1 /* 2 * linux/kernel/printk.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 * 6 * Modified to make sys_syslog() more flexible: added commands to 7 * return the last 4k of kernel messages, regardless of whether 8 * they've been read or not. Added option to suppress kernel printk's 9 * to the console. Added hook for sending the console messages 10 * elsewhere, in preparation for a serial line console (someday). 11 * Ted Ts'o, 2/11/93. 12 * Modified for sysctl support, 1/8/97, Chris Horn. 13 * Fixed SMP synchronization, 08/08/99, Manfred Spraul 14 * manfred@colorfullife.com 15 * Rewrote bits to get rid of console_lock 16 * 01Mar01 Andrew Morton 17 */ 18 19 #include <linux/kernel.h> 20 #include <linux/mm.h> 21 #include <linux/tty.h> 22 #include <linux/tty_driver.h> 23 #include <linux/console.h> 24 #include <linux/init.h> 25 #include <linux/jiffies.h> 26 #include <linux/nmi.h> 27 #include <linux/module.h> 28 #include <linux/moduleparam.h> 29 #include <linux/delay.h> 30 #include <linux/smp.h> 31 #include <linux/security.h> 32 #include <linux/bootmem.h> 33 #include <linux/memblock.h> 34 #include <linux/syscalls.h> 35 #include <linux/crash_core.h> 36 #include <linux/kdb.h> 37 #include <linux/ratelimit.h> 38 #include <linux/kmsg_dump.h> 39 #include <linux/syslog.h> 40 #include <linux/cpu.h> 41 #include <linux/notifier.h> 42 #include <linux/rculist.h> 43 #include <linux/poll.h> 44 #include <linux/irq_work.h> 45 #include <linux/ctype.h> 46 #include <linux/uio.h> 47 #include <linux/sched/clock.h> 48 #include <linux/sched/debug.h> 49 #include <linux/sched/task_stack.h> 50 51 #include <linux/uaccess.h> 52 #include <asm/sections.h> 53 54 #include <trace/events/initcall.h> 55 #define CREATE_TRACE_POINTS 56 #include <trace/events/printk.h> 57 58 #include "console_cmdline.h" 59 #include "braille.h" 60 #include "internal.h" 61 62 int console_printk[4] = { 63 CONSOLE_LOGLEVEL_DEFAULT, /* console_loglevel */ 64 MESSAGE_LOGLEVEL_DEFAULT, /* default_message_loglevel */ 65 CONSOLE_LOGLEVEL_MIN, /* minimum_console_loglevel */ 66 CONSOLE_LOGLEVEL_DEFAULT, /* default_console_loglevel */ 67 }; 68 69 atomic_t ignore_console_lock_warning __read_mostly = ATOMIC_INIT(0); 70 EXPORT_SYMBOL(ignore_console_lock_warning); 71 72 /* 73 * Low level drivers may need that to know if they can schedule in 74 * their unblank() callback or not. So let's export it. 75 */ 76 int oops_in_progress; 77 EXPORT_SYMBOL(oops_in_progress); 78 79 /* 80 * console_sem protects the console_drivers list, and also 81 * provides serialisation for access to the entire console 82 * driver system. 83 */ 84 static DEFINE_SEMAPHORE(console_sem); 85 struct console *console_drivers; 86 EXPORT_SYMBOL_GPL(console_drivers); 87 88 #ifdef CONFIG_LOCKDEP 89 static struct lockdep_map console_lock_dep_map = { 90 .name = "console_lock" 91 }; 92 #endif 93 94 enum devkmsg_log_bits { 95 __DEVKMSG_LOG_BIT_ON = 0, 96 __DEVKMSG_LOG_BIT_OFF, 97 __DEVKMSG_LOG_BIT_LOCK, 98 }; 99 100 enum devkmsg_log_masks { 101 DEVKMSG_LOG_MASK_ON = BIT(__DEVKMSG_LOG_BIT_ON), 102 DEVKMSG_LOG_MASK_OFF = BIT(__DEVKMSG_LOG_BIT_OFF), 103 DEVKMSG_LOG_MASK_LOCK = BIT(__DEVKMSG_LOG_BIT_LOCK), 104 }; 105 106 /* Keep both the 'on' and 'off' bits clear, i.e. ratelimit by default: */ 107 #define DEVKMSG_LOG_MASK_DEFAULT 0 108 109 static unsigned int __read_mostly devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT; 110 111 static int __control_devkmsg(char *str) 112 { 113 if (!str) 114 return -EINVAL; 115 116 if (!strncmp(str, "on", 2)) { 117 devkmsg_log = DEVKMSG_LOG_MASK_ON; 118 return 2; 119 } else if (!strncmp(str, "off", 3)) { 120 devkmsg_log = DEVKMSG_LOG_MASK_OFF; 121 return 3; 122 } else if (!strncmp(str, "ratelimit", 9)) { 123 devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT; 124 return 9; 125 } 126 return -EINVAL; 127 } 128 129 static int __init control_devkmsg(char *str) 130 { 131 if (__control_devkmsg(str) < 0) 132 return 1; 133 134 /* 135 * Set sysctl string