1 /* 2 * linux/kernel/printk.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 * 6 * Modified to make sys_syslog() more flexible: added commands to 7 * return the last 4k of kernel messages, regardless of whether 8 * they've been read or not. Added option to suppress kernel printk's 9 * to the console. Added hook for sending the console messages 10 * elsewhere, in preparation for a serial line console (someday). 11 * Ted Ts'o, 2/11/93. 12 * Modified for sysctl support, 1/8/97, Chris Horn. 13 * Fixed SMP synchronization, 08/08/99, Manfred Spraul 14 * manfred@colorfullife.com 15 * Rewrote bits to get rid of console_lock 16 * 01Mar01 Andrew Morton 17 */ 18 19 #include <linux/kernel.h> 20 #include <linux/mm.h> 21 #include <linux/tty.h> 22 #include <linux/tty_driver.h> 23 #include <linux/console.h> 24 #include <linux/init.h> 25 #include <linux/jiffies.h> 26 #include <linux/nmi.h> 27 #include <linux/module.h> 28 #include <linux/moduleparam.h> 29 #include <linux/interrupt.h> /* For in_interrupt() */ 30 #include <linux/delay.h> 31 #include <linux/smp.h> 32 #include <linux/security.h> 33 #include <linux/bootmem.h> 34 #include <linux/memblock.h> 35 #include <linux/syscalls.h> 36 #include <linux/kexec.h> 37 #include <linux/kdb.h> 38 #include <linux/ratelimit.h> 39 #include <linux/kmsg_dump.h> 40 #include <linux/syslog.h> 41 #include <linux/cpu.h> 42 #include <linux/notifier.h> 43 #include <linux/rculist.h> 44 #include <linux/poll.h> 45 #include <linux/irq_work.h> 46 #include <linux/utsname.h> 47 #include <linux/ctype.h> 48 #include <linux/uio.h> 49 50 #include <asm/uaccess.h> 51 #include <asm-generic/sections.h> 52 53 #define CREATE_TRACE_POINTS 54 #include <trace/events/printk.h> 55 56 #include "console_cmdline.h" 57 #include "braille.h" 58 59 int console_printk[4] = { 60 CONSOLE_LOGLEVEL_DEFAULT, /* console_loglevel */ 61 MESSAGE_LOGLEVEL_DEFAULT, /* default_message_loglevel */ 62 CONSOLE_LOGLEVEL_MIN, /* minimum_console_loglevel */ 63 CONSOLE_LOGLEVEL_DEFAULT, /* default_console_loglevel */ 64 }; 65 66 /* 67 * Low level drivers may need that to know if they can schedule in 68 * their unblank() callback or not. So let's export it. 69 */ 70 int oops_in_progress; 71 EXPORT_SYMBOL(oops_in_progress); 72 73 /* 74 * console_sem protects the console_drivers list, and also 75 * provides serialisation for access to the entire console 76 * driver system. 77 */ 78 static DEFINE_SEMAPHORE(console_sem); 79 struct console *console_drivers; 80 EXPORT_SYMBOL_GPL(console_drivers); 81 82 #ifdef CONFIG_LOCKDEP 83 static struct lockdep_map console_lock_dep_map = { 84 .name = "console_lock" 85 }; 86 #endif 87 88 /* 89 * Number of registered extended console drivers. 90 * 91 * If extended consoles are present, in-kernel cont reassembly is disabled 92 * and each fragment is stored as a separate log entry with proper 93 * continuation flag so that every emitted message has full metadata. This 94 * doesn't change the result for regular consoles or /proc/kmsg. For 95 * /dev/kmsg, as long as the reader concatenates messages according to 96 * consecutive continuation flags, the end result should be the same too. 97 */ 98 static int nr_ext_console_drivers; 99 100 /* 101 * Helper macros to handle lockdep when locking/unlocking console_sem. We use 102 * macros instead of functions so that _RET_IP_ contains useful information. 103 */ 104 #define down_console_sem() do { \ 105 down(&console_sem);\ 106 mutex_acquire(&console_lock_dep_map, 0, 0, _RET_IP_);\ 107 } while (0) 108 109 static int __down_trylock_console_sem(unsigned long ip) 110 { 111 if (down_trylock(&console_sem)) 112 return 1; 113 mutex_acquire(&console_lock_dep_map, 0, 1, ip); 114 return 0; 115 } 116 #define down_trylock_console_sem() __down_trylock_console_sem(_RET_IP_) 117 118 #define up_console_sem() do { \ 119 mutex_release(&console_lock_dep_map, 1, _RET_IP_);\ 120 up(&console_sem);\ 121 } while (0) 122 123 /* 124 * This is used for debugging the mess that is the VT code by 125 * keeping track if we have the console semaphore held. It's 126 * definitely not the perfect debug tool (we don't know if _WE_ 127 * hold it and are racing, but it helps tracking those weird code 128 * paths in the console code where we end up in places I want 129 * locked without the console sempahore held). 130 */ 131 static int console_locked, console_suspended; 132 133 /* 134 * If exclusive_console is non-NULL then only this console is to be printed to. 135 */ 136 static struct console *exclusive_console; 137 138 /* 139 * Array of consoles built from command line options (console=) 140 */ 141 142 #define MAX_CMDLINECONSOLES 8 143 144 static struct console_cmdline console_cmdline[MAX_CMDLINECONSOLES]; 145 146 static int selected_console = -1; 147 static int preferred_console = -1; 148 int console_set_on_cmdline; 149 EXPORT_SYMBOL(console_set_on_cmdline); 150 151 /* Flag: console code may call schedule() */ 152 static int console_may_schedule; 153 154 /* 155 * The printk log buffer consists of a chain of concatenated variable 156 * length records. Every record starts with a record header, containing 157 * the overall length of the record. 158 * 159 * The heads to the first and last entry in the buffer, as well as the 160 * sequence numbers of these entries are maintained when messages are 161 * stored. 162 * 163 * If the heads indicate available messages, the length in the header 164 * tells the start next message. A length == 0 for the next message 165 * indicates a wrap-around to the beginning of the buffer. 166 * 167 * Every record carries the monotonic timestamp in microseconds, as well as 168 * the standard userspace syslog level and syslog facility. The usual 169 * kernel messages use LOG_KERN; userspace-injected messages always carry 170 * a matching syslog facility, by default LOG_USER. The origin of every 171 * message can be reliably determined that way. 172 * 173 * The human readable log message directly follows the message header. The 174 * length of the message text is stored in the header, the stored message 175 * is not terminated. 176 * 177 * Optionally, a message can carry a dictionary of properties (key/value pairs), 178 * to provide userspace with a machine-readable message context. 179 * 180 * Examples for well-defined, commonly used property names are: 181 * DEVICE=b12:8 device identifier 182 * b12:8 block dev_t 183 * c127:3 char dev_t 184 * n8 netdev ifindex 185 * +sound:card0 subsystem:devname 186 * SUBSYSTEM=pci driver-core subsystem name 187 * 188 * Valid characters in property names are [a-zA-Z0-9.-_]. The plain text value 189 * follows directly after a '=' character. Every property is terminated by 190 * a '\0' character. The last property is not terminated. 191 * 192 * Example of a message structure: 193 * 0000 ff 8f 00 00 00 00 00 00 monotonic time in nsec 194 * 0008 34 00 record is 52 bytes long 195 * 000a 0b 00 text is 11 bytes long 196 * 000c 1f 00 dictionary is 23 bytes long 197 * 000e 03 00 LOG_KERN (facility) LOG_ERR (level) 198 * 0010 69 74 27 73 20 61 20 6c "it's a l" 199 * 69 6e 65 "ine" 200 * 001b 44 45 56 49 43 "DEVIC" 201 * 45 3d 62 38 3a 32 00 44 "E=b8:2\0D" 202 * 52 49 56 45 52 3d 62 75 "RIVER=bu" 203 * 67 "g" 204 * 0032 00 00 00 padding to next message header 205 * 206 * The 'struct printk_log' buffer header must never be directly exported to 207 * userspace, it is a kernel-private implementation detail that might 208 * need to be changed in the future, when the requirements change. 209 * 210 * /dev/kmsg exports the structured data in the following line format: 211 * "<level>,<sequnum>,<timestamp>,<contflag>[,additional_values, ... ];<message text>\n" 212 * 213 * Users of the export format should ignore possible additional values 214 * separated by ',', and find the message after the ';' character. 215 * 216 * The optional key/value pairs are attached as continuation lines starting 217 * with a space character and terminated by a newline. All possible 218 * non-prinatable characters are escaped in the "\xff" notation. 219 */ 220 221 enum log_flags { 222 LOG_NOCONS = 1, /* already flushed, do not print to console */ 223 LOG_NEWLINE = 2, /* text ended with a newline */ 224 LOG_PREFIX = 4, /* text started with a prefix */ 225 LOG_CONT = 8, /* text is a fragment of a continuation line */ 226 }; 227 228 struct printk_log { 229 u64 ts_nsec; /* timestamp in nanoseconds */ 230 u16 len; /* length of entire record */ 231 u16 text_len; /* length of text buffer */ 232 u16 dict_len; /* length of dictionary buffer */ 233 u8 facility; /* syslog facility */ 234 u8 flags:5; /* internal record flags */ 235 u8 level:3; /* syslog level */ 236 } 237 #ifdef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS 238 __packed __aligned(4) 239 #endif 240 ; 241 242 /* 243 * The logbuf_lock protects kmsg buffer, indices, counters. This can be taken 244 * within the scheduler's rq lock. It must be released before calling 245 * console_unlock() or anything else that might wake up a process. 246 */ 247 static DEFINE_RAW_SPINLOCK(logbuf_lock); 248 249 #ifdef CONFIG_PRINTK 250 DECLARE_WAIT_QUEUE_HEAD(log_wait); 251 /* the next printk record to read by syslog(READ) or /proc/kmsg */ 252 static u64 syslog_seq; 253 static u32 syslog_idx; 254 static enum log_flags syslog_prev; 255 static size_t syslog_partial; 256 257 /* index and sequence number of the first record stored in the buffer */ 258 static u64 log_first_seq; 259 static u32 log_first_idx; 260 261 /* index and sequence number of the next record to store in the buffer */ 262 static u64 log_next_seq; 263 static u32 log_next_idx; 264 265 /* the next printk record to write to the console */ 266 static u64 console_seq; 267 static u32 console_idx; 268 static enum log_flags console_prev; 269 270 /* the next printk record to read after the last 'clear' command */ 271 static u64 clear_seq; 272 static u32 clear_idx; 273 274 #define PREFIX_MAX 32 275 #define LOG_LINE_MAX (1024 - PREFIX_MAX) 276 277 #define LOG_LEVEL(v) ((v) & 0x07) 278 #define LOG_FACILITY(v) ((v) >> 3 & 0xff) 279 280 /* record buffer */ 281 #define LOG_ALIGN __alignof__(struct printk_log) 282 #define __LOG_BUF_LEN (1 << CONFIG_LOG_BUF_SHIFT) 283 static char __log_buf[__LOG_BUF_LEN] __aligned(LOG_ALIGN); 284 static char *log_buf = __log_buf; 285 static u32 log_buf_len = __LOG_BUF_LEN; 286 287 /* Return log buffer address */ 288 char *log_buf_addr_get(void) 289 { 290 return log_buf; 291 } 292 293 /* Return log buffer size */ 294 u32 log_buf_len_get(void) 295 { 296 return log_buf_len; 297 } 298 299 /* human readable text of the record */ 300 static char *log_text(const struct printk_log *msg) 301 { 302 return (char *)msg + sizeof(struct printk_log); 303 } 304 305 /* optional key/value pair dictionary attached to the record */ 306 static char *log_dict(const struct printk_log *msg) 307 { 308 return (char *)msg + sizeof(struct printk_log) + msg->text_len; 309 } 310 311 /* get record by index; idx must point to valid msg */ 312 static struct printk_log *log_from_idx(u32 idx) 313 { 314 struct printk_log *msg = (struct printk_log *)(log_buf + idx); 315 316 /* 317 * A length == 0 record is the end of buffer marker. Wrap around and 318 * read the message at the start of the buffer. 319 */ 320 if (!msg->len) 321 return (struct printk_log *)log_buf; 322 return msg; 323 } 324 325 /* get next record; idx must point to valid msg */ 326 static u32 log_next(u32 idx) 327 { 328 struct printk_log *msg = (struct printk_log *)(log_buf + idx); 329 330 /* length == 0 indicates the end of the buffer; wrap */ 331 /* 332 * A length == 0 record is the end of buffer marker. Wrap around and 333 * read the message at the start of the buffer as *this* one, and 334 * return the one after that. 335 */ 336 if (!msg->len) { 337 msg = (struct printk_log *)log_buf; 338 return msg->len; 339 } 340 return idx + msg->len; 341 } 342 343 /* 344 * Check whether there is enough free space for the given message. 