xref: /openbmc/linux/kernel/printk/printk.c (revision a2fb4d78)
1 /*
2  *  linux/kernel/printk.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  *
6  * Modified to make sys_syslog() more flexible: added commands to
7  * return the last 4k of kernel messages, regardless of whether
8  * they've been read or not.  Added option to suppress kernel printk's
9  * to the console.  Added hook for sending the console messages
10  * elsewhere, in preparation for a serial line console (someday).
11  * Ted Ts'o, 2/11/93.
12  * Modified for sysctl support, 1/8/97, Chris Horn.
13  * Fixed SMP synchronization, 08/08/99, Manfred Spraul
14  *     manfred@colorfullife.com
15  * Rewrote bits to get rid of console_lock
16  *	01Mar01 Andrew Morton
17  */
18 
19 #include <linux/kernel.h>
20 #include <linux/mm.h>
21 #include <linux/tty.h>
22 #include <linux/tty_driver.h>
23 #include <linux/console.h>
24 #include <linux/init.h>
25 #include <linux/jiffies.h>
26 #include <linux/nmi.h>
27 #include <linux/module.h>
28 #include <linux/moduleparam.h>
29 #include <linux/interrupt.h>			/* For in_interrupt() */
30 #include <linux/delay.h>
31 #include <linux/smp.h>
32 #include <linux/security.h>
33 #include <linux/bootmem.h>
34 #include <linux/memblock.h>
35 #include <linux/aio.h>
36 #include <linux/syscalls.h>
37 #include <linux/kexec.h>
38 #include <linux/kdb.h>
39 #include <linux/ratelimit.h>
40 #include <linux/kmsg_dump.h>
41 #include <linux/syslog.h>
42 #include <linux/cpu.h>
43 #include <linux/notifier.h>
44 #include <linux/rculist.h>
45 #include <linux/poll.h>
46 #include <linux/irq_work.h>
47 #include <linux/utsname.h>
48 
49 #include <asm/uaccess.h>
50 
51 #define CREATE_TRACE_POINTS
52 #include <trace/events/printk.h>
53 
54 #include "console_cmdline.h"
55 #include "braille.h"
56 
57 /* printk's without a loglevel use this.. */
58 #define DEFAULT_MESSAGE_LOGLEVEL CONFIG_DEFAULT_MESSAGE_LOGLEVEL
59 
60 /* We show everything that is MORE important than this.. */
61 #define MINIMUM_CONSOLE_LOGLEVEL 1 /* Minimum loglevel we let people use */
62 #define DEFAULT_CONSOLE_LOGLEVEL 7 /* anything MORE serious than KERN_DEBUG */
63 
64 int console_printk[4] = {
65 	DEFAULT_CONSOLE_LOGLEVEL,	/* console_loglevel */
66 	DEFAULT_MESSAGE_LOGLEVEL,	/* default_message_loglevel */
67 	MINIMUM_CONSOLE_LOGLEVEL,	/* minimum_console_loglevel */
68 	DEFAULT_CONSOLE_LOGLEVEL,	/* default_console_loglevel */
69 };
70 
71 /*
72  * Low level drivers may need that to know if they can schedule in
73  * their unblank() callback or not. So let's export it.
74  */
75 int oops_in_progress;
76 EXPORT_SYMBOL(oops_in_progress);
77 
78 /*
79  * console_sem protects the console_drivers list, and also
80  * provides serialisation for access to the entire console
81  * driver system.
82  */
83 static DEFINE_SEMAPHORE(console_sem);
84 struct console *console_drivers;
85 EXPORT_SYMBOL_GPL(console_drivers);
86 
87 #ifdef CONFIG_LOCKDEP
88 static struct lockdep_map console_lock_dep_map = {
89 	.name = "console_lock"
90 };
91 #endif
92 
93 /*
94  * This is used for debugging the mess that is the VT code by
95  * keeping track if we have the console semaphore held. It's
96  * definitely not the perfect debug tool (we don't know if _WE_
97  * hold it are racing, but it helps tracking those weird code
98  * path in the console code where we end up in places I want
99  * locked without the console sempahore held
100  */
101 static int console_locked, console_suspended;
102 
103 /*
104  * If exclusive_console is non-NULL then only this console is to be printed to.
105  */
106 static struct console *exclusive_console;
107 
108 /*
109  *	Array of consoles built from command line options (console=)
110  */
111 
112 #define MAX_CMDLINECONSOLES 8
113 
114 static struct console_cmdline console_cmdline[MAX_CMDLINECONSOLES];
115 
116 static int selected_console = -1;
117 static int preferred_console = -1;
118 int console_set_on_cmdline;
119 EXPORT_SYMBOL(console_set_on_cmdline);
120 
121 /* Flag: console code may call schedule() */
122 static int console_may_schedule;
123 
124 /*
125  * The printk log buffer consists of a chain of concatenated variable
126  * length records. Every record starts with a record header, containing
127  * the overall length of the record.
128  *
129  * The heads to the first and last entry in the buffer, as well as the
130  * sequence numbers of these both entries are maintained when messages
131  * are stored..
132  *
133  * If the heads indicate available messages, the length in the header
134  * tells the start next message. A length == 0 for the next message
135  * indicates a wrap-around to the beginning of the buffer.
136  *
137  * Every record carries the monotonic timestamp in microseconds, as well as
138  * the standard userspace syslog level and syslog facility. The usual
139  * kernel messages use LOG_KERN; userspace-injected messages always carry
140  * a matching syslog facility, by default LOG_USER. The origin of every
141  * message can be reliably determined that way.
142  *
143  * The human readable log message directly follows the message header. The
144  * length of the message text is stored in the header, the stored message
145  * is not terminated.
146  *
147  * Optionally, a message can carry a dictionary of properties (key/value pairs),
148  * to provide userspace with a machine-readable message context.
149  *
150  * Examples for well-defined, commonly used property names are:
151  *   DEVICE=b12:8               device identifier
152  *                                b12:8         block dev_t
153  *                                c127:3        char dev_t
154  *                                n8            netdev ifindex
155  *                                +sound:card0  subsystem:devname
156  *   SUBSYSTEM=pci              driver-core subsystem name
157  *
158  * Valid characters in property names are [a-zA-Z0-9.-_]. The plain text value
159  * follows directly after a '=' character. Every property is terminated by
160  * a '\0' character. The last property is not terminated.
161  *
162  * Example of a message structure:
163  *   0000  ff 8f 00 00 00 00 00 00      monotonic time in nsec
164  *   0008  34 00                        record is 52 bytes long
165  *   000a        0b 00                  text is 11 bytes long
166  *   000c              1f 00            dictionary is 23 bytes long
167  *   000e                    03 00      LOG_KERN (facility) LOG_ERR (level)
168  *   0010  69 74 27 73 20 61 20 6c      "it's a l"
169  *         69 6e 65                     "ine"
170  *   001b           44 45 56 49 43      "DEVIC"
171  *         45 3d 62 38 3a 32 00 44      "E=b8:2\0D"
172  *         52 49 56 45 52 3d 62 75      "RIVER=bu"
173  *         67                           "g"
174  *   0032     00 00 00                  padding to next message header
175  *
176  * The 'struct printk_log' buffer header must never be directly exported to
177  * userspace, it is a kernel-private implementation detail that might
178  * need to be changed in the future, when the requirements change.
179  *
180  * /dev/kmsg exports the structured data in the following line format:
181  *   "level,sequnum,timestamp;<message text>\n"
182  *
183  * The optional key/value pairs are attached as continuation lines starting
184  * with a space character and terminated by a newline. All possible
185  * non-prinatable characters are escaped in the "\xff" notation.
186  *
187  * Users of the export format should ignore possible additional values
188  * separated by ',', and find the message after the ';' character.
189  */
190 
191 enum log_flags {
192 	LOG_NOCONS	= 1,	/* already flushed, do not print to console */
193 	LOG_NEWLINE	= 2,	/* text ended with a newline */
194 	LOG_PREFIX	= 4,	/* text started with a prefix */
195 	LOG_CONT	= 8,	/* text is a fragment of a continuation line */
196 };
197 
198 struct printk_log {
199 	u64 ts_nsec;		/* timestamp in nanoseconds */
200 	u16 len;		/* length of entire record */
201 	u16 text_len;		/* length of text buffer */
202 	u16 dict_len;		/* length of dictionary buffer */
203 	u8 facility;		/* syslog facility */
204 	u8 flags:5;		/* internal record flags */
205 	u8 level:3;		/* syslog level */
206 };
207 
208 /*
209  * The logbuf_lock protects kmsg buffer, indices, counters. It is also
210  * used in interesting ways to provide interlocking in console_unlock();
211  */
212 static DEFINE_RAW_SPINLOCK(logbuf_lock);
213 
214 #ifdef CONFIG_PRINTK
215 DECLARE_WAIT_QUEUE_HEAD(log_wait);
216 /* the next printk record to read by syslog(READ) or /proc/kmsg */
217 static u64 syslog_seq;
218 static u32 syslog_idx;
219 static enum log_flags syslog_prev;
220 static size_t syslog_partial;
221 
222 /* index and sequence number of the first record stored in the buffer */
223 static u64 log_first_seq;
224 static u32 log_first_idx;
225 
226 /* index and sequence number of the next record to store in the buffer */
227 static u64 log_next_seq;
228 static u32 log_next_idx;
229 
230 /* the next printk record to write to the console */
231 static u64 console_seq;
232 static u32 console_idx;
233 static enum log_flags console_prev;
234 
235 /* the next printk record to read after the last 'clear' command */
236 static u64 clear_seq;
237 static u32 clear_idx;
238 
239 #define PREFIX_MAX		32
240 #define LOG_LINE_MAX		1024 - PREFIX_MAX
241 
242 /* record buffer */
243 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)
244 #define LOG_ALIGN 4
245 #else
246 #define LOG_ALIGN __alignof__(struct printk_log)
247 #endif
248 #define __LOG_BUF_LEN (1 << CONFIG_LOG_BUF_SHIFT)
249 static char __log_buf[__LOG_BUF_LEN] __aligned(LOG_ALIGN);
250 static char *log_buf = __log_buf;
251 static u32 log_buf_len = __LOG_BUF_LEN;
252 
253 /* cpu currently holding logbuf_lock */
254 static volatile unsigned int logbuf_cpu = UINT_MAX;
255 
256 /* human readable text of the record */
257 static char *log_text(const struct printk_log *msg)
258 {
259 	return (char *)msg + sizeof(struct printk_log);
260 }
261 
262 /* optional key/value pair dictionary attached to the record */
263 static char *log_dict(const struct printk_log *msg)
264 {
265 	return (char *)msg + sizeof(struct printk_log) + msg->text_len;
266 }
267 
268 /* get record by index; idx must point to valid msg */
269 static struct printk_log *log_from_idx(u32 idx)
270 {
271 	struct printk_log *msg = (struct printk_log *)(log_buf + idx);
272 
273 	/*
274 	 * A length == 0 record is the end of buffer marker. Wrap around and
275 	 * read the message at the start of the buffer.
276 	 */
277 	if (!msg->len)
278 		return (struct printk_log *)log_buf;
279 	return msg;
280 }
281 
282 /* get next record; idx must point to valid msg */
283 static u32 log_next(u32 idx)
284 {
285 	struct printk_log *msg = (struct printk_log *)(log_buf + idx);
286 
287 	/* length == 0 indicates the end of the buffer; wrap */
288 	/*
289 	 * A length == 0 record is the end of buffer marker. Wrap around and
290 	 * read the message at the start of the buffer as *this* one, and
291 	 * return the one after that.
292 	 */
293 	if (!msg->len) {
294 		msg = (struct printk_log *)log_buf;
295 		return msg->len;
296 	}
297 	return idx + msg->len;
298 }
299 
300 /* insert record into the buffer, discard old ones, update heads */
301 static void log_store(int facility, int level,
302 		      enum log_flags flags, u64 ts_nsec,
303 		      const char *dict, u16 dict_len,
304 		      const char *text, u16 text_len)
305 {
306 	struct printk_log *msg;
307 	u32 size, pad_len;
308 
309 	/* number of '\0' padding bytes to next message */
310 	size = sizeof(struct printk_log) + text_len + dict_len;
311 	pad_len = (-size) & (LOG_ALIGN - 1);
312 	size += pad_len;
313 
314 	while (log_first_seq < log_next_seq) {
315 		u32 free;
316 
317 		if (log_next_idx > log_first_idx)
318 			free = max(log_buf_len - log_next_idx, log_first_idx);
319 		else
320 			free = log_first_idx - log_next_idx;
321 
322 		if (free > size + sizeof(struct printk_log))
323 			break;
324 
325 		/* drop old messages until we have enough contiuous space */
326 		log_first_idx = log_next(log_first_idx);
327 		log_first_seq++;
328 	}
329 
330 	if (log_next_idx + size + sizeof(struct printk_log) >= log_buf_len) {
331 		/*
332 		 * This message + an additional empty header does not fit
333 		 * at the end of the buffer. Add an empty header with len == 0
334 		 * to signify a wrap around.