accordingly: 136 */ 137 if (devkmsg_log == DEVKMSG_LOG_MASK_ON) 138 strcpy(devkmsg_log_str, "on"); 139 else if (devkmsg_log == DEVKMSG_LOG_MASK_OFF) 140 strcpy(devkmsg_log_str, "off"); 141 /* else "ratelimit" which is set by default. */ 142 143 /* 144 * Sysctl cannot change it anymore. The kernel command line setting of 145 * this parameter is to force the setting to be permanent throughout the 146 * runtime of the system. This is a precation measure against userspace 147 * trying to be a smarta** and attempting to change it up on us. 148 */ 149 devkmsg_log |= DEVKMSG_LOG_MASK_LOCK; 150 151 return 0; 152 } 153 __setup("printk.devkmsg=", control_devkmsg); 154 155 char devkmsg_log_str[DEVKMSG_STR_MAX_SIZE] = "ratelimit"; 156 157 int devkmsg_sysctl_set_loglvl(struct ctl_table *table, int write, 158 void __user *buffer, size_t *lenp, loff_t *ppos) 159 { 160 char old_str[DEVKMSG_STR_MAX_SIZE]; 161 unsigned int old; 162 int err; 163 164 if (write) { 165 if (devkmsg_log & DEVKMSG_LOG_MASK_LOCK) 166 return -EINVAL; 167 168 old = devkmsg_log; 169 strncpy(old_str, devkmsg_log_str, DEVKMSG_STR_MAX_SIZE); 170 } 171 172 err = proc_dostring(table, write, buffer, lenp, ppos); 173 if (err) 174 return err; 175 176 if (write) { 177 err = __control_devkmsg(devkmsg_log_str); 178 179 /* 180 * Do not accept an unknown string OR a known string with 181 * trailing crap... 182 */ 183 if (err < 0 || (err + 1 != *lenp)) { 184 185 /* ... and restore old setting. */ 186 devkmsg_log = old; 187 strncpy(devkmsg_log_str, old_str, DEVKMSG_STR_MAX_SIZE); 188 189 return -EINVAL; 190 } 191 } 192 193 return 0; 194 } 195 196 /* 197 * Number of registered extended console drivers. 198 * 199 * If extended consoles are present, in-kernel cont reassembly is disabled 200 * and each fragment is stored as a separate log entry with proper 201 * continuation flag so that every emitted message has full metadata. This 202 * doesn't change the result for regular consoles or /proc/kmsg. For 203 * /dev/kmsg, as long as the reader concatenates messages according to 204 * consecutive continuation flags, the end result should be the same too. 205 */ 206 static int nr_ext_console_drivers; 207 208 /* 209 * Helper macros to handle lockdep when locking/unlocking console_sem. We use 210 * macros instead of functions so that _RET_IP_ contains useful information. 211 */ 212 #define down_console_sem() do { \ 213 down(&console_sem);\ 214 mutex_acquire(&console_lock_dep_map, 0, 0, _RET_IP_);\ 215 } while (0) 216 217 static int __down_trylock_console_sem(unsigned long ip) 218 { 219 int lock_failed; 220 unsigned long flags; 221 222 /* 223 * Here and in __up_console_sem() we need to be in safe mode, 224 * because spindump/WARN/etc from under console ->lock will 225 * deadlock in printk()->down_trylock_console_sem() otherwise. 226 */ 227 printk_safe_enter_irqsave(flags); 228 lock_failed = down_trylock(&console_sem); 229 printk_safe_exit_irqrestore(flags); 230 231 if (lock_failed) 232 return 1; 233 mutex_acquire(&console_lock_dep_map, 0, 1, ip); 234 return 0; 235 } 236 #define down_trylock_console_sem() __down_trylock_console_sem(_RET_IP_) 237 238 static void __up_console_sem(unsigned long ip) 239 { 240 unsigned long flags; 241 242 mutex_release(&console_lock_dep_map, 1, ip); 243 244 printk_safe_enter_irqsave(flags); 245 up(&console_sem); 246 printk_safe_exit_irqrestore(flags); 247 } 248 #define up_console_sem() __up_console_sem(_RET_IP_) 249 250 /* 251 * This is used for debugging the mess that is the VT code by 252 * keeping track if we have the console semaphore held. It's 253 * definitely not the perfect debug tool (we don't know if _WE_ 254 * hold it and are racing, but it helps tracking those weird code 255 * paths in the console code where we end up in places I want 256 * locked without the console sempahore held). 