len, int source) 1433 { 1434 bool clear = false; 1435 static int saved_console_loglevel = LOGLEVEL_DEFAULT; 1436 int error; 1437 1438 error = check_syslog_permissions(type, source); 1439 if (error) 1440 return error; 1441 1442 switch (type) { 1443 case SYSLOG_ACTION_CLOSE: /* Close log */ 1444 break; 1445 case SYSLOG_ACTION_OPEN: /* Open log */ 1446 break; 1447 case SYSLOG_ACTION_READ: /* Read from log */ 1448 if (!buf || len < 0) 1449 return -EINVAL; 1450 if (!len) 1451 return 0; 1452 if (!access_ok(VERIFY_WRITE, buf, len)) 1453 return -EFAULT; 1454 error = wait_event_interruptible(log_wait, 1455 syslog_seq != log_next_seq); 1456 if (error) 1457 return error; 1458 error = syslog_print(buf, len); 1459 break; 1460 /* Read/clear last kernel messages */ 1461 case SYSLOG_ACTION_READ_CLEAR: 1462 clear = true; 1463 /* FALL THRU */ 1464 /* Read last kernel messages */ 1465 case SYSLOG_ACTION_READ_ALL: 1466 if (!buf || len < 0) 1467 return -EINVAL; 1468 if (!len) 1469 return 0; 1470 if (!access_ok(VERIFY_WRITE, buf, len)) 1471 return -EFAULT; 1472 error = syslog_print_all(buf, len, clear); 1473 break; 1474 /* Clear ring buffer */ 1475 case SYSLOG_ACTION_CLEAR: 1476 syslog_print_all(NULL, 0, true); 1477 break; 1478 /* Disable logging to console */ 1479 case SYSLOG_ACTION_CONSOLE_OFF: 1480 if (saved_console_loglevel == LOGLEVEL_DEFAULT) 1481 saved_console_loglevel = console_loglevel; 1482 console_loglevel = minimum_console_loglevel; 1483 break; 1484 /* Enable logging to console */ 1485 case SYSLOG_ACTION_CONSOLE_ON: 1486 if (saved_console_loglevel != LOGLEVEL_DEFAULT) { 1487 console_loglevel = saved_console_loglevel; 1488 saved_console_loglevel = LOGLEVEL_DEFAULT; 1489 } 1490 break; 1491 /* Set level of messages printed to console */ 1492 case SYSLOG_ACTION_CONSOLE_LEVEL: 1493 if (len < 1 || len > 8) 1494 return -EINVAL; 1495 if (len < minimum_console_loglevel) 1496 len = minimum_console_loglevel; 1497 console_loglevel = len; 1498 /* Implicitly re-enable logging to console */ 1499 saved_console_loglevel = LOGLEVEL_DEFAULT; 1500 break; 1501 /* Number of chars in the log buffer */ 1502 case SYSLOG_ACTION_SIZE_UNREAD: 1503 logbuf_lock_irq(); 1504 if (syslog_seq < log_first_seq) { 1505 /* messages are gone, move to first one */ 1506 syslog_seq = log_first_seq; 1507 syslog_idx = log_first_idx; 1508 syslog_partial = 0; 1509 } 1510 if (source == SYSLOG_FROM_PROC) { 1511 /* 1512 * Short-cut for poll(/"proc/kmsg") which simply checks 1513 * for pending data, not the size; return the count of 1514 * records, not the length. 1515 */ 1516 error = log_next_seq - syslog_seq; 1517 } else { 1518 u64 seq = syslog_seq; 1519 u32 idx = syslog_idx; 1520 1521 while (seq < log_next_seq) { 1522 struct printk_log *msg = log_from_idx(idx); 1523 1524 error += msg_print_text(msg, true, NULL, 0); 1525 idx = log_next(idx); 1526 seq++; 1527 } 1528 error -= syslog_partial; 1529 } 1530 logbuf_unlock_irq(); 1531 break; 1532 /* Size of the log buffer */ 1533 case SYSLOG_ACTION_SIZE_BUFFER: 1534 error = log_buf_len; 1535 break; 1536 default: 1537 error = -EINVAL; 1538 break; 1539 } 1540 1541 return error; 1542 } 1543 1544 SYSCALL_DEFINE3(syslog, int, type, char __user *, buf, int, len) 1545 { 1546 return do_syslog(type, buf, len, SYSLOG_FROM_READER); 1547 } 1548 1549 /* 1550 * Special console_lock variants that help to reduce the risk of soft-lockups. 1551 * They allow to pass console_lock to another printk() call using a busy wait. 1552 */ 1553 1554 #ifdef CONFIG_LOCKDEP 1555 static struct lockdep_map console_owner_dep_map = { 1556 .name = "console_owner" 1557 }; 1558 #endif 1559 1560 static DEFINE_RAW_SPINLOCK(console_owner_lock); 1561 static struct task_struct *console_owner; 1562 static bool console_waiter; 1563 1564 /** 1565 * console_lock_spinning_enable - mark beginning of code where another 1566 * thread might safely busy wait 1567 * 1568 * This basically converts console_lock into a spinlock. This marks 1569 * the section where the console_lock owner can not sleep, because 1570 * there may be a waiter spinning (like a spinlock). Also it must be 1571 * ready to hand over the lock at the end of the section. 1572 */ 1573 static void console_lock_spinning_enable(void) 1574 { 1575 raw_spin_lock(&console_owner_lock); 1576 console_owner = current; 1577 raw_spin_unlock(&console_owner_lock); 1578 1579 /* The waiter may spin on us after setting console_owner */ 1580 spin_acquire(&console_owner_dep_map, 0, 0, _THIS_IP_); 1581 } 1582 1583 /** 1584 * console_lock_spinning_disable_and_check - mark end of code where another 1585 * thread was able to busy wait and check if there is a waiter 1586 * 1587 * This is called at the end of the section where spinning is allowed. 1588 * It has two functions. First, it is a signal that it is no longer 1589 * safe to start busy waiting for the lock. Second, it checks if 1590 * there is a busy waiter and passes the lock rights to her. 1591 * 1592 * Important: Callers lose the lock if there was a busy waiter. 1593 * They must not touch items synchronized by console_lock 1594 * in this case. 1595 * 1596 * Return: 1 if the lock rights were passed, 0 otherwise. 1597 */ 1598 static int console_lock_spinning_disable_and_check(void) 1599 { 1600 int waiter; 1601 1602 raw_spin_lock(&console_owner_lock); 1603 waiter = READ_ONCE(console_waiter); 1604 console_owner = NULL; 1605 raw_spin_unlock(&console_owner_lock); 1606 1607 if (!waiter) { 1608 spin_release(&console_owner_dep_map, 1, _THIS_IP_); 1609 return 0; 1610 } 1611 1612 /* The waiter is now free to continue */ 1613 WRITE_ONCE(console_waiter, false); 1614 1615 spin_release(&console_owner_dep_map, 1, _THIS_IP_); 1616 1617 /* 1618 * Hand off console_lock to waiter. The waiter will perform 1619 * the up(). After this, the waiter is the console_lock owner. 1620 */ 1621 mutex_release(&console_lock_dep_map, 1, _THIS_IP_); 1622 return 1; 1623 } 1624 1625 /** 1626 * console_trylock_spinning - try to get console_lock by busy waiting 1627 * 1628 * This allows to busy wait for the console_lock when the current 1629 * owner is running in specially marked sections. It means that 1630 * the current owner is running and cannot reschedule until it 1631 * is ready to lose the lock. 1632 * 1633 * Return: 1 if we got the lock, 0 othrewise 1634 */ 1635 static int console_trylock_spinning(void) 1636 { 1637 struct task_struct *owner = NULL; 1638 bool waiter; 1639 bool spin = false; 1640 unsigned long flags; 1641 1642 if (console_trylock()) 1643 return 1; 1644 1645 printk_safe_enter_irqsave(flags); 1646 1647 raw_spin_lock(&console_owner_lock); 1648 owner = READ_ONCE(console_owner); 1649 waiter = READ_ONCE(console_waiter); 1650 if (!waiter && owner && owner != current) { 1651 WRITE_ONCE(console_waiter, true); 1652 spin = true; 1653 } 1654 raw_spin_unlock(&console_owner_lock); 1655 1656 /* 1657 * If there is an active printk() writing to the 1658 * consoles, instead of having it write our data too, 1659 * see if we can offload that load from the active 1660 * printer, and do some printing ourselves. 