335 		 */
336 		memset(log_buf + log_next_idx, 0, sizeof(struct printk_log));
337 		log_next_idx = 0;
338 	}
339 
340 	/* fill message */
341 	msg = (struct printk_log *)(log_buf + log_next_idx);
342 	memcpy(log_text(msg), text, text_len);
343 	msg->text_len = text_len;
344 	memcpy(log_dict(msg), dict, dict_len);
345 	msg->dict_len = dict_len;
346 	msg->facility = facility;
347 	msg->level = level & 7;
348 	msg->flags = flags & 0x1f;
349 	if (ts_nsec > 0)
350 		msg->ts_nsec = ts_nsec;
351 	else
352 		msg->ts_nsec = local_clock();
353 	memset(log_dict(msg) + dict_len, 0, pad_len);
354 	msg->len = sizeof(struct printk_log) + text_len + dict_len + pad_len;
355 
356 	/* insert message */
357 	log_next_idx += msg->len;
358 	log_next_seq++;
359 }
360 
361 #ifdef CONFIG_SECURITY_DMESG_RESTRICT
362 int dmesg_restrict = 1;
363 #else
364 int dmesg_restrict;
365 #endif
366 
367 static int syslog_action_restricted(int type)
368 {
369 	if (dmesg_restrict)
370 		return 1;
371 	/*
372 	 * Unless restricted, we allow "read all" and "get buffer size"
373 	 * for everybody.
374 	 */
375 	return type != SYSLOG_ACTION_READ_ALL &&
376 	       type != SYSLOG_ACTION_SIZE_BUFFER;
377 }
378 
379 static int check_syslog_permissions(int type, bool from_file)
380 {
381 	/*
382 	 * If this is from /proc/kmsg and we've already opened it, then we've
383 	 * already done the capabilities checks at open time.
384 	 */
385 	if (from_file && type != SYSLOG_ACTION_OPEN)
386 		return 0;
387 
388 	if (syslog_action_restricted(type)) {
389 		if (capable(CAP_SYSLOG))
390 			return 0;
391 		/*
392 		 * For historical reasons, accept CAP_SYS_ADMIN too, with
393 		 * a warning.
394 		 */
395 		if (capable(CAP_SYS_ADMIN)) {
396 			pr_warn_once("%s (%d): Attempt to access syslog with "
397 				     "CAP_SYS_ADMIN but no CAP_SYSLOG "
398 				     "(deprecated).\n",
399 				 current->comm, task_pid_nr(current));
400 			return 0;
401 		}
402 		return -EPERM;
403 	}
404 	return security_syslog(type);
405 }
406 
407 
408 /* /dev/kmsg - userspace message inject/listen interface */
409 struct devkmsg_user {
410 	u64 seq;
411 	u32 idx;
412 	enum log_flags prev;
413 	struct mutex lock;
414 	char buf[8192];
415 };
416 
417 static ssize_t devkmsg_writev(struct kiocb *iocb, const struct iovec *iv,
418 			      unsigned long count, loff_t pos)
419 {
420 	char *buf, *line;
421 	int i;
422 	int level = default_message_loglevel;
423 	int facility = 1;	/* LOG_USER */
424 	size_t len = iov_length(iv, count);
425 	ssize_t ret = len;
426 
427 	if (len > LOG_LINE_MAX)
428 		return -EINVAL;
429 	buf = kmalloc(len+1, GFP_KERNEL);
430 	if (buf == NULL)
431 		return -ENOMEM;
432 
433 	line = buf;
434 	for (i = 0; i < count; i++) {
435 		if (copy_from_user(line, iv[i].iov_base, iv[i].iov_len)) {
436 			ret = -EFAULT;
437 			goto out;
438 		}
439 		line += iv[i].iov_len;
440 	}
441 
442 	/*
443 	 * Extract and skip the syslog prefix <[0-9]*>. Coming from userspace
444 	 * the decimal value represents 32bit, the lower 3 bit are the log
445 	 * level, the rest are the log facility.
446 	 *
447 	 * If no prefix or no userspace facility is specified, we
448 	 * enforce LOG_USER, to be able to reliably distinguish
449 	 * kernel-generated messages from userspace-injected ones.
450 	 */
451 	line = buf;
452 	if (line[0] == '<') {
453 		char *endp = NULL;
454 
455 		i = simple_strtoul(line+1, &endp, 10);
456 		if (endp && endp[0] == '>') {
457 			level = i & 7;
458 			if (i >> 3)
459 				facility = i >> 3;
460 			endp++;
461 			len -= endp - line;
462 			line = endp;
463 		}
464 	}
465 	line[len] = '\0';
466 
467 	printk_emit(facility, level, NULL, 0, "%s", line);
468 out:
469 	kfree(buf);
470 	return ret;
471 }
472 
473 static ssize_t devkmsg_read(struct file *file, char __user *buf,
474 			    size_t count, loff_t *ppos)
475 {
476 	struct devkmsg_user *user = file->private_data;
477 	struct printk_log *msg;
478 	u64 ts_usec;
479 	size_t i;
480 	char cont = '-';
481 	size_t len;
482 	ssize_t ret;
483 
484 	if (!user)
485 		return -EBADF;
486 
487 	ret = mutex_lock_interruptible(&user->lock);
488 	if (ret)
489 		return ret;
490 	raw_spin_lock_irq(&logbuf_lock);
491 	while (user->seq == log_next_seq) {
492 		if (file->f_flags & O_NONBLOCK) {
493 			ret = -EAGAIN;
494 			raw_spin_unlock_irq(&logbuf_lock);
495 			goto out;
496 		}
497 
498 		raw_spin_unlock_irq(&logbuf_lock);
499 		ret = wait_event_interruptible(log_wait,
500 					       user->seq != log_next_seq);
501 		if (ret)
502 			goto out;
503 		raw_spin_lock_irq(&logbuf_lock);
504 	}
505 
506 	if (user->seq < log_first_seq) {
507 		/* our last seen message is gone, return error and reset */
508 		user->idx = log_first_idx;
509 		user->seq = log_first_seq;
510 		ret = -EPIPE;
511 		raw_spin_unlock_irq(&logbuf_lock);
512 		goto out;
513 	}
514 
515 	msg = log_from_idx(user->idx);
516 	ts_usec = msg->ts_nsec;
517 	do_div(ts_usec, 1000);
518 
519 	/*
520 	 * If we couldn't merge continuation line fragments during the print,
521 	 * export the stored flags to allow an optional external merge of the
522 	 * records. Merging the records isn't always neccessarily correct, like
523 	 * when we hit a race during printing. In most cases though, it produces
524 	 * better readable output. 'c' in the record flags mark the first
525 	 * fragment of a line, '+' the following.
526 	 */
527 	if (msg->flags & LOG_CONT && !(user->prev & LOG_CONT))
528 		cont = 'c';
529 	else if ((msg->flags & LOG_CONT) ||
530 		 ((user->prev & LOG_CONT) && !(msg->flags & LOG_PREFIX)))
531 		cont = '+';
532 
533 	len = sprintf(user->buf, "%u,%llu,%llu,%c;",
534 		      (msg->facility << 3) | msg->level,
535 		      user->seq, ts_usec, cont);
536 	user->prev = msg->flags;
537 
538 	/* escape non-printable characters */
539 	for (i = 0; i < msg->text_len; i++) {
540 		unsigned char c = log_text(msg)[i];
541 
542 		if (c < ' ' || c >= 127 || c == '\\')
543 			len += sprintf(user->buf + len, "\\x%02x", c);
544 		else
545 			user->buf[len++] = c;
546 	}
547 	user->buf[len++] = '\n';
548 
549 	if (msg->dict_len) {
550 		bool line = true;
551 
552 		for (i = 0; i < msg->dict_len; i++) {
553 			unsigned char c = log_dict(msg)[i];
554 
555 			if (line) {
556 				user->buf[len++] = ' ';
557 				line = false;
558 			}
559 
560 			if (c == '\0') {
561 				user->buf[len++] = '\n';
562 				line = true;
563 				continue;
564 			}
565 
566 			if (c < ' ' || c >= 127 || c == '\\') {
567 				len += sprintf(user->buf + len, "\\x%02x", c);
568 				continue;
569 			}
570 
571 			user->buf[len++] = c;
572 		}
573 		user->buf[len++] = '\n';
574 	}
575 
576 	user->idx = log_next(user->idx);
577 	user->seq++;
578 	raw_spin_unlock_irq(&logbuf_lock);
579 
580 	if (len > count) {
581 		ret = -EINVAL;
582 		goto out;
583 	}
584 
585 	if (copy_to_user(buf, user->buf, len)) {
586 		ret = -EFAULT;
587 		goto out;
588 	}
589 	ret = len;
590 out:
591 	mutex_unlock(&user->lock);
592 	return ret;
593 }
594 
595 static loff_t devkmsg_llseek(struct file *file, loff_t offset, int whence)
596 {
597 	struct devkmsg_user *user = file->private_data;
598 	loff_t ret = 0;
599 
600 	if (!user)
601 		return -EBADF;
602 	if (offset)
603 		return -ESPIPE;
604 
605 	raw_spin_lock_irq(&logbuf_lock);
606 	switch (whence) {
607 	case SEEK_SET:
608 		/* the first record */
609 		user->idx = log_first_idx;
610 		user->seq = log_first_seq;
611 		break;
612 	case SEEK_DATA:
613 		/*
614 		 * The first record after the last SYSLOG_ACTION_CLEAR,
615 		 * like issued by 'dmesg -c'. Reading /dev/kmsg itself
616 		 * changes no global state, and does not clear anything.
617 		 */
618 		user->idx = clear_idx;
619 		user->seq = clear_seq;
620 		break;
621 	case SEEK_END:
622 		/* after the last record */
623 		user->idx = log_next_idx;
624 		user->seq = log_next_seq;
625 		break;
626 	default:
627 		ret = -EINVAL;
628 	}
629 	raw_spin_unlock_irq(&logbuf_lock);
630 	return ret;
631 }
632 
633 static unsigned int devkmsg_poll(struct file *file, poll_table *wait)
634 {
635 	struct devkmsg_user *user = file->private_data;
636 	int ret = 0;
637 
638 	if (!user)
639 		return POLLERR|POLLNVAL;
640 
641 	poll_wait(file, &log_wait, wait);
642 
643 	raw_spin_lock_irq(&logbuf_lock);
644 	if (user->seq < log_next_seq) {
645 		/* return error when data has vanished underneath us */
646 		if (user->seq < log_first_seq)
647 			ret = POLLIN|POLLRDNORM|POLLERR|POLLPRI;
648 		else
649 			ret = POLLIN|POLLRDNORM;
650 	}
651 	raw_spin_unlock_irq(&logbuf_lock);
652 
653 	return ret;
654 }
655 
656 static int devkmsg_open(struct inode *inode, struct file *file)
657 {
658 	struct devkmsg_user *user;
659 	int err;
660 
661 	/* write-only does not need any file context */
662 	if ((file->f_flags & O_ACCMODE) == O_WRONLY)
663 		return 0;
664 
665 	err = check_syslog_permissions(SYSLOG_ACTION_READ_ALL,
666 				       SYSLOG_FROM_READER);
667 	if (err)
668 		return err;
669 
670 	user = kmalloc(sizeof(struct devkmsg_user), GFP_KERNEL);
671 	if (!user)
672 		return -ENOMEM;
673 
674 	mutex_init(&user->lock);
675 
676 	raw_spin_lock_irq(&logbuf_lock);
677 	user->idx = log_first_idx;
678 	user->seq = log_first_seq;
679 	raw_spin_unlock_irq(&logbuf_lock);
680 
681 	file->private_data = user;
682 	return 0;
683 }
684 
685 static int devkmsg_release(struct inode *inode, struct file *file)
686 {
687 	struct devkmsg_user *user = file->private_data;
688 
689 	if (!user)
690 		return 0;
691 
692 	mutex_destroy(&user->lock);
693 	kfree(user);
694 	return 0;
695 }
696 
697 const struct file_operations kmsg_fops = {
698 	.open = devkmsg_open,
699 	.read = devkmsg_read,
700 	.aio_write = devkmsg_writev,
701 	.llseek = devkmsg_llseek,
702 	.poll = devkmsg_poll,
703 	.release = devkmsg_release,
704 };
705 
706 #ifdef CONFIG_KEXEC
707 /*
708  * This appends the listed symbols to /proc/vmcore
709  *
710  * /proc/vmcore is used by various utilities, like crash and makedumpfile to
711  * obtain access to symbols that are otherwise very difficult to locate.  These
712  * symbols are specifically used so that utilities can access and extract the
713  * dmesg log from a vmcore file after a crash.