257 */ 258 static int console_locked, console_suspended; 259 260 /* 261 * If exclusive_console is non-NULL then only this console is to be printed to. 262 */ 263 static struct console *exclusive_console; 264 265 /* 266 * Array of consoles built from command line options (console=) 267 */ 268 269 #define MAX_CMDLINECONSOLES 8 270 271 static struct console_cmdline console_cmdline[MAX_CMDLINECONSOLES]; 272 273 static int preferred_console = -1; 274 int console_set_on_cmdline; 275 EXPORT_SYMBOL(console_set_on_cmdline); 276 277 /* Flag: console code may call schedule() */ 278 static int console_may_schedule; 279 280 enum con_msg_format_flags { 281 MSG_FORMAT_DEFAULT = 0, 282 MSG_FORMAT_SYSLOG = (1 << 0), 283 }; 284 285 static int console_msg_format = MSG_FORMAT_DEFAULT; 286 287 /* 288 * The printk log buffer consists of a chain of concatenated variable 289 * length records. Every record starts with a record header, containing 290 * the overall length of the record. 291 * 292 * The heads to the first and last entry in the buffer, as well as the 293 * sequence numbers of these entries are maintained when messages are 294 * stored. 295 * 296 * If the heads indicate available messages, the length in the header 297 * tells the start next message. A length == 0 for the next message 298 * indicates a wrap-around to the beginning of the buffer. 299 * 300 * Every record carries the monotonic timestamp in microseconds, as well as 301 * the standard userspace syslog level and syslog facility. The usual 302 * kernel messages use LOG_KERN; userspace-injected messages always carry 303 * a matching syslog facility, by default LOG_USER. The origin of every 304 * message can be reliably determined that way. 305 * 306 * The human readable log message directly follows the message header. The 307 * length of the message text is stored in the header, the stored message 308 * is not terminated. 309 * 310 * Optionally, a message can carry a dictionary of properties (key/value pairs), 311 * to provide userspace with a machine-readable message context. 312 * 313 * Examples for well-defined, commonly used property names are: 314 * DEVICE=b12:8 device identifier 315 * b12:8 block dev_t 316 * c127:3 char dev_t 317 * n8 netdev ifindex 318 * +sound:card0 subsystem:devname 319 * SUBSYSTEM=pci driver-core subsystem name 320 * 321 * Valid characters in property names are [a-zA-Z0-9.-_]. The plain text value 322 * follows directly after a '=' character. Every property is terminated by 323 * a '\0' character. The last property is not terminated. 324 * 325 * Example of a message structure: 326 * 0000 ff 8f 00 00 00 00 00 00 monotonic time in nsec 327 * 0008 34 00 record is 52 bytes long 328 * 000a 0b 00 text is 11 bytes long 329 * 000c 1f 00 dictionary is 23 bytes long 330 * 000e 03 00 LOG_KERN (facility) LOG_ERR (level) 331 * 0010 69 74 27 73 20 61 20 6c "it's a l" 332 * 69 6e 65 "ine" 333 * 001b 44 45 56 49 43 "DEVIC" 334 * 45 3d 62 38 3a 32 00 44 "E=b8:2\0D" 335 * 52 49 56 45 52 3d 62 75 "RIVER=bu" 336 * 67 "g" 337 * 0032 00 00 00 padding to next message header 338 * 339 * The 'struct printk_log' buffer header must never be directly exported to 340 * userspace, it is a kernel-private implementation detail that might 341 * need to be changed in the future, when the requirements change. 342 * 343 * /dev/kmsg exports the structured data in the following line format: 344 * "<level>,<sequnum>,<timestamp>,<contflag>[,additional_values, ... ];<message text>\n" 345 * 346 * Users of the export format should ignore possible additional values 347 * separated by ',', and find the message after the ';' character. 348 * 349 * The optional key/value pairs are attached as continuation lines starting 350 * with a space character and terminated by a newline. All possible 351 * non-prinatable characters are escaped in the "\xff" notation. 