xref: /openbmc/linux/kernel/printk/printk.c (revision a06c488d)
1 /*
2  *  linux/kernel/printk.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  *
6  * Modified to make sys_syslog() more flexible: added commands to
7  * return the last 4k of kernel messages, regardless of whether
8  * they've been read or not.  Added option to suppress kernel printk's
9  * to the console.  Added hook for sending the console messages
10  * elsewhere, in preparation for a serial line console (someday).
11  * Ted Ts'o, 2/11/93.
12  * Modified for sysctl support, 1/8/97, Chris Horn.
13  * Fixed SMP synchronization, 08/08/99, Manfred Spraul
14  *     manfred@colorfullife.com
15  * Rewrote bits to get rid of console_lock
16  *	01Mar01 Andrew Morton
17  */
18 
19 #include <linux/kernel.h>
20 #include <linux/mm.h>
21 #include <linux/tty.h>
22 #include <linux/tty_driver.h>
23 #include <linux/console.h>
24 #include <linux/init.h>
25 #include <linux/jiffies.h>
26 #include <linux/nmi.h>
27 #include <linux/module.h>
28 #include <linux/moduleparam.h>
29 #include <linux/interrupt.h>			/* For in_interrupt() */
30 #include <linux/delay.h>
31 #include <linux/smp.h>
32 #include <linux/security.h>
33 #include <linux/bootmem.h>
34 #include <linux/memblock.h>
35 #include <linux/syscalls.h>
36 #include <linux/kexec.h>
37 #include <linux/kdb.h>
38 #include <linux/ratelimit.h>
39 #include <linux/kmsg_dump.h>
40 #include <linux/syslog.h>
41 #include <linux/cpu.h>
42 #include <linux/notifier.h>
43 #include <linux/rculist.h>
44 #include <linux/poll.h>
45 #include <linux/irq_work.h>
46 #include <linux/utsname.h>
47 #include <linux/ctype.h>
48 #include <linux/uio.h>
49 
50 #include <asm/uaccess.h>
51 #include <asm-generic/sections.h>
52 
53 #define CREATE_TRACE_POINTS
54 #include <trace/events/printk.h>
55 
56 #include "console_cmdline.h"
57 #include "braille.h"
58 
59 int console_printk[4] = {
60 	CONSOLE_LOGLEVEL_DEFAULT,	/* console_loglevel */
61 	MESSAGE_LOGLEVEL_DEFAULT,	/* default_message_loglevel */
62 	CONSOLE_LOGLEVEL_MIN,		/* minimum_console_loglevel */
63 	CONSOLE_LOGLEVEL_DEFAULT,	/* default_console_loglevel */
64 };
65 
66 /*
67  * Low level drivers may need that to know if they can schedule in
68  * their unblank() callback or not. So let's export it.
69  */
70 int oops_in_progress;
71 EXPORT_SYMBOL(oops_in_progress);
72 
73 /*
74  * console_sem protects the console_drivers list, and also
75  * provides serialisation for access to the entire console
76  * driver system.
77  */
78 static DEFINE_SEMAPHORE(console_sem);
79 struct console *console_drivers;
80 EXPORT_SYMBOL_GPL(console_drivers);
81 
82 #ifdef CONFIG_LOCKDEP
83 static struct lockdep_map console_lock_dep_map = {
84 	.name = "console_lock"
85 };
86 #endif
87 
88 /*
89  * Number of registered extended console drivers.
90  *
91  * If extended consoles are present, in-kernel cont reassembly is disabled
92  * and each fragment is stored as a separate log entry with proper
93  * continuation flag so that every emitted message has full metadata.  This
94  * doesn't change the result for regular consoles or /proc/kmsg.  For
95  * /dev/kmsg, as long as the reader concatenates messages according to
96  * consecutive continuation flags, the end result should be the same too.
97  */
98 static int nr_ext_console_drivers;
99 
100 /*
101  * Helper macros to handle lockdep when locking/unlocking console_sem. We use
102  * macros instead of functions so that _RET_IP_ contains useful information.
103  */
104 #define down_console_sem() do { \
105 	down(&console_sem);\
106 	mutex_acquire(&console_lock_dep_map, 0, 0, _RET_IP_);\
107 } while (0)
108 
109 static int __down_trylock_console_sem(unsigned long ip)
110 {
111 	if (down_trylock(&console_sem))
112 		return 1;
113 	mutex_acquire(&console_lock_dep_map, 0, 1, ip);
114 	return 0;
115 }
116 #define down_trylock_console_sem() __down_trylock_console_sem(_RET_IP_)
117 
118 #define up_console_sem() do { \
119 	mutex_release(&console_lock_dep_map, 1, _RET_IP_);\
120 	up(&console_sem);\
121 } while (0)
122 
123 /*
124  * This is used for debugging the mess that is the VT code by
125  * keeping track if we have the console semaphore held. It's
126  * definitely not the perfect debug tool (we don't know if _WE_
127  * hold it and are racing, but it helps tracking those weird code
128  * paths in the console code where we end up in places I want
129  * locked without the console sempahore held).
130  */
131 static int console_locked, console_suspended;
132 
133 /*
134  * If exclusive_console is non-NULL then only this console is to be printed to.
135  */
136 static struct console *exclusive_console;
137 
138 /*
139  *	Array of consoles built from command line options (console=)
140  */
141 
142 #define MAX_CMDLINECONSOLES 8
143 
144 static struct console_cmdline console_cmdline[MAX_CMDLINECONSOLES];
145 
146 static int selected_console = -1;
147 static int preferred_console = -1;
148 int console_set_on_cmdline;
149 EXPORT_SYMBOL(console_set_on_cmdline);
150 
151 /* Flag: console code may call schedule() */
152 static int console_may_schedule;
153 
154 /*
155  * The printk log buffer consists of a chain of concatenated variable
156  * length records. Every record starts with a record header, containing
157  * the overall length of the record.
158  *
159  * The heads to the first and last entry in the buffer, as well as the
160  * sequence numbers of these entries are maintained when messages are
161  * stored.
162  *
163  * If the heads indicate available messages, the length in the header
164  * tells the start next message. A length == 0 for the next message
165  * indicates a wrap-around to the beginning of the buffer.
166  *
167  * Every record carries the monotonic timestamp in microseconds, as well as
168  * the standard userspace syslog level and syslog facility. The usual
169  * kernel messages use LOG_KERN; userspace-injected messages always carry
170  * a matching syslog facility, by default LOG_USER. The origin of every
171  * message can be reliably determined that way.
172  *
173  * The human readable log message directly follows the message header. The
174  * length of the message text is stored in the header, the stored message
175  * is not terminated.
176  *
177  * Optionally, a message can carry a dictionary of properties (key/value pairs),
178  * to provide userspace with a machine-readable message context.
179  *
180  * Examples for well-defined, commonly used property names are:
181  *   DEVICE=b12:8               device identifier
182  *                                b12:8         block dev_t
183  *                                c127:3        char dev_t
184  *                                n8            netdev ifindex
185  *                                +sound:card0  subsystem:devname
186  *   SUBSYSTEM=pci              driver-core subsystem name
187  *
188  * Valid characters in property names are [a-zA-Z0-9.-_]. The plain text value
189  * follows directly after a '=' character. Every property is terminated by
190  * a '\0' character. The last property is not terminated.
191  *
192  * Example of a message structure:
193  *   0000  ff 8f 00 00 00 00 00 00      monotonic time in nsec
194  *   0008  34 00                        record is 52 bytes long
195  *   000a        0b 00                  text is 11 bytes long
196  *   000c              1f 00            dictionary is 23 bytes long
197  *   000e                    03 00      LOG_KERN (facility) LOG_ERR (level)
198  *   0010  69 74 27 73 20 61 20 6c      "it's a l"
199  *         69 6e 65                     "ine"
200  *   001b           44 45 56 49 43      "DEVIC"
201  *         45 3d 62 38 3a 32 00 44      "E=b8:2\0D"
202  *         52 49 56 45 52 3d 62 75      "RIVER=bu"
203  *         67                           "g"
204  *   0032     00 00 00                  padding to next message header
205  *
206  * The 'struct printk_log' buffer header must never be directly exported to
207  * userspace, it is a kernel-private implementation detail that might
208  * need to be changed in the future, when the requirements change.
209  *
210  * /dev/kmsg exports the structured data in the following line format:
211  *   "<level>,<sequnum>,<timestamp>,<contflag>[,additional_values, ... ];<message text>\n"
212  *
213  * Users of the export format should ignore possible additional values
214  * separated by ',', and find the message after the ';' character.
215  *
216  * The optional key/value pairs are attached as continuation lines starting
217  * with a space character and terminated by a newline. All possible
218  * non-prinatable characters are escaped in the "\xff" notation.
219  */
220 
221 enum log_flags {
222 	LOG_NOCONS	= 1,	/* already flushed, do not print to console */
223 	LOG_NEWLINE	= 2,	/* text ended with a newline */
224 	LOG_PREFIX	= 4,	/* text started with a prefix */
225 	LOG_CONT	= 8,	/* text is a fragment of a continuation line */
226 };
227 
228 struct printk_log {
229 	u64 ts_nsec;		/* timestamp in nanoseconds */
230 	u16 len;		/* length of entire record */
231 	u16 text_len;		/* length of text buffer */
232 	u16 dict_len;		/* length of dictionary buffer */
233 	u8 facility;		/* syslog facility */
234 	u8 flags:5;		/* internal record flags */
235 	u8 level:3;		/* syslog level */
236 }
237 #ifdef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
238 __packed __aligned(4)
239 #endif
240 ;
241 
242 /*
243  * The logbuf_lock protects kmsg buffer, indices, counters.  This can be taken
244  * within the scheduler's rq lock. It must be released before calling
245  * console_unlock() or anything else that might wake up a process.
246  */
247 static DEFINE_RAW_SPINLOCK(logbuf_lock);
248 
249 #ifdef CONFIG_PRINTK
250 DECLARE_WAIT_QUEUE_HEAD(log_wait);
251 /* the next printk record to read by syslog(READ) or /proc/kmsg */
252 static u64 syslog_seq;
253 static u32 syslog_idx;
254 static enum log_flags syslog_prev;
255 static size_t syslog_partial;
256 
257 /* index and sequence number of the first record stored in the buffer */
258 static u64 log_first_seq;
259 static u32 log_first_idx;
260 
261 /* index and sequence number of the next record to store in the buffer */
262 static u64 log_next_seq;
263 static u32 log_next_idx;
264 
265 /* the next printk record to write to the console */
266 static u64 console_seq;
267 static u32 console_idx;
268 static enum log_flags console_prev;
269 
270 /* the next printk record to read after the last 'clear' command */
271 static u64 clear_seq;
272 static u32 clear_idx;
273 
274 #define PREFIX_MAX		32
275 #define LOG_LINE_MAX		(1024 - PREFIX_MAX)
276 
277 #define LOG_LEVEL(v)		((v) & 0x07)
278 #define LOG_FACILITY(v)		((v) >> 3 & 0xff)
279 
280 /* record buffer */
281 #define LOG_ALIGN __alignof__(struct printk_log)
282 #define __LOG_BUF_LEN (1 << CONFIG_LOG_BUF_SHIFT)
283 static char __log_buf[__LOG_BUF_LEN] __aligned(LOG_ALIGN);
284 static char *log_buf = __log_buf;
285 static u32 log_buf_len = __LOG_BUF_LEN;
286 
287 /* Return log buffer address */
288 char *log_buf_addr_get(void)
289 {
290 	return log_buf;
291 }
292 
293 /* Return log buffer size */
294 u32 log_buf_len_get(void)
295 {
296 	return log_buf_len;
297 }
298 
299 /* human readable text of the record */
300 static char *log_text(const struct printk_log *msg)
301 {
302 	return (char *)msg + sizeof(struct printk_log);
303 }
304 
305 /* optional key/value pair dictionary attached to the record */
306 static char *log_dict(const struct printk_log *msg)
307 {
308 	return (char *)msg + sizeof(struct printk_log) + msg->text_len;
309 }
310 
311 /* get record by index; idx must point to valid msg */
312 static struct printk_log *log_from_idx(u32 idx)
313 {
314 	struct printk_log *msg = (struct printk_log *)(log_buf + idx);
315 
316 	/*
317 	 * A length == 0 record is the end of buffer marker. Wrap around and
318 	 * read the message at the start of the buffer.
319 	 */
320 	if (!msg->len)
321 		return (struct printk_log *)log_buf;
322 	return msg;
323 }
324 
325 /* get next record; idx must point to valid msg */
326 static u32 log_next(u32 idx)
327 {
328 	struct printk_log *msg = (struct printk_log *)(log_buf + idx);
329 
330 	/* length == 0 indicates the end of the buffer; wrap */
331 	/*
332 	 * A length == 0 record is the end of buffer marker. Wrap around and
333 	 * read the message at the start of the buffer as *this* one, and
334 	 * return the one after that.
335 	 */
336 	if (!msg->len) {
337 		msg = (struct printk_log *)log_buf;
338 		return msg->len;
339 	}
340 	return idx + msg->len;
341 }
342 
343 /*
344  * Check whether there is enough free space for the given message.
345  *
346  * The same values of first_idx and next_idx mean that the buffer
347  * is either empty or full.
348  *
349  * If the buffer is empty, we must respect the position of the indexes.
350  * They cannot be reset to the beginning of the buffer.
351  */
352 static int logbuf_has_space(u32 msg_size, bool empty)
353 {
354 	u32 free;
355 
356 	if (log_next_idx > log_first_idx || empty)
357 		free = max(log_buf_len - log_next_idx, log_first_idx);
358 	else
359 		free = log_first_idx - log_next_idx;
360 
361 	/*
362 	 * We need space also for an empty header that signalizes wrapping
363 	 * of the buffer.