714  */
715 void log_buf_kexec_setup(void)
716 {
717 	VMCOREINFO_SYMBOL(log_buf);
718 	VMCOREINFO_SYMBOL(log_buf_len);
719 	VMCOREINFO_SYMBOL(log_first_idx);
720 	VMCOREINFO_SYMBOL(log_next_idx);
721 	/*
722 	 * Export struct printk_log size and field offsets. User space tools can
723 	 * parse it and detect any changes to structure down the line.
724 	 */
725 	VMCOREINFO_STRUCT_SIZE(printk_log);
726 	VMCOREINFO_OFFSET(printk_log, ts_nsec);
727 	VMCOREINFO_OFFSET(printk_log, len);
728 	VMCOREINFO_OFFSET(printk_log, text_len);
729 	VMCOREINFO_OFFSET(printk_log, dict_len);
730 }
731 #endif
732 
733 /* requested log_buf_len from kernel cmdline */
734 static unsigned long __initdata new_log_buf_len;
735 
736 /* save requested log_buf_len since it's too early to process it */
737 static int __init log_buf_len_setup(char *str)
738 {
739 	unsigned size = memparse(str, &str);
740 
741 	if (size)
742 		size = roundup_pow_of_two(size);
743 	if (size > log_buf_len)
744 		new_log_buf_len = size;
745 
746 	return 0;
747 }
748 early_param("log_buf_len", log_buf_len_setup);
749 
750 void __init setup_log_buf(int early)
751 {
752 	unsigned long flags;
753 	char *new_log_buf;
754 	int free;
755 
756 	if (!new_log_buf_len)
757 		return;
758 
759 	if (early) {
760 		new_log_buf =
761 			memblock_virt_alloc(new_log_buf_len, PAGE_SIZE);
762 	} else {
763 		new_log_buf = memblock_virt_alloc_nopanic(new_log_buf_len, 0);
764 	}
765 
766 	if (unlikely(!new_log_buf)) {
767 		pr_err("log_buf_len: %ld bytes not available\n",
768 			new_log_buf_len);
769 		return;
770 	}
771 
772 	raw_spin_lock_irqsave(&logbuf_lock, flags);
773 	log_buf_len = new_log_buf_len;
774 	log_buf = new_log_buf;
775 	new_log_buf_len = 0;
776 	free = __LOG_BUF_LEN - log_next_idx;
777 	memcpy(log_buf, __log_buf, __LOG_BUF_LEN);
778 	raw_spin_unlock_irqrestore(&logbuf_lock, flags);
779 
780 	pr_info("log_buf_len: %d\n", log_buf_len);
781 	pr_info("early log buf free: %d(%d%%)\n",
782 		free, (free * 100) / __LOG_BUF_LEN);
783 }
784 
785 static bool __read_mostly ignore_loglevel;
786 
787 static int __init ignore_loglevel_setup(char *str)
788 {
789 	ignore_loglevel = 1;
790 	pr_info("debug: ignoring loglevel setting.\n");
791 
792 	return 0;
793 }
794 
795 early_param("ignore_loglevel", ignore_loglevel_setup);
796 module_param(ignore_loglevel, bool, S_IRUGO | S_IWUSR);
797 MODULE_PARM_DESC(ignore_loglevel, "ignore loglevel setting, to"
798 	"print all kernel messages to the console.");
799 
800 #ifdef CONFIG_BOOT_PRINTK_DELAY
801 
802 static int boot_delay; /* msecs delay after each printk during bootup */
803 static unsigned long long loops_per_msec;	/* based on boot_delay */
804 
805 static int __init boot_delay_setup(char *str)
806 {
807 	unsigned long lpj;
808 
809 	lpj = preset_lpj ? preset_lpj : 1000000;	/* some guess */
810 	loops_per_msec = (unsigned long long)lpj / 1000 * HZ;
811 
812 	get_option(&str, &boot_delay);
813 	if (boot_delay > 10 * 1000)
814 		boot_delay = 0;
815 
816 	pr_debug("boot_delay: %u, preset_lpj: %ld, lpj: %lu, "
817 		"HZ: %d, loops_per_msec: %llu\n",
818 		boot_delay, preset_lpj, lpj, HZ, loops_per_msec);
819 	return 0;
820 }
821 early_param("boot_delay", boot_delay_setup);
822 
823 static void boot_delay_msec(int level)
824 {
825 	unsigned long long k;
826 	unsigned long timeout;
827 
828 	if ((boot_delay == 0 || system_state != SYSTEM_BOOTING)
829 		|| (level >= console_loglevel && !ignore_loglevel)) {
830 		return;
831 	}
832 
833 	k = (unsigned long long)loops_per_msec * boot_delay;
834 
835 	timeout = jiffies + msecs_to_jiffies(boot_delay);
836 	while (k) {
837 		k--;
838 		cpu_relax();
839 		/*
840 		 * use (volatile) jiffies to prevent
841 		 * compiler reduction; loop termination via jiffies
842 		 * is secondary and may or may not happen.
843 		 */
844 		if (time_after(jiffies, timeout))
845 			break;
846 		touch_nmi_watchdog();
847 	}
848 }
849 #else
850 static inline void boot_delay_msec(int level)
851 {
852 }
853 #endif
854 
855 #if defined(CONFIG_PRINTK_TIME)
856 static bool printk_time = 1;
857 #else
858 static bool printk_time;
859 #endif
860 module_param_named(time, printk_time, bool, S_IRUGO | S_IWUSR);
861 
862 static size_t print_time(u64 ts, char *buf)
863 {
864 	unsigned long rem_nsec;
865 
866 	if (!printk_time)
867 		return 0;
868 
869 	rem_nsec = do_div(ts, 1000000000);
870 
871 	if (!buf)
872 		return snprintf(NULL, 0, "[%5lu.000000] ", (unsigned long)ts);
873 
874 	return sprintf(buf, "[%5lu.%06lu] ",
875 		       (unsigned long)ts, rem_nsec / 1000);
876 }
877 
878 static size_t print_prefix(const struct printk_log *msg, bool syslog, char *buf)
879 {
880 	size_t len = 0;
881 	unsigned int prefix = (msg->facility << 3) | msg->level;
882 
883 	if (syslog) {
884 		if (buf) {
885 			len += sprintf(buf, "<%u>", prefix);
886 		} else {
887 			len += 3;
888 			if (prefix > 999)
889 				len += 3;
890 			else if (prefix > 99)
891 				len += 2;
892 			else if (prefix > 9)
893 				len++;
894 		}
895 	}
896 
897 	len += print_time(msg->ts_nsec, buf ? buf + len : NULL);
898 	return len;
899 }
900 
901 static size_t msg_print_text(const struct printk_log *msg, enum log_flags prev,
902 			     bool syslog, char *buf, size_t size)
903 {
904 	const char *text = log_text(msg);
905 	size_t text_size = msg->text_len;
906 	bool prefix = true;
907 	bool newline = true;
908 	size_t len = 0;
909 
910 	if ((prev & LOG_CONT) && !(msg->flags & LOG_PREFIX))
911 		prefix = false;
912 
913 	if (msg->flags & LOG_CONT) {
914 		if ((prev & LOG_CONT) && !(prev & LOG_NEWLINE))
915 			prefix = false;
916 
917 		if (!(msg->flags & LOG_NEWLINE))
918 			newline = false;
919 	}
920 
921 	do {
922 		const char *next = memchr(text, '\n', text_size);
923 		size_t text_len;
924 
925 		if (next) {
926 			text_len = next - text;
927 			next++;
928 			text_size -= next - text;
929 		} else {
930 			text_len = text_size;
931 		}
932 
933 		if (buf) {
934 			if (print_prefix(msg, syslog, NULL) +
935 			    text_len + 1 >= size - len)
936 				break;
937 
938 			if (prefix)
939 				len += print_prefix(msg, syslog, buf + len);
940 			memcpy(buf + len, text, text_len);
941 			len += text_len;
942 			if (next || newline)
943 				buf[len++] = '\n';
944 		} else {
945 			/* SYSLOG_ACTION_* buffer size only calculation */
946 			if (prefix)
947 				len += print_prefix(msg, syslog, NULL);
948 			len += text_len;
949 			if (next || newline)
950 				len++;
951 		}
952 
953 		prefix = true;
954 		text = next;
955 	} while (text);
956 
957 	return len;
958 }
959 
960 static int syslog_print(char __user *buf, int size)
961 {
962 	char *text;
963 	struct printk_log *msg;
964 	int len = 0;
965 
966 	text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
967 	if (!text)
968 		return -ENOMEM;
969 
970 	while (size > 0) {
971 		size_t n;
972 		size_t skip;
973 
974 		raw_spin_lock_irq(&logbuf_lock);
975 		if (syslog_seq < log_first_seq) {
976 			/* messages are gone, move to first one */
977 			syslog_seq = log_first_seq;
978 			syslog_idx = log_first_idx;
979 			syslog_prev = 0;
980 			syslog_partial = 0;
981 		}
982 		if (syslog_seq == log_next_seq) {
983 			raw_spin_unlock_irq(&logbuf_lock);
984 			break;
985 		}
986 
987 		skip = syslog_partial;
988 		msg = log_from_idx(syslog_idx);
989 		n = msg_print_text(msg, syslog_prev, true, text,
990 				   LOG_LINE_MAX + PREFIX_MAX);
991 		if (n - syslog_partial <= size) {
992 			/* message fits into buffer, move forward */
993 			syslog_idx = log_next(syslog_idx);
994 			syslog_seq++;
995 			syslog_prev = msg->flags;
996 			n -= syslog_partial;
997 			syslog_partial = 0;
998 		} else if (!len){
999 			/* partial read(), remember position */
1000 			n = size;
1001 			syslog_partial += n;
1002 		} else
1003 			n = 0;
1004 		raw_spin_unlock_irq(&logbuf_lock);
1005 
1006 		if (!n)
1007 			break;
1008 
1009 		if (copy_to_user(buf, text + skip, n)) {
1010 			if (!len)
1011 				len = -EFAULT;
1012 			break;
1013 		}
1014 
1015 		len += n;
1016 		size -= n;
1017 		buf += n;
1018 	}
1019 
1020 	kfree(text);
1021 	return len;
1022 }
1023 
1024 static int syslog_print_all(char __user *buf, int size, bool clear)
1025 {
1026 	char *text;
1027 	int len = 0;
1028 
1029 	text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
1030 	if (!text)
1031 		return -ENOMEM;
1032 
1033 	raw_spin_lock_irq(&logbuf_lock);
1034 	if (buf) {
1035 		u64 next_seq;
1036 		u64 seq;
1037 		u32 idx;
1038 		enum log_flags prev;
1039 
1040 		if (clear_seq < log_first_seq) {
1041 			/* messages are gone, move to first available one */
1042 			clear_seq = log_first_seq;
1043 			clear_idx = log_first_idx;
1044 		}
1045 
1046 		/*
1047 		 * Find first record that fits, including all following records,
1048 		 * into the user-provided buffer for this dump.