345 * 346 * The same values of first_idx and next_idx mean that the buffer 347 * is either empty or full. 348 * 349 * If the buffer is empty, we must respect the position of the indexes. 350 * They cannot be reset to the beginning of the buffer. 351 */ 352 static int logbuf_has_space(u32 msg_size, bool empty) 353 { 354 u32 free; 355 356 if (log_next_idx > log_first_idx || empty) 357 free = max(log_buf_len - log_next_idx, log_first_idx); 358 else 359 free = log_first_idx - log_next_idx; 360 361 /* 362 * We need space also for an empty header that signalizes wrapping 363 * of the buffer. 364 */ 365 return free >= msg_size + sizeof(struct printk_log); 366 } 367 368 static int log_make_free_space(u32 msg_size) 369 { 370 while (log_first_seq < log_next_seq) { 371 if (logbuf_has_space(msg_size, false)) 372 return 0; 373 /* drop old messages until we have enough contiguous space */ 374 log_first_idx = log_next(log_first_idx); 375 log_first_seq++; 376 } 377 378 /* sequence numbers are equal, so the log buffer is empty */ 379 if (logbuf_has_space(msg_size, true)) 380 return 0; 381 382 return -ENOMEM; 383 } 384 385 /* compute the message size including the padding bytes */ 386 static u32 msg_used_size(u16 text_len, u16 dict_len, u32 *pad_len) 387 { 388 u32 size; 389 390 size = sizeof(struct printk_log) + text_len + dict_len; 391 *pad_len = (-size) & (LOG_ALIGN - 1); 392 size += *pad_len; 393 394 return size; 395 } 396 397 /* 398 * Define how much of the log buffer we could take at maximum. The value 399 * must be greater than two. Note that only half of the buffer is available 400 * when the index points to the middle. 401 */ 402 #define MAX_LOG_TAKE_PART 4 403 static const char trunc_msg[] = "<truncated>"; 404 405 static u32 truncate_msg(u16 *text_len, u16 *trunc_msg_len, 406 u16 *dict_len, u32 *pad_len) 407 { 408 /* 409 * The message should not take the whole buffer. Otherwise, it might 410 * get removed too soon. 411 */ 412 u32 max_text_len = log_buf_len / MAX_LOG_TAKE_PART; 413 if (*text_len > max_text_len) 414 *text_len = max_text_len; 415 /* enable the warning message */ 416 *trunc_msg_len = strlen(trunc_msg); 417 /* disable the "dict" completely */ 418 *dict_len = 0; 419 /* compute the size again, count also the warning message */ 420 return msg_used_size(*text_len + *trunc_msg_len, 0, pad_len); 421 } 422 423 /* insert record into the buffer, discard old ones, update heads */ 424 static int log_store(int facility, int level, 425 enum log_flags flags, u64 ts_nsec, 426 const char *dict, u16 dict_len, 427 const char *text, u16 text_len) 428 { 429 struct printk_log *msg; 430 u32 size, pad_len; 431 u16 trunc_msg_len = 0; 432 433 /* number of '\0' padding bytes to next message */ 434 size = msg_used_size(text_len, dict_len, &pad_len); 435 436 if (log_make_free_space(size)) { 437 /* truncate the message if it is too long for empty buffer */ 438 size = truncate_msg(&text_len, &trunc_msg_len, 439 &dict_len, &pad_len); 440 /* survive when the log buffer is too small for trunc_msg */ 441 if (log_make_free_space(size)) 442 return 0; 443 } 444 445 if (log_next_idx + size + sizeof(struct printk_log) > log_buf_len) { 446 /* 447 * This message + an additional empty header does not fit 448 * at the end of the buffer. Add an empty header with len == 0 449 * to signify a wrap around. 450 */ 451 memset(log_buf + log_next_idx, 0, sizeof(struct printk_log)); 452 log_next_idx = 0; 453 } 454 455 /* fill message */ 456 msg = (struct printk_log *)(log_buf + log_next_idx); 457 memcpy(log_text(msg), text, text_len); 458 msg->text_len = text_len; 459 if (trunc_msg_len) { 460 memcpy(log_text(msg) + text_len, trunc_msg, trunc_msg_len); 461 msg->text_len += trunc_msg_len; 462 } 463 memcpy(log_dict(msg), dict, dict_len); 464 msg->dict_len = dict_len; 465 msg->facility = facility; 466 msg->level = level & 7; 467 msg->flags = flags & 0x1f; 468 if (ts_nsec > 0) 469 msg->ts_nsec = ts_nsec; 470 else 471 msg->ts_nsec = local_clock(); 472 memset(log_dict(msg) + dict_len, 0, pad_len); 473 msg->len = size; 474 475 /* insert message */ 476 log_next_idx += msg->len; 477 log_next_seq++; 478 479 return msg->text_len; 480 } 481 482 int dmesg_restrict = IS_ENABLED(CONFIG_SECURITY_DMESG_RESTRICT); 483 484 static int syslog_action_restricted(int type) 485 { 486 if (dmesg_restrict) 487 return 1; 488 /* 489 * Unless restricted, we allow "read all" and "get buffer size" 490 * for everybody. 491 */ 492 return type != SYSLOG_ACTION_READ_ALL && 493 type != SYSLOG_ACTION_SIZE_BUFFER; 494 } 495 496 int check_syslog_permissions(int type, int source) 497 { 498 /* 499 * If this is from /proc/kmsg and we've already opened it, then we've 500 * already done the capabilities checks at open time. 501 */ 502 if (source == SYSLOG_FROM_PROC && type != SYSLOG_ACTION_OPEN) 503 goto ok; 504 505 if (syslog_action_restricted(type)) { 506 if (capable(CAP_SYSLOG)) 507 goto ok; 508 /* 509 * For historical reasons, accept CAP_SYS_ADMIN too, with 510 * a warning. 511 */ 512 if (capable(CAP_SYS_ADMIN)) { 513 pr_warn_once("%s (%d): Attempt to access syslog with " 514 "CAP_SYS_ADMIN but no CAP_SYSLOG " 515 "(deprecated).\n", 516 current->comm, task_pid_nr(current)); 517 goto ok; 518 } 519 return -EPERM; 520 } 521 ok: 522 return security_syslog(type); 523 } 524 EXPORT_SYMBOL_GPL(check_syslog_permissions); 525 526 static void append_char(char **pp, char *e, char c) 527 { 528 if (*pp < e) 529 *(*pp)++ = c; 530 } 531 532 static ssize_t msg_print_ext_header(char *buf, size_t size, 533 struct printk_log *msg, u64 seq, 534 enum log_flags prev_flags) 535 { 536 u64 ts_usec = msg->ts_nsec; 537 char cont = '-'; 538 539 do_div(ts_usec, 1000); 540 541 /* 542 * If we couldn't merge continuation line fragments during the print, 543 * export the stored flags to allow an optional external merge of the 544 * records. Merging the records isn't always neccessarily correct, like 545 * when we hit a race during printing. In most cases though, it produces 546 * better readable output. 'c' in the record flags mark the first 547 * fragment of a line, '+' the following. 548 */ 549 if (msg->flags & LOG_CONT && !(prev_flags & LOG_CONT)) 550 cont = 'c'; 551 else if ((msg->flags & LOG_CONT) || 552 ((prev_flags & LOG_CONT) && !(msg->flags & LOG_PREFIX))) 553 cont = '+'; 554 555 return scnprintf(buf, size, "%u,%llu,%llu,%c;", 556 (msg->facility << 3) | msg->level, seq, ts_usec, cont); 557 } 558 559 static ssize_t msg_print_ext_body(char *buf, size_t size, 560 char *dict, size_t dict_len, 561 char *text, size_t text_len) 562 { 563 char *p = buf, *e = buf + size; 564 size_t i; 565 566 /* escape non-printable characters */ 567 for (i = 0; i < text_len; i++) { 568 unsigned char c = text[i]; 569 570 if (c < ' ' || c >= 127 || c == '\\') 571 p += scnprintf(p, e - p, "\\x%02x", c); 572 else 573 append_char(&p, e, c); 574 } 575 append_char(&p, e, '\n'); 576 577 if (dict_len) { 578 bool line = true; 579 580 for (i = 0; i < dict_len; i++) { 581 unsigned char c = dict[i]; 582 583 if (line) { 584 append_char(&p, e, ' '); 585 line = false; 586 } 587 588 if (c == '\0') { 589 append_char(&p, e, '\n'); 590 line = true; 591 continue; 592 } 593 594 if (c < ' ' || c >= 127 || c == '\\') { 595 p += scnprintf(p, e - p, "\\x%02x", c); 596 continue; 597 } 598 599 append_char(&p, e, c); 600 } 601 append_char(&p, e, '\n'); 602 } 603 604 return p - buf; 605 } 606 607 /* /dev/kmsg - userspace message inject/listen interface */ 608 struct devkmsg_user { 609 u64 seq; 610 u32 idx; 611 enum log_flags prev; 612 struct mutex lock; 613 char buf[CONSOLE_EXT_LOG_MAX]; 614 }; 615 616 static ssize_t devkmsg_write(struct kiocb *iocb, struct iov_iter *from) 617 { 618 char *buf, *line; 619 int level = default_message_loglevel; 620 int facility = 1; /* LOG_USER */ 621 size_t len = iov_iter_count(from); 622 ssize_t ret = len; 623 624 if (len > LOG_LINE_MAX) 625 return -EINVAL; 626 buf = kmalloc(len+1, GFP_KERNEL); 627 if (buf == NULL) 628 return -ENOMEM; 629 630 buf[len] = '\0'; 631 if (copy_from_iter(buf, len, from) != len) { 632 kfree(buf); 633 return -EFAULT; 634 } 635 636 /* 637 * Extract and skip the syslog prefix <[0-9]*>. Coming from userspace 638 * the decimal value represents 32bit, the lower 3 bit are the log 639 * level, the rest are the log facility. 640 * 641 * If no prefix or no userspace facility is specified, we 642 * enforce LOG_USER, to be able to reliably distinguish 643 * kernel-generated messages from userspace-injected ones. 644 */ 645 line = buf; 646 if (line[0] == '<') { 647 char *endp = NULL; 648 unsigned int u; 649 650 u = simple_strtoul(line + 1, &endp, 10); 651 if (endp && endp[0] == '>') { 652 level = LOG_LEVEL(u); 653 if (LOG_FACILITY(u) != 0) 654 facility = LOG_FACILITY(u); 655 endp++; 656 len -= endp - line; 657 line = endp; 658 } 659 } 660 661 printk_emit(facility, level, NULL, 0, "%s", line); 662 kfree(buf); 663 return ret; 664 } 665 666 static ssize_t devkmsg_read(struct file *file, char __user *buf, 667 size_t count, loff_t *ppos) 668 { 669 struct devkmsg_user *user = file->private_data; 670 struct printk_log *msg; 671 size_t len; 672 ssize_t ret; 673 674 if (!user) 675 return -EBADF; 676 677 ret = mutex_lock_interruptible(&user->lock); 678 if (ret) 679 return ret; 680 raw_spin_lock_irq(&logbuf_lock); 681 while (user->seq == log_next_seq) { 682 if (file->f_flags & O_NONBLOCK) { 683 ret = -EAGAIN; 684 raw_spin_unlock_irq(&logbuf_lock); 685 goto out; 686 } 687 688 raw_spin_unlock_irq(&logbuf_lock); 689 ret = wait_event_interruptible(log_wait, 690 user->seq != log_next_seq); 691 if (ret) 692 goto out; 693 raw_spin_lock_irq(&logbuf_lock); 694 } 695 696 if (user->seq < log_first_seq) { 697 /* our last seen message is gone, return error and reset */ 698 user->idx = log_first_idx; 699 user->seq = log_first_seq; 700 ret = -EPIPE; 701 raw_spin_unlock_irq(&logbuf_lock); 702 goto out; 703 } 704 705 msg = log_from_idx(user->idx); 706 len = msg_print_ext_header(user->buf, sizeof(user->buf), 707 msg, user->seq, user->prev); 708 len += msg_print_ext_body(user->buf + len, sizeof(user->buf) - len, 709 log_dict(msg), msg->dict_len, 710 log_text(msg), msg->text_len); 711 712 user->prev = msg->flags; 713 user->idx = log_next(user->idx); 714 user->seq++; 715 raw_spin_unlock_irq(&logbuf_lock); 716 717 if (len > count) { 718 ret = -EINVAL; 719 goto out; 720 } 721 722 if (copy_to_user(buf, user->buf, len)) { 723 ret = -EFAULT; 724 goto out; 725 } 726 ret = len; 727 out: 728 mutex_unlock(&user->lock); 729 return ret; 730 } 731 732 static loff_t devkmsg_llseek(struct file *file, loff_t offset, int whence) 733 { 734 struct devkmsg_user *user = file->private_data; 735 loff_t ret = 0; 736 737 if (!user) 738 return -EBADF; 739 if (offset) 740 return -ESPIPE; 741 742 raw_spin_lock_irq(&logbuf_lock); 743 switch (whence) { 744 case SEEK_SET: 745 /* the first record */ 746 user->idx = log_first_idx; 747 user->seq = log_first_seq; 748 break; 749 case SEEK_DATA: 750 /* 751 * The first record after the last SYSLOG_ACTION_CLEAR, 752 * like issued by 'dmesg -c'. Reading /dev/kmsg itself 753 * changes no global state, and does not clear anything. 