352 */ 353 354 enum log_flags { 355 LOG_NOCONS = 1, /* suppress print, do not print to console */ 356 LOG_NEWLINE = 2, /* text ended with a newline */ 357 LOG_PREFIX = 4, /* text started with a prefix */ 358 LOG_CONT = 8, /* text is a fragment of a continuation line */ 359 }; 360 361 struct printk_log { 362 u64 ts_nsec; /* timestamp in nanoseconds */ 363 u16 len; /* length of entire record */ 364 u16 text_len; /* length of text buffer */ 365 u16 dict_len; /* length of dictionary buffer */ 366 u8 facility; /* syslog facility */ 367 u8 flags:5; /* internal record flags */ 368 u8 level:3; /* syslog level */ 369 } 370 #ifdef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS 371 __packed __aligned(4) 372 #endif 373 ; 374 375 /* 376 * The logbuf_lock protects kmsg buffer, indices, counters. This can be taken 377 * within the scheduler's rq lock. It must be released before calling 378 * console_unlock() or anything else that might wake up a process. 379 */ 380 DEFINE_RAW_SPINLOCK(logbuf_lock); 381 382 /* 383 * Helper macros to lock/unlock logbuf_lock and switch between 384 * printk-safe/unsafe modes. 385 */ 386 #define logbuf_lock_irq() \ 387 do { \ 388 printk_safe_enter_irq(); \ 389 raw_spin_lock(&logbuf_lock); \ 390 } while (0) 391 392 #define logbuf_unlock_irq() \ 393 do { \ 394 raw_spin_unlock(&logbuf_lock); \ 395 printk_safe_exit_irq(); \ 396 } while (0) 397 398 #define logbuf_lock_irqsave(flags) \ 399 do { \ 400 printk_safe_enter_irqsave(flags); \ 401 raw_spin_lock(&logbuf_lock); \ 402 } while (0) 403 404 #define logbuf_unlock_irqrestore(flags) \ 405 do { \ 406 raw_spin_unlock(&logbuf_lock); \ 407 printk_safe_exit_irqrestore(flags); \ 408 } while (0) 409 410 #ifdef CONFIG_PRINTK 411 DECLARE_WAIT_QUEUE_HEAD(log_wait); 412 /* the next printk record to read by syslog(READ) or /proc/kmsg */ 413 static u64 syslog_seq; 414 static u32 syslog_idx; 415 static size_t syslog_partial; 416 417 /* index and sequence number of the first record stored in the buffer */ 418 static u64 log_first_seq; 419 static u32 log_first_idx; 420 421 /* index and sequence number of the next record to store in the buffer */ 422 static u64 log_next_seq; 423 static u32 log_next_idx; 424 425 /* the next printk record to write to the console */ 426 static u64 console_seq; 427 static u32 console_idx; 428 429 /* the next printk record to read after the last 'clear' command */ 430 static u64 clear_seq; 431 static u32 clear_idx; 432 433 #define PREFIX_MAX 32 434 #define LOG_LINE_MAX (1024 - PREFIX_MAX) 435 436 #define LOG_LEVEL(v) ((v) & 0x07) 437 #define LOG_FACILITY(v) ((v) >> 3 & 0xff) 438 439 /* record buffer */ 440 #define LOG_ALIGN __alignof__(struct printk_log) 441 #define __LOG_BUF_LEN (1 << CONFIG_LOG_BUF_SHIFT) 442 static char __log_buf[__LOG_BUF_LEN] __aligned(LOG_ALIGN); 443 static char *log_buf = __log_buf; 444 static u32 log_buf_len = __LOG_BUF_LEN; 445 446 /* Return log buffer address */ 447 char *log_buf_addr_get(void) 448 { 449 return log_buf; 450 } 451 452 /* Return log buffer size */ 453 u32 log_buf_len_get(void) 454 { 455 return log_buf_len; 456 } 457 458 /* human readable text of the record */ 459 static char *log_text(const struct printk_log *msg) 460 { 461 return (char *)msg + sizeof(struct printk_log); 462 } 463 464 /* optional key/value pair dictionary attached to the record */ 465 static char *log_dict(const struct printk_log *msg) 466 { 467 return (char *)msg + sizeof(struct printk_log) + msg->text_len; 468 } 469 470 /* get record by index; idx must point to valid msg */ 471 static struct printk_log *log_from_idx(u32 idx) 472 { 473 struct printk_log *msg = (struct printk_log *)(log_buf + idx); 474 475 /* 476 * A length == 0 record is the end of buffer marker. Wrap around and 477 * read the message at the start of the buffer. 478 */ 479 if (!msg->len) 480 return (struct printk_log *)log_buf; 481 return msg; 482 } 483 484 /* get next record; idx must point to valid msg */ 485 static u32 log_next(u32 idx) 486 { 487 struct printk_log *msg = (struct printk_log *)(log_buf + idx); 488 489 /* length == 0 indicates the end of the buffer; wrap */ 490 /* 491 * A length == 0 record is the end of buffer marker. Wrap around and 492 * read the message at the start of the buffer as *this* one, and 493 * return the one after that. 494 */ 495 if (!msg->len) { 496 msg = (struct printk_log *)log_buf; 497 return msg->len; 498 } 499 return idx + msg->len; 500 } 501 502 /* 503 * Check whether there is enough free space for the given message. 