1 /* 2 * linux/kernel/printk.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 * 6 * Modified to make sys_syslog() more flexible: added commands to 7 * return the last 4k of kernel messages, regardless of whether 8 * they've been read or not. Added option to suppress kernel printk's 9 * to the console. Added hook for sending the console messages 10 * elsewhere, in preparation for a serial line console (someday). 11 * Ted Ts'o, 2/11/93. 12 * Modified for sysctl support, 1/8/97, Chris Horn. 13 * Fixed SMP synchronization, 08/08/99, Manfred Spraul 14 * manfred@colorfullife.com 15 * Rewrote bits to get rid of console_lock 16 * 01Mar01 Andrew Morton 17 */ 18 19 #include <linux/kernel.h> 20 #include <linux/mm.h> 21 #include <linux/tty.h> 22 #include <linux/tty_driver.h> 23 #include <linux/console.h> 24 #include <linux/init.h> 25 #include <linux/jiffies.h> 26 #include <linux/nmi.h> 27 #include <linux/module.h> 28 #include <linux/moduleparam.h> 29 #include <linux/interrupt.h> /* For in_interrupt() */ 30 #include <linux/delay.h> 31 #include <linux/smp.h> 32 #include <linux/security.h> 33 #include <linux/bootmem.h> 34 #include <linux/memblock.h> 35 #include <linux/aio.h> 36 #include <linux/syscalls.h> 37 #include <linux/kexec.h> 38 #include <linux/kdb.h> 39 #include <linux/ratelimit.h> 40 #include <linux/kmsg_dump.h> 41 #include <linux/syslog.h> 42 #include <linux/cpu.h> 43 #include <linux/notifier.h> 44 #include <linux/rculist.h> 45 #include <linux/poll.h> 46 #include <linux/irq_work.h> 47 #include <linux/utsname.h> 48 49 #include <asm/uaccess.h> 50 51 #define CREATE_TRACE_POINTS 52 #include <trace/events/printk.h> 53 54 #include "console_cmdline.h" 55 #include "braille.h" 56 57 /* printk's without a loglevel use this.. */ 58 #define DEFAULT_MESSAGE_LOGLEVEL CONFIG_DEFAULT_MESSAGE_LOGLEVEL 59 60 /* We show everything that is MORE important than this.. */ 61 #define MINIMUM_CONSOLE_LOGLEVEL 1 /* Minimum loglevel we let people use */ 62 #define DEFAULT_CONSOLE_LOGLEVEL 7 /* anything MORE serious than KERN_DEBUG */ 63 64 int console_printk[4] = { 65 DEFAULT_CONSOLE_LOGLEVEL, /* console_loglevel */ 66 DEFAULT_MESSAGE_LOGLEVEL, /* default_message_loglevel */ 67 MINIMUM_CONSOLE_LOGLEVEL, /* minimum_console_loglevel */ 68 DEFAULT_CONSOLE_LOGLEVEL, /* default_console_loglevel */ 69 }; 70 71 /* 72 * Low level drivers may need that to know if they can schedule in 73 * their unblank() callback or not. So let's export it. 74 */ 75 int oops_in_progress; 76 EXPORT_SYMBOL(oops_in_progress); 77 78 /* 79 * console_sem protects the console_drivers list, and also 80 * provides serialisation for access to the entire console 81 * driver system. 82 */ 83 static DEFINE_SEMAPHORE(console_sem); 84 struct console *console_drivers; 85 EXPORT_SYMBOL_GPL(console_drivers); 86 87 #ifdef CONFIG_LOCKDEP 88 static struct lockdep_map console_lock_dep_map = { 89 .name = "console_lock" 90 }; 91 #endif 92 93 /* 94 * This is used for debugging the mess that is the VT code by 95 * keeping track if we have the console semaphore held. It's 96 * definitely not the perfect debug tool (we don't know if _WE_ 97 * hold it are racing, but it helps tracking those weird code 98 * path in the console code where we end up in places I want 99 * locked without the console sempahore held 100 */ 101 static int console_locked, console_suspended; 102 103 /* 104 * If exclusive_console is non-NULL then only this console is to be printed to. 105 */ 106 static struct console *exclusive_console; 107 108 /* 109 * Array of consoles built from command line options (console=) 110 */ 111 112 #define MAX_CMDLINECONSOLES 8 113 114 static struct console_cmdline console_cmdline[MAX_CMDLINECONSOLES]; 115 116 static int selected_console = -1; 117 static int preferred_console = -1; 118 int console_set_on_cmdline; 119 EXPORT_SYMBOL(console_set_on_cmdline); 120 121 /* Flag: console code may call schedule() */ 122 static int console_may_schedule; 123 124 /* 125 * The printk log buffer consists of a chain of concatenated variable 126 * length records. Every record starts with a record header, containing 127 * the overall length of the record. 128 * 129 * The heads to the first and last entry in the buffer, as well as the 130 * sequence numbers of these both entries are maintained when messages 131 * are stored.. 132 * 133 * If the heads indicate available messages, the length in the header 134 * tells the start next message. A length == 0 for the next message 135 * indicates a wrap-around to the beginning of the buffer. 136 * 137 * Every record carries the monotonic timestamp in microseconds, as well as 138 * the standard userspace syslog level and syslog facility. The usual 139 * kernel messages use LOG_KERN; userspace-injected messages always carry 140 * a matching syslog facility, by default LOG_USER. The origin of every 141 * message can be reliably determined that way. 142 * 143 * The human readable log message directly follows the message header. The 144 * length of the message text is stored in the header, the stored message 145 * is not terminated. 146 * 147 * Optionally, a message can carry a dictionary of properties (key/value pairs), 148 * to provide userspace with a machine-readable message context. 149 * 150 * Examples for well-defined, commonly used property names are: 151 * DEVICE=b12:8 device identifier 152 * b12:8 block dev_t 153 * c127:3 char dev_t 154 * n8 netdev ifindex 155 * +sound:card0 subsystem:devname 156 * SUBSYSTEM=pci driver-core subsystem name 157 * 158 * Valid characters in property names are [a-zA-Z0-9.-_]. The plain text value 159 * follows directly after a '=' character. Every property is terminated by 160 * a '\0' character. The last property is not terminated. 161 * 162 * Example of a message structure: 163 * 0000 ff 8f 00 00 00 00 00 00 monotonic time in nsec 164 * 0008 34 00 record is 52 bytes long 165 * 000a 0b 00 text is 11 bytes long 166 * 000c 1f 00 dictionary is 23 bytes long 167 * 000e 03 00 LOG_KERN (facility) LOG_ERR (level) 168 * 0010 69 74 27 73 20 61 20 6c "it's a l" 169 * 69 6e 65 "ine" 170 * 001b 44 45 56 49 43 "DEVIC" 171 * 45 3d 62 38 3a 32 00 44 "E=b8:2\0D" 172 * 52 49 56 45 52 3d 62 75 "RIVER=bu" 173 * 67 "g" 174 * 0032 00 00 00 padding to next message header 175 * 176 * The 'struct printk_log' buffer header must never be directly exported to 177 * userspace, it is a kernel-private implementation detail that might 178 * need to be changed in the future, when the requirements change. 179 * 180 * /dev/kmsg exports the structured data in the following line format: 181 * "level,sequnum,timestamp;<message text>\n" 182 * 183 * The optional key/value pairs are attached as continuation lines starting 184 * with a space character and terminated by a newline. All possible 185 * non-prinatable characters are escaped in the "\xff" notation. 186 * 187 * Users of the export format should ignore possible additional values 188 * separated by ',', and find the message after the ';' character. 189 */ 190 191 enum log_flags { 192 LOG_NOCONS = 1, /* already flushed, do not print to console */ 193 LOG_NEWLINE = 2, /* text ended with a newline */ 194 LOG_PREFIX = 4, /* text started with a prefix */ 195 LOG_CONT = 8, /* text is a fragment of a continuation line */ 196 }; 197 198 struct printk_log { 199 u64 ts_nsec; /* timestamp in nanoseconds */ 200 u16 len; /* length of entire record */ 201 u16 text_len; /* length of text buffer */ 202 u16 dict_len; /* length of dictionary buffer */ 203 u8 facility; /* syslog facility */ 204 u8 flags:5; /* internal record flags */ 205 u8 level:3; /* syslog level */ 206 }; 207 208 /* 209 * The logbuf_lock protects kmsg buffer, indices, counters. It is also 210 * used in interesting ways to provide interlocking in console_unlock(); 211 */ 212 static DEFINE_RAW_SPINLOCK(logbuf_lock); 213 214 #ifdef CONFIG_PRINTK 215 DECLARE_WAIT_QUEUE_HEAD(log_wait); 216 /* the next printk record to read by syslog(READ) or /proc/kmsg */ 217 static u64 syslog_seq; 218 static u32 syslog_idx; 219 static enum log_flags syslog_prev; 220 static size_t syslog_partial; 221 222 /* index and sequence number of the first record stored in the buffer */ 223 static u64 log_first_seq; 224 static u32 log_first_idx; 225 226 /* index and sequence number of the next record to store in the buffer */ 227 static u64 log_next_seq; 228 static u32 log_next_idx; 229 230 /* the next printk record to write to the console */ 231 static u64 console_seq; 232 static u32 console_idx; 233 static enum log_flags console_prev; 234 235 /* the next printk record to read after the last 'clear' command */ 236 static u64 clear_seq; 237 static u32 clear_idx; 238 239 #define PREFIX_MAX 32 240 #define LOG_LINE_MAX 1024 - PREFIX_MAX 241 242 /* record buffer */ 243 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) 244 #define LOG_ALIGN 4 245 #else 246 #define LOG_ALIGN __alignof__(struct printk_log) 247 #endif 248 #define __LOG_BUF_LEN (1 << CONFIG_LOG_BUF_SHIFT) 249 static char __log_buf[__LOG_BUF_LEN] __aligned(LOG_ALIGN); 250 static char *log_buf = __log_buf; 251 static u32 log_buf_len = __LOG_BUF_LEN; 252 253 /* cpu currently holding logbuf_lock */ 254 static volatile unsigned int logbuf_cpu = UINT_MAX; 255 256 /* human readable text of the record */ 257 static char *log_text(const struct printk_log *msg) 258 { 259 return (char *)msg + sizeof(struct printk_log); 260 } 261 262 /* optional key/value pair dictionary attached to the record */ 263 static char *log_dict(const struct printk_log *msg) 264 { 265 return (char *)msg + sizeof(struct printk_log) + msg->text_len; 266 } 267 268 /* get record by index; idx must point to valid msg */ 269 static struct printk_log *log_from_idx(u32 idx) 270 { 271 struct printk_log *msg = (struct printk_log *)(log_buf + idx); 272 273 /* 274 * A length == 0 record is the end of buffer marker. Wrap around and 275 * read the message at the start of the buffer. 