754 */ 755 user->idx = clear_idx; 756 user->seq = clear_seq; 757 break; 758 case SEEK_END: 759 /* after the last record */ 760 user->idx = log_next_idx; 761 user->seq = log_next_seq; 762 break; 763 default: 764 ret = -EINVAL; 765 } 766 raw_spin_unlock_irq(&logbuf_lock); 767 return ret; 768 } 769 770 static unsigned int devkmsg_poll(struct file *file, poll_table *wait) 771 { 772 struct devkmsg_user *user = file->private_data; 773 int ret = 0; 774 775 if (!user) 776 return POLLERR|POLLNVAL; 777 778 poll_wait(file, &log_wait, wait); 779 780 raw_spin_lock_irq(&logbuf_lock); 781 if (user->seq < log_next_seq) { 782 /* return error when data has vanished underneath us */ 783 if (user->seq < log_first_seq) 784 ret = POLLIN|POLLRDNORM|POLLERR|POLLPRI; 785 else 786 ret = POLLIN|POLLRDNORM; 787 } 788 raw_spin_unlock_irq(&logbuf_lock); 789 790 return ret; 791 } 792 793 static int devkmsg_open(struct inode *inode, struct file *file) 794 { 795 struct devkmsg_user *user; 796 int err; 797 798 /* write-only does not need any file context */ 799 if ((file->f_flags & O_ACCMODE) == O_WRONLY) 800 return 0; 801 802 err = check_syslog_permissions(SYSLOG_ACTION_READ_ALL, 803 SYSLOG_FROM_READER); 804 if (err) 805 return err; 806 807 user = kmalloc(sizeof(struct devkmsg_user), GFP_KERNEL); 808 if (!user) 809 return -ENOMEM; 810 811 mutex_init(&user->lock); 812 813 raw_spin_lock_irq(&logbuf_lock); 814 user->idx = log_first_idx; 815 user->seq = log_first_seq; 816 raw_spin_unlock_irq(&logbuf_lock); 817 818 file->private_data = user; 819 return 0; 820 } 821 822 static int devkmsg_release(struct inode *inode, struct file *file) 823 { 824 struct devkmsg_user *user = file->private_data; 825 826 if (!user) 827 return 0; 828 829 mutex_destroy(&user->lock); 830 kfree(user); 831 return 0; 832 } 833 834 const struct file_operations kmsg_fops = { 835 .open = devkmsg_open, 836 .read = devkmsg_read, 837 .write_iter = devkmsg_write, 838 .llseek = devkmsg_llseek, 839 .poll = devkmsg_poll, 840 .release = devkmsg_release, 841 }; 842 843 #ifdef CONFIG_KEXEC_CORE 844 /* 845 * This appends the listed symbols to /proc/vmcore 846 * 847 * /proc/vmcore is used by various utilities, like crash and makedumpfile to 848 * obtain access to symbols that are otherwise very difficult to locate. These 849 * symbols are specifically used so that utilities can access and extract the 850 * dmesg log from a vmcore file after a crash. 851 */ 852 void log_buf_kexec_setup(void) 853 { 854 VMCOREINFO_SYMBOL(log_buf); 855 VMCOREINFO_SYMBOL(log_buf_len); 856 VMCOREINFO_SYMBOL(log_first_idx); 857 VMCOREINFO_SYMBOL(log_next_idx); 858 /* 859 * Export struct printk_log size and field offsets. User space tools can 860 * parse it and detect any changes to structure down the line. 861 */ 862 VMCOREINFO_STRUCT_SIZE(printk_log); 863 VMCOREINFO_OFFSET(printk_log, ts_nsec); 864 VMCOREINFO_OFFSET(printk_log, len); 865 VMCOREINFO_OFFSET(printk_log, text_len); 866 VMCOREINFO_OFFSET(printk_log, dict_len); 867 } 868 #endif 869 870 /* requested log_buf_len from kernel cmdline */ 871 static unsigned long __initdata new_log_buf_len; 872 873 /* we practice scaling the ring buffer by powers of 2 */ 874 static void __init log_buf_len_update(unsigned size) 875 { 876 if (size) 877 size = roundup_pow_of_two(size); 878 if (size > log_buf_len) 879 new_log_buf_len = size; 880 } 881 882 /* save requested log_buf_len since it's too early to process it */ 883 static int __init log_buf_len_setup(char *str) 884 { 885 unsigned size = memparse(str, &str); 886 887 log_buf_len_update(size); 888 889 return 0; 890 } 891 early_param("log_buf_len", log_buf_len_setup); 892 893 #ifdef CONFIG_SMP 894 #define __LOG_CPU_MAX_BUF_LEN (1 << CONFIG_LOG_CPU_MAX_BUF_SHIFT) 895 896 static void __init log_buf_add_cpu(void) 897 { 898 unsigned int cpu_extra; 899 900 /* 901 * archs should set up cpu_possible_bits properly with 902 * set_cpu_possible() after setup_arch() but just in 903 * case lets ensure this is valid. 904 */ 905 if (num_possible_cpus() == 1) 906 return; 907 908 cpu_extra = (num_possible_cpus() - 1) * __LOG_CPU_MAX_BUF_LEN; 909 910 /* by default this will only continue through for large > 64 CPUs */ 911 if (cpu_extra <= __LOG_BUF_LEN / 2) 912 return; 913 914 pr_info("log_buf_len individual max cpu contribution: %d bytes\n", 915 __LOG_CPU_MAX_BUF_LEN); 916 pr_info("log_buf_len total cpu_extra contributions: %d bytes\n", 917 cpu_extra); 918 pr_info("log_buf_len min size: %d bytes\n", __LOG_BUF_LEN); 919 920 log_buf_len_update(cpu_extra + __LOG_BUF_LEN); 921 } 922 #else /* !CONFIG_SMP */ 923 static inline void log_buf_add_cpu(void) {} 924 #endif /* CONFIG_SMP */ 925 926 void __init setup_log_buf(int early) 927 { 928 unsigned long flags; 929 char *new_log_buf; 930 int free; 931 932 if (log_buf != __log_buf) 933 return; 934 935 if (!early && !new_log_buf_len) 936 log_buf_add_cpu(); 937 938 if (!new_log_buf_len) 939 return; 940 941 if (early) { 942 new_log_buf = 943 memblock_virt_alloc(new_log_buf_len, LOG_ALIGN); 944 } else { 945 new_log_buf = memblock_virt_alloc_nopanic(new_log_buf_len, 946 LOG_ALIGN); 947 } 948 949 if (unlikely(!new_log_buf)) { 950 pr_err("log_buf_len: %ld bytes not available\n", 951 new_log_buf_len); 952 return; 953 } 954 955 raw_spin_lock_irqsave(&logbuf_lock, flags); 956 log_buf_len = new_log_buf_len; 957 log_buf = new_log_buf; 958 new_log_buf_len = 0; 959 free = __LOG_BUF_LEN - log_next_idx; 960 memcpy(log_buf, __log_buf, __LOG_BUF_LEN); 961 raw_spin_unlock_irqrestore(&logbuf_lock, flags); 962 963 pr_info("log_buf_len: %d bytes\n", log_buf_len); 964 pr_info("early log buf free: %d(%d%%)\n", 965 free, (free * 100) / __LOG_BUF_LEN); 966 } 967 968 static bool __read_mostly ignore_loglevel; 969 970 static int __init ignore_loglevel_setup(char *str) 971 { 972 ignore_loglevel = true; 973 pr_info("debug: ignoring loglevel setting.\n"); 974 975 return 0; 976 } 977 978 early_param("ignore_loglevel", ignore_loglevel_setup); 979 module_param(ignore_loglevel, bool, S_IRUGO | S_IWUSR); 980 MODULE_PARM_DESC(ignore_loglevel, 981 "ignore loglevel setting (prints all kernel messages to the console)"); 982 983 #ifdef CONFIG_BOOT_PRINTK_DELAY 984 985 static int boot_delay; /* msecs delay after each printk during bootup */ 986 static unsigned long long loops_per_msec; /* based on boot_delay */ 987 988 static int __init boot_delay_setup(char *str) 989 { 990 unsigned long lpj; 991 992 lpj = preset_lpj ? preset_lpj : 1000000; /* some guess */ 993 loops_per_msec = (unsigned long long)lpj / 1000 * HZ; 994 995 get_option(&str, &boot_delay); 996 if (boot_delay > 10 * 1000) 997 boot_delay = 0; 998 999 pr_debug("boot_delay: %u, preset_lpj: %ld, lpj: %lu, " 1000 "HZ: %d, loops_per_msec: %llu\n", 1001 boot_delay, preset_lpj, lpj, HZ, loops_per_msec); 1002 return 0; 1003 } 1004 early_param("boot_delay", boot_delay_setup); 1005 1006 static void boot_delay_msec(int level) 1007 { 1008 unsigned long long k; 1009 unsigned long timeout; 1010 1011 if ((boot_delay == 0 || system_state != SYSTEM_BOOTING) 1012 || (level >= console_loglevel && !ignore_loglevel)) { 1013 return; 1014 } 1015 1016 k = (unsigned long long)loops_per_msec * boot_delay; 1017 1018 timeout = jiffies + msecs_to_jiffies(boot_delay); 1019 while (k) { 1020 k--; 1021 cpu_relax(); 1022 /* 1023 * use (volatile) jiffies to prevent 1024 * compiler reduction; loop termination via jiffies 1025 * is secondary and may or may not happen. 1026 */ 1027 if (time_after(jiffies, timeout)) 1028 break; 1029 touch_nmi_watchdog(); 1030 } 1031 } 1032 #else 1033 static inline void boot_delay_msec(int level) 1034 { 1035 } 1036 #endif 1037 1038 static bool printk_time = IS_ENABLED(CONFIG_PRINTK_TIME); 1039 module_param_named(time, printk_time, bool, S_IRUGO | S_IWUSR); 1040 1041 static size_t print_time(u64 ts, char *buf) 1042 { 1043 unsigned long rem_nsec; 1044 1045 if (!printk_time) 1046 return 0; 1047 1048 rem_nsec = do_div(ts, 1000000000); 1049 1050 if (!buf) 1051 return snprintf(NULL, 0, "[%5lu.000000] ", (unsigned long)ts); 1052 1053 return sprintf(buf, "[%5lu.%06lu] ", 1054 (unsigned long)ts, rem_nsec / 1000); 1055 } 1056 1057 static size_t print_prefix(const struct printk_log *msg, bool syslog, char *buf) 1058 { 1059 size_t len = 0; 1060 unsigned int prefix = (msg->facility << 3) | msg->level; 1061 1062 if (syslog) { 1063 if (buf) { 1064 len += sprintf(buf, "<%u>", prefix); 1065 } else { 1066 len += 3; 1067 if (prefix > 999) 1068 len += 3; 1069 else if (prefix > 99) 1070 len += 2; 1071 else if (prefix > 9) 1072 len++; 1073 } 1074 } 1075 1076 len += print_time(msg->ts_nsec, buf ? buf + len : NULL); 1077 return len; 1078 } 1079 1080 static size_t msg_print_text(const struct printk_log *msg, enum log_flags prev, 1081 bool syslog, char *buf, size_t size) 1082 { 1083 const char *text = log_text(msg); 1084 size_t text_size = msg->text_len; 1085 bool prefix = true; 1086 bool newline = true; 1087 size_t len = 0; 1088 1089 if ((prev & LOG_CONT) && !(msg->flags & LOG_PREFIX)) 1090 prefix = false; 1091 1092 if (msg->flags & LOG_CONT) { 1093 if ((prev & LOG_CONT) && !(prev & LOG_NEWLINE)) 1094 prefix = false; 1095 1096 if (!(msg->flags & LOG_NEWLINE)) 1097 newline = false; 1098 } 1099 1100 do { 1101 const char *next = memchr(text, '\n', text_size); 1102 size_t text_len; 1103 1104 if (next) { 1105 text_len = next - text; 1106 next++; 1107 text_size -= next - text; 1108 } else { 1109 text_len = text_size; 1110 } 1111 1112 if (buf) { 1113 if (print_prefix(msg, syslog, NULL) + 1114 text_len + 1 >= size - len) 1115 break; 1116 1117 if (prefix) 1118 len += print_prefix(msg, syslog, buf + len); 1119 memcpy(buf + len, text, text_len); 1120 len += text_len; 1121 if (next || newline) 1122 buf[len++] = '\n'; 1123 } else { 1124 /* SYSLOG_ACTION_* buffer size only calculation */ 1125 if (prefix) 1126 len += print_prefix(msg, syslog, NULL); 1127 len += text_len; 1128 if (next || newline) 1129 len++; 1130 } 1131 1132 prefix = true; 1133 text = next; 1134 } while (text); 1135 1136 return len; 1137 } 1138 1139 static int syslog_print(char __user *buf, int size) 1140 { 1141 char *text; 1142 struct printk_log *msg; 1143 int len = 0; 1144 1145 text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL); 1146 if (!text) 1147 return -ENOMEM; 1148 1149 while (size > 0) { 1150 size_t n; 1151 size_t skip; 1152 1153 raw_spin_lock_irq(&logbuf_lock); 1154 if (syslog_seq < log_first_seq) { 1155 /* messages are gone, move to first one */ 1156 syslog_seq = log_first_seq; 1157 syslog_idx = log_first_idx; 1158 syslog_prev = 0; 1159 syslog_partial = 0; 1160 } 1161 if (syslog_seq == log_next_seq) { 1162 raw_spin_unlock_irq(&logbuf_lock); 1163 break; 1164 } 1165 1166 skip = syslog_partial; 1167 msg = log_from_idx(syslog_idx); 1168 n = msg_print_text(msg, syslog_prev, true, text, 1169 LOG_LINE_MAX + PREFIX_MAX); 1170 if (n - syslog_partial <= size) { 1171 /* message fits into buffer, move forward */ 1172 syslog_idx = log_next(syslog_idx); 1173 syslog_seq++; 1174 syslog_prev = msg->flags; 1175 n -= syslog_partial; 1176 syslog_partial = 0; 1177 } else if (!len){ 1178 /* partial read(), remember position */ 1179 n = size; 1180 syslog_partial += n; 1181 } else 1182 n = 0; 1183 raw_spin_unlock_irq(&logbuf_lock); 1184 1185 if (!n) 1186 break; 1187 1188 if (copy_to_user(buf, text + skip, n)) { 1189 if (!len) 1190 len = -EFAULT; 1191 break; 1192 } 1193 1194 len += n; 1195 size -= n; 1196 buf += n; 1197 } 1198 1199 kfree(text); 1200 return len; 1201 } 1202 1203 static int syslog_print_all(char __user *buf, int size, bool clear) 1204 { 1205 char *text; 1206 int len = 0; 1207 1208 text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL); 1209 if (!text) 1210 return -ENOMEM; 1211 1212 raw_spin_lock_irq(&logbuf_lock); 1213 if (buf) { 1214 u64 next_seq; 1215 u64 seq; 1216 u32 idx; 1217 enum log_flags prev; 1218 1219 if (clear_seq < log_first_seq) { 1220 /* messages are gone, move to first available one */ 1221 