1661 * Go into a spin only if there isn't already a waiter 1662 * spinning, and there is an active printer, and 1663 * that active printer isn't us (recursive printk?). 1664 */ 1665 if (!spin) { 1666 printk_safe_exit_irqrestore(flags); 1667 return 0; 1668 } 1669 1670 /* We spin waiting for the owner to release us */ 1671 spin_acquire(&console_owner_dep_map, 0, 0, _THIS_IP_); 1672 /* Owner will clear console_waiter on hand off */ 1673 while (READ_ONCE(console_waiter)) 1674 cpu_relax(); 1675 spin_release(&console_owner_dep_map, 1, _THIS_IP_); 1676 1677 printk_safe_exit_irqrestore(flags); 1678 /* 1679 * The owner passed the console lock to us. 1680 * Since we did not spin on console lock, annotate 1681 * this as a trylock. Otherwise lockdep will 1682 * complain. 1683 */ 1684 mutex_acquire(&console_lock_dep_map, 0, 1, _THIS_IP_); 1685 1686 return 1; 1687 } 1688 1689 /* 1690 * Call the console drivers, asking them to write out 1691 * log_buf[start] to log_buf[end - 1]. 1692 * The console_lock must be held. 1693 */ 1694 static void call_console_drivers(const char *ext_text, size_t ext_len, 1695 const char *text, size_t len) 1696 { 1697 struct console *con; 1698 1699 trace_console_rcuidle(text, len); 1700 1701 if (!console_drivers) 1702 return; 1703 1704 for_each_console(con) { 1705 if (exclusive_console && con != exclusive_console) 1706 continue; 1707 if (!(con->flags & CON_ENABLED)) 1708 continue; 1709 if (!con->write) 1710 continue; 1711 if (!cpu_online(smp_processor_id()) && 1712 !(con->flags & CON_ANYTIME)) 1713 continue; 1714 if (con->flags & CON_EXTENDED) 1715 con->write(con, ext_text, ext_len); 1716 else 1717 con->write(con, text, len); 1718 } 1719 } 1720 1721 int printk_delay_msec __read_mostly; 1722 1723 static inline void printk_delay(void) 1724 { 1725 if (unlikely(printk_delay_msec)) { 1726 int m = printk_delay_msec; 1727 1728 while (m--) { 1729 mdelay(1); 1730 touch_nmi_watchdog(); 1731 } 1732 } 1733 } 1734 1735 /* 1736 * Continuation lines are buffered, and not committed to the record buffer 1737 * until the line is complete, or a race forces it. The line fragments 1738 * though, are printed immediately to the consoles to ensure everything has 1739 * reached the console in case of a kernel crash. 1740 */ 1741 static struct cont { 1742 char buf[LOG_LINE_MAX]; 1743 size_t len; /* length == 0 means unused buffer */ 1744 struct task_struct *owner; /* task of first print*/ 1745 u64 ts_nsec; /* time of first print */ 1746 u8 level; /* log level of first message */ 1747 u8 facility; /* log facility of first message */ 1748 enum log_flags flags; /* prefix, newline flags */ 1749 } cont; 1750 1751 static void cont_flush(void) 1752 { 1753 if (cont.len == 0) 1754 return; 1755 1756 log_store(cont.facility, cont.level, cont.flags, cont.ts_nsec, 1757 NULL, 0, cont.buf, cont.len); 1758 cont.len = 0; 1759 } 1760 1761 static bool cont_add(int facility, int level, enum log_flags flags, const char *text, size_t len) 1762 { 1763 /* 1764 * If ext consoles are present, flush and skip in-kernel 1765 * continuation. See nr_ext_console_drivers definition. Also, if 1766 * the line gets too long, split it up in separate records. 1767 */ 1768 if (nr_ext_console_drivers || cont.len + len > sizeof(cont.buf)) { 1769 cont_flush(); 1770 return false; 1771 } 1772 1773 if (!cont.len) { 1774 cont.facility = facility; 1775 cont.level = level; 1776 cont.owner = current; 1777 cont.ts_nsec = local_clock(); 1778 cont.flags = flags; 1779 } 1780 1781 memcpy(cont.buf + cont.len, text, len); 1782 cont.len += len; 1783 1784 // The original flags come from the first line, 1785 // but later continuations can add a newline. 1786 if (flags & LOG_NEWLINE) { 1787 cont.flags |= LOG_NEWLINE; 1788 cont_flush(); 1789 } 1790 1791 if (cont.len > (sizeof(cont.buf) * 80) / 100) 1792 cont_flush(); 1793 1794 return true; 1795 } 1796 1797 static size_t log_output(int facility, int level, enum log_flags lflags, const char *dict, size_t dictlen, char *text, size_t text_len) 1798 { 1799 /* 1800 * If an earlier line was buffered, and we're a continuation 1801 * write from the same process, try to add it to the buffer. 1802 */ 1803 if (cont.len) { 1804 if (cont.owner == current && (lflags & LOG_CONT)) { 1805 if (cont_add(facility, level, lflags, text, text_len)) 1806 return text_len; 1807 } 1808 /* Otherwise, make sure it's flushed */ 1809 cont_flush(); 1810 } 1811 1812 /* Skip empty continuation lines that couldn't be added - they just flush */ 1813 if (!text_len && (lflags & LOG_CONT)) 1814 return 0; 1815 1816 /* If it doesn't end in a newline, try to buffer the current line */ 1817 if (!(lflags & LOG_NEWLINE)) { 1818 if (cont_add(facility, level, lflags, text, text_len)) 1819 return text_len; 1820 } 1821 1822 /* Store it in the record log */ 1823 return log_store(facility, level, lflags, 0, dict, dictlen, text, text_len); 1824 } 1825 1826 asmlinkage int vprintk_emit(int facility, int level, 1827 const char *dict, size_t dictlen, 1828 const char *fmt, va_list args) 1829 { 1830 static char textbuf[LOG_LINE_MAX]; 1831 char *text = textbuf; 1832 size_t text_len; 1833 enum log_flags lflags = 0; 1834 unsigned long flags; 1835 int printed_len; 1836 bool in_sched = false; 1837 1838 if (level == LOGLEVEL_SCHED) { 1839 level = LOGLEVEL_DEFAULT; 1840 in_sched = true; 1841 } 1842 1843 boot_delay_msec(level); 1844 printk_delay(); 1845 1846 /* This stops the holder of console_sem just where we want him */ 1847 logbuf_lock_irqsave(flags); 1848 /* 1849 * The printf needs to come first; we need the syslog 1850 * prefix which might be passed-in as a parameter. 1851 */ 1852 text_len = vscnprintf(text, sizeof(textbuf), fmt, args); 1853 1854 /* mark and strip a trailing newline */ 1855 if (text_len && text[text_len-1] == '\n') { 1856 text_len--; 1857 lflags |= LOG_NEWLINE; 1858 } 1859 1860 /* strip kernel syslog prefix and extract log level or control flags */ 1861 if (facility == 0) { 1862 int kern_level; 1863 1864 while ((kern_level = printk_get_level(text)) != 0) { 1865 switch (kern_level) { 1866 case '0' ... '7': 1867 if (level == LOGLEVEL_DEFAULT) 1868 level = kern_level - '0'; 1869 /* fallthrough */ 1870 case 'd': /* KERN_DEFAULT */ 1871 lflags |= LOG_PREFIX; 1872 break; 1873 case 'c': /* KERN_CONT */ 1874 lflags |= LOG_CONT; 1875 } 1876 1877 text_len -= 2; 1878 text += 2; 1879 } 1880 } 1881 1882 if (level == LOGLEVEL_DEFAULT) 1883 level = default_message_loglevel; 1884 1885 if (dict) 1886 lflags |= LOG_PREFIX|LOG_NEWLINE; 1887 1888 printed_len = log_output(facility, level, lflags, dict, dictlen, text, text_len); 1889 1890 logbuf_unlock_irqrestore(flags); 1891 1892 /* If called from the scheduler, we can not call up(). */ 1893 if (!in_sched) { 1894 /* 1895 * Disable preemption to avoid being preempted while holding 1896 * console_sem which would prevent anyone from printing to 1897 * console 1898 */ 1899 preempt_disable(); 1900 /* 1901 * Try to acquire and then immediately release the console 1902 * semaphore. The release will print out buffers and wake up 1903 * /dev/kmsg and syslog() users. 