276 */ 277 if (!msg->len) 278 return (struct printk_log *)log_buf; 279 return msg; 280 } 281 282 /* get next record; idx must point to valid msg */ 283 static u32 log_next(u32 idx) 284 { 285 struct printk_log *msg = (struct printk_log *)(log_buf + idx); 286 287 /* length == 0 indicates the end of the buffer; wrap */ 288 /* 289 * A length == 0 record is the end of buffer marker. Wrap around and 290 * read the message at the start of the buffer as *this* one, and 291 * return the one after that. 292 */ 293 if (!msg->len) { 294 msg = (struct printk_log *)log_buf; 295 return msg->len; 296 } 297 return idx + msg->len; 298 } 299 300 /* insert record into the buffer, discard old ones, update heads */ 301 static void log_store(int facility, int level, 302 enum log_flags flags, u64 ts_nsec, 303 const char *dict, u16 dict_len, 304 const char *text, u16 text_len) 305 { 306 struct printk_log *msg; 307 u32 size, pad_len; 308 309 /* number of '\0' padding bytes to next message */ 310 size = sizeof(struct printk_log) + text_len + dict_len; 311 pad_len = (-size) & (LOG_ALIGN - 1); 312 size += pad_len; 313 314 while (log_first_seq < log_next_seq) { 315 u32 free; 316 317 if (log_next_idx > log_first_idx) 318 free = max(log_buf_len - log_next_idx, log_first_idx); 319 else 320 free = log_first_idx - log_next_idx; 321 322 if (free >= size + sizeof(struct printk_log)) 323 break; 324 325 /* drop old messages until we have enough contiuous space */ 326 log_first_idx = log_next(log_first_idx); 327 log_first_seq++; 328 } 329 330 if (log_next_idx + size + sizeof(struct printk_log) > log_buf_len) { 331 /* 332 * This message + an additional empty header does not fit 333 * at the end of the buffer. Add an empty header with len == 0 334 * to signify a wrap around. 335 */ 336 memset(log_buf + log_next_idx, 0, sizeof(struct printk_log)); 337 log_next_idx = 0; 338 } 339 340 /* fill message */ 341 msg = (struct printk_log *)(log_buf + log_next_idx); 342 memcpy(log_text(msg), text, text_len); 343 msg->text_len = text_len; 344 memcpy(log_dict(msg), dict, dict_len); 345 msg->dict_len = dict_len; 346 msg->facility = facility; 347 msg->level = level & 7; 348 msg->flags = flags & 0x1f; 349 if (ts_nsec > 0) 350 msg->ts_nsec = ts_nsec; 351 else 352 msg->ts_nsec = local_clock(); 353 memset(log_dict(msg) + dict_len, 0, pad_len); 354 msg->len = size; 355 356 /* insert message */ 357 log_next_idx += msg->len; 358 log_next_seq++; 359 } 360 361 #ifdef CONFIG_SECURITY_DMESG_RESTRICT 362 int dmesg_restrict = 1; 363 #else 364 int dmesg_restrict; 365 #endif 366 367 static int syslog_action_restricted(int type) 368 { 369 if (dmesg_restrict) 370 return 1; 371 /* 372 * Unless restricted, we allow "read all" and "get buffer size" 373 * for everybody. 374 */ 375 return type != SYSLOG_ACTION_READ_ALL && 376 type != SYSLOG_ACTION_SIZE_BUFFER; 377 } 378 379 static int check_syslog_permissions(int type, bool from_file) 380 { 381 /* 382 * If this is from /proc/kmsg and we've already opened it, then we've 383 * already done the capabilities checks at open time. 384 */ 385 if (from_file && type != SYSLOG_ACTION_OPEN) 386 return 0; 387 388 if (syslog_action_restricted(type)) { 389 if (capable(CAP_SYSLOG)) 390 return 0; 391 /* 392 * For historical reasons, accept CAP_SYS_ADMIN too, with 393 * a warning. 394 */ 395 if (capable(CAP_SYS_ADMIN)) { 396 pr_warn_once("%s (%d): Attempt to access syslog with " 397 "CAP_SYS_ADMIN but no CAP_SYSLOG " 398 "(deprecated).\n", 399 current->comm, task_pid_nr(current)); 400 return 0; 401 } 402 return -EPERM; 403 } 404 return security_syslog(type); 405 } 406 407 408 /* /dev/kmsg - userspace message inject/listen interface */ 409 struct devkmsg_user { 410 u64 seq; 411 u32 idx; 412 enum log_flags prev; 413 struct mutex lock; 414 char buf[8192]; 415 }; 416 417 static ssize_t devkmsg_writev(struct kiocb *iocb, const struct iovec *iv, 418 unsigned long count, loff_t pos) 419 { 420 char *buf, *line; 421 int i; 422 int level = default_message_loglevel; 423 int facility = 1; /* LOG_USER */ 424 size_t len = iov_length(iv, count); 425 ssize_t ret = len; 426 427 if (len > LOG_LINE_MAX) 428 return -EINVAL; 429 buf = kmalloc(len+1, GFP_KERNEL); 430 if (buf == NULL) 431 return -ENOMEM; 432 433 line = buf; 434 for (i = 0; i < count; i++) { 435 if (copy_from_user(line, iv[i].iov_base, iv[i].iov_len)) { 436 ret = -EFAULT; 437 goto out; 438 } 439 line += iv[i].iov_len; 440 } 441 442 /* 443 * Extract and skip the syslog prefix <[0-9]*>. Coming from userspace 444 * the decimal value represents 32bit, the lower 3 bit are the log 445 * level, the rest are the log facility. 446 * 447 * If no prefix or no userspace facility is specified, we 448 * enforce LOG_USER, to be able to reliably distinguish 449 * kernel-generated messages from userspace-injected ones. 450 */ 451 line = buf; 452 if (line[0] == '<') { 453 char *endp = NULL; 454 455 i = simple_strtoul(line+1, &endp, 10); 456 if (endp && endp[0] == '>') { 457 level = i & 7; 458 if (i >> 3) 459 facility = i >> 3; 460 endp++; 461 len -= endp - line; 462 line = endp; 463 } 464 } 465 line[len] = '\0'; 466 467 printk_emit(facility, level, NULL, 0, "%s", line); 468 out: 469 kfree(buf); 470 return ret; 471 } 472 473 static ssize_t devkmsg_read(struct file *file, char __user *buf, 474 size_t count, loff_t *ppos) 475 { 476 struct devkmsg_user *user = file->private_data; 477 struct printk_log *msg; 478 u64 ts_usec; 479 size_t i; 480 char cont = '-'; 481 size_t len; 482 ssize_t ret; 483 484 if (!user) 485 return -EBADF; 486 487 ret = mutex_lock_interruptible(&user->lock); 488 if (ret) 489 return ret; 490 raw_spin_lock_irq(&logbuf_lock); 491 while (user->seq == log_next_seq) { 492 if (file->f_flags & O_NONBLOCK) { 493 ret = -EAGAIN; 494 raw_spin_unlock_irq(&logbuf_lock); 495 goto out; 496 } 497 498 raw_spin_unlock_irq(&logbuf_lock); 499 ret = wait_event_interruptible(log_wait, 500 user->seq != log_next_seq); 501 if (ret) 502 goto out; 503 raw_spin_lock_irq(&logbuf_lock); 504 } 505 506 if (user->seq < log_first_seq) { 507 /* our last seen message is gone, return error and reset */ 508 user->idx = log_first_idx; 509 user->seq = log_first_seq; 510 ret = -EPIPE; 511 raw_spin_unlock_irq(&logbuf_lock); 512 goto out; 513 } 514 515 msg = log_from_idx(user->idx); 516 ts_usec = msg->ts_nsec; 517 do_div(ts_usec, 1000); 518 519 /* 520 * If we couldn't merge continuation line fragments during the print, 521 * export the stored flags to allow an optional external merge of the 522 * records. Merging the records isn't always neccessarily correct, like 523 * when we hit a race during printing. In most cases though, it produces 524 * better readable output. 'c' in the record flags mark the first 525 * fragment of a line, '+' the following. 526 */ 527 if (msg->flags & LOG_CONT && !(user->prev & LOG_CONT)) 528 cont = 'c'; 529 else if ((msg->flags & LOG_CONT) || 530 ((user->prev & LOG_CONT) && !(msg->flags & LOG_PREFIX))) 531 cont = '+'; 532 533 len = sprintf(user->buf, "%u,%llu,%llu,%c;", 534 (msg->facility << 3) | msg->level, 535 user->seq, ts_usec, cont); 536 user->prev = msg->flags; 537 538 /* escape non-printable characters */ 539 for (i = 0; i < msg->text_len; i++) { 540 unsigned char c = log_text(msg)[i]; 541 542 if (c < ' ' || c >= 127 || c == '\\') 543 len += sprintf(user->buf + len, "\\x%02x", c); 544 else 545 user->buf[len++] = c; 546 } 547 user->buf[len++] = '\n'; 548 549 if (msg->dict_len) { 550 bool line = true; 551 552 for (i = 0; i < msg->dict_len; i++) { 553 unsigned char c = log_dict(msg)[i]; 554 555 if (line) { 556 user->buf[len++] = ' '; 557 line = false; 558 } 559 560 if (c == '\0') { 561 user->buf[len++] = '\n'; 562 line = true; 563 continue; 564 } 565 566 if (c < ' ' || c >= 127 || c == '\\') { 567 len += sprintf(user->buf + len, "\\x%02x", c); 568 continue; 569 } 570 571 user->buf[len++] = c; 572 } 573 user->buf[len++] = '\n'; 574 } 575 576 user->idx = log_next(user->idx); 577 user->seq++; 578 raw_spin_unlock_irq(&logbuf_lock); 579 580 if (len > count) { 581 ret = -EINVAL; 582 goto out; 583 } 584 585 if (copy_to_user(buf, user->buf, len)) { 586 ret = -EFAULT; 587 goto out; 588 } 589 ret = len; 590 out: 591 mutex_unlock(&user->lock); 592 return ret; 593 } 594 595 static loff_t devkmsg_llseek(struct file *file, loff_t offset, int whence) 596 { 597 struct devkmsg_user *user = file->private_data; 598 loff_t ret = 0; 599 600 if (!user) 601 return -EBADF; 602 if (offset) 603 return -ESPIPE; 604 605 raw_spin_lock_irq(&logbuf_lock); 606 switch (whence) { 607 case SEEK_SET: 608 /* the first record */ 609 user->idx = log_first_idx; 610 user->seq = log_first_seq; 611 break; 612 case SEEK_DATA: 613 /* 614 * The first record after the last SYSLOG_ACTION_CLEAR, 615 * like issued by 'dmesg -c'. Reading /dev/kmsg itself 616 * changes no global state, and does not clear anything. 617 */ 618 user->idx = clear_idx; 619 user->seq = clear_seq; 620 break; 621 case SEEK_END: 622 /* after the last record */ 623 user->idx = log_next_idx; 624 user->seq = log_next_seq; 625 break; 626 default: 627 ret = -EINVAL; 628 } 629 raw_spin_unlock_irq(&logbuf_lock); 630 return ret; 631 } 632 633 static unsigned int devkmsg_poll(struct file *file, poll_table *wait) 634 { 635 struct devkmsg_user *user = file->private_data; 636 int ret = 0; 637 638 if (!user) 639 return POLLERR|POLLNVAL; 640 641 poll_wait(file, &log_wait, wait); 642 643 raw_spin_lock_irq(&logbuf_lock); 644 if (user->seq < log_next_seq) { 645 /* return error when data has vanished underneath us */ 646 if (user->seq < log_first_seq) 647 ret = POLLIN|POLLRDNORM|POLLERR|POLLPRI; 648 else 649 ret = POLLIN|POLLRDNORM; 650 } 651 raw_spin_unlock_irq(&logbuf_lock); 652 653 return ret; 654 } 655 656 static int devkmsg_open(struct inode *inode, struct file *file) 657 { 658 struct devkmsg_user *user; 659 int err; 660 661 /* write-only does not need any file context */ 662 if ((file->f_flags & O_ACCMODE) == O_WRONLY) 663 return 0; 664 665 err = check_syslog_permissions(SYSLOG_ACTION_READ_ALL, 666 SYSLOG_FROM_READER); 667 if (err) 668 return err; 669 670 user = kmalloc(sizeof(struct devkmsg_user), GFP_KERNEL); 671 if (!user) 672 return -ENOMEM; 673 674 mutex_init(&user->lock); 675 676 raw_spin_lock_irq(&logbuf_lock); 677 user->idx = log_first_idx; 678 user->seq = log_first_seq; 679 raw_spin_unlock_irq(&logbuf_lock); 680 681 file->private_data = user; 682 return 0; 683 } 684 685 static int devkmsg_release(struct inode *inode, struct file *file) 686 { 687 struct devkmsg_user *user = file->private_data; 688 689 if (!user) 690 return 0; 691 692 mutex_destroy(&user->lock); 693 kfree(user); 694 return 0; 695 } 696 697 const struct file_operations kmsg_fops = { 698 .open = devkmsg_open, 699 .read = devkmsg_read, 700 .aio_write = devkmsg_writev, 701 .llseek = devkmsg_llseek, 702 .poll = devkmsg_poll, 703 .release = devkmsg_release, 704 }; 705 706 #ifdef CONFIG_KEXEC 707 /* 708 * This appends the listed symbols to /proc/vmcore 709 * 710 * /proc/vmcore is used by various utilities, like crash and makedumpfile to 711 * obtain access to symbols that are otherwise very difficult to locate. These 712 * symbols are specifically used so that utilities can access and extract the 713 * dmesg log from a vmcore file after a crash. 