1049 		 */
1050 		seq = clear_seq;
1051 		idx = clear_idx;
1052 		prev = 0;
1053 		while (seq < log_next_seq) {
1054 			struct printk_log *msg = log_from_idx(idx);
1055 
1056 			len += msg_print_text(msg, prev, true, NULL, 0);
1057 			prev = msg->flags;
1058 			idx = log_next(idx);
1059 			seq++;
1060 		}
1061 
1062 		/* move first record forward until length fits into the buffer */
1063 		seq = clear_seq;
1064 		idx = clear_idx;
1065 		prev = 0;
1066 		while (len > size && seq < log_next_seq) {
1067 			struct printk_log *msg = log_from_idx(idx);
1068 
1069 			len -= msg_print_text(msg, prev, true, NULL, 0);
1070 			prev = msg->flags;
1071 			idx = log_next(idx);
1072 			seq++;
1073 		}
1074 
1075 		/* last message fitting into this dump */
1076 		next_seq = log_next_seq;
1077 
1078 		len = 0;
1079 		while (len >= 0 && seq < next_seq) {
1080 			struct printk_log *msg = log_from_idx(idx);
1081 			int textlen;
1082 
1083 			textlen = msg_print_text(msg, prev, true, text,
1084 						 LOG_LINE_MAX + PREFIX_MAX);
1085 			if (textlen < 0) {
1086 				len = textlen;
1087 				break;
1088 			}
1089 			idx = log_next(idx);
1090 			seq++;
1091 			prev = msg->flags;
1092 
1093 			raw_spin_unlock_irq(&logbuf_lock);
1094 			if (copy_to_user(buf + len, text, textlen))
1095 				len = -EFAULT;
1096 			else
1097 				len += textlen;
1098 			raw_spin_lock_irq(&logbuf_lock);
1099 
1100 			if (seq < log_first_seq) {
1101 				/* messages are gone, move to next one */
1102 				seq = log_first_seq;
1103 				idx = log_first_idx;
1104 				prev = 0;
1105 			}
1106 		}
1107 	}
1108 
1109 	if (clear) {
1110 		clear_seq = log_next_seq;
1111 		clear_idx = log_next_idx;
1112 	}
1113 	raw_spin_unlock_irq(&logbuf_lock);
1114 
1115 	kfree(text);
1116 	return len;
1117 }
1118 
1119 int do_syslog(int type, char __user *buf, int len, bool from_file)
1120 {
1121 	bool clear = false;
1122 	static int saved_console_loglevel = -1;
1123 	int error;
1124 
1125 	error = check_syslog_permissions(type, from_file);
1126 	if (error)
1127 		goto out;
1128 
1129 	error = security_syslog(type);
1130 	if (error)
1131 		return error;
1132 
1133 	switch (type) {
1134 	case SYSLOG_ACTION_CLOSE:	/* Close log */
1135 		break;
1136 	case SYSLOG_ACTION_OPEN:	/* Open log */
1137 		break;
1138 	case SYSLOG_ACTION_READ:	/* Read from log */
1139 		error = -EINVAL;
1140 		if (!buf || len < 0)
1141 			goto out;
1142 		error = 0;
1143 		if (!len)
1144 			goto out;
1145 		if (!access_ok(VERIFY_WRITE, buf, len)) {
1146 			error = -EFAULT;
1147 			goto out;
1148 		}
1149 		error = wait_event_interruptible(log_wait,
1150 						 syslog_seq != log_next_seq);
1151 		if (error)
1152 			goto out;
1153 		error = syslog_print(buf, len);
1154 		break;
1155 	/* Read/clear last kernel messages */
1156 	case SYSLOG_ACTION_READ_CLEAR:
1157 		clear = true;
1158 		/* FALL THRU */
1159 	/* Read last kernel messages */
1160 	case SYSLOG_ACTION_READ_ALL:
1161 		error = -EINVAL;
1162 		if (!buf || len < 0)
1163 			goto out;
1164 		error = 0;
1165 		if (!len)
1166 			goto out;
1167 		if (!access_ok(VERIFY_WRITE, buf, len)) {
1168 			error = -EFAULT;
1169 			goto out;
1170 		}
1171 		error = syslog_print_all(buf, len, clear);
1172 		break;
1173 	/* Clear ring buffer */
1174 	case SYSLOG_ACTION_CLEAR:
1175 		syslog_print_all(NULL, 0, true);
1176 		break;
1177 	/* Disable logging to console */
1178 	case SYSLOG_ACTION_CONSOLE_OFF:
1179 		if (saved_console_loglevel == -1)
1180 			saved_console_loglevel = console_loglevel;
1181 		console_loglevel = minimum_console_loglevel;
1182 		break;
1183 	/* Enable logging to console */
1184 	case SYSLOG_ACTION_CONSOLE_ON:
1185 		if (saved_console_loglevel != -1) {
1186 			console_loglevel = saved_console_loglevel;
1187 			saved_console_loglevel = -1;
1188 		}
1189 		break;
1190 	/* Set level of messages printed to console */
1191 	case SYSLOG_ACTION_CONSOLE_LEVEL:
1192 		error = -EINVAL;
1193 		if (len < 1 || len > 8)
1194 			goto out;
1195 		if (len < minimum_console_loglevel)
1196 			len = minimum_console_loglevel;
1197 		console_loglevel = len;
1198 		/* Implicitly re-enable logging to console */
1199 		saved_console_loglevel = -1;
1200 		error = 0;
1201 		break;
1202 	/* Number of chars in the log buffer */
1203 	case SYSLOG_ACTION_SIZE_UNREAD:
1204 		raw_spin_lock_irq(&logbuf_lock);
1205 		if (syslog_seq < log_first_seq) {
1206 			/* messages are gone, move to first one */
1207 			syslog_seq = log_first_seq;
1208 			syslog_idx = log_first_idx;
1209 			syslog_prev = 0;
1210 			syslog_partial = 0;
1211 		}
1212 		if (from_file) {
1213 			/*
1214 			 * Short-cut for poll(/"proc/kmsg") which simply checks
1215 			 * for pending data, not the size; return the count of
1216 			 * records, not the length.
1217 			 */
1218 			error = log_next_idx - syslog_idx;
1219 		} else {
1220 			u64 seq = syslog_seq;
1221 			u32 idx = syslog_idx;
1222 			enum log_flags prev = syslog_prev;
1223 
1224 			error = 0;
1225 			while (seq < log_next_seq) {
1226 				struct printk_log *msg = log_from_idx(idx);
1227 
1228 				error += msg_print_text(msg, prev, true, NULL, 0);
1229 				idx = log_next(idx);
1230 				seq++;
1231 				prev = msg->flags;
1232 			}
1233 			error -= syslog_partial;
1234 		}
1235 		raw_spin_unlock_irq(&logbuf_lock);
1236 		break;
1237 	/* Size of the log buffer */
1238 	case SYSLOG_ACTION_SIZE_BUFFER:
1239 		error = log_buf_len;
1240 		break;
1241 	default:
1242 		error = -EINVAL;
1243 		break;
1244 	}
1245 out:
1246 	return error;
1247 }
1248 
1249 SYSCALL_DEFINE3(syslog, int, type, char __user *, buf, int, len)
1250 {
1251 	return do_syslog(type, buf, len, SYSLOG_FROM_READER);
1252 }
1253 
1254 /*
1255  * Call the console drivers, asking them to write out
1256  * log_buf[start] to log_buf[end - 1].
1257  * The console_lock must be held.
1258  */
1259 static void call_console_drivers(int level, const char *text, size_t len)
1260 {
1261 	struct console *con;
1262 
1263 	trace_console(text, len);
1264 
1265 	if (level >= console_loglevel && !ignore_loglevel)
1266 		return;
1267 	if (!console_drivers)
1268 		return;
1269 
1270 	for_each_console(con) {
1271 		if (exclusive_console && con != exclusive_console)
1272 			continue;
1273 		if (!(con->flags & CON_ENABLED))
1274 			continue;
1275 		if (!con->write)
1276 			continue;
1277 		if (!cpu_online(smp_processor_id()) &&
1278 		    !(con->flags & CON_ANYTIME))
1279 			continue;
1280 		con->write(con, text, len);
1281 	}
1282 }
1283 
1284 /*
1285  * Zap console related locks when oopsing. Only zap at most once
1286  * every 10 seconds, to leave time for slow consoles to print a
1287  * full oops.
1288  */
1289 static void zap_locks(void)
1290 {
1291 	static unsigned long oops_timestamp;
1292 
1293 	if (time_after_eq(jiffies, oops_timestamp) &&
1294 			!time_after(jiffies, oops_timestamp + 30 * HZ))
1295 		return;
1296 
1297 	oops_timestamp = jiffies;
1298 
1299 	debug_locks_off();
1300 	/* If a crash is occurring, make sure we can't deadlock */
1301 	raw_spin_lock_init(&logbuf_lock);
1302 	/* And make sure that we print immediately */
1303 	sema_init(&console_sem, 1);
1304 }
1305 
1306 /* Check if we have any console registered that can be called early in boot. */
1307 static int have_callable_console(void)
1308 {
1309 	struct console *con;
1310 
1311 	for_each_console(con)
1312 		if (con->flags & CON_ANYTIME)
1313 			return 1;
1314 
1315 	return 0;
1316 }
1317 
1318 /*
1319  * Can we actually use the console at this time on this cpu?
1320  *
1321  * Console drivers may assume that per-cpu resources have
1322  * been allocated. So unless they're explicitly marked as
1323  * being able to cope (CON_ANYTIME) don't call them until
1324  * this CPU is officially up.
1325  */
1326 static inline int can_use_console(unsigned int cpu)
1327 {
1328 	return cpu_online(cpu) || have_callable_console();
1329 }
1330 
1331 /*
1332  * Try to get console ownership to actually show the kernel
1333  * messages from a 'printk'. Return true (and with the
1334  * console_lock held, and 'console_locked' set) if it
1335  * is successful, false otherwise.
1336  *
1337  * This gets called with the 'logbuf_lock' spinlock held and
1338  * interrupts disabled. It should return with 'lockbuf_lock'
1339  * released but interrupts still disabled.
1340  */
1341 static int console_trylock_for_printk(unsigned int cpu)
1342 	__releases(&logbuf_lock)
1343 {
1344 	int retval = 0, wake = 0;
1345 
1346 	if (console_trylock()) {
1347 		retval = 1;
1348 
1349 		/*
1350 		 * If we can't use the console, we need to release
1351 		 * the console semaphore by hand to avoid flushing
1352 		 * the buffer. We need to hold the console semaphore
1353 		 * in order to do this test safely.
1354 		 */
1355 		if (!can_use_console(cpu)) {
1356 			console_locked = 0;
1357 			wake = 1;
1358 			retval = 0;
1359 		}
1360 	}
1361 	logbuf_cpu = UINT_MAX;
1362 	raw_spin_unlock(&logbuf_lock);
1363 	if (wake)
1364 		up(&console_sem);
1365 	return retval;
1366 }
1367 
1368 int printk_delay_msec __read_mostly;
1369 
1370 static inline void printk_delay(void)
1371 {
1372 	if (unlikely(printk_delay_msec)) {
1373 		int m = printk_delay_msec;
1374 
1375 		while (m--) {
1376 			mdelay(1);
1377 			touch_nmi_watchdog();
1378 		}
1379 	}
1380 }
1381 
1382 /*
1383  * Continuation lines are buffered, and not committed to the record buffer
1384  * until the line is complete, or a race forces it. The line fragments
1385  * though, are printed immediately to the consoles to ensure everything has
1386  * reached the console in case of a kernel crash.
1387  */
1388 static struct cont {
1389 	char buf[LOG_LINE_MAX];
1390 	size_t len;			/* length == 0 means unused buffer */
1391 	size_t cons;			/* bytes written to console */
1392 	struct task_struct *owner;	/* task of first print*/
1393 	u64 ts_nsec;			/* time of first print */
1394 	u8 level;			/* log level of first message */
1395 	u8 facility;			/* log level of first message */
1396 	enum log_flags flags;		/* prefix, newline flags */
1397 	bool flushed:1;			/* buffer sealed and committed */
1398 } cont;
1399 
1400 static void cont_flush(enum log_flags flags)
1401 {
1402 	if (cont.flushed)
1403 		return;
1404 	if (cont.len == 0)
1405 		return;
1406 
1407 	if (cont.cons) {
1408 		/*
1409 		 * If a fragment of this line was directly flushed to the
1410 		 * console; wait for the console to pick up the rest of the
1411 		 * line. LOG_NOCONS suppresses a duplicated output.
1412 		 */
1413 		log_store(cont.facility, cont.level, flags | LOG_NOCONS,
1414 			  cont.ts_nsec, NULL, 0, cont.buf, cont.len);
1415 		cont.flags = flags;
1416 		cont.flushed = true;
1417 	} else {
1418 		/*
1419 		 * If no fragment of this line ever reached the console,
1420 		 * just submit it to the store and free the buffer.
1421 		 */
1422 		log_store(cont.facility, cont.level, flags, 0,
1423 			  NULL, 0, cont.buf, cont.len);
1424 		cont.len = 0;
1425 	}
1426 }
1427 
1428 static bool cont_add(int facility, int level, const char *text, size_t len)
1429 {
1430 	if (cont.len && cont.flushed)
1431 		return false;
1432 
1433 	if (cont.len + len > sizeof(cont.buf)) {
1434 		/* the line gets too long, split it up in separate records */
1435 		cont_flush(LOG_CONT);
1436 		return false;
1437 	}
1438 
1439 	if (!cont.len) {
1440 		cont.facility = facility;
1441 		cont.level = level;
1442 		cont.owner = current;
1443 		cont.ts_nsec = local_clock();
1444 		cont.flags = 0;
1445 		cont.cons = 0;
1446 		cont.flushed = false;
1447 	}
1448 
1449 	memcpy(cont.buf + cont.len, text, len);
1450 	cont.len += len;
1451 
1452 	if (cont.len > (sizeof(cont.buf) * 80) / 100)
1453 		cont_flush(LOG_CONT);
1454 
1455 	return true;
1456 }
1457 
1458 static size_t cont_print_text(char *text, size_t size)
1459 {
1460 	size_t textlen = 0;
1461 	size_t len;
1462 
1463 	if (cont.cons == 0 && (console_prev & LOG_NEWLINE)) {
1464 		textlen += print_time(cont.ts_nsec, text);
1465 		size -= textlen;
1466 	}
1467 
1468 	len = cont.len - cont.cons;
1469 	if (len > 0) {
1470 		if (len+1 > size)
1471 			len = size-1;
1472 		memcpy(text + textlen, cont.buf + cont.cons, len);
1473 		textlen += len;
1474 		cont.cons = cont.len;
1475 	}
1476 
1477 	if (cont.flushed) {
1478 		if (cont.flags & LOG_NEWLINE)
1479 			text[textlen++] = '\n';
1480 		/* got everything, release buffer */
1481 		cont.len = 0;
1482 	}
1483 	return textlen;
1484 }
1485 
1486 asmlinkage int vprintk_emit(int facility, int level,
1487 			    const char *dict, size_t dictlen,
1488 			    const char *fmt, va_list args)
1489 {
1490 	static int recursion_bug;
1491 	static char textbuf[LOG_LINE_MAX];
1492 	char *text = textbuf;
1493 	size_t text_len;
1494 	enum log_flags lflags = 0;
1495 	unsigned long flags;
1496 	int this_cpu;
1497 	int printed_len = 0;
1498 
1499 	boot_delay_msec(level);
1500 	printk_delay();
1501 
1502 	/* This stops the holder of console_sem just where we want him */
1503 	local_irq_save(flags);
1504 	this_cpu = smp_processor_id();
1505 
1506 	/*
1507 	 * Ouch, printk recursed into itself!
