1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/printk.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 * 7 * Modified to make sys_syslog() more flexible: added commands to 8 * return the last 4k of kernel messages, regardless of whether 9 * they've been read or not. Added option to suppress kernel printk's 10 * to the console. Added hook for sending the console messages 11 * elsewhere, in preparation for a serial line console (someday). 12 * Ted Ts'o, 2/11/93. 13 * Modified for sysctl support, 1/8/97, Chris Horn. 14 * Fixed SMP synchronization, 08/08/99, Manfred Spraul 15 * manfred@colorfullife.com 16 * Rewrote bits to get rid of console_lock 17 * 01Mar01 Andrew Morton 18 */ 19 20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 21 22 #include <linux/kernel.h> 23 #include <linux/mm.h> 24 #include <linux/tty.h> 25 #include <linux/tty_driver.h> 26 #include <linux/console.h> 27 #include <linux/init.h> 28 #include <linux/jiffies.h> 29 #include <linux/nmi.h> 30 #include <linux/module.h> 31 #include <linux/moduleparam.h> 32 #include <linux/delay.h> 33 #include <linux/smp.h> 34 #include <linux/security.h> 35 #include <linux/memblock.h> 36 #include <linux/syscalls.h> 37 #include <linux/crash_core.h> 38 #include <linux/ratelimit.h> 39 #include <linux/kmsg_dump.h> 40 #include <linux/syslog.h> 41 #include <linux/cpu.h> 42 #include <linux/rculist.h> 43 #include <linux/poll.h> 44 #include <linux/irq_work.h> 45 #include <linux/ctype.h> 46 #include <linux/uio.h> 47 #include <linux/sched/clock.h> 48 #include <linux/sched/debug.h> 49 #include <linux/sched/task_stack.h> 50 51 #include <linux/uaccess.h> 52 #include <asm/sections.h> 53 54 #include <trace/events/initcall.h> 55 #define CREATE_TRACE_POINTS 56 #include <trace/events/printk.h> 57 58 #include "printk_ringbuffer.h" 59 #include "console_cmdline.h" 60 #include "braille.h" 61 #include "internal.h" 62 63 int console_printk[4] = { 64 CONSOLE_LOGLEVEL_DEFAULT, /* console_loglevel */ 65 MESSAGE_LOGLEVEL_DEFAULT, /* default_message_loglevel */ 66 CONSOLE_LOGLEVEL_MIN, /* minimum_console_loglevel */ 67 CONSOLE_LOGLEVEL_DEFAULT, /* default_console_loglevel */ 68 }; 69 EXPORT_SYMBOL_GPL(console_printk); 70 71 atomic_t ignore_console_lock_warning __read_mostly = ATOMIC_INIT(0); 72 EXPORT_SYMBOL(ignore_console_lock_warning); 73 74 EXPORT_TRACEPOINT_SYMBOL_GPL(console); 75 76 /* 77 * Low level drivers may need that to know if they can schedule in 78 * their unblank() callback or not. So let's export it. 79 */ 80 int oops_in_progress; 81 EXPORT_SYMBOL(oops_in_progress); 82 83 /* 84 * console_mutex protects console_list updates and console->flags updates. 85 * The flags are synchronized only for consoles that are registered, i.e. 86 * accessible via the console list. 87 */ 88 static DEFINE_MUTEX(console_mutex); 89 90 /* 91 * console_sem protects updates to console->seq 92 * and also provides serialization for console printing. 93 */ 94 static DEFINE_SEMAPHORE(console_sem, 1); 95 HLIST_HEAD(console_list); 96 EXPORT_SYMBOL_GPL(console_list); 97 DEFINE_STATIC_SRCU(console_srcu); 98 99 /* 100 * System may need to suppress printk message under certain 101 * circumstances, like after kernel panic happens. 102 */ 103 int __read_mostly suppress_printk; 104 105 /* 106 * During panic, heavy printk by other CPUs can delay the 107 * panic and risk deadlock on console resources. 108 */ 109 static int __read_mostly suppress_panic_printk; 110 111 #ifdef CONFIG_LOCKDEP 112 static struct lockdep_map console_lock_dep_map = { 113 .name = "console_lock" 114 }; 115 116 void lockdep_assert_console_list_lock_held(void) 117 { 118 lockdep_assert_held(&console_mutex); 119 } 120 EXPORT_SYMBOL(lockdep_assert_console_list_lock_held); 121 #endif 122 123 #ifdef CONFIG_DEBUG_LOCK_ALLOC 124 bool console_srcu_read_lock_is_held(void) 125 { 126 return srcu_read_lock_held(&console_srcu); 127 } 128 EXPORT_SYMBOL(console_srcu_read_lock_is_held); 129 #endif 130 131 enum devkmsg_log_bits { 132 __DEVKMSG_LOG_BIT_ON = 0, 133 __DEVKMSG_LOG_BIT_OFF, 134 __DEVKMSG_LOG_BIT_LOCK, 135 }; 136 137 enum devkmsg_log_masks { 138 DEVKMSG_LOG_MASK_ON = BIT(__DEVKMSG_LOG_BIT_ON), 139 DEVKMSG_LOG_MASK_OFF = BIT(__DEVKMSG_LOG_BIT_OFF), 140 DEVKMSG_LOG_MASK_LOCK = BIT(__DEVKMSG_LOG_BIT_LOCK), 141 }; 142 143 /* Keep both the 'on' and 'off' bits clear, i.e. ratelimit by default: */ 144 #define DEVKMSG_LOG_MASK_DEFAULT 0 145 146 static unsigned int __read_mostly devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT; 147 148 static int __control_devkmsg(char *str) 149 { 150 size_t len; 151 152 if (!str) 153 return -EINVAL; 154 155 len = str_has_prefix(str, "on"); 156 if (len) { 157 devkmsg_log = DEVKMSG_LOG_MASK_ON; 158 return len; 159 } 160 161 len = str_has_prefix(str, "off"); 162 if (len) { 163 devkmsg_log = DEVKMSG_LOG_MASK_OFF; 164 return len; 165 } 166 167 len = str_has_prefix(str, "ratelimit"); 168 if (len) { 169 devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT; 170 return len; 171 } 172 173 return -EINVAL; 174 } 175 176 static int __init control_devkmsg(char *str) 177 { 178 if (__control_devkmsg(str) < 0) { 179 pr_warn("printk.devkmsg: bad option string '%s'\n", str); 180 return 1; 181 } 182 183 /* 184 * Set sysctl string accordingly: 185 */ 186 if (devkmsg_log == DEVKMSG_LOG_MASK_ON) 187 strcpy(devkmsg_log_str, "on"); 188 else if (devkmsg_log == DEVKMSG_LOG_MASK_OFF) 189 strcpy(devkmsg_log_str, "off"); 190 /* else "ratelimit" which is set by default. */ 191 192 /* 193 * Sysctl cannot change it anymore. The kernel command line setting of 194 * this parameter is to force the setting to be permanent throughout the 195 * runtime of the system. This is a precation measure against userspace 196 * trying to be a smarta** and attempting to change it up on us. 197 */ 198 devkmsg_log |= DEVKMSG_LOG_MASK_LOCK; 199 200 return 1; 201 } 202 __setup("printk.devkmsg=", control_devkmsg); 203 204 char devkmsg_log_str[DEVKMSG_STR_MAX_SIZE] = "ratelimit"; 205 #if defined(CONFIG_PRINTK) && defined(CONFIG_SYSCTL) 206 int devkmsg_sysctl_set_loglvl(struct ctl_table *table, int write, 207 void *buffer, size_t *lenp, loff_t *ppos) 208 { 209 char old_str[DEVKMSG_STR_MAX_SIZE]; 210 unsigned int old; 211 int err; 212 213 if (write) { 214 if (devkmsg_log & DEVKMSG_LOG_MASK_LOCK) 215 return -EINVAL; 216 217 old = devkmsg_log; 218 strncpy(old_str, devkmsg_log_str, DEVKMSG_STR_MAX_SIZE); 219 } 220 221 err = proc_dostring(table, write, buffer, lenp, ppos); 222 if (err) 223 return err; 224 225 if (write) { 226 err = __control_devkmsg(devkmsg_log_str); 227 228 /* 229 * Do not accept an unknown string OR a known string with 230 * trailing crap... 231 */ 232 if (err < 0 || (err + 1 != *lenp)) { 233 234 /* ... and restore old setting. */ 235 devkmsg_log = old; 236 strncpy(devkmsg_log_str, old_str, DEVKMSG_STR_MAX_SIZE); 237 238 return -EINVAL; 239 } 240 } 241 242 return 0; 243 } 244 #endif /* CONFIG_PRINTK && CONFIG_SYSCTL */ 245 246 /** 247 * console_list_lock - Lock the console list 248 * 249 * For console list or console->flags updates 250 */ 251 void console_list_lock(void) 252 { 253 /* 254 * In unregister_console() and console_force_preferred_locked(), 255 * synchronize_srcu() is called with the console_list_lock held. 256 * Therefore it is not allowed that the console_list_lock is taken 257 * with the srcu_lock held. 258 * 259 * Detecting if this context is really in the read-side critical 260 * section is only possible if the appropriate debug options are 261 * enabled. 262 */ 263 WARN_ON_ONCE(debug_lockdep_rcu_enabled() && 264 srcu_read_lock_held(&console_srcu)); 265 266 mutex_lock(&console_mutex); 267 } 268 EXPORT_SYMBOL(console_list_lock); 269 270 /** 271 * console_list_unlock - Unlock the console list 272 * 273 * Counterpart to console_list_lock() 274 */ 275 void console_list_unlock(void) 276 { 277 mutex_unlock(&console_mutex); 278 } 279 EXPORT_SYMBOL(console_list_unlock); 280 281 /** 282 * console_srcu_read_lock - Register a new reader for the 283 * SRCU-protected console list 284 * 285 * Use for_each_console_srcu() to iterate the console list 286 * 287 * Context: Any context. 288 * Return: A cookie to pass to console_srcu_read_unlock(). 289 */ 290 int console_srcu_read_lock(void) 291 { 292 return srcu_read_lock_nmisafe(&console_srcu); 293 } 294 EXPORT_SYMBOL(console_srcu_read_lock); 295 296 /** 297 * console_srcu_read_unlock - Unregister an old reader from 298 * the SRCU-protected console list 299 * @cookie: cookie returned from console_srcu_read_lock() 300 * 301 * Counterpart to console_srcu_read_lock() 302 */ 303 void console_srcu_read_unlock(int cookie) 304 { 305 srcu_read_unlock_nmisafe(&console_srcu, cookie); 306 } 307 EXPORT_SYMBOL(console_srcu_read_unlock); 308 309 /* 310 * Helper macros to handle lockdep when locking/unlocking console_sem. We use 311 * macros instead of functions so that _RET_IP_ contains useful information. 312 */ 313 #define down_console_sem() do { \ 314 down(&console_sem);\ 315 mutex_acquire(&console_lock_dep_map, 0, 0, _RET_IP_);\ 316 } while (0) 317 318 static int __down_trylock_console_sem(unsigned long ip) 319 { 320 int lock_failed; 321 unsigned long flags; 322 323 /* 324 * Here and in __up_console_sem() we need to be in safe mode, 325 * because spindump/WARN/etc from under console ->lock will 326 * deadlock in printk()->down_trylock_console_sem() otherwise. 327 */ 328 printk_safe_enter_irqsave(flags); 329 lock_failed = down_trylock(&console_sem); 330 printk_safe_exit_irqrestore(flags); 331 332 if (lock_failed) 333 return 1; 334 mutex_acquire(&console_lock_dep_map, 0, 1, ip); 335 return 0; 336 } 337 #define down_trylock_console_sem() __down_trylock_console_sem(_RET_IP_) 338 339 static void __up_console_sem(unsigned long ip) 340 { 341 unsigned long flags; 342 343 mutex_release(&console_lock_dep_map, ip); 344 345 printk_safe_enter_irqsave(flags); 346 up(&console_sem); 347 printk_safe_exit_irqrestore(flags); 348 } 349 #define up_console_sem() __up_console_sem(_RET_IP_) 350 351 static bool panic_in_progress(void) 352 { 353 return unlikely(atomic_read(&panic_cpu) != PANIC_CPU_INVALID); 354 } 355 356 /* 357 * This is used for debugging the mess that is the VT code by 358 * keeping track if we have the console semaphore held. It's 359 * definitely not the perfect debug tool (we don't know if _WE_ 360 * hold it and are racing, but it helps tracking those weird code 361 * paths in the console code where we end up in places I want 362 * locked without the console semaphore held). 363 */ 364 static int console_locked; 365 366 /* 367 * Array of consoles built from command line options (console=) 368 */ 369 370 #define MAX_CMDLINECONSOLES 8 371 372 static struct console_cmdline console_cmdline[MAX_CMDLINECONSOLES]; 373 374 static int preferred_console = -1; 375 int console_set_on_cmdline; 376 EXPORT_SYMBOL(console_set_on_cmdline); 377 378 /* Flag: console code may call schedule() */ 379 static int console_may_schedule; 380 381 enum con_msg_format_flags { 382 MSG_FORMAT_DEFAULT = 0, 383 MSG_FORMAT_SYSLOG = (1 << 0), 384 }; 385 386 static int console_msg_format = MSG_FORMAT_DEFAULT; 387 388 /* 389 * The printk log buffer consists of a sequenced collection of records, each 390 * containing variable length message text. Every record also contains its 391 * own meta-data (@info). 392 * 393 * Every record meta-data carries the timestamp in microseconds, as well as 394 * the standard userspace syslog level and syslog facility. The usual kernel 395 * messages use LOG_KERN; userspace-injected messages always carry a matching 396 * syslog facility, by default LOG_USER. The origin of every message can be 397 * reliably determined that way. 398 * 399 * The human readable log message of a record is available in @text, the 400 * length of the message text in @text_len. The stored message is not 401 * terminated. 402 * 403 * Optionally, a record can carry a dictionary of properties (key/value 404 * pairs), to provide userspace with a machine-readable message context. 405 * 406 * Examples for well-defined, commonly used property names are: 407 * DEVICE=b12:8 device identifier 408 * b12:8 block dev_t 409 * c127:3 char dev_t 410 * n8 netdev ifindex 411 * +sound:card0 subsystem:devname 412 * SUBSYSTEM=pci driver-core subsystem name 413 * 414 * Valid characters in property names are [a-zA-Z0-9.-_]. Property names 415 * and values are terminated by a '\0' character. 416 * 417 * Example of record values: 418 * record.text_buf = "it's a line" (unterminated) 419 * record.info.seq = 56 420 * record.info.ts_nsec = 36863 421 * record.info.text_len = 11 422 * record.info.facility = 0 (LOG_KERN) 423 * record.info.flags = 0 424 * record.info.level = 3 (LOG_ERR) 425 * record.info.caller_id = 299 (task 299) 426 * record.info.dev_info.subsystem = "pci" (terminated) 427 * record.info.dev_info.device = "+pci:0000:00:01.0" (terminated) 428 * 429 * The 'struct printk_info' buffer must never be directly exported to 430 * userspace, it is a kernel-private implementation detail that might 431 * need to be changed in the future, when the requirements change. 432 * 433 * /dev/kmsg exports the structured data in the following line format: 434 * "<level>,<sequnum>,<timestamp>,<contflag>[,additional_values, ... ];<message text>\n" 435 * 436 * Users of the export format should ignore possible additional values 437 * separated by ',', and find the message after the ';' character. 438 * 439 * The optional key/value pairs are attached as continuation lines starting 440 * with a space character and terminated by a newline. All possible 441 * non-prinatable characters are escaped in the "\xff" notation. 442 */ 443 444 /* syslog_lock protects syslog_* variables and write access to clear_seq. */ 445 static DEFINE_MUTEX(syslog_lock); 446 447 #ifdef CONFIG_PRINTK 448 DECLARE_WAIT_QUEUE_HEAD(log_wait); 449 /* All 3 protected by @syslog_lock. */ 450 /* the next printk record to read by syslog(READ) or /proc/kmsg */ 451 static u64 syslog_seq; 452 static size_t syslog_partial; 453 static bool syslog_time; 454 455 struct latched_seq { 456 seqcount_latch_t latch; 457 u64 val[2]; 458 }; 459 460 /* 461 * The next printk record to read after the last 'clear' command. There are 462 * two copies (updated with seqcount_latch) so that reads can locklessly 463 * access a valid value. Writers are synchronized by @syslog_lock. 464 */ 465 static struct latched_seq clear_seq = { 466 .latch = SEQCNT_LATCH_ZERO(clear_seq.latch), 467 .val[0] = 0, 468 .val[1] = 0, 469 }; 470 471 #define LOG_LEVEL(v) ((v) & 0x07) 472 #define LOG_FACILITY(v) ((v) >> 3 & 0xff) 473 474 /* record buffer */ 475 #define LOG_ALIGN __alignof__(unsigned long) 476 #define __LOG_BUF_LEN (1 << CONFIG_LOG_BUF_SHIFT) 477 #define LOG_BUF_LEN_MAX (u32)(1 << 31) 478 static char __log_buf[__LOG_BUF_LEN] __aligned(LOG_ALIGN); 479 static char *log_buf = __log_buf; 480 static u32 log_buf_len = __LOG_BUF_LEN; 481 482 /* 483 * Define the average message size. This only affects the number of 484 * descriptors that will be available. Underestimating is better than 485 * overestimating (too many available descriptors is better than not enough). 486 */ 487 #define PRB_AVGBITS 5 /* 32 character average length */ 488 489 #if CONFIG_LOG_BUF_SHIFT <= PRB_AVGBITS 490 #error CONFIG_LOG_BUF_SHIFT value too small. 491 #endif 492 _DEFINE_PRINTKRB(printk_rb_static, CONFIG_LOG_BUF_SHIFT - PRB_AVGBITS, 493 PRB_AVGBITS, &__log_buf[0]); 494 495 static struct printk_ringbuffer printk_rb_dynamic; 496 497 static struct printk_ringbuffer *prb = &printk_rb_static; 498 499 /* 500 * We cannot access per-CPU data (e.g. per-CPU flush irq_work) before 501 * per_cpu_areas are initialised. This variable is set to true when 502 * it's safe to access per-CPU data. 503 */ 504 static bool __printk_percpu_data_ready __ro_after_init; 505 506 bool printk_percpu_data_ready(void) 507 { 508 return __printk_percpu_data_ready; 509 } 510 511 /* Must be called under syslog_lock. */ 512 static void latched_seq_write(struct latched_seq *ls, u64 val) 513 { 514 raw_write_seqcount_latch(&ls->latch); 515 ls->val[0] = val; 516 raw_write_seqcount_latch(&ls->latch); 517 ls->val[1] = val; 518 } 519 520 /* Can be called from any context. */ 521 static u64 latched_seq_read_nolock(struct latched_seq *ls) 522 { 523 unsigned int seq; 524 unsigned int idx; 525 u64 val; 526 527 do { 528 seq = raw_read_seqcount_latch(&ls->latch); 529 idx = seq & 0x1; 530 val = ls->val[idx]; 531 } while (raw_read_seqcount_latch_retry(&ls->latch, seq)); 532 533 return val; 534 } 535 536 /* Return log buffer address */ 537 char *log_buf_addr_get(void) 538 { 539 return log_buf; 540 } 541 542 /* Return log buffer size */ 543 u32 log_buf_len_get(void) 544 { 545 return log_buf_len; 546 } 547 548 /* 549 * Define how much of the log buffer we could take at maximum. The value 550 * must be greater than two. Note that only half of the buffer is available 551 * when the index points to the middle. 