714 */ 715 void log_buf_kexec_setup(void) 716 { 717 VMCOREINFO_SYMBOL(log_buf); 718 VMCOREINFO_SYMBOL(log_buf_len); 719 VMCOREINFO_SYMBOL(log_first_idx); 720 VMCOREINFO_SYMBOL(log_next_idx); 721 /* 722 * Export struct printk_log size and field offsets. User space tools can 723 * parse it and detect any changes to structure down the line. 724 */ 725 VMCOREINFO_STRUCT_SIZE(printk_log); 726 VMCOREINFO_OFFSET(printk_log, ts_nsec); 727 VMCOREINFO_OFFSET(printk_log, len); 728 VMCOREINFO_OFFSET(printk_log, text_len); 729 VMCOREINFO_OFFSET(printk_log, dict_len); 730 } 731 #endif 732 733 /* requested log_buf_len from kernel cmdline */ 734 static unsigned long __initdata new_log_buf_len; 735 736 /* save requested log_buf_len since it's too early to process it */ 737 static int __init log_buf_len_setup(char *str) 738 { 739 unsigned size = memparse(str, &str); 740 741 if (size) 742 size = roundup_pow_of_two(size); 743 if (size > log_buf_len) 744 new_log_buf_len = size; 745 746 return 0; 747 } 748 early_param("log_buf_len", log_buf_len_setup); 749 750 void __init setup_log_buf(int early) 751 { 752 unsigned long flags; 753 char *new_log_buf; 754 int free; 755 756 if (!new_log_buf_len) 757 return; 758 759 if (early) { 760 new_log_buf = 761 memblock_virt_alloc(new_log_buf_len, PAGE_SIZE); 762 } else { 763 new_log_buf = memblock_virt_alloc_nopanic(new_log_buf_len, 0); 764 } 765 766 if (unlikely(!new_log_buf)) { 767 pr_err("log_buf_len: %ld bytes not available\n", 768 new_log_buf_len); 769 return; 770 } 771 772 raw_spin_lock_irqsave(&logbuf_lock, flags); 773 log_buf_len = new_log_buf_len; 774 log_buf = new_log_buf; 775 new_log_buf_len = 0; 776 free = __LOG_BUF_LEN - log_next_idx; 777 memcpy(log_buf, __log_buf, __LOG_BUF_LEN); 778 raw_spin_unlock_irqrestore(&logbuf_lock, flags); 779 780 pr_info("log_buf_len: %d\n", log_buf_len); 781 pr_info("early log buf free: %d(%d%%)\n", 782 free, (free * 100) / __LOG_BUF_LEN); 783 } 784 785 static bool __read_mostly ignore_loglevel; 786 787 static int __init ignore_loglevel_setup(char *str) 788 { 789 ignore_loglevel = 1; 790 pr_info("debug: ignoring loglevel setting.\n"); 791 792 return 0; 793 } 794 795 early_param("ignore_loglevel", ignore_loglevel_setup); 796 module_param(ignore_loglevel, bool, S_IRUGO | S_IWUSR); 797 MODULE_PARM_DESC(ignore_loglevel, "ignore loglevel setting, to" 798 "print all kernel messages to the console."); 799 800 #ifdef CONFIG_BOOT_PRINTK_DELAY 801 802 static int boot_delay; /* msecs delay after each printk during bootup */ 803 static unsigned long long loops_per_msec; /* based on boot_delay */ 804 805 static int __init boot_delay_setup(char *str) 806 { 807 unsigned long lpj; 808 809 lpj = preset_lpj ? preset_lpj : 1000000; /* some guess */ 810 loops_per_msec = (unsigned long long)lpj / 1000 * HZ; 811 812 get_option(&str, &boot_delay); 813 if (boot_delay > 10 * 1000) 814 boot_delay = 0; 815 816 pr_debug("boot_delay: %u, preset_lpj: %ld, lpj: %lu, " 817 "HZ: %d, loops_per_msec: %llu\n", 818 boot_delay, preset_lpj, lpj, HZ, loops_per_msec); 819 return 0; 820 } 821 early_param("boot_delay", boot_delay_setup); 822 823 static void boot_delay_msec(int level) 824 { 825 unsigned long long k; 826 unsigned long timeout; 827 828 if ((boot_delay == 0 || system_state != SYSTEM_BOOTING) 829 || (level >= console_loglevel && !ignore_loglevel)) { 830 return; 831 } 832 833 k = (unsigned long long)loops_per_msec * boot_delay; 834 835 timeout = jiffies + msecs_to_jiffies(boot_delay); 836 while (k) { 837 k--; 838 cpu_relax(); 839 /* 840 * use (volatile) jiffies to prevent 841 * compiler reduction; loop termination via jiffies 842 * is secondary and may or may not happen. 843 */ 844 if (time_after(jiffies, timeout)) 845 break; 846 touch_nmi_watchdog(); 847 } 848 } 849 #else 850 static inline void boot_delay_msec(int level) 851 { 852 } 853 #endif 854 855 #if defined(CONFIG_PRINTK_TIME) 856 static bool printk_time = 1; 857 #else 858 static bool printk_time; 859 #endif 860 module_param_named(time, printk_time, bool, S_IRUGO | S_IWUSR); 861 862 static size_t print_time(u64 ts, char *buf) 863 { 864 unsigned long rem_nsec; 865 866 if (!printk_time) 867 return 0; 868 869 rem_nsec = do_div(ts, 1000000000); 870 871 if (!buf) 872 return snprintf(NULL, 0, "[%5lu.000000] ", (unsigned long)ts); 873 874 return sprintf(buf, "[%5lu.%06lu] ", 875 (unsigned long)ts, rem_nsec / 1000); 876 } 877 878 static size_t print_prefix(const struct printk_log *msg, bool syslog, char *buf) 879 { 880 size_t len = 0; 881 unsigned int prefix = (msg->facility << 3) | msg->level; 882 883 if (syslog) { 884 if (buf) { 885 len += sprintf(buf, "<%u>", prefix); 886 } else { 887 len += 3; 888 if (prefix > 999) 889 len += 3; 890 else if (prefix > 99) 891 len += 2; 892 else if (prefix > 9) 893 len++; 894 } 895 } 896 897 len += print_time(msg->ts_nsec, buf ? buf + len : NULL); 898 return len; 899 } 900 901 static size_t msg_print_text(const struct printk_log *msg, enum log_flags prev, 902 bool syslog, char *buf, size_t size) 903 { 904 const char *text = log_text(msg); 905 size_t text_size = msg->text_len; 906 bool prefix = true; 907 bool newline = true; 908 size_t len = 0; 909 910 if ((prev & LOG_CONT) && !(msg->flags & LOG_PREFIX)) 911 prefix = false; 912 913 if (msg->flags & LOG_CONT) { 914 if ((prev & LOG_CONT) && !(prev & LOG_NEWLINE)) 915 prefix = false; 916 917 if (!(msg->flags & LOG_NEWLINE)) 918 newline = false; 919 } 920 921 do { 922 const char *next = memchr(text, '\n', text_size); 923 size_t text_len; 924 925 if (next) { 926 text_len = next - text; 927 next++; 928 text_size -= next - text; 929 } else { 930 text_len = text_size; 931 } 932 933 if (buf) { 934 if (print_prefix(msg, syslog, NULL) + 935 text_len + 1 >= size - len) 936 break; 937 938 if (prefix) 939 len += print_prefix(msg, syslog, buf + len); 940 memcpy(buf + len, text, text_len); 941 len += text_len; 942 if (next || newline) 943 buf[len++] = '\n'; 944 } else { 945 /* SYSLOG_ACTION_* buffer size only calculation */ 946 if (prefix) 947 len += print_prefix(msg, syslog, NULL); 948 len += text_len; 949 if (next || newline) 950 len++; 951 } 952 953 prefix = true; 954 text = next; 955 } while (text); 956 957 return len; 958 } 959 960 static int syslog_print(char __user *buf, int size) 961 { 962 char *text; 963 struct printk_log *msg; 964 int len = 0; 965 966 text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL); 967 if (!text) 968 return -ENOMEM; 969 970 while (size > 0) { 971 size_t n; 972 size_t skip; 973 974 raw_spin_lock_irq(&logbuf_lock); 975 if (syslog_seq < log_first_seq) { 976 /* messages are gone, move to first one */ 977 syslog_seq = log_first_seq; 978 syslog_idx = log_first_idx; 979 syslog_prev = 0; 980 syslog_partial = 0; 981 } 982 if (syslog_seq == log_next_seq) { 983 raw_spin_unlock_irq(&logbuf_lock); 984 break; 985 } 986 987 skip = syslog_partial; 988 msg = log_from_idx(syslog_idx); 989 n = msg_print_text(msg, syslog_prev, true, text, 990 LOG_LINE_MAX + PREFIX_MAX); 991 if (n - syslog_partial <= size) { 992 /* message fits into buffer, move forward */ 993 syslog_idx = log_next(syslog_idx); 994 syslog_seq++; 995 syslog_prev = msg->flags; 996 n -= syslog_partial; 997 syslog_partial = 0; 998 } else if (!len){ 999 /* partial read(), remember position */ 1000 n = size; 1001 syslog_partial += n; 1002 } else 1003 n = 0; 1004 raw_spin_unlock_irq(&logbuf_lock); 1005 1006 if (!n) 1007 break; 1008 1009 if (copy_to_user(buf, text + skip, n)) { 1010 if (!len) 1011 len = -EFAULT; 1012 break; 1013 } 1014 1015 len += n; 1016 size -= n; 1017 buf += n; 1018 } 1019 1020 kfree(text); 1021 return len; 1022 } 1023 1024 static int syslog_print_all(char __user *buf, int size, bool clear) 1025 { 1026 char *text; 1027 int len = 0; 1028 1029 text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL); 1030 if (!text) 1031 return -ENOMEM; 1032 1033 raw_spin_lock_irq(&logbuf_lock); 1034 if (buf) { 1035 u64 next_seq; 1036 u64 seq; 1037 u32 idx; 1038 enum log_flags prev; 1039 1040 if (clear_seq < log_first_seq) { 1041 /* messages are gone, move to first available one */ 1042 clear_seq = log_first_seq; 1043 clear_idx = log_first_idx; 1044 } 1045 1046 /* 1047 * Find first record that fits, including all following records, 1048 * into the user-provided buffer for this dump. 1049 */ 1050 seq = clear_seq; 1051 idx = clear_idx; 1052 prev = 0; 1053 while (seq < log_next_seq) { 1054 struct printk_log *msg = log_from_idx(idx); 1055 1056 len += msg_print_text(msg, prev, true, NULL, 0); 1057 prev = msg->flags; 1058 idx = log_next(idx); 1059 seq++; 1060 } 1061 1062 /* move first record forward until length fits into the buffer */ 1063 seq = clear_seq; 1064 idx = clear_idx; 1065 prev = 0; 1066 while (len > size && seq < log_next_seq) { 1067 struct printk_log *msg = log_from_idx(idx); 1068 1069 len -= msg_print_text(msg, prev, true, NULL, 0); 1070 prev = msg->flags; 1071 idx = log_next(idx); 1072 seq++; 1073 } 1074 1075 /* last message fitting into this dump */ 1076 next_seq = log_next_seq; 1077 1078 len = 0; 1079 while (len >= 0 && seq < next_seq) { 1080 struct printk_log *msg = log_from_idx(idx); 1081 int textlen; 1082 1083 textlen = msg_print_text(msg, prev, true, text, 1084 LOG_LINE_MAX + PREFIX_MAX); 1085 if (textlen < 0) { 1086 len = textlen; 1087 break; 1088 } 1089 idx = log_next(idx); 1090 seq++; 1091 prev = msg->flags; 1092 1093 raw_spin_unlock_irq(&logbuf_lock); 1094 if (copy_to_user(buf + len, text, textlen)) 1095 len = -EFAULT; 1096 else 1097 len += textlen; 1098 raw_spin_lock_irq(&logbuf_lock); 1099 1100 if (seq < log_first_seq) { 1101 /* messages are gone, move to next one */ 1102 seq = log_first_seq; 1103 idx = log_first_idx; 1104 prev = 0; 1105 } 1106 } 1107 } 1108 1109 if (clear) { 1110 clear_seq = log_next_seq; 1111 clear_idx = log_next_idx; 1112 } 1113 raw_spin_unlock_irq(&logbuf_lock); 1114 1115 kfree(text); 1116 return len; 1117 } 1118 1119 int do_syslog(int type, char __user *buf, int len, bool from_file) 1120 { 1121 bool clear = false; 1122 static int saved_console_loglevel = -1; 1123 int error; 1124 1125 error = check_syslog_permissions(type, from_file); 1126 if (error) 1127 goto out; 1128 1129 error = security_syslog(type); 1130 if (error) 1131 return error; 1132 1133 switch (type) { 1134 case SYSLOG_ACTION_CLOSE: /* Close log */ 1135 break; 1136 case SYSLOG_ACTION_OPEN: /* Open log */ 1137 break; 1138 case SYSLOG_ACTION_READ: /* Read from log */ 1139 error = -EINVAL; 1140 if (!buf || len < 0) 1141 goto out; 1142 error = 0; 1143 if (!len) 1144 goto out; 1145 if (!access_ok(VERIFY_WRITE, buf, len)) { 1146 error = -EFAULT; 1147 goto out; 1148 } 1149 error = wait_event_interruptible(log_wait, 1150 syslog_seq != log_next_seq); 1151 if (error) 1152 goto out; 1153 error = syslog_print(buf, len); 1154 break; 1155 /* Read/clear last kernel messages */ 1156 case SYSLOG_ACTION_READ_CLEAR: 1157 clear = true; 1158 /* FALL THRU */ 1159 /* Read last kernel messages */ 1160 case SYSLOG_ACTION_READ_ALL: 1161 error = -EINVAL; 1162 if (!buf || len < 0) 1163 goto out; 1164 error = 0; 1165 if (!len) 1166 goto out; 1167 if (!access_ok(VERIFY_WRITE, buf, len)) { 1168 error = -EFAULT; 1169 goto out; 1170 } 1171 error = syslog_print_all(buf, len, clear); 1172 break; 1173 /* Clear ring buffer */ 1174 case SYSLOG_ACTION_CLEAR: 1175 syslog_print_all(NULL, 0, true); 1176 break; 1177 /* Disable logging to console */ 1178 case SYSLOG_ACTION_CONSOLE_OFF: 1179 if (saved_console_loglevel == -1) 1180 saved_console_loglevel = console_loglevel; 1181 console_loglevel = minimum_console_loglevel; 1182 break; 1183 /* Enable logging to console */ 1184 case SYSLOG_ACTION_CONSOLE_ON: 1185 if (saved_console_loglevel != -1) { 1186 console_loglevel = saved_console_loglevel; 1187 saved_console_loglevel = -1; 1188 } 1189 break; 1190 /* Set level of messages printed to console */ 1191 case SYSLOG_ACTION_CONSOLE_LEVEL: 1192 error = -EINVAL; 1193 if (len < 1 || len > 8) 1194 goto out; 1195 if (len < minimum_console_loglevel) 1196 len = minimum_console_loglevel; 1197 console_loglevel = len; 1198 /* Implicitly re-enable logging to console */ 1199 saved_console_loglevel = -1; 1200 error = 0; 1201 break; 1202 /* Number of chars in the log buffer */ 1203 case SYSLOG_ACTION_SIZE_UNREAD: 1204 raw_spin_lock_irq(&logbuf_lock); 1205 if (syslog_seq < log_first_seq) { 1206 /* messages are gone, move to first one */ 1207 syslog_seq = log_first_seq; 1208 syslog_idx = log_first_idx; 1209 syslog_prev = 0; 1210 syslog_partial = 0; 1211 } 1212 if (from_file) { 1213 /* 1214 * Short-cut for poll(/"proc/kmsg") which simply checks 1215 * for pending data, not the size; return the count of 1216 * records, not the length. 1217 */ 1218 error = log_next_idx - syslog_idx; 1219 } else { 1220 u64 seq = syslog_seq; 1221 u32 idx = syslog_idx; 1222 enum log_flags prev = syslog_prev; 1223 1224 error = 0; 1225 while (seq < log_next_seq) { 1226 struct printk_log *msg = log_from_idx(idx); 1227 1228 error += msg_print_text(msg, prev, true, NULL, 0); 1229 idx = log_next(idx); 1230 seq++; 1231 prev = msg->flags; 1232 } 1233 error -= syslog_partial; 1234 } 1235 raw_spin_unlock_irq(&logbuf_lock); 1236 break; 1237 /* Size of the log buffer */ 1238 case SYSLOG_ACTION_SIZE_BUFFER: 1239 error = log_buf_len; 1240 break; 1241 default: 1242 error = -EINVAL; 1243 break; 1244 } 1245 out: 1246 return error; 1247 } 1248 1249 SYSCALL_DEFINE3(syslog, int, type, char __user *, buf, int, len) 1250 { 1251 return do_syslog(type, buf, len, SYSLOG_FROM_READER); 1252 } 1253 1254 /* 1255 * Call the console drivers, asking them to write out 1256 * log_buf[start] to log_buf[end - 1]. 1257 * The console_lock must be held. 1258 */ 1259 static void call_console_drivers(int level, const char *text, size_t len) 1260 { 1261 struct console *con; 1262 1263 trace_console(text, len); 1264 1265 if (level >= console_loglevel && !ignore_loglevel) 1266 return; 1267 if (!console_drivers) 1268 return; 1269 1270 for_each_console(con) { 1271 if (exclusive_console && con != exclusive_console) 1272 continue; 1273 if (!(con->flags & CON_ENABLED)) 1274 continue; 1275 if (!con->write) 1276 continue; 1277 if (!cpu_online(smp_processor_id()) && 1278 !(con->flags & CON_ANYTIME)) 1279 continue; 1280 con->write(con, text, len); 1281 } 1282 } 1283 1284 /* 1285 * Zap console related locks when oopsing. Only zap at most once 1286 * every 10 seconds, to leave time for slow consoles to print a 1287 * full oops. 1288 */ 1289 static void zap_locks(void) 1290 { 1291 static unsigned long oops_timestamp; 1292 1293 if (time_after_eq(jiffies, oops_timestamp) && 1294 !time_after(jiffies, oops_timestamp + 30 * HZ)) 1295 return; 1296 1297 oops_timestamp = jiffies; 1298 1299 debug_locks_off(); 1300 /* If a crash is occurring, make sure we can't deadlock */ 1301 raw_spin_lock_init(&logbuf_lock); 1302 /* And make sure that we print immediately */ 1303 sema_init(&console_sem, 1); 1304 } 1305 1306 /* Check if we have any console registered that can be called early in boot. */ 1307 static int have_callable_console(void) 1308 { 1309 struct console *con; 1310 1311 for_each_console(con) 1312 if (con->flags & CON_ANYTIME) 1313 return 1; 1314 1315 return 0; 1316 } 1317 1318 /* 1319 * Can we actually use the console at this time on this cpu? 1320 * 1321 * Console drivers may assume that per-cpu resources have 1322 * been allocated. So unless they're explicitly marked as 1323 * being able to cope (CON_ANYTIME) don't call them until 1324 * this CPU is officially up. 1325 */ 1326 static inline int can_use_console(unsigned int cpu) 1327 { 1328 return cpu_online(cpu) || have_callable_console(); 1329 } 1330 1331 /* 1332 * Try to get console ownership to actually show the kernel 1333 * messages from a 'printk'. Return true (and with the 1334 * console_lock held, and 'console_locked' set) if it 1335 * is successful, false otherwise. 1336 * 1337 * This gets called with the 'logbuf_lock' spinlock held and 1338 * interrupts disabled. It should return with 'lockbuf_lock' 1339 * released but interrupts still disabled. 1340 */ 1341 static int console_trylock_for_printk(unsigned int cpu) 1342 __releases(&logbuf_lock) 1343 { 1344 int retval = 0, wake = 0; 1345 1346 if (console_trylock()) { 1347 retval = 1; 1348 1349 /* 1350 * If we can't use the console, we need to release 1351 * the console semaphore by hand to avoid flushing 1352 * the buffer. We need to hold the console semaphore 1353 * in order to do this test safely. 1354 */ 1355 if (!can_use_console(cpu)) { 1356 console_locked = 0; 1357 wake = 1; 1358 retval = 0; 1359 } 1360 } 1361 logbuf_cpu = UINT_MAX; 1362 raw_spin_unlock(&logbuf_lock); 1363 if (wake) 1364 up(&console_sem); 1365 return retval; 1366 } 1367 1368 int printk_delay_msec __read_mostly; 1369 1370 static inline void printk_delay(void) 1371 { 1372 if (unlikely(printk_delay_msec)) { 1373 int m = printk_delay_msec; 1374 1375 while (m--) { 1376 mdelay(1); 1377 touch_nmi_watchdog(); 1378 } 1379 } 1380 } 1381 1382 /* 1383 * Continuation lines are buffered, and not committed to the record buffer 1384 * until the line is complete, or a race forces it. The line fragments 1385 * though, are printed immediately to the consoles to ensure everything has 1386 * reached the console in case of a kernel crash. 1387 */ 1388 static struct cont { 1389 char buf[LOG_LINE_MAX]; 1390 size_t len; /* length == 0 means unused buffer */ 1391 size_t cons; /* bytes written to console */ 1392 struct task_struct *owner; /* task of first print*/ 1393 u64 ts_nsec; /* time of first print */ 1394 u8 level; /* log level of first message */ 1395 u8 facility; /* log level of first message */ 1396 enum log_flags flags; /* prefix, newline flags */ 1397 bool flushed:1; /* buffer sealed and committed */ 1398 } cont; 1399 1400 static void cont_flush(enum log_flags flags) 1401 { 1402 if (cont.flushed) 1403 return; 1404 if (cont.len == 0) 1405 return; 1406 1407 if (cont.cons) { 1408 /* 1409 * If a fragment of this line was directly flushed to the 1410 * console; wait for the console to pick up the rest of the 1411 * line. LOG_NOCONS suppresses a duplicated output. 1412 */ 1413 log_store(cont.facility, cont.level, flags | LOG_NOCONS, 1414 cont.ts_nsec, NULL, 0, cont.buf, cont.len); 1415 cont.flags = flags; 1416 cont.flushed = true; 1417 } else { 1418 /* 1419 * If no fragment of this line ever reached the console, 1420 * just submit it to the store and free the buffer. 1421 */ 1422 log_store(cont.facility, cont.level, flags, 0, 1423 NULL, 0, cont.buf, cont.len); 1424 cont.len = 0; 1425 } 1426 } 1427 1428 static bool cont_add(int facility, int level, const char *text, size_t len) 1429 { 1430 if (cont.len && cont.flushed) 1431 return false; 1432 1433 if (cont.len + len > sizeof(cont.buf)) { 1434 /* the line gets too long, split it up in separate records */ 1435 cont_flush(LOG_CONT); 1436 return false; 1437 } 1438 1439 if (!cont.len) { 1440 cont.facility = facility; 1441 cont.level = level; 1442 cont.owner = current; 1443 cont.ts_nsec = local_clock(); 1444 cont.flags = 0; 1445 cont.cons = 0; 1446 cont.flushed = false; 1447 } 1448 1449 memcpy(cont.buf + cont.len, text, len); 1450 cont.len += len; 1451 1452 if (cont.len > (sizeof(cont.buf) * 80) / 100) 1453 cont_flush(LOG_CONT); 1454 1455 return true; 1456 } 1457 1458 static size_t cont_print_text(char *text, size_t size) 1459 { 1460 size_t textlen = 0; 1461 size_t len; 1462 1463 if (cont.cons == 0 && (console_prev & LOG_NEWLINE)) { 1464 textlen += print_time(cont.ts_nsec, text); 1465 size -= textlen; 1466 } 1467 1468 len = cont.len - cont.cons; 1469 if (len > 0) { 1470 if (len+1 > size) 1471 len = size-1; 1472 memcpy(text + textlen, cont.buf + cont.cons, len); 1473 textlen += len; 1474 cont.cons = cont.len; 1475 } 1476 1477 if (cont.flushed) { 1478 if (cont.flags & LOG_NEWLINE) 1479 text[textlen++] = '\n'; 1480 /* got everything, release buffer */ 1481 cont.len = 0; 1482 } 1483 return textlen; 1484 } 1485 1486 asmlinkage int vprintk_emit(int facility, int level, 1487 const char *dict, size_t dictlen, 1488 const char *fmt, va_list args) 1489 { 1490 static int recursion_bug; 1491 static char textbuf[LOG_LINE_MAX]; 1492 char *text = textbuf; 1493 size_t text_len; 1494 enum log_flags lflags = 0; 1495 unsigned long flags; 1496 int this_cpu; 1497 int printed_len = 0; 1498 1499 boot_delay_msec(level); 1500 printk_delay(); 1501 1502 /* This stops the holder of console_sem just where we want him */ 1503 local_irq_save(flags); 1504 this_cpu = smp_processor_id(); 1505 1506 /* 1507 * Ouch, printk recursed into itself! 