1508 	 */
1509 	if (unlikely(logbuf_cpu == this_cpu)) {
1510 		/*
1511 		 * If a crash is occurring during printk() on this CPU,
1512 		 * then try to get the crash message out but make sure
1513 		 * we can't deadlock. Otherwise just return to avoid the
1514 		 * recursion and return - but flag the recursion so that
1515 		 * it can be printed at the next appropriate moment:
1516 		 */
1517 		if (!oops_in_progress && !lockdep_recursing(current)) {
1518 			recursion_bug = 1;
1519 			goto out_restore_irqs;
1520 		}
1521 		zap_locks();
1522 	}
1523 
1524 	lockdep_off();
1525 	raw_spin_lock(&logbuf_lock);
1526 	logbuf_cpu = this_cpu;
1527 
1528 	if (recursion_bug) {
1529 		static const char recursion_msg[] =
1530 			"BUG: recent printk recursion!";
1531 
1532 		recursion_bug = 0;
1533 		printed_len += strlen(recursion_msg);
1534 		/* emit KERN_CRIT message */
1535 		log_store(0, 2, LOG_PREFIX|LOG_NEWLINE, 0,
1536 			  NULL, 0, recursion_msg, printed_len);
1537 	}
1538 
1539 	/*
1540 	 * The printf needs to come first; we need the syslog
1541 	 * prefix which might be passed-in as a parameter.
1542 	 */
1543 	text_len = vscnprintf(text, sizeof(textbuf), fmt, args);
1544 
1545 	/* mark and strip a trailing newline */
1546 	if (text_len && text[text_len-1] == '\n') {
1547 		text_len--;
1548 		lflags |= LOG_NEWLINE;
1549 	}
1550 
1551 	/* strip kernel syslog prefix and extract log level or control flags */
1552 	if (facility == 0) {
1553 		int kern_level = printk_get_level(text);
1554 
1555 		if (kern_level) {
1556 			const char *end_of_header = printk_skip_level(text);
1557 			switch (kern_level) {
1558 			case '0' ... '7':
1559 				if (level == -1)
1560 					level = kern_level - '0';
1561 			case 'd':	/* KERN_DEFAULT */
1562 				lflags |= LOG_PREFIX;
1563 			case 'c':	/* KERN_CONT */
1564 				break;
1565 			}
1566 			text_len -= end_of_header - text;
1567 			text = (char *)end_of_header;
1568 		}
1569 	}
1570 
1571 	if (level == -1)
1572 		level = default_message_loglevel;
1573 
1574 	if (dict)
1575 		lflags |= LOG_PREFIX|LOG_NEWLINE;
1576 
1577 	if (!(lflags & LOG_NEWLINE)) {
1578 		/*
1579 		 * Flush the conflicting buffer. An earlier newline was missing,
1580 		 * or another task also prints continuation lines.
1581 		 */
1582 		if (cont.len && (lflags & LOG_PREFIX || cont.owner != current))
1583 			cont_flush(LOG_NEWLINE);
1584 
1585 		/* buffer line if possible, otherwise store it right away */
1586 		if (!cont_add(facility, level, text, text_len))
1587 			log_store(facility, level, lflags | LOG_CONT, 0,
1588 				  dict, dictlen, text, text_len);
1589 	} else {
1590 		bool stored = false;
1591 
1592 		/*
1593 		 * If an earlier newline was missing and it was the same task,
1594 		 * either merge it with the current buffer and flush, or if
1595 		 * there was a race with interrupts (prefix == true) then just
1596 		 * flush it out and store this line separately.
1597 		 * If the preceding printk was from a different task and missed
1598 		 * a newline, flush and append the newline.
1599 		 */
1600 		if (cont.len) {
1601 			if (cont.owner == current && !(lflags & LOG_PREFIX))
1602 				stored = cont_add(facility, level, text,
1603 						  text_len);
1604 			cont_flush(LOG_NEWLINE);
1605 		}
1606 
1607 		if (!stored)
1608 			log_store(facility, level, lflags, 0,
1609 				  dict, dictlen, text, text_len);
1610 	}
1611 	printed_len += text_len;
1612 
1613 	/*
1614 	 * Try to acquire and then immediately release the console semaphore.
1615 	 * The release will print out buffers and wake up /dev/kmsg and syslog()
1616 	 * users.
1617 	 *
1618 	 * The console_trylock_for_printk() function will release 'logbuf_lock'
1619 	 * regardless of whether it actually gets the console semaphore or not.
1620 	 */
1621 	if (console_trylock_for_printk(this_cpu))
1622 		console_unlock();
1623 
1624 	lockdep_on();
1625 out_restore_irqs:
1626 	local_irq_restore(flags);
1627 
1628 	return printed_len;
1629 }
1630 EXPORT_SYMBOL(vprintk_emit);
1631 
1632 asmlinkage int vprintk(const char *fmt, va_list args)
1633 {
1634 	return vprintk_emit(0, -1, NULL, 0, fmt, args);
1635 }
1636 EXPORT_SYMBOL(vprintk);
1637 
1638 asmlinkage int printk_emit(int facility, int level,
1639 			   const char *dict, size_t dictlen,
1640 			   const char *fmt, ...)
1641 {
1642 	va_list args;
1643 	int r;
1644 
1645 	va_start(args, fmt);
1646 	r = vprintk_emit(facility, level, dict, dictlen, fmt, args);
1647 	va_end(args);
1648 
1649 	return r;
1650 }
1651 EXPORT_SYMBOL(printk_emit);
1652 
1653 /**
1654  * printk - print a kernel message
1655  * @fmt: format string
1656  *
1657  * This is printk(). It can be called from any context. We want it to work.
1658  *
1659  * We try to grab the console_lock. If we succeed, it's easy - we log the
1660  * output and call the console drivers.  If we fail to get the semaphore, we
1661  * place the output into the log buffer and return. The current holder of
1662  * the console_sem will notice the new output in console_unlock(); and will
1663  * send it to the consoles before releasing the lock.
1664  *
1665  * One effect of this deferred printing is that code which calls printk() and
1666  * then changes console_loglevel may break. This is because console_loglevel
1667  * is inspected when the actual printing occurs.
1668  *
1669  * See also:
1670  * printf(3)
1671  *
1672  * See the vsnprintf() documentation for format string extensions over C99.
1673  */
1674 asmlinkage int printk(const char *fmt, ...)
1675 {
1676 	va_list args;
1677 	int r;
1678 
1679 #ifdef CONFIG_KGDB_KDB
1680 	if (unlikely(kdb_trap_printk)) {
1681 		va_start(args, fmt);
1682 		r = vkdb_printf(fmt, args);
1683 		va_end(args);
1684 		return r;
1685 	}
1686 #endif
1687 	va_start(args, fmt);
1688 	r = vprintk_emit(0, -1, NULL, 0, fmt, args);
1689 	va_end(args);
1690 
1691 	return r;
1692 }
1693 EXPORT_SYMBOL(printk);
1694 
1695 #else /* CONFIG_PRINTK */
1696 
1697 #define LOG_LINE_MAX		0
1698 #define PREFIX_MAX		0
1699 #define LOG_LINE_MAX 0
1700 static u64 syslog_seq;
1701 static u32 syslog_idx;
1702 static u64 console_seq;
1703 static u32 console_idx;
1704 static enum log_flags syslog_prev;
1705 static u64 log_first_seq;
1706 static u32 log_first_idx;
1707 static u64 log_next_seq;
1708 static enum log_flags console_prev;
1709 static struct cont {
1710 	size_t len;
1711 	size_t cons;
1712 	u8 level;
1713 	bool flushed:1;
1714 } cont;
1715 static struct printk_log *log_from_idx(u32 idx) { return NULL; }
1716 static u32 log_next(u32 idx) { return 0; }
1717 static void call_console_drivers(int level, const char *text, size_t len) {}
1718 static size_t msg_print_text(const struct printk_log *msg, enum log_flags prev,
1719 			     bool syslog, char *buf, size_t size) { return 0; }
1720 static size_t cont_print_text(char *text, size_t size) { return 0; }
1721 
1722 #endif /* CONFIG_PRINTK */
1723 
1724 #ifdef CONFIG_EARLY_PRINTK
1725 struct console *early_console;
1726 
1727 void early_vprintk(const char *fmt, va_list ap)
1728 {
1729 	if (early_console) {
1730 		char buf[512];
1731 		int n = vscnprintf(buf, sizeof(buf), fmt, ap);
1732 
1733 		early_console->write(early_console, buf, n);
1734 	}
1735 }
1736 
1737 asmlinkage void early_printk(const char *fmt, ...)
1738 {
1739 	va_list ap;
1740 
1741 	va_start(ap, fmt);
1742 	early_vprintk(fmt, ap);
1743 	va_end(ap);
1744 }
1745 #endif
1746 
1747 static int __add_preferred_console(char *name, int idx, char *options,
1748 				   char *brl_options)
1749 {
1750 	struct console_cmdline *c;
1751 	int i;
1752 
1753 	/*
1754 	 *	See if this tty is not yet registered, and
1755 	 *	if we have a slot free.
1756 	 */
1757 	for (i = 0, c = console_cmdline;
1758 	     i < MAX_CMDLINECONSOLES && c->name[0];
1759 	     i++, c++) {
1760 		if (strcmp(c->name, name) == 0 && c->index == idx) {
1761 			if (!brl_options)
1762 				selected_console = i;
1763 			return 0;
1764 		}
1765 	}
1766 	if (i == MAX_CMDLINECONSOLES)
1767 		return -E2BIG;
1768 	if (!brl_options)
1769 		selected_console = i;
1770 	strlcpy(c->name, name, sizeof(c->name));
1771 	c->options = options;
1772 	braille_set_options(c, brl_options);
1773 
1774 	c->index = idx;
1775 	return 0;
1776 }
1777 /*
1778  * Set up a list of consoles.  Called from init/main.c
1779  */
1780 static int __init console_setup(char *str)
1781 {
1782 	char buf[sizeof(console_cmdline[0].name) + 4]; /* 4 for index */
1783 	char *s, *options, *brl_options = NULL;
1784 	int idx;
1785 
1786 	if (_braille_console_setup(&str, &brl_options))
1787 		return 1;
1788 
1789 	/*
1790 	 * Decode str into name, index, options.
1791 	 */
1792 	if (str[0] >= '0' && str[0] <= '9') {
1793 		strcpy(buf, "ttyS");
1794 		strncpy(buf + 4, str, sizeof(buf) - 5);
1795 	} else {
1796 		strncpy(buf, str, sizeof(buf) - 1);
1797 	}
1798 	buf[sizeof(buf) - 1] = 0;
1799 	if ((options = strchr(str, ',')) != NULL)
1800 		*(options++) = 0;
1801 #ifdef __sparc__
1802 	if (!strcmp(str, "ttya"))
1803 		strcpy(buf, "ttyS0");
1804 	if (!strcmp(str, "ttyb"))
1805 		strcpy(buf, "ttyS1");
1806 #endif
1807 	for (s = buf; *s; s++)
1808 		if ((*s >= '0' && *s <= '9') || *s == ',')
1809 			break;
1810 	idx = simple_strtoul(s, NULL, 10);
1811 	*s = 0;
1812 
1813 	__add_preferred_console(buf, idx, options, brl_options);
1814 	console_set_on_cmdline = 1;
1815 	return 1;
1816 }
1817 __setup("console=", console_setup);
1818 
1819 /**
1820  * add_preferred_console - add a device to the list of preferred consoles.
1821  * @name: device name
1822  * @idx: device index
1823  * @options: options for this console
1824  *
1825  * The last preferred console added will be used for kernel messages
1826  * and stdin/out/err for init.  Normally this is used by console_setup
1827  * above to handle user-supplied console arguments; however it can also
1828  * be used by arch-specific code either to override the user or more
1829  * commonly to provide a default console (ie from PROM variables) when
1830  * the user has not supplied one.
