1 /* 2 * linux/kernel/printk.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 * 6 * Modified to make sys_syslog() more flexible: added commands to 7 * return the last 4k of kernel messages, regardless of whether 8 * they've been read or not. Added option to suppress kernel printk's 9 * to the console. Added hook for sending the console messages 10 * elsewhere, in preparation for a serial line console (someday). 11 * Ted Ts'o, 2/11/93. 12 * Modified for sysctl support, 1/8/97, Chris Horn. 13 * Fixed SMP synchronization, 08/08/99, Manfred Spraul 14 * manfred@colorfullife.com 15 * Rewrote bits to get rid of console_lock 16 * 01Mar01 Andrew Morton 17 */ 18 19 #include <linux/kernel.h> 20 #include <linux/mm.h> 21 #include <linux/tty.h> 22 #include <linux/tty_driver.h> 23 #include <linux/console.h> 24 #include <linux/init.h> 25 #include <linux/jiffies.h> 26 #include <linux/nmi.h> 27 #include <linux/module.h> 28 #include <linux/moduleparam.h> 29 #include <linux/delay.h> 30 #include <linux/smp.h> 31 #include <linux/security.h> 32 #include <linux/bootmem.h> 33 #include <linux/memblock.h> 34 #include <linux/syscalls.h> 35 #include <linux/crash_core.h> 36 #include <linux/kdb.h> 37 #include <linux/ratelimit.h> 38 #include <linux/kmsg_dump.h> 39 #include <linux/syslog.h> 40 #include <linux/cpu.h> 41 #include <linux/notifier.h> 42 #include <linux/rculist.h> 43 #include <linux/poll.h> 44 #include <linux/irq_work.h> 45 #include <linux/ctype.h> 46 #include <linux/uio.h> 47 #include <linux/sched/clock.h> 48 #include <linux/sched/debug.h> 49 #include <linux/sched/task_stack.h> 50 51 #include <linux/uaccess.h> 52 #include <asm/sections.h> 53 54 #include <trace/events/initcall.h> 55 #define CREATE_TRACE_POINTS 56 #include <trace/events/printk.h> 57 58 #include "console_cmdline.h" 59 #include "braille.h" 60 #include "internal.h" 61 62 int console_printk[4] = { 63 CONSOLE_LOGLEVEL_DEFAULT, /* console_loglevel */ 64 MESSAGE_LOGLEVEL_DEFAULT, /* default_message_loglevel */ 65 CONSOLE_LOGLEVEL_MIN, /* minimum_console_loglevel */ 66 CONSOLE_LOGLEVEL_DEFAULT, /* default_console_loglevel */ 67 }; 68 69 /* 70 * Low level drivers may need that to know if they can schedule in 71 * their unblank() callback or not. So let's export it. 72 */ 73 int oops_in_progress; 74 EXPORT_SYMBOL(oops_in_progress); 75 76 /* 77 * console_sem protects the console_drivers list, and also 78 * provides serialisation for access to the entire console 79 * driver system. 80 */ 81 static DEFINE_SEMAPHORE(console_sem); 82 struct console *console_drivers; 83 EXPORT_SYMBOL_GPL(console_drivers); 84 85 #ifdef CONFIG_LOCKDEP 86 static struct lockdep_map console_lock_dep_map = { 87 .name = "console_lock" 88 }; 89 #endif 90 91 enum devkmsg_log_bits { 92 __DEVKMSG_LOG_BIT_ON = 0, 93 __DEVKMSG_LOG_BIT_OFF, 94 __DEVKMSG_LOG_BIT_LOCK, 95 }; 96 97 enum devkmsg_log_masks { 98 DEVKMSG_LOG_MASK_ON = BIT(__DEVKMSG_LOG_BIT_ON), 99 DEVKMSG_LOG_MASK_OFF = BIT(__DEVKMSG_LOG_BIT_OFF), 100 DEVKMSG_LOG_MASK_LOCK = BIT(__DEVKMSG_LOG_BIT_LOCK), 101 }; 102 103 /* Keep both the 'on' and 'off' bits clear, i.e. ratelimit by default: */ 104 #define DEVKMSG_LOG_MASK_DEFAULT 0 105 106 static unsigned int __read_mostly devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT; 107 108 static int __control_devkmsg(char *str) 109 { 110 if (!str) 111 return -EINVAL; 112 113 if (!strncmp(str, "on", 2)) { 114 devkmsg_log = DEVKMSG_LOG_MASK_ON; 115 return 2; 116 } else if (!strncmp(str, "off", 3)) { 117 devkmsg_log = DEVKMSG_LOG_MASK_OFF; 118 return 3; 119 } else if (!strncmp(str, "ratelimit", 9)) { 120 devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT; 121 return 9; 122 } 123 return -EINVAL; 124 } 125 126 static int __init control_devkmsg(char *str) 127 { 128 if (__control_devkmsg(str) < 0) 129 return 1; 130 131 /* 132 * Set sysctl string accordingly: 133 */ 134 if (devkmsg_log == DEVKMSG_LOG_MASK_ON) 135 strcpy(devkmsg_log_str, "on"); 136 else if (devkmsg_log == DEVKMSG_LOG_MASK_OFF) 137 strcpy(devkmsg_log_str, "off"); 138 /* else "ratelimit" which is set by default. */ 139 140 /* 141 * Sysctl cannot change it anymore. The kernel command line setting of 142 * this parameter is to force the setting to be permanent throughout the 143 * runtime of the system. This is a precation measure against userspace 144 * trying to be a smarta** and attempting to change it up on us. 145 */ 146 devkmsg_log |= DEVKMSG_LOG_MASK_LOCK; 147 148 return 0; 149 } 150 __setup("printk.devkmsg=", control_devkmsg); 151 152 char devkmsg_log_str[DEVKMSG_STR_MAX_SIZE] = "ratelimit"; 153 154 int devkmsg_sysctl_set_loglvl(struct ctl_table *table, int write, 155 void __user *buffer, size_t *lenp, loff_t *ppos) 156 { 157 char old_str[DEVKMSG_STR_MAX_SIZE]; 158 unsigned int old; 159 int err; 160 161 if (write) { 162 if (devkmsg_log & DEVKMSG_LOG_MASK_LOCK) 163 return -EINVAL; 164 165 old = devkmsg_log; 166 strncpy(old_str, devkmsg_log_str, DEVKMSG_STR_MAX_SIZE); 167 } 168 169 err = proc_dostring(table, write, buffer, lenp, ppos); 170 if (err) 171 return err; 172 173 if (write) { 174 err = __control_devkmsg(devkmsg_log_str); 175 176 /* 177 * Do not accept an unknown string OR a known string with 178 * trailing crap... 179 */ 180 if (err < 0 || (err + 1 != *lenp)) { 181 182 /* ... and restore old setting. */ 183 devkmsg_log = old; 184 strncpy(devkmsg_log_str, old_str, DEVKMSG_STR_MAX_SIZE); 185 186 return -EINVAL; 187 } 188 } 189 190 return 0; 191 } 192 193 /* 194 * Number of registered extended console drivers. 195 * 196 * If extended consoles are present, in-kernel cont reassembly is disabled 197 * and each fragment is stored as a separate log entry with proper 198 * continuation flag so that every emitted message has full metadata. This 199 * doesn't change the result for regular consoles or /proc/kmsg. For 200 * /dev/kmsg, as long as the reader concatenates messages according to 201 * consecutive continuation flags, the end result should be the same too. 202 */ 203 static int nr_ext_console_drivers; 204 205 /* 206 * Helper macros to handle lockdep when locking/unlocking console_sem. We use 207 * macros instead of functions so that _RET_IP_ contains useful information. 208 */ 209 #define down_console_sem() do { \ 210 down(&console_sem);\ 211 mutex_acquire(&console_lock_dep_map, 0, 0, _RET_IP_);\ 212 } while (0) 213 214 static int __down_trylock_console_sem(unsigned long ip) 215 { 216 int lock_failed; 217 unsigned long flags; 218 219 /* 220 * Here and in __up_console_sem() we need to be in safe mode, 221 * because spindump/WARN/etc from under console ->lock will 222 * deadlock in printk()->down_trylock_console_sem() otherwise. 223 */ 224 printk_safe_enter_irqsave(flags); 225 lock_failed = down_trylock(&console_sem); 226 printk_safe_exit_irqrestore(flags); 227 228 if (lock_failed) 229 return 1; 230 mutex_acquire(&console_lock_dep_map, 0, 1, ip); 231 return 0; 232 } 233 #define down_trylock_console_sem() __down_trylock_console_sem(_RET_IP_) 234 235 static void __up_console_sem(unsigned long ip) 236 { 237 unsigned long flags; 238 239 mutex_release(&console_lock_dep_map, 1, ip); 240 241 printk_safe_enter_irqsave(flags); 242 up(&console_sem); 243 printk_safe_exit_irqrestore(flags); 244 } 245 #define up_console_sem() __up_console_sem(_RET_IP_) 246 247 /* 248 * This is used for debugging the mess that is the VT code by 249 * keeping track if we have the console semaphore held. It's 250 * definitely not the perfect debug tool (we don't know if _WE_ 251 * hold it and are racing, but it helps tracking those weird code 252 * paths in the console code where we end up in places I want 253 * locked without the console sempahore held). 254 */ 255 static int console_locked, console_suspended; 256 257 /* 258 * If exclusive_console is non-NULL then only this console is to be printed to. 259 */ 260 static struct console *exclusive_console; 261 262 /* 263 * Array of consoles built from command line options (console=) 264 */ 265 266 #define MAX_CMDLINECONSOLES 8 267 268 static struct console_cmdline console_cmdline[MAX_CMDLINECONSOLES]; 269 270 static int preferred_console = -1; 271 int console_set_on_cmdline; 272 EXPORT_SYMBOL(console_set_on_cmdline); 273 274 /* Flag: console code may call schedule() */ 275 static int console_may_schedule; 276 277 enum con_msg_format_flags { 278 MSG_FORMAT_DEFAULT = 0, 279 MSG_FORMAT_SYSLOG = (1 << 0), 280 }; 281 282 static int console_msg_format = MSG_FORMAT_DEFAULT; 283 284 /* 285 * The printk log buffer consists of a chain of concatenated variable 286 * length records. Every record starts with a record header, containing 287 * the overall length of the record. 288 * 289 * The heads to the first and last entry in the buffer, as well as the 290 * sequence numbers of these entries are maintained when messages are 291 * stored. 292 * 293 * If the heads indicate available messages, the length in the header 294 * tells the start next message. A length == 0 for the next message 295 * indicates a wrap-around to the beginning of the buffer. 296 * 297 * Every record carries the monotonic timestamp in microseconds, as well as 298 * the standard userspace syslog level and syslog facility. The usual 299 * kernel messages use LOG_KERN; userspace-injected messages always carry 300 * a matching syslog facility, by default LOG_USER. The origin of every 301 * message can be reliably determined that way. 302 * 303 * The human readable log message directly follows the message header. The 304 * length of the message text is stored in the header, the stored message 305 * is not terminated. 306 * 307 * Optionally, a message can carry a dictionary of properties (key/value pairs), 308 * to provide userspace with a machine-readable message context. 309 * 310 * Examples for well-defined, commonly used property names are: 311 * DEVICE=b12:8 device identifier 312 * b12:8 block dev_t 313 * c127:3 char dev_t 314 * n8 netdev ifindex 315 * +sound:card0 subsystem:devname 316 * SUBSYSTEM=pci driver-core subsystem name 317 * 318 * Valid characters in property names are [a-zA-Z0-9.-_]. The plain text value 319 * follows directly after a '=' character. Every property is terminated by 320 * a '\0' character. The last property is not terminated. 321 * 322 * Example of a message structure: 323 * 0000 ff 8f 00 00 00 00 00 00 monotonic time in nsec 324 * 0008 34 00 record is 52 bytes long 325 * 000a 0b 00 text is 11 bytes long 326 * 000c 1f 00 dictionary is 23 bytes long 327 * 000e 03 00 LOG_KERN (facility) LOG_ERR (level) 328 * 0010 69 74 27 73 20 61 20 6c "it's a l" 329 * 69 6e 65 "ine" 330 * 001b 44 45 56 49 43 "DEVIC" 331 * 45 3d 62 38 3a 32 00 44 "E=b8:2\0D" 332 * 52 49 56 45 52 3d 62 75 "RIVER=bu" 333 * 67 "g" 334 * 0032 00 00 00 padding to next message header 335 * 336 * The 'struct printk_log' buffer header must never be directly exported to 337 * userspace, it is a kernel-private implementation detail that might 338 * need to be changed in the future, when the requirements change. 339 * 340 * /dev/kmsg exports the structured data in the following line format: 341 * "<level>,<sequnum>,<timestamp>,<contflag>[,additional_values, ... ];<message text>\n" 342 * 343 * Users of the export format should ignore possible additional values 344 * separated by ',', and find the message after the ';' character. 345 * 346 * The optional key/value pairs are attached as continuation lines starting 347 * with a space character and terminated by a newline. All possible 348 * non-prinatable characters are escaped in the "\xff" notation. 