1904 */ 1905 if (console_trylock_spinning()) 1906 console_unlock(); 1907 preempt_enable(); 1908 } 1909 1910 return printed_len; 1911 } 1912 EXPORT_SYMBOL(vprintk_emit); 1913 1914 asmlinkage int vprintk(const char *fmt, va_list args) 1915 { 1916 return vprintk_func(fmt, args); 1917 } 1918 EXPORT_SYMBOL(vprintk); 1919 1920 asmlinkage int printk_emit(int facility, int level, 1921 const char *dict, size_t dictlen, 1922 const char *fmt, ...) 1923 { 1924 va_list args; 1925 int r; 1926 1927 va_start(args, fmt); 1928 r = vprintk_emit(facility, level, dict, dictlen, fmt, args); 1929 va_end(args); 1930 1931 return r; 1932 } 1933 EXPORT_SYMBOL(printk_emit); 1934 1935 int vprintk_default(const char *fmt, va_list args) 1936 { 1937 int r; 1938 1939 #ifdef CONFIG_KGDB_KDB 1940 /* Allow to pass printk() to kdb but avoid a recursion. */ 1941 if (unlikely(kdb_trap_printk && kdb_printf_cpu < 0)) { 1942 r = vkdb_printf(KDB_MSGSRC_PRINTK, fmt, args); 1943 return r; 1944 } 1945 #endif 1946 r = vprintk_emit(0, LOGLEVEL_DEFAULT, NULL, 0, fmt, args); 1947 1948 return r; 1949 } 1950 EXPORT_SYMBOL_GPL(vprintk_default); 1951 1952 /** 1953 * printk - print a kernel message 1954 * @fmt: format string 1955 * 1956 * This is printk(). It can be called from any context. We want it to work. 1957 * 1958 * We try to grab the console_lock. If we succeed, it's easy - we log the 1959 * output and call the console drivers. If we fail to get the semaphore, we 1960 * place the output into the log buffer and return. The current holder of 1961 * the console_sem will notice the new output in console_unlock(); and will 1962 * send it to the consoles before releasing the lock. 1963 * 1964 * One effect of this deferred printing is that code which calls printk() and 1965 * then changes console_loglevel may break. This is because console_loglevel 1966 * is inspected when the actual printing occurs. 1967 * 1968 * See also: 1969 * printf(3) 1970 * 1971 * See the vsnprintf() documentation for format string extensions over C99. 1972 */ 1973 asmlinkage __visible int printk(const char *fmt, ...) 1974 { 1975 va_list args; 1976 int r; 1977 1978 va_start(args, fmt); 1979 r = vprintk_func(fmt, args); 1980 va_end(args); 1981 1982 return r; 1983 } 1984 EXPORT_SYMBOL(printk); 1985 1986 #else /* CONFIG_PRINTK */ 1987 1988 #define LOG_LINE_MAX 0 1989 #define PREFIX_MAX 0 1990 1991 static u64 syslog_seq; 1992 static u32 syslog_idx; 1993 static u64 console_seq; 1994 static u32 console_idx; 1995 static u64 log_first_seq; 1996 static u32 log_first_idx; 1997 static u64 log_next_seq; 1998 static char *log_text(const struct printk_log *msg) { return NULL; } 1999 static char *log_dict(const struct printk_log *msg) { return NULL; } 2000 static struct printk_log *log_from_idx(u32 idx) { return NULL; } 2001 static u32 log_next(u32 idx) { return 0; } 2002 static ssize_t msg_print_ext_header(char *buf, size_t size, 2003 struct printk_log *msg, 2004 u64 seq) { return 0; } 2005 static ssize_t msg_print_ext_body(char *buf, size_t size, 2006 char *dict, size_t dict_len, 2007 char *text, size_t text_len) { return 0; } 2008 static void console_lock_spinning_enable(void) { } 2009 static int console_lock_spinning_disable_and_check(void) { return 0; } 2010 static void call_console_drivers(const char *ext_text, size_t ext_len, 2011 const char *text, size_t len) {} 2012 static size_t msg_print_text(const struct printk_log *msg, 2013 bool syslog, char *buf, size_t size) { return 0; } 2014 static bool suppress_message_printing(int level) { return false; } 2015 2016 #endif /* CONFIG_PRINTK */ 2017 2018 #ifdef CONFIG_EARLY_PRINTK 2019 struct console *early_console; 2020 2021 asmlinkage __visible void early_printk(const char *fmt, ...) 2022 { 2023 va_list ap; 2024 char buf[512]; 2025 int n; 2026 2027 if (!early_console) 2028 return; 2029 2030 va_start(ap, fmt); 2031 n = vscnprintf(buf, sizeof(buf), fmt, ap); 2032 va_end(ap); 2033 2034 early_console->write(early_console, buf, n); 2035 } 2036 #endif 2037 2038 static int __add_preferred_console(char *name, int idx, char *options, 2039 char *brl_options) 2040 { 2041 struct console_cmdline *c; 2042 int i; 2043 2044 /* 2045 * See if this tty is not yet registered, and 2046 * if we have a slot free. 2047 */ 2048 for (i = 0, c = console_cmdline; 2049 i < MAX_CMDLINECONSOLES && c->name[0]; 2050 i++, c++) { 2051 if (strcmp(c->name, name) == 0 && c->index == idx) { 2052 if (!brl_options) 2053 preferred_console = i; 2054 return 0; 2055 } 2056 } 2057 if (i == MAX_CMDLINECONSOLES) 2058 return -E2BIG; 2059 if (!brl_options) 2060 preferred_console = i; 2061 strlcpy(c->name, name, sizeof(c->name)); 2062 c->options = options; 2063 braille_set_options(c, brl_options); 2064 2065 c->index = idx; 2066 return 0; 2067 } 2068 2069 static int __init console_msg_format_setup(char *str) 2070 { 2071 if (!strcmp(str, "syslog")) 2072 console_msg_format = MSG_FORMAT_SYSLOG; 2073 if (!strcmp(str, "default")) 2074 console_msg_format = MSG_FORMAT_DEFAULT; 2075 return 1; 2076 } 2077 __setup("console_msg_format=", console_msg_format_setup); 2078 2079 /* 2080 * Set up a console. Called via do_early_param() in init/main.c 2081 * for each "console=" parameter in the boot command line. 2082 */ 2083 static int __init console_setup(char *str) 2084 { 2085 char buf[sizeof(console_cmdline[0].name) + 4]; /* 4 for "ttyS" */ 2086 char *s, *options, *brl_options = NULL; 2087 int idx; 2088 2089 if (_braille_console_setup(&str, &brl_options)) 2090 return 1; 2091 2092 /* 2093 * Decode str into name, index, options. 2094 */ 2095 if (str[0] >= '0' && str[0] <= '9') { 2096 strcpy(buf, "ttyS"); 2097 strncpy(buf + 4, str, sizeof(buf) - 5); 2098 } else { 2099 strncpy(buf, str, sizeof(buf) - 1); 2100 } 2101 buf[sizeof(buf) - 1] = 0; 2102 options = strchr(str, ','); 2103 if (options) 2104 *(options++) = 0; 2105 #ifdef __sparc__ 2106 if (!strcmp(str, "ttya")) 2107 strcpy(buf, "ttyS0"); 2108 if (!strcmp(str, "ttyb")) 2109 strcpy(buf, "ttyS1"); 2110 #endif 2111 for (s = buf; *s; s++) 2112 if (isdigit(*s) || *s == ',') 2113 break; 2114 idx = simple_strtoul(s, NULL, 10); 2115 *s = 0; 2116 2117 __add_preferred_console(buf, idx, options, brl_options); 2118 console_set_on_cmdline = 1; 2119 return 1; 2120 } 2121 __setup("console=", console_setup); 2122 2123 /** 2124 * add_preferred_console - add a device to the list of preferred consoles. 