364 	 */
365 	return free >= msg_size + sizeof(struct printk_log);
366 }
367 
368 static int log_make_free_space(u32 msg_size)
369 {
370 	while (log_first_seq < log_next_seq) {
371 		if (logbuf_has_space(msg_size, false))
372 			return 0;
373 		/* drop old messages until we have enough contiguous space */
374 		log_first_idx = log_next(log_first_idx);
375 		log_first_seq++;
376 	}
377 
378 	/* sequence numbers are equal, so the log buffer is empty */
379 	if (logbuf_has_space(msg_size, true))
380 		return 0;
381 
382 	return -ENOMEM;
383 }
384 
385 /* compute the message size including the padding bytes */
386 static u32 msg_used_size(u16 text_len, u16 dict_len, u32 *pad_len)
387 {
388 	u32 size;
389 
390 	size = sizeof(struct printk_log) + text_len + dict_len;
391 	*pad_len = (-size) & (LOG_ALIGN - 1);
392 	size += *pad_len;
393 
394 	return size;
395 }
396 
397 /*
398  * Define how much of the log buffer we could take at maximum. The value
399  * must be greater than two. Note that only half of the buffer is available
400  * when the index points to the middle.
401  */
402 #define MAX_LOG_TAKE_PART 4
403 static const char trunc_msg[] = "<truncated>";
404 
405 static u32 truncate_msg(u16 *text_len, u16 *trunc_msg_len,
406 			u16 *dict_len, u32 *pad_len)
407 {
408 	/*
409 	 * The message should not take the whole buffer. Otherwise, it might
410 	 * get removed too soon.
411 	 */
412 	u32 max_text_len = log_buf_len / MAX_LOG_TAKE_PART;
413 	if (*text_len > max_text_len)
414 		*text_len = max_text_len;
415 	/* enable the warning message */
416 	*trunc_msg_len = strlen(trunc_msg);
417 	/* disable the "dict" completely */
418 	*dict_len = 0;
419 	/* compute the size again, count also the warning message */
420 	return msg_used_size(*text_len + *trunc_msg_len, 0, pad_len);
421 }
422 
423 /* insert record into the buffer, discard old ones, update heads */
424 static int log_store(int facility, int level,
425 		     enum log_flags flags, u64 ts_nsec,
426 		     const char *dict, u16 dict_len,
427 		     const char *text, u16 text_len)
428 {
429 	struct printk_log *msg;
430 	u32 size, pad_len;
431 	u16 trunc_msg_len = 0;
432 
433 	/* number of '\0' padding bytes to next message */
434 	size = msg_used_size(text_len, dict_len, &pad_len);
435 
436 	if (log_make_free_space(size)) {
437 		/* truncate the message if it is too long for empty buffer */
438 		size = truncate_msg(&text_len, &trunc_msg_len,
439 				    &dict_len, &pad_len);
440 		/* survive when the log buffer is too small for trunc_msg */
441 		if (log_make_free_space(size))
442 			return 0;
443 	}
444 
445 	if (log_next_idx + size + sizeof(struct printk_log) > log_buf_len) {
446 		/*
447 		 * This message + an additional empty header does not fit
448 		 * at the end of the buffer. Add an empty header with len == 0
449 		 * to signify a wrap around.
450 		 */
451 		memset(log_buf + log_next_idx, 0, sizeof(struct printk_log));
452 		log_next_idx = 0;
453 	}
454 
455 	/* fill message */
456 	msg = (struct printk_log *)(log_buf + log_next_idx);
457 	memcpy(log_text(msg), text, text_len);
458 	msg->text_len = text_len;
459 	if (trunc_msg_len) {
460 		memcpy(log_text(msg) + text_len, trunc_msg, trunc_msg_len);
461 		msg->text_len += trunc_msg_len;
462 	}
463 	memcpy(log_dict(msg), dict, dict_len);
464 	msg->dict_len = dict_len;
465 	msg->facility = facility;
466 	msg->level = level & 7;
467 	msg->flags = flags & 0x1f;
468 	if (ts_nsec > 0)
469 		msg->ts_nsec = ts_nsec;
470 	else
471 		msg->ts_nsec = local_clock();
472 	memset(log_dict(msg) + dict_len, 0, pad_len);
473 	msg->len = size;
474 
475 	/* insert message */
476 	log_next_idx += msg->len;
477 	log_next_seq++;
478 
479 	return msg->text_len;
480 }
481 
482 int dmesg_restrict = IS_ENABLED(CONFIG_SECURITY_DMESG_RESTRICT);
483 
484 static int syslog_action_restricted(int type)
485 {
486 	if (dmesg_restrict)
487 		return 1;
488 	/*
489 	 * Unless restricted, we allow "read all" and "get buffer size"
490 	 * for everybody.
491 	 */
492 	return type != SYSLOG_ACTION_READ_ALL &&
493 	       type != SYSLOG_ACTION_SIZE_BUFFER;
494 }
495 
496 int check_syslog_permissions(int type, int source)
497 {
498 	/*
499 	 * If this is from /proc/kmsg and we've already opened it, then we've
500 	 * already done the capabilities checks at open time.
501 	 */
502 	if (source == SYSLOG_FROM_PROC && type != SYSLOG_ACTION_OPEN)
503 		goto ok;
504 
505 	if (syslog_action_restricted(type)) {
506 		if (capable(CAP_SYSLOG))
507 			goto ok;
508 		/*
509 		 * For historical reasons, accept CAP_SYS_ADMIN too, with
510 		 * a warning.
511 		 */
512 		if (capable(CAP_SYS_ADMIN)) {
513 			pr_warn_once("%s (%d): Attempt to access syslog with "
514 				     "CAP_SYS_ADMIN but no CAP_SYSLOG "
515 				     "(deprecated).\n",
516 				 current->comm, task_pid_nr(current));
517 			goto ok;
518 		}
519 		return -EPERM;
520 	}
521 ok:
522 	return security_syslog(type);
523 }
524 EXPORT_SYMBOL_GPL(check_syslog_permissions);
525 
526 static void append_char(char **pp, char *e, char c)
527 {
528 	if (*pp < e)
529 		*(*pp)++ = c;
530 }
531 
532 static ssize_t msg_print_ext_header(char *buf, size_t size,
533 				    struct printk_log *msg, u64 seq,
534 				    enum log_flags prev_flags)
535 {
536 	u64 ts_usec = msg->ts_nsec;
537 	char cont = '-';
538 
539 	do_div(ts_usec, 1000);
540 
541 	/*
542 	 * If we couldn't merge continuation line fragments during the print,
543 	 * export the stored flags to allow an optional external merge of the
544 	 * records. Merging the records isn't always neccessarily correct, like
545 	 * when we hit a race during printing. In most cases though, it produces
546 	 * better readable output. 'c' in the record flags mark the first
547 	 * fragment of a line, '+' the following.
548 	 */
549 	if (msg->flags & LOG_CONT && !(prev_flags & LOG_CONT))
550 		cont = 'c';
551 	else if ((msg->flags & LOG_CONT) ||
552 		 ((prev_flags & LOG_CONT) && !(msg->flags & LOG_PREFIX)))
553 		cont = '+';
554 
555 	return scnprintf(buf, size, "%u,%llu,%llu,%c;",
556 		       (msg->facility << 3) | msg->level, seq, ts_usec, cont);
557 }
558 
559 static ssize_t msg_print_ext_body(char *buf, size_t size,
560 				  char *dict, size_t dict_len,
561 				  char *text, size_t text_len)
562 {
563 	char *p = buf, *e = buf + size;
564 	size_t i;
565 
566 	/* escape non-printable characters */
567 	for (i = 0; i < text_len; i++) {
568 		unsigned char c = text[i];
569 
570 		if (c < ' ' || c >= 127 || c == '\\')
571 			p += scnprintf(p, e - p, "\\x%02x", c);
572 		else
573 			append_char(&p, e, c);
574 	}
575 	append_char(&p, e, '\n');
576 
577 	if (dict_len) {
578 		bool line = true;
579 
580 		for (i = 0; i < dict_len; i++) {
581 			unsigned char c = dict[i];
582 
583 			if (line) {
584 				append_char(&p, e, ' ');
585 				line = false;
586 			}
587 
588 			if (c == '\0') {
589 				append_char(&p, e, '\n');
590 				line = true;
591 				continue;
592 			}
593 
594 			if (c < ' ' || c >= 127 || c == '\\') {
595 				p += scnprintf(p, e - p, "\\x%02x", c);
596 				continue;
597 			}
598 
599 			append_char(&p, e, c);
600 		}
601 		append_char(&p, e, '\n');
602 	}
603 
604 	return p - buf;
605 }
606 
607 /* /dev/kmsg - userspace message inject/listen interface */
608 struct devkmsg_user {
609 	u64 seq;
610 	u32 idx;
611 	enum log_flags prev;
612 	struct mutex lock;
613 	char buf[CONSOLE_EXT_LOG_MAX];
614 };
615 
616 static ssize_t devkmsg_write(struct kiocb *iocb, struct iov_iter *from)
617 {
618 	char *buf, *line;
619 	int level = default_message_loglevel;
620 	int facility = 1;	/* LOG_USER */
621 	size_t len = iov_iter_count(from);
622 	ssize_t ret = len;
623 
624 	if (len > LOG_LINE_MAX)
625 		return -EINVAL;
626 	buf = kmalloc(len+1, GFP_KERNEL);
627 	if (buf == NULL)
628 		return -ENOMEM;
629 
630 	buf[len] = '\0';
631 	if (copy_from_iter(buf, len, from) != len) {
632 		kfree(buf);
633 		return -EFAULT;
634 	}
635 
636 	/*
637 	 * Extract and skip the syslog prefix <[0-9]*>. Coming from userspace
638 	 * the decimal value represents 32bit, the lower 3 bit are the log
639 	 * level, the rest are the log facility.
640 	 *
641 	 * If no prefix or no userspace facility is specified, we
642 	 * enforce LOG_USER, to be able to reliably distinguish
643 	 * kernel-generated messages from userspace-injected ones.
644 	 */
645 	line = buf;
646 	if (line[0] == '<') {
647 		char *endp = NULL;
648 		unsigned int u;
649 
650 		u = simple_strtoul(line + 1, &endp, 10);
651 		if (endp && endp[0] == '>') {
652 			level = LOG_LEVEL(u);
653 			if (LOG_FACILITY(u) != 0)
654 				facility = LOG_FACILITY(u);
655 			endp++;
656 			len -= endp - line;
657 			line = endp;
658 		}
659 	}
660 
661 	printk_emit(facility, level, NULL, 0, "%s", line);
662 	kfree(buf);
663 	return ret;
664 }
665 
666 static ssize_t devkmsg_read(struct file *file, char __user *buf,
667 			    size_t count, loff_t *ppos)
668 {
669 	struct devkmsg_user *user = file->private_data;
670 	struct printk_log *msg;
671 	size_t len;
672 	ssize_t ret;
673 
674 	if (!user)
675 		return -EBADF;
676 
677 	ret = mutex_lock_interruptible(&user->lock);
678 	if (ret)
679 		return ret;
680 	raw_spin_lock_irq(&logbuf_lock);
681 	while (user->seq == log_next_seq) {
682 		if (file->f_flags & O_NONBLOCK) {
683 			ret = -EAGAIN;
684 			raw_spin_unlock_irq(&logbuf_lock);
685 			goto out;
686 		}
687 
688 		raw_spin_unlock_irq(&logbuf_lock);
689 		ret = wait_event_interruptible(log_wait,
690 					       user->seq != log_next_seq);
691 		if (ret)
692 			goto out;
693 		raw_spin_lock_irq(&logbuf_lock);
694 	}
695 
696 	if (user->seq < log_first_seq) {
697 		/* our last seen message is gone, return error and reset */
698 		user->idx = log_first_idx;
699 		user->seq = log_first_seq;
700 		ret = -EPIPE;
701 		raw_spin_unlock_irq(&logbuf_lock);
702 		goto out;
703 	}
704 
705 	msg = log_from_idx(user->idx);
706 	len = msg_print_ext_header(user->buf, sizeof(user->buf),
707 				   msg, user->seq, user->prev);
708 	len += msg_print_ext_body(user->buf + len, sizeof(user->buf) - len,
709 				  log_dict(msg), msg->dict_len,
710 				  log_text(msg), msg->text_len);
711 
712 	user->prev = msg->flags;
713 	user->idx = log_next(user->idx);
714 	user->seq++;
715 	raw_spin_unlock_irq(&logbuf_lock);
716 
717 	if (len > count) {
718 		ret = -EINVAL;
719 		goto out;
720 	}
721 
722 	if (copy_to_user(buf, user->buf, len)) {
723 		ret = -EFAULT;
724 		goto out;
725 	}
726 	ret = len;
727 out:
728 	mutex_unlock(&user->lock);
729 	return ret;
730 }
731 
732 static loff_t devkmsg_llseek(struct file *file, loff_t offset, int whence)
733 {
734 	struct devkmsg_user *user = file->private_data;
735 	loff_t ret = 0;
736 
737 	if (!user)
738 		return -EBADF;
739 	if (offset)
740 		return -ESPIPE;
741 
742 	raw_spin_lock_irq(&logbuf_lock);
743 	switch (whence) {
744 	case SEEK_SET:
745 		/* the first record */
746 		user->idx = log_first_idx;
747 		user->seq = log_first_seq;
748 		break;
749 	case SEEK_DATA:
750 		/*
751 		 * The first record after the last SYSLOG_ACTION_CLEAR,
752 		 * like issued by 'dmesg -c'. Reading /dev/kmsg itself
753 		 * changes no global state, and does not clear anything.