1831  */
1832 int add_preferred_console(char *name, int idx, char *options)
1833 {
1834 	return __add_preferred_console(name, idx, options, NULL);
1835 }
1836 
1837 int update_console_cmdline(char *name, int idx, char *name_new, int idx_new, char *options)
1838 {
1839 	struct console_cmdline *c;
1840 	int i;
1841 
1842 	for (i = 0, c = console_cmdline;
1843 	     i < MAX_CMDLINECONSOLES && c->name[0];
1844 	     i++, c++)
1845 		if (strcmp(c->name, name) == 0 && c->index == idx) {
1846 			strlcpy(c->name, name_new, sizeof(c->name));
1847 			c->name[sizeof(c->name) - 1] = 0;
1848 			c->options = options;
1849 			c->index = idx_new;
1850 			return i;
1851 		}
1852 	/* not found */
1853 	return -1;
1854 }
1855 
1856 bool console_suspend_enabled = 1;
1857 EXPORT_SYMBOL(console_suspend_enabled);
1858 
1859 static int __init console_suspend_disable(char *str)
1860 {
1861 	console_suspend_enabled = 0;
1862 	return 1;
1863 }
1864 __setup("no_console_suspend", console_suspend_disable);
1865 module_param_named(console_suspend, console_suspend_enabled,
1866 		bool, S_IRUGO | S_IWUSR);
1867 MODULE_PARM_DESC(console_suspend, "suspend console during suspend"
1868 	" and hibernate operations");
1869 
1870 /**
1871  * suspend_console - suspend the console subsystem
1872  *
1873  * This disables printk() while we go into suspend states
1874  */
1875 void suspend_console(void)
1876 {
1877 	if (!console_suspend_enabled)
1878 		return;
1879 	printk("Suspending console(s) (use no_console_suspend to debug)\n");
1880 	console_lock();
1881 	console_suspended = 1;
1882 	up(&console_sem);
1883 }
1884 
1885 void resume_console(void)
1886 {
1887 	if (!console_suspend_enabled)
1888 		return;
1889 	down(&console_sem);
1890 	console_suspended = 0;
1891 	console_unlock();
1892 }
1893 
1894 /**
1895  * console_cpu_notify - print deferred console messages after CPU hotplug
1896  * @self: notifier struct
1897  * @action: CPU hotplug event
1898  * @hcpu: unused
1899  *
1900  * If printk() is called from a CPU that is not online yet, the messages
1901  * will be spooled but will not show up on the console.  This function is
1902  * called when a new CPU comes online (or fails to come up), and ensures
1903  * that any such output gets printed.
1904  */
1905 static int console_cpu_notify(struct notifier_block *self,
1906 	unsigned long action, void *hcpu)
1907 {
1908 	switch (action) {
1909 	case CPU_ONLINE:
1910 	case CPU_DEAD:
1911 	case CPU_DOWN_FAILED:
1912 	case CPU_UP_CANCELED:
1913 		console_lock();
1914 		console_unlock();
1915 	}
1916 	return NOTIFY_OK;
1917 }
1918 
1919 /**
1920  * console_lock - lock the console system for exclusive use.
1921  *
1922  * Acquires a lock which guarantees that the caller has
1923  * exclusive access to the console system and the console_drivers list.
1924  *
1925  * Can sleep, returns nothing.
1926  */
1927 void console_lock(void)
1928 {
1929 	might_sleep();
1930 
1931 	down(&console_sem);
1932 	if (console_suspended)
1933 		return;
1934 	console_locked = 1;
1935 	console_may_schedule = 1;
1936 	mutex_acquire(&console_lock_dep_map, 0, 0, _RET_IP_);
1937 }
1938 EXPORT_SYMBOL(console_lock);
1939 
1940 /**
1941  * console_trylock - try to lock the console system for exclusive use.
1942  *
1943  * Tried to acquire a lock which guarantees that the caller has
1944  * exclusive access to the console system and the console_drivers list.
1945  *
1946  * returns 1 on success, and 0 on failure to acquire the lock.
1947  */
1948 int console_trylock(void)
1949 {
1950 	if (down_trylock(&console_sem))
1951 		return 0;
1952 	if (console_suspended) {
1953 		up(&console_sem);
1954 		return 0;
1955 	}
1956 	console_locked = 1;
1957 	console_may_schedule = 0;
1958 	mutex_acquire(&console_lock_dep_map, 0, 1, _RET_IP_);
1959 	return 1;
1960 }
1961 EXPORT_SYMBOL(console_trylock);
1962 
1963 int is_console_locked(void)
1964 {
1965 	return console_locked;
1966 }
1967 
1968 static void console_cont_flush(char *text, size_t size)
1969 {
1970 	unsigned long flags;
1971 	size_t len;
1972 
1973 	raw_spin_lock_irqsave(&logbuf_lock, flags);
1974 
1975 	if (!cont.len)
1976 		goto out;
1977 
1978 	/*
1979 	 * We still queue earlier records, likely because the console was
1980 	 * busy. The earlier ones need to be printed before this one, we
1981 	 * did not flush any fragment so far, so just let it queue up.
1982 	 */
1983 	if (console_seq < log_next_seq && !cont.cons)
1984 		goto out;
1985 
1986 	len = cont_print_text(text, size);
1987 	raw_spin_unlock(&logbuf_lock);
1988 	stop_critical_timings();
1989 	call_console_drivers(cont.level, text, len);
1990 	start_critical_timings();
1991 	local_irq_restore(flags);
1992 	return;
1993 out:
1994 	raw_spin_unlock_irqrestore(&logbuf_lock, flags);
1995 }
1996 
1997 /**
1998  * console_unlock - unlock the console system
1999  *
2000  * Releases the console_lock which the caller holds on the console system
2001  * and the console driver list.
2002  *
2003  * While the console_lock was held, console output may have been buffered
2004  * by printk().  If this is the case, console_unlock(); emits
2005  * the output prior to releasing the lock.
2006  *
2007  * If there is output waiting, we wake /dev/kmsg and syslog() users.
2008  *
2009  * console_unlock(); may be called from any context.
2010  */
2011 void console_unlock(void)
2012 {
2013 	static char text[LOG_LINE_MAX + PREFIX_MAX];
2014 	static u64 seen_seq;
2015 	unsigned long flags;
2016 	bool wake_klogd = false;
2017 	bool retry;
2018 
2019 	if (console_suspended) {
2020 		up(&console_sem);
2021 		return;
2022 	}
2023 
2024 	console_may_schedule = 0;
2025 
2026 	/* flush buffered message fragment immediately to console */
2027 	console_cont_flush(text, sizeof(text));
2028 again:
2029 	for (;;) {
2030 		struct printk_log *msg;
2031 		size_t len;
2032 		int level;
2033 
2034 		raw_spin_lock_irqsave(&logbuf_lock, flags);
2035 		if (seen_seq != log_next_seq) {
2036 			wake_klogd = true;
2037 			seen_seq = log_next_seq;
2038 		}
2039 
2040 		if (console_seq < log_first_seq) {
2041 			/* messages are gone, move to first one */
2042 			console_seq = log_first_seq;
2043 			console_idx = log_first_idx;
2044 			console_prev = 0;
2045 		}
2046 skip:
2047 		if (console_seq == log_next_seq)
2048 			break;
2049 
2050 		msg = log_from_idx(console_idx);
2051 		if (msg->flags & LOG_NOCONS) {
2052 			/*
2053 			 * Skip record we have buffered and already printed
2054 			 * directly to the console when we received it.
2055 			 */
2056 			console_idx = log_next(console_idx);
2057 			console_seq++;
2058 			/*
2059 			 * We will get here again when we register a new
2060 			 * CON_PRINTBUFFER console. Clear the flag so we
2061 			 * will properly dump everything later.
2062 			 */
2063 			msg->flags &= ~LOG_NOCONS;
2064 			console_prev = msg->flags;
2065 			goto skip;
2066 		}
2067 
2068 		level = msg->level;
2069 		len = msg_print_text(msg, console_prev, false,
2070 				     text, sizeof(text));
2071 		console_idx = log_next(console_idx);
2072 		console_seq++;
2073 		console_prev = msg->flags;
2074 		raw_spin_unlock(&logbuf_lock);
2075 
2076 		stop_critical_timings();	/* don't trace print latency */
2077 		call_console_drivers(level, text, len);
2078 		start_critical_timings();
2079 		local_irq_restore(flags);
2080 	}
2081 	console_locked = 0;
2082 	mutex_release(&console_lock_dep_map, 1, _RET_IP_);
2083 
2084 	/* Release the exclusive_console once it is used */
2085 	if (unlikely(exclusive_console))
2086 		exclusive_console = NULL;
2087 
2088 	raw_spin_unlock(&logbuf_lock);
2089 
2090 	up(&console_sem);
2091 
2092 	/*
2093 	 * Someone could have filled up the buffer again, so re-check if there's
2094 	 * something to flush. In case we cannot trylock the console_sem again,
2095 	 * there's a new owner and the console_unlock() from them will do the
2096 	 * flush, no worries.
2097 	 */
2098 	raw_spin_lock(&logbuf_lock);
2099 	retry = console_seq != log_next_seq;
2100 	raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2101 
2102 	if (retry && console_trylock())
2103 		goto again;
2104 
2105 	if (wake_klogd)
2106 		wake_up_klogd();
2107 }
2108 EXPORT_SYMBOL(console_unlock);
2109 
2110 /**
2111  * console_conditional_schedule - yield the CPU if required
2112  *
2113  * If the console code is currently allowed to sleep, and
2114  * if this CPU should yield the CPU to another task, do
2115  * so here.
2116  *
2117  * Must be called within console_lock();.
2118  */
2119 void __sched console_conditional_schedule(void)
2120 {
2121 	if (console_may_schedule)
2122 		cond_resched();
2123 }
2124 EXPORT_SYMBOL(console_conditional_schedule);
2125 
2126 void console_unblank(void)
2127 {
2128 	struct console *c;
2129 
2130 	/*
2131 	 * console_unblank can no longer be called in interrupt context unless
2132 	 * oops_in_progress is set to 1..
2133 	 */
2134 	if (oops_in_progress) {
2135 		if (down_trylock(&console_sem) != 0)
2136 			return;
2137 	} else
2138 		console_lock();
2139 
2140 	console_locked = 1;
2141 	console_may_schedule = 0;
2142 	for_each_console(c)
2143 		if ((c->flags & CON_ENABLED) && c->unblank)
2144 			c->unblank();
2145 	console_unlock();
2146 }
2147 
2148 /*
2149  * Return the console tty driver structure and its associated index
2150  */
2151 struct tty_driver *console_device(int *index)
2152 {
2153 	struct console *c;
2154 	struct tty_driver *driver = NULL;
2155 
2156 	console_lock();
2157 	for_each_console(c) {
2158 		if (!c->device)
2159 			continue;
2160 		driver = c->device(c, index);
2161 		if (driver)
2162 			break;
2163 	}
2164 	console_unlock();
2165 	return driver;
2166 }
2167 
2168 /*
2169  * Prevent further output on the passed console device so that (for example)
2170  * serial drivers can disable console output before suspending a port, and can
2171  * re-enable output afterwards.
2172  */
2173 void console_stop(struct console *console)
2174 {
2175 	console_lock();
2176 	console->flags &= ~CON_ENABLED;
2177 	console_unlock();
2178 }
2179 EXPORT_SYMBOL(console_stop);
2180 
2181 void console_start(struct console *console)
2182 {
2183 	console_lock();
2184 	console->flags |= CON_ENABLED;
2185 	console_unlock();
2186 }
2187 EXPORT_SYMBOL(console_start);
2188 
2189 static int __read_mostly keep_bootcon;
2190 
2191 static int __init keep_bootcon_setup(char *str)
2192 {
2193 	keep_bootcon = 1;
2194 	pr_info("debug: skip boot console de-registration.\n");
2195 
2196 	return 0;
2197 }
2198 
2199 early_param("keep_bootcon", keep_bootcon_setup);
2200 
2201 /*
2202  * The console driver calls this routine during kernel initialization
2203  * to register the console printing procedure with printk() and to
2204  * print any messages that were printed by the kernel before the
2205  * console driver was initialized.
2206  *
2207  * This can happen pretty early during the boot process (because of
2208  * early_printk) - sometimes before setup_arch() completes - be careful
2209  * of what kernel features are used - they may not be initialised yet.
2210  *
2211  * There are two types of consoles - bootconsoles (early_printk) and
2212  * "real" consoles (everything which is not a bootconsole) which are
2213  * handled differently.
2214  *  - Any number of bootconsoles can be registered at any time.