2125 * @name: device name 2126 * @idx: device index 2127 * @options: options for this console 2128 * 2129 * The last preferred console added will be used for kernel messages 2130 * and stdin/out/err for init. Normally this is used by console_setup 2131 * above to handle user-supplied console arguments; however it can also 2132 * be used by arch-specific code either to override the user or more 2133 * commonly to provide a default console (ie from PROM variables) when 2134 * the user has not supplied one. 2135 */ 2136 int add_preferred_console(char *name, int idx, char *options) 2137 { 2138 return __add_preferred_console(name, idx, options, NULL); 2139 } 2140 2141 bool console_suspend_enabled = true; 2142 EXPORT_SYMBOL(console_suspend_enabled); 2143 2144 static int __init console_suspend_disable(char *str) 2145 { 2146 console_suspend_enabled = false; 2147 return 1; 2148 } 2149 __setup("no_console_suspend", console_suspend_disable); 2150 module_param_named(console_suspend, console_suspend_enabled, 2151 bool, S_IRUGO | S_IWUSR); 2152 MODULE_PARM_DESC(console_suspend, "suspend console during suspend" 2153 " and hibernate operations"); 2154 2155 /** 2156 * suspend_console - suspend the console subsystem 2157 * 2158 * This disables printk() while we go into suspend states 2159 */ 2160 void suspend_console(void) 2161 { 2162 if (!console_suspend_enabled) 2163 return; 2164 pr_info("Suspending console(s) (use no_console_suspend to debug)\n"); 2165 console_lock(); 2166 console_suspended = 1; 2167 up_console_sem(); 2168 } 2169 2170 void resume_console(void) 2171 { 2172 if (!console_suspend_enabled) 2173 return; 2174 down_console_sem(); 2175 console_suspended = 0; 2176 console_unlock(); 2177 } 2178 2179 /** 2180 * console_cpu_notify - print deferred console messages after CPU hotplug 2181 * @cpu: unused 2182 * 2183 * If printk() is called from a CPU that is not online yet, the messages 2184 * will be printed on the console only if there are CON_ANYTIME consoles. 2185 * This function is called when a new CPU comes online (or fails to come 2186 * up) or goes offline. 2187 */ 2188 static int console_cpu_notify(unsigned int cpu) 2189 { 2190 if (!cpuhp_tasks_frozen) { 2191 /* If trylock fails, someone else is doing the printing */ 2192 if (console_trylock()) 2193 console_unlock(); 2194 } 2195 return 0; 2196 } 2197 2198 /** 2199 * console_lock - lock the console system for exclusive use. 2200 * 2201 * Acquires a lock which guarantees that the caller has 2202 * exclusive access to the console system and the console_drivers list. 2203 * 2204 * Can sleep, returns nothing. 2205 */ 2206 void console_lock(void) 2207 { 2208 might_sleep(); 2209 2210 down_console_sem(); 2211 if (console_suspended) 2212 return; 2213 console_locked = 1; 2214 console_may_schedule = 1; 2215 } 2216 EXPORT_SYMBOL(console_lock); 2217 2218 /** 2219 * console_trylock - try to lock the console system for exclusive use. 2220 * 2221 * Try to acquire a lock which guarantees that the caller has exclusive 2222 * access to the console system and the console_drivers list. 2223 * 2224 * returns 1 on success, and 0 on failure to acquire the lock. 2225 */ 2226 int console_trylock(void) 2227 { 2228 if (down_trylock_console_sem()) 2229 return 0; 2230 if (console_suspended) { 2231 up_console_sem(); 2232 return 0; 2233 } 2234 console_locked = 1; 2235 console_may_schedule = 0; 2236 return 1; 2237 } 2238 EXPORT_SYMBOL(console_trylock); 2239 2240 int is_console_locked(void) 2241 { 2242 return console_locked; 2243 } 2244 2245 /* 2246 * Check if we have any console that is capable of printing while cpu is 2247 * booting or shutting down. Requires console_sem. 2248 */ 2249 static int have_callable_console(void) 2250 { 2251 struct console *con; 2252 2253 for_each_console(con) 2254 if ((con->flags & CON_ENABLED) && 2255 (con->flags & CON_ANYTIME)) 2256 return 1; 2257 2258 return 0; 2259 } 2260 2261 /* 2262 * Can we actually use the console at this time on this cpu? 2263 * 2264 * Console drivers may assume that per-cpu resources have been allocated. So 2265 * unless they're explicitly marked as being able to cope (CON_ANYTIME) don't 2266 * call them until this CPU is officially up. 2267 */ 2268 static inline int can_use_console(void) 2269 { 2270 return cpu_online(raw_smp_processor_id()) || have_callable_console(); 2271 } 2272 2273 /** 2274 * console_unlock - unlock the console system 2275 * 2276 * Releases the console_lock which the caller holds on the console system 2277 * and the console driver list. 2278 * 2279 * While the console_lock was held, console output may have been buffered 2280 * by printk(). If this is the case, console_unlock(); emits 2281 * the output prior to releasing the lock. 2282 * 2283 * If there is output waiting, we wake /dev/kmsg and syslog() users. 2284 * 2285 * console_unlock(); may be called from any context. 2286 */ 2287 void console_unlock(void) 2288 { 2289 static char ext_text[CONSOLE_EXT_LOG_MAX]; 2290 static char text[LOG_LINE_MAX + PREFIX_MAX]; 2291 static u64 seen_seq; 2292 unsigned long flags; 2293 bool wake_klogd = false; 2294 bool do_cond_resched, retry; 2295 2296 if (console_suspended) { 2297 up_console_sem(); 2298 return; 2299 } 2300 2301 /* 2302 * Console drivers are called with interrupts disabled, so 2303 * @console_may_schedule should be cleared before; however, we may 2304 * end up dumping a lot of lines, for example, if called from 2305 * console registration path, and should invoke cond_resched() 2306 * between lines if allowable. Not doing so can cause a very long 2307 * scheduling stall on a slow console leading to RCU stall and 2308 * softlockup warnings which exacerbate the issue with more 2309 * messages practically incapacitating the system. 2310 * 2311 * console_trylock() is not able to detect the preemptive 2312 * context reliably. Therefore the value must be stored before 2313 * and cleared after the the "again" goto label. 2314 */ 2315 do_cond_resched = console_may_schedule; 2316 again: 2317 console_may_schedule = 0; 2318 2319 /* 2320 * We released the console_sem lock, so we need to recheck if 2321 * cpu is online and (if not) is there at least one CON_ANYTIME 2322 * console. 2323 */ 2324 if (!can_use_console()) { 2325 console_locked = 0; 2326 up_console_sem(); 2327 return; 2328 } 2329 2330 for (;;) { 2331 struct printk_log *msg; 2332 size_t ext_len = 0; 2333 size_t len; 2334 2335 printk_safe_enter_irqsave(flags); 2336 raw_spin_lock(&logbuf_lock); 2337 if (seen_seq != log_next_seq) { 2338 wake_klogd = true; 2339 seen_seq = log_next_seq; 2340 } 2341 2342 if (console_seq < log_first_seq) { 2343 len = sprintf(text, "** %u printk messages dropped **\n", 2344 (unsigned)(log_first_seq - console_seq)); 2345 2346 /* messages are gone, move to first one */ 2347 console_seq = log_first_seq; 2348 console_idx = log_first_idx; 2349 } else { 2350 len = 0; 2351 } 2352 skip: 2353 if (console_seq == log_next_seq) 2354 break; 2355 2356 msg = log_from_idx(console_idx); 2357 if (suppress_message_printing(msg->level)) { 2358 /* 2359 * Skip record we have buffered and already printed 2360 * directly to the console when we received it, and 2361 * record that has level above the console loglevel. 