504 * 505 * The same values of first_idx and next_idx mean that the buffer 506 * is either empty or full. 507 * 508 * If the buffer is empty, we must respect the position of the indexes. 509 * They cannot be reset to the beginning of the buffer. 510 */ 511 static int logbuf_has_space(u32 msg_size, bool empty) 512 { 513 u32 free; 514 515 if (log_next_idx > log_first_idx || empty) 516 free = max(log_buf_len - log_next_idx, log_first_idx); 517 else 518 free = log_first_idx - log_next_idx; 519 520 /* 521 * We need space also for an empty header that signalizes wrapping 522 * of the buffer. 523 */ 524 return free >= msg_size + sizeof(struct printk_log); 525 } 526 527 static int log_make_free_space(u32 msg_size) 528 { 529 while (log_first_seq < log_next_seq && 530 !logbuf_has_space(msg_size, false)) { 531 /* drop old messages until we have enough contiguous space */ 532 log_first_idx = log_next(log_first_idx); 533 log_first_seq++; 534 } 535 536 if (clear_seq < log_first_seq) { 537 clear_seq = log_first_seq; 538 clear_idx = log_first_idx; 539 } 540 541 /* sequence numbers are equal, so the log buffer is empty */ 542 if (logbuf_has_space(msg_size, log_first_seq == log_next_seq)) 543 return 0; 544 545 return -ENOMEM; 546 } 547 548 /* compute the message size including the padding bytes */ 549 static u32 msg_used_size(u16 text_len, u16 dict_len, u32 *pad_len) 550 { 551 u32 size; 552 553 size = sizeof(struct printk_log) + text_len + dict_len; 554 *pad_len = (-size) & (LOG_ALIGN - 1); 555 size += *pad_len; 556 557 return size; 558 } 559 560 /* 561 * Define how much of the log buffer we could take at maximum. The value 562 * must be greater than two. Note that only half of the buffer is available 563 * when the index points to the middle. 564 */ 565 #define MAX_LOG_TAKE_PART 4 566 static const char trunc_msg[] = "<truncated>"; 567 568 static u32 truncate_msg(u16 *text_len, u16 *trunc_msg_len, 569 u16 *dict_len, u32 *pad_len) 570 { 571 /* 572 * The message should not take the whole buffer. Otherwise, it might 573 * get removed too soon. 574 */ 575 u32 max_text_len = log_buf_len / MAX_LOG_TAKE_PART; 576 if (*text_len > max_text_len) 577 *text_len = max_text_len; 578 /* enable the warning message */ 579 *trunc_msg_len = strlen(trunc_msg); 580 /* disable the "dict" completely */ 581 *dict_len = 0; 582 /* compute the size again, count also the warning message */ 583 return msg_used_size(*text_len + *trunc_msg_len, 0, pad_len); 584 } 585 586 /* insert record into the buffer, discard old ones, update heads */ 587 static int log_store(int facility, int level, 588 enum log_flags flags, u64 ts_nsec, 589 const char *dict, u16 dict_len, 590 const char *text, u16 text_len) 591 { 592 struct printk_log *msg; 593 u32 size, pad_len; 594 u16 trunc_msg_len = 0; 595 596 /* number of '\0' padding bytes to next message */ 597 size = msg_used_size(text_len, dict_len, &pad_len); 598 599 if (log_make_free_space(size)) { 600 /* truncate the message if it is too long for empty buffer */ 601 size = truncate_msg(&text_len, &trunc_msg_len, 602 &dict_len, &pad_len); 603 /* survive when the log buffer is too small for trunc_msg */ 604 if (log_make_free_space(size)) 605 return 0; 606 } 607 608 if (log_next_idx + size + sizeof(struct printk_log) > log_buf_len) { 609 /* 610 * This message + an additional empty header does not fit 611 * at the end of the buffer. Add an empty header with len == 0 612 * to signify a wrap around. 