clear_seq = log_first_seq; 1222 clear_idx = log_first_idx; 1223 } 1224 1225 /* 1226 * Find first record that fits, including all following records, 1227 * into the user-provided buffer for this dump. 1228 */ 1229 seq = clear_seq; 1230 idx = clear_idx; 1231 prev = 0; 1232 while (seq < log_next_seq) { 1233 struct printk_log *msg = log_from_idx(idx); 1234 1235 len += msg_print_text(msg, prev, true, NULL, 0); 1236 prev = msg->flags; 1237 idx = log_next(idx); 1238 seq++; 1239 } 1240 1241 /* move first record forward until length fits into the buffer */ 1242 seq = clear_seq; 1243 idx = clear_idx; 1244 prev = 0; 1245 while (len > size && seq < log_next_seq) { 1246 struct printk_log *msg = log_from_idx(idx); 1247 1248 len -= msg_print_text(msg, prev, true, NULL, 0); 1249 prev = msg->flags; 1250 idx = log_next(idx); 1251 seq++; 1252 } 1253 1254 /* last message fitting into this dump */ 1255 next_seq = log_next_seq; 1256 1257 len = 0; 1258 while (len >= 0 && seq < next_seq) { 1259 struct printk_log *msg = log_from_idx(idx); 1260 int textlen; 1261 1262 textlen = msg_print_text(msg, prev, true, text, 1263 LOG_LINE_MAX + PREFIX_MAX); 1264 if (textlen < 0) { 1265 len = textlen; 1266 break; 1267 } 1268 idx = log_next(idx); 1269 seq++; 1270 prev = msg->flags; 1271 1272 raw_spin_unlock_irq(&logbuf_lock); 1273 if (copy_to_user(buf + len, text, textlen)) 1274 len = -EFAULT; 1275 else 1276 len += textlen; 1277 raw_spin_lock_irq(&logbuf_lock); 1278 1279 if (seq < log_first_seq) { 1280 /* messages are gone, move to next one */ 1281 seq = log_first_seq; 1282 idx = log_first_idx; 1283 prev = 0; 1284 } 1285 } 1286 } 1287 1288 if (clear) { 1289 clear_seq = log_next_seq; 1290 clear_idx = log_next_idx; 1291 } 1292 raw_spin_unlock_irq(&logbuf_lock); 1293 1294 kfree(text); 1295 return len; 1296 } 1297 1298 int do_syslog(int type, char __user *buf, int len, int source) 1299 { 1300 bool clear = false; 1301 static int saved_console_loglevel = LOGLEVEL_DEFAULT; 1302 int error; 1303 1304 error = check_syslog_permissions(type, source); 1305 if (error) 1306 goto out; 1307 1308 switch (type) { 1309 case SYSLOG_ACTION_CLOSE: /* Close log */ 1310 break; 1311 case SYSLOG_ACTION_OPEN: /* Open log */ 1312 break; 1313 case SYSLOG_ACTION_READ: /* Read from log */ 1314 error = -EINVAL; 1315 if (!buf || len < 0) 1316 goto out; 1317 error = 0; 1318 if (!len) 1319 goto out; 1320 if (!access_ok(VERIFY_WRITE, buf, len)) { 1321 error = -EFAULT; 1322 goto out; 1323 } 1324 error = wait_event_interruptible(log_wait, 1325 syslog_seq != log_next_seq); 1326 if (error) 1327 goto out; 1328 error = syslog_print(buf, len); 1329 break; 1330 /* Read/clear last kernel messages */ 1331 case SYSLOG_ACTION_READ_CLEAR: 1332 clear = true; 1333 /* FALL THRU */ 1334 /* Read last kernel messages */ 1335 case SYSLOG_ACTION_READ_ALL: 1336 error = -EINVAL; 1337 if (!buf || len < 0) 1338 goto out; 1339 error = 0; 1340 if (!len) 1341 goto out; 1342 if (!access_ok(VERIFY_WRITE, buf, len)) { 1343 error = -EFAULT; 1344 goto out; 1345 } 1346 error = syslog_print_all(buf, len, clear); 1347 break; 1348 /* Clear ring buffer */ 1349 case SYSLOG_ACTION_CLEAR: 1350 syslog_print_all(NULL, 0, true); 1351 break; 1352 /* Disable logging to console */ 1353 case SYSLOG_ACTION_CONSOLE_OFF: 1354 if (saved_console_loglevel == LOGLEVEL_DEFAULT) 1355 saved_console_loglevel = console_loglevel; 1356 console_loglevel = minimum_console_loglevel; 1357 break; 1358 /* Enable logging to console */ 1359 case SYSLOG_ACTION_CONSOLE_ON: 1360 if (saved_console_loglevel != LOGLEVEL_DEFAULT) { 1361 console_loglevel = saved_console_loglevel; 1362 saved_console_loglevel = LOGLEVEL_DEFAULT; 1363 } 1364 break; 1365 /* Set level of messages printed to console */ 1366 case SYSLOG_ACTION_CONSOLE_LEVEL: 1367 error = -EINVAL; 1368 if (len < 1 || len > 8) 1369 goto out; 1370 if (len < minimum_console_loglevel) 1371 len = minimum_console_loglevel; 1372 console_loglevel = len; 1373 /* Implicitly re-enable logging to console */ 1374 saved_console_loglevel = LOGLEVEL_DEFAULT; 1375 error = 0; 1376 break; 1377 /* Number of chars in the log buffer */ 1378 case SYSLOG_ACTION_SIZE_UNREAD: 1379 raw_spin_lock_irq(&logbuf_lock); 1380 if (syslog_seq < log_first_seq) { 1381 /* messages are gone, move to first one */ 1382 syslog_seq = log_first_seq; 1383 syslog_idx = log_first_idx; 1384 syslog_prev = 0; 1385 syslog_partial = 0; 1386 } 1387 if (source == SYSLOG_FROM_PROC) { 1388 /* 1389 * Short-cut for poll(/"proc/kmsg") which simply checks 1390 * for pending data, not the size; return the count of 1391 * records, not the length. 1392 */ 1393 error = log_next_seq - syslog_seq; 1394 } else { 1395 u64 seq = syslog_seq; 1396 u32 idx = syslog_idx; 1397 enum log_flags prev = syslog_prev; 1398 1399 error = 0; 1400 while (seq < log_next_seq) { 1401 struct printk_log *msg = log_from_idx(idx); 1402 1403 error += msg_print_text(msg, prev, true, NULL, 0); 1404 idx = log_next(idx); 1405 seq++; 1406 prev = msg->flags; 1407 } 1408 error -= syslog_partial; 1409 } 1410 raw_spin_unlock_irq(&logbuf_lock); 1411 break; 1412 /* Size of the log buffer */ 1413 case SYSLOG_ACTION_SIZE_BUFFER: 1414 error = log_buf_len; 1415 break; 1416 default: 1417 error = -EINVAL; 1418 break; 1419 } 1420 out: 1421 return error; 1422 } 1423 1424 SYSCALL_DEFINE3(syslog, int, type, char __user *, buf, int, len) 1425 { 1426 return do_syslog(type, buf, len, SYSLOG_FROM_READER); 1427 } 1428 1429 /* 1430 * Call the console drivers, asking them to write out 1431 * log_buf[start] to log_buf[end - 1]. 1432 * The console_lock must be held. 1433 */ 1434 static void call_console_drivers(int level, 1435 const char *ext_text, size_t ext_len, 1436 const char *text, size_t len) 1437 { 1438 struct console *con; 1439 1440 trace_console(text, len); 1441 1442 if (level >= console_loglevel && !ignore_loglevel) 1443 return; 1444 if (!console_drivers) 1445 return; 1446 1447 for_each_console(con) { 1448 if (exclusive_console && con != exclusive_console) 1449 continue; 1450 if (!(con->flags & CON_ENABLED)) 1451 continue; 1452 if (!con->write) 1453 continue; 1454 if (!cpu_online(smp_processor_id()) && 1455 !(con->flags & CON_ANYTIME)) 1456 continue; 1457 if (con->flags & CON_EXTENDED) 1458 con->write(con, ext_text, ext_len); 1459 else 1460 con->write(con, text, len); 1461 } 1462 } 1463 1464 /* 1465 * Zap console related locks when oopsing. 1466 * To leave time for slow consoles to print a full oops, 1467 * only zap at most once every 30 seconds. 1468 */ 1469 static void zap_locks(void) 1470 { 1471 static unsigned long oops_timestamp; 1472 1473 if (time_after_eq(jiffies, oops_timestamp) && 1474 !time_after(jiffies, oops_timestamp + 30 * HZ)) 1475 return; 1476 1477 oops_timestamp = jiffies; 1478 1479 debug_locks_off(); 1480 /* If a crash is occurring, make sure we can't deadlock */ 1481 raw_spin_lock_init(&logbuf_lock); 1482 /* And make sure that we print immediately */ 1483 sema_init(&console_sem, 1); 1484 } 1485 1486 /* 1487 * Check if we have any console that is capable of printing while cpu is 1488 * booting or shutting down. Requires console_sem. 1489 */ 1490 static int have_callable_console(void) 1491 { 1492 struct console *con; 1493 1494 for_each_console(con) 1495 if (con->flags & CON_ANYTIME) 1496 return 1; 1497 1498 return 0; 1499 } 1500 1501 /* 1502 * Can we actually use the console at this time on this cpu? 1503 * 1504 * Console drivers may assume that per-cpu resources have been allocated. So 1505 * unless they're explicitly marked as being able to cope (CON_ANYTIME) don't 1506 * call them until this CPU is officially up. 1507 */ 1508 static inline int can_use_console(unsigned int cpu) 1509 { 1510 return cpu_online(cpu) || have_callable_console(); 1511 } 1512 1513 /* 1514 * Try to get console ownership to actually show the kernel 1515 * messages from a 'printk'. Return true (and with the 1516 * console_lock held, and 'console_locked' set) if it 1517 * is successful, false otherwise. 1518 */ 1519 static int console_trylock_for_printk(void) 1520 { 1521 unsigned int cpu = smp_processor_id(); 1522 1523 if (!console_trylock()) 1524 return 0; 1525 /* 1526 * If we can't use the console, we need to release the console 1527 * semaphore by hand to avoid flushing the buffer. We need to hold the 1528 * console semaphore in order to do this test safely. 1529 */ 1530 if (!can_use_console(cpu)) { 1531 console_locked = 0; 1532 up_console_sem(); 1533 return 0; 1534 } 1535 return 1; 1536 } 1537 1538 int printk_delay_msec __read_mostly; 1539 1540 static inline void printk_delay(void) 1541 { 1542 if (unlikely(printk_delay_msec)) { 1543 int m = printk_delay_msec; 1544 1545 while (m--) { 1546 mdelay(1); 1547 touch_nmi_watchdog(); 1548 } 1549 } 1550 } 1551 1552 /* 1553 * Continuation lines are buffered, and not committed to the record buffer 1554 * until the line is complete, or a race forces it. The line fragments 1555 * though, are printed immediately to the consoles to ensure everything has 1556 * reached the console in case of a kernel crash. 1557 */ 1558 static struct cont { 1559 char buf[LOG_LINE_MAX]; 1560 size_t len; /* length == 0 means unused buffer */ 1561 size_t cons; /* bytes written to console */ 1562 struct task_struct *owner; /* task of first print*/ 1563 u64 ts_nsec; /* time of first print */ 1564 u8 level; /* log level of first message */ 1565 u8 facility; /* log facility of first message */ 1566 enum log_flags flags; /* prefix, newline flags */ 1567 bool flushed:1; /* buffer sealed and committed */ 1568 } cont; 1569 1570 static void cont_flush(enum log_flags flags) 1571 { 1572 if (cont.flushed) 1573 return; 1574 if (cont.len == 0) 1575 return; 1576 1577 if (cont.cons) { 1578 /* 1579 * If a fragment of this line was directly flushed to the 1580 * console; wait for the console to pick up the rest of the 1581 * line. LOG_NOCONS suppresses a duplicated output. 1582 */ 1583 log_store(cont.facility, cont.level, flags | LOG_NOCONS, 1584 cont.ts_nsec, NULL, 0, cont.buf, cont.len); 1585 cont.flags = flags; 1586 cont.flushed = true; 1587 } else { 1588 /* 1589 * If no fragment of this line ever reached the console, 1590 * just submit it to the store and free the buffer. 1591 */ 1592 log_store(cont.facility, cont.level, flags, 0, 1593 NULL, 0, cont.buf, cont.len); 1594 cont.len = 0; 1595 } 1596 } 1597 1598 static bool cont_add(int facility, int level, const char *text, size_t len) 1599 { 1600 if (cont.len && cont.flushed) 1601 return false; 1602 1603 /* 1604 * If ext consoles are present, flush and skip in-kernel 1605 * continuation. See nr_ext_console_drivers definition. Also, if 1606 * the line gets too long, split it up in separate records. 