349 */ 350 351 enum log_flags { 352 LOG_NOCONS = 1, /* suppress print, do not print to console */ 353 LOG_NEWLINE = 2, /* text ended with a newline */ 354 LOG_PREFIX = 4, /* text started with a prefix */ 355 LOG_CONT = 8, /* text is a fragment of a continuation line */ 356 }; 357 358 struct printk_log { 359 u64 ts_nsec; /* timestamp in nanoseconds */ 360 u16 len; /* length of entire record */ 361 u16 text_len; /* length of text buffer */ 362 u16 dict_len; /* length of dictionary buffer */ 363 u8 facility; /* syslog facility */ 364 u8 flags:5; /* internal record flags */ 365 u8 level:3; /* syslog level */ 366 } 367 #ifdef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS 368 __packed __aligned(4) 369 #endif 370 ; 371 372 /* 373 * The logbuf_lock protects kmsg buffer, indices, counters. This can be taken 374 * within the scheduler's rq lock. It must be released before calling 375 * console_unlock() or anything else that might wake up a process. 376 */ 377 DEFINE_RAW_SPINLOCK(logbuf_lock); 378 379 /* 380 * Helper macros to lock/unlock logbuf_lock and switch between 381 * printk-safe/unsafe modes. 382 */ 383 #define logbuf_lock_irq() \ 384 do { \ 385 printk_safe_enter_irq(); \ 386 raw_spin_lock(&logbuf_lock); \ 387 } while (0) 388 389 #define logbuf_unlock_irq() \ 390 do { \ 391 raw_spin_unlock(&logbuf_lock); \ 392 printk_safe_exit_irq(); \ 393 } while (0) 394 395 #define logbuf_lock_irqsave(flags) \ 396 do { \ 397 printk_safe_enter_irqsave(flags); \ 398 raw_spin_lock(&logbuf_lock); \ 399 } while (0) 400 401 #define logbuf_unlock_irqrestore(flags) \ 402 do { \ 403 raw_spin_unlock(&logbuf_lock); \ 404 printk_safe_exit_irqrestore(flags); \ 405 } while (0) 406 407 #ifdef CONFIG_PRINTK 408 DECLARE_WAIT_QUEUE_HEAD(log_wait); 409 /* the next printk record to read by syslog(READ) or /proc/kmsg */ 410 static u64 syslog_seq; 411 static u32 syslog_idx; 412 static size_t syslog_partial; 413 414 /* index and sequence number of the first record stored in the buffer */ 415 static u64 log_first_seq; 416 static u32 log_first_idx; 417 418 /* index and sequence number of the next record to store in the buffer */ 419 static u64 log_next_seq; 420 static u32 log_next_idx; 421 422 /* the next printk record to write to the console */ 423 static u64 console_seq; 424 static u32 console_idx; 425 426 /* the next printk record to read after the last 'clear' command */ 427 static u64 clear_seq; 428 static u32 clear_idx; 429 430 #define PREFIX_MAX 32 431 #define LOG_LINE_MAX (1024 - PREFIX_MAX) 432 433 #define LOG_LEVEL(v) ((v) & 0x07) 434 #define LOG_FACILITY(v) ((v) >> 3 & 0xff) 435 436 /* record buffer */ 437 #define LOG_ALIGN __alignof__(struct printk_log) 438 #define __LOG_BUF_LEN (1 << CONFIG_LOG_BUF_SHIFT) 439 static char __log_buf[__LOG_BUF_LEN] __aligned(LOG_ALIGN); 440 static char *log_buf = __log_buf; 441 static u32 log_buf_len = __LOG_BUF_LEN; 442 443 /* Return log buffer address */ 444 char *log_buf_addr_get(void) 445 { 446 return log_buf; 447 } 448 449 /* Return log buffer size */ 450 u32 log_buf_len_get(void) 451 { 452 return log_buf_len; 453 } 454 455 /* human readable text of the record */ 456 static char *log_text(const struct printk_log *msg) 457 { 458 return (char *)msg + sizeof(struct printk_log); 459 } 460 461 /* optional key/value pair dictionary attached to the record */ 462 static char *log_dict(const struct printk_log *msg) 463 { 464 return (char *)msg + sizeof(struct printk_log) + msg->text_len; 465 } 466 467 /* get record by index; idx must point to valid msg */ 468 static struct printk_log *log_from_idx(u32 idx) 469 { 470 struct printk_log *msg = (struct printk_log *)(log_buf + idx); 471 472 /* 473 * A length == 0 record is the end of buffer marker. Wrap around and 474 * read the message at the start of the buffer. 475 */ 476 if (!msg->len) 477 return (struct printk_log *)log_buf; 478 return msg; 479 } 480 481 /* get next record; idx must point to valid msg */ 482 static u32 log_next(u32 idx) 483 { 484 struct printk_log *msg = (struct printk_log *)(log_buf + idx); 485 486 /* length == 0 indicates the end of the buffer; wrap */ 487 /* 488 * A length == 0 record is the end of buffer marker. Wrap around and 489 * read the message at the start of the buffer as *this* one, and 490 * return the one after that. 491 */ 492 if (!msg->len) { 493 msg = (struct printk_log *)log_buf; 494 return msg->len; 495 } 496 return idx + msg->len; 497 } 498 499 /* 500 * Check whether there is enough free space for the given message. 501 * 502 * The same values of first_idx and next_idx mean that the buffer 503 * is either empty or full. 504 * 505 * If the buffer is empty, we must respect the position of the indexes. 506 * They cannot be reset to the beginning of the buffer. 507 */ 508 static int logbuf_has_space(u32 msg_size, bool empty) 509 { 510 u32 free; 511 512 if (log_next_idx > log_first_idx || empty) 513 free = max(log_buf_len - log_next_idx, log_first_idx); 514 else 515 free = log_first_idx - log_next_idx; 516 517 /* 518 * We need space also for an empty header that signalizes wrapping 519 * of the buffer. 520 */ 521 return free >= msg_size + sizeof(struct printk_log); 522 } 523 524 static int log_make_free_space(u32 msg_size) 525 { 526 while (log_first_seq < log_next_seq && 527 !logbuf_has_space(msg_size, false)) { 528 /* drop old messages until we have enough contiguous space */ 529 log_first_idx = log_next(log_first_idx); 530 log_first_seq++; 531 } 532 533 if (clear_seq < log_first_seq) { 534 clear_seq = log_first_seq; 535 clear_idx = log_first_idx; 536 } 537 538 /* sequence numbers are equal, so the log buffer is empty */ 539 if (logbuf_has_space(msg_size, log_first_seq == log_next_seq)) 540 return 0; 541 542 return -ENOMEM; 543 } 544 545 /* compute the message size including the padding bytes */ 546 static u32 msg_used_size(u16 text_len, u16 dict_len, u32 *pad_len) 547 { 548 u32 size; 549 550 size = sizeof(struct printk_log) + text_len + dict_len; 551 *pad_len = (-size) & (LOG_ALIGN - 1); 552 size += *pad_len; 553 554 return size; 555 } 556 557 /* 558 * Define how much of the log buffer we could take at maximum. The value 559 * must be greater than two. Note that only half of the buffer is available 560 * when the index points to the middle. 561 */ 562 #define MAX_LOG_TAKE_PART 4 563 static const char trunc_msg[] = "<truncated>"; 564 565 static u32 truncate_msg(u16 *text_len, u16 *trunc_msg_len, 566 u16 *dict_len, u32 *pad_len) 567 { 568 /* 569 * The message should not take the whole buffer. Otherwise, it might 570 * get removed too soon. 571 */ 572 u32 max_text_len = log_buf_len / MAX_LOG_TAKE_PART; 573 if (*text_len > max_text_len) 574 *text_len = max_text_len; 575 /* enable the warning message */ 576 *trunc_msg_len = strlen(trunc_msg); 577 /* disable the "dict" completely */ 578 *dict_len = 0; 579 /* compute the size again, count also the warning message */ 580 return msg_used_size(*text_len + *trunc_msg_len, 0, pad_len); 581 } 582 583 /* insert record into the buffer, discard old ones, update heads */ 584 static int log_store(int facility, int level, 585 enum log_flags flags, u64 ts_nsec, 586 const char *dict, u16 dict_len, 587 const char *text, u16 text_len) 588 { 589 struct printk_log *msg; 590 u32 size, pad_len; 591 u16 trunc_msg_len = 0; 592 593 /* number of '\0' padding bytes to next message */ 594 size = msg_used_size(text_len, dict_len, &pad_len); 595 596 if (log_make_free_space(size)) { 597 /* truncate the message if it is too long for empty buffer */ 598 size = truncate_msg(&text_len, &trunc_msg_len, 599 &dict_len, &pad_len); 600 /* survive when the log buffer is too small for trunc_msg */ 601 if (log_make_free_space(size)) 602 return 0; 603 } 604 605 if (log_next_idx + size + sizeof(struct printk_log) > log_buf_len) { 606 /* 607 * This message + an additional empty header does not fit 608 * at the end of the buffer. Add an empty header with len == 0 609 * to signify a wrap around. 610 */ 611 memset(log_buf + log_next_idx, 0, sizeof(struct printk_log)); 612 log_next_idx = 0; 613 } 614 615 /* fill message */ 616 msg = (struct printk_log *)(log_buf + log_next_idx); 617 memcpy(log_text(msg), text, text_len); 618 msg->text_len = text_len; 619 if (trunc_msg_len) { 620 memcpy(log_text(msg) + text_len, trunc_msg, trunc_msg_len); 621 msg->text_len += trunc_msg_len; 622 } 623 memcpy(log_dict(msg), dict, dict_len); 624 msg->dict_len = dict_len; 625 msg->facility = facility; 626 msg->level = level & 7; 627 msg->flags = flags & 0x1f; 628 if (ts_nsec > 0) 629 msg->ts_nsec = ts_nsec; 630 else 631 msg->ts_nsec = local_clock(); 632 memset(log_dict(msg) + dict_len, 0, pad_len); 633 msg->len = size; 634 635 /* insert message */ 636 log_next_idx += msg->len; 637 log_next_seq++; 638 639 return msg->text_len; 640 } 641 642 int dmesg_restrict = IS_ENABLED(CONFIG_SECURITY_DMESG_RESTRICT); 643 644 static int syslog_action_restricted(int type) 645 { 646 if (dmesg_restrict) 647 return 1; 648 /* 649 * Unless restricted, we allow "read all" and "get buffer size" 650 * for everybody. 651 */ 652 return type != SYSLOG_ACTION_READ_ALL && 653 type != SYSLOG_ACTION_SIZE_BUFFER; 654 } 655 656 static int check_syslog_permissions(int type, int source) 657 { 658 /* 659 * If this is from /proc/kmsg and we've already opened it, then we've 660 * already done the capabilities checks at open time. 661 */ 662 if (source == SYSLOG_FROM_PROC && type != SYSLOG_ACTION_OPEN) 663 goto ok; 664 665 if (syslog_action_restricted(type)) { 666 if (capable(CAP_SYSLOG)) 667 goto ok; 668 /* 669 * For historical reasons, accept CAP_SYS_ADMIN too, with 670 * a warning. 671 */ 672 if (capable(CAP_SYS_ADMIN)) { 673 pr_warn_once("%s (%d): Attempt to access syslog with " 674 "CAP_SYS_ADMIN but no CAP_SYSLOG " 675 "(deprecated).\n", 676 current->comm, task_pid_nr(current)); 677 goto ok; 678 } 679 return -EPERM; 680 } 681 ok: 682 return security_syslog(type); 683 } 684 685 static void append_char(char **pp, char *e, char c) 686 { 687 if (*pp < e) 688 *(*pp)++ = c; 689 } 690 691 static ssize_t msg_print_ext_header(char *buf, size_t size, 692 struct printk_log *msg, u64 seq) 693 { 694 u64 ts_usec = msg->ts_nsec; 695 696 do_div(ts_usec, 1000); 697 698 return scnprintf(buf, size, "%u,%llu,%llu,%c;", 699 (msg->facility << 3) | msg->level, seq, ts_usec, 700 msg->flags & LOG_CONT ? 'c' : '-'); 701 } 702 703 static ssize_t msg_print_ext_body(char *buf, size_t size, 704 char *dict, size_t dict_len, 705 char *text, size_t text_len) 706 { 707 char *p = buf, *e = buf + size; 708 size_t i; 709 710 /* escape non-printable characters */ 711 for (i = 0; i < text_len; i++) { 712 unsigned char c = text[i]; 713 714 if (c < ' ' || c >= 127 || c == '\\') 715 p += scnprintf(p, e - p, "\\x%02x", c); 716 else 717 append_char(&p, e, c); 718 } 719 append_char(&p, e, '\n'); 720 721 if (dict_len) { 722 bool line = true; 723 724 for (i = 0; i < dict_len; i++) { 725 unsigned char c = dict[i]; 726 727 if (line) { 728 append_char(&p, e, ' '); 729 line = false; 730 } 731 732 if (c == '\0') { 733 append_char(&p, e, '\n'); 734 line = true; 735 continue; 736 } 737 738 if (c < ' ' || c >= 127 || c == '\\') { 739 p += scnprintf(p, e - p, "\\x%02x", c); 740 continue; 741 } 742 743 append_char(&p, e, c); 744 } 745 append_char(&p, e, '\n'); 746 } 747 748 return p - buf; 749 } 750 751 /* /dev/kmsg - userspace message inject/listen interface */ 752 struct devkmsg_user { 753 u64 seq; 754 u32 idx; 755 struct ratelimit_state rs; 756 struct mutex lock; 757 char buf[CONSOLE_EXT_LOG_MAX]; 758 }; 759 760 static ssize_t devkmsg_write(struct kiocb *iocb, struct iov_iter *from) 761 { 762 char *buf, *line; 763 int level = default_message_loglevel; 764 int facility = 1; /* LOG_USER */ 765 struct file *file = iocb->ki_filp; 766 struct devkmsg_user *user = file->private_data; 767 size_t len = iov_iter_count(from); 768 ssize_t ret = len; 769 770 if (!user || len > LOG_LINE_MAX) 771 return -EINVAL; 772 773 /* Ignore when user logging is disabled. */ 774 if (devkmsg_log & DEVKMSG_LOG_MASK_OFF) 775 return len; 776 777 /* Ratelimit when not explicitly enabled. */ 778 if (!(devkmsg_log & DEVKMSG_LOG_MASK_ON)) { 779 if (!