552 */ 553 #define MAX_LOG_TAKE_PART 4 554 static const char trunc_msg[] = "<truncated>"; 555 556 static void truncate_msg(u16 *text_len, u16 *trunc_msg_len) 557 { 558 /* 559 * The message should not take the whole buffer. Otherwise, it might 560 * get removed too soon. 561 */ 562 u32 max_text_len = log_buf_len / MAX_LOG_TAKE_PART; 563 564 if (*text_len > max_text_len) 565 *text_len = max_text_len; 566 567 /* enable the warning message (if there is room) */ 568 *trunc_msg_len = strlen(trunc_msg); 569 if (*text_len >= *trunc_msg_len) 570 *text_len -= *trunc_msg_len; 571 else 572 *trunc_msg_len = 0; 573 } 574 575 int dmesg_restrict = IS_ENABLED(CONFIG_SECURITY_DMESG_RESTRICT); 576 577 static int syslog_action_restricted(int type) 578 { 579 if (dmesg_restrict) 580 return 1; 581 /* 582 * Unless restricted, we allow "read all" and "get buffer size" 583 * for everybody. 584 */ 585 return type != SYSLOG_ACTION_READ_ALL && 586 type != SYSLOG_ACTION_SIZE_BUFFER; 587 } 588 589 static int check_syslog_permissions(int type, int source) 590 { 591 /* 592 * If this is from /proc/kmsg and we've already opened it, then we've 593 * already done the capabilities checks at open time. 594 */ 595 if (source == SYSLOG_FROM_PROC && type != SYSLOG_ACTION_OPEN) 596 goto ok; 597 598 if (syslog_action_restricted(type)) { 599 if (capable(CAP_SYSLOG)) 600 goto ok; 601 /* 602 * For historical reasons, accept CAP_SYS_ADMIN too, with 603 * a warning. 604 */ 605 if (capable(CAP_SYS_ADMIN)) { 606 pr_warn_once("%s (%d): Attempt to access syslog with " 607 "CAP_SYS_ADMIN but no CAP_SYSLOG " 608 "(deprecated).\n", 609 current->comm, task_pid_nr(current)); 610 goto ok; 611 } 612 return -EPERM; 613 } 614 ok: 615 return security_syslog(type); 616 } 617 618 static void append_char(char **pp, char *e, char c) 619 { 620 if (*pp < e) 621 *(*pp)++ = c; 622 } 623 624 static ssize_t info_print_ext_header(char *buf, size_t size, 625 struct printk_info *info) 626 { 627 u64 ts_usec = info->ts_nsec; 628 char caller[20]; 629 #ifdef CONFIG_PRINTK_CALLER 630 u32 id = info->caller_id; 631 632 snprintf(caller, sizeof(caller), ",caller=%c%u", 633 id & 0x80000000 ? 'C' : 'T', id & ~0x80000000); 634 #else 635 caller[0] = '\0'; 636 #endif 637 638 do_div(ts_usec, 1000); 639 640 return scnprintf(buf, size, "%u,%llu,%llu,%c%s;", 641 (info->facility << 3) | info->level, info->seq, 642 ts_usec, info->flags & LOG_CONT ? 'c' : '-', caller); 643 } 644 645 static ssize_t msg_add_ext_text(char *buf, size_t size, 646 const char *text, size_t text_len, 647 unsigned char endc) 648 { 649 char *p = buf, *e = buf + size; 650 size_t i; 651 652 /* escape non-printable characters */ 653 for (i = 0; i < text_len; i++) { 654 unsigned char c = text[i]; 655 656 if (c < ' ' || c >= 127 || c == '\\') 657 p += scnprintf(p, e - p, "\\x%02x", c); 658 else 659 append_char(&p, e, c); 660 } 661 append_char(&p, e, endc); 662 663 return p - buf; 664 } 665 666 static ssize_t msg_add_dict_text(char *buf, size_t size, 667 const char *key, const char *val) 668 { 669 size_t val_len = strlen(val); 670 ssize_t len; 671 672 if (!val_len) 673 return 0; 674 675 len = msg_add_ext_text(buf, size, "", 0, ' '); /* dict prefix */ 676 len += msg_add_ext_text(buf + len, size - len, key, strlen(key), '='); 677 len += msg_add_ext_text(buf + len, size - len, val, val_len, '\n'); 678 679 return len; 680 } 681 682 static ssize_t msg_print_ext_body(char *buf, size_t size, 683 char *text, size_t text_len, 684 struct dev_printk_info *dev_info) 685 { 686 ssize_t len; 687 688 len = msg_add_ext_text(buf, size, text, text_len, '\n'); 689 690 if (!dev_info) 691 goto out; 692 693 len += msg_add_dict_text(buf + len, size - len, "SUBSYSTEM", 694 dev_info->subsystem); 695 len += msg_add_dict_text(buf + len, size - len, "DEVICE", 696 dev_info->device); 697 out: 698 return len; 699 } 700 701 static bool printk_get_next_message(struct printk_message *pmsg, u64 seq, 702 bool is_extended, bool may_supress); 703 704 /* /dev/kmsg - userspace message inject/listen interface */ 705 struct devkmsg_user { 706 atomic64_t seq; 707 struct ratelimit_state rs; 708 struct mutex lock; 709 struct printk_buffers pbufs; 710 }; 711 712 static __printf(3, 4) __cold 713 int devkmsg_emit(int facility, int level, const char *fmt, ...) 714 { 715 va_list args; 716 int r; 717 718 va_start(args, fmt); 719 r = vprintk_emit(facility, level, NULL, fmt, args); 720 va_end(args); 721 722 return r; 723 } 724 725 static ssize_t devkmsg_write(struct kiocb *iocb, struct iov_iter *from) 726 { 727 char *buf, *line; 728 int level = default_message_loglevel; 729 int facility = 1; /* LOG_USER */ 730 struct file *file = iocb->ki_filp; 731 struct devkmsg_user *user = file->private_data; 732 size_t len = iov_iter_count(from); 733 ssize_t ret = len; 734 735 if (len > PRINTKRB_RECORD_MAX) 736 return -EINVAL; 737 738 /* Ignore when user logging is disabled. */ 739 if (devkmsg_log & DEVKMSG_LOG_MASK_OFF) 740 return len; 741 742 /* Ratelimit when not explicitly enabled. */ 743 if (!(devkmsg_log & DEVKMSG_LOG_MASK_ON)) { 744 if (!___ratelimit(&user->rs, current->comm)) 745 return ret; 746 } 747 748 buf = kmalloc(len+1, GFP_KERNEL); 749 if (buf == NULL) 750 return -ENOMEM; 751 752 buf[len] = '\0'; 753 if (!copy_from_iter_full(buf, len, from)) { 754 kfree(buf); 755 return -EFAULT; 756 } 757 758 /* 759 * Extract and skip the syslog prefix <[0-9]*>. Coming from userspace 760 * the decimal value represents 32bit, the lower 3 bit are the log 761 * level, the rest are the log facility. 762 * 763 * If no prefix or no userspace facility is specified, we 764 * enforce LOG_USER, to be able to reliably distinguish 765 * kernel-generated messages from userspace-injected ones. 766 */ 767 line = buf; 768 if (line[0] == '<') { 769 char *endp = NULL; 770 unsigned int u; 771 772 u = simple_strtoul(line + 1, &endp, 10); 773 if (endp && endp[0] == '>') { 774 level = LOG_LEVEL(u); 775 if (LOG_FACILITY(u) != 0) 776 facility = LOG_FACILITY(u); 777 endp++; 778 line = endp; 779 } 780 } 781 782 devkmsg_emit(facility, level, "%s", line); 783 kfree(buf); 784 return ret; 785 } 786 787 static ssize_t devkmsg_read(struct file *file, char __user *buf, 788 size_t count, loff_t *ppos) 789 { 790 struct devkmsg_user *user = file->private_data; 791 char *outbuf = &user->pbufs.outbuf[0]; 792 struct printk_message pmsg = { 793 .pbufs = &user->pbufs, 794 }; 795 ssize_t ret; 796 797 ret = mutex_lock_interruptible(&user->lock); 798 if (ret) 799 return ret; 800 801 if (!printk_get_next_message(&pmsg, atomic64_read(&user->seq), true, false)) { 802 if (file->f_flags & O_NONBLOCK) { 803 ret = -EAGAIN; 804 goto out; 805 } 806 807 /* 808 * Guarantee this task is visible on the waitqueue before 809 * checking the wake condition. 810 * 811 * The full memory barrier within set_current_state() of 812 * prepare_to_wait_event() pairs with the full memory barrier 813 * within wq_has_sleeper(). 814 * 815 * This pairs with __wake_up_klogd:A. 816 */ 817 ret = wait_event_interruptible(log_wait, 818 printk_get_next_message(&pmsg, atomic64_read(&user->seq), true, 819 false)); /* LMM(devkmsg_read:A) */ 820 if (ret) 821 goto out; 822 } 823 824 if (pmsg.dropped) { 825 /* our last seen message is gone, return error and reset */ 826 atomic64_set(&user->seq, pmsg.seq); 827 ret = -EPIPE; 828 goto out; 829 } 830 831 atomic64_set(&user->seq, pmsg.seq + 1); 832 833 if (pmsg.outbuf_len > count) { 834 ret = -EINVAL; 835 goto out; 836 } 837 838 if (copy_to_user(buf, outbuf, pmsg.outbuf_len)) { 839 ret = -EFAULT; 840 goto out; 841 } 842 ret = pmsg.outbuf_len; 843 out: 844 mutex_unlock(&user->lock); 845 return ret; 846 } 847 848 /* 849 * Be careful when modifying this function!!! 850 * 851 * Only few operations are supported because the device works only with the 852 * entire variable length messages (records). Non-standard values are 853 * returned in the other cases and has been this way for quite some time. 854 * User space applications might depend on this behavior. 855 */ 856 static loff_t devkmsg_llseek(struct file *file, loff_t offset, int whence) 857 { 858 struct devkmsg_user *user = file->private_data; 859 loff_t ret = 0; 860 861 if (offset) 862 return -ESPIPE; 863 864 switch (whence) { 865 case SEEK_SET: 866 /* the first record */ 867 atomic64_set(&user->seq, prb_first_valid_seq(prb)); 868 break; 869 case SEEK_DATA: 870 /* 871 * The first record after the last SYSLOG_ACTION_CLEAR, 872 * like issued by 'dmesg -c'. Reading /dev/kmsg itself 873 * changes no global state, and does not clear anything. 874 */ 875 atomic64_set(&user->seq, latched_seq_read_nolock(&clear_seq)); 876 break; 877 case SEEK_END: 878 /* after the last record */ 879 atomic64_set(&user->seq, prb_next_seq(prb)); 880 break; 881 default: 882 ret = -EINVAL; 883 } 884 return ret; 885 } 886 887 static __poll_t devkmsg_poll(struct file *file, poll_table *wait) 888 { 889 struct devkmsg_user *user = file->private_data; 890 struct printk_info info; 891 __poll_t ret = 0; 892 893 poll_wait(file, &log_wait, wait); 894 895 if (prb_read_valid_info(prb, atomic64_read(&user->seq), &info, NULL)) { 896 /* return error when data has vanished underneath us */ 897 if (info.seq != atomic64_read(&user->seq)) 898 ret = EPOLLIN|EPOLLRDNORM|EPOLLERR|EPOLLPRI; 899 else 900 ret = EPOLLIN|EPOLLRDNORM; 901 } 902 903 return ret; 904 } 905 906 static int devkmsg_open(struct inode *inode, struct file *file) 907 { 908 struct devkmsg_user *user; 909 int err; 910 911 if (devkmsg_log & DEVKMSG_LOG_MASK_OFF) 912 return -EPERM; 913 914 /* write-only does not need any file context */ 915 if ((file->f_flags & O_ACCMODE) != O_WRONLY) { 916 err = check_syslog_permissions(SYSLOG_ACTION_READ_ALL, 917 SYSLOG_FROM_READER); 918 if (err) 919 return err; 920 } 921 922 user = kvmalloc(sizeof(struct devkmsg_user), GFP_KERNEL); 923 if (!user) 924 return -ENOMEM; 925 926 ratelimit_default_init(&user->rs); 927 ratelimit_set_flags(&user->rs, RATELIMIT_MSG_ON_RELEASE); 928 929 mutex_init(&user->lock); 930 931 atomic64_set(&user->seq, prb_first_valid_seq(prb)); 932 933 file->private_data = user; 934 return 0; 935 } 936 937 static int devkmsg_release(struct inode *inode, struct file *file) 938 { 939 struct devkmsg_user *user = file->private_data; 940 941 ratelimit_state_exit(&user->rs); 942 943 mutex_destroy(&user->lock); 944 kvfree(user); 945 return 0; 946 } 947 948 const struct file_operations kmsg_fops = { 949 .open = devkmsg_open, 950 .read = devkmsg_read, 951 .write_iter = devkmsg_write, 952 .llseek = devkmsg_llseek, 953 .poll = devkmsg_poll, 954 .release = devkmsg_release, 955 }; 956 957 #ifdef CONFIG_CRASH_CORE 958 /* 959 * This appends the listed symbols to /proc/vmcore 960 * 961 * /proc/vmcore is used by various utilities, like crash and makedumpfile to 962 * obtain access to symbols that are otherwise very difficult to locate. These 963 * symbols are specifically used so that utilities can access and extract the 964 * dmesg log from a vmcore file after a crash. 965 */ 966 void log_buf_vmcoreinfo_setup(void) 967 { 968 struct dev_printk_info *dev_info = NULL; 969 970 VMCOREINFO_SYMBOL(prb); 971 VMCOREINFO_SYMBOL(printk_rb_static); 972 VMCOREINFO_SYMBOL(clear_seq); 973 974 /* 975 * Export struct size and field offsets. User space tools can 976 * parse it and detect any changes to structure down the line. 977 */ 978 979 VMCOREINFO_STRUCT_SIZE(printk_ringbuffer); 980 VMCOREINFO_OFFSET(printk_ringbuffer, desc_ring); 981 VMCOREINFO_OFFSET(printk_ringbuffer, text_data_ring); 982 VMCOREINFO_OFFSET(printk_ringbuffer, fail); 983 984 VMCOREINFO_STRUCT_SIZE(prb_desc_ring); 985 VMCOREINFO_OFFSET(prb_desc_ring, count_bits); 986 VMCOREINFO_OFFSET(prb_desc_ring, descs); 987 VMCOREINFO_OFFSET(prb_desc_ring, infos); 988 VMCOREINFO_OFFSET(prb_desc_ring, head_id); 989 VMCOREINFO_OFFSET(prb_desc_ring, tail_id); 990 991 VMCOREINFO_STRUCT_SIZE(prb_desc); 992 VMCOREINFO_OFFSET(prb_desc, state_var); 993 VMCOREINFO_OFFSET(prb_desc, text_blk_lpos); 994 995 VMCOREINFO_STRUCT_SIZE(prb_data_blk_lpos); 996 VMCOREINFO_OFFSET(prb_data_blk_lpos, begin); 997 VMCOREINFO_OFFSET(prb_data_blk_lpos, next); 998 999 VMCOREINFO_STRUCT_SIZE(printk_info); 1000 VMCOREINFO_OFFSET(printk_info, seq); 1001 VMCOREINFO_OFFSET(printk_info, ts_nsec); 1002 VMCOREINFO_OFFSET(printk_info, text_len); 1003 VMCOREINFO_OFFSET(printk_info, caller_id); 1004 VMCOREINFO_OFFSET(printk_info, dev_info); 1005 1006 VMCOREINFO_STRUCT_SIZE(dev_printk_info); 1007 VMCOREINFO_OFFSET(dev_printk_info, subsystem); 1008 VMCOREINFO_LENGTH(printk_info_subsystem, sizeof(dev_info->subsystem)); 1009 VMCOREINFO_OFFSET(dev_printk_info, device); 1010 VMCOREINFO_LENGTH(printk_info_device, sizeof(dev_info->device)); 1011 1012 VMCOREINFO_STRUCT_SIZE(prb_data_ring); 1013 VMCOREINFO_OFFSET(prb_data_ring, size_bits); 1014 VMCOREINFO_OFFSET(prb_data_ring, data); 1015 VMCOREINFO_OFFSET(prb_data_ring, head_lpos); 1016 VMCOREINFO_OFFSET(prb_data_ring, tail_lpos); 1017 1018 VMCOREINFO_SIZE(atomic_long_t); 1019 VMCOREINFO_TYPE_OFFSET(atomic_long_t, counter); 1020 1021 VMCOREINFO_STRUCT_SIZE(latched_seq); 1022 VMCOREINFO_OFFSET(latched_seq, val); 1023 } 1024 #endif 1025 1026 /* requested log_buf_len from kernel cmdline */ 1027 static unsigned long __initdata new_log_buf_len; 1028 1029 /* we practice scaling the ring buffer by powers of 2 */ 1030 static void __init log_buf_len_update(u64 size) 1031 { 1032 if (size > (u64)LOG_BUF_LEN_MAX) { 1033 size = (u64)LOG_BUF_LEN_MAX; 1034 pr_err("log_buf over 2G is not supported.\n"); 1035 } 1036 1037 if (size) 1038 size = roundup_pow_of_two(size); 1039 if (size > log_buf_len) 1040 new_log_buf_len = (unsigned long)size; 1041 } 1042 1043 /* save requested log_buf_len since it's too early to process it */ 1044 static int __init log_buf_len_setup(char *str) 1045 { 1046 u64 size; 1047 1048 if (!str) 1049 return -EINVAL; 1050 1051 size = memparse(str, &str); 1052 1053 log_buf_len_update(size); 1054 1055 return 0; 1056 } 1057 early_param("log_buf_len", log_buf_len_setup); 1058 1059 #ifdef CONFIG_SMP 1060 #define __LOG_CPU_MAX_BUF_LEN (1 << CONFIG_LOG_CPU_MAX_BUF_SHIFT) 1061 1062 static void __init log_buf_add_cpu(void) 1063 { 1064 unsigned int cpu_extra; 1065 1066 /* 1067 * archs should set up cpu_possible_bits properly with 1068 * set_cpu_possible() after setup_arch() but just in 1069 * case lets ensure this is valid. 1070 */ 1071 if (num_possible_cpus() == 1) 1072 return; 1073 1074 cpu_extra = (num_possible_cpus() - 1) * __LOG_CPU_MAX_BUF_LEN; 1075 1076 /* by default this will only continue through for large > 64 CPUs */ 1077 if (cpu_extra <= __LOG_BUF_LEN / 2) 1078 return; 1079 1080 pr_info("log_buf_len individual max cpu contribution: %d bytes\n", 1081 __LOG_CPU_MAX_BUF_LEN); 1082 pr_info("log_buf_len total cpu_extra contributions: %d bytes\n", 1083 cpu_extra); 1084 pr_info("log_buf_len min size: %d bytes\n", __LOG_BUF_LEN); 1085 1086 log_buf_len_update(cpu_extra + __LOG_BUF_LEN); 1087 } 1088 #else /* !CONFIG_SMP */ 1089 static inline void log_buf_add_cpu(void) {} 1090 #endif /* CONFIG_SMP */ 1091 1092 static void __init set_percpu_data_ready(void) 1093 { 1094 __printk_percpu_data_ready = true; 1095 } 1096 1097 static unsigned int __init add_to_rb(struct printk_ringbuffer *rb, 1098 struct printk_record *r) 1099 { 1100 struct prb_reserved_entry e; 1101 struct printk_record dest_r; 1102 1103 prb_rec_init_wr(&dest_r, r->info->text_len); 1104 1105 if (!prb_reserve(&e, rb, &dest_r)) 1106 return 0; 1107 1108 memcpy(&dest_r.text_buf[0], &r->text_buf[0], r->info->text_len); 1109 dest_r.info->text_len = r->info->text_len; 1110 dest_r.info->facility = r->info->facility; 1111 dest_r.info->level = r->info->level; 1112 dest_r.info->flags = r->info->flags; 1113 dest_r.info->ts_nsec = r->info->ts_nsec; 1114 dest_r.info->caller_id = r->info->caller_id; 1115 memcpy(&dest_r.info->dev_info, &r->info->dev_info, sizeof(dest_r.info->dev_info)); 1116 1117 prb_final_commit(&e); 1118 1119 return prb_record_text_space(&e); 1120 } 1121 1122 static char setup_text_buf[PRINTKRB_RECORD_MAX] __initdata; 1123 1124 void __init setup_log_buf(int early) 1125 { 1126 struct printk_info *new_infos; 1127 unsigned int new_descs_count; 1128 struct prb_desc *new_descs; 1129 struct printk_info info; 1130 struct printk_record r; 1131 unsigned int text_size; 1132 size_t new_descs_size; 1133 size_t new_infos_size; 1134 unsigned long flags; 1135 char *new_log_buf; 1136 unsigned int free; 1137 u64 seq; 1138 1139 /* 1140 * Some archs call setup_log_buf() multiple times - first is very 1141 * early, e.g. from setup_arch(), and second - when percpu_areas 1142 * are initialised. 