754 		 */
755 		user->idx = clear_idx;
756 		user->seq = clear_seq;
757 		break;
758 	case SEEK_END:
759 		/* after the last record */
760 		user->idx = log_next_idx;
761 		user->seq = log_next_seq;
762 		break;
763 	default:
764 		ret = -EINVAL;
765 	}
766 	raw_spin_unlock_irq(&logbuf_lock);
767 	return ret;
768 }
769 
770 static unsigned int devkmsg_poll(struct file *file, poll_table *wait)
771 {
772 	struct devkmsg_user *user = file->private_data;
773 	int ret = 0;
774 
775 	if (!user)
776 		return POLLERR|POLLNVAL;
777 
778 	poll_wait(file, &log_wait, wait);
779 
780 	raw_spin_lock_irq(&logbuf_lock);
781 	if (user->seq < log_next_seq) {
782 		/* return error when data has vanished underneath us */
783 		if (user->seq < log_first_seq)
784 			ret = POLLIN|POLLRDNORM|POLLERR|POLLPRI;
785 		else
786 			ret = POLLIN|POLLRDNORM;
787 	}
788 	raw_spin_unlock_irq(&logbuf_lock);
789 
790 	return ret;
791 }
792 
793 static int devkmsg_open(struct inode *inode, struct file *file)
794 {
795 	struct devkmsg_user *user;
796 	int err;
797 
798 	/* write-only does not need any file context */
799 	if ((file->f_flags & O_ACCMODE) == O_WRONLY)
800 		return 0;
801 
802 	err = check_syslog_permissions(SYSLOG_ACTION_READ_ALL,
803 				       SYSLOG_FROM_READER);
804 	if (err)
805 		return err;
806 
807 	user = kmalloc(sizeof(struct devkmsg_user), GFP_KERNEL);
808 	if (!user)
809 		return -ENOMEM;
810 
811 	mutex_init(&user->lock);
812 
813 	raw_spin_lock_irq(&logbuf_lock);
814 	user->idx = log_first_idx;
815 	user->seq = log_first_seq;
816 	raw_spin_unlock_irq(&logbuf_lock);
817 
818 	file->private_data = user;
819 	return 0;
820 }
821 
822 static int devkmsg_release(struct inode *inode, struct file *file)
823 {
824 	struct devkmsg_user *user = file->private_data;
825 
826 	if (!user)
827 		return 0;
828 
829 	mutex_destroy(&user->lock);
830 	kfree(user);
831 	return 0;
832 }
833 
834 const struct file_operations kmsg_fops = {
835 	.open = devkmsg_open,
836 	.read = devkmsg_read,
837 	.write_iter = devkmsg_write,
838 	.llseek = devkmsg_llseek,
839 	.poll = devkmsg_poll,
840 	.release = devkmsg_release,
841 };
842 
843 #ifdef CONFIG_KEXEC_CORE
844 /*
845  * This appends the listed symbols to /proc/vmcore
846  *
847  * /proc/vmcore is used by various utilities, like crash and makedumpfile to
848  * obtain access to symbols that are otherwise very difficult to locate.  These
849  * symbols are specifically used so that utilities can access and extract the
850  * dmesg log from a vmcore file after a crash.
851  */
852 void log_buf_kexec_setup(void)
853 {
854 	VMCOREINFO_SYMBOL(log_buf);
855 	VMCOREINFO_SYMBOL(log_buf_len);
856 	VMCOREINFO_SYMBOL(log_first_idx);
857 	VMCOREINFO_SYMBOL(log_next_idx);
858 	/*
859 	 * Export struct printk_log size and field offsets. User space tools can
860 	 * parse it and detect any changes to structure down the line.
861 	 */
862 	VMCOREINFO_STRUCT_SIZE(printk_log);
863 	VMCOREINFO_OFFSET(printk_log, ts_nsec);
864 	VMCOREINFO_OFFSET(printk_log, len);
865 	VMCOREINFO_OFFSET(printk_log, text_len);
866 	VMCOREINFO_OFFSET(printk_log, dict_len);
867 }
868 #endif
869 
870 /* requested log_buf_len from kernel cmdline */
871 static unsigned long __initdata new_log_buf_len;
872 
873 /* we practice scaling the ring buffer by powers of 2 */
874 static void __init log_buf_len_update(unsigned size)
875 {
876 	if (size)
877 		size = roundup_pow_of_two(size);
878 	if (size > log_buf_len)
879 		new_log_buf_len = size;
880 }
881 
882 /* save requested log_buf_len since it's too early to process it */
883 static int __init log_buf_len_setup(char *str)
884 {
885 	unsigned size = memparse(str, &str);
886 
887 	log_buf_len_update(size);
888 
889 	return 0;
890 }
891 early_param("log_buf_len", log_buf_len_setup);
892 
893 #ifdef CONFIG_SMP
894 #define __LOG_CPU_MAX_BUF_LEN (1 << CONFIG_LOG_CPU_MAX_BUF_SHIFT)
895 
896 static void __init log_buf_add_cpu(void)
897 {
898 	unsigned int cpu_extra;
899 
900 	/*
901 	 * archs should set up cpu_possible_bits properly with
902 	 * set_cpu_possible() after setup_arch() but just in
903 	 * case lets ensure this is valid.
904 	 */
905 	if (num_possible_cpus() == 1)
906 		return;
907 
908 	cpu_extra = (num_possible_cpus() - 1) * __LOG_CPU_MAX_BUF_LEN;
909 
910 	/* by default this will only continue through for large > 64 CPUs */
911 	if (cpu_extra <= __LOG_BUF_LEN / 2)
912 		return;
913 
914 	pr_info("log_buf_len individual max cpu contribution: %d bytes\n",
915 		__LOG_CPU_MAX_BUF_LEN);
916 	pr_info("log_buf_len total cpu_extra contributions: %d bytes\n",
917 		cpu_extra);
918 	pr_info("log_buf_len min size: %d bytes\n", __LOG_BUF_LEN);
919 
920 	log_buf_len_update(cpu_extra + __LOG_BUF_LEN);
921 }
922 #else /* !CONFIG_SMP */
923 static inline void log_buf_add_cpu(void) {}
924 #endif /* CONFIG_SMP */
925 
926 void __init setup_log_buf(int early)
927 {
928 	unsigned long flags;
929 	char *new_log_buf;
930 	int free;
931 
932 	if (log_buf != __log_buf)
933 		return;
934 
935 	if (!early && !new_log_buf_len)
936 		log_buf_add_cpu();
937 
938 	if (!new_log_buf_len)
939 		return;
940 
941 	if (early) {
942 		new_log_buf =
943 			memblock_virt_alloc(new_log_buf_len, LOG_ALIGN);
944 	} else {
945 		new_log_buf = memblock_virt_alloc_nopanic(new_log_buf_len,
946 							  LOG_ALIGN);
947 	}
948 
949 	if (unlikely(!new_log_buf)) {
950 		pr_err("log_buf_len: %ld bytes not available\n",
951 			new_log_buf_len);
952 		return;
953 	}
954 
955 	raw_spin_lock_irqsave(&logbuf_lock, flags);
956 	log_buf_len = new_log_buf_len;
957 	log_buf = new_log_buf;
958 	new_log_buf_len = 0;
959 	free = __LOG_BUF_LEN - log_next_idx;
960 	memcpy(log_buf, __log_buf, __LOG_BUF_LEN);
961 	raw_spin_unlock_irqrestore(&logbuf_lock, flags);
962 
963 	pr_info("log_buf_len: %d bytes\n", log_buf_len);
964 	pr_info("early log buf free: %d(%d%%)\n",
965 		free, (free * 100) / __LOG_BUF_LEN);
966 }
967 
968 static bool __read_mostly ignore_loglevel;
969 
970 static int __init ignore_loglevel_setup(char *str)
971 {
972 	ignore_loglevel = true;
973 	pr_info("debug: ignoring loglevel setting.\n");
974 
975 	return 0;
976 }
977 
978 early_param("ignore_loglevel", ignore_loglevel_setup);
979 module_param(ignore_loglevel, bool, S_IRUGO | S_IWUSR);
980 MODULE_PARM_DESC(ignore_loglevel,
981 		 "ignore loglevel setting (prints all kernel messages to the console)");
982 
983 #ifdef CONFIG_BOOT_PRINTK_DELAY
984 
985 static int boot_delay; /* msecs delay after each printk during bootup */
986 static unsigned long long loops_per_msec;	/* based on boot_delay */
987 
988 static int __init boot_delay_setup(char *str)
989 {
990 	unsigned long lpj;
991 
992 	lpj = preset_lpj ? preset_lpj : 1000000;	/* some guess */
993 	loops_per_msec = (unsigned long long)lpj / 1000 * HZ;
994 
995 	get_option(&str, &boot_delay);
996 	if (boot_delay > 10 * 1000)
997 		boot_delay = 0;
998 
999 	pr_debug("boot_delay: %u, preset_lpj: %ld, lpj: %lu, "
1000 		"HZ: %d, loops_per_msec: %llu\n",
1001 		boot_delay, preset_lpj, lpj, HZ, loops_per_msec);
1002 	return 0;
1003 }
1004 early_param("boot_delay", boot_delay_setup);
1005 
1006 static void boot_delay_msec(int level)
1007 {
1008 	unsigned long long k;
1009 	unsigned long timeout;
1010 
1011 	if ((boot_delay == 0 || system_state != SYSTEM_BOOTING)
1012 		|| (level >= console_loglevel && !ignore_loglevel)) {
1013 		return;
1014 	}
1015 
1016 	k = (unsigned long long)loops_per_msec * boot_delay;
1017 
1018 	timeout = jiffies + msecs_to_jiffies(boot_delay);
1019 	while (k) {
1020 		k--;
1021 		cpu_relax();
1022 		/*
1023 		 * use (volatile) jiffies to prevent
1024 		 * compiler reduction; loop termination via jiffies
1025 		 * is secondary and may or may not happen.
1026 		 */
1027 		if (time_after(jiffies, timeout))
1028 			break;
1029 		touch_nmi_watchdog();
1030 	}
1031 }
1032 #else
1033 static inline void boot_delay_msec(int level)
1034 {
1035 }
1036 #endif
1037 
1038 static bool printk_time = IS_ENABLED(CONFIG_PRINTK_TIME);
1039 module_param_named(time, printk_time, bool, S_IRUGO | S_IWUSR);
1040 
1041 static size_t print_time(u64 ts, char *buf)
1042 {
1043 	unsigned long rem_nsec;
1044 
1045 	if (!printk_time)
1046 		return 0;
1047 
1048 	rem_nsec = do_div(ts, 1000000000);
1049 
1050 	if (!buf)
1051 		return snprintf(NULL, 0, "[%5lu.000000] ", (unsigned long)ts);
1052 
1053 	return sprintf(buf, "[%5lu.%06lu] ",
1054 		       (unsigned long)ts, rem_nsec / 1000);
1055 }
1056 
1057 static size_t print_prefix(const struct printk_log *msg, bool syslog, char *buf)
1058 {
1059 	size_t len = 0;
1060 	unsigned int prefix = (msg->facility << 3) | msg->level;
1061 
1062 	if (syslog) {
1063 		if (buf) {
1064 			len += sprintf(buf, "<%u>", prefix);
1065 		} else {
1066 			len += 3;
1067 			if (prefix > 999)
1068 				len += 3;
1069 			else if (prefix > 99)
1070 				len += 2;
1071 			else if (prefix > 9)
1072 				len++;
1073 		}
1074 	}
1075 
1076 	len += print_time(msg->ts_nsec, buf ? buf + len : NULL);
1077 	return len;
1078 }
1079 
1080 static size_t msg_print_text(const struct printk_log *msg, enum log_flags prev,
1081 			     bool syslog, char *buf, size_t size)
1082 {
1083 	const char *text = log_text(msg);
1084 	size_t text_size = msg->text_len;
1085 	bool prefix = true;
1086 	bool newline = true;
1087 	size_t len = 0;
1088 
1089 	if ((prev & LOG_CONT) && !(msg->flags & LOG_PREFIX))
1090 		prefix = false;
1091 
1092 	if (msg->flags & LOG_CONT) {
1093 		if ((prev & LOG_CONT) && !(prev & LOG_NEWLINE))
1094 			prefix = false;
1095 
1096 		if (!(msg->flags & LOG_NEWLINE))
1097 			newline = false;
1098 	}
1099 
1100 	do {
1101 		const char *next = memchr(text, '\n', text_size);
1102 		size_t text_len;
1103 
1104 		if (next) {
1105 			text_len = next - text;
1106 			next++;
1107 			text_size -= next - text;
1108 		} else {
1109 			text_len = text_size;
1110 		}
1111 
1112 		if (buf) {
1113 			if (print_prefix(msg, syslog, NULL) +
1114 			    text_len + 1 >= size - len)
1115 				break;
1116 
1117 			if (prefix)
1118 				len += print_prefix(msg, syslog, buf + len);
1119 			memcpy(buf + len, text, text_len);
1120 			len += text_len;
1121 			if (next || newline)
1122 				buf[len++] = '\n';
1123 		} else {
1124 			/* SYSLOG_ACTION_* buffer size only calculation */
1125 			if (prefix)
1126 				len += print_prefix(msg, syslog, NULL);
1127 			len += text_len;
1128 			if (next || newline)
1129 				len++;
1130 		}
1131 
1132 		prefix = true;
1133 		text = next;
1134 	} while (text);
1135 
1136 	return len;
1137 }
1138 
1139 static int syslog_print(char __user *buf, int size)
1140 {
1141 	char *text;
1142 	struct printk_log *msg;
1143 	int len = 0;
1144 
1145 	text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
1146 	if (!text)
1147 		return -ENOMEM;
1148 
1149 	while (size > 0) {
1150 		size_t n;
1151 		size_t skip;
1152 
1153 		raw_spin_lock_irq(&logbuf_lock);
1154 		if (syslog_seq < log_first_seq) {
1155 			/* messages are gone, move to first one */
1156 			syslog_seq = log_first_seq;
1157 			syslog_idx = log_first_idx;
1158 			syslog_prev = 0;
1159 			syslog_partial = 0;
1160 		}
1161 		if (syslog_seq == log_next_seq) {
1162 			raw_spin_unlock_irq(&logbuf_lock);
1163 			break;
1164 		}
1165 
1166 		skip = syslog_partial;
1167 		msg = log_from_idx(syslog_idx);
1168 		n = msg_print_text(msg, syslog_prev, true, text,
1169 				   LOG_LINE_MAX + PREFIX_MAX);
1170 		if (n - syslog_partial <= size) {
1171 			/* message fits into buffer, move forward */
1172 			syslog_idx = log_next(syslog_idx);
1173 			syslog_seq++;
1174 			syslog_prev = msg->flags;
1175 			n -= syslog_partial;
1176 			syslog_partial = 0;
1177 		} else if (!len){
1178 			/* partial read(), remember position */
1179 			n = size;
1180 			syslog_partial += n;
1181 		} else
1182 			n = 0;
1183 		raw_spin_unlock_irq(&logbuf_lock);
1184 
1185 		if (!n)
1186 			break;
1187 
1188 		if (copy_to_user(buf, text + skip, n)) {
1189 			if (!len)
1190 				len = -EFAULT;
1191 			break;
1192 		}
1193 
1194 		len += n;
1195 		size -= n;
1196 		buf += n;
1197 	}
1198 
1199 	kfree(text);
1200 	return len;
1201 }
1202 
1203 static int syslog_print_all(char __user *buf, int size, bool clear)
1204 {
1205 	char *text;
1206 	int len = 0;
1207 
1208 	text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
1209 	if (!text)
1210 		return -ENOMEM;
1211 
1212 	raw_spin_lock_irq(&logbuf_lock);
1213 	if (buf) {
1214 		u64 next_seq;
1215 		u64 seq;
1216 		u32 idx;
1217 		enum log_flags prev;
1218 
1219 		if (clear_seq < log_first_seq) {
1220 			/* messages are gone, move to first available one */
1221 			clear_seq = log_first_seq;
1222 			clear_idx = log_first_idx;
1223 		}
1224 
1225 		/*
1226 		 * Find first record that fits, including all following records,
1227 		 * into the user-provided buffer for this dump.