2215  *  - As soon as a "real" console is registered, all bootconsoles
2216  *    will be unregistered automatically.
2217  *  - Once a "real" console is registered, any attempt to register a
2218  *    bootconsoles will be rejected
2219  */
2220 void register_console(struct console *newcon)
2221 {
2222 	int i;
2223 	unsigned long flags;
2224 	struct console *bcon = NULL;
2225 	struct console_cmdline *c;
2226 
2227 	if (console_drivers)
2228 		for_each_console(bcon)
2229 			if (WARN(bcon == newcon,
2230 					"console '%s%d' already registered\n",
2231 					bcon->name, bcon->index))
2232 				return;
2233 
2234 	/*
2235 	 * before we register a new CON_BOOT console, make sure we don't
2236 	 * already have a valid console
2237 	 */
2238 	if (console_drivers && newcon->flags & CON_BOOT) {
2239 		/* find the last or real console */
2240 		for_each_console(bcon) {
2241 			if (!(bcon->flags & CON_BOOT)) {
2242 				pr_info("Too late to register bootconsole %s%d\n",
2243 					newcon->name, newcon->index);
2244 				return;
2245 			}
2246 		}
2247 	}
2248 
2249 	if (console_drivers && console_drivers->flags & CON_BOOT)
2250 		bcon = console_drivers;
2251 
2252 	if (preferred_console < 0 || bcon || !console_drivers)
2253 		preferred_console = selected_console;
2254 
2255 	if (newcon->early_setup)
2256 		newcon->early_setup();
2257 
2258 	/*
2259 	 *	See if we want to use this console driver. If we
2260 	 *	didn't select a console we take the first one
2261 	 *	that registers here.
2262 	 */
2263 	if (preferred_console < 0) {
2264 		if (newcon->index < 0)
2265 			newcon->index = 0;
2266 		if (newcon->setup == NULL ||
2267 		    newcon->setup(newcon, NULL) == 0) {
2268 			newcon->flags |= CON_ENABLED;
2269 			if (newcon->device) {
2270 				newcon->flags |= CON_CONSDEV;
2271 				preferred_console = 0;
2272 			}
2273 		}
2274 	}
2275 
2276 	/*
2277 	 *	See if this console matches one we selected on
2278 	 *	the command line.
2279 	 */
2280 	for (i = 0, c = console_cmdline;
2281 	     i < MAX_CMDLINECONSOLES && c->name[0];
2282 	     i++, c++) {
2283 		if (strcmp(c->name, newcon->name) != 0)
2284 			continue;
2285 		if (newcon->index >= 0 &&
2286 		    newcon->index != c->index)
2287 			continue;
2288 		if (newcon->index < 0)
2289 			newcon->index = c->index;
2290 
2291 		if (_braille_register_console(newcon, c))
2292 			return;
2293 
2294 		if (newcon->setup &&
2295 		    newcon->setup(newcon, console_cmdline[i].options) != 0)
2296 			break;
2297 		newcon->flags |= CON_ENABLED;
2298 		newcon->index = c->index;
2299 		if (i == selected_console) {
2300 			newcon->flags |= CON_CONSDEV;
2301 			preferred_console = selected_console;
2302 		}
2303 		break;
2304 	}
2305 
2306 	if (!(newcon->flags & CON_ENABLED))
2307 		return;
2308 
2309 	/*
2310 	 * If we have a bootconsole, and are switching to a real console,
2311 	 * don't print everything out again, since when the boot console, and
2312 	 * the real console are the same physical device, it's annoying to
2313 	 * see the beginning boot messages twice
2314 	 */
2315 	if (bcon && ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV))
2316 		newcon->flags &= ~CON_PRINTBUFFER;
2317 
2318 	/*
2319 	 *	Put this console in the list - keep the
2320 	 *	preferred driver at the head of the list.
2321 	 */
2322 	console_lock();
2323 	if ((newcon->flags & CON_CONSDEV) || console_drivers == NULL) {
2324 		newcon->next = console_drivers;
2325 		console_drivers = newcon;
2326 		if (newcon->next)
2327 			newcon->next->flags &= ~CON_CONSDEV;
2328 	} else {
2329 		newcon->next = console_drivers->next;
2330 		console_drivers->next = newcon;
2331 	}
2332 	if (newcon->flags & CON_PRINTBUFFER) {
2333 		/*
2334 		 * console_unlock(); will print out the buffered messages
2335 		 * for us.
2336 		 */
2337 		raw_spin_lock_irqsave(&logbuf_lock, flags);
2338 		console_seq = syslog_seq;
2339 		console_idx = syslog_idx;
2340 		console_prev = syslog_prev;
2341 		raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2342 		/*
2343 		 * We're about to replay the log buffer.  Only do this to the
2344 		 * just-registered console to avoid excessive message spam to
2345 		 * the already-registered consoles.
2346 		 */
2347 		exclusive_console = newcon;
2348 	}
2349 	console_unlock();
2350 	console_sysfs_notify();
2351 
2352 	/*
2353 	 * By unregistering the bootconsoles after we enable the real console
2354 	 * we get the "console xxx enabled" message on all the consoles -
2355 	 * boot consoles, real consoles, etc - this is to ensure that end
2356 	 * users know there might be something in the kernel's log buffer that
2357 	 * went to the bootconsole (that they do not see on the real console)
2358 	 */
2359 	pr_info("%sconsole [%s%d] enabled\n",
2360 		(newcon->flags & CON_BOOT) ? "boot" : "" ,
2361 		newcon->name, newcon->index);
2362 	if (bcon &&
2363 	    ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV) &&
2364 	    !keep_bootcon) {
2365 		/* We need to iterate through all boot consoles, to make
2366 		 * sure we print everything out, before we unregister them.
2367 		 */
2368 		for_each_console(bcon)
2369 			if (bcon->flags & CON_BOOT)
2370 				unregister_console(bcon);
2371 	}
2372 }
2373 EXPORT_SYMBOL(register_console);
2374 
2375 int unregister_console(struct console *console)
2376 {
2377         struct console *a, *b;
2378 	int res;
2379 
2380 	pr_info("%sconsole [%s%d] disabled\n",
2381 		(console->flags & CON_BOOT) ? "boot" : "" ,
2382 		console->name, console->index);
2383 
2384 	res = _braille_unregister_console(console);
2385 	if (res)
2386 		return res;
2387 
2388 	res = 1;
2389 	console_lock();
2390 	if (console_drivers == console) {
2391 		console_drivers=console->next;
2392 		res = 0;
2393 	} else if (console_drivers) {
2394 		for (a=console_drivers->next, b=console_drivers ;
2395 		     a; b=a, a=b->next) {
2396 			if (a == console) {
2397 				b->next = a->next;
2398 				res = 0;
2399 				break;
2400 			}
2401 		}
2402 	}
2403 
2404 	/*
2405 	 * If this isn't the last console and it has CON_CONSDEV set, we
2406 	 * need to set it on the next preferred console.
2407 	 */
2408 	if (console_drivers != NULL && console->flags & CON_CONSDEV)
2409 		console_drivers->flags |= CON_CONSDEV;
2410 
2411 	console_unlock();
2412 	console_sysfs_notify();
2413 	return res;
2414 }
2415 EXPORT_SYMBOL(unregister_console);
2416 
2417 static int __init printk_late_init(void)
2418 {
2419 	struct console *con;
2420 
2421 	for_each_console(con) {
2422 		if (!keep_bootcon && con->flags & CON_BOOT) {
2423 			unregister_console(con);
2424 		}
2425 	}
2426 	hotcpu_notifier(console_cpu_notify, 0);
2427 	return 0;
2428 }
2429 late_initcall(printk_late_init);
2430 
2431 #if defined CONFIG_PRINTK
2432 /*
2433  * Delayed printk version, for scheduler-internal messages:
2434  */
2435 #define PRINTK_BUF_SIZE		512
2436 
2437 #define PRINTK_PENDING_WAKEUP	0x01
2438 #define PRINTK_PENDING_SCHED	0x02
2439 
2440 static DEFINE_PER_CPU(int, printk_pending);
2441 static DEFINE_PER_CPU(char [PRINTK_BUF_SIZE], printk_sched_buf);
2442 
2443 static void wake_up_klogd_work_func(struct irq_work *irq_work)
2444 {
2445 	int pending = __this_cpu_xchg(printk_pending, 0);
2446 
2447 	if (pending & PRINTK_PENDING_SCHED) {
2448 		char *buf = __get_cpu_var(printk_sched_buf);
2449 		pr_warn("[sched_delayed] %s", buf);
2450 	}
2451 
2452 	if (pending & PRINTK_PENDING_WAKEUP)
2453 		wake_up_interruptible(&log_wait);
2454 }
2455 
2456 static DEFINE_PER_CPU(struct irq_work, wake_up_klogd_work) = {
2457 	.func = wake_up_klogd_work_func,
2458 	.flags = IRQ_WORK_LAZY,
2459 };
2460 
2461 void wake_up_klogd(void)
2462 {
2463 	preempt_disable();
2464 	if (waitqueue_active(&log_wait)) {
2465 		this_cpu_or(printk_pending, PRINTK_PENDING_WAKEUP);
2466 		irq_work_queue(&__get_cpu_var(wake_up_klogd_work));
2467 	}
2468 	preempt_enable();
2469 }
2470 
2471 int printk_sched(const char *fmt, ...)
2472 {
2473 	unsigned long flags;
2474 	va_list args;
2475 	char *buf;
2476 	int r;
2477 
2478 	local_irq_save(flags);
2479 	buf = __get_cpu_var(printk_sched_buf);
2480 
2481 	va_start(args, fmt);
2482 	r = vsnprintf(buf, PRINTK_BUF_SIZE, fmt, args);
2483 	va_end(args);
2484 
2485 	__this_cpu_or(printk_pending, PRINTK_PENDING_SCHED);
2486 	irq_work_queue(&__get_cpu_var(wake_up_klogd_work));
2487 	local_irq_restore(flags);
2488 
2489 	return r;
2490 }
2491 
2492 /*
2493  * printk rate limiting, lifted from the networking subsystem.
2494  *
2495  * This enforces a rate limit: not more than 10 kernel messages
2496  * every 5s to make a denial-of-service attack impossible.
2497  */
2498 DEFINE_RATELIMIT_STATE(printk_ratelimit_state, 5 * HZ, 10);
2499 
2500 int __printk_ratelimit(const char *func)
2501 {
2502 	return ___ratelimit(&printk_ratelimit_state, func);
2503 }
2504 EXPORT_SYMBOL(__printk_ratelimit);
2505 
2506 /**
2507  * printk_timed_ratelimit - caller-controlled printk ratelimiting
2508  * @caller_jiffies: pointer to caller's state
2509  * @interval_msecs: minimum interval between prints
2510  *
2511  * printk_timed_ratelimit() returns true if more than @interval_msecs
2512  * milliseconds have elapsed since the last time printk_timed_ratelimit()
2513  * returned true.
2514  */
2515 bool printk_timed_ratelimit(unsigned long *caller_jiffies,
2516 			unsigned int interval_msecs)
2517 {
2518 	if (*caller_jiffies == 0
2519 			|| !time_in_range(jiffies, *caller_jiffies,
2520 					*caller_jiffies
2521 					+ msecs_to_jiffies(interval_msecs))) {
2522 		*caller_jiffies = jiffies;
2523 		return true;
2524 	}
2525 	return false;
2526 }
2527 EXPORT_SYMBOL(printk_timed_ratelimit);
2528 
2529 static DEFINE_SPINLOCK(dump_list_lock);
2530 static LIST_HEAD(dump_list);
2531 
2532 /**
2533  * kmsg_dump_register - register a kernel log dumper.
2534  * @dumper: pointer to the kmsg_dumper structure
2535  *
2536  * Adds a kernel log dumper to the system. The dump callback in the
2537  * structure will be called when the kernel oopses or panics and must be
2538  * set. Returns zero on success and %-EINVAL or %-EBUSY otherwise.
2539  */
2540 int kmsg_dump_register(struct kmsg_dumper *dumper)
2541 {
2542 	unsigned long flags;
2543 	int err = -EBUSY;
2544 
2545 	/* The dump callback needs to be set */
2546 	if (!dumper->dump)
2547 		return -EINVAL;
2548 
2549 	spin_lock_irqsave(&dump_list_lock, flags);
2550 	/* Don't allow registering multiple times */
2551 	if (!dumper->registered) {
2552 		dumper->registered = 1;
2553 		list_add_tail_rcu(&dumper->list, &dump_list);
2554 		err = 0;
2555 	}
2556 	spin_unlock_irqrestore(&dump_list_lock, flags);
2557 
2558 	return err;
2559 }
2560 EXPORT_SYMBOL_GPL(kmsg_dump_register);
2561 
2562 /**
2563  * kmsg_dump_unregister - unregister a kmsg dumper.