1143 */ 1144 if (!early) 1145 set_percpu_data_ready(); 1146 1147 if (log_buf != __log_buf) 1148 return; 1149 1150 if (!early && !new_log_buf_len) 1151 log_buf_add_cpu(); 1152 1153 if (!new_log_buf_len) 1154 return; 1155 1156 new_descs_count = new_log_buf_len >> PRB_AVGBITS; 1157 if (new_descs_count == 0) { 1158 pr_err("new_log_buf_len: %lu too small\n", new_log_buf_len); 1159 return; 1160 } 1161 1162 new_log_buf = memblock_alloc(new_log_buf_len, LOG_ALIGN); 1163 if (unlikely(!new_log_buf)) { 1164 pr_err("log_buf_len: %lu text bytes not available\n", 1165 new_log_buf_len); 1166 return; 1167 } 1168 1169 new_descs_size = new_descs_count * sizeof(struct prb_desc); 1170 new_descs = memblock_alloc(new_descs_size, LOG_ALIGN); 1171 if (unlikely(!new_descs)) { 1172 pr_err("log_buf_len: %zu desc bytes not available\n", 1173 new_descs_size); 1174 goto err_free_log_buf; 1175 } 1176 1177 new_infos_size = new_descs_count * sizeof(struct printk_info); 1178 new_infos = memblock_alloc(new_infos_size, LOG_ALIGN); 1179 if (unlikely(!new_infos)) { 1180 pr_err("log_buf_len: %zu info bytes not available\n", 1181 new_infos_size); 1182 goto err_free_descs; 1183 } 1184 1185 prb_rec_init_rd(&r, &info, &setup_text_buf[0], sizeof(setup_text_buf)); 1186 1187 prb_init(&printk_rb_dynamic, 1188 new_log_buf, ilog2(new_log_buf_len), 1189 new_descs, ilog2(new_descs_count), 1190 new_infos); 1191 1192 local_irq_save(flags); 1193 1194 log_buf_len = new_log_buf_len; 1195 log_buf = new_log_buf; 1196 new_log_buf_len = 0; 1197 1198 free = __LOG_BUF_LEN; 1199 prb_for_each_record(0, &printk_rb_static, seq, &r) { 1200 text_size = add_to_rb(&printk_rb_dynamic, &r); 1201 if (text_size > free) 1202 free = 0; 1203 else 1204 free -= text_size; 1205 } 1206 1207 prb = &printk_rb_dynamic; 1208 1209 local_irq_restore(flags); 1210 1211 /* 1212 * Copy any remaining messages that might have appeared from 1213 * NMI context after copying but before switching to the 1214 * dynamic buffer. 1215 */ 1216 prb_for_each_record(seq, &printk_rb_static, seq, &r) { 1217 text_size = add_to_rb(&printk_rb_dynamic, &r); 1218 if (text_size > free) 1219 free = 0; 1220 else 1221 free -= text_size; 1222 } 1223 1224 if (seq != prb_next_seq(&printk_rb_static)) { 1225 pr_err("dropped %llu messages\n", 1226 prb_next_seq(&printk_rb_static) - seq); 1227 } 1228 1229 pr_info("log_buf_len: %u bytes\n", log_buf_len); 1230 pr_info("early log buf free: %u(%u%%)\n", 1231 free, (free * 100) / __LOG_BUF_LEN); 1232 return; 1233 1234 err_free_descs: 1235 memblock_free(new_descs, new_descs_size); 1236 err_free_log_buf: 1237 memblock_free(new_log_buf, new_log_buf_len); 1238 } 1239 1240 static bool __read_mostly ignore_loglevel; 1241 1242 static int __init ignore_loglevel_setup(char *str) 1243 { 1244 ignore_loglevel = true; 1245 pr_info("debug: ignoring loglevel setting.\n"); 1246 1247 return 0; 1248 } 1249 1250 early_param("ignore_loglevel", ignore_loglevel_setup); 1251 module_param(ignore_loglevel, bool, S_IRUGO | S_IWUSR); 1252 MODULE_PARM_DESC(ignore_loglevel, 1253 "ignore loglevel setting (prints all kernel messages to the console)"); 1254 1255 static bool suppress_message_printing(int level) 1256 { 1257 return (level >= console_loglevel && !ignore_loglevel); 1258 } 1259 1260 #ifdef CONFIG_BOOT_PRINTK_DELAY 1261 1262 static int boot_delay; /* msecs delay after each printk during bootup */ 1263 static unsigned long long loops_per_msec; /* based on boot_delay */ 1264 1265 static int __init boot_delay_setup(char *str) 1266 { 1267 unsigned long lpj; 1268 1269 lpj = preset_lpj ? preset_lpj : 1000000; /* some guess */ 1270 loops_per_msec = (unsigned long long)lpj / 1000 * HZ; 1271 1272 get_option(&str, &boot_delay); 1273 if (boot_delay > 10 * 1000) 1274 boot_delay = 0; 1275 1276 pr_debug("boot_delay: %u, preset_lpj: %ld, lpj: %lu, " 1277 "HZ: %d, loops_per_msec: %llu\n", 1278 boot_delay, preset_lpj, lpj, HZ, loops_per_msec); 1279 return 0; 1280 } 1281 early_param("boot_delay", boot_delay_setup); 1282 1283 static void boot_delay_msec(int level) 1284 { 1285 unsigned long long k; 1286 unsigned long timeout; 1287 1288 if ((boot_delay == 0 || system_state >= SYSTEM_RUNNING) 1289 || suppress_message_printing(level)) { 1290 return; 1291 } 1292 1293 k = (unsigned long long)loops_per_msec * boot_delay; 1294 1295 timeout = jiffies + msecs_to_jiffies(boot_delay); 1296 while (k) { 1297 k--; 1298 cpu_relax(); 1299 /* 1300 * use (volatile) jiffies to prevent 1301 * compiler reduction; loop termination via jiffies 1302 * is secondary and may or may not happen. 1303 */ 1304 if (time_after(jiffies, timeout)) 1305 break; 1306 touch_nmi_watchdog(); 1307 } 1308 } 1309 #else 1310 static inline void boot_delay_msec(int level) 1311 { 1312 } 1313 #endif 1314 1315 static bool printk_time = IS_ENABLED(CONFIG_PRINTK_TIME); 1316 module_param_named(time, printk_time, bool, S_IRUGO | S_IWUSR); 1317 1318 static size_t print_syslog(unsigned int level, char *buf) 1319 { 1320 return sprintf(buf, "<%u>", level); 1321 } 1322 1323 static size_t print_time(u64 ts, char *buf) 1324 { 1325 unsigned long rem_nsec = do_div(ts, 1000000000); 1326 1327 return sprintf(buf, "[%5lu.%06lu]", 1328 (unsigned long)ts, rem_nsec / 1000); 1329 } 1330 1331 #ifdef CONFIG_PRINTK_CALLER 1332 static size_t print_caller(u32 id, char *buf) 1333 { 1334 char caller[12]; 1335 1336 snprintf(caller, sizeof(caller), "%c%u", 1337 id & 0x80000000 ? 'C' : 'T', id & ~0x80000000); 1338 return sprintf(buf, "[%6s]", caller); 1339 } 1340 #else 1341 #define print_caller(id, buf) 0 1342 #endif 1343 1344 static size_t info_print_prefix(const struct printk_info *info, bool syslog, 1345 bool time, char *buf) 1346 { 1347 size_t len = 0; 1348 1349 if (syslog) 1350 len = print_syslog((info->facility << 3) | info->level, buf); 1351 1352 if (time) 1353 len += print_time(info->ts_nsec, buf + len); 1354 1355 len += print_caller(info->caller_id, buf + len); 1356 1357 if (IS_ENABLED(CONFIG_PRINTK_CALLER) || time) { 1358 buf[len++] = ' '; 1359 buf[len] = '\0'; 1360 } 1361 1362 return len; 1363 } 1364 1365 /* 1366 * Prepare the record for printing. The text is shifted within the given 1367 * buffer to avoid a need for another one. The following operations are 1368 * done: 1369 * 1370 * - Add prefix for each line. 1371 * - Drop truncated lines that no longer fit into the buffer. 1372 * - Add the trailing newline that has been removed in vprintk_store(). 1373 * - Add a string terminator. 1374 * 1375 * Since the produced string is always terminated, the maximum possible 1376 * return value is @r->text_buf_size - 1; 1377 * 1378 * Return: The length of the updated/prepared text, including the added 1379 * prefixes and the newline. The terminator is not counted. The dropped 1380 * line(s) are not counted. 1381 */ 1382 static size_t record_print_text(struct printk_record *r, bool syslog, 1383 bool time) 1384 { 1385 size_t text_len = r->info->text_len; 1386 size_t buf_size = r->text_buf_size; 1387 char *text = r->text_buf; 1388 char prefix[PRINTK_PREFIX_MAX]; 1389 bool truncated = false; 1390 size_t prefix_len; 1391 size_t line_len; 1392 size_t len = 0; 1393 char *next; 1394 1395 /* 1396 * If the message was truncated because the buffer was not large 1397 * enough, treat the available text as if it were the full text. 1398 */ 1399 if (text_len > buf_size) 1400 text_len = buf_size; 1401 1402 prefix_len = info_print_prefix(r->info, syslog, time, prefix); 1403 1404 /* 1405 * @text_len: bytes of unprocessed text 1406 * @line_len: bytes of current line _without_ newline 1407 * @text: pointer to beginning of current line 1408 * @len: number of bytes prepared in r->text_buf 1409 */ 1410 for (;;) { 1411 next = memchr(text, '\n', text_len); 1412 if (next) { 1413 line_len = next - text; 1414 } else { 1415 /* Drop truncated line(s). */ 1416 if (truncated) 1417 break; 1418 line_len = text_len; 1419 } 1420 1421 /* 1422 * Truncate the text if there is not enough space to add the 1423 * prefix and a trailing newline and a terminator. 1424 */ 1425 if (len + prefix_len + text_len + 1 + 1 > buf_size) { 1426 /* Drop even the current line if no space. */ 1427 if (len + prefix_len + line_len + 1 + 1 > buf_size) 1428 break; 1429 1430 text_len = buf_size - len - prefix_len - 1 - 1; 1431 truncated = true; 1432 } 1433 1434 memmove(text + prefix_len, text, text_len); 1435 memcpy(text, prefix, prefix_len); 1436 1437 /* 1438 * Increment the prepared length to include the text and 1439 * prefix that were just moved+copied. Also increment for the 1440 * newline at the end of this line. If this is the last line, 1441 * there is no newline, but it will be added immediately below. 1442 */ 1443 len += prefix_len + line_len + 1; 1444 if (text_len == line_len) { 1445 /* 1446 * This is the last line. Add the trailing newline 1447 * removed in vprintk_store(). 1448 */ 1449 text[prefix_len + line_len] = '\n'; 1450 break; 1451 } 1452 1453 /* 1454 * Advance beyond the added prefix and the related line with 1455 * its newline. 1456 */ 1457 text += prefix_len + line_len + 1; 1458 1459 /* 1460 * The remaining text has only decreased by the line with its 1461 * newline. 1462 * 1463 * Note that @text_len can become zero. It happens when @text 1464 * ended with a newline (either due to truncation or the 1465 * original string ending with "\n\n"). The loop is correctly 1466 * repeated and (if not truncated) an empty line with a prefix 1467 * will be prepared. 1468 */ 1469 text_len -= line_len + 1; 1470 } 1471 1472 /* 1473 * If a buffer was provided, it will be terminated. Space for the 1474 * string terminator is guaranteed to be available. The terminator is 1475 * not counted in the return value. 1476 */ 1477 if (buf_size > 0) 1478 r->text_buf[len] = 0; 1479 1480 return len; 1481 } 1482 1483 static size_t get_record_print_text_size(struct printk_info *info, 1484 unsigned int line_count, 1485 bool syslog, bool time) 1486 { 1487 char prefix[PRINTK_PREFIX_MAX]; 1488 size_t prefix_len; 1489 1490 prefix_len = info_print_prefix(info, syslog, time, prefix); 1491 1492 /* 1493 * Each line will be preceded with a prefix. The intermediate 1494 * newlines are already within the text, but a final trailing 1495 * newline will be added. 1496 */ 1497 return ((prefix_len * line_count) + info->text_len + 1); 1498 } 1499 1500 /* 1501 * Beginning with @start_seq, find the first record where it and all following 1502 * records up to (but not including) @max_seq fit into @size. 1503 * 1504 * @max_seq is simply an upper bound and does not need to exist. If the caller 1505 * does not require an upper bound, -1 can be used for @max_seq. 1506 */ 1507 static u64 find_first_fitting_seq(u64 start_seq, u64 max_seq, size_t size, 1508 bool syslog, bool time) 1509 { 1510 struct printk_info info; 1511 unsigned int line_count; 1512 size_t len = 0; 1513 u64 seq; 1514 1515 /* Determine the size of the records up to @max_seq. */ 1516 prb_for_each_info(start_seq, prb, seq, &info, &line_count) { 1517 if (info.seq >= max_seq) 1518 break; 1519 len += get_record_print_text_size(&info, line_count, syslog, time); 1520 } 1521 1522 /* 1523 * Adjust the upper bound for the next loop to avoid subtracting 1524 * lengths that were never added. 1525 */ 1526 if (seq < max_seq) 1527 max_seq = seq; 1528 1529 /* 1530 * Move first record forward until length fits into the buffer. Ignore 1531 * newest messages that were not counted in the above cycle. Messages 1532 * might appear and get lost in the meantime. This is a best effort 1533 * that prevents an infinite loop that could occur with a retry. 1534 */ 1535 prb_for_each_info(start_seq, prb, seq, &info, &line_count) { 1536 if (len <= size || info.seq >= max_seq) 1537 break; 1538 len -= get_record_print_text_size(&info, line_count, syslog, time); 1539 } 1540 1541 return seq; 1542 } 1543 1544 /* The caller is responsible for making sure @size is greater than 0. */ 1545 static int syslog_print(char __user *buf, int size) 1546 { 1547 struct printk_info info; 1548 struct printk_record r; 1549 char *text; 1550 int len = 0; 1551 u64 seq; 1552 1553 text = kmalloc(PRINTK_MESSAGE_MAX, GFP_KERNEL); 1554 if (!text) 1555 return -ENOMEM; 1556 1557 prb_rec_init_rd(&r, &info, text, PRINTK_MESSAGE_MAX); 1558 1559 mutex_lock(&syslog_lock); 1560 1561 /* 1562 * Wait for the @syslog_seq record to be available. @syslog_seq may 1563 * change while waiting. 1564 */ 1565 do { 1566 seq = syslog_seq; 1567 1568 mutex_unlock(&syslog_lock); 1569 /* 1570 * Guarantee this task is visible on the waitqueue before 1571 * checking the wake condition. 1572 * 1573 * The full memory barrier within set_current_state() of 1574 * prepare_to_wait_event() pairs with the full memory barrier 1575 * within wq_has_sleeper(). 1576 * 1577 * This pairs with __wake_up_klogd:A. 1578 */ 1579 len = wait_event_interruptible(log_wait, 1580 prb_read_valid(prb, seq, NULL)); /* LMM(syslog_print:A) */ 1581 mutex_lock(&syslog_lock); 1582 1583 if (len) 1584 goto out; 1585 } while (syslog_seq != seq); 1586 1587 /* 1588 * Copy records that fit into the buffer. The above cycle makes sure 1589 * that the first record is always available. 1590 */ 1591 do { 1592 size_t n; 1593 size_t skip; 1594 int err; 1595 1596 if (!prb_read_valid(prb, syslog_seq, &r)) 1597 break; 1598 1599 if (r.info->seq != syslog_seq) { 1600 /* message is gone, move to next valid one */ 1601 syslog_seq = r.info->seq; 1602 syslog_partial = 0; 1603 } 1604 1605 /* 1606 * To keep reading/counting partial line consistent, 1607 * use printk_time value as of the beginning of a line. 1608 */ 1609 if (!syslog_partial) 1610 syslog_time = printk_time; 1611 1612 skip = syslog_partial; 1613 n = record_print_text(&r, true, syslog_time); 1614 if (n - syslog_partial <= size) { 1615 /* message fits into buffer, move forward */ 1616 syslog_seq = r.info->seq + 1; 1617 n -= syslog_partial; 1618 syslog_partial = 0; 1619 } else if (!len){ 1620 /* partial read(), remember position */ 1621 n = size; 1622 syslog_partial += n; 1623 } else 1624 n = 0; 1625 1626 if (!n) 1627 break; 1628 1629 mutex_unlock(&syslog_lock); 1630 err = copy_to_user(buf, text + skip, n); 1631 mutex_lock(&syslog_lock); 1632 1633 if (err) { 1634 if (!len) 1635 len = -EFAULT; 1636 break; 1637 } 1638 1639 len += n; 1640 size -= n; 1641 buf += n; 1642 } while (size); 1643 out: 1644 mutex_unlock(&syslog_lock); 1645 kfree(text); 1646 return len; 1647 } 1648 1649 static int syslog_print_all(char __user *buf, int size, bool clear) 1650 { 1651 struct printk_info info; 1652 struct printk_record r; 1653 char *text; 1654 int len = 0; 1655 u64 seq; 1656 bool time; 1657 1658 text = kmalloc(PRINTK_MESSAGE_MAX, GFP_KERNEL); 1659 if (!text) 1660 return -ENOMEM; 1661 1662 time = printk_time; 1663 /* 1664 * Find first record that fits, including all following records, 1665 * into the user-provided buffer for this dump. 1666 */ 1667 seq = find_first_fitting_seq(latched_seq_read_nolock(&clear_seq), -1, 1668 size, true, time); 1669 1670 prb_rec_init_rd(&r, &info, text, PRINTK_MESSAGE_MAX); 1671 1672 len = 0; 1673 prb_for_each_record(seq, prb, seq, &r) { 1674 int textlen; 1675 1676 textlen = record_print_text(&r, true, time); 1677 1678 if (len + textlen > size) { 1679 seq--; 1680 break; 1681 } 1682 1683 if (copy_to_user(buf + len, text, textlen)) 1684 len = -EFAULT; 1685 else 1686 len += textlen; 1687 1688 if (len < 0) 1689 break; 1690 } 1691 1692 if (clear) { 1693 mutex_lock(&syslog_lock); 1694 latched_seq_write(&clear_seq, seq); 1695 mutex_unlock(&syslog_lock); 1696 } 1697 1698 kfree(text); 1699 return len; 1700 } 1701 1702 static void syslog_clear(void) 1703 { 1704 mutex_lock(&syslog_lock); 1705 latched_seq_write(&clear_seq, prb_next_seq(prb)); 1706 mutex_unlock(&syslog_lock); 1707 } 1708 1709 int do_syslog(int type, char __user *buf, int len, int source) 1710 { 1711 struct printk_info info; 