1228 		 */
1229 		seq = clear_seq;
1230 		idx = clear_idx;
1231 		prev = 0;
1232 		while (seq < log_next_seq) {
1233 			struct printk_log *msg = log_from_idx(idx);
1234 
1235 			len += msg_print_text(msg, prev, true, NULL, 0);
1236 			prev = msg->flags;
1237 			idx = log_next(idx);
1238 			seq++;
1239 		}
1240 
1241 		/* move first record forward until length fits into the buffer */
1242 		seq = clear_seq;
1243 		idx = clear_idx;
1244 		prev = 0;
1245 		while (len > size && seq < log_next_seq) {
1246 			struct printk_log *msg = log_from_idx(idx);
1247 
1248 			len -= msg_print_text(msg, prev, true, NULL, 0);
1249 			prev = msg->flags;
1250 			idx = log_next(idx);
1251 			seq++;
1252 		}
1253 
1254 		/* last message fitting into this dump */
1255 		next_seq = log_next_seq;
1256 
1257 		len = 0;
1258 		while (len >= 0 && seq < next_seq) {
1259 			struct printk_log *msg = log_from_idx(idx);
1260 			int textlen;
1261 
1262 			textlen = msg_print_text(msg, prev, true, text,
1263 						 LOG_LINE_MAX + PREFIX_MAX);
1264 			if (textlen < 0) {
1265 				len = textlen;
1266 				break;
1267 			}
1268 			idx = log_next(idx);
1269 			seq++;
1270 			prev = msg->flags;
1271 
1272 			raw_spin_unlock_irq(&logbuf_lock);
1273 			if (copy_to_user(buf + len, text, textlen))
1274 				len = -EFAULT;
1275 			else
1276 				len += textlen;
1277 			raw_spin_lock_irq(&logbuf_lock);
1278 
1279 			if (seq < log_first_seq) {
1280 				/* messages are gone, move to next one */
1281 				seq = log_first_seq;
1282 				idx = log_first_idx;
1283 				prev = 0;
1284 			}
1285 		}
1286 	}
1287 
1288 	if (clear) {
1289 		clear_seq = log_next_seq;
1290 		clear_idx = log_next_idx;
1291 	}
1292 	raw_spin_unlock_irq(&logbuf_lock);
1293 
1294 	kfree(text);
1295 	return len;
1296 }
1297 
1298 int do_syslog(int type, char __user *buf, int len, int source)
1299 {
1300 	bool clear = false;
1301 	static int saved_console_loglevel = LOGLEVEL_DEFAULT;
1302 	int error;
1303 
1304 	error = check_syslog_permissions(type, source);
1305 	if (error)
1306 		goto out;
1307 
1308 	switch (type) {
1309 	case SYSLOG_ACTION_CLOSE:	/* Close log */
1310 		break;
1311 	case SYSLOG_ACTION_OPEN:	/* Open log */
1312 		break;
1313 	case SYSLOG_ACTION_READ:	/* Read from log */
1314 		error = -EINVAL;
1315 		if (!buf || len < 0)
1316 			goto out;
1317 		error = 0;
1318 		if (!len)
1319 			goto out;
1320 		if (!access_ok(VERIFY_WRITE, buf, len)) {
1321 			error = -EFAULT;
1322 			goto out;
1323 		}
1324 		error = wait_event_interruptible(log_wait,
1325 						 syslog_seq != log_next_seq);
1326 		if (error)
1327 			goto out;
1328 		error = syslog_print(buf, len);
1329 		break;
1330 	/* Read/clear last kernel messages */
1331 	case SYSLOG_ACTION_READ_CLEAR:
1332 		clear = true;
1333 		/* FALL THRU */
1334 	/* Read last kernel messages */
1335 	case SYSLOG_ACTION_READ_ALL:
1336 		error = -EINVAL;
1337 		if (!buf || len < 0)
1338 			goto out;
1339 		error = 0;
1340 		if (!len)
1341 			goto out;
1342 		if (!access_ok(VERIFY_WRITE, buf, len)) {
1343 			error = -EFAULT;
1344 			goto out;
1345 		}
1346 		error = syslog_print_all(buf, len, clear);
1347 		break;
1348 	/* Clear ring buffer */
1349 	case SYSLOG_ACTION_CLEAR:
1350 		syslog_print_all(NULL, 0, true);
1351 		break;
1352 	/* Disable logging to console */
1353 	case SYSLOG_ACTION_CONSOLE_OFF:
1354 		if (saved_console_loglevel == LOGLEVEL_DEFAULT)
1355 			saved_console_loglevel = console_loglevel;
1356 		console_loglevel = minimum_console_loglevel;
1357 		break;
1358 	/* Enable logging to console */
1359 	case SYSLOG_ACTION_CONSOLE_ON:
1360 		if (saved_console_loglevel != LOGLEVEL_DEFAULT) {
1361 			console_loglevel = saved_console_loglevel;
1362 			saved_console_loglevel = LOGLEVEL_DEFAULT;
1363 		}
1364 		break;
1365 	/* Set level of messages printed to console */
1366 	case SYSLOG_ACTION_CONSOLE_LEVEL:
1367 		error = -EINVAL;
1368 		if (len < 1 || len > 8)
1369 			goto out;
1370 		if (len < minimum_console_loglevel)
1371 			len = minimum_console_loglevel;
1372 		console_loglevel = len;
1373 		/* Implicitly re-enable logging to console */
1374 		saved_console_loglevel = LOGLEVEL_DEFAULT;
1375 		error = 0;
1376 		break;
1377 	/* Number of chars in the log buffer */
1378 	case SYSLOG_ACTION_SIZE_UNREAD:
1379 		raw_spin_lock_irq(&logbuf_lock);
1380 		if (syslog_seq < log_first_seq) {
1381 			/* messages are gone, move to first one */
1382 			syslog_seq = log_first_seq;
1383 			syslog_idx = log_first_idx;
1384 			syslog_prev = 0;
1385 			syslog_partial = 0;
1386 		}
1387 		if (source == SYSLOG_FROM_PROC) {
1388 			/*
1389 			 * Short-cut for poll(/"proc/kmsg") which simply checks
1390 			 * for pending data, not the size; return the count of
1391 			 * records, not the length.
1392 			 */
1393 			error = log_next_seq - syslog_seq;
1394 		} else {
1395 			u64 seq = syslog_seq;
1396 			u32 idx = syslog_idx;
1397 			enum log_flags prev = syslog_prev;
1398 
1399 			error = 0;
1400 			while (seq < log_next_seq) {
1401 				struct printk_log *msg = log_from_idx(idx);
1402 
1403 				error += msg_print_text(msg, prev, true, NULL, 0);
1404 				idx = log_next(idx);
1405 				seq++;
1406 				prev = msg->flags;
1407 			}
1408 			error -= syslog_partial;
1409 		}
1410 		raw_spin_unlock_irq(&logbuf_lock);
1411 		break;
1412 	/* Size of the log buffer */
1413 	case SYSLOG_ACTION_SIZE_BUFFER:
1414 		error = log_buf_len;
1415 		break;
1416 	default:
1417 		error = -EINVAL;
1418 		break;
1419 	}
1420 out:
1421 	return error;
1422 }
1423 
1424 SYSCALL_DEFINE3(syslog, int, type, char __user *, buf, int, len)
1425 {
1426 	return do_syslog(type, buf, len, SYSLOG_FROM_READER);
1427 }
1428 
1429 /*
1430  * Call the console drivers, asking them to write out
1431  * log_buf[start] to log_buf[end - 1].
1432  * The console_lock must be held.
1433  */
1434 static void call_console_drivers(int level,
1435 				 const char *ext_text, size_t ext_len,
1436 				 const char *text, size_t len)
1437 {
1438 	struct console *con;
1439 
1440 	trace_console(text, len);
1441 
1442 	if (level >= console_loglevel && !ignore_loglevel)
1443 		return;
1444 	if (!console_drivers)
1445 		return;
1446 
1447 	for_each_console(con) {
1448 		if (exclusive_console && con != exclusive_console)
1449 			continue;
1450 		if (!(con->flags & CON_ENABLED))
1451 			continue;
1452 		if (!con->write)
1453 			continue;
1454 		if (!cpu_online(smp_processor_id()) &&
1455 		    !(con->flags & CON_ANYTIME))
1456 			continue;
1457 		if (con->flags & CON_EXTENDED)
1458 			con->write(con, ext_text, ext_len);
1459 		else
1460 			con->write(con, text, len);
1461 	}
1462 }
1463 
1464 /*
1465  * Zap console related locks when oopsing.
1466  * To leave time for slow consoles to print a full oops,
1467  * only zap at most once every 30 seconds.
1468  */
1469 static void zap_locks(void)
1470 {
1471 	static unsigned long oops_timestamp;
1472 
1473 	if (time_after_eq(jiffies, oops_timestamp) &&
1474 	    !time_after(jiffies, oops_timestamp + 30 * HZ))
1475 		return;
1476 
1477 	oops_timestamp = jiffies;
1478 
1479 	debug_locks_off();
1480 	/* If a crash is occurring, make sure we can't deadlock */
1481 	raw_spin_lock_init(&logbuf_lock);
1482 	/* And make sure that we print immediately */
1483 	sema_init(&console_sem, 1);
1484 }
1485 
1486 /*
1487  * Check if we have any console that is capable of printing while cpu is
1488  * booting or shutting down. Requires console_sem.
1489  */
1490 static int have_callable_console(void)
1491 {
1492 	struct console *con;
1493 
1494 	for_each_console(con)
1495 		if (con->flags & CON_ANYTIME)
1496 			return 1;
1497 
1498 	return 0;
1499 }
1500 
1501 /*
1502  * Can we actually use the console at this time on this cpu?
1503  *
1504  * Console drivers may assume that per-cpu resources have been allocated. So
1505  * unless they're explicitly marked as being able to cope (CON_ANYTIME) don't
1506  * call them until this CPU is officially up.
1507  */
1508 static inline int can_use_console(unsigned int cpu)
1509 {
1510 	return cpu_online(cpu) || have_callable_console();
1511 }
1512 
1513 /*
1514  * Try to get console ownership to actually show the kernel
1515  * messages from a 'printk'. Return true (and with the
1516  * console_lock held, and 'console_locked' set) if it
1517  * is successful, false otherwise.
1518  */
1519 static int console_trylock_for_printk(void)
1520 {
1521 	unsigned int cpu = smp_processor_id();
1522 
1523 	if (!console_trylock())
1524 		return 0;
1525 	/*
1526 	 * If we can't use the console, we need to release the console
1527 	 * semaphore by hand to avoid flushing the buffer. We need to hold the
1528 	 * console semaphore in order to do this test safely.
1529 	 */
1530 	if (!can_use_console(cpu)) {
1531 		console_locked = 0;
1532 		up_console_sem();
1533 		return 0;
1534 	}
1535 	return 1;
1536 }
1537 
1538 int printk_delay_msec __read_mostly;
1539 
1540 static inline void printk_delay(void)
1541 {
1542 	if (unlikely(printk_delay_msec)) {
1543 		int m = printk_delay_msec;
1544 
1545 		while (m--) {
1546 			mdelay(1);
1547 			touch_nmi_watchdog();
1548 		}
1549 	}
1550 }
1551 
1552 /*
1553  * Continuation lines are buffered, and not committed to the record buffer
1554  * until the line is complete, or a race forces it. The line fragments
1555  * though, are printed immediately to the consoles to ensure everything has
1556  * reached the console in case of a kernel crash.
1557  */
1558 static struct cont {
1559 	char buf[LOG_LINE_MAX];
1560 	size_t len;			/* length == 0 means unused buffer */
1561 	size_t cons;			/* bytes written to console */
1562 	struct task_struct *owner;	/* task of first print*/
1563 	u64 ts_nsec;			/* time of first print */
1564 	u8 level;			/* log level of first message */
1565 	u8 facility;			/* log facility of first message */
1566 	enum log_flags flags;		/* prefix, newline flags */
1567 	bool flushed:1;			/* buffer sealed and committed */
1568 } cont;
1569 
1570 static void cont_flush(enum log_flags flags)
1571 {
1572 	if (cont.flushed)
1573 		return;
1574 	if (cont.len == 0)
1575 		return;
1576 
1577 	if (cont.cons) {
1578 		/*
1579 		 * If a fragment of this line was directly flushed to the
1580 		 * console; wait for the console to pick up the rest of the
1581 		 * line. LOG_NOCONS suppresses a duplicated output.
1582 		 */
1583 		log_store(cont.facility, cont.level, flags | LOG_NOCONS,
1584 			  cont.ts_nsec, NULL, 0, cont.buf, cont.len);
1585 		cont.flags = flags;
1586 		cont.flushed = true;
1587 	} else {
1588 		/*
1589 		 * If no fragment of this line ever reached the console,
1590 		 * just submit it to the store and free the buffer.
1591 		 */
1592 		log_store(cont.facility, cont.level, flags, 0,
1593 			  NULL, 0, cont.buf, cont.len);
1594 		cont.len = 0;
1595 	}
1596 }
1597 
1598 static bool cont_add(int facility, int level, const char *text, size_t len)
1599 {
1600 	if (cont.len && cont.flushed)
1601 		return false;
1602 
1603 	/*
1604 	 * If ext consoles are present, flush and skip in-kernel
1605 	 * continuation.  See nr_ext_console_drivers definition.  Also, if
1606 	 * the line gets too long, split it up in separate records.