613 */ 614 memset(log_buf + log_next_idx, 0, sizeof(struct printk_log)); 615 log_next_idx = 0; 616 } 617 618 /* fill message */ 619 msg = (struct printk_log *)(log_buf + log_next_idx); 620 memcpy(log_text(msg), text, text_len); 621 msg->text_len = text_len; 622 if (trunc_msg_len) { 623 memcpy(log_text(msg) + text_len, trunc_msg, trunc_msg_len); 624 msg->text_len += trunc_msg_len; 625 } 626 memcpy(log_dict(msg), dict, dict_len); 627 msg->dict_len = dict_len; 628 msg->facility = facility; 629 msg->level = level & 7; 630 msg->flags = flags & 0x1f; 631 if (ts_nsec > 0) 632 msg->ts_nsec = ts_nsec; 633 else 634 msg->ts_nsec = local_clock(); 635 memset(log_dict(msg) + dict_len, 0, pad_len); 636 msg->len = size; 637 638 /* insert message */ 639 log_next_idx += msg->len; 640 log_next_seq++; 641 642 return msg->text_len; 643 } 644 645 int dmesg_restrict = IS_ENABLED(CONFIG_SECURITY_DMESG_RESTRICT); 646 647 static int syslog_action_restricted(int type) 648 { 649 if (dmesg_restrict) 650 return 1; 651 /* 652 * Unless restricted, we allow "read all" and "get buffer size" 653 * for everybody. 654 */ 655 return type != SYSLOG_ACTION_READ_ALL && 656 type != SYSLOG_ACTION_SIZE_BUFFER; 657 } 658 659 static int check_syslog_permissions(int type, int source) 660 { 661 /* 662 * If this is from /proc/kmsg and we've already opened it, then we've 663 * already done the capabilities checks at open time. 664 */ 665 if (source == SYSLOG_FROM_PROC && type != SYSLOG_ACTION_OPEN) 666 goto ok; 667 668 if (syslog_action_restricted(type)) { 669 if (capable(CAP_SYSLOG)) 670 goto ok; 671 /* 672 * For historical reasons, accept CAP_SYS_ADMIN too, with 673 * a warning. 674 */ 675 if (capable(CAP_SYS_ADMIN)) { 676 pr_warn_once("%s (%d): Attempt to access syslog with " 677 "CAP_SYS_ADMIN but no CAP_SYSLOG " 678 "(deprecated).\n", 679 current->comm, task_pid_nr(current)); 680 goto ok; 681 } 682 return -EPERM; 683 } 684 ok: 685 return security_syslog(type); 686 } 687 688 static void append_char(char **pp, char *e, char c) 689 { 690 if (*pp < e) 691 *(*pp)++ = c; 692 } 693 694 static ssize_t msg_print_ext_header(char *buf, size_t size, 695 struct printk_log *msg, u64 seq) 696 { 697 u64 ts_usec = msg->ts_nsec; 698 699 do_div(ts_usec, 1000); 700 701 return scnprintf(buf, size, "%u,%llu,%llu,%c;", 702 (msg->facility << 3) | msg->level, seq, ts_usec, 703 msg->flags & LOG_CONT ? 'c' : '-'); 704 } 705 706 static ssize_t msg_print_ext_body(char *buf, size_t size, 707 char *dict, size_t dict_len, 708 char *text, size_t text_len) 709 { 710 char *p = buf, *e = buf + size; 711 size_t i; 712 713 /* escape non-printable characters */ 714 for (i = 0; i < text_len; i++) { 715 unsigned char c = text[i]; 716 717 if (c < ' ' || c >= 127 || c == '\\') 718 p += scnprintf(p, e - p, "\\x%02x", c); 719 else 720 append_char(&p, e, c); 721 } 722 append_char(&p, e, '\n'); 723 724 if (dict_len) { 725 bool line = true; 726 727 for (i = 0; i < dict_len; i++) { 728 unsigned char c = dict[i]; 729 730 if (line) { 731 append_char(&p, e, ' '); 732 line = false; 733 } 734 735 if (c == '\0') { 736 append_char(&p, e, '\n'); 737 line = true; 738 continue; 739 } 740 741 if (c < ' ' || c >= 127 || c == '\\') { 742 p += scnprintf(p, e - p, "\\x%02x", c); 743 continue; 744 } 745 746 append_char(&p, e, c); 747 } 748 append_char(&p, e, '\n'); 749 } 750 751 return p - buf; 752 } 753 754 /* /dev/kmsg - userspace message inject/listen interface */ 755 struct devkmsg_user { 756 u64 seq; 757 u32 idx; 758 struct ratelimit_state rs; 759 struct mutex lock; 760 char buf[CONSOLE_EXT_LOG_MAX]; 761 }; 762 763 static ssize_t devkmsg_write(struct kiocb *iocb, struct iov_iter *from) 764 { 765 char *buf, *line; 766 int level = default_message_loglevel; 767 int facility = 1; /* LOG_USER */ 768 struct file *file = iocb->ki_filp; 769 struct devkmsg_user *user = file->private_data; 770 size_t len = iov_iter_count(from); 771 ssize_t ret = len; 772 773 if (!user || len > LOG_LINE_MAX) 774 return -EINVAL; 775 776 /* Ignore when user logging is disabled. */ 777 if (devkmsg_log & DEVKMSG_LOG_MASK_OFF) 778 return len; 779 780 /* Ratelimit when not explicitly enabled. */ 781 if (!