1712 bool clear = false; 1713 static int saved_console_loglevel = LOGLEVEL_DEFAULT; 1714 int error; 1715 1716 error = check_syslog_permissions(type, source); 1717 if (error) 1718 return error; 1719 1720 switch (type) { 1721 case SYSLOG_ACTION_CLOSE: /* Close log */ 1722 break; 1723 case SYSLOG_ACTION_OPEN: /* Open log */ 1724 break; 1725 case SYSLOG_ACTION_READ: /* Read from log */ 1726 if (!buf || len < 0) 1727 return -EINVAL; 1728 if (!len) 1729 return 0; 1730 if (!access_ok(buf, len)) 1731 return -EFAULT; 1732 error = syslog_print(buf, len); 1733 break; 1734 /* Read/clear last kernel messages */ 1735 case SYSLOG_ACTION_READ_CLEAR: 1736 clear = true; 1737 fallthrough; 1738 /* Read last kernel messages */ 1739 case SYSLOG_ACTION_READ_ALL: 1740 if (!buf || len < 0) 1741 return -EINVAL; 1742 if (!len) 1743 return 0; 1744 if (!access_ok(buf, len)) 1745 return -EFAULT; 1746 error = syslog_print_all(buf, len, clear); 1747 break; 1748 /* Clear ring buffer */ 1749 case SYSLOG_ACTION_CLEAR: 1750 syslog_clear(); 1751 break; 1752 /* Disable logging to console */ 1753 case SYSLOG_ACTION_CONSOLE_OFF: 1754 if (saved_console_loglevel == LOGLEVEL_DEFAULT) 1755 saved_console_loglevel = console_loglevel; 1756 console_loglevel = minimum_console_loglevel; 1757 break; 1758 /* Enable logging to console */ 1759 case SYSLOG_ACTION_CONSOLE_ON: 1760 if (saved_console_loglevel != LOGLEVEL_DEFAULT) { 1761 console_loglevel = saved_console_loglevel; 1762 saved_console_loglevel = LOGLEVEL_DEFAULT; 1763 } 1764 break; 1765 /* Set level of messages printed to console */ 1766 case SYSLOG_ACTION_CONSOLE_LEVEL: 1767 if (len < 1 || len > 8) 1768 return -EINVAL; 1769 if (len < minimum_console_loglevel) 1770 len = minimum_console_loglevel; 1771 console_loglevel = len; 1772 /* Implicitly re-enable logging to console */ 1773 saved_console_loglevel = LOGLEVEL_DEFAULT; 1774 break; 1775 /* Number of chars in the log buffer */ 1776 case SYSLOG_ACTION_SIZE_UNREAD: 1777 mutex_lock(&syslog_lock); 1778 if (!prb_read_valid_info(prb, syslog_seq, &info, NULL)) { 1779 /* No unread messages. */ 1780 mutex_unlock(&syslog_lock); 1781 return 0; 1782 } 1783 if (info.seq != syslog_seq) { 1784 /* messages are gone, move to first one */ 1785 syslog_seq = info.seq; 1786 syslog_partial = 0; 1787 } 1788 if (source == SYSLOG_FROM_PROC) { 1789 /* 1790 * Short-cut for poll(/"proc/kmsg") which simply checks 1791 * for pending data, not the size; return the count of 1792 * records, not the length. 1793 */ 1794 error = prb_next_seq(prb) - syslog_seq; 1795 } else { 1796 bool time = syslog_partial ? syslog_time : printk_time; 1797 unsigned int line_count; 1798 u64 seq; 1799 1800 prb_for_each_info(syslog_seq, prb, seq, &info, 1801 &line_count) { 1802 error += get_record_print_text_size(&info, line_count, 1803 true, time); 1804 time = printk_time; 1805 } 1806 error -= syslog_partial; 1807 } 1808 mutex_unlock(&syslog_lock); 1809 break; 1810 /* Size of the log buffer */ 1811 case SYSLOG_ACTION_SIZE_BUFFER: 1812 error = log_buf_len; 1813 break; 1814 default: 1815 error = -EINVAL; 1816 break; 1817 } 1818 1819 return error; 1820 } 1821 1822 SYSCALL_DEFINE3(syslog, int, type, char __user *, buf, int, len) 1823 { 1824 return do_syslog(type, buf, len, SYSLOG_FROM_READER); 1825 } 1826 1827 /* 1828 * Special console_lock variants that help to reduce the risk of soft-lockups. 1829 * They allow to pass console_lock to another printk() call using a busy wait. 1830 */ 1831 1832 #ifdef CONFIG_LOCKDEP 1833 static struct lockdep_map console_owner_dep_map = { 1834 .name = "console_owner" 1835 }; 1836 #endif 1837 1838 static DEFINE_RAW_SPINLOCK(console_owner_lock); 1839 static struct task_struct *console_owner; 1840 static bool console_waiter; 1841 1842 /** 1843 * console_lock_spinning_enable - mark beginning of code where another 1844 * thread might safely busy wait 1845 * 1846 * This basically converts console_lock into a spinlock. This marks 1847 * the section where the console_lock owner can not sleep, because 1848 * there may be a waiter spinning (like a spinlock). Also it must be 1849 * ready to hand over the lock at the end of the section. 1850 */ 1851 static void console_lock_spinning_enable(void) 1852 { 1853 /* 1854 * Do not use spinning in panic(). The panic CPU wants to keep the lock. 1855 * Non-panic CPUs abandon the flush anyway. 1856 * 1857 * Just keep the lockdep annotation. The panic-CPU should avoid 1858 * taking console_owner_lock because it might cause a deadlock. 1859 * This looks like the easiest way how to prevent false lockdep 1860 * reports without handling races a lockless way. 1861 */ 1862 if (panic_in_progress()) 1863 goto lockdep; 1864 1865 raw_spin_lock(&console_owner_lock); 1866 console_owner = current; 1867 raw_spin_unlock(&console_owner_lock); 1868 1869 lockdep: 1870 /* The waiter may spin on us after setting console_owner */ 1871 spin_acquire(&console_owner_dep_map, 0, 0, _THIS_IP_); 1872 } 1873 1874 /** 1875 * console_lock_spinning_disable_and_check - mark end of code where another 1876 * thread was able to busy wait and check if there is a waiter 1877 * @cookie: cookie returned from console_srcu_read_lock() 1878 * 1879 * This is called at the end of the section where spinning is allowed. 1880 * It has two functions. First, it is a signal that it is no longer 1881 * safe to start busy waiting for the lock. Second, it checks if 1882 * there is a busy waiter and passes the lock rights to her. 1883 * 1884 * Important: Callers lose both the console_lock and the SRCU read lock if 1885 * there was a busy waiter. They must not touch items synchronized by 1886 * console_lock or SRCU read lock in this case. 1887 * 1888 * Return: 1 if the lock rights were passed, 0 otherwise. 1889 */ 1890 static int console_lock_spinning_disable_and_check(int cookie) 1891 { 1892 int waiter; 1893 1894 /* 1895 * Ignore spinning waiters during panic() because they might get stopped 1896 * or blocked at any time, 1897 * 1898 * It is safe because nobody is allowed to start spinning during panic 1899 * in the first place. If there has been a waiter then non panic CPUs 1900 * might stay spinning. They would get stopped anyway. The panic context 1901 * will never start spinning and an interrupted spin on panic CPU will 1902 * never continue. 1903 */ 1904 if (panic_in_progress()) { 1905 /* Keep lockdep happy. */ 1906 spin_release(&console_owner_dep_map, _THIS_IP_); 1907 return 0; 1908 } 1909 1910 raw_spin_lock(&console_owner_lock); 1911 waiter = READ_ONCE(console_waiter); 1912 console_owner = NULL; 1913 raw_spin_unlock(&console_owner_lock); 1914 1915 if (!waiter) { 1916 spin_release(&console_owner_dep_map, _THIS_IP_); 1917 return 0; 1918 } 1919 1920 /* The waiter is now free to continue */ 1921 WRITE_ONCE(console_waiter, false); 1922 1923 spin_release(&console_owner_dep_map, _THIS_IP_); 1924 1925 /* 1926 * Preserve lockdep lock ordering. Release the SRCU read lock before 1927 * releasing the console_lock. 1928 */ 1929 console_srcu_read_unlock(cookie); 1930 1931 /* 1932 * Hand off console_lock to waiter. The waiter will perform 1933 * the up(). After this, the waiter is the console_lock owner. 1934 */ 1935 mutex_release(&console_lock_dep_map, _THIS_IP_); 1936 return 1; 1937 } 1938 1939 /** 1940 * console_trylock_spinning - try to get console_lock by busy waiting 1941 * 1942 * This allows to busy wait for the console_lock when the current 1943 * owner is running in specially marked sections. It means that 1944 * the current owner is running and cannot reschedule until it 1945 * is ready to lose the lock. 1946 * 1947 * Return: 1 if we got the lock, 0 othrewise 1948 */ 1949 static int console_trylock_spinning(void) 1950 { 1951 struct task_struct *owner = NULL; 1952 bool waiter; 1953 bool spin = false; 1954 unsigned long flags; 1955 1956 if (console_trylock()) 1957 return 1; 1958 1959 /* 1960 * It's unsafe to spin once a panic has begun. If we are the 1961 * panic CPU, we may have already halted the owner of the 1962 * console_sem. If we are not the panic CPU, then we should 1963 * avoid taking console_sem, so the panic CPU has a better 1964 * chance of cleanly acquiring it later. 1965 */ 1966 if (panic_in_progress()) 1967 return 0; 1968 1969 printk_safe_enter_irqsave(flags); 1970 1971 raw_spin_lock(&console_owner_lock); 1972 owner = READ_ONCE(console_owner); 1973 waiter = READ_ONCE(console_waiter); 1974 if (!waiter && owner && owner != current) { 1975 WRITE_ONCE(console_waiter, true); 1976 spin = true; 1977 } 1978 raw_spin_unlock(&console_owner_lock); 1979 1980 /* 1981 * If there is an active printk() writing to the 1982 * consoles, instead of having it write our data too, 1983 * see if we can offload that load from the active 1984 * printer, and do some printing ourselves. 1985 * Go into a spin only if there isn't already a waiter 1986 * spinning, and there is an active printer, and 1987 * that active printer isn't us (recursive printk?). 1988 */ 1989 if (!spin) { 1990 printk_safe_exit_irqrestore(flags); 1991 return 0; 1992 } 1993 1994 /* We spin waiting for the owner to release us */ 1995 spin_acquire(&console_owner_dep_map, 0, 0, _THIS_IP_); 1996 /* Owner will clear console_waiter on hand off */ 1997 while (READ_ONCE(console_waiter)) 1998 cpu_relax(); 1999 spin_release(&console_owner_dep_map, _THIS_IP_); 2000 2001 printk_safe_exit_irqrestore(flags); 2002 /* 2003 * The owner passed the console lock to us. 2004 * Since we did not spin on console lock, annotate 2005 * this as a trylock. Otherwise lockdep will 2006 * complain. 2007 */ 2008 mutex_acquire(&console_lock_dep_map, 0, 1, _THIS_IP_); 2009 2010 /* 2011 * Update @console_may_schedule for trylock because the previous 2012 * owner may have been schedulable. 2013 */ 2014 console_may_schedule = 0; 2015 2016 return 1; 2017 } 2018 2019 /* 2020 * Recursion is tracked separately on each CPU. If NMIs are supported, an 2021 * additional NMI context per CPU is also separately tracked. Until per-CPU 2022 * is available, a separate "early tracking" is performed. 2023 */ 2024 static DEFINE_PER_CPU(u8, printk_count); 2025 static u8 printk_count_early; 2026 #ifdef CONFIG_HAVE_NMI 2027 static DEFINE_PER_CPU(u8, printk_count_nmi); 2028 static u8 printk_count_nmi_early; 2029 #endif 2030 2031 /* 2032 * Recursion is limited to keep the output sane. printk() should not require 2033 * more than 1 level of recursion (allowing, for example, printk() to trigger 2034 * a WARN), but a higher value is used in case some printk-internal errors 2035 * exist, such as the ringbuffer validation checks failing. 2036 */ 2037 #define PRINTK_MAX_RECURSION 3 2038 2039 /* 2040 * Return a pointer to the dedicated counter for the CPU+context of the 2041 * caller. 2042 */ 2043 static u8 *__printk_recursion_counter(void) 2044 { 2045 #ifdef CONFIG_HAVE_NMI 2046 if (in_nmi()) { 2047 if (printk_percpu_data_ready()) 2048 return this_cpu_ptr(&printk_count_nmi); 2049 return &printk_count_nmi_early; 2050 } 2051 #endif 2052 if (printk_percpu_data_ready()) 2053 return this_cpu_ptr(&printk_count); 2054 return &printk_count_early; 2055 } 2056 2057 /* 2058 * Enter recursion tracking. Interrupts are disabled to simplify tracking. 2059 * The caller must check the boolean return value to see if the recursion is 2060 * allowed. On failure, interrupts are not disabled. 2061 * 2062 * @recursion_ptr must be a variable of type (u8 *) and is the same variable 2063 * that is passed to printk_exit_irqrestore(). 2064 */ 2065 #define printk_enter_irqsave(recursion_ptr, flags) \ 2066 ({ \ 2067 bool success = true; \ 2068 \ 2069 typecheck(u8 *, recursion_ptr); \ 2070 local_irq_save(flags); \ 2071 (recursion_ptr) = __printk_recursion_counter(); \ 2072 if (*(recursion_ptr) > PRINTK_MAX_RECURSION) { \ 2073 local_irq_restore(flags); \ 2074 success = false; \ 2075 } else { \ 2076 (*(recursion_ptr))++; \ 2077 } \ 2078 success; \ 2079 }) 2080 2081 /* Exit recursion tracking, restoring interrupts. */ 2082 #define printk_exit_irqrestore(recursion_ptr, flags) \ 2083 do { \ 2084 typecheck(u8 *, recursion_ptr); \ 2085 (*(recursion_ptr))--; \ 2086 local_irq_restore(flags); \ 2087 } while (0) 2088 2089 int printk_delay_msec __read_mostly; 2090 2091 static inline void printk_delay(int level) 2092 { 2093 boot_delay_msec(level); 2094 2095 if (unlikely(printk_delay_msec)) { 2096 int m = printk_delay_msec; 2097 2098 while (m--) { 2099 mdelay(1); 2100 touch_nmi_watchdog(); 2101 } 2102 } 2103 } 2104 2105 static inline u32 printk_caller_id(void) 2106 { 2107 return in_task() ? task_pid_nr(current) : 2108 0x80000000 + smp_processor_id(); 2109 } 2110 2111 /** 2112 * printk_parse_prefix - Parse level and control flags. 2113 * 2114 * @text: The terminated text message. 2115 * @level: A pointer to the current level value, will be updated. 2116 * @flags: A pointer to the current printk_info flags, will be updated. 2117 * 2118 * @level may be NULL if the caller is not interested in the parsed value. 2119 * Otherwise the variable pointed to by @level must be set to 2120 * LOGLEVEL_DEFAULT in order to be updated with the parsed value. 2121 * 2122 * @flags may be NULL if the caller is not interested in the parsed value. 2123 * Otherwise the variable pointed to by @flags will be OR'd with the parsed 2124 * value. 2125 * 2126 * Return: The length of the parsed level and control flags. 2127 */ 2128 u16 printk_parse_prefix(const char *text, int *level, 2129 enum printk_info_flags *flags) 2130 { 2131 u16 prefix_len = 0; 2132 int kern_level; 2133 2134 while (*text) { 2135 kern_level = printk_get_level(text); 2136 if (!kern_level) 2137 break; 2138 2139 switch (kern_level) { 2140 case '0' ... '7': 2141 if (level && *level == LOGLEVEL_DEFAULT) 2142 *level = kern_level - '0'; 2143 break; 2144 case 'c': /* KERN_CONT */ 2145 if (flags) 2146 *flags |= LOG_CONT; 2147 } 2148 2149 prefix_len += 2; 2150 text += 2; 2151 } 2152 2153 return prefix_len; 2154 } 2155 2156 __printf(5, 0) 2157 static u16 printk_sprint(char *text, u16 size, int facility, 2158 enum printk_info_flags *flags, const char *fmt, 2159 va_list args) 2160 { 2161 u16 text_len; 2162 2163 text_len = vscnprintf(text, size, fmt, args); 2164 2165 /* Mark and strip a trailing newline. */ 2166 if (text_len && text[text_len - 1] == '\n') { 2167 text_len--; 2168 *flags |= LOG_NEWLINE; 2169 } 2170 2171 /* Strip log level and control flags. */ 2172 if (facility == 0) { 2173 u16 prefix_len; 2174 2175 prefix_len = printk_parse_prefix(text, NULL, NULL); 2176 if (prefix_len) { 2177 text_len -= prefix_len; 2178 memmove(text, text + prefix_len, text_len); 2179 } 2180 } 2181 2182 trace_console(text, text_len); 2183 2184 return text_len; 2185 } 2186 2187 __printf(4, 0) 2188 int vprintk_store(int facility, int level, 2189 const struct dev_printk_info *dev_info, 2190 const char *fmt, va_list args) 2191 { 2192 struct prb_reserved_entry e; 2193 enum printk_info_flags flags = 0; 2194 struct printk_record r; 2195 unsigned long irqflags; 2196 u16 trunc_msg_len = 0; 2197 char prefix_buf[8]; 2198 u8 *recursion_ptr; 2199 u16 reserve_size; 2200 va_list args2; 2201 u32 caller_id; 2202 u16 text_len; 2203 int ret = 0; 2204 u64 ts_nsec; 2205 2206 if (!printk_enter_irqsave(recursion_ptr, irqflags)) 2207 return 0; 2208 2209 /* 2210 * Since the duration of printk() can vary depending on the message 2211 * and state of the ringbuffer, grab the timestamp now so that it is 2212 * close to the call of printk(). This provides a more deterministic 2213 * timestamp with respect to the caller. 2214 */ 2215 ts_nsec = local_clock(); 2216 2217 caller_id = printk_caller_id(); 2218 2219 /* 2220 * The sprintf needs to come first since the syslog prefix might be 2221 * passed in as a parameter. An extra byte must be reserved so that 2222 * later the vscnprintf() into the reserved buffer has room for the 2223 * terminating '\0', which is not counted by vsnprintf(). 