1607 	 */
1608 	if (nr_ext_console_drivers || cont.len + len > sizeof(cont.buf)) {
1609 		cont_flush(LOG_CONT);
1610 		return false;
1611 	}
1612 
1613 	if (!cont.len) {
1614 		cont.facility = facility;
1615 		cont.level = level;
1616 		cont.owner = current;
1617 		cont.ts_nsec = local_clock();
1618 		cont.flags = 0;
1619 		cont.cons = 0;
1620 		cont.flushed = false;
1621 	}
1622 
1623 	memcpy(cont.buf + cont.len, text, len);
1624 	cont.len += len;
1625 
1626 	if (cont.len > (sizeof(cont.buf) * 80) / 100)
1627 		cont_flush(LOG_CONT);
1628 
1629 	return true;
1630 }
1631 
1632 static size_t cont_print_text(char *text, size_t size)
1633 {
1634 	size_t textlen = 0;
1635 	size_t len;
1636 
1637 	if (cont.cons == 0 && (console_prev & LOG_NEWLINE)) {
1638 		textlen += print_time(cont.ts_nsec, text);
1639 		size -= textlen;
1640 	}
1641 
1642 	len = cont.len - cont.cons;
1643 	if (len > 0) {
1644 		if (len+1 > size)
1645 			len = size-1;
1646 		memcpy(text + textlen, cont.buf + cont.cons, len);
1647 		textlen += len;
1648 		cont.cons = cont.len;
1649 	}
1650 
1651 	if (cont.flushed) {
1652 		if (cont.flags & LOG_NEWLINE)
1653 			text[textlen++] = '\n';
1654 		/* got everything, release buffer */
1655 		cont.len = 0;
1656 	}
1657 	return textlen;
1658 }
1659 
1660 asmlinkage int vprintk_emit(int facility, int level,
1661 			    const char *dict, size_t dictlen,
1662 			    const char *fmt, va_list args)
1663 {
1664 	static bool recursion_bug;
1665 	static char textbuf[LOG_LINE_MAX];
1666 	char *text = textbuf;
1667 	size_t text_len = 0;
1668 	enum log_flags lflags = 0;
1669 	unsigned long flags;
1670 	int this_cpu;
1671 	int printed_len = 0;
1672 	bool in_sched = false;
1673 	/* cpu currently holding logbuf_lock in this function */
1674 	static unsigned int logbuf_cpu = UINT_MAX;
1675 
1676 	if (level == LOGLEVEL_SCHED) {
1677 		level = LOGLEVEL_DEFAULT;
1678 		in_sched = true;
1679 	}
1680 
1681 	boot_delay_msec(level);
1682 	printk_delay();
1683 
1684 	/* This stops the holder of console_sem just where we want him */
1685 	local_irq_save(flags);
1686 	this_cpu = smp_processor_id();
1687 
1688 	/*
1689 	 * Ouch, printk recursed into itself!
1690 	 */
1691 	if (unlikely(logbuf_cpu == this_cpu)) {
1692 		/*
1693 		 * If a crash is occurring during printk() on this CPU,
1694 		 * then try to get the crash message out but make sure
1695 		 * we can't deadlock. Otherwise just return to avoid the
1696 		 * recursion and return - but flag the recursion so that
1697 		 * it can be printed at the next appropriate moment:
1698 		 */
1699 		if (!oops_in_progress && !lockdep_recursing(current)) {
1700 			recursion_bug = true;
1701 			local_irq_restore(flags);
1702 			return 0;
1703 		}
1704 		zap_locks();
1705 	}
1706 
1707 	lockdep_off();
1708 	raw_spin_lock(&logbuf_lock);
1709 	logbuf_cpu = this_cpu;
1710 
1711 	if (unlikely(recursion_bug)) {
1712 		static const char recursion_msg[] =
1713 			"BUG: recent printk recursion!";
1714 
1715 		recursion_bug = false;
1716 		/* emit KERN_CRIT message */
1717 		printed_len += log_store(0, 2, LOG_PREFIX|LOG_NEWLINE, 0,
1718 					 NULL, 0, recursion_msg,
1719 					 strlen(recursion_msg));
1720 	}
1721 
1722 	/*
1723 	 * The printf needs to come first; we need the syslog
1724 	 * prefix which might be passed-in as a parameter.
1725 	 */
1726 	text_len = vscnprintf(text, sizeof(textbuf), fmt, args);
1727 
1728 	/* mark and strip a trailing newline */
1729 	if (text_len && text[text_len-1] == '\n') {
1730 		text_len--;
1731 		lflags |= LOG_NEWLINE;
1732 	}
1733 
1734 	/* strip kernel syslog prefix and extract log level or control flags */
1735 	if (facility == 0) {
1736 		int kern_level = printk_get_level(text);
1737 
1738 		if (kern_level) {
1739 			const char *end_of_header = printk_skip_level(text);
1740 			switch (kern_level) {
1741 			case '0' ... '7':
1742 				if (level == LOGLEVEL_DEFAULT)
1743 					level = kern_level - '0';
1744 				/* fallthrough */
1745 			case 'd':	/* KERN_DEFAULT */
1746 				lflags |= LOG_PREFIX;
1747 			}
1748 			/*
1749 			 * No need to check length here because vscnprintf
1750 			 * put '\0' at the end of the string. Only valid and
1751 			 * newly printed level is detected.
1752 			 */
1753 			text_len -= end_of_header - text;
1754 			text = (char *)end_of_header;
1755 		}
1756 	}
1757 
1758 	if (level == LOGLEVEL_DEFAULT)
1759 		level = default_message_loglevel;
1760 
1761 	if (dict)
1762 		lflags |= LOG_PREFIX|LOG_NEWLINE;
1763 
1764 	if (!(lflags & LOG_NEWLINE)) {
1765 		/*
1766 		 * Flush the conflicting buffer. An earlier newline was missing,
1767 		 * or another task also prints continuation lines.
1768 		 */
1769 		if (cont.len && (lflags & LOG_PREFIX || cont.owner != current))
1770 			cont_flush(LOG_NEWLINE);
1771 
1772 		/* buffer line if possible, otherwise store it right away */
1773 		if (cont_add(facility, level, text, text_len))
1774 			printed_len += text_len;
1775 		else
1776 			printed_len += log_store(facility, level,
1777 						 lflags | LOG_CONT, 0,
1778 						 dict, dictlen, text, text_len);
1779 	} else {
1780 		bool stored = false;
1781 
1782 		/*
1783 		 * If an earlier newline was missing and it was the same task,
1784 		 * either merge it with the current buffer and flush, or if
1785 		 * there was a race with interrupts (prefix == true) then just
1786 		 * flush it out and store this line separately.
1787 		 * If the preceding printk was from a different task and missed
1788 		 * a newline, flush and append the newline.
1789 		 */
1790 		if (cont.len) {
1791 			if (cont.owner == current && !(lflags & LOG_PREFIX))
1792 				stored = cont_add(facility, level, text,
1793 						  text_len);
1794 			cont_flush(LOG_NEWLINE);
1795 		}
1796 
1797 		if (stored)
1798 			printed_len += text_len;
1799 		else
1800 			printed_len += log_store(facility, level, lflags, 0,
1801 						 dict, dictlen, text, text_len);
1802 	}
1803 
1804 	logbuf_cpu = UINT_MAX;
1805 	raw_spin_unlock(&logbuf_lock);
1806 	lockdep_on();
1807 	local_irq_restore(flags);
1808 
1809 	/* If called from the scheduler, we can not call up(). */
1810 	if (!in_sched) {
1811 		lockdep_off();
1812 		/*
1813 		 * Disable preemption to avoid being preempted while holding
1814 		 * console_sem which would prevent anyone from printing to
1815 		 * console
1816 		 */
1817 		preempt_disable();
1818 
1819 		/*
1820 		 * Try to acquire and then immediately release the console
1821 		 * semaphore.  The release will print out buffers and wake up
1822 		 * /dev/kmsg and syslog() users.
1823 		 */
1824 		if (console_trylock_for_printk())
1825 			console_unlock();
1826 		preempt_enable();
1827 		lockdep_on();
1828 	}
1829 
1830 	return printed_len;
1831 }
1832 EXPORT_SYMBOL(vprintk_emit);
1833 
1834 asmlinkage int vprintk(const char *fmt, va_list args)
1835 {
1836 	return vprintk_emit(0, LOGLEVEL_DEFAULT, NULL, 0, fmt, args);
1837 }
1838 EXPORT_SYMBOL(vprintk);
1839 
1840 asmlinkage int printk_emit(int facility, int level,
1841 			   const char *dict, size_t dictlen,
1842 			   const char *fmt, ...)
1843 {
1844 	va_list args;
1845 	int r;
1846 
1847 	va_start(args, fmt);
1848 	r = vprintk_emit(facility, level, dict, dictlen, fmt, args);
1849 	va_end(args);
1850 
1851 	return r;
1852 }
1853 EXPORT_SYMBOL(printk_emit);
1854 
1855 int vprintk_default(const char *fmt, va_list args)
1856 {
1857 	int r;
1858 
1859 #ifdef CONFIG_KGDB_KDB
1860 	if (unlikely(kdb_trap_printk)) {
1861 		r = vkdb_printf(KDB_MSGSRC_PRINTK, fmt, args);
1862 		return r;
1863 	}
1864 #endif
1865 	r = vprintk_emit(0, LOGLEVEL_DEFAULT, NULL, 0, fmt, args);
1866 
1867 	return r;
1868 }
1869 EXPORT_SYMBOL_GPL(vprintk_default);
1870 
1871 /*
1872  * This allows printk to be diverted to another function per cpu.
1873  * This is useful for calling printk functions from within NMI
1874  * without worrying about race conditions that can lock up the
1875  * box.
1876  */
1877 DEFINE_PER_CPU(printk_func_t, printk_func) = vprintk_default;
1878 
1879 /**
1880  * printk - print a kernel message
1881  * @fmt: format string
1882  *
1883  * This is printk(). It can be called from any context. We want it to work.
1884  *
1885  * We try to grab the console_lock. If we succeed, it's easy - we log the
1886  * output and call the console drivers.  If we fail to get the semaphore, we
1887  * place the output into the log buffer and return. The current holder of
1888  * the console_sem will notice the new output in console_unlock(); and will
1889  * send it to the consoles before releasing the lock.
1890  *
1891  * One effect of this deferred printing is that code which calls printk() and
1892  * then changes console_loglevel may break. This is because console_loglevel
1893  * is inspected when the actual printing occurs.
1894  *
1895  * See also:
1896  * printf(3)
1897  *
1898  * See the vsnprintf() documentation for format string extensions over C99.
1899  */
1900 asmlinkage __visible int printk(const char *fmt, ...)
1901 {
1902 	printk_func_t vprintk_func;
1903 	va_list args;
1904 	int r;
1905 
1906 	va_start(args, fmt);
1907 
1908 	/*
1909 	 * If a caller overrides the per_cpu printk_func, then it needs
1910 	 * to disable preemption when calling printk(). Otherwise
1911 	 * the printk_func should be set to the default. No need to
1912 	 * disable preemption here.
1913 	 */
1914 	vprintk_func = this_cpu_read(printk_func);
1915 	r = vprintk_func(fmt, args);
1916 
1917 	va_end(args);
1918 
1919 	return r;
1920 }
1921 EXPORT_SYMBOL(printk);
1922 
1923 #else /* CONFIG_PRINTK */
1924 
1925 #define LOG_LINE_MAX		0
1926 #define PREFIX_MAX		0
1927 
1928 static u64 syslog_seq;
1929 static u32 syslog_idx;
1930 static u64 console_seq;
1931 static u32 console_idx;
1932 static enum log_flags syslog_prev;
1933 static u64 log_first_seq;
1934 static u32 log_first_idx;
1935 static u64 log_next_seq;
1936 static enum log_flags console_prev;
1937 static struct cont {
1938 	size_t len;
1939 	size_t cons;
1940 	u8 level;
1941 	bool flushed:1;
1942 } cont;
1943 static char *log_text(const struct printk_log *msg) { return NULL; }
1944 static char *log_dict(const struct printk_log *msg) { return NULL; }
1945 static struct printk_log *log_from_idx(u32 idx) { return NULL; }
1946 static u32 log_next(u32 idx) { return 0; }
1947 static ssize_t msg_print_ext_header(char *buf, size_t size,
1948 				    struct printk_log *msg, u64 seq,
1949 				    enum log_flags prev_flags) { return 0; }
1950 static ssize_t msg_print_ext_body(char *buf, size_t size,
1951 				  char *dict, size_t dict_len,
1952 				  char *text, size_t text_len) { return 0; }
1953 static void call_console_drivers(int level,
1954 				 const char *ext_text, size_t ext_len,
1955 				 const char *text, size_t len) {}
1956 static size_t msg_print_text(const struct printk_log *msg, enum log_flags prev,
1957 			     bool syslog, char *buf, size_t size) { return 0; }
1958 static size_t cont_print_text(char *text, size_t size) { return 0; }
1959 
1960 /* Still needs to be defined for users */
1961 DEFINE_PER_CPU(printk_func_t, printk_func);
1962 
1963 #endif /* CONFIG_PRINTK */
1964 
1965 #ifdef CONFIG_EARLY_PRINTK
1966 struct console *early_console;
1967 
1968 asmlinkage __visible void early_printk(const char *fmt, ...)
1969 {
1970 	va_list ap;
1971 	char buf[512];
1972 	int n;
1973 
1974 	if (!early_console)
1975 		return;
1976 
1977 	va_start(ap, fmt);
1978 	n = vscnprintf(buf, sizeof(buf), fmt, ap);
1979 	va_end(ap);
1980 
1981 	early_console->write(early_console, buf, n);
1982 }
1983 #endif
1984 
1985 static int __add_preferred_console(char *name, int idx, char *options,
1986 				   char *brl_options)
1987 {
1988 	struct console_cmdline *c;
1989 	int i;
1990 
1991 	/*
1992 	 *	See if this tty is not yet registered, and
1993 	 *	if we have a slot free.
1994 	 */
1995 	for (i = 0, c = console_cmdline;
1996 	     i < MAX_CMDLINECONSOLES && c->name[0];
1997 	     i++, c++) {
1998 		if (strcmp(c->name, name) == 0 && c->index == idx) {
1999 			if (!brl_options)
2000 				selected_console = i;
2001 			return 0;
2002 		}
2003 	}
2004 	if (i == MAX_CMDLINECONSOLES)
2005 		return -E2BIG;
2006 	if (!brl_options)
2007 		selected_console = i;
2008 	strlcpy(c->name, name, sizeof(c->name));
2009 	c->options = options;
2010 	braille_set_options(c, brl_options);
2011 
2012 	c->index = idx;
2013 	return 0;
2014 }
2015 /*
2016  * Set up a console.  Called via do_early_param() in init/main.c
2017  * for each "console=" parameter in the boot command line.