1607 */ 1608 if (nr_ext_console_drivers || cont.len + len > sizeof(cont.buf)) { 1609 cont_flush(LOG_CONT); 1610 return false; 1611 } 1612 1613 if (!cont.len) { 1614 cont.facility = facility; 1615 cont.level = level; 1616 cont.owner = current; 1617 cont.ts_nsec = local_clock(); 1618 cont.flags = 0; 1619 cont.cons = 0; 1620 cont.flushed = false; 1621 } 1622 1623 memcpy(cont.buf + cont.len, text, len); 1624 cont.len += len; 1625 1626 if (cont.len > (sizeof(cont.buf) * 80) / 100) 1627 cont_flush(LOG_CONT); 1628 1629 return true; 1630 } 1631 1632 static size_t cont_print_text(char *text, size_t size) 1633 { 1634 size_t textlen = 0; 1635 size_t len; 1636 1637 if (cont.cons == 0 && (console_prev & LOG_NEWLINE)) { 1638 textlen += print_time(cont.ts_nsec, text); 1639 size -= textlen; 1640 } 1641 1642 len = cont.len - cont.cons; 1643 if (len > 0) { 1644 if (len+1 > size) 1645 len = size-1; 1646 memcpy(text + textlen, cont.buf + cont.cons, len); 1647 textlen += len; 1648 cont.cons = cont.len; 1649 } 1650 1651 if (cont.flushed) { 1652 if (cont.flags & LOG_NEWLINE) 1653 text[textlen++] = '\n'; 1654 /* got everything, release buffer */ 1655 cont.len = 0; 1656 } 1657 return textlen; 1658 } 1659 1660 asmlinkage int vprintk_emit(int facility, int level, 1661 const char *dict, size_t dictlen, 1662 const char *fmt, va_list args) 1663 { 1664 static bool recursion_bug; 1665 static char textbuf[LOG_LINE_MAX]; 1666 char *text = textbuf; 1667 size_t text_len = 0; 1668 enum log_flags lflags = 0; 1669 unsigned long flags; 1670 int this_cpu; 1671 int printed_len = 0; 1672 bool in_sched = false; 1673 /* cpu currently holding logbuf_lock in this function */ 1674 static unsigned int logbuf_cpu = UINT_MAX; 1675 1676 if (level == LOGLEVEL_SCHED) { 1677 level = LOGLEVEL_DEFAULT; 1678 in_sched = true; 1679 } 1680 1681 boot_delay_msec(level); 1682 printk_delay(); 1683 1684 /* This stops the holder of console_sem just where we want him */ 1685 local_irq_save(flags); 1686 this_cpu = smp_processor_id(); 1687 1688 /* 1689 * Ouch, printk recursed into itself! 1690 */ 1691 if (unlikely(logbuf_cpu == this_cpu)) { 1692 /* 1693 * If a crash is occurring during printk() on this CPU, 1694 * then try to get the crash message out but make sure 1695 * we can't deadlock. Otherwise just return to avoid the 1696 * recursion and return - but flag the recursion so that 1697 * it can be printed at the next appropriate moment: 1698 */ 1699 if (!oops_in_progress && !lockdep_recursing(current)) { 1700 recursion_bug = true; 1701 local_irq_restore(flags); 1702 return 0; 1703 } 1704 zap_locks(); 1705 } 1706 1707 lockdep_off(); 1708 raw_spin_lock(&logbuf_lock); 1709 logbuf_cpu = this_cpu; 1710 1711 if (unlikely(recursion_bug)) { 1712 static const char recursion_msg[] = 1713 "BUG: recent printk recursion!"; 1714 1715 recursion_bug = false; 1716 /* emit KERN_CRIT message */ 1717 printed_len += log_store(0, 2, LOG_PREFIX|LOG_NEWLINE, 0, 1718 NULL, 0, recursion_msg, 1719 strlen(recursion_msg)); 1720 } 1721 1722 /* 1723 * The printf needs to come first; we need the syslog 1724 * prefix which might be passed-in as a parameter. 1725 */ 1726 text_len = vscnprintf(text, sizeof(textbuf), fmt, args); 1727 1728 /* mark and strip a trailing newline */ 1729 if (text_len && text[text_len-1] == '\n') { 1730 text_len--; 1731 lflags |= LOG_NEWLINE; 1732 } 1733 1734 /* strip kernel syslog prefix and extract log level or control flags */ 1735 if (facility == 0) { 1736 int kern_level = printk_get_level(text); 1737 1738 if (kern_level) { 1739 const char *end_of_header = printk_skip_level(text); 1740 switch (kern_level) { 1741 case '0' ... '7': 1742 if (level == LOGLEVEL_DEFAULT) 1743 level = kern_level - '0'; 1744 /* fallthrough */ 1745 case 'd': /* KERN_DEFAULT */ 1746 lflags |= LOG_PREFIX; 1747 } 1748 /* 1749 * No need to check length here because vscnprintf 1750 * put '\0' at the end of the string. Only valid and 1751 * newly printed level is detected. 1752 */ 1753 text_len -= end_of_header - text; 1754 text = (char *)end_of_header; 1755 } 1756 } 1757 1758 if (level == LOGLEVEL_DEFAULT) 1759 level = default_message_loglevel; 1760 1761 if (dict) 1762 lflags |= LOG_PREFIX|LOG_NEWLINE; 1763 1764 if (!(lflags & LOG_NEWLINE)) { 1765 /* 1766 * Flush the conflicting buffer. An earlier newline was missing, 1767 * or another task also prints continuation lines. 1768 */ 1769 if (cont.len && (lflags & LOG_PREFIX || cont.owner != current)) 1770 cont_flush(LOG_NEWLINE); 1771 1772 /* buffer line if possible, otherwise store it right away */ 1773 if (cont_add(facility, level, text, text_len)) 1774 printed_len += text_len; 1775 else 1776 printed_len += log_store(facility, level, 1777 lflags | LOG_CONT, 0, 1778 dict, dictlen, text, text_len); 1779 } else { 1780 bool stored = false; 1781 1782 /* 1783 * If an earlier newline was missing and it was the same task, 1784 * either merge it with the current buffer and flush, or if 1785 * there was a race with interrupts (prefix == true) then just 1786 * flush it out and store this line separately. 1787 * If the preceding printk was from a different task and missed 1788 * a newline, flush and append the newline. 1789 */ 1790 if (cont.len) { 1791 if (cont.owner == current && !(lflags & LOG_PREFIX)) 1792 stored = cont_add(facility, level, text, 1793 text_len); 1794 cont_flush(LOG_NEWLINE); 1795 } 1796 1797 if (stored) 1798 printed_len += text_len; 1799 else 1800 printed_len += log_store(facility, level, lflags, 0, 1801 dict, dictlen, text, text_len); 1802 } 1803 1804 logbuf_cpu = UINT_MAX; 1805 raw_spin_unlock(&logbuf_lock); 1806 lockdep_on(); 1807 local_irq_restore(flags); 1808 1809 /* If called from the scheduler, we can not call up(). */ 1810 if (!in_sched) { 1811 lockdep_off(); 1812 /* 1813 * Disable preemption to avoid being preempted while holding 1814 * console_sem which would prevent anyone from printing to 1815 * console 1816 */ 1817 preempt_disable(); 1818 1819 /* 1820 * Try to acquire and then immediately release the console 1821 * semaphore. The release will print out buffers and wake up 1822 * /dev/kmsg and syslog() users. 1823 */ 1824 if (console_trylock_for_printk()) 1825 console_unlock(); 1826 preempt_enable(); 1827 lockdep_on(); 1828 } 1829 1830 return printed_len; 1831 } 1832 EXPORT_SYMBOL(vprintk_emit); 1833 1834 asmlinkage int vprintk(const char *fmt, va_list args) 1835 { 1836 return vprintk_emit(0, LOGLEVEL_DEFAULT, NULL, 0, fmt, args); 1837 } 1838 EXPORT_SYMBOL(vprintk); 1839 1840 asmlinkage int printk_emit(int facility, int level, 1841 const char *dict, size_t dictlen, 1842 const char *fmt, ...) 1843 { 1844 va_list args; 1845 int r; 1846 1847 va_start(args, fmt); 1848 r = vprintk_emit(facility, level, dict, dictlen, fmt, args); 1849 va_end(args); 1850 1851 return r; 1852 } 1853 EXPORT_SYMBOL(printk_emit); 1854 1855 int vprintk_default(const char *fmt, va_list args) 1856 { 1857 int r; 1858 1859 #ifdef CONFIG_KGDB_KDB 1860 if (unlikely(kdb_trap_printk)) { 1861 r = vkdb_printf(KDB_MSGSRC_PRINTK, fmt, args); 1862 return r; 1863 } 1864 #endif 1865 r = vprintk_emit(0, LOGLEVEL_DEFAULT, NULL, 0, fmt, args); 1866 1867 return r; 1868 } 1869 EXPORT_SYMBOL_GPL(vprintk_default); 1870 1871 /* 1872 * This allows printk to be diverted to another function per cpu. 1873 * This is useful for calling printk functions from within NMI 1874 * without worrying about race conditions that can lock up the 1875 * box. 1876 */ 1877 DEFINE_PER_CPU(printk_func_t, printk_func) = vprintk_default; 1878 1879 /** 1880 * printk - print a kernel message 1881 * @fmt: format string 1882 * 1883 * This is printk(). It can be called from any context. We want it to work. 1884 * 1885 * We try to grab the console_lock. If we succeed, it's easy - we log the 1886 * output and call the console drivers. If we fail to get the semaphore, we 1887 * place the output into the log buffer and return. The current holder of 1888 * the console_sem will notice the new output in console_unlock(); and will 1889 * send it to the consoles before releasing the lock. 1890 * 1891 * One effect of this deferred printing is that code which calls printk() and 1892 * then changes console_loglevel may break. This is because console_loglevel 1893 * is inspected when the actual printing occurs. 1894 * 1895 * See also: 1896 * printf(3) 1897 * 1898 * See the vsnprintf() documentation for format string extensions over C99. 1899 */ 1900 asmlinkage __visible int printk(const char *fmt, ...) 1901 { 1902 printk_func_t vprintk_func; 1903 va_list args; 1904 int r; 1905 1906 va_start(args, fmt); 1907 1908 /* 1909 * If a caller overrides the per_cpu printk_func, then it needs 1910 * to disable preemption when calling printk(). Otherwise 1911 * the printk_func should be set to the default. No need to 1912 * disable preemption here. 1913 */ 1914 vprintk_func = this_cpu_read(printk_func); 1915 r = vprintk_func(fmt, args); 1916 1917 va_end(args); 1918 1919 return r; 1920 } 1921 EXPORT_SYMBOL(printk); 1922 1923 #else /* CONFIG_PRINTK */ 1924 1925 #define LOG_LINE_MAX 0 1926 #define PREFIX_MAX 0 1927 1928 static u64 syslog_seq; 1929 static u32 syslog_idx; 1930 static u64 console_seq; 1931 static u32 console_idx; 1932 static enum log_flags syslog_prev; 1933 static u64 log_first_seq; 1934 static u32 log_first_idx; 1935 static u64 log_next_seq; 1936 static enum log_flags console_prev; 1937 static struct cont { 1938 size_t len; 1939 size_t cons; 1940 u8 level; 1941 bool flushed:1; 1942 } cont; 1943 static char *log_text(const struct printk_log *msg) { return NULL; } 1944 static char *log_dict(const struct printk_log *msg) { return NULL; } 1945 static struct printk_log *log_from_idx(u32 idx) { return NULL; } 1946 static u32 log_next(u32 idx) { return 0; } 1947 static ssize_t msg_print_ext_header(char *buf, size_t size, 1948 struct printk_log *msg, u64 seq, 1949 enum log_flags prev_flags) { return 0; } 1950 static ssize_t msg_print_ext_body(char *buf, size_t size, 1951 char *dict, size_t dict_len, 1952 char *text, size_t text_len) { return 0; } 1953 static void call_console_drivers(int level, 1954 const char *ext_text, size_t ext_len, 1955 const char *text, size_t len) {} 1956 static size_t msg_print_text(const struct printk_log *msg, enum log_flags prev, 1957 bool syslog, char *buf, size_t size) { return 0; } 1958 static size_t cont_print_text(char *text, size_t size) { return 0; } 1959 1960 /* Still needs to be defined for users */ 1961 DEFINE_PER_CPU(printk_func_t, printk_func); 1962 1963 #endif /* CONFIG_PRINTK */ 1964 1965 #ifdef CONFIG_EARLY_PRINTK 1966 struct console *early_console; 1967 1968 asmlinkage __visible void early_printk(const char *fmt, ...) 1969 { 1970 va_list ap; 1971 char buf[512]; 1972 int n; 1973 1974 if (!early_console) 1975 return; 1976 1977 va_start(ap, fmt); 1978 n = vscnprintf(buf, sizeof(buf), fmt, ap); 1979 va_end(ap); 1980 1981 early_console->write(early_console, buf, n); 1982 } 1983 #endif 1984 1985 static int __add_preferred_console(char *name, int idx, char *options, 1986 char *brl_options) 1987 { 1988 struct console_cmdline *c; 1989 int i; 1990 1991 /* 1992 * See if this tty is not yet registered, and 1993 * if we have a slot free. 1994 */ 1995 for (i = 0, c = console_cmdline; 1996 i < MAX_CMDLINECONSOLES && c->name[0]; 1997 i++, c++) { 1998 if (strcmp(c->name, name) == 0 && c->index == idx) { 1999 if (!brl_options) 2000 selected_console = i; 2001 return 0; 2002 } 2003 } 2004 if (i == MAX_CMDLINECONSOLES) 2005 return -E2BIG; 2006 if (!brl_options) 2007 selected_console = i; 2008 strlcpy(c->name, name, sizeof(c->name)); 2009 c->options = options; 2010 braille_set_options(c, brl_options); 2011 2012 c->index = idx; 2013 return 0; 2014 } 2015 /* 2016 * Set up a console. Called via do_early_param() in init/main.c 2017 * for each "console=" parameter in the boot command line. 2018 */ 2019 static int __init console_setup(char *str) 2020 { 2021 char buf[sizeof(console_cmdline[0].name) + 4]; /* 4 for "ttyS" */ 2022 char *s, *options, *brl_options = NULL; 2023 int idx; 2024 2025 if (_braille_console_setup(&str, &brl_options)) 2026 return 1; 2027 2028 /* 2029 * Decode str into name, index, options. 2030 */ 2031 if (str[0] >= '0' && str[0] <= '9') { 2032 strcpy(buf, "ttyS"); 2033 strncpy(buf + 4, str, sizeof(buf) - 5); 2034 } else { 2035 strncpy(buf, str, sizeof(buf) - 1); 2036 } 2037 buf[sizeof(buf) - 1] = 0; 2038 options = strchr(str, ','); 2039 if (options) 2040 *(options++) = 0; 2041 #ifdef __sparc__ 2042 if (!strcmp(str, "ttya")) 2043 strcpy(buf, "ttyS0"); 2044 if (!strcmp(str, "ttyb")) 2045 strcpy(buf, "ttyS1"); 2046 #endif 2047 for (s = buf; *s; s++) 2048 if (isdigit(*s) || *s == ',') 2049 break; 2050 idx = simple_strtoul(s, NULL, 10); 2051 *s = 0; 2052 2053 __add_preferred_console(buf, idx, options, brl_options); 2054 console_set_on_cmdline = 1; 2055 return 1; 2056 } 2057 __setup("console=", console_setup); 2058 2059 /** 2060 * add_preferred_console - add a device to the list of preferred consoles. 