___ratelimit(&user->rs, current->comm)) 780 return ret; 781 } 782 783 buf = kmalloc(len+1, GFP_KERNEL); 784 if (buf == NULL) 785 return -ENOMEM; 786 787 buf[len] = '\0'; 788 if (!copy_from_iter_full(buf, len, from)) { 789 kfree(buf); 790 return -EFAULT; 791 } 792 793 /* 794 * Extract and skip the syslog prefix <[0-9]*>. Coming from userspace 795 * the decimal value represents 32bit, the lower 3 bit are the log 796 * level, the rest are the log facility. 797 * 798 * If no prefix or no userspace facility is specified, we 799 * enforce LOG_USER, to be able to reliably distinguish 800 * kernel-generated messages from userspace-injected ones. 801 */ 802 line = buf; 803 if (line[0] == '<') { 804 char *endp = NULL; 805 unsigned int u; 806 807 u = simple_strtoul(line + 1, &endp, 10); 808 if (endp && endp[0] == '>') { 809 level = LOG_LEVEL(u); 810 if (LOG_FACILITY(u) != 0) 811 facility = LOG_FACILITY(u); 812 endp++; 813 len -= endp - line; 814 line = endp; 815 } 816 } 817 818 printk_emit(facility, level, NULL, 0, "%s", line); 819 kfree(buf); 820 return ret; 821 } 822 823 static ssize_t devkmsg_read(struct file *file, char __user *buf, 824 size_t count, loff_t *ppos) 825 { 826 struct devkmsg_user *user = file->private_data; 827 struct printk_log *msg; 828 size_t len; 829 ssize_t ret; 830 831 if (!user) 832 return -EBADF; 833 834 ret = mutex_lock_interruptible(&user->lock); 835 if (ret) 836 return ret; 837 838 logbuf_lock_irq(); 839 while (user->seq == log_next_seq) { 840 if (file->f_flags & O_NONBLOCK) { 841 ret = -EAGAIN; 842 logbuf_unlock_irq(); 843 goto out; 844 } 845 846 logbuf_unlock_irq(); 847 ret = wait_event_interruptible(log_wait, 848 user->seq != log_next_seq); 849 if (ret) 850 goto out; 851 logbuf_lock_irq(); 852 } 853 854 if (user->seq < log_first_seq) { 855 /* our last seen message is gone, return error and reset */ 856 user->idx = log_first_idx; 857 user->seq = log_first_seq; 858 ret = -EPIPE; 859 logbuf_unlock_irq(); 860 goto out; 861 } 862 863 msg = log_from_idx(user->idx); 864 len = msg_print_ext_header(user->buf, sizeof(user->buf), 865 msg, user->seq); 866 len += msg_print_ext_body(user->buf + len, sizeof(user->buf) - len, 867 log_dict(msg), msg->dict_len, 868 log_text(msg), msg->text_len); 869 870 user->idx = log_next(user->idx); 871 user->seq++; 872 logbuf_unlock_irq(); 873 874 if (len > count) { 875 ret = -EINVAL; 876 goto out; 877 } 878 879 if (copy_to_user(buf, user->buf, len)) { 880 ret = -EFAULT; 881 goto out; 882 } 883 ret = len; 884 out: 885 mutex_unlock(&user->lock); 886 return ret; 887 } 888 889 static loff_t devkmsg_llseek(struct file *file, loff_t offset, int whence) 890 { 891 struct devkmsg_user *user = file->private_data; 892 loff_t ret = 0; 893 894 if (!user) 895 return -EBADF; 896 if (offset) 897 return -ESPIPE; 898 899 logbuf_lock_irq(); 900 switch (whence) { 901 case SEEK_SET: 902 /* the first record */ 903 user->idx = log_first_idx; 904 user->seq = log_first_seq; 905 break; 906 case SEEK_DATA: 907 /* 908 * The first record after the last SYSLOG_ACTION_CLEAR, 909 * like issued by 'dmesg -c'. Reading /dev/kmsg itself 910 * changes no global state, and does not clear anything. 911 */ 912 user->idx = clear_idx; 913 user->seq = clear_seq; 914 break; 915 case SEEK_END: 916 /* after the last record */ 917 user->idx = log_next_idx; 918 user->seq = log_next_seq; 919 break; 920 default: 921 ret = -EINVAL; 922 } 923 logbuf_unlock_irq(); 924 return ret; 925 } 926 927 static __poll_t devkmsg_poll(struct file *file, poll_table *wait) 928 { 929 struct devkmsg_user *user = file->private_data; 930 __poll_t ret = 0; 931 932 if (!user) 933 return EPOLLERR|EPOLLNVAL; 934 935 poll_wait(file, &log_wait, wait); 936 937 logbuf_lock_irq(); 938 if (user->seq < log_next_seq) { 939 /* return error when data has vanished underneath us */ 940 if (user->seq < log_first_seq) 941 ret = EPOLLIN|EPOLLRDNORM|EPOLLERR|EPOLLPRI; 942 else 943 ret = EPOLLIN|EPOLLRDNORM; 944 } 945 logbuf_unlock_irq(); 946 947 return ret; 948 } 949 950 static int devkmsg_open(struct inode *inode, struct file *file) 951 { 952 struct devkmsg_user *user; 953 int err; 954 955 if (devkmsg_log & DEVKMSG_LOG_MASK_OFF) 956 return -EPERM; 957 958 /* write-only does not need any file context */ 959 if ((file->f_flags & O_ACCMODE) != O_WRONLY) { 960 err = check_syslog_permissions(SYSLOG_ACTION_READ_ALL, 961 SYSLOG_FROM_READER); 962 if (err) 963 return err; 964 } 965 966 user = kmalloc(sizeof(struct devkmsg_user), GFP_KERNEL); 967 if (!user) 968 return -ENOMEM; 969 970 ratelimit_default_init(&user->rs); 971 ratelimit_set_flags(&user->rs, RATELIMIT_MSG_ON_RELEASE); 972 973 mutex_init(&user->lock); 974 975 logbuf_lock_irq(); 976 user->idx = log_first_idx; 977 user->seq = log_first_seq; 978 logbuf_unlock_irq(); 979 980 file->private_data = user; 981 return 0; 982 } 983 984 static int devkmsg_release(struct inode *inode, struct file *file) 985 { 986 struct devkmsg_user *user = file->private_data; 987 988 if (!user) 989 return 0; 990 991 ratelimit_state_exit(&user->rs); 992 993 mutex_destroy(&user->lock); 994 kfree(user); 995 return 0; 996 } 997 998 const struct file_operations kmsg_fops = { 999 .open = devkmsg_open, 1000 .read = devkmsg_read, 1001 .write_iter = devkmsg_write, 1002 .llseek = devkmsg_llseek, 1003 .poll = devkmsg_poll, 1004 .release = devkmsg_release, 1005 }; 1006 1007 #ifdef CONFIG_CRASH_CORE 1008 /* 1009 * This appends the listed symbols to /proc/vmcore 1010 * 1011 * /proc/vmcore is used by various utilities, like crash and makedumpfile to 1012 * obtain access to symbols that are otherwise very difficult to locate. These 1013 * symbols are specifically used so that utilities can access and extract the 1014 * dmesg log from a vmcore file after a crash. 1015 */ 1016 void log_buf_vmcoreinfo_setup(void) 1017 { 1018 VMCOREINFO_SYMBOL(log_buf); 1019 VMCOREINFO_SYMBOL(log_buf_len); 1020 VMCOREINFO_SYMBOL(log_first_idx); 1021 VMCOREINFO_SYMBOL(clear_idx); 1022 VMCOREINFO_SYMBOL(log_next_idx); 1023 /* 1024 * Export struct printk_log size and field offsets. User space tools can 1025 * parse it and detect any changes to structure down the line. 1026 */ 1027 VMCOREINFO_STRUCT_SIZE(printk_log); 1028 VMCOREINFO_OFFSET(printk_log, ts_nsec); 1029 VMCOREINFO_OFFSET(printk_log, len); 1030 VMCOREINFO_OFFSET(printk_log, text_len); 1031 VMCOREINFO_OFFSET(printk_log, dict_len); 1032 } 1033 #endif 1034 1035 /* requested log_buf_len from kernel cmdline */ 1036 static unsigned long __initdata new_log_buf_len; 1037 1038 /* we practice scaling the ring buffer by powers of 2 */ 1039 static void __init log_buf_len_update(unsigned size) 1040 { 1041 if (size) 1042 size = roundup_pow_of_two(size); 1043 if (size > log_buf_len) 1044 new_log_buf_len = size; 1045 } 1046 1047 /* save requested log_buf_len since it's too early to process it */ 1048 static int __init log_buf_len_setup(char *str) 1049 { 1050 unsigned size = memparse(str, &str); 1051 1052 log_buf_len_update(size); 1053 1054 return 0; 1055 } 1056 early_param("log_buf_len", log_buf_len_setup); 1057 1058 #ifdef CONFIG_SMP 1059 #define __LOG_CPU_MAX_BUF_LEN (1 << CONFIG_LOG_CPU_MAX_BUF_SHIFT) 1060 1061 static void __init log_buf_add_cpu(void) 1062 { 1063 unsigned int cpu_extra; 1064 1065 /* 1066 * archs should set up cpu_possible_bits properly with 1067 * set_cpu_possible() after setup_arch() but just in 1068 * case lets ensure this is valid. 1069 */ 1070 if (num_possible_cpus() == 1) 1071 return; 1072 1073 cpu_extra = (num_possible_cpus() - 1) * __LOG_CPU_MAX_BUF_LEN; 1074 1075 /* by default this will only continue through for large > 64 CPUs */ 1076 if (cpu_extra <= __LOG_BUF_LEN / 2) 1077 return; 1078 1079 pr_info("log_buf_len individual max cpu contribution: %d bytes\n", 1080 __LOG_CPU_MAX_BUF_LEN); 1081 pr_info("log_buf_len total cpu_extra contributions: %d bytes\n", 1082 cpu_extra); 1083 pr_info("log_buf_len min size: %d bytes\n", __LOG_BUF_LEN); 1084 1085 log_buf_len_update(cpu_extra + __LOG_BUF_LEN); 1086 } 1087 #else /* !CONFIG_SMP */ 1088 static inline void log_buf_add_cpu(void) {} 1089 #endif /* CONFIG_SMP */ 1090 1091 void __init setup_log_buf(int early) 1092 { 1093 unsigned long flags; 1094 char *new_log_buf; 1095 int free; 1096 1097 if (log_buf != __log_buf) 1098 return; 1099 1100 if (!early && !new_log_buf_len) 1101 log_buf_add_cpu(); 1102 1103 if (!new_log_buf_len) 1104 return; 1105 1106 if (early) { 1107 new_log_buf = 1108 memblock_virt_alloc(new_log_buf_len, LOG_ALIGN); 1109 } else { 1110 new_log_buf = memblock_virt_alloc_nopanic(new_log_buf_len, 1111 LOG_ALIGN); 1112 } 1113 1114 if (unlikely(!new_log_buf)) { 1115 pr_err("log_buf_len: %ld bytes not available\n", 1116 new_log_buf_len); 1117 return; 1118 } 1119 1120 logbuf_lock_irqsave(flags); 1121 log_buf_len = new_log_buf_len; 1122 log_buf = new_log_buf; 1123 new_log_buf_len = 0; 1124 free = __LOG_BUF_LEN - log_next_idx; 1125 memcpy(log_buf, __log_buf, __LOG_BUF_LEN); 1126 logbuf_unlock_irqrestore(flags); 1127 1128 pr_info("log_buf_len: %d bytes\n", log_buf_len); 1129 pr_info("early log buf free: %d(%d%%)\n", 1130 free, (free * 100) / __LOG_BUF_LEN); 1131 } 1132 1133 static bool __read_mostly ignore_loglevel; 1134 1135 static int __init ignore_loglevel_setup(char *str) 1136 { 1137 ignore_loglevel = true; 1138 pr_info("debug: ignoring loglevel setting.\n"); 1139 1140 return 0; 1141 } 1142 1143 early_param("ignore_loglevel", ignore_loglevel_setup); 1144 module_param(ignore_loglevel, bool, S_IRUGO | S_IWUSR); 1145 MODULE_PARM_DESC(ignore_loglevel, 1146 "ignore loglevel setting (prints all kernel messages to the console)"); 1147 1148 static bool suppress_message_printing(int level) 1149 { 1150 return (level >= console_loglevel && !ignore_loglevel); 1151 } 1152 1153 #ifdef CONFIG_BOOT_PRINTK_DELAY 1154 1155 static int boot_delay; /* msecs delay after each printk during bootup */ 1156 static unsigned long long loops_per_msec; /* based on boot_delay */ 1157 1158 static int __init boot_delay_setup(char *str) 1159 { 1160 unsigned long lpj; 1161 1162 lpj = preset_lpj ? preset_lpj : 1000000; /* some guess */ 1163 loops_per_msec = (unsigned long long)lpj / 1000 * HZ; 1164 1165 get_option(&str, &boot_delay); 1166 if (boot_delay > 10 * 1000) 1167 boot_delay = 0; 1168 1169 pr_debug("boot_delay: %u, preset_lpj: %ld, lpj: %lu, " 1170 "HZ: %d, loops_per_msec: %llu\n", 1171 boot_delay, preset_lpj, lpj, HZ, loops_per_msec); 1172 return 0; 1173 } 1174 early_param("boot_delay", boot_delay_setup); 1175 1176 static void boot_delay_msec(int level) 1177 { 1178 unsigned long long k; 1179 unsigned long timeout; 1180 1181 if ((boot_delay == 0 || system_state >= SYSTEM_RUNNING) 1182 || suppress_message_printing(level)) { 1183 return; 1184 } 1185 1186 k = (unsigned long long)loops_per_msec * boot_delay; 1187 1188 timeout = jiffies + msecs_to_jiffies(boot_delay); 1189 while (k) { 1190 k--; 1191 cpu_relax(); 1192 /* 1193 * use (volatile) jiffies to prevent 1194 * compiler reduction; loop termination via jiffies 1195 * is secondary and may or may not happen. 1196 */ 1197 if (time_after(jiffies, timeout)) 1198 break; 1199 touch_nmi_watchdog(); 1200 } 1201 } 1202 #else 1203 static inline void boot_delay_msec(int level) 1204 { 1205 } 1206 #endif 1207 1208 static bool printk_time = IS_ENABLED(CONFIG_PRINTK_TIME); 1209 module_param_named(time, printk_time, bool, S_IRUGO | S_IWUSR); 1210 1211 static size_t print_time(u64 ts, char *buf) 1212 { 1213 unsigned long rem_nsec; 1214 1215 if (!printk_time) 1216 return 0; 1217 1218 rem_nsec = do_div(ts, 1000000000); 1219 1220 if (!buf) 1221 return snprintf(NULL, 0, "[%5lu.000000] ", (unsigned long)ts); 1222 1223 return sprintf(buf, "[%5lu.