2224 */ 2225 va_copy(args2, args); 2226 reserve_size = vsnprintf(&prefix_buf[0], sizeof(prefix_buf), fmt, args2) + 1; 2227 va_end(args2); 2228 2229 if (reserve_size > PRINTKRB_RECORD_MAX) 2230 reserve_size = PRINTKRB_RECORD_MAX; 2231 2232 /* Extract log level or control flags. */ 2233 if (facility == 0) 2234 printk_parse_prefix(&prefix_buf[0], &level, &flags); 2235 2236 if (level == LOGLEVEL_DEFAULT) 2237 level = default_message_loglevel; 2238 2239 if (dev_info) 2240 flags |= LOG_NEWLINE; 2241 2242 if (flags & LOG_CONT) { 2243 prb_rec_init_wr(&r, reserve_size); 2244 if (prb_reserve_in_last(&e, prb, &r, caller_id, PRINTKRB_RECORD_MAX)) { 2245 text_len = printk_sprint(&r.text_buf[r.info->text_len], reserve_size, 2246 facility, &flags, fmt, args); 2247 r.info->text_len += text_len; 2248 2249 if (flags & LOG_NEWLINE) { 2250 r.info->flags |= LOG_NEWLINE; 2251 prb_final_commit(&e); 2252 } else { 2253 prb_commit(&e); 2254 } 2255 2256 ret = text_len; 2257 goto out; 2258 } 2259 } 2260 2261 /* 2262 * Explicitly initialize the record before every prb_reserve() call. 2263 * prb_reserve_in_last() and prb_reserve() purposely invalidate the 2264 * structure when they fail. 2265 */ 2266 prb_rec_init_wr(&r, reserve_size); 2267 if (!prb_reserve(&e, prb, &r)) { 2268 /* truncate the message if it is too long for empty buffer */ 2269 truncate_msg(&reserve_size, &trunc_msg_len); 2270 2271 prb_rec_init_wr(&r, reserve_size + trunc_msg_len); 2272 if (!prb_reserve(&e, prb, &r)) 2273 goto out; 2274 } 2275 2276 /* fill message */ 2277 text_len = printk_sprint(&r.text_buf[0], reserve_size, facility, &flags, fmt, args); 2278 if (trunc_msg_len) 2279 memcpy(&r.text_buf[text_len], trunc_msg, trunc_msg_len); 2280 r.info->text_len = text_len + trunc_msg_len; 2281 r.info->facility = facility; 2282 r.info->level = level & 7; 2283 r.info->flags = flags & 0x1f; 2284 r.info->ts_nsec = ts_nsec; 2285 r.info->caller_id = caller_id; 2286 if (dev_info) 2287 memcpy(&r.info->dev_info, dev_info, sizeof(r.info->dev_info)); 2288 2289 /* A message without a trailing newline can be continued. */ 2290 if (!(flags & LOG_NEWLINE)) 2291 prb_commit(&e); 2292 else 2293 prb_final_commit(&e); 2294 2295 ret = text_len + trunc_msg_len; 2296 out: 2297 printk_exit_irqrestore(recursion_ptr, irqflags); 2298 return ret; 2299 } 2300 2301 asmlinkage int vprintk_emit(int facility, int level, 2302 const struct dev_printk_info *dev_info, 2303 const char *fmt, va_list args) 2304 { 2305 int printed_len; 2306 bool in_sched = false; 2307 2308 /* Suppress unimportant messages after panic happens */ 2309 if (unlikely(suppress_printk)) 2310 return 0; 2311 2312 if (unlikely(suppress_panic_printk) && other_cpu_in_panic()) 2313 return 0; 2314 2315 if (level == LOGLEVEL_SCHED) { 2316 level = LOGLEVEL_DEFAULT; 2317 in_sched = true; 2318 } 2319 2320 printk_delay(level); 2321 2322 printed_len = vprintk_store(facility, level, dev_info, fmt, args); 2323 2324 /* If called from the scheduler, we can not call up(). */ 2325 if (!in_sched) { 2326 /* 2327 * The caller may be holding system-critical or 2328 * timing-sensitive locks. Disable preemption during 2329 * printing of all remaining records to all consoles so that 2330 * this context can return as soon as possible. Hopefully 2331 * another printk() caller will take over the printing. 2332 */ 2333 preempt_disable(); 2334 /* 2335 * Try to acquire and then immediately release the console 2336 * semaphore. The release will print out buffers. With the 2337 * spinning variant, this context tries to take over the 2338 * printing from another printing context. 2339 */ 2340 if (console_trylock_spinning()) 2341 console_unlock(); 2342 preempt_enable(); 2343 } 2344 2345 if (in_sched) 2346 defer_console_output(); 2347 else 2348 wake_up_klogd(); 2349 2350 return printed_len; 2351 } 2352 EXPORT_SYMBOL(vprintk_emit); 2353 2354 int vprintk_default(const char *fmt, va_list args) 2355 { 2356 return vprintk_emit(0, LOGLEVEL_DEFAULT, NULL, fmt, args); 2357 } 2358 EXPORT_SYMBOL_GPL(vprintk_default); 2359 2360 asmlinkage __visible int _printk(const char *fmt, ...) 2361 { 2362 va_list args; 2363 int r; 2364 2365 va_start(args, fmt); 2366 r = vprintk(fmt, args); 2367 va_end(args); 2368 2369 return r; 2370 } 2371 EXPORT_SYMBOL(_printk); 2372 2373 static bool pr_flush(int timeout_ms, bool reset_on_progress); 2374 static bool __pr_flush(struct console *con, int timeout_ms, bool reset_on_progress); 2375 2376 #else /* CONFIG_PRINTK */ 2377 2378 #define printk_time false 2379 2380 #define prb_read_valid(rb, seq, r) false 2381 #define prb_first_valid_seq(rb) 0 2382 #define prb_next_seq(rb) 0 2383 2384 static u64 syslog_seq; 2385 2386 static size_t record_print_text(const struct printk_record *r, 2387 bool syslog, bool time) 2388 { 2389 return 0; 2390 } 2391 static ssize_t info_print_ext_header(char *buf, size_t size, 2392 struct printk_info *info) 2393 { 2394 return 0; 2395 } 2396 static ssize_t msg_print_ext_body(char *buf, size_t size, 2397 char *text, size_t text_len, 2398 struct dev_printk_info *dev_info) { return 0; } 2399 static void console_lock_spinning_enable(void) { } 2400 static int console_lock_spinning_disable_and_check(int cookie) { return 0; } 2401 static bool suppress_message_printing(int level) { return false; } 2402 static bool pr_flush(int timeout_ms, bool reset_on_progress) { return true; } 2403 static bool __pr_flush(struct console *con, int timeout_ms, bool reset_on_progress) { return true; } 2404 2405 #endif /* CONFIG_PRINTK */ 2406 2407 #ifdef CONFIG_EARLY_PRINTK 2408 struct console *early_console; 2409 2410 asmlinkage __visible void early_printk(const char *fmt, ...) 2411 { 2412 va_list ap; 2413 char buf[512]; 2414 int n; 2415 2416 if (!early_console) 2417 return; 2418 2419 va_start(ap, fmt); 2420 n = vscnprintf(buf, sizeof(buf), fmt, ap); 2421 va_end(ap); 2422 2423 early_console->write(early_console, buf, n); 2424 } 2425 #endif 2426 2427 static void set_user_specified(struct console_cmdline *c, bool user_specified) 2428 { 2429 if (!user_specified) 2430 return; 2431 2432 /* 2433 * @c console was defined by the user on the command line. 2434 * Do not clear when added twice also by SPCR or the device tree. 2435 */ 2436 c->user_specified = true; 2437 /* At least one console defined by the user on the command line. */ 2438 console_set_on_cmdline = 1; 2439 } 2440 2441 static int __add_preferred_console(char *name, int idx, char *options, 2442 char *brl_options, bool user_specified) 2443 { 2444 struct console_cmdline *c; 2445 int i; 2446 2447 /* 2448 * See if this tty is not yet registered, and 2449 * if we have a slot free. 2450 */ 2451 for (i = 0, c = console_cmdline; 2452 i < MAX_CMDLINECONSOLES && c->name[0]; 2453 i++, c++) { 2454 if (strcmp(c->name, name) == 0 && c->index == idx) { 2455 if (!brl_options) 2456 preferred_console = i; 2457 set_user_specified(c, user_specified); 2458 return 0; 2459 } 2460 } 2461 if (i == MAX_CMDLINECONSOLES) 2462 return -E2BIG; 2463 if (!brl_options) 2464 preferred_console = i; 2465 strscpy(c->name, name, sizeof(c->name)); 2466 c->options = options; 2467 set_user_specified(c, user_specified); 2468 braille_set_options(c, brl_options); 2469 2470 c->index = idx; 2471 return 0; 2472 } 2473 2474 static int __init console_msg_format_setup(char *str) 2475 { 2476 if (!strcmp(str, "syslog")) 2477 console_msg_format = MSG_FORMAT_SYSLOG; 2478 if (!strcmp(str, "default")) 2479 console_msg_format = MSG_FORMAT_DEFAULT; 2480 return 1; 2481 } 2482 __setup("console_msg_format=", console_msg_format_setup); 2483 2484 /* 2485 * Set up a console. Called via do_early_param() in init/main.c 2486 * for each "console=" parameter in the boot command line. 2487 */ 2488 static int __init console_setup(char *str) 2489 { 2490 char buf[sizeof(console_cmdline[0].name) + 4]; /* 4 for "ttyS" */ 2491 char *s, *options, *brl_options = NULL; 2492 int idx; 2493 2494 /* 2495 * console="" or console=null have been suggested as a way to 2496 * disable console output. Use ttynull that has been created 2497 * for exactly this purpose. 2498 */ 2499 if (str[0] == 0 || strcmp(str, "null") == 0) { 2500 __add_preferred_console("ttynull", 0, NULL, NULL, true); 2501 return 1; 2502 } 2503 2504 if (_braille_console_setup(&str, &brl_options)) 2505 return 1; 2506 2507 /* 2508 * Decode str into name, index, options. 2509 */ 2510 if (str[0] >= '0' && str[0] <= '9') { 2511 strcpy(buf, "ttyS"); 2512 strncpy(buf + 4, str, sizeof(buf) - 5); 2513 } else { 2514 strncpy(buf, str, sizeof(buf) - 1); 2515 } 2516 buf[sizeof(buf) - 1] = 0; 2517 options = strchr(str, ','); 2518 if (options) 2519 *(options++) = 0; 2520 #ifdef __sparc__ 2521 if (!strcmp(str, "ttya")) 2522 strcpy(buf, "ttyS0"); 2523 if (!strcmp(str, "ttyb")) 2524 strcpy(buf, "ttyS1"); 2525 #endif 2526 for (s = buf; *s; s++) 2527 if (isdigit(*s) || *s == ',') 2528 break; 2529 idx = simple_strtoul(s, NULL, 10); 2530 *s = 0; 2531 2532 __add_preferred_console(buf, idx, options, brl_options, true); 2533 return 1; 2534 } 2535 __setup("console=", console_setup); 2536 2537 /** 2538 * add_preferred_console - add a device to the list of preferred consoles. 2539 * @name: device name 2540 * @idx: device index 2541 * @options: options for this console 2542 * 2543 * The last preferred console added will be used for kernel messages 2544 * and stdin/out/err for init. Normally this is used by console_setup 2545 * above to handle user-supplied console arguments; however it can also 2546 * be used by arch-specific code either to override the user or more 2547 * commonly to provide a default console (ie from PROM variables) when 2548 * the user has not supplied one. 2549 */ 2550 int add_preferred_console(char *name, int idx, char *options) 2551 { 2552 return __add_preferred_console(name, idx, options, NULL, false); 2553 } 2554 2555 bool console_suspend_enabled = true; 2556 EXPORT_SYMBOL(console_suspend_enabled); 2557 2558 static int __init console_suspend_disable(char *str) 2559 { 2560 console_suspend_enabled = false; 2561 return 1; 2562 } 2563 __setup("no_console_suspend", console_suspend_disable); 2564 module_param_named(console_suspend, console_suspend_enabled, 2565 bool, S_IRUGO | S_IWUSR); 2566 MODULE_PARM_DESC(console_suspend, "suspend console during suspend" 2567 " and hibernate operations"); 2568 2569 static bool printk_console_no_auto_verbose; 2570 2571 void console_verbose(void) 2572 { 2573 if (console_loglevel && !printk_console_no_auto_verbose) 2574 console_loglevel = CONSOLE_LOGLEVEL_MOTORMOUTH; 2575 } 2576 EXPORT_SYMBOL_GPL(console_verbose); 2577 2578 module_param_named(console_no_auto_verbose, printk_console_no_auto_verbose, bool, 0644); 2579 MODULE_PARM_DESC(console_no_auto_verbose, "Disable console loglevel raise to highest on oops/panic/etc"); 2580 2581 /** 2582 * suspend_console - suspend the console subsystem 2583 * 2584 * This disables printk() while we go into suspend states 2585 */ 2586 void suspend_console(void) 2587 { 2588 struct console *con; 2589 2590 if (!console_suspend_enabled) 2591 return; 2592 pr_info("Suspending console(s) (use no_console_suspend to debug)\n"); 2593 pr_flush(1000, true); 2594 2595 console_list_lock(); 2596 for_each_console(con) 2597 console_srcu_write_flags(con, con->flags | CON_SUSPENDED); 2598 console_list_unlock(); 2599 2600 /* 2601 * Ensure that all SRCU list walks have completed. All printing 2602 * contexts must be able to see that they are suspended so that it 2603 * is guaranteed that all printing has stopped when this function 2604 * completes. 2605 */ 2606 synchronize_srcu(&console_srcu); 2607 } 2608 2609 void resume_console(void) 2610 { 2611 struct console *con; 2612 2613 if (!console_suspend_enabled) 2614 return; 2615 2616 console_list_lock(); 2617 for_each_console(con) 2618 console_srcu_write_flags(con, con->flags & ~CON_SUSPENDED); 2619 console_list_unlock(); 2620 2621 /* 2622 * Ensure that all SRCU list walks have completed. All printing 2623 * contexts must be able to see they are no longer suspended so 2624 * that they are guaranteed to wake up and resume printing. 2625 */ 2626 synchronize_srcu(&console_srcu); 2627 2628 pr_flush(1000, true); 2629 } 2630 2631 /** 2632 * console_cpu_notify - print deferred console messages after CPU hotplug 2633 * @cpu: unused 2634 * 2635 * If printk() is called from a CPU that is not online yet, the messages 2636 * will be printed on the console only if there are CON_ANYTIME consoles. 2637 * This function is called when a new CPU comes online (or fails to come 2638 * up) or goes offline. 2639 */ 2640 static int console_cpu_notify(unsigned int cpu) 2641 { 2642 if (!cpuhp_tasks_frozen) { 2643 /* If trylock fails, someone else is doing the printing */ 2644 if (console_trylock()) 2645 console_unlock(); 2646 } 2647 return 0; 2648 } 2649 2650 /* 2651 * Return true if a panic is in progress on a remote CPU. 2652 * 2653 * On true, the local CPU should immediately release any printing resources 2654 * that may be needed by the panic CPU. 2655 */ 2656 bool other_cpu_in_panic(void) 2657 { 2658 if (!panic_in_progress()) 2659 return false; 2660 2661 /* 2662 * We can use raw_smp_processor_id() here because it is impossible for 2663 * the task to be migrated to the panic_cpu, or away from it. If 2664 * panic_cpu has already been set, and we're not currently executing on 2665 * that CPU, then we never will be. 2666 */ 2667 return atomic_read(&panic_cpu) != raw_smp_processor_id(); 2668 } 2669 2670 /** 2671 * console_lock - block the console subsystem from printing 2672 * 2673 * Acquires a lock which guarantees that no consoles will 2674 * be in or enter their write() callback. 2675 * 2676 * Can sleep, returns nothing. 2677 */ 2678 void console_lock(void) 2679 { 2680 might_sleep(); 2681 2682 /* On panic, the console_lock must be left to the panic cpu. */ 2683 while (other_cpu_in_panic()) 2684 msleep(1000); 2685 2686 down_console_sem(); 2687 console_locked = 1; 2688 console_may_schedule = 1; 2689 } 2690 EXPORT_SYMBOL(console_lock); 2691 2692 /** 2693 * console_trylock - try to block the console subsystem from printing 2694 * 2695 * Try to acquire a lock which guarantees that no consoles will 2696 * be in or enter their write() callback. 2697 * 2698 * returns 1 on success, and 0 on failure to acquire the lock. 2699 */ 2700 int console_trylock(void) 2701 { 2702 /* On panic, the console_lock must be left to the panic cpu. */ 2703 if (other_cpu_in_panic()) 2704 return 0; 2705 if (down_trylock_console_sem()) 2706 return 0; 2707 console_locked = 1; 2708 console_may_schedule = 0; 2709 return 1; 2710 } 2711 EXPORT_SYMBOL(console_trylock); 2712 2713 int is_console_locked(void) 2714 { 2715 return console_locked; 2716 } 2717 EXPORT_SYMBOL(is_console_locked); 2718 2719 /* 2720 * Check if the given console is currently capable and allowed to print 2721 * records. 2722 * 2723 * Requires the console_srcu_read_lock. 2724 */ 2725 static inline bool console_is_usable(struct console *con) 2726 { 2727 short flags = console_srcu_read_flags(con); 2728 2729 if (!(flags & CON_ENABLED)) 2730 return false; 2731 2732 if ((flags & CON_SUSPENDED)) 2733 return false; 2734 2735 if (!con->write) 2736 return false; 2737 2738 /* 2739 * Console drivers may assume that per-cpu resources have been 2740 * allocated. So unless they're explicitly marked as being able to 2741 * cope (CON_ANYTIME) don't call them until this CPU is officially up. 2742 */ 2743 if (!cpu_online(raw_smp_processor_id()) && !(flags & CON_ANYTIME)) 2744 return false; 2745 2746 return true; 2747 } 2748 2749 static void __console_unlock(void) 2750 { 2751 console_locked = 0; 2752 up_console_sem(); 2753 } 2754 2755 /* 2756 * Prepend the message in @pmsg->pbufs->outbuf with a "dropped message". This 2757 * is achieved by shifting the existing message over and inserting the dropped 2758 * message. 2759 * 2760 * @pmsg is the printk message to prepend. 2761 * 2762 * @dropped is the dropped count to report in the dropped message. 2763 * 2764 * If the message text in @pmsg->pbufs->outbuf does not have enough space for 2765 * the dropped message, the message text will be sufficiently truncated. 2766 * 2767 * If @pmsg->pbufs->outbuf is modified, @pmsg->outbuf_len is updated. 2768 */ 2769 #ifdef CONFIG_PRINTK 2770 static void console_prepend_dropped(struct printk_message *pmsg, unsigned long dropped) 2771 { 2772 struct printk_buffers *pbufs = pmsg->pbufs; 2773 const size_t scratchbuf_sz = sizeof(pbufs->scratchbuf); 2774 const size_t outbuf_sz = sizeof(pbufs->outbuf); 2775 char *scratchbuf = &pbufs->scratchbuf[0]; 2776 char *outbuf = &pbufs->outbuf[0]; 2777 size_t len; 2778 2779 len = scnprintf(scratchbuf, scratchbuf_sz, 2780 "** %lu printk messages dropped **\n", dropped); 2781 2782 /* 2783 * Make sure outbuf is sufficiently large before prepending. 2784 * Keep at least the prefix when the message must be truncated. 2785 * It is a rather theoretical problem when someone tries to 2786 * use a minimalist buffer. 