2061 * @name: device name 2062 * @idx: device index 2063 * @options: options for this console 2064 * 2065 * The last preferred console added will be used for kernel messages 2066 * and stdin/out/err for init. Normally this is used by console_setup 2067 * above to handle user-supplied console arguments; however it can also 2068 * be used by arch-specific code either to override the user or more 2069 * commonly to provide a default console (ie from PROM variables) when 2070 * the user has not supplied one. 2071 */ 2072 int add_preferred_console(char *name, int idx, char *options) 2073 { 2074 return __add_preferred_console(name, idx, options, NULL); 2075 } 2076 2077 bool console_suspend_enabled = true; 2078 EXPORT_SYMBOL(console_suspend_enabled); 2079 2080 static int __init console_suspend_disable(char *str) 2081 { 2082 console_suspend_enabled = false; 2083 return 1; 2084 } 2085 __setup("no_console_suspend", console_suspend_disable); 2086 module_param_named(console_suspend, console_suspend_enabled, 2087 bool, S_IRUGO | S_IWUSR); 2088 MODULE_PARM_DESC(console_suspend, "suspend console during suspend" 2089 " and hibernate operations"); 2090 2091 /** 2092 * suspend_console - suspend the console subsystem 2093 * 2094 * This disables printk() while we go into suspend states 2095 */ 2096 void suspend_console(void) 2097 { 2098 if (!console_suspend_enabled) 2099 return; 2100 printk("Suspending console(s) (use no_console_suspend to debug)\n"); 2101 console_lock(); 2102 console_suspended = 1; 2103 up_console_sem(); 2104 } 2105 2106 void resume_console(void) 2107 { 2108 if (!console_suspend_enabled) 2109 return; 2110 down_console_sem(); 2111 console_suspended = 0; 2112 console_unlock(); 2113 } 2114 2115 /** 2116 * console_cpu_notify - print deferred console messages after CPU hotplug 2117 * @self: notifier struct 2118 * @action: CPU hotplug event 2119 * @hcpu: unused 2120 * 2121 * If printk() is called from a CPU that is not online yet, the messages 2122 * will be spooled but will not show up on the console. This function is 2123 * called when a new CPU comes online (or fails to come up), and ensures 2124 * that any such output gets printed. 2125 */ 2126 static int console_cpu_notify(struct notifier_block *self, 2127 unsigned long action, void *hcpu) 2128 { 2129 switch (action) { 2130 case CPU_ONLINE: 2131 case CPU_DEAD: 2132 case CPU_DOWN_FAILED: 2133 case CPU_UP_CANCELED: 2134 console_lock(); 2135 console_unlock(); 2136 } 2137 return NOTIFY_OK; 2138 } 2139 2140 /** 2141 * console_lock - lock the console system for exclusive use. 2142 * 2143 * Acquires a lock which guarantees that the caller has 2144 * exclusive access to the console system and the console_drivers list. 2145 * 2146 * Can sleep, returns nothing. 2147 */ 2148 void console_lock(void) 2149 { 2150 might_sleep(); 2151 2152 down_console_sem(); 2153 if (console_suspended) 2154 return; 2155 console_locked = 1; 2156 console_may_schedule = 1; 2157 } 2158 EXPORT_SYMBOL(console_lock); 2159 2160 /** 2161 * console_trylock - try to lock the console system for exclusive use. 2162 * 2163 * Try to acquire a lock which guarantees that the caller has exclusive 2164 * access to the console system and the console_drivers list. 2165 * 2166 * returns 1 on success, and 0 on failure to acquire the lock. 2167 */ 2168 int console_trylock(void) 2169 { 2170 if (down_trylock_console_sem()) 2171 return 0; 2172 if (console_suspended) { 2173 up_console_sem(); 2174 return 0; 2175 } 2176 console_locked = 1; 2177 console_may_schedule = 0; 2178 return 1; 2179 } 2180 EXPORT_SYMBOL(console_trylock); 2181 2182 int is_console_locked(void) 2183 { 2184 return console_locked; 2185 } 2186 2187 static void console_cont_flush(char *text, size_t size) 2188 { 2189 unsigned long flags; 2190 size_t len; 2191 2192 raw_spin_lock_irqsave(&logbuf_lock, flags); 2193 2194 if (!cont.len) 2195 goto out; 2196 2197 /* 2198 * We still queue earlier records, likely because the console was 2199 * busy. The earlier ones need to be printed before this one, we 2200 * did not flush any fragment so far, so just let it queue up. 2201 */ 2202 if (console_seq < log_next_seq && !cont.cons) 2203 goto out; 2204 2205 len = cont_print_text(text, size); 2206 raw_spin_unlock(&logbuf_lock); 2207 stop_critical_timings(); 2208 call_console_drivers(cont.level, NULL, 0, text, len); 2209 start_critical_timings(); 2210 local_irq_restore(flags); 2211 return; 2212 out: 2213 raw_spin_unlock_irqrestore(&logbuf_lock, flags); 2214 } 2215 2216 /** 2217 * console_unlock - unlock the console system 2218 * 2219 * Releases the console_lock which the caller holds on the console system 2220 * and the console driver list. 2221 * 2222 * While the console_lock was held, console output may have been buffered 2223 * by printk(). If this is the case, console_unlock(); emits 2224 * the output prior to releasing the lock. 2225 * 2226 * If there is output waiting, we wake /dev/kmsg and syslog() users. 2227 * 2228 * console_unlock(); may be called from any context. 2229 */ 2230 void console_unlock(void) 2231 { 2232 static char ext_text[CONSOLE_EXT_LOG_MAX]; 2233 static char text[LOG_LINE_MAX + PREFIX_MAX]; 2234 static u64 seen_seq; 2235 unsigned long flags; 2236 bool wake_klogd = false; 2237 bool do_cond_resched, retry; 2238 2239 if (console_suspended) { 2240 up_console_sem(); 2241 return; 2242 } 2243 2244 /* 2245 * Console drivers are called under logbuf_lock, so 2246 * @console_may_schedule should be cleared before; however, we may 2247 * end up dumping a lot of lines, for example, if called from 2248 * console registration path, and should invoke cond_resched() 2249 * between lines if allowable. Not doing so can cause a very long 2250 * scheduling stall on a slow console leading to RCU stall and 2251 * softlockup warnings which exacerbate the issue with more 2252 * messages practically incapacitating the system. 2253 */ 2254 do_cond_resched = console_may_schedule; 2255 console_may_schedule = 0; 2256 2257 /* flush buffered message fragment immediately to console */ 2258 console_cont_flush(text, sizeof(text)); 2259 again: 2260 for (;;) { 2261 struct printk_log *msg; 2262 size_t ext_len = 0; 2263 size_t len; 2264 int level; 2265 2266 raw_spin_lock_irqsave(&logbuf_lock, flags); 2267 if (seen_seq != log_next_seq) { 2268 wake_klogd = true; 2269 seen_seq = log_next_seq; 2270 } 2271 2272 if (console_seq < log_first_seq) { 2273 len = sprintf(text, "** %u printk messages dropped ** ", 2274 (unsigned)(log_first_seq - console_seq)); 2275 2276 /* messages are gone, move to first one */ 2277 console_seq = log_first_seq; 2278 console_idx = log_first_idx; 2279 console_prev = 0; 2280 } else { 2281 len = 0; 2282 } 2283 skip: 2284 if (console_seq == log_next_seq) 2285 break; 2286 2287 msg = log_from_idx(console_idx); 2288 if (msg->flags & LOG_NOCONS) { 2289 /* 2290 * Skip record we have buffered and already printed 2291 * directly to the console when we received it. 2292 */ 2293 console_idx = log_next(console_idx); 2294 console_seq++; 2295 /* 2296 * We will get here again when we register a new 2297 * CON_PRINTBUFFER console. Clear the flag so we 2298 * will properly dump everything later. 2299 */ 2300 msg->flags &= ~LOG_NOCONS; 2301 console_prev = msg->flags; 2302 goto skip; 2303 } 2304 2305 level = msg->level; 2306 len += msg_print_text(msg, console_prev, false, 2307 text + len, sizeof(text) - len); 2308 if (nr_ext_console_drivers) { 2309 ext_len = msg_print_ext_header(ext_text, 2310 sizeof(ext_text), 2311 msg, console_seq, console_prev); 2312 ext_len += msg_print_ext_body(ext_text + ext_len, 2313 sizeof(ext_text) - ext_len, 2314 log_dict(msg), msg->dict_len, 2315 log_text(msg), msg->text_len); 2316 } 2317 console_idx = log_next(console_idx); 2318 console_seq++; 2319 console_prev = msg->flags; 2320 raw_spin_unlock(&logbuf_lock); 2321 2322 stop_critical_timings(); /* don't trace print latency */ 2323 call_console_drivers(level, ext_text, ext_len, text, len); 2324 start_critical_timings(); 2325 local_irq_restore(flags); 2326 2327 if (do_cond_resched) 2328 cond_resched(); 2329 } 2330 console_locked = 0; 2331 2332 /* Release the exclusive_console once it is used */ 2333 if (unlikely(exclusive_console)) 2334 exclusive_console = NULL; 2335 2336 raw_spin_unlock(&logbuf_lock); 2337 2338 up_console_sem(); 2339 2340 /* 2341 * Someone could have filled up the buffer again, so re-check if there's 2342 * something to flush. In case we cannot trylock the console_sem again, 2343 * there's a new owner and the console_unlock() from them will do the 2344 * flush, no worries. 2345 */ 2346 raw_spin_lock(&logbuf_lock); 2347 retry = console_seq != log_next_seq; 2348 raw_spin_unlock_irqrestore(&logbuf_lock, flags); 2349 2350 if (retry && console_trylock()) 2351 goto again; 2352 2353 if (wake_klogd) 2354 wake_up_klogd(); 2355 } 2356 EXPORT_SYMBOL(console_unlock); 2357 2358 /** 2359 * console_conditional_schedule - yield the CPU if required 2360 * 2361 * If the console code is currently allowed to sleep, and 2362 * if this CPU should yield the CPU to another task, do 2363 * so here. 2364 * 2365 * Must be called within console_lock();. 2366 */ 2367 void __sched console_conditional_schedule(void) 2368 { 2369 if (console_may_schedule) 2370 cond_resched(); 2371 } 2372 EXPORT_SYMBOL(console_conditional_schedule); 2373 2374 void console_unblank(void) 2375 { 2376 struct console *c; 2377 2378 /* 2379 * console_unblank can no longer be called in interrupt context unless 2380 * oops_in_progress is set to 1.. 2381 */ 2382 if (oops_in_progress) { 2383 if (down_trylock_console_sem() != 0) 2384 return; 2385 } else 2386 console_lock(); 2387 2388 console_locked = 1; 2389 console_may_schedule = 0; 2390 for_each_console(c) 2391 if ((c->flags & CON_ENABLED) && c->unblank) 2392 c->unblank(); 2393 console_unlock(); 2394 } 2395 2396 /** 2397 * console_flush_on_panic - flush console content on panic 2398 * 2399 * Immediately output all pending messages no matter what. 2400 */ 2401 void console_flush_on_panic(void) 2402 { 2403 /* 2404 * If someone else is holding the console lock, trylock will fail 2405 * and may_schedule may be set. Ignore and proceed to unlock so 2406 * that messages are flushed out. As this can be called from any 2407 * context and we don't want to get preempted while flushing, 2408 * ensure may_schedule is cleared. 2409 */ 2410 console_trylock(); 2411 console_may_schedule = 0; 2412 console_unlock(); 2413 } 2414 2415 /* 2416 * Return the console tty driver structure and its associated index 2417 */ 2418 struct tty_driver *console_device(int *index) 2419 { 2420 struct console *c; 2421 struct tty_driver *driver = NULL; 2422 2423 console_lock(); 2424 for_each_console(c) { 2425 if (!c->device) 2426 continue; 2427 driver = c->device(c, index); 2428 if (driver) 2429 break; 2430 } 2431 console_unlock(); 2432 return driver; 2433 } 2434 2435 /* 2436 * Prevent further output on the passed console device so that (for example) 2437 * serial drivers can disable console output before suspending a port, and can 2438 * re-enable output afterwards. 2439 */ 2440 void console_stop(struct console *console) 2441 { 2442 console_lock(); 2443 console->flags &= ~CON_ENABLED; 2444 console_unlock(); 2445 } 2446 EXPORT_SYMBOL(console_stop); 2447 2448 void console_start(struct console *console) 2449 { 2450 console_lock(); 2451 console->flags |= CON_ENABLED; 2452 console_unlock(); 2453 } 2454 EXPORT_SYMBOL(console_start); 2455 2456 static int __read_mostly keep_bootcon; 2457 2458 static int __init keep_bootcon_setup(char *str) 2459 { 2460 keep_bootcon = 1; 2461 pr_info("debug: skip boot console de-registration.