2362 */ 2363 console_idx = log_next(console_idx); 2364 console_seq++; 2365 goto skip; 2366 } 2367 2368 len += msg_print_text(msg, 2369 console_msg_format & MSG_FORMAT_SYSLOG, 2370 text + len, 2371 sizeof(text) - len); 2372 if (nr_ext_console_drivers) { 2373 ext_len = msg_print_ext_header(ext_text, 2374 sizeof(ext_text), 2375 msg, console_seq); 2376 ext_len += msg_print_ext_body(ext_text + ext_len, 2377 sizeof(ext_text) - ext_len, 2378 log_dict(msg), msg->dict_len, 2379 log_text(msg), msg->text_len); 2380 } 2381 console_idx = log_next(console_idx); 2382 console_seq++; 2383 raw_spin_unlock(&logbuf_lock); 2384 2385 /* 2386 * While actively printing out messages, if another printk() 2387 * were to occur on another CPU, it may wait for this one to 2388 * finish. This task can not be preempted if there is a 2389 * waiter waiting to take over. 2390 */ 2391 console_lock_spinning_enable(); 2392 2393 stop_critical_timings(); /* don't trace print latency */ 2394 call_console_drivers(ext_text, ext_len, text, len); 2395 start_critical_timings(); 2396 2397 if (console_lock_spinning_disable_and_check()) { 2398 printk_safe_exit_irqrestore(flags); 2399 goto out; 2400 } 2401 2402 printk_safe_exit_irqrestore(flags); 2403 2404 if (do_cond_resched) 2405 cond_resched(); 2406 } 2407 2408 console_locked = 0; 2409 2410 /* Release the exclusive_console once it is used */ 2411 if (unlikely(exclusive_console)) 2412 exclusive_console = NULL; 2413 2414 raw_spin_unlock(&logbuf_lock); 2415 2416 up_console_sem(); 2417 2418 /* 2419 * Someone could have filled up the buffer again, so re-check if there's 2420 * something to flush. In case we cannot trylock the console_sem again, 2421 * there's a new owner and the console_unlock() from them will do the 2422 * flush, no worries. 2423 */ 2424 raw_spin_lock(&logbuf_lock); 2425 retry = console_seq != log_next_seq; 2426 raw_spin_unlock(&logbuf_lock); 2427 printk_safe_exit_irqrestore(flags); 2428 2429 if (retry && console_trylock()) 2430 goto again; 2431 2432 out: 2433 if (wake_klogd) 2434 wake_up_klogd(); 2435 } 2436 EXPORT_SYMBOL(console_unlock); 2437 2438 /** 2439 * console_conditional_schedule - yield the CPU if required 2440 * 2441 * If the console code is currently allowed to sleep, and 2442 * if this CPU should yield the CPU to another task, do 2443 * so here. 2444 * 2445 * Must be called within console_lock();. 2446 */ 2447 void __sched console_conditional_schedule(void) 2448 { 2449 if (console_may_schedule) 2450 cond_resched(); 2451 } 2452 EXPORT_SYMBOL(console_conditional_schedule); 2453 2454 void console_unblank(void) 2455 { 2456 struct console *c; 2457 2458 /* 2459 * console_unblank can no longer be called in interrupt context unless 2460 * oops_in_progress is set to 1.. 2461 */ 2462 if (oops_in_progress) { 2463 if (down_trylock_console_sem() != 0) 2464 return; 2465 } else 2466 console_lock(); 2467 2468 console_locked = 1; 2469 console_may_schedule = 0; 2470 for_each_console(c) 2471 if ((c->flags & CON_ENABLED) && c->unblank) 2472 c->unblank(); 2473 console_unlock(); 2474 } 2475 2476 /** 2477 * console_flush_on_panic - flush console content on panic 2478 * 2479 * Immediately output all pending messages no matter what. 2480 */ 2481 void console_flush_on_panic(void) 2482 { 2483 /* 2484 * If someone else is holding the console lock, trylock will fail 2485 * and may_schedule may be set. Ignore and proceed to unlock so 2486 * that messages are flushed out. As this can be called from any 2487 * context and we don't want to get preempted while flushing, 2488 * ensure may_schedule is cleared. 2489 */ 2490 console_trylock(); 2491 console_may_schedule = 0; 2492 console_unlock(); 2493 } 2494 2495 /* 2496 * Return the console tty driver structure and its associated index 2497 */ 2498 struct tty_driver *console_device(int *index) 2499 { 2500 struct console *c; 2501 struct tty_driver *driver = NULL; 2502 2503 console_lock(); 2504 for_each_console(c) { 2505 if (!c->device) 2506 continue; 2507 driver = c->device(c, index); 2508 if (driver) 2509 break; 2510 } 2511 console_unlock(); 2512 return driver; 2513 } 2514 2515 /* 2516 * Prevent further output on the passed console device so that (for example) 2517 * serial drivers can disable console output before suspending a port, and can 2518 * re-enable output afterwards. 2519 */ 2520 void console_stop(struct console *console) 2521 { 2522 console_lock(); 2523 console->flags &= ~CON_ENABLED; 2524 console_unlock(); 2525 } 2526 EXPORT_SYMBOL(console_stop); 2527 2528 void console_start(struct console *console) 2529 { 2530 console_lock(); 2531 console->flags |= CON_ENABLED; 2532 console_unlock(); 2533 } 2534 EXPORT_SYMBOL(console_start); 2535 2536 static int __read_mostly keep_bootcon; 2537 2538 static int __init keep_bootcon_setup(char *str) 2539 { 2540 keep_bootcon = 1; 2541 pr_info("debug: skip boot console de-registration.\n"); 2542 2543 return 0; 2544 } 2545 2546 early_param("keep_bootcon", keep_bootcon_setup); 2547 2548 /* 2549 * The console driver calls this routine during kernel initialization 2550 * to register the console printing procedure with printk() and to 2551 * print any messages that were printed by the kernel before the 2552 * console driver was initialized. 2553 * 2554 * This can happen pretty early during the boot process (because of 2555 * early_printk) - sometimes before setup_arch() completes - be careful 2556 * of what kernel features are used - they may not be initialised yet. 2557 * 2558 * There are two types of consoles - bootconsoles (early_printk) and 2559 * "real" consoles (everything which is not a bootconsole) which are 2560 * handled differently. 2561 * - Any number of bootconsoles can be registered at any time. 2562 * - As soon as a "real" console is registered, all bootconsoles 2563 * will be unregistered automatically. 2564 * - Once a "real" console is registered, any attempt to register a 2565 * bootconsoles will be rejected 2566 */ 2567 void register_console(struct console *newcon) 2568 { 2569 int i; 2570 unsigned long flags; 2571 struct console *bcon = NULL; 2572 struct console_cmdline *c; 2573 static bool has_preferred; 2574 2575 if (console_drivers) 2576 for_each_console(bcon) 2577 if (WARN(bcon == newcon, 2578 "console '%s%d' already registered\n", 2579 bcon->name, bcon->index)) 2580 return; 2581 2582 /* 2583 * before we register a new CON_BOOT console, make sure we don't 2584 * already have a valid console 2585 */ 2586 if (console_drivers && newcon->flags & CON_BOOT) { 2587 /* find the last or real console */ 2588 for_each_console(bcon) { 2589 if (!