2787 */ 2788 if (WARN_ON_ONCE(len + PRINTK_PREFIX_MAX >= outbuf_sz)) 2789 return; 2790 2791 if (pmsg->outbuf_len + len >= outbuf_sz) { 2792 /* Truncate the message, but keep it terminated. */ 2793 pmsg->outbuf_len = outbuf_sz - (len + 1); 2794 outbuf[pmsg->outbuf_len] = 0; 2795 } 2796 2797 memmove(outbuf + len, outbuf, pmsg->outbuf_len + 1); 2798 memcpy(outbuf, scratchbuf, len); 2799 pmsg->outbuf_len += len; 2800 } 2801 #else 2802 #define console_prepend_dropped(pmsg, dropped) 2803 #endif /* CONFIG_PRINTK */ 2804 2805 /* 2806 * Read and format the specified record (or a later record if the specified 2807 * record is not available). 2808 * 2809 * @pmsg will contain the formatted result. @pmsg->pbufs must point to a 2810 * struct printk_buffers. 2811 * 2812 * @seq is the record to read and format. If it is not available, the next 2813 * valid record is read. 2814 * 2815 * @is_extended specifies if the message should be formatted for extended 2816 * console output. 2817 * 2818 * @may_supress specifies if records may be skipped based on loglevel. 2819 * 2820 * Returns false if no record is available. Otherwise true and all fields 2821 * of @pmsg are valid. (See the documentation of struct printk_message 2822 * for information about the @pmsg fields.) 2823 */ 2824 static bool printk_get_next_message(struct printk_message *pmsg, u64 seq, 2825 bool is_extended, bool may_suppress) 2826 { 2827 static int panic_console_dropped; 2828 2829 struct printk_buffers *pbufs = pmsg->pbufs; 2830 const size_t scratchbuf_sz = sizeof(pbufs->scratchbuf); 2831 const size_t outbuf_sz = sizeof(pbufs->outbuf); 2832 char *scratchbuf = &pbufs->scratchbuf[0]; 2833 char *outbuf = &pbufs->outbuf[0]; 2834 struct printk_info info; 2835 struct printk_record r; 2836 size_t len = 0; 2837 2838 /* 2839 * Formatting extended messages requires a separate buffer, so use the 2840 * scratch buffer to read in the ringbuffer text. 2841 * 2842 * Formatting normal messages is done in-place, so read the ringbuffer 2843 * text directly into the output buffer. 2844 */ 2845 if (is_extended) 2846 prb_rec_init_rd(&r, &info, scratchbuf, scratchbuf_sz); 2847 else 2848 prb_rec_init_rd(&r, &info, outbuf, outbuf_sz); 2849 2850 if (!prb_read_valid(prb, seq, &r)) 2851 return false; 2852 2853 pmsg->seq = r.info->seq; 2854 pmsg->dropped = r.info->seq - seq; 2855 2856 /* 2857 * Check for dropped messages in panic here so that printk 2858 * suppression can occur as early as possible if necessary. 2859 */ 2860 if (pmsg->dropped && 2861 panic_in_progress() && 2862 panic_console_dropped++ > 10) { 2863 suppress_panic_printk = 1; 2864 pr_warn_once("Too many dropped messages. Suppress messages on non-panic CPUs to prevent livelock.\n"); 2865 } 2866 2867 /* Skip record that has level above the console loglevel. */ 2868 if (may_suppress && suppress_message_printing(r.info->level)) 2869 goto out; 2870 2871 if (is_extended) { 2872 len = info_print_ext_header(outbuf, outbuf_sz, r.info); 2873 len += msg_print_ext_body(outbuf + len, outbuf_sz - len, 2874 &r.text_buf[0], r.info->text_len, &r.info->dev_info); 2875 } else { 2876 len = record_print_text(&r, console_msg_format & MSG_FORMAT_SYSLOG, printk_time); 2877 } 2878 out: 2879 pmsg->outbuf_len = len; 2880 return true; 2881 } 2882 2883 /* 2884 * Print one record for the given console. The record printed is whatever 2885 * record is the next available record for the given console. 2886 * 2887 * @handover will be set to true if a printk waiter has taken over the 2888 * console_lock, in which case the caller is no longer holding both the 2889 * console_lock and the SRCU read lock. Otherwise it is set to false. 2890 * 2891 * @cookie is the cookie from the SRCU read lock. 2892 * 2893 * Returns false if the given console has no next record to print, otherwise 2894 * true. 2895 * 2896 * Requires the console_lock and the SRCU read lock. 2897 */ 2898 static bool console_emit_next_record(struct console *con, bool *handover, int cookie) 2899 { 2900 static struct printk_buffers pbufs; 2901 2902 bool is_extended = console_srcu_read_flags(con) & CON_EXTENDED; 2903 char *outbuf = &pbufs.outbuf[0]; 2904 struct printk_message pmsg = { 2905 .pbufs = &pbufs, 2906 }; 2907 unsigned long flags; 2908 2909 *handover = false; 2910 2911 if (!printk_get_next_message(&pmsg, con->seq, is_extended, true)) 2912 return false; 2913 2914 con->dropped += pmsg.dropped; 2915 2916 /* Skip messages of formatted length 0. */ 2917 if (pmsg.outbuf_len == 0) { 2918 con->seq = pmsg.seq + 1; 2919 goto skip; 2920 } 2921 2922 if (con->dropped && !is_extended) { 2923 console_prepend_dropped(&pmsg, con->dropped); 2924 con->dropped = 0; 2925 } 2926 2927 /* 2928 * While actively printing out messages, if another printk() 2929 * were to occur on another CPU, it may wait for this one to 2930 * finish. This task can not be preempted if there is a 2931 * waiter waiting to take over. 2932 * 2933 * Interrupts are disabled because the hand over to a waiter 2934 * must not be interrupted until the hand over is completed 2935 * (@console_waiter is cleared). 2936 */ 2937 printk_safe_enter_irqsave(flags); 2938 console_lock_spinning_enable(); 2939 2940 /* Do not trace print latency. */ 2941 stop_critical_timings(); 2942 2943 /* Write everything out to the hardware. */ 2944 con->write(con, outbuf, pmsg.outbuf_len); 2945 2946 start_critical_timings(); 2947 2948 con->seq = pmsg.seq + 1; 2949 2950 *handover = console_lock_spinning_disable_and_check(cookie); 2951 printk_safe_exit_irqrestore(flags); 2952 skip: 2953 return true; 2954 } 2955 2956 /* 2957 * Print out all remaining records to all consoles. 2958 * 2959 * @do_cond_resched is set by the caller. It can be true only in schedulable 2960 * context. 2961 * 2962 * @next_seq is set to the sequence number after the last available record. 2963 * The value is valid only when this function returns true. It means that all 2964 * usable consoles are completely flushed. 2965 * 2966 * @handover will be set to true if a printk waiter has taken over the 2967 * console_lock, in which case the caller is no longer holding the 2968 * console_lock. Otherwise it is set to false. 2969 * 2970 * Returns true when there was at least one usable console and all messages 2971 * were flushed to all usable consoles. A returned false informs the caller 2972 * that everything was not flushed (either there were no usable consoles or 2973 * another context has taken over printing or it is a panic situation and this 2974 * is not the panic CPU). Regardless the reason, the caller should assume it 2975 * is not useful to immediately try again. 2976 * 2977 * Requires the console_lock. 2978 */ 2979 static bool console_flush_all(bool do_cond_resched, u64 *next_seq, bool *handover) 2980 { 2981 bool any_usable = false; 2982 struct console *con; 2983 bool any_progress; 2984 int cookie; 2985 2986 *next_seq = 0; 2987 *handover = false; 2988 2989 do { 2990 any_progress = false; 2991 2992 cookie = console_srcu_read_lock(); 2993 for_each_console_srcu(con) { 2994 bool progress; 2995 2996 if (!console_is_usable(con)) 2997 continue; 2998 any_usable = true; 2999 3000 progress = console_emit_next_record(con, handover, cookie); 3001 3002 /* 3003 * If a handover has occurred, the SRCU read lock 3004 * is already released. 3005 */ 3006 if (*handover) 3007 return false; 3008 3009 /* Track the next of the highest seq flushed. */ 3010 if (con->seq > *next_seq) 3011 *next_seq = con->seq; 3012 3013 if (!progress) 3014 continue; 3015 any_progress = true; 3016 3017 /* Allow panic_cpu to take over the consoles safely. */ 3018 if (other_cpu_in_panic()) 3019 goto abandon; 3020 3021 if (do_cond_resched) 3022 cond_resched(); 3023 } 3024 console_srcu_read_unlock(cookie); 3025 } while (any_progress); 3026 3027 return any_usable; 3028 3029 abandon: 3030 console_srcu_read_unlock(cookie); 3031 return false; 3032 } 3033 3034 /** 3035 * console_unlock - unblock the console subsystem from printing 3036 * 3037 * Releases the console_lock which the caller holds to block printing of 3038 * the console subsystem. 3039 * 3040 * While the console_lock was held, console output may have been buffered 3041 * by printk(). If this is the case, console_unlock(); emits 3042 * the output prior to releasing the lock. 3043 * 3044 * console_unlock(); may be called from any context. 3045 */ 3046 void console_unlock(void) 3047 { 3048 bool do_cond_resched; 3049 bool handover; 3050 bool flushed; 3051 u64 next_seq; 3052 3053 /* 3054 * Console drivers are called with interrupts disabled, so 3055 * @console_may_schedule should be cleared before; however, we may 3056 * end up dumping a lot of lines, for example, if called from 3057 * console registration path, and should invoke cond_resched() 3058 * between lines if allowable. Not doing so can cause a very long 3059 * scheduling stall on a slow console leading to RCU stall and 3060 * softlockup warnings which exacerbate the issue with more 3061 * messages practically incapacitating the system. Therefore, create 3062 * a local to use for the printing loop. 3063 */ 3064 do_cond_resched = console_may_schedule; 3065 3066 do { 3067 console_may_schedule = 0; 3068 3069 flushed = console_flush_all(do_cond_resched, &next_seq, &handover); 3070 if (!handover) 3071 __console_unlock(); 3072 3073 /* 3074 * Abort if there was a failure to flush all messages to all 3075 * usable consoles. Either it is not possible to flush (in 3076 * which case it would be an infinite loop of retrying) or 3077 * another context has taken over printing. 3078 */ 3079 if (!flushed) 3080 break; 3081 3082 /* 3083 * Some context may have added new records after 3084 * console_flush_all() but before unlocking the console. 3085 * Re-check if there is a new record to flush. If the trylock 3086 * fails, another context is already handling the printing. 3087 */ 3088 } while (prb_read_valid(prb, next_seq, NULL) && console_trylock()); 3089 } 3090 EXPORT_SYMBOL(console_unlock); 3091 3092 /** 3093 * console_conditional_schedule - yield the CPU if required 3094 * 3095 * If the console code is currently allowed to sleep, and 3096 * if this CPU should yield the CPU to another task, do 3097 * so here. 3098 * 3099 * Must be called within console_lock();. 3100 */ 3101 void __sched console_conditional_schedule(void) 3102 { 3103 if (console_may_schedule) 3104 cond_resched(); 3105 } 3106 EXPORT_SYMBOL(console_conditional_schedule); 3107 3108 void console_unblank(void) 3109 { 3110 bool found_unblank = false; 3111 struct console *c; 3112 int cookie; 3113 3114 /* 3115 * First check if there are any consoles implementing the unblank() 3116 * callback. If not, there is no reason to continue and take the 3117 * console lock, which in particular can be dangerous if 3118 * @oops_in_progress is set. 3119 */ 3120 cookie = console_srcu_read_lock(); 3121 for_each_console_srcu(c) { 3122 if ((console_srcu_read_flags(c) & CON_ENABLED) && c->unblank) { 3123 found_unblank = true; 3124 break; 3125 } 3126 } 3127 console_srcu_read_unlock(cookie); 3128 if (!found_unblank) 3129 return; 3130 3131 /* 3132 * Stop console printing because the unblank() callback may 3133 * assume the console is not within its write() callback. 3134 * 3135 * If @oops_in_progress is set, this may be an atomic context. 3136 * In that case, attempt a trylock as best-effort. 3137 */ 3138 if (oops_in_progress) { 3139 /* Semaphores are not NMI-safe. */ 3140 if (in_nmi()) 3141 return; 3142 3143 /* 3144 * Attempting to trylock the console lock can deadlock 3145 * if another CPU was stopped while modifying the 3146 * semaphore. "Hope and pray" that this is not the 3147 * current situation. 3148 */ 3149 if (down_trylock_console_sem() != 0) 3150 return; 3151 } else 3152 console_lock(); 3153 3154 console_locked = 1; 3155 console_may_schedule = 0; 3156 3157 cookie = console_srcu_read_lock(); 3158 for_each_console_srcu(c) { 3159 if ((console_srcu_read_flags(c) & CON_ENABLED) && c->unblank) 3160 c->unblank(); 3161 } 3162 console_srcu_read_unlock(cookie); 3163 3164 console_unlock(); 3165 3166 if (!oops_in_progress) 3167 pr_flush(1000, true); 3168 } 3169 3170 /** 3171 * console_flush_on_panic - flush console content on panic 3172 * @mode: flush all messages in buffer or just the pending ones 3173 * 3174 * Immediately output all pending messages no matter what. 3175 */ 3176 void console_flush_on_panic(enum con_flush_mode mode) 3177 { 3178 bool handover; 3179 u64 next_seq; 3180 3181 /* 3182 * Ignore the console lock and flush out the messages. Attempting a 3183 * trylock would not be useful because: 3184 * 3185 * - if it is contended, it must be ignored anyway 3186 * - console_lock() and console_trylock() block and fail 3187 * respectively in panic for non-panic CPUs 3188 * - semaphores are not NMI-safe 3189 */ 3190 3191 /* 3192 * If another context is holding the console lock, 3193 * @console_may_schedule might be set. Clear it so that 3194 * this context does not call cond_resched() while flushing. 3195 */ 3196 console_may_schedule = 0; 3197 3198 if (mode == CONSOLE_REPLAY_ALL) { 3199 struct console *c; 3200 int cookie; 3201 u64 seq; 3202 3203 seq = prb_first_valid_seq(prb); 3204 3205 cookie = console_srcu_read_lock(); 3206 for_each_console_srcu(c) { 3207 /* 3208 * This is an unsynchronized assignment, but the 3209 * kernel is in "hope and pray" mode anyway. 3210 */ 3211 c->seq = seq; 3212 } 3213 console_srcu_read_unlock(cookie); 3214 } 3215 3216 console_flush_all(false, &next_seq, &handover); 3217 } 3218 3219 /* 3220 * Return the console tty driver structure and its associated index 3221 */ 3222 struct tty_driver *console_device(int *index) 3223 { 3224 struct console *c; 3225 struct tty_driver *driver = NULL; 3226 int cookie; 3227 3228 /* 3229 * Take console_lock to serialize device() callback with 3230 * other console operations. For example, fg_console is 3231 * modified under console_lock when switching vt. 3232 */ 3233 console_lock(); 3234 3235 cookie = console_srcu_read_lock(); 3236 for_each_console_srcu(c) { 3237 if (!c->device) 3238 continue; 3239 driver = c->device(c, index); 3240 if (driver) 3241 break; 3242 } 3243 console_srcu_read_unlock(cookie); 3244 3245 console_unlock(); 3246 return driver; 3247 } 3248 3249 /* 3250 * Prevent further output on the passed console device so that (for example) 3251 * serial drivers can disable console output before suspending a port, and can 3252 * re-enable output afterwards. 3253 */ 3254 void console_stop(struct console *console) 3255 { 3256 __pr_flush(console, 1000, true); 3257 console_list_lock(); 3258 console_srcu_write_flags(console, console->flags & ~CON_ENABLED); 3259 console_list_unlock(); 3260 3261 /* 3262 * Ensure that all SRCU list walks have completed. All contexts must 3263 * be able to see that this console is disabled so that (for example) 3264 * the caller can suspend the port without risk of another context 3265 * using the port. 3266 */ 3267 synchronize_srcu(&console_srcu); 3268 } 3269 EXPORT_SYMBOL(console_stop); 3270 3271 void console_start(struct console *console) 3272 { 3273 console_list_lock(); 3274 console_srcu_write_flags(console, console->flags | CON_ENABLED); 3275 console_list_unlock(); 3276 __pr_flush(console, 1000, true); 3277 } 3278 EXPORT_SYMBOL(console_start); 3279 3280 static int __read_mostly keep_bootcon; 3281 3282 static int __init keep_bootcon_setup(char *str) 3283 { 3284 keep_bootcon = 1; 3285 pr_info("debug: skip boot console de-registration.\n"); 3286 3287 return 0; 3288 } 3289 3290 early_param("keep_bootcon", keep_bootcon_setup); 3291 3292 static int console_call_setup(struct console *newcon, char *options) 3293 { 3294 int err; 3295 3296 if (!newcon->setup) 3297 return 0; 3298 3299 /* Synchronize with possible boot console. */ 3300 console_lock(); 3301 err = newcon->setup(newcon, options); 3302 console_unlock(); 3303 3304 return err; 3305 } 3306 3307 /* 3308 * This is called by register_console() to try to match 3309 * the newly registered console with any of the ones selected 3310 * by either the command line or add_preferred_console() and 3311 * setup/enable it. 3312 * 3313 * Care need to be taken with consoles that are statically 3314 * enabled such as netconsole 3315 */ 3316 static int try_enable_preferred_console(struct console *newcon, 3317 bool user_specified) 3318 { 3319 struct console_cmdline *c; 3320 int i, err; 3321 3322 for (i = 0, c = console_cmdline; 3323 i < MAX_CMDLINECONSOLES && c->name[0]; 3324 i++, c++) { 3325 if (c->user_specified != user_specified) 3326 continue; 3327 if (!newcon->match || 3328 newcon->match(newcon, c->name, c->index, c->options) != 0) { 3329 /* default matching */ 3330 BUILD_BUG_ON(sizeof(c->name) != sizeof(newcon->name)); 3331 if (strcmp(c->name, newcon->name) != 0) 3332 continue; 3333 if (newcon->index >= 0 && 3334 newcon->index != c->index) 3335 continue; 3336 if (newcon->index < 0) 3337 newcon->index = c->index; 3338 3339 if (_braille_register_console(newcon, c)) 3340 return 0; 3341 3342 err = console_call_setup(newcon, c->options); 3343 if (err) 3344 return err; 3345 } 3346 newcon->flags |= CON_ENABLED; 3347 if (i == preferred_console) 3348 newcon->flags |= CON_CONSDEV; 3349 return 0; 3350 } 3351 3352 /* 3353 * Some consoles, such as pstore and netconsole, can be enabled even 3354 * without matching. Accept the pre-enabled consoles only when match() 3355 * and setup() had a chance to be called. 