1508 */ 1509 if (unlikely(logbuf_cpu == this_cpu)) { 1510 /* 1511 * If a crash is occurring during printk() on this CPU, 1512 * then try to get the crash message out but make sure 1513 * we can't deadlock. Otherwise just return to avoid the 1514 * recursion and return - but flag the recursion so that 1515 * it can be printed at the next appropriate moment: 1516 */ 1517 if (!oops_in_progress && !lockdep_recursing(current)) { 1518 recursion_bug = 1; 1519 goto out_restore_irqs; 1520 } 1521 zap_locks(); 1522 } 1523 1524 lockdep_off(); 1525 raw_spin_lock(&logbuf_lock); 1526 logbuf_cpu = this_cpu; 1527 1528 if (recursion_bug) { 1529 static const char recursion_msg[] = 1530 "BUG: recent printk recursion!"; 1531 1532 recursion_bug = 0; 1533 printed_len += strlen(recursion_msg); 1534 /* emit KERN_CRIT message */ 1535 log_store(0, 2, LOG_PREFIX|LOG_NEWLINE, 0, 1536 NULL, 0, recursion_msg, printed_len); 1537 } 1538 1539 /* 1540 * The printf needs to come first; we need the syslog 1541 * prefix which might be passed-in as a parameter. 1542 */ 1543 text_len = vscnprintf(text, sizeof(textbuf), fmt, args); 1544 1545 /* mark and strip a trailing newline */ 1546 if (text_len && text[text_len-1] == '\n') { 1547 text_len--; 1548 lflags |= LOG_NEWLINE; 1549 } 1550 1551 /* strip kernel syslog prefix and extract log level or control flags */ 1552 if (facility == 0) { 1553 int kern_level = printk_get_level(text); 1554 1555 if (kern_level) { 1556 const char *end_of_header = printk_skip_level(text); 1557 switch (kern_level) { 1558 case '0' ... '7': 1559 if (level == -1) 1560 level = kern_level - '0'; 1561 case 'd': /* KERN_DEFAULT */ 1562 lflags |= LOG_PREFIX; 1563 } 1564 /* 1565 * No need to check length here because vscnprintf 1566 * put '\0' at the end of the string. Only valid and 1567 * newly printed level is detected. 1568 */ 1569 text_len -= end_of_header - text; 1570 text = (char *)end_of_header; 1571 } 1572 } 1573 1574 if (level == -1) 1575 level = default_message_loglevel; 1576 1577 if (dict) 1578 lflags |= LOG_PREFIX|LOG_NEWLINE; 1579 1580 if (!(lflags & LOG_NEWLINE)) { 1581 /* 1582 * Flush the conflicting buffer. An earlier newline was missing, 1583 * or another task also prints continuation lines. 1584 */ 1585 if (cont.len && (lflags & LOG_PREFIX || cont.owner != current)) 1586 cont_flush(LOG_NEWLINE); 1587 1588 /* buffer line if possible, otherwise store it right away */ 1589 if (!cont_add(facility, level, text, text_len)) 1590 log_store(facility, level, lflags | LOG_CONT, 0, 1591 dict, dictlen, text, text_len); 1592 } else { 1593 bool stored = false; 1594 1595 /* 1596 * If an earlier newline was missing and it was the same task, 1597 * either merge it with the current buffer and flush, or if 1598 * there was a race with interrupts (prefix == true) then just 1599 * flush it out and store this line separately. 1600 * If the preceding printk was from a different task and missed 1601 * a newline, flush and append the newline. 1602 */ 1603 if (cont.len) { 1604 if (cont.owner == current && !(lflags & LOG_PREFIX)) 1605 stored = cont_add(facility, level, text, 1606 text_len); 1607 cont_flush(LOG_NEWLINE); 1608 } 1609 1610 if (!stored) 1611 log_store(facility, level, lflags, 0, 1612 dict, dictlen, text, text_len); 1613 } 1614 printed_len += text_len; 1615 1616 /* 1617 * Try to acquire and then immediately release the console semaphore. 1618 * The release will print out buffers and wake up /dev/kmsg and syslog() 1619 * users. 1620 * 1621 * The console_trylock_for_printk() function will release 'logbuf_lock' 1622 * regardless of whether it actually gets the console semaphore or not. 1623 */ 1624 if (console_trylock_for_printk(this_cpu)) 1625 console_unlock(); 1626 1627 lockdep_on(); 1628 out_restore_irqs: 1629 local_irq_restore(flags); 1630 1631 return printed_len; 1632 } 1633 EXPORT_SYMBOL(vprintk_emit); 1634 1635 asmlinkage int vprintk(const char *fmt, va_list args) 1636 { 1637 return vprintk_emit(0, -1, NULL, 0, fmt, args); 1638 } 1639 EXPORT_SYMBOL(vprintk); 1640 1641 asmlinkage int printk_emit(int facility, int level, 1642 const char *dict, size_t dictlen, 1643 const char *fmt, ...) 1644 { 1645 va_list args; 1646 int r; 1647 1648 va_start(args, fmt); 1649 r = vprintk_emit(facility, level, dict, dictlen, fmt, args); 1650 va_end(args); 1651 1652 return r; 1653 } 1654 EXPORT_SYMBOL(printk_emit); 1655 1656 /** 1657 * printk - print a kernel message 1658 * @fmt: format string 1659 * 1660 * This is printk(). It can be called from any context. We want it to work. 1661 * 1662 * We try to grab the console_lock. If we succeed, it's easy - we log the 1663 * output and call the console drivers. If we fail to get the semaphore, we 1664 * place the output into the log buffer and return. The current holder of 1665 * the console_sem will notice the new output in console_unlock(); and will 1666 * send it to the consoles before releasing the lock. 1667 * 1668 * One effect of this deferred printing is that code which calls printk() and 1669 * then changes console_loglevel may break. This is because console_loglevel 1670 * is inspected when the actual printing occurs. 1671 * 1672 * See also: 1673 * printf(3) 1674 * 1675 * See the vsnprintf() documentation for format string extensions over C99. 1676 */ 1677 asmlinkage int printk(const char *fmt, ...) 1678 { 1679 va_list args; 1680 int r; 1681 1682 #ifdef CONFIG_KGDB_KDB 1683 if (unlikely(kdb_trap_printk)) { 1684 va_start(args, fmt); 1685 r = vkdb_printf(fmt, args); 1686 va_end(args); 1687 return r; 1688 } 1689 #endif 1690 va_start(args, fmt); 1691 r = vprintk_emit(0, -1, NULL, 0, fmt, args); 1692 va_end(args); 1693 1694 return r; 1695 } 1696 EXPORT_SYMBOL(printk); 1697 1698 #else /* CONFIG_PRINTK */ 1699 1700 #define LOG_LINE_MAX 0 1701 #define PREFIX_MAX 0 1702 #define LOG_LINE_MAX 0 1703 static u64 syslog_seq; 1704 static u32 syslog_idx; 1705 static u64 console_seq; 1706 static u32 console_idx; 1707 static enum log_flags syslog_prev; 1708 static u64 log_first_seq; 1709 static u32 log_first_idx; 1710 static u64 log_next_seq; 1711 static enum log_flags console_prev; 1712 static struct cont { 1713 size_t len; 1714 size_t cons; 1715 u8 level; 1716 bool flushed:1; 1717 } cont; 1718 static struct printk_log *log_from_idx(u32 idx) { return NULL; } 1719 static u32 log_next(u32 idx) { return 0; } 1720 static void call_console_drivers(int level, const char *text, size_t len) {} 1721 static size_t msg_print_text(const struct printk_log *msg, enum log_flags prev, 1722 bool syslog, char *buf, size_t size) { return 0; } 1723 static size_t cont_print_text(char *text, size_t size) { return 0; } 1724 1725 #endif /* CONFIG_PRINTK */ 1726 1727 #ifdef CONFIG_EARLY_PRINTK 1728 struct console *early_console; 1729 1730 void early_vprintk(const char *fmt, va_list ap) 1731 { 1732 if (early_console) { 1733 char buf[512]; 1734 int n = vscnprintf(buf, sizeof(buf), fmt, ap); 1735 1736 early_console->write(early_console, buf, n); 1737 } 1738 } 1739 1740 asmlinkage void early_printk(const char *fmt, ...) 1741 { 1742 va_list ap; 1743 1744 va_start(ap, fmt); 1745 early_vprintk(fmt, ap); 1746 va_end(ap); 1747 } 1748 #endif 1749 1750 static int __add_preferred_console(char *name, int idx, char *options, 1751 char *brl_options) 1752 { 1753 struct console_cmdline *c; 1754 int i; 1755 1756 /* 1757 * See if this tty is not yet registered, and 1758 * if we have a slot free. 1759 */ 1760 for (i = 0, c = console_cmdline; 1761 i < MAX_CMDLINECONSOLES && c->name[0]; 1762 i++, c++) { 1763 if (strcmp(c->name, name) == 0 && c->index == idx) { 1764 if (!brl_options) 1765 selected_console = i; 1766 return 0; 1767 } 1768 } 1769 if (i == MAX_CMDLINECONSOLES) 1770 return -E2BIG; 1771 if (!brl_options) 1772 selected_console = i; 1773 strlcpy(c->name, name, sizeof(c->name)); 1774 c->options = options; 1775 braille_set_options(c, brl_options); 1776 1777 c->index = idx; 1778 return 0; 1779 } 1780 /* 1781 * Set up a list of consoles. Called from init/main.c 1782 */ 1783 static int __init console_setup(char *str) 1784 { 1785 char buf[sizeof(console_cmdline[0].name) + 4]; /* 4 for index */ 1786 char *s, *options, *brl_options = NULL; 1787 int idx; 1788 1789 if (_braille_console_setup(&str, &brl_options)) 1790 return 1; 1791 1792 /* 1793 * Decode str into name, index, options. 1794 */ 1795 if (str[0] >= '0' && str[0] <= '9') { 1796 strcpy(buf, "ttyS"); 1797 strncpy(buf + 4, str, sizeof(buf) - 5); 1798 } else { 1799 strncpy(buf, str, sizeof(buf) - 1); 1800 } 1801 buf[sizeof(buf) - 1] = 0; 1802 if ((options = strchr(str, ',')) != NULL) 1803 *(options++) = 0; 1804 #ifdef __sparc__ 1805 if (!strcmp(str, "ttya")) 1806 strcpy(buf, "ttyS0"); 1807 if (!strcmp(str, "ttyb")) 1808 strcpy(buf, "ttyS1"); 1809 #endif 1810 for (s = buf; *s; s++) 1811 if ((*s >= '0' && *s <= '9') || *s == ',') 1812 break; 1813 idx = simple_strtoul(s, NULL, 10); 1814 *s = 0; 1815 1816 __add_preferred_console(buf, idx, options, brl_options); 1817 console_set_on_cmdline = 1; 1818 return 1; 1819 } 1820 __setup("console=", console_setup); 1821 1822 /** 1823 * add_preferred_console - add a device to the list of preferred consoles. 