%06lu] ", 1224 (unsigned long)ts, rem_nsec / 1000); 1225 } 1226 1227 static size_t print_prefix(const struct printk_log *msg, bool syslog, char *buf) 1228 { 1229 size_t len = 0; 1230 unsigned int prefix = (msg->facility << 3) | msg->level; 1231 1232 if (syslog) { 1233 if (buf) { 1234 len += sprintf(buf, "<%u>", prefix); 1235 } else { 1236 len += 3; 1237 if (prefix > 999) 1238 len += 3; 1239 else if (prefix > 99) 1240 len += 2; 1241 else if (prefix > 9) 1242 len++; 1243 } 1244 } 1245 1246 len += print_time(msg->ts_nsec, buf ? buf + len : NULL); 1247 return len; 1248 } 1249 1250 static size_t msg_print_text(const struct printk_log *msg, bool syslog, char *buf, size_t size) 1251 { 1252 const char *text = log_text(msg); 1253 size_t text_size = msg->text_len; 1254 size_t len = 0; 1255 1256 do { 1257 const char *next = memchr(text, '\n', text_size); 1258 size_t text_len; 1259 1260 if (next) { 1261 text_len = next - text; 1262 next++; 1263 text_size -= next - text; 1264 } else { 1265 text_len = text_size; 1266 } 1267 1268 if (buf) { 1269 if (print_prefix(msg, syslog, NULL) + 1270 text_len + 1 >= size - len) 1271 break; 1272 1273 len += print_prefix(msg, syslog, buf + len); 1274 memcpy(buf + len, text, text_len); 1275 len += text_len; 1276 buf[len++] = '\n'; 1277 } else { 1278 /* SYSLOG_ACTION_* buffer size only calculation */ 1279 len += print_prefix(msg, syslog, NULL); 1280 len += text_len; 1281 len++; 1282 } 1283 1284 text = next; 1285 } while (text); 1286 1287 return len; 1288 } 1289 1290 static int syslog_print(char __user *buf, int size) 1291 { 1292 char *text; 1293 struct printk_log *msg; 1294 int len = 0; 1295 1296 text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL); 1297 if (!text) 1298 return -ENOMEM; 1299 1300 while (size > 0) { 1301 size_t n; 1302 size_t skip; 1303 1304 logbuf_lock_irq(); 1305 if (syslog_seq < log_first_seq) { 1306 /* messages are gone, move to first one */ 1307 syslog_seq = log_first_seq; 1308 syslog_idx = log_first_idx; 1309 syslog_partial = 0; 1310 } 1311 if (syslog_seq == log_next_seq) { 1312 logbuf_unlock_irq(); 1313 break; 1314 } 1315 1316 skip = syslog_partial; 1317 msg = log_from_idx(syslog_idx); 1318 n = msg_print_text(msg, true, text, LOG_LINE_MAX + PREFIX_MAX); 1319 if (n - syslog_partial <= size) { 1320 /* message fits into buffer, move forward */ 1321 syslog_idx = log_next(syslog_idx); 1322 syslog_seq++; 1323 n -= syslog_partial; 1324 syslog_partial = 0; 1325 } else if (!len){ 1326 /* partial read(), remember position */ 1327 n = size; 1328 syslog_partial += n; 1329 } else 1330 n = 0; 1331 logbuf_unlock_irq(); 1332 1333 if (!n) 1334 break; 1335 1336 if (copy_to_user(buf, text + skip, n)) { 1337 if (!len) 1338 len = -EFAULT; 1339 break; 1340 } 1341 1342 len += n; 1343 size -= n; 1344 buf += n; 1345 } 1346 1347 kfree(text); 1348 return len; 1349 } 1350 1351 static int syslog_print_all(char __user *buf, int size, bool clear) 1352 { 1353 char *text; 1354 int len = 0; 1355 u64 next_seq; 1356 u64 seq; 1357 u32 idx; 1358 1359 text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL); 1360 if (!text) 1361 return -ENOMEM; 1362 1363 logbuf_lock_irq(); 1364 /* 1365 * Find first record that fits, including all following records, 1366 * into the user-provided buffer for this dump. 1367 */ 1368 seq = clear_seq; 1369 idx = clear_idx; 1370 while (seq < log_next_seq) { 1371 struct printk_log *msg = log_from_idx(idx); 1372 1373 len += msg_print_text(msg, true, NULL, 0); 1374 idx = log_next(idx); 1375 seq++; 1376 } 1377 1378 /* move first record forward until length fits into the buffer */ 1379 seq = clear_seq; 1380 idx = clear_idx; 1381 while (len > size && seq < log_next_seq) { 1382 struct printk_log *msg = log_from_idx(idx); 1383 1384 len -= msg_print_text(msg, true, NULL, 0); 1385 idx = log_next(idx); 1386 seq++; 1387 } 1388 1389 /* last message fitting into this dump */ 1390 next_seq = log_next_seq; 1391 1392 len = 0; 1393 while (len >= 0 && seq < next_seq) { 1394 struct printk_log *msg = log_from_idx(idx); 1395 int textlen; 1396 1397 textlen = msg_print_text(msg, true, text, 1398 LOG_LINE_MAX + PREFIX_MAX); 1399 if (textlen < 0) { 1400 len = textlen; 1401 break; 1402 } 1403 idx = log_next(idx); 1404 seq++; 1405 1406 logbuf_unlock_irq(); 1407 if (copy_to_user(buf + len, text, textlen)) 1408 len = -EFAULT; 1409 else 1410 len += textlen; 1411 logbuf_lock_irq(); 1412 1413 if (seq < log_first_seq) { 1414 /* messages are gone, move to next one */ 1415 seq = log_first_seq; 1416 idx = log_first_idx; 1417 } 1418 } 1419 1420 if (clear) { 1421 clear_seq = log_next_seq; 1422 clear_idx = log_next_idx; 1423 } 1424 logbuf_unlock_irq(); 1425 1426 kfree(text); 1427 return len; 1428 } 1429 1430 static void syslog_clear(void) 1431 { 1432 logbuf_lock_irq(); 1433 clear_seq = log_next_seq; 1434 clear_idx = log_next_idx; 1435 logbuf_unlock_irq(); 1436 } 1437 1438 int do_syslog(int type, char __user *buf, int len, int source) 1439 { 1440 bool clear = false; 1441 static int saved_console_loglevel = LOGLEVEL_DEFAULT; 1442 int error; 1443 1444 error = check_syslog_permissions(type, source); 1445 if (error) 1446 return error; 1447 1448 switch (type) { 1449 case SYSLOG_ACTION_CLOSE: /* Close log */ 1450 break; 1451 case SYSLOG_ACTION_OPEN: /* Open log */ 1452 break; 1453 case SYSLOG_ACTION_READ: /* Read from log */ 1454 if (!buf || len < 0) 1455 return -EINVAL; 1456 if (!len) 1457 return 0; 1458 if (!access_ok(VERIFY_WRITE, buf, len)) 1459 return -EFAULT; 1460 error = wait_event_interruptible(log_wait, 1461 syslog_seq != log_next_seq); 1462 if (error) 1463 return error; 1464 error = syslog_print(buf, len); 1465 break; 1466 /* Read/clear last kernel messages */ 1467 case SYSLOG_ACTION_READ_CLEAR: 1468 clear = true; 1469 /* FALL THRU */ 1470 /* Read last kernel messages */ 1471 case SYSLOG_ACTION_READ_ALL: 1472 if (!buf || len < 0) 1473 return -EINVAL; 1474 if (!len) 1475 return 0; 1476 if (!access_ok(VERIFY_WRITE, buf, len)) 1477 return -EFAULT; 1478 error = syslog_print_all(buf, len, clear); 1479 break; 1480 /* Clear ring buffer */ 1481 case SYSLOG_ACTION_CLEAR: 1482 syslog_clear(); 1483 break; 1484 /* Disable logging to console */ 1485 case SYSLOG_ACTION_CONSOLE_OFF: 1486 if (saved_console_loglevel == LOGLEVEL_DEFAULT) 1487 saved_console_loglevel = console_loglevel; 1488 console_loglevel = minimum_console_loglevel; 1489 break; 1490 /* Enable logging to console */ 1491 case SYSLOG_ACTION_CONSOLE_ON: 1492 if (saved_console_loglevel != LOGLEVEL_DEFAULT) { 1493 console_loglevel = saved_console_loglevel; 1494 saved_console_loglevel = LOGLEVEL_DEFAULT; 1495 } 1496 break; 1497 /* Set level of messages printed to console */ 1498 case SYSLOG_ACTION_CONSOLE_LEVEL: 1499 if (len < 1 || len > 8) 1500 return -EINVAL; 1501 if (len < minimum_console_loglevel) 1502 len = minimum_console_loglevel; 1503 console_loglevel = len; 1504 /* Implicitly re-enable logging to console */ 1505 saved_console_loglevel = LOGLEVEL_DEFAULT; 1506 break; 1507 /* Number of chars in the log buffer */ 1508 case SYSLOG_ACTION_SIZE_UNREAD: 1509 logbuf_lock_irq(); 1510 if (syslog_seq < log_first_seq) { 1511 /* messages are gone, move to first one */ 1512 syslog_seq = log_first_seq; 1513 syslog_idx = log_first_idx; 1514 syslog_partial = 0; 1515 } 1516 if (source == SYSLOG_FROM_PROC) { 1517 /* 1518 * Short-cut for poll(/"proc/kmsg") which simply checks 1519 * for pending data, not the size; return the count of 1520 * records, not the length. 1521 */ 1522 error = log_next_seq - syslog_seq; 1523 } else { 1524 u64 seq = syslog_seq; 1525 u32 idx = syslog_idx; 1526 1527 while (seq < log_next_seq) { 1528 struct printk_log *msg = log_from_idx(idx); 1529 1530 error += msg_print_text(msg, true, NULL, 0); 1531 idx = log_next(idx); 1532 seq++; 1533 } 1534 error -= syslog_partial; 1535 } 1536 logbuf_unlock_irq(); 1537 break; 1538 /* Size of the log buffer */ 1539 case SYSLOG_ACTION_SIZE_BUFFER: 1540 error = log_buf_len; 1541 break; 1542 default: 1543 error = -EINVAL; 1544 break; 1545 } 1546 1547 return error; 1548 } 1549 1550 SYSCALL_DEFINE3(syslog, int, type, char __user *, buf, int, len) 1551 { 1552 return do_syslog(type, buf, len, SYSLOG_FROM_READER); 1553 } 1554 1555 /* 1556 * Special console_lock variants that help to reduce the risk of soft-lockups. 1557 * They allow to pass console_lock to another printk() call using a busy wait. 1558 */ 1559 1560 #ifdef CONFIG_LOCKDEP 1561 static struct lockdep_map console_owner_dep_map = { 1562 .name = "console_owner" 1563 }; 1564 #endif 1565 1566 static DEFINE_RAW_SPINLOCK(console_owner_lock); 1567 static struct task_struct *console_owner; 1568 static bool console_waiter; 1569 1570 /** 1571 * console_lock_spinning_enable - mark beginning of code where another 1572 * thread might safely busy wait 1573 * 1574 * This basically converts console_lock into a spinlock. This marks 1575 * the section where the console_lock owner can not sleep, because 1576 * there may be a waiter spinning (like a spinlock). Also it must be 1577 * ready to hand over the lock at the end of the section. 1578 */ 1579 static void console_lock_spinning_enable(void) 1580 { 1581 raw_spin_lock(&console_owner_lock); 1582 console_owner = current; 1583 raw_spin_unlock(&console_owner_lock); 1584 1585 /* The waiter may spin on us after setting console_owner */ 1586 spin_acquire(&console_owner_dep_map, 0, 0, _THIS_IP_); 1587 } 1588 1589 /** 1590 * console_lock_spinning_disable_and_check - mark end of code where another 1591 * thread was able to busy wait and check if there is a waiter 1592 * 1593 * This is called at the end of the section where spinning is allowed. 1594 * It has two functions. First, it is a signal that it is no longer 1595 * safe to start busy waiting for the lock. Second, it checks if 1596 * there is a busy waiter and passes the lock rights to her. 1597 * 1598 * Important: Callers lose the lock if there was a busy waiter. 1599 * They must not touch items synchronized by console_lock 1600 * in this case. 1601 * 1602 * Return: 1 if the lock rights were passed, 0 otherwise. 1603 */ 1604 static int console_lock_spinning_disable_and_check(void) 1605 { 1606 int waiter; 1607 1608 raw_spin_lock(&console_owner_lock); 1609 waiter = READ_ONCE(console_waiter); 1610 console_owner = NULL; 1611 raw_spin_unlock(&console_owner_lock); 1612 1613 if (!waiter) { 1614 spin_release(&console_owner_dep_map, 1, _THIS_IP_); 1615 return 0; 1616 } 1617 1618 /* The waiter is now free to continue */ 1619 WRITE_ONCE(console_waiter, false); 1620 1621 spin_release(&console_owner_dep_map, 1, _THIS_IP_); 1622 1623 /* 1624 * Hand off console_lock to waiter. The waiter will perform 1625 * the up(). After this, the waiter is the console_lock owner. 1626 */ 1627 mutex_release(&console_lock_dep_map, 1, _THIS_IP_); 1628 return 1; 1629 } 1630 1631 /** 1632 * console_trylock_spinning - try to get console_lock by busy waiting 1633 * 1634 * This allows to busy wait for the console_lock when the current 1635 * owner is running in specially marked sections. It means that 1636 * the current owner is running and cannot reschedule until it 1637 * is ready to lose the lock. 1638 * 1639 * Return: 1 if we got the lock, 0 othrewise 1640 */ 1641 static int console_trylock_spinning(void) 1642 { 1643 struct task_struct *owner = NULL; 1644 bool waiter; 1645 bool spin = false; 1646 unsigned long flags; 1647 1648 if (console_trylock()) 1649 return 1; 1650 1651 printk_safe_enter_irqsave(flags); 1652 1653 raw_spin_lock(&console_owner_lock); 1654 owner = READ_ONCE(console_owner); 1655 waiter = READ_ONCE(console_waiter); 1656 if (!waiter && owner && owner != current) { 1657 WRITE_ONCE(console_waiter, true); 1658 spin = true; 1659 } 1660 raw_spin_unlock(&console_owner_lock); 1661 1662 /* 1663 * If there is an active printk() writing to the 1664 * consoles, instead of having it write our data too, 1665 * see if we can offload that load from the active 1666 * printer, and do some printing ourselves. 1667 * Go into a spin only if there isn't already a waiter 1668 * spinning, and there is an active printer, and 1669 * that active printer isn't us (recursive printk?). 