3356 */ 3357 if (newcon->flags & CON_ENABLED && c->user_specified == user_specified) 3358 return 0; 3359 3360 return -ENOENT; 3361 } 3362 3363 /* Try to enable the console unconditionally */ 3364 static void try_enable_default_console(struct console *newcon) 3365 { 3366 if (newcon->index < 0) 3367 newcon->index = 0; 3368 3369 if (console_call_setup(newcon, NULL) != 0) 3370 return; 3371 3372 newcon->flags |= CON_ENABLED; 3373 3374 if (newcon->device) 3375 newcon->flags |= CON_CONSDEV; 3376 } 3377 3378 #define con_printk(lvl, con, fmt, ...) \ 3379 printk(lvl pr_fmt("%sconsole [%s%d] " fmt), \ 3380 (con->flags & CON_BOOT) ? "boot" : "", \ 3381 con->name, con->index, ##__VA_ARGS__) 3382 3383 static void console_init_seq(struct console *newcon, bool bootcon_registered) 3384 { 3385 struct console *con; 3386 bool handover; 3387 3388 if (newcon->flags & (CON_PRINTBUFFER | CON_BOOT)) { 3389 /* Get a consistent copy of @syslog_seq. */ 3390 mutex_lock(&syslog_lock); 3391 newcon->seq = syslog_seq; 3392 mutex_unlock(&syslog_lock); 3393 } else { 3394 /* Begin with next message added to ringbuffer. */ 3395 newcon->seq = prb_next_seq(prb); 3396 3397 /* 3398 * If any enabled boot consoles are due to be unregistered 3399 * shortly, some may not be caught up and may be the same 3400 * device as @newcon. Since it is not known which boot console 3401 * is the same device, flush all consoles and, if necessary, 3402 * start with the message of the enabled boot console that is 3403 * the furthest behind. 3404 */ 3405 if (bootcon_registered && !keep_bootcon) { 3406 /* 3407 * Hold the console_lock to stop console printing and 3408 * guarantee safe access to console->seq. 3409 */ 3410 console_lock(); 3411 3412 /* 3413 * Flush all consoles and set the console to start at 3414 * the next unprinted sequence number. 3415 */ 3416 if (!console_flush_all(true, &newcon->seq, &handover)) { 3417 /* 3418 * Flushing failed. Just choose the lowest 3419 * sequence of the enabled boot consoles. 3420 */ 3421 3422 /* 3423 * If there was a handover, this context no 3424 * longer holds the console_lock. 3425 */ 3426 if (handover) 3427 console_lock(); 3428 3429 newcon->seq = prb_next_seq(prb); 3430 for_each_console(con) { 3431 if ((con->flags & CON_BOOT) && 3432 (con->flags & CON_ENABLED) && 3433 con->seq < newcon->seq) { 3434 newcon->seq = con->seq; 3435 } 3436 } 3437 } 3438 3439 console_unlock(); 3440 } 3441 } 3442 } 3443 3444 #define console_first() \ 3445 hlist_entry(console_list.first, struct console, node) 3446 3447 static int unregister_console_locked(struct console *console); 3448 3449 /* 3450 * The console driver calls this routine during kernel initialization 3451 * to register the console printing procedure with printk() and to 3452 * print any messages that were printed by the kernel before the 3453 * console driver was initialized. 3454 * 3455 * This can happen pretty early during the boot process (because of 3456 * early_printk) - sometimes before setup_arch() completes - be careful 3457 * of what kernel features are used - they may not be initialised yet. 3458 * 3459 * There are two types of consoles - bootconsoles (early_printk) and 3460 * "real" consoles (everything which is not a bootconsole) which are 3461 * handled differently. 3462 * - Any number of bootconsoles can be registered at any time. 3463 * - As soon as a "real" console is registered, all bootconsoles 3464 * will be unregistered automatically. 3465 * - Once a "real" console is registered, any attempt to register a 3466 * bootconsoles will be rejected 3467 */ 3468 void register_console(struct console *newcon) 3469 { 3470 struct console *con; 3471 bool bootcon_registered = false; 3472 bool realcon_registered = false; 3473 int err; 3474 3475 console_list_lock(); 3476 3477 for_each_console(con) { 3478 if (WARN(con == newcon, "console '%s%d' already registered\n", 3479 con->name, con->index)) { 3480 goto unlock; 3481 } 3482 3483 if (con->flags & CON_BOOT) 3484 bootcon_registered = true; 3485 else 3486 realcon_registered = true; 3487 } 3488 3489 /* Do not register boot consoles when there already is a real one. */ 3490 if ((newcon->flags & CON_BOOT) && realcon_registered) { 3491 pr_info("Too late to register bootconsole %s%d\n", 3492 newcon->name, newcon->index); 3493 goto unlock; 3494 } 3495 3496 /* 3497 * See if we want to enable this console driver by default. 3498 * 3499 * Nope when a console is preferred by the command line, device 3500 * tree, or SPCR. 3501 * 3502 * The first real console with tty binding (driver) wins. More 3503 * consoles might get enabled before the right one is found. 3504 * 3505 * Note that a console with tty binding will have CON_CONSDEV 3506 * flag set and will be first in the list. 3507 */ 3508 if (preferred_console < 0) { 3509 if (hlist_empty(&console_list) || !console_first()->device || 3510 console_first()->flags & CON_BOOT) { 3511 try_enable_default_console(newcon); 3512 } 3513 } 3514 3515 /* See if this console matches one we selected on the command line */ 3516 err = try_enable_preferred_console(newcon, true); 3517 3518 /* If not, try to match against the platform default(s) */ 3519 if (err == -ENOENT) 3520 err = try_enable_preferred_console(newcon, false); 3521 3522 /* printk() messages are not printed to the Braille console. */ 3523 if (err || newcon->flags & CON_BRL) 3524 goto unlock; 3525 3526 /* 3527 * If we have a bootconsole, and are switching to a real console, 3528 * don't print everything out again, since when the boot console, and 3529 * the real console are the same physical device, it's annoying to 3530 * see the beginning boot messages twice 3531 */ 3532 if (bootcon_registered && 3533 ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV)) { 3534 newcon->flags &= ~CON_PRINTBUFFER; 3535 } 3536 3537 newcon->dropped = 0; 3538 console_init_seq(newcon, bootcon_registered); 3539 3540 /* 3541 * Put this console in the list - keep the 3542 * preferred driver at the head of the list. 3543 */ 3544 if (hlist_empty(&console_list)) { 3545 /* Ensure CON_CONSDEV is always set for the head. */ 3546 newcon->flags |= CON_CONSDEV; 3547 hlist_add_head_rcu(&newcon->node, &console_list); 3548 3549 } else if (newcon->flags & CON_CONSDEV) { 3550 /* Only the new head can have CON_CONSDEV set. */ 3551 console_srcu_write_flags(console_first(), console_first()->flags & ~CON_CONSDEV); 3552 hlist_add_head_rcu(&newcon->node, &console_list); 3553 3554 } else { 3555 hlist_add_behind_rcu(&newcon->node, console_list.first); 3556 } 3557 3558 /* 3559 * No need to synchronize SRCU here! The caller does not rely 3560 * on all contexts being able to see the new console before 3561 * register_console() completes. 3562 */ 3563 3564 console_sysfs_notify(); 3565 3566 /* 3567 * By unregistering the bootconsoles after we enable the real console 3568 * we get the "console xxx enabled" message on all the consoles - 3569 * boot consoles, real consoles, etc - this is to ensure that end 3570 * users know there might be something in the kernel's log buffer that 3571 * went to the bootconsole (that they do not see on the real console) 3572 */ 3573 con_printk(KERN_INFO, newcon, "enabled\n"); 3574 if (bootcon_registered && 3575 ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV) && 3576 !keep_bootcon) { 3577 struct hlist_node *tmp; 3578 3579 hlist_for_each_entry_safe(con, tmp, &console_list, node) { 3580 if (con->flags & CON_BOOT) 3581 unregister_console_locked(con); 3582 } 3583 } 3584 unlock: 3585 console_list_unlock(); 3586 } 3587 EXPORT_SYMBOL(register_console); 3588 3589 /* Must be called under console_list_lock(). */ 3590 static int unregister_console_locked(struct console *console) 3591 { 3592 int res; 3593 3594 lockdep_assert_console_list_lock_held(); 3595 3596 con_printk(KERN_INFO, console, "disabled\n"); 3597 3598 res = _braille_unregister_console(console); 3599 if (res < 0) 3600 return res; 3601 if (res > 0) 3602 return 0; 3603 3604 /* Disable it unconditionally */ 3605 console_srcu_write_flags(console, console->flags & ~CON_ENABLED); 3606 3607 if (!console_is_registered_locked(console)) 3608 return -ENODEV; 3609 3610 hlist_del_init_rcu(&console->node); 3611 3612 /* 3613 * <HISTORICAL> 3614 * If this isn't the last console and it has CON_CONSDEV set, we 3615 * need to set it on the next preferred console. 3616 * </HISTORICAL> 3617 * 3618 * The above makes no sense as there is no guarantee that the next 3619 * console has any device attached. Oh well.... 3620 */ 3621 if (!hlist_empty(&console_list) && console->flags & CON_CONSDEV) 3622 console_srcu_write_flags(console_first(), console_first()->flags | CON_CONSDEV); 3623 3624 /* 3625 * Ensure that all SRCU list walks have completed. All contexts 3626 * must not be able to see this console in the list so that any 3627 * exit/cleanup routines can be performed safely. 3628 */ 3629 synchronize_srcu(&console_srcu); 3630 3631 console_sysfs_notify(); 3632 3633 if (console->exit) 3634 res = console->exit(console); 3635 3636 return res; 3637 } 3638 3639 int unregister_console(struct console *console) 3640 { 3641 int res; 3642 3643 console_list_lock(); 3644 res = unregister_console_locked(console); 3645 console_list_unlock(); 3646 return res; 3647 } 3648 EXPORT_SYMBOL(unregister_console); 3649 3650 /** 3651 * console_force_preferred_locked - force a registered console preferred 3652 * @con: The registered console to force preferred. 3653 * 3654 * Must be called under console_list_lock(). 3655 */ 3656 void console_force_preferred_locked(struct console *con) 3657 { 3658 struct console *cur_pref_con; 3659 3660 if (!console_is_registered_locked(con)) 3661 return; 3662 3663 cur_pref_con = console_first(); 3664 3665 /* Already preferred? */ 3666 if (cur_pref_con == con) 3667 return; 3668 3669 /* 3670 * Delete, but do not re-initialize the entry. This allows the console 3671 * to continue to appear registered (via any hlist_unhashed_lockless() 3672 * checks), even though it was briefly removed from the console list. 3673 */ 3674 hlist_del_rcu(&con->node); 3675 3676 /* 3677 * Ensure that all SRCU list walks have completed so that the console 3678 * can be added to the beginning of the console list and its forward 3679 * list pointer can be re-initialized. 3680 */ 3681 synchronize_srcu(&console_srcu); 3682 3683 con->flags |= CON_CONSDEV; 3684 WARN_ON(!con->device); 3685 3686 /* Only the new head can have CON_CONSDEV set. */ 3687 console_srcu_write_flags(cur_pref_con, cur_pref_con->flags & ~CON_CONSDEV); 3688 hlist_add_head_rcu(&con->node, &console_list); 3689 } 3690 EXPORT_SYMBOL(console_force_preferred_locked); 3691 3692 /* 3693 * Initialize the console device. This is called *early*, so 3694 * we can't necessarily depend on lots of kernel help here. 3695 * Just do some early initializations, and do the complex setup 3696 * later. 3697 */ 3698 void __init console_init(void) 3699 { 3700 int ret; 3701 initcall_t call; 3702 initcall_entry_t *ce; 3703 3704 /* Setup the default TTY line discipline. */ 3705 n_tty_init(); 3706 3707 /* 3708 * set up the console device so that later boot sequences can 3709 * inform about problems etc.. 3710 */ 3711 ce = __con_initcall_start; 3712 trace_initcall_level("console"); 3713 while (ce < __con_initcall_end) { 3714 call = initcall_from_entry(ce); 3715 trace_initcall_start(call); 3716 ret = call(); 3717 trace_initcall_finish(call, ret); 3718 ce++; 3719 } 3720 } 3721 3722 /* 3723 * Some boot consoles access data that is in the init section and which will 3724 * be discarded after the initcalls have been run. To make sure that no code 3725 * will access this data, unregister the boot consoles in a late initcall. 3726 * 3727 * If for some reason, such as deferred probe or the driver being a loadable 3728 * module, the real console hasn't registered yet at this point, there will 3729 * be a brief interval in which no messages are logged to the console, which 3730 * makes it difficult to diagnose problems that occur during this time. 3731 * 3732 * To mitigate this problem somewhat, only unregister consoles whose memory 3733 * intersects with the init section. Note that all other boot consoles will 3734 * get unregistered when the real preferred console is registered. 3735 */ 3736 static int __init printk_late_init(void) 3737 { 3738 struct hlist_node *tmp; 3739 struct console *con; 3740 int ret; 3741 3742 console_list_lock(); 3743 hlist_for_each_entry_safe(con, tmp, &console_list, node) { 3744 if (!(con->flags & CON_BOOT)) 3745 continue; 3746 3747 /* Check addresses that might be used for enabled consoles. */ 3748 if (init_section_intersects(con, sizeof(*con)) || 3749 init_section_contains(con->write, 0) || 3750 init_section_contains(con->read, 0) || 3751 init_section_contains(con->device, 0) || 3752 init_section_contains(con->unblank, 0) || 3753 init_section_contains(con->data, 0)) { 3754 /* 3755 * Please, consider moving the reported consoles out 3756 * of the init section. 3757 */ 3758 pr_warn("bootconsole [%s%d] uses init memory and must be disabled even before the real one is ready\n", 3759 con->name, con->index); 3760 unregister_console_locked(con); 3761 } 3762 } 3763 console_list_unlock(); 3764 3765 ret = cpuhp_setup_state_nocalls(CPUHP_PRINTK_DEAD, "printk:dead", NULL, 3766 console_cpu_notify); 3767 WARN_ON(ret < 0); 3768 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "printk:online", 3769 console_cpu_notify, NULL); 3770 WARN_ON(ret < 0); 3771 printk_sysctl_init(); 3772 return 0; 3773 } 3774 late_initcall(printk_late_init); 3775 3776 #if defined CONFIG_PRINTK 3777 /* If @con is specified, only wait for that console. Otherwise wait for all. */ 3778 static bool __pr_flush(struct console *con, int timeout_ms, bool reset_on_progress) 3779 { 3780 int remaining = timeout_ms; 3781 struct console *c; 3782 u64 last_diff = 0; 3783 u64 printk_seq; 3784 int cookie; 3785 u64 diff; 3786 u64 seq; 3787 3788 might_sleep(); 3789 3790 seq = prb_next_seq(prb); 3791 3792 /* Flush the consoles so that records up to @seq are printed. */ 3793 console_lock(); 3794 console_unlock(); 3795 3796 for (;;) { 3797 diff = 0; 3798 3799 /* 3800 * Hold the console_lock to guarantee safe access to 3801 * console->seq. Releasing console_lock flushes more 3802 * records in case @seq is still not printed on all 3803 * usable consoles. 3804 */ 3805 console_lock(); 3806 3807 cookie = console_srcu_read_lock(); 3808 for_each_console_srcu(c) { 3809 if (con && con != c) 3810 continue; 3811 /* 3812 * If consoles are not usable, it cannot be expected 3813 * that they make forward progress, so only increment 3814 * @diff for usable consoles. 3815 */ 3816 if (!console_is_usable(c)) 3817 continue; 3818 printk_seq = c->seq; 3819 if (printk_seq < seq) 3820 diff += seq - printk_seq; 3821 } 3822 console_srcu_read_unlock(cookie); 3823 3824 if (diff != last_diff && reset_on_progress) 3825 remaining = timeout_ms; 3826 3827 console_unlock(); 3828 3829 /* Note: @diff is 0 if there are no usable consoles. */ 3830 if (diff == 0 || remaining == 0) 3831 break; 3832 3833 if (remaining < 0) { 3834 /* no timeout limit */ 3835 msleep(100); 3836 } else if (remaining < 100) { 3837 msleep(remaining); 3838 remaining = 0; 3839 } else { 3840 msleep(100); 3841 remaining -= 100; 3842 } 3843 3844 last_diff = diff; 3845 } 3846 3847 return (diff == 0); 3848 } 3849 3850 /** 3851 * pr_flush() - Wait for printing threads to catch up. 3852 * 3853 * @timeout_ms: The maximum time (in ms) to wait. 3854 * @reset_on_progress: Reset the timeout if forward progress is seen. 3855 * 3856 * A value of 0 for @timeout_ms means no waiting will occur. A value of -1 3857 * represents infinite waiting. 