1824 * @name: device name 1825 * @idx: device index 1826 * @options: options for this console 1827 * 1828 * The last preferred console added will be used for kernel messages 1829 * and stdin/out/err for init. Normally this is used by console_setup 1830 * above to handle user-supplied console arguments; however it can also 1831 * be used by arch-specific code either to override the user or more 1832 * commonly to provide a default console (ie from PROM variables) when 1833 * the user has not supplied one. 1834 */ 1835 int add_preferred_console(char *name, int idx, char *options) 1836 { 1837 return __add_preferred_console(name, idx, options, NULL); 1838 } 1839 1840 int update_console_cmdline(char *name, int idx, char *name_new, int idx_new, char *options) 1841 { 1842 struct console_cmdline *c; 1843 int i; 1844 1845 for (i = 0, c = console_cmdline; 1846 i < MAX_CMDLINECONSOLES && c->name[0]; 1847 i++, c++) 1848 if (strcmp(c->name, name) == 0 && c->index == idx) { 1849 strlcpy(c->name, name_new, sizeof(c->name)); 1850 c->name[sizeof(c->name) - 1] = 0; 1851 c->options = options; 1852 c->index = idx_new; 1853 return i; 1854 } 1855 /* not found */ 1856 return -1; 1857 } 1858 1859 bool console_suspend_enabled = 1; 1860 EXPORT_SYMBOL(console_suspend_enabled); 1861 1862 static int __init console_suspend_disable(char *str) 1863 { 1864 console_suspend_enabled = 0; 1865 return 1; 1866 } 1867 __setup("no_console_suspend", console_suspend_disable); 1868 module_param_named(console_suspend, console_suspend_enabled, 1869 bool, S_IRUGO | S_IWUSR); 1870 MODULE_PARM_DESC(console_suspend, "suspend console during suspend" 1871 " and hibernate operations"); 1872 1873 /** 1874 * suspend_console - suspend the console subsystem 1875 * 1876 * This disables printk() while we go into suspend states 1877 */ 1878 void suspend_console(void) 1879 { 1880 if (!console_suspend_enabled) 1881 return; 1882 printk("Suspending console(s) (use no_console_suspend to debug)\n"); 1883 console_lock(); 1884 console_suspended = 1; 1885 up(&console_sem); 1886 mutex_release(&console_lock_dep_map, 1, _RET_IP_); 1887 } 1888 1889 void resume_console(void) 1890 { 1891 if (!console_suspend_enabled) 1892 return; 1893 down(&console_sem); 1894 mutex_acquire(&console_lock_dep_map, 0, 0, _RET_IP_); 1895 console_suspended = 0; 1896 console_unlock(); 1897 } 1898 1899 /** 1900 * console_cpu_notify - print deferred console messages after CPU hotplug 1901 * @self: notifier struct 1902 * @action: CPU hotplug event 1903 * @hcpu: unused 1904 * 1905 * If printk() is called from a CPU that is not online yet, the messages 1906 * will be spooled but will not show up on the console. This function is 1907 * called when a new CPU comes online (or fails to come up), and ensures 1908 * that any such output gets printed. 1909 */ 1910 static int console_cpu_notify(struct notifier_block *self, 1911 unsigned long action, void *hcpu) 1912 { 1913 switch (action) { 1914 case CPU_ONLINE: 1915 case CPU_DEAD: 1916 case CPU_DOWN_FAILED: 1917 case CPU_UP_CANCELED: 1918 console_lock(); 1919 console_unlock(); 1920 } 1921 return NOTIFY_OK; 1922 } 1923 1924 /** 1925 * console_lock - lock the console system for exclusive use. 1926 * 1927 * Acquires a lock which guarantees that the caller has 1928 * exclusive access to the console system and the console_drivers list. 1929 * 1930 * Can sleep, returns nothing. 1931 */ 1932 void console_lock(void) 1933 { 1934 might_sleep(); 1935 1936 down(&console_sem); 1937 if (console_suspended) 1938 return; 1939 console_locked = 1; 1940 console_may_schedule = 1; 1941 mutex_acquire(&console_lock_dep_map, 0, 0, _RET_IP_); 1942 } 1943 EXPORT_SYMBOL(console_lock); 1944 1945 /** 1946 * console_trylock - try to lock the console system for exclusive use. 1947 * 1948 * Tried to acquire a lock which guarantees that the caller has 1949 * exclusive access to the console system and the console_drivers list. 1950 * 1951 * returns 1 on success, and 0 on failure to acquire the lock. 1952 */ 1953 int console_trylock(void) 1954 { 1955 if (down_trylock(&console_sem)) 1956 return 0; 1957 if (console_suspended) { 1958 up(&console_sem); 1959 return 0; 1960 } 1961 console_locked = 1; 1962 console_may_schedule = 0; 1963 mutex_acquire(&console_lock_dep_map, 0, 1, _RET_IP_); 1964 return 1; 1965 } 1966 EXPORT_SYMBOL(console_trylock); 1967 1968 int is_console_locked(void) 1969 { 1970 return console_locked; 1971 } 1972 1973 static void console_cont_flush(char *text, size_t size) 1974 { 1975 unsigned long flags; 1976 size_t len; 1977 1978 raw_spin_lock_irqsave(&logbuf_lock, flags); 1979 1980 if (!cont.len) 1981 goto out; 1982 1983 /* 1984 * We still queue earlier records, likely because the console was 1985 * busy. The earlier ones need to be printed before this one, we 1986 * did not flush any fragment so far, so just let it queue up. 1987 */ 1988 if (console_seq < log_next_seq && !cont.cons) 1989 goto out; 1990 1991 len = cont_print_text(text, size); 1992 raw_spin_unlock(&logbuf_lock); 1993 stop_critical_timings(); 1994 call_console_drivers(cont.level, text, len); 1995 start_critical_timings(); 1996 local_irq_restore(flags); 1997 return; 1998 out: 1999 raw_spin_unlock_irqrestore(&logbuf_lock, flags); 2000 } 2001 2002 /** 2003 * console_unlock - unlock the console system 2004 * 2005 * Releases the console_lock which the caller holds on the console system 2006 * and the console driver list. 2007 * 2008 * While the console_lock was held, console output may have been buffered 2009 * by printk(). If this is the case, console_unlock(); emits 2010 * the output prior to releasing the lock. 2011 * 2012 * If there is output waiting, we wake /dev/kmsg and syslog() users. 2013 * 2014 * console_unlock(); may be called from any context. 2015 */ 2016 void console_unlock(void) 2017 { 2018 static char text[LOG_LINE_MAX + PREFIX_MAX]; 2019 static u64 seen_seq; 2020 unsigned long flags; 2021 bool wake_klogd = false; 2022 bool retry; 2023 2024 if (console_suspended) { 2025 up(&console_sem); 2026 return; 2027 } 2028 2029 console_may_schedule = 0; 2030 2031 /* flush buffered message fragment immediately to console */ 2032 console_cont_flush(text, sizeof(text)); 2033 again: 2034 for (;;) { 2035 struct printk_log *msg; 2036 size_t len; 2037 int level; 2038 2039 raw_spin_lock_irqsave(&logbuf_lock, flags); 2040 if (seen_seq != log_next_seq) { 2041 wake_klogd = true; 2042 seen_seq = log_next_seq; 2043 } 2044 2045 if (console_seq < log_first_seq) { 2046 /* messages are gone, move to first one */ 2047 console_seq = log_first_seq; 2048 console_idx = log_first_idx; 2049 console_prev = 0; 2050 } 2051 skip: 2052 if (console_seq == log_next_seq) 2053 break; 2054 2055 msg = log_from_idx(console_idx); 2056 if (msg->flags & LOG_NOCONS) { 2057 /* 2058 * Skip record we have buffered and already printed 2059 * directly to the console when we received it. 2060 */ 2061 console_idx = log_next(console_idx); 2062 console_seq++; 2063 /* 2064 * We will get here again when we register a new 2065 * CON_PRINTBUFFER console. Clear the flag so we 2066 * will properly dump everything later. 2067 */ 2068 msg->flags &= ~LOG_NOCONS; 2069 console_prev = msg->flags; 2070 goto skip; 2071 } 2072 2073 level = msg->level; 2074 len = msg_print_text(msg, console_prev, false, 2075 text, sizeof(text)); 2076 console_idx = log_next(console_idx); 2077 console_seq++; 2078 console_prev = msg->flags; 2079 raw_spin_unlock(&logbuf_lock); 2080 2081 stop_critical_timings(); /* don't trace print latency */ 2082 call_console_drivers(level, text, len); 2083 start_critical_timings(); 2084 local_irq_restore(flags); 2085 } 2086 console_locked = 0; 2087 mutex_release(&console_lock_dep_map, 1, _RET_IP_); 2088 2089 /* Release the exclusive_console once it is used */ 2090 if (unlikely(exclusive_console)) 2091 exclusive_console = NULL; 2092 2093 raw_spin_unlock(&logbuf_lock); 2094 2095 up(&console_sem); 2096 2097 /* 2098 * Someone could have filled up the buffer again, so re-check if there's 2099 * something to flush. In case we cannot trylock the console_sem again, 2100 * there's a new owner and the console_unlock() from them will do the 2101 * flush, no worries. 2102 */ 2103 raw_spin_lock(&logbuf_lock); 2104 retry = console_seq != log_next_seq; 2105 raw_spin_unlock_irqrestore(&logbuf_lock, flags); 2106 2107 if (retry && console_trylock()) 2108 goto again; 2109 2110 if (wake_klogd) 2111 wake_up_klogd(); 2112 } 2113 EXPORT_SYMBOL(console_unlock); 2114 2115 /** 2116 * console_conditional_schedule - yield the CPU if required 2117 * 2118 * If the console code is currently allowed to sleep, and 2119 * if this CPU should yield the CPU to another task, do 2120 * so here. 2121 * 2122 * Must be called within console_lock();. 2123 */ 2124 void __sched console_conditional_schedule(void) 2125 { 2126 if (console_may_schedule) 2127 cond_resched(); 2128 } 2129 EXPORT_SYMBOL(console_conditional_schedule); 2130 2131 void console_unblank(void) 2132 { 2133 struct console *c; 2134 2135 /* 2136 * console_unblank can no longer be called in interrupt context unless 2137 * oops_in_progress is set to 1.. 2138 */ 2139 if (oops_in_progress) { 2140 if (down_trylock(&console_sem) != 0) 2141 return; 2142 } else 2143 console_lock(); 2144 2145 console_locked = 1; 2146 console_may_schedule = 0; 2147 for_each_console(c) 2148 if ((c->flags & CON_ENABLED) && c->unblank) 2149 c->unblank(); 2150 console_unlock(); 2151 } 2152 2153 /* 2154 * Return the console tty driver structure and its associated index 2155 */ 2156 struct tty_driver *console_device(int *index) 2157 { 2158 struct console *c; 2159 struct tty_driver *driver = NULL; 2160 2161 console_lock(); 2162 for_each_console(c) { 2163 if (!c->device) 2164 continue; 2165 driver = c->device(c, index); 2166 if (driver) 2167 break; 2168 } 2169 console_unlock(); 2170 return driver; 2171 } 2172 2173 /* 2174 * Prevent further output on the passed console device so that (for example) 2175 * serial drivers can disable console output before suspending a port, and can 2176 * re-enable output afterwards. 2177 */ 2178 void console_stop(struct console *console) 2179 { 2180 console_lock(); 2181 console->flags &= ~CON_ENABLED; 2182 console_unlock(); 2183 } 2184 EXPORT_SYMBOL(console_stop); 2185 2186 void console_start(struct console *console) 2187 { 2188 console_lock(); 2189 console->flags |= CON_ENABLED; 2190 console_unlock(); 2191 } 2192 EXPORT_SYMBOL(console_start); 2193 2194 static int __read_mostly keep_bootcon; 2195 2196 static int __init keep_bootcon_setup(char *str) 2197 { 2198 keep_bootcon = 1; 2199 pr_info("debug: skip boot console de-registration.\n"); 2200 2201 return 0; 2202 } 2203 2204 early_param("keep_bootcon", keep_bootcon_setup); 2205 2206 /* 2207 * The console driver calls this routine during kernel initialization 2208 * to register the console printing procedure with printk() and to 2209 * print any messages that were printed by the kernel before the 2210 * console driver was initialized. 2211 * 2212 * This can happen pretty early during the boot process (because of 2213 * early_printk) - sometimes before setup_arch() completes - be careful 2214 * of what kernel features are used - they may not be initialised yet. 2215 * 2216 * There are two types of consoles - bootconsoles (early_printk) and 2217 * "real" consoles (everything which is not a bootconsole) which are 2218 * handled differently. 