\n"); 2462 2463 return 0; 2464 } 2465 2466 early_param("keep_bootcon", keep_bootcon_setup); 2467 2468 /* 2469 * The console driver calls this routine during kernel initialization 2470 * to register the console printing procedure with printk() and to 2471 * print any messages that were printed by the kernel before the 2472 * console driver was initialized. 2473 * 2474 * This can happen pretty early during the boot process (because of 2475 * early_printk) - sometimes before setup_arch() completes - be careful 2476 * of what kernel features are used - they may not be initialised yet. 2477 * 2478 * There are two types of consoles - bootconsoles (early_printk) and 2479 * "real" consoles (everything which is not a bootconsole) which are 2480 * handled differently. 2481 * - Any number of bootconsoles can be registered at any time. 2482 * - As soon as a "real" console is registered, all bootconsoles 2483 * will be unregistered automatically. 2484 * - Once a "real" console is registered, any attempt to register a 2485 * bootconsoles will be rejected 2486 */ 2487 void register_console(struct console *newcon) 2488 { 2489 int i; 2490 unsigned long flags; 2491 struct console *bcon = NULL; 2492 struct console_cmdline *c; 2493 2494 if (console_drivers) 2495 for_each_console(bcon) 2496 if (WARN(bcon == newcon, 2497 "console '%s%d' already registered\n", 2498 bcon->name, bcon->index)) 2499 return; 2500 2501 /* 2502 * before we register a new CON_BOOT console, make sure we don't 2503 * already have a valid console 2504 */ 2505 if (console_drivers && newcon->flags & CON_BOOT) { 2506 /* find the last or real console */ 2507 for_each_console(bcon) { 2508 if (!(bcon->flags & CON_BOOT)) { 2509 pr_info("Too late to register bootconsole %s%d\n", 2510 newcon->name, newcon->index); 2511 return; 2512 } 2513 } 2514 } 2515 2516 if (console_drivers && console_drivers->flags & CON_BOOT) 2517 bcon = console_drivers; 2518 2519 if (preferred_console < 0 || bcon || !console_drivers) 2520 preferred_console = selected_console; 2521 2522 /* 2523 * See if we want to use this console driver. If we 2524 * didn't select a console we take the first one 2525 * that registers here. 2526 */ 2527 if (preferred_console < 0) { 2528 if (newcon->index < 0) 2529 newcon->index = 0; 2530 if (newcon->setup == NULL || 2531 newcon->setup(newcon, NULL) == 0) { 2532 newcon->flags |= CON_ENABLED; 2533 if (newcon->device) { 2534 newcon->flags |= CON_CONSDEV; 2535 preferred_console = 0; 2536 } 2537 } 2538 } 2539 2540 /* 2541 * See if this console matches one we selected on 2542 * the command line. 2543 */ 2544 for (i = 0, c = console_cmdline; 2545 i < MAX_CMDLINECONSOLES && c->name[0]; 2546 i++, c++) { 2547 if (!newcon->match || 2548 newcon->match(newcon, c->name, c->index, c->options) != 0) { 2549 /* default matching */ 2550 BUILD_BUG_ON(sizeof(c->name) != sizeof(newcon->name)); 2551 if (strcmp(c->name, newcon->name) != 0) 2552 continue; 2553 if (newcon->index >= 0 && 2554 newcon->index != c->index) 2555 continue; 2556 if (newcon->index < 0) 2557 newcon->index = c->index; 2558 2559 if (_braille_register_console(newcon, c)) 2560 return; 2561 2562 if (newcon->setup && 2563 newcon->setup(newcon, c->options) != 0) 2564 break; 2565 } 2566 2567 newcon->flags |= CON_ENABLED; 2568 if (i == selected_console) { 2569 newcon->flags |= CON_CONSDEV; 2570 preferred_console = selected_console; 2571 } 2572 break; 2573 } 2574 2575 if (!(newcon->flags & CON_ENABLED)) 2576 return; 2577 2578 /* 2579 * If we have a bootconsole, and are switching to a real console, 2580 * don't print everything out again, since when the boot console, and 2581 * the real console are the same physical device, it's annoying to 2582 * see the beginning boot messages twice 2583 */ 2584 if (bcon && ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV)) 2585 newcon->flags &= ~CON_PRINTBUFFER; 2586 2587 /* 2588 * Put this console in the list - keep the 2589 * preferred driver at the head of the list. 2590 */ 2591 console_lock(); 2592 if ((newcon->flags & CON_CONSDEV) || console_drivers == NULL) { 2593 newcon->next = console_drivers; 2594 console_drivers = newcon; 2595 if (newcon->next) 2596 newcon->next->flags &= ~CON_CONSDEV; 2597 } else { 2598 newcon->next = console_drivers->next; 2599 console_drivers->next = newcon; 2600 } 2601 2602 if (newcon->flags & CON_EXTENDED) 2603 if (!nr_ext_console_drivers++) 2604 pr_info("printk: continuation disabled due to ext consoles, expect more fragments in /dev/kmsg\n"); 2605 2606 if (newcon->flags & CON_PRINTBUFFER) { 2607 /* 2608 * console_unlock(); will print out the buffered messages 2609 * for us. 2610 */ 2611 raw_spin_lock_irqsave(&logbuf_lock, flags); 2612 console_seq = syslog_seq; 2613 console_idx = syslog_idx; 2614 console_prev = syslog_prev; 2615 raw_spin_unlock_irqrestore(&logbuf_lock, flags); 2616 /* 2617 * We're about to replay the log buffer. Only do this to the 2618 * just-registered console to avoid excessive message spam to 2619 * the already-registered consoles. 2620 */ 2621 exclusive_console = newcon; 2622 } 2623 console_unlock(); 2624 console_sysfs_notify(); 2625 2626 /* 2627 * By unregistering the bootconsoles after we enable the real console 2628 * we get the "console xxx enabled" message on all the consoles - 2629 * boot consoles, real consoles, etc - this is to ensure that end 2630 * users know there might be something in the kernel's log buffer that 2631 * went to the bootconsole (that they do not see on the real console) 2632 */ 2633 pr_info("%sconsole [%s%d] enabled\n", 2634 (newcon->flags & CON_BOOT) ? "boot" : "" , 2635 newcon->name, newcon->index); 2636 if (bcon && 2637 ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV) && 2638 !keep_bootcon) { 2639 /* We need to iterate through all boot consoles, to make 2640 * sure we print everything out, before we unregister them. 2641 */ 2642 for_each_console(bcon) 2643 if (bcon->flags & CON_BOOT) 2644 unregister_console(bcon); 2645 } 2646 } 2647 EXPORT_SYMBOL(register_console); 2648 2649 int unregister_console(struct console *console) 2650 { 2651 struct console *a, *b; 2652 int res; 2653 2654 pr_info("%sconsole [%s%d] disabled\n", 2655 (console->flags & CON_BOOT) ? "boot" : "" , 2656 console->name, console->index); 2657 2658 res = _braille_unregister_console(console); 2659 if (res) 2660 return res; 2661 2662 res = 1; 2663 console_lock(); 2664 if (console_drivers == console) { 2665 console_drivers=console->next; 2666 res = 0; 2667 } else if (console_drivers) { 2668 for (a=console_drivers->next, b=console_drivers ; 2669 a; b=a, a=b->next) { 2670 if (a == console) { 2671 b->next = a->next; 2672 res = 0; 2673 break; 2674 } 2675 } 2676 } 2677 2678 if (!res && (console->flags & CON_EXTENDED)) 2679 nr_ext_console_drivers--; 2680 2681 /* 2682 * If this isn't the last console and it has CON_CONSDEV set, we 2683 * need to set it on the next preferred console. 2684 */ 2685 if (console_drivers != NULL && console->flags & CON_CONSDEV) 2686 console_drivers->flags |= CON_CONSDEV; 2687 2688 console->flags &= ~CON_ENABLED; 2689 console_unlock(); 2690 console_sysfs_notify(); 2691 return res; 2692 } 2693 EXPORT_SYMBOL(unregister_console); 2694 2695 /* 2696 * Some boot consoles access data that is in the init section and which will 2697 * be discarded after the initcalls have been run. To make sure that no code 2698 * will access this data, unregister the boot consoles in a late initcall. 2699 * 2700 * If for some reason, such as deferred probe or the driver being a loadable 2701 * module, the real console hasn't registered yet at this point, there will 2702 * be a brief interval in which no messages are logged to the console, which 2703 * makes it difficult to diagnose problems that occur during this time. 2704 * 2705 * To mitigate this problem somewhat, only unregister consoles whose memory 2706 * intersects with the init section. Note that code exists elsewhere to get 2707 * rid of the boot console as soon as the proper console shows up, so there 2708 * won't be side-effects from postponing the removal. 2709 */ 2710 static int __init printk_late_init(void) 2711 { 2712 struct console *con; 2713 2714 for_each_console(con) { 2715 if (!keep_bootcon && con->flags & CON_BOOT) { 2716 /* 2717 * Make sure to unregister boot consoles whose data 2718 * resides in the init section before the init section 2719 * is discarded. Boot consoles whose data will stick 2720 * around will automatically be unregistered when the 2721 * proper console replaces them. 2722 */ 2723 if (init_section_intersects(con, sizeof(*con))) 2724 unregister_console(con); 2725 } 2726 } 2727 hotcpu_notifier(console_cpu_notify, 0); 2728 return 0; 2729 } 2730 late_initcall(printk_late_init); 2731 2732 #if defined CONFIG_PRINTK 2733 /* 2734 * Delayed printk version, for scheduler-internal messages: 2735 */ 2736 #define PRINTK_PENDING_WAKEUP 0x01 2737 #define PRINTK_PENDING_OUTPUT 0x02 2738 2739 static DEFINE_PER_CPU(int, printk_pending); 2740 2741 static void wake_up_klogd_work_func(struct irq_work *irq_work) 2742 { 2743 int pending = __this_cpu_xchg(printk_pending, 0); 2744 2745 if (pending & PRINTK_PENDING_OUTPUT) { 2746 /* If trylock fails, someone else is doing the printing */ 2747 if (console_trylock()) 2748 console_unlock(); 2749 } 2750 2751 if (pending & PRINTK_PENDING_WAKEUP) 2752 wake_up_interruptible(&log_wait); 2753 } 2754 2755 static DEFINE_PER_CPU(struct irq_work, wake_up_klogd_work) = { 2756 .func = wake_up_klogd_work_func, 2757 .flags = IRQ_WORK_LAZY, 2758 }; 2759 2760 void wake_up_klogd(void) 2761 { 2762 preempt_disable(); 2763 if (waitqueue_active(&log_wait)) { 2764 this_cpu_or(printk_pending, PRINTK_PENDING_WAKEUP); 2765 irq_work_queue(this_cpu_ptr(&wake_up_klogd_work)); 2766 } 2767 preempt_enable(); 2768 } 2769 2770 int printk_deferred(const char *fmt, ...) 2771 { 2772 va_list args; 2773 int r; 2774 2775 preempt_disable(); 2776 va_start(args, fmt); 2777 r = vprintk_emit(0, LOGLEVEL_SCHED, NULL, 0, fmt, args); 2778 va_end(args); 2779 2780 __this_cpu_or(printk_pending, PRINTK_PENDING_OUTPUT); 2781 irq_work_queue(this_cpu_ptr(&wake_up_klogd_work)); 2782 preempt_enable(); 2783 2784 return r; 2785 } 2786 2787 /* 2788 * printk rate limiting, lifted from the networking subsystem. 2789 * 2790 * This enforces a rate limit: not more than 10 kernel messages 2791 * every 5s to make a denial-of-service attack impossible. 2792 */ 2793 DEFINE_RATELIMIT_STATE(printk_ratelimit_state, 5 * HZ, 10); 2794 2795 int __printk_ratelimit(const char *func) 2796 { 2797 return ___ratelimit(&printk_ratelimit_state, func); 2798 } 2799 EXPORT_SYMBOL(__printk_ratelimit); 2800 2801 /** 2802 * printk_timed_ratelimit - caller-controlled printk ratelimiting 2803 * @caller_jiffies: pointer to caller's state 2804 * @interval_msecs: minimum interval between prints 2805 * 2806 * printk_timed_ratelimit() returns true if more than @interval_msecs 2807 * milliseconds have elapsed since the last time printk_timed_ratelimit() 2808 * returned true. 2809 */ 2810 bool printk_timed_ratelimit(unsigned long *caller_jiffies, 2811 unsigned int interval_msecs) 2812 { 2813 unsigned long elapsed = jiffies - *caller_jiffies; 2814 2815 if (*caller_jiffies && elapsed <= msecs_to_jiffies(interval_msecs)) 2816 return false; 2817 2818 *caller_jiffies = jiffies; 2819 return true; 2820 } 2821 EXPORT_SYMBOL(printk_timed_ratelimit); 2822 2823 static DEFINE_SPINLOCK(dump_list_lock); 2824 static LIST_HEAD(dump_list); 2825 2826 /** 2827 * kmsg_dump_register - register a kernel log dumper. 