1670 */ 1671 if (!spin) { 1672 printk_safe_exit_irqrestore(flags); 1673 return 0; 1674 } 1675 1676 /* We spin waiting for the owner to release us */ 1677 spin_acquire(&console_owner_dep_map, 0, 0, _THIS_IP_); 1678 /* Owner will clear console_waiter on hand off */ 1679 while (READ_ONCE(console_waiter)) 1680 cpu_relax(); 1681 spin_release(&console_owner_dep_map, 1, _THIS_IP_); 1682 1683 printk_safe_exit_irqrestore(flags); 1684 /* 1685 * The owner passed the console lock to us. 1686 * Since we did not spin on console lock, annotate 1687 * this as a trylock. Otherwise lockdep will 1688 * complain. 1689 */ 1690 mutex_acquire(&console_lock_dep_map, 0, 1, _THIS_IP_); 1691 1692 return 1; 1693 } 1694 1695 /* 1696 * Call the console drivers, asking them to write out 1697 * log_buf[start] to log_buf[end - 1]. 1698 * The console_lock must be held. 1699 */ 1700 static void call_console_drivers(const char *ext_text, size_t ext_len, 1701 const char *text, size_t len) 1702 { 1703 struct console *con; 1704 1705 trace_console_rcuidle(text, len); 1706 1707 if (!console_drivers) 1708 return; 1709 1710 for_each_console(con) { 1711 if (exclusive_console && con != exclusive_console) 1712 continue; 1713 if (!(con->flags & CON_ENABLED)) 1714 continue; 1715 if (!con->write) 1716 continue; 1717 if (!cpu_online(smp_processor_id()) && 1718 !(con->flags & CON_ANYTIME)) 1719 continue; 1720 if (con->flags & CON_EXTENDED) 1721 con->write(con, ext_text, ext_len); 1722 else 1723 con->write(con, text, len); 1724 } 1725 } 1726 1727 int printk_delay_msec __read_mostly; 1728 1729 static inline void printk_delay(void) 1730 { 1731 if (unlikely(printk_delay_msec)) { 1732 int m = printk_delay_msec; 1733 1734 while (m--) { 1735 mdelay(1); 1736 touch_nmi_watchdog(); 1737 } 1738 } 1739 } 1740 1741 /* 1742 * Continuation lines are buffered, and not committed to the record buffer 1743 * until the line is complete, or a race forces it. The line fragments 1744 * though, are printed immediately to the consoles to ensure everything has 1745 * reached the console in case of a kernel crash. 1746 */ 1747 static struct cont { 1748 char buf[LOG_LINE_MAX]; 1749 size_t len; /* length == 0 means unused buffer */ 1750 struct task_struct *owner; /* task of first print*/ 1751 u64 ts_nsec; /* time of first print */ 1752 u8 level; /* log level of first message */ 1753 u8 facility; /* log facility of first message */ 1754 enum log_flags flags; /* prefix, newline flags */ 1755 } cont; 1756 1757 static void cont_flush(void) 1758 { 1759 if (cont.len == 0) 1760 return; 1761 1762 log_store(cont.facility, cont.level, cont.flags, cont.ts_nsec, 1763 NULL, 0, cont.buf, cont.len); 1764 cont.len = 0; 1765 } 1766 1767 static bool cont_add(int facility, int level, enum log_flags flags, const char *text, size_t len) 1768 { 1769 /* 1770 * If ext consoles are present, flush and skip in-kernel 1771 * continuation. See nr_ext_console_drivers definition. Also, if 1772 * the line gets too long, split it up in separate records. 1773 */ 1774 if (nr_ext_console_drivers || cont.len + len > sizeof(cont.buf)) { 1775 cont_flush(); 1776 return false; 1777 } 1778 1779 if (!cont.len) { 1780 cont.facility = facility; 1781 cont.level = level; 1782 cont.owner = current; 1783 cont.ts_nsec = local_clock(); 1784 cont.flags = flags; 1785 } 1786 1787 memcpy(cont.buf + cont.len, text, len); 1788 cont.len += len; 1789 1790 // The original flags come from the first line, 1791 // but later continuations can add a newline. 1792 if (flags & LOG_NEWLINE) { 1793 cont.flags |= LOG_NEWLINE; 1794 cont_flush(); 1795 } 1796 1797 if (cont.len > (sizeof(cont.buf) * 80) / 100) 1798 cont_flush(); 1799 1800 return true; 1801 } 1802 1803 static size_t log_output(int facility, int level, enum log_flags lflags, const char *dict, size_t dictlen, char *text, size_t text_len) 1804 { 1805 /* 1806 * If an earlier line was buffered, and we're a continuation 1807 * write from the same process, try to add it to the buffer. 1808 */ 1809 if (cont.len) { 1810 if (cont.owner == current && (lflags & LOG_CONT)) { 1811 if (cont_add(facility, level, lflags, text, text_len)) 1812 return text_len; 1813 } 1814 /* Otherwise, make sure it's flushed */ 1815 cont_flush(); 1816 } 1817 1818 /* Skip empty continuation lines that couldn't be added - they just flush */ 1819 if (!text_len && (lflags & LOG_CONT)) 1820 return 0; 1821 1822 /* If it doesn't end in a newline, try to buffer the current line */ 1823 if (!(lflags & LOG_NEWLINE)) { 1824 if (cont_add(facility, level, lflags, text, text_len)) 1825 return text_len; 1826 } 1827 1828 /* Store it in the record log */ 1829 return log_store(facility, level, lflags, 0, dict, dictlen, text, text_len); 1830 } 1831 1832 /* Must be called under logbuf_lock. */ 1833 int vprintk_store(int facility, int level, 1834 const char *dict, size_t dictlen, 1835 const char *fmt, va_list args) 1836 { 1837 static char textbuf[LOG_LINE_MAX]; 1838 char *text = textbuf; 1839 size_t text_len; 1840 enum log_flags lflags = 0; 1841 1842 /* 1843 * The printf needs to come first; we need the syslog 1844 * prefix which might be passed-in as a parameter. 1845 */ 1846 text_len = vscnprintf(text, sizeof(textbuf), fmt, args); 1847 1848 /* mark and strip a trailing newline */ 1849 if (text_len && text[text_len-1] == '\n') { 1850 text_len--; 1851 lflags |= LOG_NEWLINE; 1852 } 1853 1854 /* strip kernel syslog prefix and extract log level or control flags */ 1855 if (facility == 0) { 1856 int kern_level; 1857 1858 while ((kern_level = printk_get_level(text)) != 0) { 1859 switch (kern_level) { 1860 case '0' ... '7': 1861 if (level == LOGLEVEL_DEFAULT) 1862 level = kern_level - '0'; 1863 /* fallthrough */ 1864 case 'd': /* KERN_DEFAULT */ 1865 lflags |= LOG_PREFIX; 1866 break; 1867 case 'c': /* KERN_CONT */ 1868 lflags |= LOG_CONT; 1869 } 1870 1871 text_len -= 2; 1872 text += 2; 1873 } 1874 } 1875 1876 if (level == LOGLEVEL_DEFAULT) 1877 level = default_message_loglevel; 1878 1879 if (dict) 1880 lflags |= LOG_PREFIX|LOG_NEWLINE; 1881 1882 if (suppress_message_printing(level)) 1883 lflags |= LOG_NOCONS; 1884 1885 return log_output(facility, level, lflags, 1886 dict, dictlen, text, text_len); 1887 } 1888 1889 asmlinkage int vprintk_emit(int facility, int level, 1890 const char *dict, size_t dictlen, 1891 const char *fmt, va_list args) 1892 { 1893 int printed_len; 1894 bool in_sched = false; 1895 unsigned long flags; 1896 1897 if (level == LOGLEVEL_SCHED) { 1898 level = LOGLEVEL_DEFAULT; 1899 in_sched = true; 1900 } 1901 1902 boot_delay_msec(level); 1903 printk_delay(); 1904 1905 /* This stops the holder of console_sem just where we want him */ 1906 logbuf_lock_irqsave(flags); 1907 printed_len = vprintk_store(facility, level, dict, dictlen, fmt, args); 1908 logbuf_unlock_irqrestore(flags); 1909 1910 /* If called from the scheduler, we can not call up(). */ 1911 if (!in_sched) { 1912 /* 1913 * Disable preemption to avoid being preempted while holding 1914 * console_sem which would prevent anyone from printing to 1915 * console 1916 */ 1917 preempt_disable(); 1918 /* 1919 * Try to acquire and then immediately release the console 1920 * semaphore. The release will print out buffers and wake up 1921 * /dev/kmsg and syslog() users. 1922 */ 1923 if (console_trylock_spinning()) 1924 console_unlock(); 1925 preempt_enable(); 1926 } 1927 1928 wake_up_klogd(); 1929 return printed_len; 1930 } 1931 EXPORT_SYMBOL(vprintk_emit); 1932 1933 asmlinkage int vprintk(const char *fmt, va_list args) 1934 { 1935 return vprintk_func(fmt, args); 1936 } 1937 EXPORT_SYMBOL(vprintk); 1938 1939 asmlinkage int printk_emit(int facility, int level, 1940 const char *dict, size_t dictlen, 1941 const char *fmt, ...) 1942 { 1943 va_list args; 1944 int r; 1945 1946 va_start(args, fmt); 1947 r = vprintk_emit(facility, level, dict, dictlen, fmt, args); 1948 va_end(args); 1949 1950 return r; 1951 } 1952 EXPORT_SYMBOL(printk_emit); 1953 1954 int vprintk_default(const char *fmt, va_list args) 1955 { 1956 int r; 1957 1958 #ifdef CONFIG_KGDB_KDB 1959 /* Allow to pass printk() to kdb but avoid a recursion. */ 1960 if (unlikely(kdb_trap_printk && kdb_printf_cpu < 0)) { 1961 r = vkdb_printf(KDB_MSGSRC_PRINTK, fmt, args); 1962 return r; 1963 } 1964 #endif 1965 r = vprintk_emit(0, LOGLEVEL_DEFAULT, NULL, 0, fmt, args); 1966 1967 return r; 1968 } 1969 EXPORT_SYMBOL_GPL(vprintk_default); 1970 1971 /** 1972 * printk - print a kernel message 1973 * @fmt: format string 1974 * 1975 * This is printk(). It can be called from any context. We want it to work. 1976 * 1977 * We try to grab the console_lock. If we succeed, it's easy - we log the 1978 * output and call the console drivers. If we fail to get the semaphore, we 1979 * place the output into the log buffer and return. The current holder of 1980 * the console_sem will notice the new output in console_unlock(); and will 1981 * send it to the consoles before releasing the lock. 1982 * 1983 * One effect of this deferred printing is that code which calls printk() and 1984 * then changes console_loglevel may break. This is because console_loglevel 1985 * is inspected when the actual printing occurs. 1986 * 1987 * See also: 1988 * printf(3) 1989 * 1990 * See the vsnprintf() documentation for format string extensions over C99. 1991 */ 1992 asmlinkage __visible int printk(const char *fmt, ...) 1993 { 1994 va_list args; 1995 int r; 1996 1997 va_start(args, fmt); 1998 r = vprintk_func(fmt, args); 1999 va_end(args); 2000 2001 return r; 2002 } 2003 EXPORT_SYMBOL(printk); 2004 2005 #else /* CONFIG_PRINTK */ 2006 2007 #define LOG_LINE_MAX 0 2008 #define PREFIX_MAX 0 2009 2010 static u64 syslog_seq; 2011 static u32 syslog_idx; 2012 static u64 console_seq; 2013 static u32 console_idx; 2014 static u64 log_first_seq; 2015 static u32 log_first_idx; 2016 static u64 log_next_seq; 2017 static char *log_text(const struct printk_log *msg) { return NULL; } 2018 static char *log_dict(const struct printk_log *msg) { return NULL; } 2019 static struct printk_log *log_from_idx(u32 idx) { return NULL; } 2020 static u32 log_next(u32 idx) { return 0; } 2021 static ssize_t msg_print_ext_header(char *buf, size_t size, 2022 struct printk_log *msg, 2023 u64 seq) { return 0; } 2024 static ssize_t msg_print_ext_body(char *buf, size_t size, 2025 char *dict, size_t dict_len, 2026 char *text, size_t text_len) { return 0; } 2027 static void console_lock_spinning_enable(void) { } 2028 static int console_lock_spinning_disable_and_check(void) { return 0; } 2029 static void call_console_drivers(const char *ext_text, size_t ext_len, 2030 const char *text, size_t len) {} 2031 static size_t msg_print_text(const struct printk_log *msg, 2032 bool syslog, char *buf, size_t size) { return 0; } 2033 2034 #endif /* CONFIG_PRINTK */ 2035 2036 #ifdef CONFIG_EARLY_PRINTK 2037 struct console *early_console; 2038 2039 asmlinkage __visible void early_printk(const char *fmt, ...) 2040 { 2041 va_list ap; 2042 char buf[512]; 2043 int n; 2044 2045 if (!early_console) 2046 return; 2047 2048 va_start(ap, fmt); 2049 n = vscnprintf(buf, sizeof(buf), fmt, ap); 2050 va_end(ap); 2051 2052 early_console->write(early_console, buf, n); 2053 } 2054 #endif 2055 2056 static int __add_preferred_console(char *name, int idx, char *options, 2057 char *brl_options) 2058 { 2059 struct console_cmdline *c; 2060 int i; 2061 2062 /* 2063 * See if this tty is not yet registered, and 2064 * if we have a slot free. 2065 */ 2066 for (i = 0, c = console_cmdline; 2067 i < MAX_CMDLINECONSOLES && c->name[0]; 2068 i++, c++) { 2069 if (strcmp(c->name, name) == 0 && c->index == idx) { 2070 if (!brl_options) 2071 preferred_console = i; 2072 return 0; 2073 } 2074 } 2075 if (i == MAX_CMDLINECONSOLES) 2076 return -E2BIG; 2077 if (!brl_options) 2078 preferred_console = i; 2079 strlcpy(c->name, name, sizeof(c->name)); 2080 c->options = options; 2081 braille_set_options(c, brl_options); 2082 2083 c->index = idx; 2084 return 0; 2085 } 2086 2087 static int __init console_msg_format_setup(char *str) 2088 { 2089 if (!strcmp(str, "syslog")) 2090 console_msg_format = MSG_FORMAT_SYSLOG; 2091 if (!strcmp(str, "default")) 2092 console_msg_format = MSG_FORMAT_DEFAULT; 2093 return 1; 2094 } 2095 __setup("console_msg_format=", console_msg_format_setup); 2096 2097 /* 2098 * Set up a console. Called via do_early_param() in init/main.c 2099 * for each "console=" parameter in the boot command line. 2100 */ 2101 static int __init console_setup(char *str) 2102 { 2103 char buf[sizeof(console_cmdline[0].name) + 4]; /* 4 for "ttyS" */ 2104 char *s, *options, *brl_options = NULL; 2105 int idx; 2106 2107 if (_braille_console_setup(&str, &brl_options)) 2108 return 1; 2109 2110 /* 2111 * Decode str into name, index, options. 