2564  * @dumper: pointer to the kmsg_dumper structure
2565  *
2566  * Removes a dump device from the system. Returns zero on success and
2567  * %-EINVAL otherwise.
2568  */
2569 int kmsg_dump_unregister(struct kmsg_dumper *dumper)
2570 {
2571 	unsigned long flags;
2572 	int err = -EINVAL;
2573 
2574 	spin_lock_irqsave(&dump_list_lock, flags);
2575 	if (dumper->registered) {
2576 		dumper->registered = 0;
2577 		list_del_rcu(&dumper->list);
2578 		err = 0;
2579 	}
2580 	spin_unlock_irqrestore(&dump_list_lock, flags);
2581 	synchronize_rcu();
2582 
2583 	return err;
2584 }
2585 EXPORT_SYMBOL_GPL(kmsg_dump_unregister);
2586 
2587 static bool always_kmsg_dump;
2588 module_param_named(always_kmsg_dump, always_kmsg_dump, bool, S_IRUGO | S_IWUSR);
2589 
2590 /**
2591  * kmsg_dump - dump kernel log to kernel message dumpers.
2592  * @reason: the reason (oops, panic etc) for dumping
2593  *
2594  * Call each of the registered dumper's dump() callback, which can
2595  * retrieve the kmsg records with kmsg_dump_get_line() or
2596  * kmsg_dump_get_buffer().
2597  */
2598 void kmsg_dump(enum kmsg_dump_reason reason)
2599 {
2600 	struct kmsg_dumper *dumper;
2601 	unsigned long flags;
2602 
2603 	if ((reason > KMSG_DUMP_OOPS) && !always_kmsg_dump)
2604 		return;
2605 
2606 	rcu_read_lock();
2607 	list_for_each_entry_rcu(dumper, &dump_list, list) {
2608 		if (dumper->max_reason && reason > dumper->max_reason)
2609 			continue;
2610 
2611 		/* initialize iterator with data about the stored records */
2612 		dumper->active = true;
2613 
2614 		raw_spin_lock_irqsave(&logbuf_lock, flags);
2615 		dumper->cur_seq = clear_seq;
2616 		dumper->cur_idx = clear_idx;
2617 		dumper->next_seq = log_next_seq;
2618 		dumper->next_idx = log_next_idx;
2619 		raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2620 
2621 		/* invoke dumper which will iterate over records */
2622 		dumper->dump(dumper, reason);
2623 
2624 		/* reset iterator */
2625 		dumper->active = false;
2626 	}
2627 	rcu_read_unlock();
2628 }
2629 
2630 /**
2631  * kmsg_dump_get_line_nolock - retrieve one kmsg log line (unlocked version)
2632  * @dumper: registered kmsg dumper
2633  * @syslog: include the "<4>" prefixes
2634  * @line: buffer to copy the line to
2635  * @size: maximum size of the buffer
2636  * @len: length of line placed into buffer
2637  *
2638  * Start at the beginning of the kmsg buffer, with the oldest kmsg
2639  * record, and copy one record into the provided buffer.
2640  *
2641  * Consecutive calls will return the next available record moving
2642  * towards the end of the buffer with the youngest messages.
2643  *
2644  * A return value of FALSE indicates that there are no more records to
2645  * read.
2646  *
2647  * The function is similar to kmsg_dump_get_line(), but grabs no locks.
2648  */
2649 bool kmsg_dump_get_line_nolock(struct kmsg_dumper *dumper, bool syslog,
2650 			       char *line, size_t size, size_t *len)
2651 {
2652 	struct printk_log *msg;
2653 	size_t l = 0;
2654 	bool ret = false;
2655 
2656 	if (!dumper->active)
2657 		goto out;
2658 
2659 	if (dumper->cur_seq < log_first_seq) {
2660 		/* messages are gone, move to first available one */
2661 		dumper->cur_seq = log_first_seq;
2662 		dumper->cur_idx = log_first_idx;
2663 	}
2664 
2665 	/* last entry */
2666 	if (dumper->cur_seq >= log_next_seq)
2667 		goto out;
2668 
2669 	msg = log_from_idx(dumper->cur_idx);
2670 	l = msg_print_text(msg, 0, syslog, line, size);
2671 
2672 	dumper->cur_idx = log_next(dumper->cur_idx);
2673 	dumper->cur_seq++;
2674 	ret = true;
2675 out:
2676 	if (len)
2677 		*len = l;
2678 	return ret;
2679 }
2680 
2681 /**
2682  * kmsg_dump_get_line - retrieve one kmsg log line
2683  * @dumper: registered kmsg dumper
2684  * @syslog: include the "<4>" prefixes
2685  * @line: buffer to copy the line to
2686  * @size: maximum size of the buffer
2687  * @len: length of line placed into buffer
2688  *
2689  * Start at the beginning of the kmsg buffer, with the oldest kmsg
2690  * record, and copy one record into the provided buffer.
2691  *
2692  * Consecutive calls will return the next available record moving
2693  * towards the end of the buffer with the youngest messages.
2694  *
2695  * A return value of FALSE indicates that there are no more records to
2696  * read.
2697  */
2698 bool kmsg_dump_get_line(struct kmsg_dumper *dumper, bool syslog,
2699 			char *line, size_t size, size_t *len)
2700 {
2701 	unsigned long flags;
2702 	bool ret;
2703 
2704 	raw_spin_lock_irqsave(&logbuf_lock, flags);
2705 	ret = kmsg_dump_get_line_nolock(dumper, syslog, line, size, len);
2706 	raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2707 
2708 	return ret;
2709 }
2710 EXPORT_SYMBOL_GPL(kmsg_dump_get_line);
2711 
2712 /**
2713  * kmsg_dump_get_buffer - copy kmsg log lines
2714  * @dumper: registered kmsg dumper
2715  * @syslog: include the "<4>" prefixes
2716  * @buf: buffer to copy the line to
2717  * @size: maximum size of the buffer
2718  * @len: length of line placed into buffer
2719  *
2720  * Start at the end of the kmsg buffer and fill the provided buffer
2721  * with as many of the the *youngest* kmsg records that fit into it.
2722  * If the buffer is large enough, all available kmsg records will be
2723  * copied with a single call.
2724  *
2725  * Consecutive calls will fill the buffer with the next block of
2726  * available older records, not including the earlier retrieved ones.
2727  *
2728  * A return value of FALSE indicates that there are no more records to
2729  * read.
2730  */
2731 bool kmsg_dump_get_buffer(struct kmsg_dumper *dumper, bool syslog,
2732 			  char *buf, size_t size, size_t *len)
2733 {
2734 	unsigned long flags;
2735 	u64 seq;
2736 	u32 idx;
2737 	u64 next_seq;
2738 	u32 next_idx;
2739 	enum log_flags prev;
2740 	size_t l = 0;
2741 	bool ret = false;
2742 
2743 	if (!dumper->active)
2744 		goto out;
2745 
2746 	raw_spin_lock_irqsave(&logbuf_lock, flags);
2747 	if (dumper->cur_seq < log_first_seq) {
2748 		/* messages are gone, move to first available one */
2749 		dumper->cur_seq = log_first_seq;
2750 		dumper->cur_idx = log_first_idx;
2751 	}
2752 
2753 	/* last entry */
2754 	if (dumper->cur_seq >= dumper->next_seq) {
2755 		raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2756 		goto out;
2757 	}
2758 
2759 	/* calculate length of entire buffer */
2760 	seq = dumper->cur_seq;
2761 	idx = dumper->cur_idx;
2762 	prev = 0;
2763 	while (seq < dumper->next_seq) {
2764 		struct printk_log *msg = log_from_idx(idx);
2765 
2766 		l += msg_print_text(msg, prev, true, NULL, 0);
2767 		idx = log_next(idx);
2768 		seq++;
2769 		prev = msg->flags;
2770 	}
2771 
2772 	/* move first record forward until length fits into the buffer */
2773 	seq = dumper->cur_seq;
2774 	idx = dumper->cur_idx;
2775 	prev = 0;
2776 	while (l > size && seq < dumper->next_seq) {
2777 		struct printk_log *msg = log_from_idx(idx);
2778 
2779 		l -= msg_print_text(msg, prev, true, NULL, 0);
2780 		idx = log_next(idx);
2781 		seq++;
2782 		prev = msg->flags;
2783 	}
2784 
2785 	/* last message in next interation */
2786 	next_seq = seq;
2787 	next_idx = idx;
2788 
2789 	l = 0;
2790 	while (seq < dumper->next_seq) {
2791 		struct printk_log *msg = log_from_idx(idx);
2792 
2793 		l += msg_print_text(msg, prev, syslog, buf + l, size - l);
2794 		idx = log_next(idx);
2795 		seq++;
2796 		prev = msg->flags;
2797 	}
2798 
2799 	dumper->next_seq = next_seq;
2800 	dumper->next_idx = next_idx;
2801 	ret = true;
2802 	raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2803 out:
2804 	if (len)
2805 		*len = l;
2806 	return ret;
2807 }
2808 EXPORT_SYMBOL_GPL(kmsg_dump_get_buffer);
2809 
2810 /**
2811  * kmsg_dump_rewind_nolock - reset the interator (unlocked version)
2812  * @dumper: registered kmsg dumper
2813  *
2814  * Reset the dumper's iterator so that kmsg_dump_get_line() and
2815  * kmsg_dump_get_buffer() can be called again and used multiple
2816  * times within the same dumper.dump() callback.
2817  *
2818  * The function is similar to kmsg_dump_rewind(), but grabs no locks.
2819  */
2820 void kmsg_dump_rewind_nolock(struct kmsg_dumper *dumper)
2821 {
2822 	dumper->cur_seq = clear_seq;
2823 	dumper->cur_idx = clear_idx;
2824 	dumper->next_seq = log_next_seq;
2825 	dumper->next_idx = log_next_idx;
2826 }
2827 
2828 /**
2829  * kmsg_dump_rewind - reset the interator
2830  * @dumper: registered kmsg dumper
2831  *
2832  * Reset the dumper's iterator so that kmsg_dump_get_line() and
2833  * kmsg_dump_get_buffer() can be called again and used multiple
2834  * times within the same dumper.dump() callback.
2835  */
2836 void kmsg_dump_rewind(struct kmsg_dumper *dumper)
2837 {
2838 	unsigned long flags;
2839 
2840 	raw_spin_lock_irqsave(&logbuf_lock, flags);
2841 	kmsg_dump_rewind_nolock(dumper);
2842 	raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2843 }
2844 EXPORT_SYMBOL_GPL(kmsg_dump_rewind);
2845 
2846 static char dump_stack_arch_desc_str[128];
2847 
2848 /**
2849  * dump_stack_set_arch_desc - set arch-specific str to show with task dumps
2850  * @fmt: printf-style format string
2851  * @...: arguments for the format string
2852  *
2853  * The configured string will be printed right after utsname during task
2854  * dumps.  Usually used to add arch-specific system identifiers.  If an
2855  * arch wants to make use of such an ID string, it should initialize this
2856  * as soon as possible during boot.
2857  */
2858 void __init dump_stack_set_arch_desc(const char *fmt, ...)
2859 {
2860 	va_list args;
2861 
2862 	va_start(args, fmt);
2863 	vsnprintf(dump_stack_arch_desc_str, sizeof(dump_stack_arch_desc_str),
2864 		  fmt, args);
2865 	va_end(args);
2866 }
2867 
2868 /**
2869  * dump_stack_print_info - print generic debug info for dump_stack()
2870  * @log_lvl: log level
2871  *
2872  * Arch-specific dump_stack() implementations can use this function to
2873  * print out the same debug information as the generic dump_stack().
2874  */
2875 void dump_stack_print_info(const char *log_lvl)
2876 {
2877 	printk("%sCPU: %d PID: %d Comm: %.20s %s %s %.*s\n",
2878 	       log_lvl, raw_smp_processor_id(), current->pid, current->comm,
2879 	       print_tainted(), init_utsname()->release,
2880 	       (int)strcspn(init_utsname()->version, " "),
2881 	       init_utsname()->version);
2882 
2883 	if (dump_stack_arch_desc_str[0] != '\0')
2884 		printk("%sHardware name: %s\n",
2885 		       log_lvl, dump_stack_arch_desc_str);
2886 
2887 	print_worker_info(log_lvl, current);
2888 }
2889 
2890 /**
2891  * show_regs_print_info - print generic debug info for show_regs()
2892  * @log_lvl: log level
2893  *
2894  * show_regs() implementations can use this function to print out generic
2895  * debug information.
2896  */
2897 void show_regs_print_info(const char *log_lvl)
2898 {
2899 	dump_stack_print_info(log_lvl);
2900 
2901 	printk("%stask: %p ti: %p task.ti: %p\n",
2902 	       log_lvl, current, current_thread_info(),
2903 	       task_thread_info(current));
2904 }
2905 
2906 #endif
2907