2018  */
2019 static int __init console_setup(char *str)
2020 {
2021 	char buf[sizeof(console_cmdline[0].name) + 4]; /* 4 for "ttyS" */
2022 	char *s, *options, *brl_options = NULL;
2023 	int idx;
2024 
2025 	if (_braille_console_setup(&str, &brl_options))
2026 		return 1;
2027 
2028 	/*
2029 	 * Decode str into name, index, options.
2030 	 */
2031 	if (str[0] >= '0' && str[0] <= '9') {
2032 		strcpy(buf, "ttyS");
2033 		strncpy(buf + 4, str, sizeof(buf) - 5);
2034 	} else {
2035 		strncpy(buf, str, sizeof(buf) - 1);
2036 	}
2037 	buf[sizeof(buf) - 1] = 0;
2038 	options = strchr(str, ',');
2039 	if (options)
2040 		*(options++) = 0;
2041 #ifdef __sparc__
2042 	if (!strcmp(str, "ttya"))
2043 		strcpy(buf, "ttyS0");
2044 	if (!strcmp(str, "ttyb"))
2045 		strcpy(buf, "ttyS1");
2046 #endif
2047 	for (s = buf; *s; s++)
2048 		if (isdigit(*s) || *s == ',')
2049 			break;
2050 	idx = simple_strtoul(s, NULL, 10);
2051 	*s = 0;
2052 
2053 	__add_preferred_console(buf, idx, options, brl_options);
2054 	console_set_on_cmdline = 1;
2055 	return 1;
2056 }
2057 __setup("console=", console_setup);
2058 
2059 /**
2060  * add_preferred_console - add a device to the list of preferred consoles.
2061  * @name: device name
2062  * @idx: device index
2063  * @options: options for this console
2064  *
2065  * The last preferred console added will be used for kernel messages
2066  * and stdin/out/err for init.  Normally this is used by console_setup
2067  * above to handle user-supplied console arguments; however it can also
2068  * be used by arch-specific code either to override the user or more
2069  * commonly to provide a default console (ie from PROM variables) when
2070  * the user has not supplied one.
2071  */
2072 int add_preferred_console(char *name, int idx, char *options)
2073 {
2074 	return __add_preferred_console(name, idx, options, NULL);
2075 }
2076 
2077 bool console_suspend_enabled = true;
2078 EXPORT_SYMBOL(console_suspend_enabled);
2079 
2080 static int __init console_suspend_disable(char *str)
2081 {
2082 	console_suspend_enabled = false;
2083 	return 1;
2084 }
2085 __setup("no_console_suspend", console_suspend_disable);
2086 module_param_named(console_suspend, console_suspend_enabled,
2087 		bool, S_IRUGO | S_IWUSR);
2088 MODULE_PARM_DESC(console_suspend, "suspend console during suspend"
2089 	" and hibernate operations");
2090 
2091 /**
2092  * suspend_console - suspend the console subsystem
2093  *
2094  * This disables printk() while we go into suspend states
2095  */
2096 void suspend_console(void)
2097 {
2098 	if (!console_suspend_enabled)
2099 		return;
2100 	printk("Suspending console(s) (use no_console_suspend to debug)\n");
2101 	console_lock();
2102 	console_suspended = 1;
2103 	up_console_sem();
2104 }
2105 
2106 void resume_console(void)
2107 {
2108 	if (!console_suspend_enabled)
2109 		return;
2110 	down_console_sem();
2111 	console_suspended = 0;
2112 	console_unlock();
2113 }
2114 
2115 /**
2116  * console_cpu_notify - print deferred console messages after CPU hotplug
2117  * @self: notifier struct
2118  * @action: CPU hotplug event
2119  * @hcpu: unused
2120  *
2121  * If printk() is called from a CPU that is not online yet, the messages
2122  * will be spooled but will not show up on the console.  This function is
2123  * called when a new CPU comes online (or fails to come up), and ensures
2124  * that any such output gets printed.
2125  */
2126 static int console_cpu_notify(struct notifier_block *self,
2127 	unsigned long action, void *hcpu)
2128 {
2129 	switch (action) {
2130 	case CPU_ONLINE:
2131 	case CPU_DEAD:
2132 	case CPU_DOWN_FAILED:
2133 	case CPU_UP_CANCELED:
2134 		console_lock();
2135 		console_unlock();
2136 	}
2137 	return NOTIFY_OK;
2138 }
2139 
2140 /**
2141  * console_lock - lock the console system for exclusive use.
2142  *
2143  * Acquires a lock which guarantees that the caller has
2144  * exclusive access to the console system and the console_drivers list.
2145  *
2146  * Can sleep, returns nothing.
2147  */
2148 void console_lock(void)
2149 {
2150 	might_sleep();
2151 
2152 	down_console_sem();
2153 	if (console_suspended)
2154 		return;
2155 	console_locked = 1;
2156 	console_may_schedule = 1;
2157 }
2158 EXPORT_SYMBOL(console_lock);
2159 
2160 /**
2161  * console_trylock - try to lock the console system for exclusive use.
2162  *
2163  * Try to acquire a lock which guarantees that the caller has exclusive
2164  * access to the console system and the console_drivers list.
2165  *
2166  * returns 1 on success, and 0 on failure to acquire the lock.
2167  */
2168 int console_trylock(void)
2169 {
2170 	if (down_trylock_console_sem())
2171 		return 0;
2172 	if (console_suspended) {
2173 		up_console_sem();
2174 		return 0;
2175 	}
2176 	console_locked = 1;
2177 	console_may_schedule = 0;
2178 	return 1;
2179 }
2180 EXPORT_SYMBOL(console_trylock);
2181 
2182 int is_console_locked(void)
2183 {
2184 	return console_locked;
2185 }
2186 
2187 static void console_cont_flush(char *text, size_t size)
2188 {
2189 	unsigned long flags;
2190 	size_t len;
2191 
2192 	raw_spin_lock_irqsave(&logbuf_lock, flags);
2193 
2194 	if (!cont.len)
2195 		goto out;
2196 
2197 	/*
2198 	 * We still queue earlier records, likely because the console was
2199 	 * busy. The earlier ones need to be printed before this one, we
2200 	 * did not flush any fragment so far, so just let it queue up.
2201 	 */
2202 	if (console_seq < log_next_seq && !cont.cons)
2203 		goto out;
2204 
2205 	len = cont_print_text(text, size);
2206 	raw_spin_unlock(&logbuf_lock);
2207 	stop_critical_timings();
2208 	call_console_drivers(cont.level, NULL, 0, text, len);
2209 	start_critical_timings();
2210 	local_irq_restore(flags);
2211 	return;
2212 out:
2213 	raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2214 }
2215 
2216 /**
2217  * console_unlock - unlock the console system
2218  *
2219  * Releases the console_lock which the caller holds on the console system
2220  * and the console driver list.
2221  *
2222  * While the console_lock was held, console output may have been buffered
2223  * by printk().  If this is the case, console_unlock(); emits
2224  * the output prior to releasing the lock.
2225  *
2226  * If there is output waiting, we wake /dev/kmsg and syslog() users.
2227  *
2228  * console_unlock(); may be called from any context.
2229  */
2230 void console_unlock(void)
2231 {
2232 	static char ext_text[CONSOLE_EXT_LOG_MAX];
2233 	static char text[LOG_LINE_MAX + PREFIX_MAX];
2234 	static u64 seen_seq;
2235 	unsigned long flags;
2236 	bool wake_klogd = false;
2237 	bool do_cond_resched, retry;
2238 
2239 	if (console_suspended) {
2240 		up_console_sem();
2241 		return;
2242 	}
2243 
2244 	/*
2245 	 * Console drivers are called under logbuf_lock, so
2246 	 * @console_may_schedule should be cleared before; however, we may
2247 	 * end up dumping a lot of lines, for example, if called from
2248 	 * console registration path, and should invoke cond_resched()
2249 	 * between lines if allowable.  Not doing so can cause a very long
2250 	 * scheduling stall on a slow console leading to RCU stall and
2251 	 * softlockup warnings which exacerbate the issue with more
2252 	 * messages practically incapacitating the system.
2253 	 */
2254 	do_cond_resched = console_may_schedule;
2255 	console_may_schedule = 0;
2256 
2257 	/* flush buffered message fragment immediately to console */
2258 	console_cont_flush(text, sizeof(text));
2259 again:
2260 	for (;;) {
2261 		struct printk_log *msg;
2262 		size_t ext_len = 0;
2263 		size_t len;
2264 		int level;
2265 
2266 		raw_spin_lock_irqsave(&logbuf_lock, flags);
2267 		if (seen_seq != log_next_seq) {
2268 			wake_klogd = true;
2269 			seen_seq = log_next_seq;
2270 		}
2271 
2272 		if (console_seq < log_first_seq) {
2273 			len = sprintf(text, "** %u printk messages dropped ** ",
2274 				      (unsigned)(log_first_seq - console_seq));
2275 
2276 			/* messages are gone, move to first one */
2277 			console_seq = log_first_seq;
2278 			console_idx = log_first_idx;
2279 			console_prev = 0;
2280 		} else {
2281 			len = 0;
2282 		}
2283 skip:
2284 		if (console_seq == log_next_seq)
2285 			break;
2286 
2287 		msg = log_from_idx(console_idx);
2288 		if (msg->flags & LOG_NOCONS) {
2289 			/*
2290 			 * Skip record we have buffered and already printed
2291 			 * directly to the console when we received it.
2292 			 */
2293 			console_idx = log_next(console_idx);
2294 			console_seq++;
2295 			/*
2296 			 * We will get here again when we register a new
2297 			 * CON_PRINTBUFFER console. Clear the flag so we
2298 			 * will properly dump everything later.
2299 			 */
2300 			msg->flags &= ~LOG_NOCONS;
2301 			console_prev = msg->flags;
2302 			goto skip;
2303 		}
2304 
2305 		level = msg->level;
2306 		len += msg_print_text(msg, console_prev, false,
2307 				      text + len, sizeof(text) - len);
2308 		if (nr_ext_console_drivers) {
2309 			ext_len = msg_print_ext_header(ext_text,
2310 						sizeof(ext_text),
2311 						msg, console_seq, console_prev);
2312 			ext_len += msg_print_ext_body(ext_text + ext_len,
2313 						sizeof(ext_text) - ext_len,
2314 						log_dict(msg), msg->dict_len,
2315 						log_text(msg), msg->text_len);
2316 		}
2317 		console_idx = log_next(console_idx);
2318 		console_seq++;
2319 		console_prev = msg->flags;
2320 		raw_spin_unlock(&logbuf_lock);
2321 
2322 		stop_critical_timings();	/* don't trace print latency */
2323 		call_console_drivers(level, ext_text, ext_len, text, len);
2324 		start_critical_timings();
2325 		local_irq_restore(flags);
2326 
2327 		if (do_cond_resched)
2328 			cond_resched();
2329 	}
2330 	console_locked = 0;
2331 
2332 	/* Release the exclusive_console once it is used */
2333 	if (unlikely(exclusive_console))
2334 		exclusive_console = NULL;
2335 
2336 	raw_spin_unlock(&logbuf_lock);
2337 
2338 	up_console_sem();
2339 
2340 	/*
2341 	 * Someone could have filled up the buffer again, so re-check if there's
2342 	 * something to flush. In case we cannot trylock the console_sem again,
2343 	 * there's a new owner and the console_unlock() from them will do the
2344 	 * flush, no worries.
2345 	 */
2346 	raw_spin_lock(&logbuf_lock);
2347 	retry = console_seq != log_next_seq;
2348 	raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2349 
2350 	if (retry && console_trylock())
2351 		goto again;
2352 
2353 	if (wake_klogd)
2354 		wake_up_klogd();
2355 }
2356 EXPORT_SYMBOL(console_unlock);
2357 
2358 /**
2359  * console_conditional_schedule - yield the CPU if required
2360  *
2361  * If the console code is currently allowed to sleep, and
2362  * if this CPU should yield the CPU to another task, do
2363  * so here.
2364  *
2365  * Must be called within console_lock();.
2366  */
2367 void __sched console_conditional_schedule(void)
2368 {
2369 	if (console_may_schedule)
2370 		cond_resched();
2371 }
2372 EXPORT_SYMBOL(console_conditional_schedule);
2373 
2374 void console_unblank(void)
2375 {
2376 	struct console *c;
2377 
2378 	/*
2379 	 * console_unblank can no longer be called in interrupt context unless
2380 	 * oops_in_progress is set to 1..
2381 	 */
2382 	if (oops_in_progress) {
2383 		if (down_trylock_console_sem() != 0)
2384 			return;
2385 	} else
2386 		console_lock();
2387 
2388 	console_locked = 1;
2389 	console_may_schedule = 0;
2390 	for_each_console(c)
2391 		if ((c->flags & CON_ENABLED) && c->unblank)
2392 			c->unblank();
2393 	console_unlock();
2394 }
2395 
2396 /**
2397  * console_flush_on_panic - flush console content on panic
2398  *
2399  * Immediately output all pending messages no matter what.
2400  */
2401 void console_flush_on_panic(void)
2402 {
2403 	/*
2404 	 * If someone else is holding the console lock, trylock will fail
2405 	 * and may_schedule may be set.  Ignore and proceed to unlock so
2406 	 * that messages are flushed out.  As this can be called from any
2407 	 * context and we don't want to get preempted while flushing,
2408 	 * ensure may_schedule is cleared.
2409 	 */
2410 	console_trylock();
2411 	console_may_schedule = 0;
2412 	console_unlock();
2413 }
2414 
2415 /*
2416  * Return the console tty driver structure and its associated index
2417  */
2418 struct tty_driver *console_device(int *index)
2419 {
2420 	struct console *c;
2421 	struct tty_driver *driver = NULL;
2422 
2423 	console_lock();
2424 	for_each_console(c) {
2425 		if (!c->device)
2426 			continue;
2427 		driver = c->device(c, index);
2428 		if (driver)
2429 			break;
2430 	}
2431 	console_unlock();
2432 	return driver;
2433 }
2434 
2435 /*
2436  * Prevent further output on the passed console device so that (for example)
2437  * serial drivers can disable console output before suspending a port, and can
2438  * re-enable output afterwards.