2219 * - Any number of bootconsoles can be registered at any time. 2220 * - As soon as a "real" console is registered, all bootconsoles 2221 * will be unregistered automatically. 2222 * - Once a "real" console is registered, any attempt to register a 2223 * bootconsoles will be rejected 2224 */ 2225 void register_console(struct console *newcon) 2226 { 2227 int i; 2228 unsigned long flags; 2229 struct console *bcon = NULL; 2230 struct console_cmdline *c; 2231 2232 if (console_drivers) 2233 for_each_console(bcon) 2234 if (WARN(bcon == newcon, 2235 "console '%s%d' already registered\n", 2236 bcon->name, bcon->index)) 2237 return; 2238 2239 /* 2240 * before we register a new CON_BOOT console, make sure we don't 2241 * already have a valid console 2242 */ 2243 if (console_drivers && newcon->flags & CON_BOOT) { 2244 /* find the last or real console */ 2245 for_each_console(bcon) { 2246 if (!(bcon->flags & CON_BOOT)) { 2247 pr_info("Too late to register bootconsole %s%d\n", 2248 newcon->name, newcon->index); 2249 return; 2250 } 2251 } 2252 } 2253 2254 if (console_drivers && console_drivers->flags & CON_BOOT) 2255 bcon = console_drivers; 2256 2257 if (preferred_console < 0 || bcon || !console_drivers) 2258 preferred_console = selected_console; 2259 2260 if (newcon->early_setup) 2261 newcon->early_setup(); 2262 2263 /* 2264 * See if we want to use this console driver. If we 2265 * didn't select a console we take the first one 2266 * that registers here. 2267 */ 2268 if (preferred_console < 0) { 2269 if (newcon->index < 0) 2270 newcon->index = 0; 2271 if (newcon->setup == NULL || 2272 newcon->setup(newcon, NULL) == 0) { 2273 newcon->flags |= CON_ENABLED; 2274 if (newcon->device) { 2275 newcon->flags |= CON_CONSDEV; 2276 preferred_console = 0; 2277 } 2278 } 2279 } 2280 2281 /* 2282 * See if this console matches one we selected on 2283 * the command line. 2284 */ 2285 for (i = 0, c = console_cmdline; 2286 i < MAX_CMDLINECONSOLES && c->name[0]; 2287 i++, c++) { 2288 if (strcmp(c->name, newcon->name) != 0) 2289 continue; 2290 if (newcon->index >= 0 && 2291 newcon->index != c->index) 2292 continue; 2293 if (newcon->index < 0) 2294 newcon->index = c->index; 2295 2296 if (_braille_register_console(newcon, c)) 2297 return; 2298 2299 if (newcon->setup && 2300 newcon->setup(newcon, console_cmdline[i].options) != 0) 2301 break; 2302 newcon->flags |= CON_ENABLED; 2303 newcon->index = c->index; 2304 if (i == selected_console) { 2305 newcon->flags |= CON_CONSDEV; 2306 preferred_console = selected_console; 2307 } 2308 break; 2309 } 2310 2311 if (!(newcon->flags & CON_ENABLED)) 2312 return; 2313 2314 /* 2315 * If we have a bootconsole, and are switching to a real console, 2316 * don't print everything out again, since when the boot console, and 2317 * the real console are the same physical device, it's annoying to 2318 * see the beginning boot messages twice 2319 */ 2320 if (bcon && ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV)) 2321 newcon->flags &= ~CON_PRINTBUFFER; 2322 2323 /* 2324 * Put this console in the list - keep the 2325 * preferred driver at the head of the list. 2326 */ 2327 console_lock(); 2328 if ((newcon->flags & CON_CONSDEV) || console_drivers == NULL) { 2329 newcon->next = console_drivers; 2330 console_drivers = newcon; 2331 if (newcon->next) 2332 newcon->next->flags &= ~CON_CONSDEV; 2333 } else { 2334 newcon->next = console_drivers->next; 2335 console_drivers->next = newcon; 2336 } 2337 if (newcon->flags & CON_PRINTBUFFER) { 2338 /* 2339 * console_unlock(); will print out the buffered messages 2340 * for us. 2341 */ 2342 raw_spin_lock_irqsave(&logbuf_lock, flags); 2343 console_seq = syslog_seq; 2344 console_idx = syslog_idx; 2345 console_prev = syslog_prev; 2346 raw_spin_unlock_irqrestore(&logbuf_lock, flags); 2347 /* 2348 * We're about to replay the log buffer. Only do this to the 2349 * just-registered console to avoid excessive message spam to 2350 * the already-registered consoles. 2351 */ 2352 exclusive_console = newcon; 2353 } 2354 console_unlock(); 2355 console_sysfs_notify(); 2356 2357 /* 2358 * By unregistering the bootconsoles after we enable the real console 2359 * we get the "console xxx enabled" message on all the consoles - 2360 * boot consoles, real consoles, etc - this is to ensure that end 2361 * users know there might be something in the kernel's log buffer that 2362 * went to the bootconsole (that they do not see on the real console) 2363 */ 2364 pr_info("%sconsole [%s%d] enabled\n", 2365 (newcon->flags & CON_BOOT) ? "boot" : "" , 2366 newcon->name, newcon->index); 2367 if (bcon && 2368 ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV) && 2369 !keep_bootcon) { 2370 /* We need to iterate through all boot consoles, to make 2371 * sure we print everything out, before we unregister them. 2372 */ 2373 for_each_console(bcon) 2374 if (bcon->flags & CON_BOOT) 2375 unregister_console(bcon); 2376 } 2377 } 2378 EXPORT_SYMBOL(register_console); 2379 2380 int unregister_console(struct console *console) 2381 { 2382 struct console *a, *b; 2383 int res; 2384 2385 pr_info("%sconsole [%s%d] disabled\n", 2386 (console->flags & CON_BOOT) ? "boot" : "" , 2387 console->name, console->index); 2388 2389 res = _braille_unregister_console(console); 2390 if (res) 2391 return res; 2392 2393 res = 1; 2394 console_lock(); 2395 if (console_drivers == console) { 2396 console_drivers=console->next; 2397 res = 0; 2398 } else if (console_drivers) { 2399 for (a=console_drivers->next, b=console_drivers ; 2400 a; b=a, a=b->next) { 2401 if (a == console) { 2402 b->next = a->next; 2403 res = 0; 2404 break; 2405 } 2406 } 2407 } 2408 2409 /* 2410 * If this isn't the last console and it has CON_CONSDEV set, we 2411 * need to set it on the next preferred console. 2412 */ 2413 if (console_drivers != NULL && console->flags & CON_CONSDEV) 2414 console_drivers->flags |= CON_CONSDEV; 2415 2416 console_unlock(); 2417 console_sysfs_notify(); 2418 return res; 2419 } 2420 EXPORT_SYMBOL(unregister_console); 2421 2422 static int __init printk_late_init(void) 2423 { 2424 struct console *con; 2425 2426 for_each_console(con) { 2427 if (!keep_bootcon && con->flags & CON_BOOT) { 2428 unregister_console(con); 2429 } 2430 } 2431 hotcpu_notifier(console_cpu_notify, 0); 2432 return 0; 2433 } 2434 late_initcall(printk_late_init); 2435 2436 #if defined CONFIG_PRINTK 2437 /* 2438 * Delayed printk version, for scheduler-internal messages: 2439 */ 2440 #define PRINTK_BUF_SIZE 512 2441 2442 #define PRINTK_PENDING_WAKEUP 0x01 2443 #define PRINTK_PENDING_SCHED 0x02 2444 2445 static DEFINE_PER_CPU(int, printk_pending); 2446 static DEFINE_PER_CPU(char [PRINTK_BUF_SIZE], printk_sched_buf); 2447 2448 static void wake_up_klogd_work_func(struct irq_work *irq_work) 2449 { 2450 int pending = __this_cpu_xchg(printk_pending, 0); 2451 2452 if (pending & PRINTK_PENDING_SCHED) { 2453 char *buf = __get_cpu_var(printk_sched_buf); 2454 pr_warn("[sched_delayed] %s", buf); 2455 } 2456 2457 if (pending & PRINTK_PENDING_WAKEUP) 2458 wake_up_interruptible(&log_wait); 2459 } 2460 2461 static DEFINE_PER_CPU(struct irq_work, wake_up_klogd_work) = { 2462 .func = wake_up_klogd_work_func, 2463 .flags = IRQ_WORK_LAZY, 2464 }; 2465 2466 void wake_up_klogd(void) 2467 { 2468 preempt_disable(); 2469 if (waitqueue_active(&log_wait)) { 2470 this_cpu_or(printk_pending, PRINTK_PENDING_WAKEUP); 2471 irq_work_queue(&__get_cpu_var(wake_up_klogd_work)); 2472 } 2473 preempt_enable(); 2474 } 2475 2476 int printk_sched(const char *fmt, ...) 2477 { 2478 unsigned long flags; 2479 va_list args; 2480 char *buf; 2481 int r; 2482 2483 local_irq_save(flags); 2484 buf = __get_cpu_var(printk_sched_buf); 2485 2486 va_start(args, fmt); 2487 r = vsnprintf(buf, PRINTK_BUF_SIZE, fmt, args); 2488 va_end(args); 2489 2490 __this_cpu_or(printk_pending, PRINTK_PENDING_SCHED); 2491 irq_work_queue(&__get_cpu_var(wake_up_klogd_work)); 2492 local_irq_restore(flags); 2493 2494 return r; 2495 } 2496 2497 /* 2498 * printk rate limiting, lifted from the networking subsystem. 2499 * 2500 * This enforces a rate limit: not more than 10 kernel messages 2501 * every 5s to make a denial-of-service attack impossible. 2502 */ 2503 DEFINE_RATELIMIT_STATE(printk_ratelimit_state, 5 * HZ, 10); 2504 2505 int __printk_ratelimit(const char *func) 2506 { 2507 return ___ratelimit(&printk_ratelimit_state, func); 2508 } 2509 EXPORT_SYMBOL(__printk_ratelimit); 2510 2511 /** 2512 * printk_timed_ratelimit - caller-controlled printk ratelimiting 2513 * @caller_jiffies: pointer to caller's state 2514 * @interval_msecs: minimum interval between prints 2515 * 2516 * printk_timed_ratelimit() returns true if more than @interval_msecs 2517 * milliseconds have elapsed since the last time printk_timed_ratelimit() 2518 * returned true. 2519 */ 2520 bool printk_timed_ratelimit(unsigned long *caller_jiffies, 2521 unsigned int interval_msecs) 2522 { 2523 if (*caller_jiffies == 0 2524 || !time_in_range(jiffies, *caller_jiffies, 2525 *caller_jiffies 2526 + msecs_to_jiffies(interval_msecs))) { 2527 *caller_jiffies = jiffies; 2528 return true; 2529 } 2530 return false; 2531 } 2532 EXPORT_SYMBOL(printk_timed_ratelimit); 2533 2534 static DEFINE_SPINLOCK(dump_list_lock); 2535 static LIST_HEAD(dump_list); 2536 2537 /** 2538 * kmsg_dump_register - register a kernel log dumper. 2539 * @dumper: pointer to the kmsg_dumper structure 2540 * 2541 * Adds a kernel log dumper to the system. The dump callback in the 2542 * structure will be called when the kernel oopses or panics and must be 2543 * set. Returns zero on success and %-EINVAL or %-EBUSY otherwise. 2544 */ 2545 int kmsg_dump_register(struct kmsg_dumper *dumper) 2546 { 2547 unsigned long flags; 2548 int err = -EBUSY; 2549 2550 /* The dump callback needs to be set */ 2551 if (!dumper->dump) 2552 return -EINVAL; 2553 2554 spin_lock_irqsave(&dump_list_lock, flags); 2555 /* Don't allow registering multiple times */ 2556 if (!dumper->registered) { 2557 dumper->registered = 1; 2558 list_add_tail_rcu(&dumper->list, &dump_list); 2559 err = 0; 2560 } 2561 spin_unlock_irqrestore(&dump_list_lock, flags); 2562 2563 return err; 2564 } 2565 EXPORT_SYMBOL_GPL(kmsg_dump_register); 2566 2567 /** 2568 * kmsg_dump_unregister - unregister a kmsg dumper. 2569 * @dumper: pointer to the kmsg_dumper structure 2570 * 2571 * Removes a dump device from the system. Returns zero on success and 2572 * %-EINVAL otherwise. 