2112 */ 2113 if (str[0] >= '0' && str[0] <= '9') { 2114 strcpy(buf, "ttyS"); 2115 strncpy(buf + 4, str, sizeof(buf) - 5); 2116 } else { 2117 strncpy(buf, str, sizeof(buf) - 1); 2118 } 2119 buf[sizeof(buf) - 1] = 0; 2120 options = strchr(str, ','); 2121 if (options) 2122 *(options++) = 0; 2123 #ifdef __sparc__ 2124 if (!strcmp(str, "ttya")) 2125 strcpy(buf, "ttyS0"); 2126 if (!strcmp(str, "ttyb")) 2127 strcpy(buf, "ttyS1"); 2128 #endif 2129 for (s = buf; *s; s++) 2130 if (isdigit(*s) || *s == ',') 2131 break; 2132 idx = simple_strtoul(s, NULL, 10); 2133 *s = 0; 2134 2135 __add_preferred_console(buf, idx, options, brl_options); 2136 console_set_on_cmdline = 1; 2137 return 1; 2138 } 2139 __setup("console=", console_setup); 2140 2141 /** 2142 * add_preferred_console - add a device to the list of preferred consoles. 2143 * @name: device name 2144 * @idx: device index 2145 * @options: options for this console 2146 * 2147 * The last preferred console added will be used for kernel messages 2148 * and stdin/out/err for init. Normally this is used by console_setup 2149 * above to handle user-supplied console arguments; however it can also 2150 * be used by arch-specific code either to override the user or more 2151 * commonly to provide a default console (ie from PROM variables) when 2152 * the user has not supplied one. 2153 */ 2154 int add_preferred_console(char *name, int idx, char *options) 2155 { 2156 return __add_preferred_console(name, idx, options, NULL); 2157 } 2158 2159 bool console_suspend_enabled = true; 2160 EXPORT_SYMBOL(console_suspend_enabled); 2161 2162 static int __init console_suspend_disable(char *str) 2163 { 2164 console_suspend_enabled = false; 2165 return 1; 2166 } 2167 __setup("no_console_suspend", console_suspend_disable); 2168 module_param_named(console_suspend, console_suspend_enabled, 2169 bool, S_IRUGO | S_IWUSR); 2170 MODULE_PARM_DESC(console_suspend, "suspend console during suspend" 2171 " and hibernate operations"); 2172 2173 /** 2174 * suspend_console - suspend the console subsystem 2175 * 2176 * This disables printk() while we go into suspend states 2177 */ 2178 void suspend_console(void) 2179 { 2180 if (!console_suspend_enabled) 2181 return; 2182 pr_info("Suspending console(s) (use no_console_suspend to debug)\n"); 2183 console_lock(); 2184 console_suspended = 1; 2185 up_console_sem(); 2186 } 2187 2188 void resume_console(void) 2189 { 2190 if (!console_suspend_enabled) 2191 return; 2192 down_console_sem(); 2193 console_suspended = 0; 2194 console_unlock(); 2195 } 2196 2197 /** 2198 * console_cpu_notify - print deferred console messages after CPU hotplug 2199 * @cpu: unused 2200 * 2201 * If printk() is called from a CPU that is not online yet, the messages 2202 * will be printed on the console only if there are CON_ANYTIME consoles. 2203 * This function is called when a new CPU comes online (or fails to come 2204 * up) or goes offline. 2205 */ 2206 static int console_cpu_notify(unsigned int cpu) 2207 { 2208 if (!cpuhp_tasks_frozen) { 2209 /* If trylock fails, someone else is doing the printing */ 2210 if (console_trylock()) 2211 console_unlock(); 2212 } 2213 return 0; 2214 } 2215 2216 /** 2217 * console_lock - lock the console system for exclusive use. 2218 * 2219 * Acquires a lock which guarantees that the caller has 2220 * exclusive access to the console system and the console_drivers list. 2221 * 2222 * Can sleep, returns nothing. 2223 */ 2224 void console_lock(void) 2225 { 2226 might_sleep(); 2227 2228 down_console_sem(); 2229 if (console_suspended) 2230 return; 2231 console_locked = 1; 2232 console_may_schedule = 1; 2233 } 2234 EXPORT_SYMBOL(console_lock); 2235 2236 /** 2237 * console_trylock - try to lock the console system for exclusive use. 2238 * 2239 * Try to acquire a lock which guarantees that the caller has exclusive 2240 * access to the console system and the console_drivers list. 2241 * 2242 * returns 1 on success, and 0 on failure to acquire the lock. 2243 */ 2244 int console_trylock(void) 2245 { 2246 if (down_trylock_console_sem()) 2247 return 0; 2248 if (console_suspended) { 2249 up_console_sem(); 2250 return 0; 2251 } 2252 console_locked = 1; 2253 console_may_schedule = 0; 2254 return 1; 2255 } 2256 EXPORT_SYMBOL(console_trylock); 2257 2258 int is_console_locked(void) 2259 { 2260 return console_locked; 2261 } 2262 EXPORT_SYMBOL(is_console_locked); 2263 2264 /* 2265 * Check if we have any console that is capable of printing while cpu is 2266 * booting or shutting down. Requires console_sem. 2267 */ 2268 static int have_callable_console(void) 2269 { 2270 struct console *con; 2271 2272 for_each_console(con) 2273 if ((con->flags & CON_ENABLED) && 2274 (con->flags & CON_ANYTIME)) 2275 return 1; 2276 2277 return 0; 2278 } 2279 2280 /* 2281 * Can we actually use the console at this time on this cpu? 2282 * 2283 * Console drivers may assume that per-cpu resources have been allocated. So 2284 * unless they're explicitly marked as being able to cope (CON_ANYTIME) don't 2285 * call them until this CPU is officially up. 2286 */ 2287 static inline int can_use_console(void) 2288 { 2289 return cpu_online(raw_smp_processor_id()) || have_callable_console(); 2290 } 2291 2292 /** 2293 * console_unlock - unlock the console system 2294 * 2295 * Releases the console_lock which the caller holds on the console system 2296 * and the console driver list. 2297 * 2298 * While the console_lock was held, console output may have been buffered 2299 * by printk(). If this is the case, console_unlock(); emits 2300 * the output prior to releasing the lock. 2301 * 2302 * If there is output waiting, we wake /dev/kmsg and syslog() users. 2303 * 2304 * console_unlock(); may be called from any context. 2305 */ 2306 void console_unlock(void) 2307 { 2308 static char ext_text[CONSOLE_EXT_LOG_MAX]; 2309 static char text[LOG_LINE_MAX + PREFIX_MAX]; 2310 unsigned long flags; 2311 bool do_cond_resched, retry; 2312 2313 if (console_suspended) { 2314 up_console_sem(); 2315 return; 2316 } 2317 2318 /* 2319 * Console drivers are called with interrupts disabled, so 2320 * @console_may_schedule should be cleared before; however, we may 2321 * end up dumping a lot of lines, for example, if called from 2322 * console registration path, and should invoke cond_resched() 2323 * between lines if allowable. Not doing so can cause a very long 2324 * scheduling stall on a slow console leading to RCU stall and 2325 * softlockup warnings which exacerbate the issue with more 2326 * messages practically incapacitating the system. 2327 * 2328 * console_trylock() is not able to detect the preemptive 2329 * context reliably. Therefore the value must be stored before 2330 * and cleared after the the "again" goto label. 2331 */ 2332 do_cond_resched = console_may_schedule; 2333 again: 2334 console_may_schedule = 0; 2335 2336 /* 2337 * We released the console_sem lock, so we need to recheck if 2338 * cpu is online and (if not) is there at least one CON_ANYTIME 2339 * console. 2340 */ 2341 if (!can_use_console()) { 2342 console_locked = 0; 2343 up_console_sem(); 2344 return; 2345 } 2346 2347 for (;;) { 2348 struct printk_log *msg; 2349 size_t ext_len = 0; 2350 size_t len; 2351 2352 printk_safe_enter_irqsave(flags); 2353 raw_spin_lock(&logbuf_lock); 2354 if (console_seq < log_first_seq) { 2355 len = sprintf(text, "** %u printk messages dropped **\n", 2356 (unsigned)(log_first_seq - console_seq)); 2357 2358 /* messages are gone, move to first one */ 2359 console_seq = log_first_seq; 2360 console_idx = log_first_idx; 2361 } else { 2362 len = 0; 2363 } 2364 skip: 2365 if (console_seq == log_next_seq) 2366 break; 2367 2368 msg = log_from_idx(console_idx); 2369 if (msg->flags & LOG_NOCONS) { 2370 /* 2371 * Skip record if !ignore_loglevel, and 2372 * record has level above the console loglevel. 2373 */ 2374 console_idx = log_next(console_idx); 2375 console_seq++; 2376 goto skip; 2377 } 2378 2379 len += msg_print_text(msg, 2380 console_msg_format & MSG_FORMAT_SYSLOG, 2381 text + len, 2382 sizeof(text) - len); 2383 if (nr_ext_console_drivers) { 2384 ext_len = msg_print_ext_header(ext_text, 2385 sizeof(ext_text), 2386 msg, console_seq); 2387 ext_len += msg_print_ext_body(ext_text + ext_len, 2388 sizeof(ext_text) - ext_len, 2389 log_dict(msg), msg->dict_len, 2390 log_text(msg), msg->text_len); 2391 } 2392 console_idx = log_next(console_idx); 2393 console_seq++; 2394 raw_spin_unlock(&logbuf_lock); 2395 2396 /* 2397 * While actively printing out messages, if another printk() 2398 * were to occur on another CPU, it may wait for this one to 2399 * finish. This task can not be preempted if there is a 2400 * waiter waiting to take over. 2401 */ 2402 console_lock_spinning_enable(); 2403 2404 stop_critical_timings(); /* don't trace print latency */ 2405 call_console_drivers(ext_text, ext_len, text, len); 2406 start_critical_timings(); 2407 2408 if (console_lock_spinning_disable_and_check()) { 2409 printk_safe_exit_irqrestore(flags); 2410 return; 2411 } 2412 2413 printk_safe_exit_irqrestore(flags); 2414 2415 if (do_cond_resched) 2416 cond_resched(); 2417 } 2418 2419 console_locked = 0; 2420 2421 /* Release the exclusive_console once it is used */ 2422 if (unlikely(exclusive_console)) 2423 exclusive_console = NULL; 2424 2425 raw_spin_unlock(&logbuf_lock); 2426 2427 up_console_sem(); 2428 2429 /* 2430 * Someone could have filled up the buffer again, so re-check if there's 2431 * something to flush. In case we cannot trylock the console_sem again, 2432 * there's a new owner and the console_unlock() from them will do the 2433 * flush, no worries. 2434 */ 2435 raw_spin_lock(&logbuf_lock); 2436 retry = console_seq != log_next_seq; 2437 raw_spin_unlock(&logbuf_lock); 2438 printk_safe_exit_irqrestore(flags); 2439 2440 if (retry && console_trylock()) 2441 goto again; 2442 } 2443 EXPORT_SYMBOL(console_unlock); 2444 2445 /** 2446 * console_conditional_schedule - yield the CPU if required 2447 * 2448 * If the console code is currently allowed to sleep, and 2449 * if this CPU should yield the CPU to another task, do 2450 * so here. 2451 * 2452 * Must be called within console_lock();. 2453 */ 2454 void __sched console_conditional_schedule(void) 2455 { 2456 if (console_may_schedule) 2457 cond_resched(); 2458 } 2459 EXPORT_SYMBOL(console_conditional_schedule); 2460 2461 void console_unblank(void) 2462 { 2463 struct console *c; 2464 2465 /* 2466 * console_unblank can no longer be called in interrupt context unless 2467 * oops_in_progress is set to 1.. 2468 */ 2469 if (oops_in_progress) { 2470 if (down_trylock_console_sem() != 0) 2471 return; 2472 } else 2473 console_lock(); 2474 2475 console_locked = 1; 2476 console_may_schedule = 0; 2477 for_each_console(c) 2478 if ((c->flags & CON_ENABLED) && c->unblank) 2479 c->unblank(); 2480 console_unlock(); 2481 } 2482 2483 /** 2484 * console_flush_on_panic - flush console content on panic 2485 * 2486 * Immediately output all pending messages no matter what. 2487 */ 2488 void console_flush_on_panic(void) 2489 { 2490 /* 2491 * If someone else is holding the console lock, trylock will fail 2492 * and may_schedule may be set. Ignore and proceed to unlock so 2493 * that messages are flushed out. As this can be called from any 2494 * context and we don't want to get preempted while flushing, 2495 * ensure may_schedule is cleared. 