3858 * 3859 * If @reset_on_progress is true, the timeout will be reset whenever any 3860 * printer has been seen to make some forward progress. 3861 * 3862 * Context: Process context. May sleep while acquiring console lock. 3863 * Return: true if all usable printers are caught up. 3864 */ 3865 static bool pr_flush(int timeout_ms, bool reset_on_progress) 3866 { 3867 return __pr_flush(NULL, timeout_ms, reset_on_progress); 3868 } 3869 3870 /* 3871 * Delayed printk version, for scheduler-internal messages: 3872 */ 3873 #define PRINTK_PENDING_WAKEUP 0x01 3874 #define PRINTK_PENDING_OUTPUT 0x02 3875 3876 static DEFINE_PER_CPU(int, printk_pending); 3877 3878 static void wake_up_klogd_work_func(struct irq_work *irq_work) 3879 { 3880 int pending = this_cpu_xchg(printk_pending, 0); 3881 3882 if (pending & PRINTK_PENDING_OUTPUT) { 3883 /* If trylock fails, someone else is doing the printing */ 3884 if (console_trylock()) 3885 console_unlock(); 3886 } 3887 3888 if (pending & PRINTK_PENDING_WAKEUP) 3889 wake_up_interruptible(&log_wait); 3890 } 3891 3892 static DEFINE_PER_CPU(struct irq_work, wake_up_klogd_work) = 3893 IRQ_WORK_INIT_LAZY(wake_up_klogd_work_func); 3894 3895 static void __wake_up_klogd(int val) 3896 { 3897 if (!printk_percpu_data_ready()) 3898 return; 3899 3900 preempt_disable(); 3901 /* 3902 * Guarantee any new records can be seen by tasks preparing to wait 3903 * before this context checks if the wait queue is empty. 3904 * 3905 * The full memory barrier within wq_has_sleeper() pairs with the full 3906 * memory barrier within set_current_state() of 3907 * prepare_to_wait_event(), which is called after ___wait_event() adds 3908 * the waiter but before it has checked the wait condition. 3909 * 3910 * This pairs with devkmsg_read:A and syslog_print:A. 3911 */ 3912 if (wq_has_sleeper(&log_wait) || /* LMM(__wake_up_klogd:A) */ 3913 (val & PRINTK_PENDING_OUTPUT)) { 3914 this_cpu_or(printk_pending, val); 3915 irq_work_queue(this_cpu_ptr(&wake_up_klogd_work)); 3916 } 3917 preempt_enable(); 3918 } 3919 3920 /** 3921 * wake_up_klogd - Wake kernel logging daemon 3922 * 3923 * Use this function when new records have been added to the ringbuffer 3924 * and the console printing of those records has already occurred or is 3925 * known to be handled by some other context. This function will only 3926 * wake the logging daemon. 3927 * 3928 * Context: Any context. 3929 */ 3930 void wake_up_klogd(void) 3931 { 3932 __wake_up_klogd(PRINTK_PENDING_WAKEUP); 3933 } 3934 3935 /** 3936 * defer_console_output - Wake kernel logging daemon and trigger 3937 * console printing in a deferred context 3938 * 3939 * Use this function when new records have been added to the ringbuffer, 3940 * this context is responsible for console printing those records, but 3941 * the current context is not allowed to perform the console printing. 3942 * Trigger an irq_work context to perform the console printing. This 3943 * function also wakes the logging daemon. 3944 * 3945 * Context: Any context. 3946 */ 3947 void defer_console_output(void) 3948 { 3949 /* 3950 * New messages may have been added directly to the ringbuffer 3951 * using vprintk_store(), so wake any waiters as well. 3952 */ 3953 __wake_up_klogd(PRINTK_PENDING_WAKEUP | PRINTK_PENDING_OUTPUT); 3954 } 3955 3956 void printk_trigger_flush(void) 3957 { 3958 defer_console_output(); 3959 } 3960 3961 int vprintk_deferred(const char *fmt, va_list args) 3962 { 3963 return vprintk_emit(0, LOGLEVEL_SCHED, NULL, fmt, args); 3964 } 3965 3966 int _printk_deferred(const char *fmt, ...) 3967 { 3968 va_list args; 3969 int r; 3970 3971 va_start(args, fmt); 3972 r = vprintk_deferred(fmt, args); 3973 va_end(args); 3974 3975 return r; 3976 } 3977 3978 /* 3979 * printk rate limiting, lifted from the networking subsystem. 3980 * 3981 * This enforces a rate limit: not more than 10 kernel messages 3982 * every 5s to make a denial-of-service attack impossible. 3983 */ 3984 DEFINE_RATELIMIT_STATE(printk_ratelimit_state, 5 * HZ, 10); 3985 3986 int __printk_ratelimit(const char *func) 3987 { 3988 return ___ratelimit(&printk_ratelimit_state, func); 3989 } 3990 EXPORT_SYMBOL(__printk_ratelimit); 3991 3992 /** 3993 * printk_timed_ratelimit - caller-controlled printk ratelimiting 3994 * @caller_jiffies: pointer to caller's state 3995 * @interval_msecs: minimum interval between prints 3996 * 3997 * printk_timed_ratelimit() returns true if more than @interval_msecs 3998 * milliseconds have elapsed since the last time printk_timed_ratelimit() 3999 * returned true. 4000 */ 4001 bool printk_timed_ratelimit(unsigned long *caller_jiffies, 4002 unsigned int interval_msecs) 4003 { 4004 unsigned long elapsed = jiffies - *caller_jiffies; 4005 4006 if (*caller_jiffies && elapsed <= msecs_to_jiffies(interval_msecs)) 4007 return false; 4008 4009 *caller_jiffies = jiffies; 4010 return true; 4011 } 4012 EXPORT_SYMBOL(printk_timed_ratelimit); 4013 4014 static DEFINE_SPINLOCK(dump_list_lock); 4015 static LIST_HEAD(dump_list); 4016 4017 /** 4018 * kmsg_dump_register - register a kernel log dumper. 4019 * @dumper: pointer to the kmsg_dumper structure 4020 * 4021 * Adds a kernel log dumper to the system. The dump callback in the 4022 * structure will be called when the kernel oopses or panics and must be 4023 * set. Returns zero on success and %-EINVAL or %-EBUSY otherwise. 4024 */ 4025 int kmsg_dump_register(struct kmsg_dumper *dumper) 4026 { 4027 unsigned long flags; 4028 int err = -EBUSY; 4029 4030 /* The dump callback needs to be set */ 4031 if (!dumper->dump) 4032 return -EINVAL; 4033 4034 spin_lock_irqsave(&dump_list_lock, flags); 4035 /* Don't allow registering multiple times */ 4036 if (!dumper->registered) { 4037 dumper->registered = 1; 4038 list_add_tail_rcu(&dumper->list, &dump_list); 4039 err = 0; 4040 } 4041 spin_unlock_irqrestore(&dump_list_lock, flags); 4042 4043 return err; 4044 } 4045 EXPORT_SYMBOL_GPL(kmsg_dump_register); 4046 4047 /** 4048 * kmsg_dump_unregister - unregister a kmsg dumper. 4049 * @dumper: pointer to the kmsg_dumper structure 4050 * 4051 * Removes a dump device from the system. Returns zero on success and 4052 * %-EINVAL otherwise. 4053 */ 4054 int kmsg_dump_unregister(struct kmsg_dumper *dumper) 4055 { 4056 unsigned long flags; 4057 int err = -EINVAL; 4058 4059 spin_lock_irqsave(&dump_list_lock, flags); 4060 if (dumper->registered) { 4061 dumper->registered = 0; 4062 list_del_rcu(&dumper->list); 4063 err = 0; 4064 } 4065 spin_unlock_irqrestore(&dump_list_lock, flags); 4066 synchronize_rcu(); 4067 4068 return err; 4069 } 4070 EXPORT_SYMBOL_GPL(kmsg_dump_unregister); 4071 4072 static bool always_kmsg_dump; 4073 module_param_named(always_kmsg_dump, always_kmsg_dump, bool, S_IRUGO | S_IWUSR); 4074 4075 const char *kmsg_dump_reason_str(enum kmsg_dump_reason reason) 4076 { 4077 switch (reason) { 4078 case KMSG_DUMP_PANIC: 4079 return "Panic"; 4080 case KMSG_DUMP_OOPS: 4081 return "Oops"; 4082 case KMSG_DUMP_EMERG: 4083 return "Emergency"; 4084 case KMSG_DUMP_SHUTDOWN: 4085 return "Shutdown"; 4086 default: 4087 return "Unknown"; 4088 } 4089 } 4090 EXPORT_SYMBOL_GPL(kmsg_dump_reason_str); 4091 4092 /** 4093 * kmsg_dump - dump kernel log to kernel message dumpers. 4094 * @reason: the reason (oops, panic etc) for dumping 4095 * 4096 * Call each of the registered dumper's dump() callback, which can 4097 * retrieve the kmsg records with kmsg_dump_get_line() or 4098 * kmsg_dump_get_buffer(). 4099 */ 4100 void kmsg_dump(enum kmsg_dump_reason reason) 4101 { 4102 struct kmsg_dumper *dumper; 4103 4104 rcu_read_lock(); 4105 list_for_each_entry_rcu(dumper, &dump_list, list) { 4106 enum kmsg_dump_reason max_reason = dumper->max_reason; 4107 4108 /* 4109 * If client has not provided a specific max_reason, default 4110 * to KMSG_DUMP_OOPS, unless always_kmsg_dump was set. 4111 */ 4112 if (max_reason == KMSG_DUMP_UNDEF) { 4113 max_reason = always_kmsg_dump ? KMSG_DUMP_MAX : 4114 KMSG_DUMP_OOPS; 4115 } 4116 if (reason > max_reason) 4117 continue; 4118 4119 /* invoke dumper which will iterate over records */ 4120 dumper->dump(dumper, reason); 4121 } 4122 rcu_read_unlock(); 4123 } 4124 4125 /** 4126 * kmsg_dump_get_line - retrieve one kmsg log line 4127 * @iter: kmsg dump iterator 4128 * @syslog: include the "<4>" prefixes 4129 * @line: buffer to copy the line to 4130 * @size: maximum size of the buffer 4131 * @len: length of line placed into buffer 4132 * 4133 * Start at the beginning of the kmsg buffer, with the oldest kmsg 4134 * record, and copy one record into the provided buffer. 4135 * 4136 * Consecutive calls will return the next available record moving 4137 * towards the end of the buffer with the youngest messages. 4138 * 4139 * A return value of FALSE indicates that there are no more records to 4140 * read. 4141 */ 4142 bool kmsg_dump_get_line(struct kmsg_dump_iter *iter, bool syslog, 4143 char *line, size_t size, size_t *len) 4144 { 4145 u64 min_seq = latched_seq_read_nolock(&clear_seq); 4146 struct printk_info info; 4147 unsigned int line_count; 4148 struct printk_record r; 4149 size_t l = 0; 4150 bool ret = false; 4151 4152 if (iter->cur_seq < min_seq) 4153 iter->cur_seq = min_seq; 4154 4155 prb_rec_init_rd(&r, &info, line, size); 4156 4157 /* Read text or count text lines? */ 4158 if (line) { 4159 if (!prb_read_valid(prb, iter->cur_seq, &r)) 4160 goto out; 4161 l = record_print_text(&r, syslog, printk_time); 4162 } else { 4163 if (!prb_read_valid_info(prb, iter->cur_seq, 4164 &info, &line_count)) { 4165 goto out; 4166 } 4167 l = get_record_print_text_size(&info, line_count, syslog, 4168 printk_time); 4169 4170 } 4171 4172 iter->cur_seq = r.info->seq + 1; 4173 ret = true; 4174 out: 4175 if (len) 4176 *len = l; 4177 return ret; 4178 } 4179 EXPORT_SYMBOL_GPL(kmsg_dump_get_line); 4180 4181 /** 4182 * kmsg_dump_get_buffer - copy kmsg log lines 4183 * @iter: kmsg dump iterator 4184 * @syslog: include the "<4>" prefixes 4185 * @buf: buffer to copy the line to 4186 * @size: maximum size of the buffer 4187 * @len_out: length of line placed into buffer 4188 * 4189 * Start at the end of the kmsg buffer and fill the provided buffer 4190 * with as many of the *youngest* kmsg records that fit into it. 4191 * If the buffer is large enough, all available kmsg records will be 4192 * copied with a single call. 4193 * 4194 * Consecutive calls will fill the buffer with the next block of 4195 * available older records, not including the earlier retrieved ones. 4196 * 4197 * A return value of FALSE indicates that there are no more records to 4198 * read. 4199 */ 4200 bool kmsg_dump_get_buffer(struct kmsg_dump_iter *iter, bool syslog, 4201 char *buf, size_t size, size_t *len_out) 4202 { 4203 u64 min_seq = latched_seq_read_nolock(&clear_seq); 4204 struct printk_info info; 4205 struct printk_record r; 4206 u64 seq; 4207 u64 next_seq; 4208 size_t len = 0; 4209 bool ret = false; 4210 bool time = printk_time; 4211 4212 if (!buf || !size) 4213 goto out; 4214 4215 if (iter->cur_seq < min_seq) 4216 iter->cur_seq = min_seq; 4217 4218 if (prb_read_valid_info(prb, iter->cur_seq, &info, NULL)) { 4219 if (info.seq != iter->cur_seq) { 4220 /* messages are gone, move to first available one */ 4221 iter->cur_seq = info.seq; 4222 } 4223 } 4224 4225 /* last entry */ 4226 if (iter->cur_seq >= iter->next_seq) 4227 goto out; 4228 4229 /* 4230 * Find first record that fits, including all following records, 4231 * into the user-provided buffer for this dump. Pass in size-1 4232 * because this function (by way of record_print_text()) will 4233 * not write more than size-1 bytes of text into @buf. 4234 */ 4235 seq = find_first_fitting_seq(iter->cur_seq, iter->next_seq, 4236 size - 1, syslog, time); 4237 4238 /* 4239 * Next kmsg_dump_get_buffer() invocation will dump block of 4240 * older records stored right before this one. 4241 */ 4242 next_seq = seq; 4243 4244 prb_rec_init_rd(&r, &info, buf, size); 4245 4246 len = 0; 4247 prb_for_each_record(seq, prb, seq, &r) { 4248 if (r.info->seq >= iter->next_seq) 4249 break; 4250 4251 len += record_print_text(&r, syslog, time); 4252 4253 /* Adjust record to store to remaining buffer space. */ 4254 prb_rec_init_rd(&r, &info, buf + len, size - len); 4255 } 4256 4257 iter->next_seq = next_seq; 4258 ret = true; 4259 out: 4260 if (len_out) 4261 *len_out = len; 4262 return ret; 4263 } 4264 EXPORT_SYMBOL_GPL(kmsg_dump_get_buffer); 4265 4266 /** 4267 * kmsg_dump_rewind - reset the iterator 4268 * @iter: kmsg dump iterator 4269 * 4270 * Reset the dumper's iterator so that kmsg_dump_get_line() and 4271 * kmsg_dump_get_buffer() can be called again and used multiple 4272 * times within the same dumper.dump() callback. 4273 */ 4274 void kmsg_dump_rewind(struct kmsg_dump_iter *iter) 4275 { 4276 iter->cur_seq = latched_seq_read_nolock(&clear_seq); 4277 iter->next_seq = prb_next_seq(prb); 4278 } 4279 EXPORT_SYMBOL_GPL(kmsg_dump_rewind); 4280 4281 #endif 4282 4283 #ifdef CONFIG_SMP 4284 static atomic_t printk_cpu_sync_owner = ATOMIC_INIT(-1); 4285 static atomic_t printk_cpu_sync_nested = ATOMIC_INIT(0); 4286 4287 /** 4288 * __printk_cpu_sync_wait() - Busy wait until the printk cpu-reentrant 4289 * spinning lock is not owned by any CPU. 4290 * 4291 * Context: Any context. 4292 */ 4293 void __printk_cpu_sync_wait(void) 4294 { 4295 do { 4296 cpu_relax(); 4297 } while (atomic_read(&printk_cpu_sync_owner) != -1); 4298 } 4299 EXPORT_SYMBOL(__printk_cpu_sync_wait); 4300 4301 /** 4302 * __printk_cpu_sync_try_get() - Try to acquire the printk cpu-reentrant 4303 * spinning lock. 4304 * 4305 * If no processor has the lock, the calling processor takes the lock and 4306 * becomes the owner. If the calling processor is already the owner of the 4307 * lock, this function succeeds immediately. 4308 * 4309 * Context: Any context. Expects interrupts to be disabled. 4310 * Return: 1 on success, otherwise 0. 4311 */ 4312 int __printk_cpu_sync_try_get(void) 4313 { 4314 int cpu; 4315 int old; 4316 4317 cpu = smp_processor_id(); 4318 4319 /* 4320 * Guarantee loads and stores from this CPU when it is the lock owner 4321 * are _not_ visible to the previous lock owner. This pairs with 4322 * __printk_cpu_sync_put:B. 4323 * 4324 * Memory barrier involvement: 4325 * 4326 * If __printk_cpu_sync_try_get:A reads from __printk_cpu_sync_put:B, 4327 * then __printk_cpu_sync_put:A can never read from 4328 * __printk_cpu_sync_try_get:B. 4329 * 4330 * Relies on: 4331 * 4332 * RELEASE from __printk_cpu_sync_put:A to __printk_cpu_sync_put:B 4333 * of the previous CPU 4334 * matching 4335 * ACQUIRE from __printk_cpu_sync_try_get:A to 4336 * __printk_cpu_sync_try_get:B of this CPU 4337 */ 4338 old = atomic_cmpxchg_acquire(&printk_cpu_sync_owner, -1, 4339 cpu); /* LMM(__printk_cpu_sync_try_get:A) */ 4340 if (old == -1) { 4341 /* 4342 * This CPU is now the owner and begins loading/storing 4343 * data: LMM(__printk_cpu_sync_try_get:B) 4344 */ 4345 return 1; 4346 4347 } else if (old == cpu) { 4348 /* This CPU is already the owner. */ 4349 atomic_inc(&printk_cpu_sync_nested); 4350 return 1; 4351 } 4352 4353 return 0; 4354 } 4355 EXPORT_SYMBOL(__printk_cpu_sync_try_get); 4356 4357 /** 4358 * __printk_cpu_sync_put() - Release the printk cpu-reentrant spinning lock. 4359 * 4360 * The calling processor must be the owner of the lock. 4361 * 4362 * Context: Any context. Expects interrupts to be disabled. 4363 */ 4364 void __printk_cpu_sync_put(void) 4365 { 4366 if (atomic_read(&printk_cpu_sync_nested)) { 4367 atomic_dec(&printk_cpu_sync_nested); 4368 return; 4369 } 4370 4371 /* 4372 * This CPU is finished loading/storing data: 4373 * LMM(__printk_cpu_sync_put:A) 4374 */ 4375 4376 /* 4377 * Guarantee loads and stores from this CPU when it was the 4378 * lock owner are visible to the next lock owner. This pairs 4379 * with __printk_cpu_sync_try_get:A. 4380 * 4381 * Memory barrier involvement: 4382 * 4383 * If __printk_cpu_sync_try_get:A reads from __printk_cpu_sync_put:B, 4384 * then __printk_cpu_sync_try_get:B reads from __printk_cpu_sync_put:A. 4385 * 4386 * Relies on: 4387 * 4388 * RELEASE from __printk_cpu_sync_put:A to __printk_cpu_sync_put:B 4389 * of this CPU 4390 * matching 4391 * ACQUIRE from __printk_cpu_sync_try_get:A to 4392 * __printk_cpu_sync_try_get:B of the next CPU 4393 */ 4394 atomic_set_release(&printk_cpu_sync_owner, 4395 -1); /* LMM(__printk_cpu_sync_put:B) */ 4396 } 4397 EXPORT_SYMBOL(__printk_cpu_sync_put); 4398 #endif /* CONFIG_SMP */ 4399