(bcon->flags & CON_BOOT)) { 2590 pr_info("Too late to register bootconsole %s%d\n", 2591 newcon->name, newcon->index); 2592 return; 2593 } 2594 } 2595 } 2596 2597 if (console_drivers && console_drivers->flags & CON_BOOT) 2598 bcon = console_drivers; 2599 2600 if (!has_preferred || bcon || !console_drivers) 2601 has_preferred = preferred_console >= 0; 2602 2603 /* 2604 * See if we want to use this console driver. If we 2605 * didn't select a console we take the first one 2606 * that registers here. 2607 */ 2608 if (!has_preferred) { 2609 if (newcon->index < 0) 2610 newcon->index = 0; 2611 if (newcon->setup == NULL || 2612 newcon->setup(newcon, NULL) == 0) { 2613 newcon->flags |= CON_ENABLED; 2614 if (newcon->device) { 2615 newcon->flags |= CON_CONSDEV; 2616 has_preferred = true; 2617 } 2618 } 2619 } 2620 2621 /* 2622 * See if this console matches one we selected on 2623 * the command line. 2624 */ 2625 for (i = 0, c = console_cmdline; 2626 i < MAX_CMDLINECONSOLES && c->name[0]; 2627 i++, c++) { 2628 if (!newcon->match || 2629 newcon->match(newcon, c->name, c->index, c->options) != 0) { 2630 /* default matching */ 2631 BUILD_BUG_ON(sizeof(c->name) != sizeof(newcon->name)); 2632 if (strcmp(c->name, newcon->name) != 0) 2633 continue; 2634 if (newcon->index >= 0 && 2635 newcon->index != c->index) 2636 continue; 2637 if (newcon->index < 0) 2638 newcon->index = c->index; 2639 2640 if (_braille_register_console(newcon, c)) 2641 return; 2642 2643 if (newcon->setup && 2644 newcon->setup(newcon, c->options) != 0) 2645 break; 2646 } 2647 2648 newcon->flags |= CON_ENABLED; 2649 if (i == preferred_console) { 2650 newcon->flags |= CON_CONSDEV; 2651 has_preferred = true; 2652 } 2653 break; 2654 } 2655 2656 if (!(newcon->flags & CON_ENABLED)) 2657 return; 2658 2659 /* 2660 * If we have a bootconsole, and are switching to a real console, 2661 * don't print everything out again, since when the boot console, and 2662 * the real console are the same physical device, it's annoying to 2663 * see the beginning boot messages twice 2664 */ 2665 if (bcon && ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV)) 2666 newcon->flags &= ~CON_PRINTBUFFER; 2667 2668 /* 2669 * Put this console in the list - keep the 2670 * preferred driver at the head of the list. 2671 */ 2672 console_lock(); 2673 if ((newcon->flags & CON_CONSDEV) || console_drivers == NULL) { 2674 newcon->next = console_drivers; 2675 console_drivers = newcon; 2676 if (newcon->next) 2677 newcon->next->flags &= ~CON_CONSDEV; 2678 } else { 2679 newcon->next = console_drivers->next; 2680 console_drivers->next = newcon; 2681 } 2682 2683 if (newcon->flags & CON_EXTENDED) 2684 if (!nr_ext_console_drivers++) 2685 pr_info("printk: continuation disabled due to ext consoles, expect more fragments in /dev/kmsg\n"); 2686 2687 if (newcon->flags & CON_PRINTBUFFER) { 2688 /* 2689 * console_unlock(); will print out the buffered messages 2690 * for us. 2691 */ 2692 logbuf_lock_irqsave(flags); 2693 console_seq = syslog_seq; 2694 console_idx = syslog_idx; 2695 logbuf_unlock_irqrestore(flags); 2696 /* 2697 * We're about to replay the log buffer. Only do this to the 2698 * just-registered console to avoid excessive message spam to 2699 * the already-registered consoles. 2700 */ 2701 exclusive_console = newcon; 2702 } 2703 console_unlock(); 2704 console_sysfs_notify(); 2705 2706 /* 2707 * By unregistering the bootconsoles after we enable the real console 2708 * we get the "console xxx enabled" message on all the consoles - 2709 * boot consoles, real consoles, etc - this is to ensure that end 2710 * users know there might be something in the kernel's log buffer that 2711 * went to the bootconsole (that they do not see on the real console) 2712 */ 2713 pr_info("%sconsole [%s%d] enabled\n", 2714 (newcon->flags & CON_BOOT) ? "boot" : "" , 2715 newcon->name, newcon->index); 2716 if (bcon && 2717 ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV) && 2718 !keep_bootcon) { 2719 /* We need to iterate through all boot consoles, to make 2720 * sure we print everything out, before we unregister them. 2721 */ 2722 for_each_console(bcon) 2723 if (bcon->flags & CON_BOOT) 2724 unregister_console(bcon); 2725 } 2726 } 2727 EXPORT_SYMBOL(register_console); 2728 2729 int unregister_console(struct console *console) 2730 { 2731 struct console *a, *b; 2732 int res; 2733 2734 pr_info("%sconsole [%s%d] disabled\n", 2735 (console->flags & CON_BOOT) ? "boot" : "" , 2736 console->name, console->index); 2737 2738 res = _braille_unregister_console(console); 2739 if (res) 2740 return res; 2741 2742 res = 1; 2743 console_lock(); 2744 if (console_drivers == console) { 2745 console_drivers=console->next; 2746 res = 0; 2747 } else if (console_drivers) { 2748 for (a=console_drivers->next, b=console_drivers ; 2749 a; b=a, a=b->next) { 2750 if (a == console) { 2751 b->next = a->next; 2752 res = 0; 2753 break; 2754 } 2755 } 2756 } 2757 2758 if (!res && (console->flags & CON_EXTENDED)) 2759 nr_ext_console_drivers--; 2760 2761 /* 2762 * If this isn't the last console and it has CON_CONSDEV set, we 2763 * need to set it on the next preferred console. 2764 */ 2765 if (console_drivers != NULL && console->flags & CON_CONSDEV) 2766 console_drivers->flags |= CON_CONSDEV; 2767 2768 console->flags &= ~CON_ENABLED; 2769 console_unlock(); 2770 console_sysfs_notify(); 2771 return res; 2772 } 2773 EXPORT_SYMBOL(unregister_console); 2774 2775 /* 2776 * Initialize the console device. This is called *early*, so 2777 * we can't necessarily depend on lots of kernel help here. 2778 * Just do some early initializations, and do the complex setup 2779 * later. 2780 */ 2781 void __init console_init(void) 2782 { 2783 initcall_t *call; 2784 2785 /* Setup the default TTY line discipline. */ 2786 n_tty_init(); 2787 2788 /* 2789 * set up the console device so that later boot sequences can 2790 * inform about problems etc.. 2791 */ 2792 call = __con_initcall_start; 2793 while (call < __con_initcall_end) { 2794 (*call)(); 2795 call++; 2796 } 2797 } 2798 2799 /* 2800 * Some boot consoles access data that is in the init section and which will 2801 * be discarded after the initcalls have been run. To make sure that no code 2802 * will access this data, unregister the boot consoles in a late initcall. 2803 * 2804 * If for some reason, such as deferred probe or the driver being a loadable 2805 * module, the real console hasn't registered yet at this point, there will 2806 * be a brief interval in which no messages are logged to the console, which 2807 * makes it difficult to diagnose problems that occur during this time. 2808 * 2809 * To mitigate this problem somewhat, only unregister consoles whose memory 2810 * intersects with the init section. Note that all other boot consoles will 2811 * get unregistred when the real preferred console is registered. 