2496 */ 2497 console_trylock(); 2498 console_may_schedule = 0; 2499 console_unlock(); 2500 } 2501 2502 /* 2503 * Return the console tty driver structure and its associated index 2504 */ 2505 struct tty_driver *console_device(int *index) 2506 { 2507 struct console *c; 2508 struct tty_driver *driver = NULL; 2509 2510 console_lock(); 2511 for_each_console(c) { 2512 if (!c->device) 2513 continue; 2514 driver = c->device(c, index); 2515 if (driver) 2516 break; 2517 } 2518 console_unlock(); 2519 return driver; 2520 } 2521 2522 /* 2523 * Prevent further output on the passed console device so that (for example) 2524 * serial drivers can disable console output before suspending a port, and can 2525 * re-enable output afterwards. 2526 */ 2527 void console_stop(struct console *console) 2528 { 2529 console_lock(); 2530 console->flags &= ~CON_ENABLED; 2531 console_unlock(); 2532 } 2533 EXPORT_SYMBOL(console_stop); 2534 2535 void console_start(struct console *console) 2536 { 2537 console_lock(); 2538 console->flags |= CON_ENABLED; 2539 console_unlock(); 2540 } 2541 EXPORT_SYMBOL(console_start); 2542 2543 static int __read_mostly keep_bootcon; 2544 2545 static int __init keep_bootcon_setup(char *str) 2546 { 2547 keep_bootcon = 1; 2548 pr_info("debug: skip boot console de-registration.\n"); 2549 2550 return 0; 2551 } 2552 2553 early_param("keep_bootcon", keep_bootcon_setup); 2554 2555 /* 2556 * The console driver calls this routine during kernel initialization 2557 * to register the console printing procedure with printk() and to 2558 * print any messages that were printed by the kernel before the 2559 * console driver was initialized. 2560 * 2561 * This can happen pretty early during the boot process (because of 2562 * early_printk) - sometimes before setup_arch() completes - be careful 2563 * of what kernel features are used - they may not be initialised yet. 2564 * 2565 * There are two types of consoles - bootconsoles (early_printk) and 2566 * "real" consoles (everything which is not a bootconsole) which are 2567 * handled differently. 2568 * - Any number of bootconsoles can be registered at any time. 2569 * - As soon as a "real" console is registered, all bootconsoles 2570 * will be unregistered automatically. 2571 * - Once a "real" console is registered, any attempt to register a 2572 * bootconsoles will be rejected 2573 */ 2574 void register_console(struct console *newcon) 2575 { 2576 int i; 2577 unsigned long flags; 2578 struct console *bcon = NULL; 2579 struct console_cmdline *c; 2580 static bool has_preferred; 2581 2582 if (console_drivers) 2583 for_each_console(bcon) 2584 if (WARN(bcon == newcon, 2585 "console '%s%d' already registered\n", 2586 bcon->name, bcon->index)) 2587 return; 2588 2589 /* 2590 * before we register a new CON_BOOT console, make sure we don't 2591 * already have a valid console 2592 */ 2593 if (console_drivers && newcon->flags & CON_BOOT) { 2594 /* find the last or real console */ 2595 for_each_console(bcon) { 2596 if (!(bcon->flags & CON_BOOT)) { 2597 pr_info("Too late to register bootconsole %s%d\n", 2598 newcon->name, newcon->index); 2599 return; 2600 } 2601 } 2602 } 2603 2604 if (console_drivers && console_drivers->flags & CON_BOOT) 2605 bcon = console_drivers; 2606 2607 if (!has_preferred || bcon || !console_drivers) 2608 has_preferred = preferred_console >= 0; 2609 2610 /* 2611 * See if we want to use this console driver. If we 2612 * didn't select a console we take the first one 2613 * that registers here. 2614 */ 2615 if (!has_preferred) { 2616 if (newcon->index < 0) 2617 newcon->index = 0; 2618 if (newcon->setup == NULL || 2619 newcon->setup(newcon, NULL) == 0) { 2620 newcon->flags |= CON_ENABLED; 2621 if (newcon->device) { 2622 newcon->flags |= CON_CONSDEV; 2623 has_preferred = true; 2624 } 2625 } 2626 } 2627 2628 /* 2629 * See if this console matches one we selected on 2630 * the command line. 2631 */ 2632 for (i = 0, c = console_cmdline; 2633 i < MAX_CMDLINECONSOLES && c->name[0]; 2634 i++, c++) { 2635 if (!newcon->match || 2636 newcon->match(newcon, c->name, c->index, c->options) != 0) { 2637 /* default matching */ 2638 BUILD_BUG_ON(sizeof(c->name) != sizeof(newcon->name)); 2639 if (strcmp(c->name, newcon->name) != 0) 2640 continue; 2641 if (newcon->index >= 0 && 2642 newcon->index != c->index) 2643 continue; 2644 if (newcon->index < 0) 2645 newcon->index = c->index; 2646 2647 if (_braille_register_console(newcon, c)) 2648 return; 2649 2650 if (newcon->setup && 2651 newcon->setup(newcon, c->options) != 0) 2652 break; 2653 } 2654 2655 newcon->flags |= CON_ENABLED; 2656 if (i == preferred_console) { 2657 newcon->flags |= CON_CONSDEV; 2658 has_preferred = true; 2659 } 2660 break; 2661 } 2662 2663 if (!(newcon->flags & CON_ENABLED)) 2664 return; 2665 2666 /* 2667 * If we have a bootconsole, and are switching to a real console, 2668 * don't print everything out again, since when the boot console, and 2669 * the real console are the same physical device, it's annoying to 2670 * see the beginning boot messages twice 2671 */ 2672 if (bcon && ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV)) 2673 newcon->flags &= ~CON_PRINTBUFFER; 2674 2675 /* 2676 * Put this console in the list - keep the 2677 * preferred driver at the head of the list. 2678 */ 2679 console_lock(); 2680 if ((newcon->flags & CON_CONSDEV) || console_drivers == NULL) { 2681 newcon->next = console_drivers; 2682 console_drivers = newcon; 2683 if (newcon->next) 2684 newcon->next->flags &= ~CON_CONSDEV; 2685 } else { 2686 newcon->next = console_drivers->next; 2687 console_drivers->next = newcon; 2688 } 2689 2690 if (newcon->flags & CON_EXTENDED) 2691 if (!nr_ext_console_drivers++) 2692 pr_info("printk: continuation disabled due to ext consoles, expect more fragments in /dev/kmsg\n"); 2693 2694 if (newcon->flags & CON_PRINTBUFFER) { 2695 /* 2696 * console_unlock(); will print out the buffered messages 2697 * for us. 2698 */ 2699 logbuf_lock_irqsave(flags); 2700 console_seq = syslog_seq; 2701 console_idx = syslog_idx; 2702 logbuf_unlock_irqrestore(flags); 2703 /* 2704 * We're about to replay the log buffer. Only do this to the 2705 * just-registered console to avoid excessive message spam to 2706 * the already-registered consoles. 2707 */ 2708 exclusive_console = newcon; 2709 } 2710 console_unlock(); 2711 console_sysfs_notify(); 2712 2713 /* 2714 * By unregistering the bootconsoles after we enable the real console 2715 * we get the "console xxx enabled" message on all the consoles - 2716 * boot consoles, real consoles, etc - this is to ensure that end 2717 * users know there might be something in the kernel's log buffer that 2718 * went to the bootconsole (that they do not see on the real console) 2719 */ 2720 pr_info("%sconsole [%s%d] enabled\n", 2721 (newcon->flags & CON_BOOT) ? "boot" : "" , 2722 newcon->name, newcon->index); 2723 if (bcon && 2724 ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV) && 2725 !keep_bootcon) { 2726 /* We need to iterate through all boot consoles, to make 2727 * sure we print everything out, before we unregister them. 2728 */ 2729 for_each_console(bcon) 2730 if (bcon->flags & CON_BOOT) 2731 unregister_console(bcon); 2732 } 2733 } 2734 EXPORT_SYMBOL(register_console); 2735 2736 int unregister_console(struct console *console) 2737 { 2738 struct console *a, *b; 2739 int res; 2740 2741 pr_info("%sconsole [%s%d] disabled\n", 2742 (console->flags & CON_BOOT) ? "boot" : "" , 2743 console->name, console->index); 2744 2745 res = _braille_unregister_console(console); 2746 if (res) 2747 return res; 2748 2749 res = 1; 2750 console_lock(); 2751 if (console_drivers == console) { 2752 console_drivers=console->next; 2753 res = 0; 2754 } else if (console_drivers) { 2755 for (a=console_drivers->next, b=console_drivers ; 2756 a; b=a, a=b->next) { 2757 if (a == console) { 2758 b->next = a->next; 2759 res = 0; 2760 break; 2761 } 2762 } 2763 } 2764 2765 if (!res && (console->flags & CON_EXTENDED)) 2766 nr_ext_console_drivers--; 2767 2768 /* 2769 * If this isn't the last console and it has CON_CONSDEV set, we 2770 * need to set it on the next preferred console. 2771 */ 2772 if (console_drivers != NULL && console->flags & CON_CONSDEV) 2773 console_drivers->flags |= CON_CONSDEV; 2774 2775 console->flags &= ~CON_ENABLED; 2776 console_unlock(); 2777 console_sysfs_notify(); 2778 return res; 2779 } 2780 EXPORT_SYMBOL(unregister_console); 2781 2782 /* 2783 * Initialize the console device. This is called *early*, so 2784 * we can't necessarily depend on lots of kernel help here. 2785 * Just do some early initializations, and do the complex setup 2786 * later. 2787 */ 2788 void __init console_init(void) 2789 { 2790 int ret; 2791 initcall_t call; 2792 initcall_entry_t *ce; 2793 2794 /* Setup the default TTY line discipline. */ 2795 n_tty_init(); 2796 2797 /* 2798 * set up the console device so that later boot sequences can 2799 * inform about problems etc.. 2800 */ 2801 ce = __con_initcall_start; 2802 trace_initcall_level("console"); 2803 while (ce < __con_initcall_end) { 2804 call = initcall_from_entry(ce); 2805 trace_initcall_start(call); 2806 ret = call(); 2807 trace_initcall_finish(call, ret); 2808 ce++; 2809 } 2810 } 2811 2812 /* 2813 * Some boot consoles access data that is in the init section and which will 2814 * be discarded after the initcalls have been run. To make sure that no code 2815 * will access this data, unregister the boot consoles in a late initcall. 2816 * 2817 * If for some reason, such as deferred probe or the driver being a loadable 2818 * module, the real console hasn't registered yet at this point, there will 2819 * be a brief interval in which no messages are logged to the console, which 2820 * makes it difficult to diagnose problems that occur during this time. 2821 * 2822 * To mitigate this problem somewhat, only unregister consoles whose memory 2823 * intersects with the init section. Note that all other boot consoles will 2824 * get unregistred when the real preferred console is registered. 2825 */ 2826 static int __init printk_late_init(void) 2827 { 2828 struct console *con; 2829 int ret; 2830 2831 for_each_console(con) { 2832 if (!(con->flags & CON_BOOT)) 2833 continue; 2834 2835 /* Check addresses that might be used for enabled consoles. */ 2836 if (init_section_intersects(con, sizeof(*con)) || 2837 init_section_contains(con->write, 0) || 2838 init_section_contains(con->read, 0) || 2839 init_section_contains(con->device, 0) || 2840 init_section_contains(con->unblank, 0) || 2841 init_section_contains(con->data, 0)) { 2842 /* 2843 * Please, consider moving the reported consoles out 2844 * of the init section. 