2573 */ 2574 int kmsg_dump_unregister(struct kmsg_dumper *dumper) 2575 { 2576 unsigned long flags; 2577 int err = -EINVAL; 2578 2579 spin_lock_irqsave(&dump_list_lock, flags); 2580 if (dumper->registered) { 2581 dumper->registered = 0; 2582 list_del_rcu(&dumper->list); 2583 err = 0; 2584 } 2585 spin_unlock_irqrestore(&dump_list_lock, flags); 2586 synchronize_rcu(); 2587 2588 return err; 2589 } 2590 EXPORT_SYMBOL_GPL(kmsg_dump_unregister); 2591 2592 static bool always_kmsg_dump; 2593 module_param_named(always_kmsg_dump, always_kmsg_dump, bool, S_IRUGO | S_IWUSR); 2594 2595 /** 2596 * kmsg_dump - dump kernel log to kernel message dumpers. 2597 * @reason: the reason (oops, panic etc) for dumping 2598 * 2599 * Call each of the registered dumper's dump() callback, which can 2600 * retrieve the kmsg records with kmsg_dump_get_line() or 2601 * kmsg_dump_get_buffer(). 2602 */ 2603 void kmsg_dump(enum kmsg_dump_reason reason) 2604 { 2605 struct kmsg_dumper *dumper; 2606 unsigned long flags; 2607 2608 if ((reason > KMSG_DUMP_OOPS) && !always_kmsg_dump) 2609 return; 2610 2611 rcu_read_lock(); 2612 list_for_each_entry_rcu(dumper, &dump_list, list) { 2613 if (dumper->max_reason && reason > dumper->max_reason) 2614 continue; 2615 2616 /* initialize iterator with data about the stored records */ 2617 dumper->active = true; 2618 2619 raw_spin_lock_irqsave(&logbuf_lock, flags); 2620 dumper->cur_seq = clear_seq; 2621 dumper->cur_idx = clear_idx; 2622 dumper->next_seq = log_next_seq; 2623 dumper->next_idx = log_next_idx; 2624 raw_spin_unlock_irqrestore(&logbuf_lock, flags); 2625 2626 /* invoke dumper which will iterate over records */ 2627 dumper->dump(dumper, reason); 2628 2629 /* reset iterator */ 2630 dumper->active = false; 2631 } 2632 rcu_read_unlock(); 2633 } 2634 2635 /** 2636 * kmsg_dump_get_line_nolock - retrieve one kmsg log line (unlocked version) 2637 * @dumper: registered kmsg dumper 2638 * @syslog: include the "<4>" prefixes 2639 * @line: buffer to copy the line to 2640 * @size: maximum size of the buffer 2641 * @len: length of line placed into buffer 2642 * 2643 * Start at the beginning of the kmsg buffer, with the oldest kmsg 2644 * record, and copy one record into the provided buffer. 2645 * 2646 * Consecutive calls will return the next available record moving 2647 * towards the end of the buffer with the youngest messages. 2648 * 2649 * A return value of FALSE indicates that there are no more records to 2650 * read. 2651 * 2652 * The function is similar to kmsg_dump_get_line(), but grabs no locks. 2653 */ 2654 bool kmsg_dump_get_line_nolock(struct kmsg_dumper *dumper, bool syslog, 2655 char *line, size_t size, size_t *len) 2656 { 2657 struct printk_log *msg; 2658 size_t l = 0; 2659 bool ret = false; 2660 2661 if (!dumper->active) 2662 goto out; 2663 2664 if (dumper->cur_seq < log_first_seq) { 2665 /* messages are gone, move to first available one */ 2666 dumper->cur_seq = log_first_seq; 2667 dumper->cur_idx = log_first_idx; 2668 } 2669 2670 /* last entry */ 2671 if (dumper->cur_seq >= log_next_seq) 2672 goto out; 2673 2674 msg = log_from_idx(dumper->cur_idx); 2675 l = msg_print_text(msg, 0, syslog, line, size); 2676 2677 dumper->cur_idx = log_next(dumper->cur_idx); 2678 dumper->cur_seq++; 2679 ret = true; 2680 out: 2681 if (len) 2682 *len = l; 2683 return ret; 2684 } 2685 2686 /** 2687 * kmsg_dump_get_line - retrieve one kmsg log line 2688 * @dumper: registered kmsg dumper 2689 * @syslog: include the "<4>" prefixes 2690 * @line: buffer to copy the line to 2691 * @size: maximum size of the buffer 2692 * @len: length of line placed into buffer 2693 * 2694 * Start at the beginning of the kmsg buffer, with the oldest kmsg 2695 * record, and copy one record into the provided buffer. 2696 * 2697 * Consecutive calls will return the next available record moving 2698 * towards the end of the buffer with the youngest messages. 2699 * 2700 * A return value of FALSE indicates that there are no more records to 2701 * read. 2702 */ 2703 bool kmsg_dump_get_line(struct kmsg_dumper *dumper, bool syslog, 2704 char *line, size_t size, size_t *len) 2705 { 2706 unsigned long flags; 2707 bool ret; 2708 2709 raw_spin_lock_irqsave(&logbuf_lock, flags); 2710 ret = kmsg_dump_get_line_nolock(dumper, syslog, line, size, len); 2711 raw_spin_unlock_irqrestore(&logbuf_lock, flags); 2712 2713 return ret; 2714 } 2715 EXPORT_SYMBOL_GPL(kmsg_dump_get_line); 2716 2717 /** 2718 * kmsg_dump_get_buffer - copy kmsg log lines 2719 * @dumper: registered kmsg dumper 2720 * @syslog: include the "<4>" prefixes 2721 * @buf: buffer to copy the line to 2722 * @size: maximum size of the buffer 2723 * @len: length of line placed into buffer 2724 * 2725 * Start at the end of the kmsg buffer and fill the provided buffer 2726 * with as many of the the *youngest* kmsg records that fit into it. 2727 * If the buffer is large enough, all available kmsg records will be 2728 * copied with a single call. 2729 * 2730 * Consecutive calls will fill the buffer with the next block of 2731 * available older records, not including the earlier retrieved ones. 2732 * 2733 * A return value of FALSE indicates that there are no more records to 2734 * read. 2735 */ 2736 bool kmsg_dump_get_buffer(struct kmsg_dumper *dumper, bool syslog, 2737 char *buf, size_t size, size_t *len) 2738 { 2739 unsigned long flags; 2740 u64 seq; 2741 u32 idx; 2742 u64 next_seq; 2743 u32 next_idx; 2744 enum log_flags prev; 2745 size_t l = 0; 2746 bool ret = false; 2747 2748 if (!dumper->active) 2749 goto out; 2750 2751 raw_spin_lock_irqsave(&logbuf_lock, flags); 2752 if (dumper->cur_seq < log_first_seq) { 2753 /* messages are gone, move to first available one */ 2754 dumper->cur_seq = log_first_seq; 2755 dumper->cur_idx = log_first_idx; 2756 } 2757 2758 /* last entry */ 2759 if (dumper->cur_seq >= dumper->next_seq) { 2760 raw_spin_unlock_irqrestore(&logbuf_lock, flags); 2761 goto out; 2762 } 2763 2764 /* calculate length of entire buffer */ 2765 seq = dumper->cur_seq; 2766 idx = dumper->cur_idx; 2767 prev = 0; 2768 while (seq < dumper->next_seq) { 2769 struct printk_log *msg = log_from_idx(idx); 2770 2771 l += msg_print_text(msg, prev, true, NULL, 0); 2772 idx = log_next(idx); 2773 seq++; 2774 prev = msg->flags; 2775 } 2776 2777 /* move first record forward until length fits into the buffer */ 2778 seq = dumper->cur_seq; 2779 idx = dumper->cur_idx; 2780 prev = 0; 2781 while (l > size && seq < dumper->next_seq) { 2782 struct printk_log *msg = log_from_idx(idx); 2783 2784 l -= msg_print_text(msg, prev, true, NULL, 0); 2785 idx = log_next(idx); 2786 seq++; 2787 prev = msg->flags; 2788 } 2789 2790 /* last message in next interation */ 2791 next_seq = seq; 2792 next_idx = idx; 2793 2794 l = 0; 2795 while (seq < dumper->next_seq) { 2796 struct printk_log *msg = log_from_idx(idx); 2797 2798 l += msg_print_text(msg, prev, syslog, buf + l, size - l); 2799 idx = log_next(idx); 2800 seq++; 2801 prev = msg->flags; 2802 } 2803 2804 dumper->next_seq = next_seq; 2805 dumper->next_idx = next_idx; 2806 ret = true; 2807 raw_spin_unlock_irqrestore(&logbuf_lock, flags); 2808 out: 2809 if (len) 2810 *len = l; 2811 return ret; 2812 } 2813 EXPORT_SYMBOL_GPL(kmsg_dump_get_buffer); 2814 2815 /** 2816 * kmsg_dump_rewind_nolock - reset the interator (unlocked version) 2817 * @dumper: registered kmsg dumper 2818 * 2819 * Reset the dumper's iterator so that kmsg_dump_get_line() and 2820 * kmsg_dump_get_buffer() can be called again and used multiple 2821 * times within the same dumper.dump() callback. 2822 * 2823 * The function is similar to kmsg_dump_rewind(), but grabs no locks. 2824 */ 2825 void kmsg_dump_rewind_nolock(struct kmsg_dumper *dumper) 2826 { 2827 dumper->cur_seq = clear_seq; 2828 dumper->cur_idx = clear_idx; 2829 dumper->next_seq = log_next_seq; 2830 dumper->next_idx = log_next_idx; 2831 } 2832 2833 /** 2834 * kmsg_dump_rewind - reset the interator 2835 * @dumper: registered kmsg dumper 2836 * 2837 * Reset the dumper's iterator so that kmsg_dump_get_line() and 2838 * kmsg_dump_get_buffer() can be called again and used multiple 2839 * times within the same dumper.dump() callback. 2840 */ 2841 void kmsg_dump_rewind(struct kmsg_dumper *dumper) 2842 { 2843 unsigned long flags; 2844 2845 raw_spin_lock_irqsave(&logbuf_lock, flags); 2846 kmsg_dump_rewind_nolock(dumper); 2847 raw_spin_unlock_irqrestore(&logbuf_lock, flags); 2848 } 2849 EXPORT_SYMBOL_GPL(kmsg_dump_rewind); 2850 2851 static char dump_stack_arch_desc_str[128]; 2852 2853 /** 2854 * dump_stack_set_arch_desc - set arch-specific str to show with task dumps 2855 * @fmt: printf-style format string 2856 * @...: arguments for the format string 2857 * 2858 * The configured string will be printed right after utsname during task 2859 * dumps. Usually used to add arch-specific system identifiers. If an 2860 * arch wants to make use of such an ID string, it should initialize this 2861 * as soon as possible during boot. 2862 */ 2863 void __init dump_stack_set_arch_desc(const char *fmt, ...) 2864 { 2865 va_list args; 2866 2867 va_start(args, fmt); 2868 vsnprintf(dump_stack_arch_desc_str, sizeof(dump_stack_arch_desc_str), 2869 fmt, args); 2870 va_end(args); 2871 } 2872 2873 /** 2874 * dump_stack_print_info - print generic debug info for dump_stack() 2875 * @log_lvl: log level 2876 * 2877 * Arch-specific dump_stack() implementations can use this function to 2878 * print out the same debug information as the generic dump_stack(). 2879 */ 2880 void dump_stack_print_info(const char *log_lvl) 2881 { 2882 printk("%sCPU: %d PID: %d Comm: %.20s %s %s %.*s\n", 2883 log_lvl, raw_smp_processor_id(), current->pid, current->comm, 2884 print_tainted(), init_utsname()->release, 2885 (int)strcspn(init_utsname()->version, " "), 2886 init_utsname()->version); 2887 2888 if (dump_stack_arch_desc_str[0] != '\0') 2889 printk("%sHardware name: %s\n", 2890 log_lvl, dump_stack_arch_desc_str); 2891 2892 print_worker_info(log_lvl, current); 2893 } 2894 2895 /** 2896 * show_regs_print_info - print generic debug info for show_regs() 2897 * @log_lvl: log level 2898 * 2899 * show_regs() implementations can use this function to print out generic 2900 * debug information. 2901 */ 2902 void show_regs_print_info(const char *log_lvl) 2903 { 2904 dump_stack_print_info(log_lvl); 2905 2906 printk("%stask: %p ti: %p task.ti: %p\n", 2907 log_lvl, current, current_thread_info(), 2908 task_thread_info(current)); 2909 } 2910 2911 #endif 2912