2812 */ 2813 static int __init printk_late_init(void) 2814 { 2815 struct console *con; 2816 int ret; 2817 2818 for_each_console(con) { 2819 if (!(con->flags & CON_BOOT)) 2820 continue; 2821 2822 /* Check addresses that might be used for enabled consoles. */ 2823 if (init_section_intersects(con, sizeof(*con)) || 2824 init_section_contains(con->write, 0) || 2825 init_section_contains(con->read, 0) || 2826 init_section_contains(con->device, 0) || 2827 init_section_contains(con->unblank, 0) || 2828 init_section_contains(con->data, 0)) { 2829 /* 2830 * Please, consider moving the reported consoles out 2831 * of the init section. 2832 */ 2833 pr_warn("bootconsole [%s%d] uses init memory and must be disabled even before the real one is ready\n", 2834 con->name, con->index); 2835 unregister_console(con); 2836 } 2837 } 2838 ret = cpuhp_setup_state_nocalls(CPUHP_PRINTK_DEAD, "printk:dead", NULL, 2839 console_cpu_notify); 2840 WARN_ON(ret < 0); 2841 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "printk:online", 2842 console_cpu_notify, NULL); 2843 WARN_ON(ret < 0); 2844 return 0; 2845 } 2846 late_initcall(printk_late_init); 2847 2848 #if defined CONFIG_PRINTK 2849 /* 2850 * Delayed printk version, for scheduler-internal messages: 2851 */ 2852 #define PRINTK_PENDING_WAKEUP 0x01 2853 #define PRINTK_PENDING_OUTPUT 0x02 2854 2855 static DEFINE_PER_CPU(int, printk_pending); 2856 2857 static void wake_up_klogd_work_func(struct irq_work *irq_work) 2858 { 2859 int pending = __this_cpu_xchg(printk_pending, 0); 2860 2861 if (pending & PRINTK_PENDING_OUTPUT) { 2862 /* If trylock fails, someone else is doing the printing */ 2863 if (console_trylock()) 2864 console_unlock(); 2865 } 2866 2867 if (pending & PRINTK_PENDING_WAKEUP) 2868 wake_up_interruptible(&log_wait); 2869 } 2870 2871 static DEFINE_PER_CPU(struct irq_work, wake_up_klogd_work) = { 2872 .func = wake_up_klogd_work_func, 2873 .flags = IRQ_WORK_LAZY, 2874 }; 2875 2876 void wake_up_klogd(void) 2877 { 2878 preempt_disable(); 2879 if (waitqueue_active(&log_wait)) { 2880 this_cpu_or(printk_pending, PRINTK_PENDING_WAKEUP); 2881 irq_work_queue(this_cpu_ptr(&wake_up_klogd_work)); 2882 } 2883 preempt_enable(); 2884 } 2885 2886 int vprintk_deferred(const char *fmt, va_list args) 2887 { 2888 int r; 2889 2890 r = vprintk_emit(0, LOGLEVEL_SCHED, NULL, 0, fmt, args); 2891 2892 preempt_disable(); 2893 __this_cpu_or(printk_pending, PRINTK_PENDING_OUTPUT); 2894 irq_work_queue(this_cpu_ptr(&wake_up_klogd_work)); 2895 preempt_enable(); 2896 2897 return r; 2898 } 2899 2900 int printk_deferred(const char *fmt, ...) 2901 { 2902 va_list args; 2903 int r; 2904 2905 va_start(args, fmt); 2906 r = vprintk_deferred(fmt, args); 2907 va_end(args); 2908 2909 return r; 2910 } 2911 2912 /* 2913 * printk rate limiting, lifted from the networking subsystem. 2914 * 2915 * This enforces a rate limit: not more than 10 kernel messages 2916 * every 5s to make a denial-of-service attack impossible. 2917 */ 2918 DEFINE_RATELIMIT_STATE(printk_ratelimit_state, 5 * HZ, 10); 2919 2920 int __printk_ratelimit(const char *func) 2921 { 2922 return ___ratelimit(&printk_ratelimit_state, func); 2923 } 2924 EXPORT_SYMBOL(__printk_ratelimit); 2925 2926 /** 2927 * printk_timed_ratelimit - caller-controlled printk ratelimiting 2928 * @caller_jiffies: pointer to caller's state 2929 * @interval_msecs: minimum interval between prints 2930 * 2931 * printk_timed_ratelimit() returns true if more than @interval_msecs 2932 * milliseconds have elapsed since the last time printk_timed_ratelimit() 2933 * returned true. 2934 */ 2935 bool printk_timed_ratelimit(unsigned long *caller_jiffies, 2936 unsigned int interval_msecs) 2937 { 2938 unsigned long elapsed = jiffies - *caller_jiffies; 2939 2940 if (*caller_jiffies && elapsed <= msecs_to_jiffies(interval_msecs)) 2941 return false; 2942 2943 *caller_jiffies = jiffies; 2944 return true; 2945 } 2946 EXPORT_SYMBOL(printk_timed_ratelimit); 2947 2948 static DEFINE_SPINLOCK(dump_list_lock); 2949 static LIST_HEAD(dump_list); 2950 2951 /** 2952 * kmsg_dump_register - register a kernel log dumper. 2953 * @dumper: pointer to the kmsg_dumper structure 2954 * 2955 * Adds a kernel log dumper to the system. The dump callback in the 2956 * structure will be called when the kernel oopses or panics and must be 2957 * set. Returns zero on success and %-EINVAL or %-EBUSY otherwise. 2958 */ 2959 int kmsg_dump_register(struct kmsg_dumper *dumper) 2960 { 2961 unsigned long flags; 2962 int err = -EBUSY; 2963 2964 /* The dump callback needs to be set */ 2965 if (!dumper->dump) 2966 return -EINVAL; 2967 2968 spin_lock_irqsave(&dump_list_lock, flags); 2969 /* Don't allow registering multiple times */ 2970 if (!dumper->registered) { 2971 dumper->registered = 1; 2972 list_add_tail_rcu(&dumper->list, &dump_list); 2973 err = 0; 2974 } 2975 spin_unlock_irqrestore(&dump_list_lock, flags); 2976 2977 return err; 2978 } 2979 EXPORT_SYMBOL_GPL(kmsg_dump_register); 2980 2981 /** 2982 * kmsg_dump_unregister - unregister a kmsg dumper. 2983 * @dumper: pointer to the kmsg_dumper structure 2984 * 2985 * Removes a dump device from the system. Returns zero on success and 2986 * %-EINVAL otherwise. 2987 */ 2988 int kmsg_dump_unregister(struct kmsg_dumper *dumper) 2989 { 2990 unsigned long flags; 2991 int err = -EINVAL; 2992 2993 spin_lock_irqsave(&dump_list_lock, flags); 2994 if (dumper->registered) { 2995 dumper->registered = 0; 2996 list_del_rcu(&dumper->list); 2997 err = 0; 2998 } 2999 spin_unlock_irqrestore(&dump_list_lock, flags); 3000 synchronize_rcu(); 3001 3002 return err; 3003 } 3004 EXPORT_SYMBOL_GPL(kmsg_dump_unregister); 3005 3006 static bool always_kmsg_dump; 3007 module_param_named(always_kmsg_dump, always_kmsg_dump, bool, S_IRUGO | S_IWUSR); 3008 3009 /** 3010 * kmsg_dump - dump kernel log to kernel message dumpers. 3011 * @reason: the reason (oops, panic etc) for dumping 3012 * 3013 * Call each of the registered dumper's dump() callback, which can 3014 * retrieve the kmsg records with kmsg_dump_get_line() or 3015 * kmsg_dump_get_buffer(). 