2439  */
2440 void console_stop(struct console *console)
2441 {
2442 	console_lock();
2443 	console->flags &= ~CON_ENABLED;
2444 	console_unlock();
2445 }
2446 EXPORT_SYMBOL(console_stop);
2447 
2448 void console_start(struct console *console)
2449 {
2450 	console_lock();
2451 	console->flags |= CON_ENABLED;
2452 	console_unlock();
2453 }
2454 EXPORT_SYMBOL(console_start);
2455 
2456 static int __read_mostly keep_bootcon;
2457 
2458 static int __init keep_bootcon_setup(char *str)
2459 {
2460 	keep_bootcon = 1;
2461 	pr_info("debug: skip boot console de-registration.\n");
2462 
2463 	return 0;
2464 }
2465 
2466 early_param("keep_bootcon", keep_bootcon_setup);
2467 
2468 /*
2469  * The console driver calls this routine during kernel initialization
2470  * to register the console printing procedure with printk() and to
2471  * print any messages that were printed by the kernel before the
2472  * console driver was initialized.
2473  *
2474  * This can happen pretty early during the boot process (because of
2475  * early_printk) - sometimes before setup_arch() completes - be careful
2476  * of what kernel features are used - they may not be initialised yet.
2477  *
2478  * There are two types of consoles - bootconsoles (early_printk) and
2479  * "real" consoles (everything which is not a bootconsole) which are
2480  * handled differently.
2481  *  - Any number of bootconsoles can be registered at any time.
2482  *  - As soon as a "real" console is registered, all bootconsoles
2483  *    will be unregistered automatically.
2484  *  - Once a "real" console is registered, any attempt to register a
2485  *    bootconsoles will be rejected
2486  */
2487 void register_console(struct console *newcon)
2488 {
2489 	int i;
2490 	unsigned long flags;
2491 	struct console *bcon = NULL;
2492 	struct console_cmdline *c;
2493 
2494 	if (console_drivers)
2495 		for_each_console(bcon)
2496 			if (WARN(bcon == newcon,
2497 					"console '%s%d' already registered\n",
2498 					bcon->name, bcon->index))
2499 				return;
2500 
2501 	/*
2502 	 * before we register a new CON_BOOT console, make sure we don't
2503 	 * already have a valid console
2504 	 */
2505 	if (console_drivers && newcon->flags & CON_BOOT) {
2506 		/* find the last or real console */
2507 		for_each_console(bcon) {
2508 			if (!(bcon->flags & CON_BOOT)) {
2509 				pr_info("Too late to register bootconsole %s%d\n",
2510 					newcon->name, newcon->index);
2511 				return;
2512 			}
2513 		}
2514 	}
2515 
2516 	if (console_drivers && console_drivers->flags & CON_BOOT)
2517 		bcon = console_drivers;
2518 
2519 	if (preferred_console < 0 || bcon || !console_drivers)
2520 		preferred_console = selected_console;
2521 
2522 	/*
2523 	 *	See if we want to use this console driver. If we
2524 	 *	didn't select a console we take the first one
2525 	 *	that registers here.
2526 	 */
2527 	if (preferred_console < 0) {
2528 		if (newcon->index < 0)
2529 			newcon->index = 0;
2530 		if (newcon->setup == NULL ||
2531 		    newcon->setup(newcon, NULL) == 0) {
2532 			newcon->flags |= CON_ENABLED;
2533 			if (newcon->device) {
2534 				newcon->flags |= CON_CONSDEV;
2535 				preferred_console = 0;
2536 			}
2537 		}
2538 	}
2539 
2540 	/*
2541 	 *	See if this console matches one we selected on
2542 	 *	the command line.
2543 	 */
2544 	for (i = 0, c = console_cmdline;
2545 	     i < MAX_CMDLINECONSOLES && c->name[0];
2546 	     i++, c++) {
2547 		if (!newcon->match ||
2548 		    newcon->match(newcon, c->name, c->index, c->options) != 0) {
2549 			/* default matching */
2550 			BUILD_BUG_ON(sizeof(c->name) != sizeof(newcon->name));
2551 			if (strcmp(c->name, newcon->name) != 0)
2552 				continue;
2553 			if (newcon->index >= 0 &&
2554 			    newcon->index != c->index)
2555 				continue;
2556 			if (newcon->index < 0)
2557 				newcon->index = c->index;
2558 
2559 			if (_braille_register_console(newcon, c))
2560 				return;
2561 
2562 			if (newcon->setup &&
2563 			    newcon->setup(newcon, c->options) != 0)
2564 				break;
2565 		}
2566 
2567 		newcon->flags |= CON_ENABLED;
2568 		if (i == selected_console) {
2569 			newcon->flags |= CON_CONSDEV;
2570 			preferred_console = selected_console;
2571 		}
2572 		break;
2573 	}
2574 
2575 	if (!(newcon->flags & CON_ENABLED))
2576 		return;
2577 
2578 	/*
2579 	 * If we have a bootconsole, and are switching to a real console,
2580 	 * don't print everything out again, since when the boot console, and
2581 	 * the real console are the same physical device, it's annoying to
2582 	 * see the beginning boot messages twice
2583 	 */
2584 	if (bcon && ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV))
2585 		newcon->flags &= ~CON_PRINTBUFFER;
2586 
2587 	/*
2588 	 *	Put this console in the list - keep the
2589 	 *	preferred driver at the head of the list.
2590 	 */
2591 	console_lock();
2592 	if ((newcon->flags & CON_CONSDEV) || console_drivers == NULL) {
2593 		newcon->next = console_drivers;
2594 		console_drivers = newcon;
2595 		if (newcon->next)
2596 			newcon->next->flags &= ~CON_CONSDEV;
2597 	} else {
2598 		newcon->next = console_drivers->next;
2599 		console_drivers->next = newcon;
2600 	}
2601 
2602 	if (newcon->flags & CON_EXTENDED)
2603 		if (!nr_ext_console_drivers++)
2604 			pr_info("printk: continuation disabled due to ext consoles, expect more fragments in /dev/kmsg\n");
2605 
2606 	if (newcon->flags & CON_PRINTBUFFER) {
2607 		/*
2608 		 * console_unlock(); will print out the buffered messages
2609 		 * for us.
2610 		 */
2611 		raw_spin_lock_irqsave(&logbuf_lock, flags);
2612 		console_seq = syslog_seq;
2613 		console_idx = syslog_idx;
2614 		console_prev = syslog_prev;
2615 		raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2616 		/*
2617 		 * We're about to replay the log buffer.  Only do this to the
2618 		 * just-registered console to avoid excessive message spam to
2619 		 * the already-registered consoles.
2620 		 */
2621 		exclusive_console = newcon;
2622 	}
2623 	console_unlock();
2624 	console_sysfs_notify();
2625 
2626 	/*
2627 	 * By unregistering the bootconsoles after we enable the real console
2628 	 * we get the "console xxx enabled" message on all the consoles -
2629 	 * boot consoles, real consoles, etc - this is to ensure that end
2630 	 * users know there might be something in the kernel's log buffer that
2631 	 * went to the bootconsole (that they do not see on the real console)
2632 	 */
2633 	pr_info("%sconsole [%s%d] enabled\n",
2634 		(newcon->flags & CON_BOOT) ? "boot" : "" ,
2635 		newcon->name, newcon->index);
2636 	if (bcon &&
2637 	    ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV) &&
2638 	    !keep_bootcon) {
2639 		/* We need to iterate through all boot consoles, to make
2640 		 * sure we print everything out, before we unregister them.
2641 		 */
2642 		for_each_console(bcon)
2643 			if (bcon->flags & CON_BOOT)
2644 				unregister_console(bcon);
2645 	}
2646 }
2647 EXPORT_SYMBOL(register_console);
2648 
2649 int unregister_console(struct console *console)
2650 {
2651         struct console *a, *b;
2652 	int res;
2653 
2654 	pr_info("%sconsole [%s%d] disabled\n",
2655 		(console->flags & CON_BOOT) ? "boot" : "" ,
2656 		console->name, console->index);
2657 
2658 	res = _braille_unregister_console(console);
2659 	if (res)
2660 		return res;
2661 
2662 	res = 1;
2663 	console_lock();
2664 	if (console_drivers == console) {
2665 		console_drivers=console->next;
2666 		res = 0;
2667 	} else if (console_drivers) {
2668 		for (a=console_drivers->next, b=console_drivers ;
2669 		     a; b=a, a=b->next) {
2670 			if (a == console) {
2671 				b->next = a->next;
2672 				res = 0;
2673 				break;
2674 			}
2675 		}
2676 	}
2677 
2678 	if (!res && (console->flags & CON_EXTENDED))
2679 		nr_ext_console_drivers--;
2680 
2681 	/*
2682 	 * If this isn't the last console and it has CON_CONSDEV set, we
2683 	 * need to set it on the next preferred console.
2684 	 */
2685 	if (console_drivers != NULL && console->flags & CON_CONSDEV)
2686 		console_drivers->flags |= CON_CONSDEV;
2687 
2688 	console->flags &= ~CON_ENABLED;
2689 	console_unlock();
2690 	console_sysfs_notify();
2691 	return res;
2692 }
2693 EXPORT_SYMBOL(unregister_console);
2694 
2695 /*
2696  * Some boot consoles access data that is in the init section and which will
2697  * be discarded after the initcalls have been run. To make sure that no code
2698  * will access this data, unregister the boot consoles in a late initcall.
2699  *
2700  * If for some reason, such as deferred probe or the driver being a loadable
2701  * module, the real console hasn't registered yet at this point, there will
2702  * be a brief interval in which no messages are logged to the console, which
2703  * makes it difficult to diagnose problems that occur during this time.
2704  *
2705  * To mitigate this problem somewhat, only unregister consoles whose memory
2706  * intersects with the init section. Note that code exists elsewhere to get
2707  * rid of the boot console as soon as the proper console shows up, so there
2708  * won't be side-effects from postponing the removal.
2709  */
2710 static int __init printk_late_init(void)
2711 {
2712 	struct console *con;
2713 
2714 	for_each_console(con) {
2715 		if (!keep_bootcon && con->flags & CON_BOOT) {
2716 			/*
2717 			 * Make sure to unregister boot consoles whose data
2718 			 * resides in the init section before the init section
2719 			 * is discarded. Boot consoles whose data will stick
2720 			 * around will automatically be unregistered when the
2721 			 * proper console replaces them.
2722 			 */
2723 			if (init_section_intersects(con, sizeof(*con)))
2724 				unregister_console(con);
2725 		}
2726 	}
2727 	hotcpu_notifier(console_cpu_notify, 0);
2728 	return 0;
2729 }
2730 late_initcall(printk_late_init);
2731 
2732 #if defined CONFIG_PRINTK
2733 /*
2734  * Delayed printk version, for scheduler-internal messages:
2735  */
2736 #define PRINTK_PENDING_WAKEUP	0x01
2737 #define PRINTK_PENDING_OUTPUT	0x02
2738 
2739 static DEFINE_PER_CPU(int, printk_pending);
2740 
2741 static void wake_up_klogd_work_func(struct irq_work *irq_work)
2742 {
2743 	int pending = __this_cpu_xchg(printk_pending, 0);
2744 
2745 	if (pending & PRINTK_PENDING_OUTPUT) {
2746 		/* If trylock fails, someone else is doing the printing */
2747 		if (console_trylock())
2748 			console_unlock();
2749 	}
2750 
2751 	if (pending & PRINTK_PENDING_WAKEUP)
2752 		wake_up_interruptible(&log_wait);
2753 }
2754 
2755 static DEFINE_PER_CPU(struct irq_work, wake_up_klogd_work) = {
2756 	.func = wake_up_klogd_work_func,
2757 	.flags = IRQ_WORK_LAZY,
2758 };
2759 
2760 void wake_up_klogd(void)
2761 {
2762 	preempt_disable();
2763 	if (waitqueue_active(&log_wait)) {
2764 		this_cpu_or(printk_pending, PRINTK_PENDING_WAKEUP);
2765 		irq_work_queue(this_cpu_ptr(&wake_up_klogd_work));
2766 	}
2767 	preempt_enable();
2768 }
2769 
2770 int printk_deferred(const char *fmt, ...)
2771 {
2772 	va_list args;
2773 	int r;
2774 
2775 	preempt_disable();
2776 	va_start(args, fmt);
2777 	r = vprintk_emit(0, LOGLEVEL_SCHED, NULL, 0, fmt, args);
2778 	va_end(args);
2779 
2780 	__this_cpu_or(printk_pending, PRINTK_PENDING_OUTPUT);
2781 	irq_work_queue(this_cpu_ptr(&wake_up_klogd_work));
2782 	preempt_enable();
2783 
2784 	return r;
2785 }
2786 
2787 /*
2788  * printk rate limiting, lifted from the networking subsystem.
2789  *
2790  * This enforces a rate limit: not more than 10 kernel messages
2791  * every 5s to make a denial-of-service attack impossible.
2792  */
2793 DEFINE_RATELIMIT_STATE(printk_ratelimit_state, 5 * HZ, 10);
2794 
2795 int __printk_ratelimit(const char *func)
2796 {
2797 	return ___ratelimit(&printk_ratelimit_state, func);
2798 }
2799 EXPORT_SYMBOL(__printk_ratelimit);
2800 
2801 /**
2802  * printk_timed_ratelimit - caller-controlled printk ratelimiting
2803  * @caller_jiffies: pointer to caller's state
2804  * @interval_msecs: minimum interval between prints
2805  *
2806  * printk_timed_ratelimit() returns true if more than @interval_msecs
2807  * milliseconds have elapsed since the last time printk_timed_ratelimit()
2808  * returned true.
2809  */
2810 bool printk_timed_ratelimit(unsigned long *caller_jiffies,
2811 			unsigned int interval_msecs)
2812 {
2813 	unsigned long elapsed = jiffies - *caller_jiffies;
2814 
2815 	if (*caller_jiffies && elapsed <= msecs_to_jiffies(interval_msecs))
2816 		return false;
2817 
2818 	*caller_jiffies = jiffies;
2819 	return true;
2820 }
2821 EXPORT_SYMBOL(printk_timed_ratelimit);
2822 
2823 static DEFINE_SPINLOCK(dump_list_lock);
2824 static LIST_HEAD(dump_list);
2825 
2826 /**
2827  * kmsg_dump_register - register a kernel log dumper.