(devkmsg_log & DEVKMSG_LOG_MASK_ON)) { 782 if (!___ratelimit(&user->rs, current->comm)) 783 return ret; 784 } 785 786 buf = kmalloc(len+1, GFP_KERNEL); 787 if (buf == NULL) 788 return -ENOMEM; 789 790 buf[len] = '\0'; 791 if (!copy_from_iter_full(buf, len, from)) { 792 kfree(buf); 793 return -EFAULT; 794 } 795 796 /* 797 * Extract and skip the syslog prefix <[0-9]*>. Coming from userspace 798 * the decimal value represents 32bit, the lower 3 bit are the log 799 * level, the rest are the log facility. 800 * 801 * If no prefix or no userspace facility is specified, we 802 * enforce LOG_USER, to be able to reliably distinguish 803 * kernel-generated messages from userspace-injected ones. 804 */ 805 line = buf; 806 if (line[0] == '<') { 807 char *endp = NULL; 808 unsigned int u; 809 810 u = simple_strtoul(line + 1, &endp, 10); 811 if (endp && endp[0] == '>') { 812 level = LOG_LEVEL(u); 813 if (LOG_FACILITY(u) != 0) 814 facility = LOG_FACILITY(u); 815 endp++; 816 len -= endp - line; 817 line = endp; 818 } 819 } 820 821 printk_emit(facility, level, NULL, 0, "%s", line); 822 kfree(buf); 823 return ret; 824 } 825 826 static ssize_t devkmsg_read(struct file *file, char __user *buf, 827 size_t count, loff_t *ppos) 828 { 829 struct devkmsg_user *user = file->private_data; 830 struct printk_log *msg; 831 size_t len; 832 ssize_t ret; 833 834 if (!user) 835 return -EBADF; 836 837 ret = mutex_lock_interruptible(&user->lock); 838 if (ret) 839 return ret; 840 841 logbuf_lock_irq(); 842 while (user->seq == log_next_seq) { 843 if (file->f_flags & O_NONBLOCK) { 844 ret = -EAGAIN; 845 logbuf_unlock_irq(); 846 goto out; 847 } 848 849 logbuf_unlock_irq(); 850 ret = wait_event_interruptible(log_wait, 851 user->seq != log_next_seq); 852 if (ret) 853 goto out; 854 logbuf_lock_irq(); 855 } 856 857 if (user->seq < log_first_seq) { 858 /* our last seen message is gone, return error and reset */ 859 user->idx = log_first_idx; 860 user->seq = log_first_seq; 861 ret = -EPIPE; 862 logbuf_unlock_irq(); 863 goto out; 864 } 865 866 msg = log_from_idx(user->idx); 867 len = msg_print_ext_header(user->buf, sizeof(user->buf), 868 msg, user->seq); 869 len += msg_print_ext_body(user->buf + len, sizeof(user->buf) - len, 870 log_dict(msg), msg->dict_len, 871 log_text(msg), msg->text_len); 872 873 user->idx = log_next(user->idx); 874 user->seq++; 875 logbuf_unlock_irq(); 876 877 if (len > count) { 878 ret = -EINVAL; 879 goto out; 880 } 881 882 if (copy_to_user(buf, user->buf, len)) { 883 ret = -EFAULT; 884 goto out; 885 } 886 ret = len; 887 out: 888 mutex_unlock(&user->lock); 889 return ret; 890 } 891 892 static loff_t devkmsg_llseek(struct file *file, loff_t offset, int whence) 893 { 894 struct devkmsg_user *user = file->private_data; 895 loff_t ret = 0; 896 897 if (!user) 898 return -EBADF; 899 if (offset) 900 return -ESPIPE; 901 902 logbuf_lock_irq(); 903 switch (whence) { 904 case SEEK_SET: 905 /* the first record */ 906 user->idx = log_first_idx; 907 user->seq = log_first_seq; 908 break; 909 case SEEK_DATA: 910 /* 911 * The first record after the last SYSLOG_ACTION_CLEAR, 912 * like issued by 'dmesg -c'. Reading /dev/kmsg itself 913 * changes no global state, and does not clear anything. 914 */ 915 user->idx = clear_idx; 916 user->seq = clear_seq; 917 break; 918 case SEEK_END: 919 /* after the last record */ 920 user->idx = log_next_idx; 921 user->seq = log_next_seq; 922 break; 923 default: 924 ret = -EINVAL; 925 } 926 logbuf_unlock_irq(); 927 return ret; 928 } 929 930 static __poll_t devkmsg_poll(struct file *file, poll_table *wait) 931 { 932 struct devkmsg_user *user = file->private_data; 933 __poll_t ret = 0; 934 935 if (!user) 936 return EPOLLERR|EPOLLNVAL; 937 938 poll_wait(file, &log_wait, wait); 939 940 logbuf_lock_irq(); 941 if (user->seq < log_next_seq) { 942 /* return error when data has vanished underneath us */ 943 if (user->seq < log_first_seq) 944 ret = EPOLLIN|EPOLLRDNORM|EPOLLERR|EPOLLPRI; 