2845 */ 2846 pr_warn("bootconsole [%s%d] uses init memory and must be disabled even before the real one is ready\n", 2847 con->name, con->index); 2848 unregister_console(con); 2849 } 2850 } 2851 ret = cpuhp_setup_state_nocalls(CPUHP_PRINTK_DEAD, "printk:dead", NULL, 2852 console_cpu_notify); 2853 WARN_ON(ret < 0); 2854 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "printk:online", 2855 console_cpu_notify, NULL); 2856 WARN_ON(ret < 0); 2857 return 0; 2858 } 2859 late_initcall(printk_late_init); 2860 2861 #if defined CONFIG_PRINTK 2862 /* 2863 * Delayed printk version, for scheduler-internal messages: 2864 */ 2865 #define PRINTK_PENDING_WAKEUP 0x01 2866 #define PRINTK_PENDING_OUTPUT 0x02 2867 2868 static DEFINE_PER_CPU(int, printk_pending); 2869 2870 static void wake_up_klogd_work_func(struct irq_work *irq_work) 2871 { 2872 int pending = __this_cpu_xchg(printk_pending, 0); 2873 2874 if (pending & PRINTK_PENDING_OUTPUT) { 2875 /* If trylock fails, someone else is doing the printing */ 2876 if (console_trylock()) 2877 console_unlock(); 2878 } 2879 2880 if (pending & PRINTK_PENDING_WAKEUP) 2881 wake_up_interruptible(&log_wait); 2882 } 2883 2884 static DEFINE_PER_CPU(struct irq_work, wake_up_klogd_work) = { 2885 .func = wake_up_klogd_work_func, 2886 .flags = IRQ_WORK_LAZY, 2887 }; 2888 2889 void wake_up_klogd(void) 2890 { 2891 preempt_disable(); 2892 if (waitqueue_active(&log_wait)) { 2893 this_cpu_or(printk_pending, PRINTK_PENDING_WAKEUP); 2894 irq_work_queue(this_cpu_ptr(&wake_up_klogd_work)); 2895 } 2896 preempt_enable(); 2897 } 2898 2899 void defer_console_output(void) 2900 { 2901 preempt_disable(); 2902 __this_cpu_or(printk_pending, PRINTK_PENDING_OUTPUT); 2903 irq_work_queue(this_cpu_ptr(&wake_up_klogd_work)); 2904 preempt_enable(); 2905 } 2906 2907 int vprintk_deferred(const char *fmt, va_list args) 2908 { 2909 int r; 2910 2911 r = vprintk_emit(0, LOGLEVEL_SCHED, NULL, 0, fmt, args); 2912 defer_console_output(); 2913 2914 return r; 2915 } 2916 2917 int printk_deferred(const char *fmt, ...) 2918 { 2919 va_list args; 2920 int r; 2921 2922 va_start(args, fmt); 2923 r = vprintk_deferred(fmt, args); 2924 va_end(args); 2925 2926 return r; 2927 } 2928 2929 /* 2930 * printk rate limiting, lifted from the networking subsystem. 2931 * 2932 * This enforces a rate limit: not more than 10 kernel messages 2933 * every 5s to make a denial-of-service attack impossible. 2934 */ 2935 DEFINE_RATELIMIT_STATE(printk_ratelimit_state, 5 * HZ, 10); 2936 2937 int __printk_ratelimit(const char *func) 2938 { 2939 return ___ratelimit(&printk_ratelimit_state, func); 2940 } 2941 EXPORT_SYMBOL(__printk_ratelimit); 2942 2943 /** 2944 * printk_timed_ratelimit - caller-controlled printk ratelimiting 2945 * @caller_jiffies: pointer to caller's state 2946 * @interval_msecs: minimum interval between prints 2947 * 2948 * printk_timed_ratelimit() returns true if more than @interval_msecs 2949 * milliseconds have elapsed since the last time printk_timed_ratelimit() 2950 * returned true. 2951 */ 2952 bool printk_timed_ratelimit(unsigned long *caller_jiffies, 2953 unsigned int interval_msecs) 2954 { 2955 unsigned long elapsed = jiffies - *caller_jiffies; 2956 2957 if (*caller_jiffies && elapsed <= msecs_to_jiffies(interval_msecs)) 2958 return false; 2959 2960 *caller_jiffies = jiffies; 2961 return true; 2962 } 2963 EXPORT_SYMBOL(printk_timed_ratelimit); 2964 2965 static DEFINE_SPINLOCK(dump_list_lock); 2966 static LIST_HEAD(dump_list); 2967 2968 /** 2969 * kmsg_dump_register - register a kernel log dumper. 2970 * @dumper: pointer to the kmsg_dumper structure 2971 * 2972 * Adds a kernel log dumper to the system. The dump callback in the 2973 * structure will be called when the kernel oopses or panics and must be 2974 * set. Returns zero on success and %-EINVAL or %-EBUSY otherwise. 2975 */ 2976 int kmsg_dump_register(struct kmsg_dumper *dumper) 2977 { 2978 unsigned long flags; 2979 int err = -EBUSY; 2980 2981 /* The dump callback needs to be set */ 2982 if (!dumper->dump) 2983 return -EINVAL; 2984 2985 spin_lock_irqsave(&dump_list_lock, flags); 2986 /* Don't allow registering multiple times */ 2987 if (!dumper->registered) { 2988 dumper->registered = 1; 2989 list_add_tail_rcu(&dumper->list, &dump_list); 2990 err = 0; 2991 } 2992 spin_unlock_irqrestore(&dump_list_lock, flags); 2993 2994 return err; 2995 } 2996 EXPORT_SYMBOL_GPL(kmsg_dump_register); 2997 2998 /** 2999 * kmsg_dump_unregister - unregister a kmsg dumper. 3000 * @dumper: pointer to the kmsg_dumper structure 3001 * 3002 * Removes a dump device from the system. Returns zero on success and 3003 * %-EINVAL otherwise. 3004 */ 3005 int kmsg_dump_unregister(struct kmsg_dumper *dumper) 3006 { 3007 unsigned long flags; 3008 int err = -EINVAL; 3009 3010 spin_lock_irqsave(&dump_list_lock, flags); 3011 if (dumper->registered) { 3012 dumper->registered = 0; 3013 list_del_rcu(&dumper->list); 3014 err = 0; 3015 } 3016 spin_unlock_irqrestore(&dump_list_lock, flags); 3017 synchronize_rcu(); 3018 3019 return err; 3020 } 3021 EXPORT_SYMBOL_GPL(kmsg_dump_unregister); 3022 3023 static bool always_kmsg_dump; 3024 module_param_named(always_kmsg_dump, always_kmsg_dump, bool, S_IRUGO | S_IWUSR); 3025 3026 /** 3027 * kmsg_dump - dump kernel log to kernel message dumpers. 3028 * @reason: the reason (oops, panic etc) for dumping 3029 * 3030 * Call each of the registered dumper's dump() callback, which can 3031 * retrieve the kmsg records with kmsg_dump_get_line() or 3032 * kmsg_dump_get_buffer(). 3033 */ 3034 void kmsg_dump(enum kmsg_dump_reason reason) 3035 { 3036 struct kmsg_dumper *dumper; 3037 unsigned long flags; 3038 3039 if ((reason > KMSG_DUMP_OOPS) && !always_kmsg_dump) 3040 return; 3041 3042 rcu_read_lock(); 3043 list_for_each_entry_rcu(dumper, &dump_list, list) { 3044 if (dumper->max_reason && reason > dumper->max_reason) 3045 continue; 3046 3047 /* initialize iterator with data about the stored records */ 3048 dumper->active = true; 3049 3050 logbuf_lock_irqsave(flags); 3051 dumper->cur_seq = clear_seq; 3052 dumper->cur_idx = clear_idx; 3053 dumper->next_seq = log_next_seq; 3054 dumper->next_idx = log_next_idx; 3055 logbuf_unlock_irqrestore(flags); 3056 3057 /* invoke dumper which will iterate over records */ 3058 dumper->dump(dumper, reason); 3059 3060 /* reset iterator */ 3061 dumper->active = false; 3062 } 3063 rcu_read_unlock(); 3064 } 3065 3066 /** 3067 * kmsg_dump_get_line_nolock - retrieve one kmsg log line (unlocked version) 3068 * @dumper: registered kmsg dumper 3069 * @syslog: include the "<4>" prefixes 3070 * @line: buffer to copy the line to 3071 * @size: maximum size of the buffer 3072 * @len: length of line placed into buffer 3073 * 3074 * Start at the beginning of the kmsg buffer, with the oldest kmsg 3075 * record, and copy one record into the provided buffer. 3076 * 3077 * Consecutive calls will return the next available record moving 3078 * towards the end of the buffer with the youngest messages. 3079 * 3080 * A return value of FALSE indicates that there are no more records to 3081 * read. 3082 * 3083 * The function is similar to kmsg_dump_get_line(), but grabs no locks. 3084 */ 3085 bool kmsg_dump_get_line_nolock(struct kmsg_dumper *dumper, bool syslog, 3086 char *line, size_t size, size_t *len) 3087 { 3088 struct printk_log *msg; 3089 size_t l = 0; 3090 bool ret = false; 3091 3092 if (!dumper->active) 3093 goto out; 3094 3095 if (dumper->cur_seq < log_first_seq) { 3096 /* messages are gone, move to first available one */ 3097 dumper->cur_seq = log_first_seq; 3098 dumper->cur_idx = log_first_idx; 3099 } 3100 3101 /* last entry */ 3102 if (dumper->cur_seq >= log_next_seq) 3103 goto out; 3104 3105 msg = log_from_idx(dumper->cur_idx); 3106 l = msg_print_text(msg, syslog, line, size); 3107 3108 dumper->cur_idx = log_next(dumper->cur_idx); 3109 dumper->cur_seq++; 3110 ret = true; 3111 out: 3112 if (len) 3113 *len = l; 3114 return ret; 3115 } 3116 3117 /** 3118 * kmsg_dump_get_line - retrieve one kmsg log line 3119 * @dumper: registered kmsg dumper 3120 * @syslog: include the "<4>" prefixes 3121 * @line: buffer to copy the line to 3122 * @size: maximum size of the buffer 3123 * @len: length of line placed into buffer 3124 * 3125 * Start at the beginning of the kmsg buffer, with the oldest kmsg 3126 * record, and copy one record into the provided buffer. 3127 * 3128 * Consecutive calls will return the next available record moving 3129 * towards the end of the buffer with the youngest messages. 3130 * 3131 * A return value of FALSE indicates that there are no more records to 3132 * read. 3133 */ 3134 bool kmsg_dump_get_line(struct kmsg_dumper *dumper, bool syslog, 3135 char *line, size_t size, size_t *len) 3136 { 3137 unsigned long flags; 3138 bool ret; 3139 3140 logbuf_lock_irqsave(flags); 3141 ret = kmsg_dump_get_line_nolock(dumper, syslog, line, size, len); 3142 logbuf_unlock_irqrestore(flags); 3143 3144 return ret; 3145 } 3146 EXPORT_SYMBOL_GPL(kmsg_dump_get_line); 3147 3148 /** 3149 * kmsg_dump_get_buffer - copy kmsg log lines 3150 * @dumper: registered kmsg dumper 3151 * @syslog: include the "<4>" prefixes 3152 * @buf: buffer to copy the line to 3153 * @size: maximum size of the buffer 3154 * @len: length of line placed into buffer 3155 * 3156 * Start at the end of the kmsg buffer and fill the provided buffer 3157 * with as many of the the *youngest* kmsg records that fit into it. 3158 * If the buffer is large enough, all available kmsg records will be 3159 * copied with a single call. 3160 * 3161 * Consecutive calls will fill the buffer with the next block of 3162 * available older records, not including the earlier retrieved ones. 3163 * 3164 * A return value of FALSE indicates that there are no more records to 3165 * read. 3166 */ 3167 bool kmsg_dump_get_buffer(struct kmsg_dumper *dumper, bool syslog, 3168 char *buf, size_t size, size_t *len) 3169 { 3170 unsigned long flags; 3171 u64 seq; 3172 u32 idx; 3173 u64 next_seq; 3174 u32 next_idx; 3175 size_t l = 0; 3176 bool ret = false; 3177 3178 if (!dumper->active) 3179 goto out; 3180 3181 logbuf_lock_irqsave(flags); 3182 if (dumper->cur_seq < log_first_seq) { 3183 /* messages are gone, move to first available one */ 3184 dumper->cur_seq = log_first_seq; 3185 dumper->cur_idx = log_first_idx; 3186 } 3187 3188 /* last entry */ 3189 if (dumper->cur_seq >= dumper->next_seq) { 3190 logbuf_unlock_irqrestore(flags); 3191 goto out; 3192 } 3193 3194 /* calculate length of entire buffer */ 3195 seq = dumper->cur_seq; 3196 idx = dumper->cur_idx; 3197 while (seq < dumper->next_seq) { 3198 struct printk_log *msg = log_from_idx(idx); 3199 3200 l += msg_print_text(msg, true, NULL, 0); 3201 idx = log_next(idx); 3202 seq++; 3203 } 3204 3205 /* move first record forward until length fits into the buffer */ 3206 seq = dumper->cur_seq; 3207 idx = dumper->cur_idx; 3208 while (l > size && seq < dumper->next_seq) { 3209 struct printk_log *msg = log_from_idx(idx); 3210 3211 l -= msg_print_text(msg, true, NULL, 0); 3212 idx = log_next(idx); 3213 seq++; 3214 } 3215 3216 /* last message in next interation */ 3217 next_seq = seq; 3218 next_idx = idx; 3219 3220 l = 0; 3221 while (seq < dumper->next_seq) { 3222 struct printk_log *msg = log_from_idx(idx); 3223 3224 l += msg_print_text(msg, syslog, buf + l, size - l); 3225 idx = log_next(idx); 3226 seq++; 3227 } 3228 3229 dumper->next_seq = next_seq; 3230 dumper->next_idx = next_idx; 3231 ret = true; 3232 logbuf_unlock_irqrestore(flags); 3233 out: 3234 if (len) 3235 *len = l; 3236 return ret; 3237 } 3238 EXPORT_SYMBOL_GPL(kmsg_dump_get_buffer); 3239 3240 /** 3241 * kmsg_dump_rewind_nolock - reset the interator (unlocked version) 3242 * @dumper: registered kmsg dumper 3243 * 3244 * Reset the dumper's iterator so that kmsg_dump_get_line() and 3245 * kmsg_dump_get_buffer() can be called again and used multiple 3246 * times within the same dumper.dump() callback. 3247 * 3248 * The function is similar to kmsg_dump_rewind(), but grabs no locks. 3249 */ 3250 void kmsg_dump_rewind_nolock(struct kmsg_dumper *dumper) 3251 { 3252 dumper->cur_seq = clear_seq; 3253 dumper->cur_idx = clear_idx; 3254 dumper->next_seq = log_next_seq; 3255 dumper->next_idx = log_next_idx; 3256 } 3257 3258 /** 3259 * kmsg_dump_rewind - reset the interator 3260 * @dumper: registered kmsg dumper 3261 * 3262 * Reset the dumper's iterator so that kmsg_dump_get_line() and 3263 * kmsg_dump_get_buffer() can be called again and used multiple 3264 * times within the same dumper.dump() callback. 3265 */ 3266 void kmsg_dump_rewind(struct kmsg_dumper *dumper) 3267 { 3268 unsigned long flags; 3269 3270 logbuf_lock_irqsave(flags); 3271 kmsg_dump_rewind_nolock(dumper); 3272 logbuf_unlock_irqrestore(flags); 3273 } 3274 EXPORT_SYMBOL_GPL(kmsg_dump_rewind); 3275 3276 #endif 3277