2828  * @dumper: pointer to the kmsg_dumper structure
2829  *
2830  * Adds a kernel log dumper to the system. The dump callback in the
2831  * structure will be called when the kernel oopses or panics and must be
2832  * set. Returns zero on success and %-EINVAL or %-EBUSY otherwise.
2833  */
2834 int kmsg_dump_register(struct kmsg_dumper *dumper)
2835 {
2836 	unsigned long flags;
2837 	int err = -EBUSY;
2838 
2839 	/* The dump callback needs to be set */
2840 	if (!dumper->dump)
2841 		return -EINVAL;
2842 
2843 	spin_lock_irqsave(&dump_list_lock, flags);
2844 	/* Don't allow registering multiple times */
2845 	if (!dumper->registered) {
2846 		dumper->registered = 1;
2847 		list_add_tail_rcu(&dumper->list, &dump_list);
2848 		err = 0;
2849 	}
2850 	spin_unlock_irqrestore(&dump_list_lock, flags);
2851 
2852 	return err;
2853 }
2854 EXPORT_SYMBOL_GPL(kmsg_dump_register);
2855 
2856 /**
2857  * kmsg_dump_unregister - unregister a kmsg dumper.
2858  * @dumper: pointer to the kmsg_dumper structure
2859  *
2860  * Removes a dump device from the system. Returns zero on success and
2861  * %-EINVAL otherwise.
2862  */
2863 int kmsg_dump_unregister(struct kmsg_dumper *dumper)
2864 {
2865 	unsigned long flags;
2866 	int err = -EINVAL;
2867 
2868 	spin_lock_irqsave(&dump_list_lock, flags);
2869 	if (dumper->registered) {
2870 		dumper->registered = 0;
2871 		list_del_rcu(&dumper->list);
2872 		err = 0;
2873 	}
2874 	spin_unlock_irqrestore(&dump_list_lock, flags);
2875 	synchronize_rcu();
2876 
2877 	return err;
2878 }
2879 EXPORT_SYMBOL_GPL(kmsg_dump_unregister);
2880 
2881 static bool always_kmsg_dump;
2882 module_param_named(always_kmsg_dump, always_kmsg_dump, bool, S_IRUGO | S_IWUSR);
2883 
2884 /**
2885  * kmsg_dump - dump kernel log to kernel message dumpers.
2886  * @reason: the reason (oops, panic etc) for dumping
2887  *
2888  * Call each of the registered dumper's dump() callback, which can
2889  * retrieve the kmsg records with kmsg_dump_get_line() or
2890  * kmsg_dump_get_buffer().
2891  */
2892 void kmsg_dump(enum kmsg_dump_reason reason)
2893 {
2894 	struct kmsg_dumper *dumper;
2895 	unsigned long flags;
2896 
2897 	if ((reason > KMSG_DUMP_OOPS) && !always_kmsg_dump)
2898 		return;
2899 
2900 	rcu_read_lock();
2901 	list_for_each_entry_rcu(dumper, &dump_list, list) {
2902 		if (dumper->max_reason && reason > dumper->max_reason)
2903 			continue;
2904 
2905 		/* initialize iterator with data about the stored records */
2906 		dumper->active = true;
2907 
2908 		raw_spin_lock_irqsave(&logbuf_lock, flags);
2909 		dumper->cur_seq = clear_seq;
2910 		dumper->cur_idx = clear_idx;
2911 		dumper->next_seq = log_next_seq;
2912 		dumper->next_idx = log_next_idx;
2913 		raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2914 
2915 		/* invoke dumper which will iterate over records */
2916 		dumper->dump(dumper, reason);
2917 
2918 		/* reset iterator */
2919 		dumper->active = false;
2920 	}
2921 	rcu_read_unlock();
2922 }
2923 
2924 /**
2925  * kmsg_dump_get_line_nolock - retrieve one kmsg log line (unlocked version)
2926  * @dumper: registered kmsg dumper
2927  * @syslog: include the "<4>" prefixes
2928  * @line: buffer to copy the line to
2929  * @size: maximum size of the buffer
2930  * @len: length of line placed into buffer
2931  *
2932  * Start at the beginning of the kmsg buffer, with the oldest kmsg
2933  * record, and copy one record into the provided buffer.
2934  *
2935  * Consecutive calls will return the next available record moving
2936  * towards the end of the buffer with the youngest messages.
2937  *
2938  * A return value of FALSE indicates that there are no more records to
2939  * read.
2940  *
2941  * The function is similar to kmsg_dump_get_line(), but grabs no locks.
2942  */
2943 bool kmsg_dump_get_line_nolock(struct kmsg_dumper *dumper, bool syslog,
2944 			       char *line, size_t size, size_t *len)
2945 {
2946 	struct printk_log *msg;
2947 	size_t l = 0;
2948 	bool ret = false;
2949 
2950 	if (!dumper->active)
2951 		goto out;
2952 
2953 	if (dumper->cur_seq < log_first_seq) {
2954 		/* messages are gone, move to first available one */
2955 		dumper->cur_seq = log_first_seq;
2956 		dumper->cur_idx = log_first_idx;
2957 	}
2958 
2959 	/* last entry */
2960 	if (dumper->cur_seq >= log_next_seq)
2961 		goto out;
2962 
2963 	msg = log_from_idx(dumper->cur_idx);
2964 	l = msg_print_text(msg, 0, syslog, line, size);
2965 
2966 	dumper->cur_idx = log_next(dumper->cur_idx);
2967 	dumper->cur_seq++;
2968 	ret = true;
2969 out:
2970 	if (len)
2971 		*len = l;
2972 	return ret;
2973 }
2974 
2975 /**
2976  * kmsg_dump_get_line - retrieve one kmsg log line
2977  * @dumper: registered kmsg dumper
2978  * @syslog: include the "<4>" prefixes
2979  * @line: buffer to copy the line to
2980  * @size: maximum size of the buffer
2981  * @len: length of line placed into buffer
2982  *
2983  * Start at the beginning of the kmsg buffer, with the oldest kmsg
2984  * record, and copy one record into the provided buffer.
2985  *
2986  * Consecutive calls will return the next available record moving
2987  * towards the end of the buffer with the youngest messages.
2988  *
2989  * A return value of FALSE indicates that there are no more records to
2990  * read.
2991  */
2992 bool kmsg_dump_get_line(struct kmsg_dumper *dumper, bool syslog,
2993 			char *line, size_t size, size_t *len)
2994 {
2995 	unsigned long flags;
2996 	bool ret;
2997 
2998 	raw_spin_lock_irqsave(&logbuf_lock, flags);
2999 	ret = kmsg_dump_get_line_nolock(dumper, syslog, line, size, len);
3000 	raw_spin_unlock_irqrestore(&logbuf_lock, flags);
3001 
3002 	return ret;
3003 }
3004 EXPORT_SYMBOL_GPL(kmsg_dump_get_line);
3005 
3006 /**
3007  * kmsg_dump_get_buffer - copy kmsg log lines
3008  * @dumper: registered kmsg dumper
3009  * @syslog: include the "<4>" prefixes
3010  * @buf: buffer to copy the line to
3011  * @size: maximum size of the buffer
3012  * @len: length of line placed into buffer
3013  *
3014  * Start at the end of the kmsg buffer and fill the provided buffer
3015  * with as many of the the *youngest* kmsg records that fit into it.
3016  * If the buffer is large enough, all available kmsg records will be
3017  * copied with a single call.
3018  *
3019  * Consecutive calls will fill the buffer with the next block of
3020  * available older records, not including the earlier retrieved ones.
3021  *
3022  * A return value of FALSE indicates that there are no more records to
3023  * read.
3024  */
3025 bool kmsg_dump_get_buffer(struct kmsg_dumper *dumper, bool syslog,
3026 			  char *buf, size_t size, size_t *len)
3027 {
3028 	unsigned long flags;
3029 	u64 seq;
3030 	u32 idx;
3031 	u64 next_seq;
3032 	u32 next_idx;
3033 	enum log_flags prev;
3034 	size_t l = 0;
3035 	bool ret = false;
3036 
3037 	if (!dumper->active)
3038 		goto out;
3039 
3040 	raw_spin_lock_irqsave(&logbuf_lock, flags);
3041 	if (dumper->cur_seq < log_first_seq) {
3042 		/* messages are gone, move to first available one */
3043 		dumper->cur_seq = log_first_seq;
3044 		dumper->cur_idx = log_first_idx;
3045 	}
3046 
3047 	/* last entry */
3048 	if (dumper->cur_seq >= dumper->next_seq) {
3049 		raw_spin_unlock_irqrestore(&logbuf_lock, flags);
3050 		goto out;
3051 	}
3052 
3053 	/* calculate length of entire buffer */
3054 	seq = dumper->cur_seq;
3055 	idx = dumper->cur_idx;
3056 	prev = 0;
3057 	while (seq < dumper->next_seq) {
3058 		struct printk_log *msg = log_from_idx(idx);
3059 
3060 		l += msg_print_text(msg, prev, true, NULL, 0);
3061 		idx = log_next(idx);
3062 		seq++;
3063 		prev = msg->flags;
3064 	}
3065 
3066 	/* move first record forward until length fits into the buffer */
3067 	seq = dumper->cur_seq;
3068 	idx = dumper->cur_idx;
3069 	prev = 0;
3070 	while (l > size && seq < dumper->next_seq) {
3071 		struct printk_log *msg = log_from_idx(idx);
3072 
3073 		l -= msg_print_text(msg, prev, true, NULL, 0);
3074 		idx = log_next(idx);
3075 		seq++;
3076 		prev = msg->flags;
3077 	}
3078 
3079 	/* last message in next interation */
3080 	next_seq = seq;
3081 	next_idx = idx;
3082 
3083 	l = 0;
3084 	while (seq < dumper->next_seq) {
3085 		struct printk_log *msg = log_from_idx(idx);
3086 
3087 		l += msg_print_text(msg, prev, syslog, buf + l, size - l);
3088 		idx = log_next(idx);
3089 		seq++;
3090 		prev = msg->flags;
3091 	}
3092 
3093 	dumper->next_seq = next_seq;
3094 	dumper->next_idx = next_idx;
3095 	ret = true;
3096 	raw_spin_unlock_irqrestore(&logbuf_lock, flags);
3097 out:
3098 	if (len)
3099 		*len = l;
3100 	return ret;
3101 }
3102 EXPORT_SYMBOL_GPL(kmsg_dump_get_buffer);
3103 
3104 /**
3105  * kmsg_dump_rewind_nolock - reset the interator (unlocked version)
3106  * @dumper: registered kmsg dumper
3107  *
3108  * Reset the dumper's iterator so that kmsg_dump_get_line() and
3109  * kmsg_dump_get_buffer() can be called again and used multiple
3110  * times within the same dumper.dump() callback.
3111  *
3112  * The function is similar to kmsg_dump_rewind(), but grabs no locks.
3113  */
3114 void kmsg_dump_rewind_nolock(struct kmsg_dumper *dumper)
3115 {
3116 	dumper->cur_seq = clear_seq;
3117 	dumper->cur_idx = clear_idx;
3118 	dumper->next_seq = log_next_seq;
3119 	dumper->next_idx = log_next_idx;
3120 }
3121 
3122 /**
3123  * kmsg_dump_rewind - reset the interator
3124  * @dumper: registered kmsg dumper
3125  *
3126  * Reset the dumper's iterator so that kmsg_dump_get_line() and
3127  * kmsg_dump_get_buffer() can be called again and used multiple
3128  * times within the same dumper.dump() callback.
3129  */
3130 void kmsg_dump_rewind(struct kmsg_dumper *dumper)
3131 {
3132 	unsigned long flags;
3133 
3134 	raw_spin_lock_irqsave(&logbuf_lock, flags);
3135 	kmsg_dump_rewind_nolock(dumper);
3136 	raw_spin_unlock_irqrestore(&logbuf_lock, flags);
3137 }
3138 EXPORT_SYMBOL_GPL(kmsg_dump_rewind);
3139 
3140 static char dump_stack_arch_desc_str[128];
3141 
3142 /**
3143  * dump_stack_set_arch_desc - set arch-specific str to show with task dumps
3144  * @fmt: printf-style format string
3145  * @...: arguments for the format string
3146  *
3147  * The configured string will be printed right after utsname during task
3148  * dumps.  Usually used to add arch-specific system identifiers.  If an
3149  * arch wants to make use of such an ID string, it should initialize this
3150  * as soon as possible during boot.
3151  */
3152 void __init dump_stack_set_arch_desc(const char *fmt, ...)
3153 {
3154 	va_list args;
3155 
3156 	va_start(args, fmt);
3157 	vsnprintf(dump_stack_arch_desc_str, sizeof(dump_stack_arch_desc_str),
3158 		  fmt, args);
3159 	va_end(args);
3160 }
3161 
3162 /**
3163  * dump_stack_print_info - print generic debug info for dump_stack()
3164  * @log_lvl: log level
3165  *
3166  * Arch-specific dump_stack() implementations can use this function to
3167  * print out the same debug information as the generic dump_stack().
3168  */
3169 void dump_stack_print_info(const char *log_lvl)
3170 {
3171 	printk("%sCPU: %d PID: %d Comm: %.20s %s %s %.*s\n",
3172 	       log_lvl, raw_smp_processor_id(), current->pid, current->comm,
3173 	       print_tainted(), init_utsname()->release,
3174 	       (int)strcspn(init_utsname()->version, " "),
3175 	       init_utsname()->version);
3176 
3177 	if (dump_stack_arch_desc_str[0] != '\0')
3178 		printk("%sHardware name: %s\n",
3179 		       log_lvl, dump_stack_arch_desc_str);
3180 
3181 	print_worker_info(log_lvl, current);
3182 }
3183 
3184 /**
3185  * show_regs_print_info - print generic debug info for show_regs()
3186  * @log_lvl: log level
3187  *
3188  * show_regs() implementations can use this function to print out generic
3189  * debug information.
3190  */
3191 void show_regs_print_info(const char *log_lvl)
3192 {
3193 	dump_stack_print_info(log_lvl);
3194 
3195 	printk("%stask: %p ti: %p task.ti: %p\n",
3196 	       log_lvl, current, current_thread_info(),
3197 	       task_thread_info(current));
3198 }
3199 
3200 #endif
3201