2828 * @dumper: pointer to the kmsg_dumper structure 2829 * 2830 * Adds a kernel log dumper to the system. The dump callback in the 2831 * structure will be called when the kernel oopses or panics and must be 2832 * set. Returns zero on success and %-EINVAL or %-EBUSY otherwise. 2833 */ 2834 int kmsg_dump_register(struct kmsg_dumper *dumper) 2835 { 2836 unsigned long flags; 2837 int err = -EBUSY; 2838 2839 /* The dump callback needs to be set */ 2840 if (!dumper->dump) 2841 return -EINVAL; 2842 2843 spin_lock_irqsave(&dump_list_lock, flags); 2844 /* Don't allow registering multiple times */ 2845 if (!dumper->registered) { 2846 dumper->registered = 1; 2847 list_add_tail_rcu(&dumper->list, &dump_list); 2848 err = 0; 2849 } 2850 spin_unlock_irqrestore(&dump_list_lock, flags); 2851 2852 return err; 2853 } 2854 EXPORT_SYMBOL_GPL(kmsg_dump_register); 2855 2856 /** 2857 * kmsg_dump_unregister - unregister a kmsg dumper. 2858 * @dumper: pointer to the kmsg_dumper structure 2859 * 2860 * Removes a dump device from the system. Returns zero on success and 2861 * %-EINVAL otherwise. 2862 */ 2863 int kmsg_dump_unregister(struct kmsg_dumper *dumper) 2864 { 2865 unsigned long flags; 2866 int err = -EINVAL; 2867 2868 spin_lock_irqsave(&dump_list_lock, flags); 2869 if (dumper->registered) { 2870 dumper->registered = 0; 2871 list_del_rcu(&dumper->list); 2872 err = 0; 2873 } 2874 spin_unlock_irqrestore(&dump_list_lock, flags); 2875 synchronize_rcu(); 2876 2877 return err; 2878 } 2879 EXPORT_SYMBOL_GPL(kmsg_dump_unregister); 2880 2881 static bool always_kmsg_dump; 2882 module_param_named(always_kmsg_dump, always_kmsg_dump, bool, S_IRUGO | S_IWUSR); 2883 2884 /** 2885 * kmsg_dump - dump kernel log to kernel message dumpers. 2886 * @reason: the reason (oops, panic etc) for dumping 2887 * 2888 * Call each of the registered dumper's dump() callback, which can 2889 * retrieve the kmsg records with kmsg_dump_get_line() or 2890 * kmsg_dump_get_buffer(). 2891 */ 2892 void kmsg_dump(enum kmsg_dump_reason reason) 2893 { 2894 struct kmsg_dumper *dumper; 2895 unsigned long flags; 2896 2897 if ((reason > KMSG_DUMP_OOPS) && !always_kmsg_dump) 2898 return; 2899 2900 rcu_read_lock(); 2901 list_for_each_entry_rcu(dumper, &dump_list, list) { 2902 if (dumper->max_reason && reason > dumper->max_reason) 2903 continue; 2904 2905 /* initialize iterator with data about the stored records */ 2906 dumper->active = true; 2907 2908 raw_spin_lock_irqsave(&logbuf_lock, flags); 2909 dumper->cur_seq = clear_seq; 2910 dumper->cur_idx = clear_idx; 2911 dumper->next_seq = log_next_seq; 2912 dumper->next_idx = log_next_idx; 2913 raw_spin_unlock_irqrestore(&logbuf_lock, flags); 2914 2915 /* invoke dumper which will iterate over records */ 2916 dumper->dump(dumper, reason); 2917 2918 /* reset iterator */ 2919 dumper->active = false; 2920 } 2921 rcu_read_unlock(); 2922 } 2923 2924 /** 2925 * kmsg_dump_get_line_nolock - retrieve one kmsg log line (unlocked version) 2926 * @dumper: registered kmsg dumper 2927 * @syslog: include the "<4>" prefixes 2928 * @line: buffer to copy the line to 2929 * @size: maximum size of the buffer 2930 * @len: length of line placed into buffer 2931 * 2932 * Start at the beginning of the kmsg buffer, with the oldest kmsg 2933 * record, and copy one record into the provided buffer. 2934 * 2935 * Consecutive calls will return the next available record moving 2936 * towards the end of the buffer with the youngest messages. 2937 * 2938 * A return value of FALSE indicates that there are no more records to 2939 * read. 2940 * 2941 * The function is similar to kmsg_dump_get_line(), but grabs no locks. 2942 */ 2943 bool kmsg_dump_get_line_nolock(struct kmsg_dumper *dumper, bool syslog, 2944 char *line, size_t size, size_t *len) 2945 { 2946 struct printk_log *msg; 2947 size_t l = 0; 2948 bool ret = false; 2949 2950 if (!dumper->active) 2951 goto out; 2952 2953 if (dumper->cur_seq < log_first_seq) { 2954 /* messages are gone, move to first available one */ 2955 dumper->cur_seq = log_first_seq; 2956 dumper->cur_idx = log_first_idx; 2957 } 2958 2959 /* last entry */ 2960 if (dumper->cur_seq >= log_next_seq) 2961 goto out; 2962 2963 msg = log_from_idx(dumper->cur_idx); 2964 l = msg_print_text(msg, 0, syslog, line, size); 2965 2966 dumper->cur_idx = log_next(dumper->cur_idx); 2967 dumper->cur_seq++; 2968 ret = true; 2969 out: 2970 if (len) 2971 *len = l; 2972 return ret; 2973 } 2974 2975 /** 2976 * kmsg_dump_get_line - retrieve one kmsg log line 2977 * @dumper: registered kmsg dumper 2978 * @syslog: include the "<4>" prefixes 2979 * @line: buffer to copy the line to 2980 * @size: maximum size of the buffer 2981 * @len: length of line placed into buffer 2982 * 2983 * Start at the beginning of the kmsg buffer, with the oldest kmsg 2984 * record, and copy one record into the provided buffer. 2985 * 2986 * Consecutive calls will return the next available record moving 2987 * towards the end of the buffer with the youngest messages. 2988 * 2989 * A return value of FALSE indicates that there are no more records to 2990 * read. 2991 */ 2992 bool kmsg_dump_get_line(struct kmsg_dumper *dumper, bool syslog, 2993 char *line, size_t size, size_t *len) 2994 { 2995 unsigned long flags; 2996 bool ret; 2997 2998 raw_spin_lock_irqsave(&logbuf_lock, flags); 2999 ret = kmsg_dump_get_line_nolock(dumper, syslog, line, size, len); 3000 raw_spin_unlock_irqrestore(&logbuf_lock, flags); 3001 3002 return ret; 3003 } 3004 EXPORT_SYMBOL_GPL(kmsg_dump_get_line); 3005 3006 /** 3007 * kmsg_dump_get_buffer - copy kmsg log lines 3008 * @dumper: registered kmsg dumper 3009 * @syslog: include the "<4>" prefixes 3010 * @buf: buffer to copy the line to 3011 * @size: maximum size of the buffer 3012 * @len: length of line placed into buffer 3013 * 3014 * Start at the end of the kmsg buffer and fill the provided buffer 3015 * with as many of the the *youngest* kmsg records that fit into it. 3016 * If the buffer is large enough, all available kmsg records will be 3017 * copied with a single call. 3018 * 3019 * Consecutive calls will fill the buffer with the next block of 3020 * available older records, not including the earlier retrieved ones. 3021 * 3022 * A return value of FALSE indicates that there are no more records to 3023 * read. 3024 */ 3025 bool kmsg_dump_get_buffer(struct kmsg_dumper *dumper, bool syslog, 3026 char *buf, size_t size, size_t *len) 3027 { 3028 unsigned long flags; 3029 u64 seq; 3030 u32 idx; 3031 u64 next_seq; 3032 u32 next_idx; 3033 enum log_flags prev; 3034 size_t l = 0; 3035 bool ret = false; 3036 3037 if (!dumper->active) 3038 goto out; 3039 3040 raw_spin_lock_irqsave(&logbuf_lock, flags); 3041 if (dumper->cur_seq < log_first_seq) { 3042 /* messages are gone, move to first available one */ 3043 dumper->cur_seq = log_first_seq; 3044 dumper->cur_idx = log_first_idx; 3045 } 3046 3047 /* last entry */ 3048 if (dumper->cur_seq >= dumper->next_seq) { 3049 raw_spin_unlock_irqrestore(&logbuf_lock, flags); 3050 goto out; 3051 } 3052 3053 /* calculate length of entire buffer */ 3054 seq = dumper->cur_seq; 3055 idx = dumper->cur_idx; 3056 prev = 0; 3057 while (seq < dumper->next_seq) { 3058 struct printk_log *msg = log_from_idx(idx); 3059 3060 l += msg_print_text(msg, prev, true, NULL, 0); 3061 idx = log_next(idx); 3062 seq++; 3063 prev = msg->flags; 3064 } 3065 3066 /* move first record forward until length fits into the buffer */ 3067 seq = dumper->cur_seq; 3068 idx = dumper->cur_idx; 3069 prev = 0; 3070 while (l > size && seq < dumper->next_seq) { 3071 struct printk_log *msg = log_from_idx(idx); 3072 3073 l -= msg_print_text(msg, prev, true, NULL, 0); 3074 idx = log_next(idx); 3075 seq++; 3076 prev = msg->flags; 3077 } 3078 3079 /* last message in next interation */ 3080 next_seq = seq; 3081 next_idx = idx; 3082 3083 l = 0; 3084 while (seq < dumper->next_seq) { 3085 struct printk_log *msg = log_from_idx(idx); 3086 3087 l += msg_print_text(msg, prev, syslog, buf + l, size - l); 3088 idx = log_next(idx); 3089 seq++; 3090 prev = msg->flags; 3091 } 3092 3093 dumper->next_seq = next_seq; 3094 dumper->next_idx = next_idx; 3095 ret = true; 3096 raw_spin_unlock_irqrestore(&logbuf_lock, flags); 3097 out: 3098 if (len) 3099 *len = l; 3100 return ret; 3101 } 3102 EXPORT_SYMBOL_GPL(kmsg_dump_get_buffer); 3103 3104 /** 3105 * kmsg_dump_rewind_nolock - reset the interator (unlocked version) 3106 * @dumper: registered kmsg dumper 3107 * 3108 * Reset the dumper's iterator so that kmsg_dump_get_line() and 3109 * kmsg_dump_get_buffer() can be called again and used multiple 3110 * times within the same dumper.dump() callback. 3111 * 3112 * The function is similar to kmsg_dump_rewind(), but grabs no locks. 3113 */ 3114 void kmsg_dump_rewind_nolock(struct kmsg_dumper *dumper) 3115 { 3116 dumper->cur_seq = clear_seq; 3117 dumper->cur_idx = clear_idx; 3118 dumper->next_seq = log_next_seq; 3119 dumper->next_idx = log_next_idx; 3120 } 3121 3122 /** 3123 * kmsg_dump_rewind - reset the interator 3124 * @dumper: registered kmsg dumper 3125 * 3126 * Reset the dumper's iterator so that kmsg_dump_get_line() and 3127 * kmsg_dump_get_buffer() can be called again and used multiple 3128 * times within the same dumper.dump() callback. 3129 */ 3130 void kmsg_dump_rewind(struct kmsg_dumper *dumper) 3131 { 3132 unsigned long flags; 3133 3134 raw_spin_lock_irqsave(&logbuf_lock, flags); 3135 kmsg_dump_rewind_nolock(dumper); 3136 raw_spin_unlock_irqrestore(&logbuf_lock, flags); 3137 } 3138 EXPORT_SYMBOL_GPL(kmsg_dump_rewind); 3139 3140 static char dump_stack_arch_desc_str[128]; 3141 3142 /** 3143 * dump_stack_set_arch_desc - set arch-specific str to show with task dumps 3144 * @fmt: printf-style format string 3145 * @...: arguments for the format string 3146 * 3147 * The configured string will be printed right after utsname during task 3148 * dumps. Usually used to add arch-specific system identifiers. If an 3149 * arch wants to make use of such an ID string, it should initialize this 3150 * as soon as possible during boot. 3151 */ 3152 void __init dump_stack_set_arch_desc(const char *fmt, ...) 3153 { 3154 va_list args; 3155 3156 va_start(args, fmt); 3157 vsnprintf(dump_stack_arch_desc_str, sizeof(dump_stack_arch_desc_str), 3158 fmt, args); 3159 va_end(args); 3160 } 3161 3162 /** 3163 * dump_stack_print_info - print generic debug info for dump_stack() 3164 * @log_lvl: log level 3165 * 3166 * Arch-specific dump_stack() implementations can use this function to 3167 * print out the same debug information as the generic dump_stack(). 3168 */ 3169 void dump_stack_print_info(const char *log_lvl) 3170 { 3171 printk("%sCPU: %d PID: %d Comm: %.20s %s %s %.*s\n", 3172 log_lvl, raw_smp_processor_id(), current->pid, current->comm, 3173 print_tainted(), init_utsname()->release, 3174 (int)strcspn(init_utsname()->version, " "), 3175 init_utsname()->version); 3176 3177 if (dump_stack_arch_desc_str[0] != '\0') 3178 printk("%sHardware name: %s\n", 3179 log_lvl, dump_stack_arch_desc_str); 3180 3181 print_worker_info(log_lvl, current); 3182 } 3183 3184 /** 3185 * show_regs_print_info - print generic debug info for show_regs() 3186 * @log_lvl: log level 3187 * 3188 * show_regs() implementations can use this function to print out generic 3189 * debug information. 3190 */ 3191 void show_regs_print_info(const char *log_lvl) 3192 { 3193 dump_stack_print_info(log_lvl); 3194 3195 printk("%stask: %p ti: %p task.ti: %p\n", 3196 log_lvl, current, current_thread_info(), 3197 task_thread_info(current)); 3198 } 3199 3200 #endif 3201