3016 */ 3017 void kmsg_dump(enum kmsg_dump_reason reason) 3018 { 3019 struct kmsg_dumper *dumper; 3020 unsigned long flags; 3021 3022 if ((reason > KMSG_DUMP_OOPS) && !always_kmsg_dump) 3023 return; 3024 3025 rcu_read_lock(); 3026 list_for_each_entry_rcu(dumper, &dump_list, list) { 3027 if (dumper->max_reason && reason > dumper->max_reason) 3028 continue; 3029 3030 /* initialize iterator with data about the stored records */ 3031 dumper->active = true; 3032 3033 logbuf_lock_irqsave(flags); 3034 dumper->cur_seq = clear_seq; 3035 dumper->cur_idx = clear_idx; 3036 dumper->next_seq = log_next_seq; 3037 dumper->next_idx = log_next_idx; 3038 logbuf_unlock_irqrestore(flags); 3039 3040 /* invoke dumper which will iterate over records */ 3041 dumper->dump(dumper, reason); 3042 3043 /* reset iterator */ 3044 dumper->active = false; 3045 } 3046 rcu_read_unlock(); 3047 } 3048 3049 /** 3050 * kmsg_dump_get_line_nolock - retrieve one kmsg log line (unlocked version) 3051 * @dumper: registered kmsg dumper 3052 * @syslog: include the "<4>" prefixes 3053 * @line: buffer to copy the line to 3054 * @size: maximum size of the buffer 3055 * @len: length of line placed into buffer 3056 * 3057 * Start at the beginning of the kmsg buffer, with the oldest kmsg 3058 * record, and copy one record into the provided buffer. 3059 * 3060 * Consecutive calls will return the next available record moving 3061 * towards the end of the buffer with the youngest messages. 3062 * 3063 * A return value of FALSE indicates that there are no more records to 3064 * read. 3065 * 3066 * The function is similar to kmsg_dump_get_line(), but grabs no locks. 3067 */ 3068 bool kmsg_dump_get_line_nolock(struct kmsg_dumper *dumper, bool syslog, 3069 char *line, size_t size, size_t *len) 3070 { 3071 struct printk_log *msg; 3072 size_t l = 0; 3073 bool ret = false; 3074 3075 if (!dumper->active) 3076 goto out; 3077 3078 if (dumper->cur_seq < log_first_seq) { 3079 /* messages are gone, move to first available one */ 3080 dumper->cur_seq = log_first_seq; 3081 dumper->cur_idx = log_first_idx; 3082 } 3083 3084 /* last entry */ 3085 if (dumper->cur_seq >= log_next_seq) 3086 goto out; 3087 3088 msg = log_from_idx(dumper->cur_idx); 3089 l = msg_print_text(msg, syslog, line, size); 3090 3091 dumper->cur_idx = log_next(dumper->cur_idx); 3092 dumper->cur_seq++; 3093 ret = true; 3094 out: 3095 if (len) 3096 *len = l; 3097 return ret; 3098 } 3099 3100 /** 3101 * kmsg_dump_get_line - retrieve one kmsg log line 3102 * @dumper: registered kmsg dumper 3103 * @syslog: include the "<4>" prefixes 3104 * @line: buffer to copy the line to 3105 * @size: maximum size of the buffer 3106 * @len: length of line placed into buffer 3107 * 3108 * Start at the beginning of the kmsg buffer, with the oldest kmsg 3109 * record, and copy one record into the provided buffer. 3110 * 3111 * Consecutive calls will return the next available record moving 3112 * towards the end of the buffer with the youngest messages. 3113 * 3114 * A return value of FALSE indicates that there are no more records to 3115 * read. 3116 */ 3117 bool kmsg_dump_get_line(struct kmsg_dumper *dumper, bool syslog, 3118 char *line, size_t size, size_t *len) 3119 { 3120 unsigned long flags; 3121 bool ret; 3122 3123 logbuf_lock_irqsave(flags); 3124 ret = kmsg_dump_get_line_nolock(dumper, syslog, line, size, len); 3125 logbuf_unlock_irqrestore(flags); 3126 3127 return ret; 3128 } 3129 EXPORT_SYMBOL_GPL(kmsg_dump_get_line); 3130 3131 /** 3132 * kmsg_dump_get_buffer - copy kmsg log lines 3133 * @dumper: registered kmsg dumper 3134 * @syslog: include the "<4>" prefixes 3135 * @buf: buffer to copy the line to 3136 * @size: maximum size of the buffer 3137 * @len: length of line placed into buffer 3138 * 3139 * Start at the end of the kmsg buffer and fill the provided buffer 3140 * with as many of the the *youngest* kmsg records that fit into it. 3141 * If the buffer is large enough, all available kmsg records will be 3142 * copied with a single call. 3143 * 3144 * Consecutive calls will fill the buffer with the next block of 3145 * available older records, not including the earlier retrieved ones. 3146 * 3147 * A return value of FALSE indicates that there are no more records to 3148 * read. 3149 */ 3150 bool kmsg_dump_get_buffer(struct kmsg_dumper *dumper, bool syslog, 3151 char *buf, size_t size, size_t *len) 3152 { 3153 unsigned long flags; 3154 u64 seq; 3155 u32 idx; 3156 u64 next_seq; 3157 u32 next_idx; 3158 size_t l = 0; 3159 bool ret = false; 3160 3161 if (!dumper->active) 3162 goto out; 3163 3164 logbuf_lock_irqsave(flags); 3165 if (dumper->cur_seq < log_first_seq) { 3166 /* messages are gone, move to first available one */ 3167 dumper->cur_seq = log_first_seq; 3168 dumper->cur_idx = log_first_idx; 3169 } 3170 3171 /* last entry */ 3172 if (dumper->cur_seq >= dumper->next_seq) { 3173 logbuf_unlock_irqrestore(flags); 3174 goto out; 3175 } 3176 3177 /* calculate length of entire buffer */ 3178 seq = dumper->cur_seq; 3179 idx = dumper->cur_idx; 3180 while (seq < dumper->next_seq) { 3181 struct printk_log *msg = log_from_idx(idx); 3182 3183 l += msg_print_text(msg, true, NULL, 0); 3184 idx = log_next(idx); 3185 seq++; 3186 } 3187 3188 /* move first record forward until length fits into the buffer */ 3189 seq = dumper->cur_seq; 3190 idx = dumper->cur_idx; 3191 while (l > size && seq < dumper->next_seq) { 3192 struct printk_log *msg = log_from_idx(idx); 3193 3194 l -= msg_print_text(msg, true, NULL, 0); 3195 idx = log_next(idx); 3196 seq++; 3197 } 3198 3199 /* last message in next interation */ 3200 next_seq = seq; 3201 next_idx = idx; 3202 3203 l = 0; 3204 while (seq < dumper->next_seq) { 3205 struct printk_log *msg = log_from_idx(idx); 3206 3207 l += msg_print_text(msg, syslog, buf + l, size - l); 3208 idx = log_next(idx); 3209 seq++; 3210 } 3211 3212 dumper->next_seq = next_seq; 3213 dumper->next_idx = next_idx; 3214 ret = true; 3215 logbuf_unlock_irqrestore(flags); 3216 out: 3217 if (len) 3218 *len = l; 3219 return ret; 3220 } 3221 EXPORT_SYMBOL_GPL(kmsg_dump_get_buffer); 3222 3223 /** 3224 * kmsg_dump_rewind_nolock - reset the interator (unlocked version) 3225 * @dumper: registered kmsg dumper 3226 * 3227 * Reset the dumper's iterator so that kmsg_dump_get_line() and 3228 * kmsg_dump_get_buffer() can be called again and used multiple 3229 * times within the same dumper.dump() callback. 3230 * 3231 * The function is similar to kmsg_dump_rewind(), but grabs no locks. 3232 */ 3233 void kmsg_dump_rewind_nolock(struct kmsg_dumper *dumper) 3234 { 3235 dumper->cur_seq = clear_seq; 3236 dumper->cur_idx = clear_idx; 3237 dumper->next_seq = log_next_seq; 3238 dumper->next_idx = log_next_idx; 3239 } 3240 3241 /** 3242 * kmsg_dump_rewind - reset the interator 3243 * @dumper: registered kmsg dumper 3244 * 3245 * Reset the dumper's iterator so that kmsg_dump_get_line() and 3246 * kmsg_dump_get_buffer() can be called again and used multiple 3247 * times within the same dumper.dump() callback. 3248 */ 3249 void kmsg_dump_rewind(struct kmsg_dumper *dumper) 3250 { 3251 unsigned long flags; 3252 3253 logbuf_lock_irqsave(flags); 3254 kmsg_dump_rewind_nolock(dumper); 3255 logbuf_unlock_irqrestore(flags); 3256 } 3257 EXPORT_SYMBOL_GPL(kmsg_dump_rewind); 3258 3259 #endif 3260