945 else 946 ret = EPOLLIN|EPOLLRDNORM; 947 } 948 logbuf_unlock_irq(); 949 950 return ret; 951 } 952 953 static int devkmsg_open(struct inode *inode, struct file *file) 954 { 955 struct devkmsg_user *user; 956 int err; 957 958 if (devkmsg_log & DEVKMSG_LOG_MASK_OFF) 959 return -EPERM; 960 961 /* write-only does not need any file context */ 962 if ((file->f_flags & O_ACCMODE) != O_WRONLY) { 963 err = check_syslog_permissions(SYSLOG_ACTION_READ_ALL, 964 SYSLOG_FROM_READER); 965 if (err) 966 return err; 967 } 968 969 user = kmalloc(sizeof(struct devkmsg_user), GFP_KERNEL); 970 if (!user) 971 return -ENOMEM; 972 973 ratelimit_default_init(&user->rs); 974 ratelimit_set_flags(&user->rs, RATELIMIT_MSG_ON_RELEASE); 975 976 mutex_init(&user->lock); 977 978 logbuf_lock_irq(); 979 user->idx = log_first_idx; 980 user->seq = log_first_seq; 981 logbuf_unlock_irq(); 982 983 file->private_data = user; 984 return 0; 985 } 986 987 static int devkmsg_release(struct inode *inode, struct file *file) 988 { 989 struct devkmsg_user *user = file->private_data; 990 991 if (!user) 992 return 0; 993 994 ratelimit_state_exit(&user->rs); 995 996 mutex_destroy(&user->lock); 997 kfree(user); 998 return 0; 999 } 1000 1001 const struct file_operations kmsg_fops = { 1002 .open = devkmsg_open, 1003 .read = devkmsg_read, 1004 .write_iter = devkmsg_write, 1005 .llseek = devkmsg_llseek, 1006 .poll = devkmsg_poll, 1007 .release = devkmsg_release, 1008 }; 1009 1010 #ifdef CONFIG_CRASH_CORE 1011 /* 1012 * This appends the listed symbols to /proc/vmcore 1013 * 1014 * /proc/vmcore is used by various utilities, like crash and makedumpfile to 1015 * obtain access to symbols that are otherwise very difficult to locate. These 1016 * symbols are specifically used so that utilities can access and extract the 1017 * dmesg log from a vmcore file after a crash. 1018 */ 1019 void log_buf_vmcoreinfo_setup(void) 1020 { 1021 VMCOREINFO_SYMBOL(log_buf); 1022 VMCOREINFO_SYMBOL(log_buf_len); 1023 VMCOREINFO_SYMBOL(log_first_idx); 1024 VMCOREINFO_SYMBOL(clear_idx); 1025 VMCOREINFO_SYMBOL(log_next_idx); 1026 /* 1027 * Export struct printk_log size and field offsets. User space tools can 1028 * parse it and detect any changes to structure down the line. 1029 */ 1030 VMCOREINFO_STRUCT_SIZE(printk_log); 1031 VMCOREINFO_OFFSET(printk_log, ts_nsec); 1032 VMCOREINFO_OFFSET(printk_log, len); 1033 VMCOREINFO_OFFSET(printk_log, text_len); 1034 VMCOREINFO_OFFSET(printk_log, dict_len); 1035 } 1036 #endif 1037 1038 /* requested log_buf_len from kernel cmdline */ 1039 static unsigned long __initdata new_log_buf_len; 1040 1041 /* we practice scaling the ring buffer by powers of 2 */ 1042 static void __init log_buf_len_update(unsigned size) 1043 { 1044 if (size) 1045 size = roundup_pow_of_two(size); 1046 if (size > log_buf_len) 1047 new_log_buf_len = size; 1048 } 1049 1050 /* save requested log_buf_len since it's too early to process it */ 1051 static int __init log_buf_len_setup(char *str) 1052 { 1053 unsigned size = memparse(str, &str); 1054 1055 log_buf_len_update(size); 1056 1057 return 0; 1058 } 1059 early_param("log_buf_len", log_buf_len_setup); 1060 1061 #ifdef CONFIG_SMP 1062 #define __LOG_CPU_MAX_BUF_LEN (1 << CONFIG_LOG_CPU_MAX_BUF_SHIFT) 1063 1064 static void __init log_buf_add_cpu(void) 1065 { 1066 unsigned int cpu_extra; 1067 1068 /* 1069 * archs should set up cpu_possible_bits properly with 1070 * set_cpu_possible() after setup_arch() but just in 1071 * case lets ensure this is valid. 1072 */ 1073 if (num_possible_cpus() == 1) 1074 return; 1075 1076 cpu_extra = (num_possible_cpus() - 1) * __LOG_CPU_MAX_BUF_LEN; 1077 1078 /* by default this will only continue through for large > 64 CPUs */ 1079 if (cpu_extra <= __LOG_BUF_LEN / 2) 1080 return; 1081 1082 pr_info("log_buf_len individual max cpu contribution: %d bytes\n", 1083 __LOG_CPU_MAX_BUF_LEN); 1084 pr_info("log_buf_len total cpu_extra contributions: %d bytes\n", 1085 cpu_extra); 1086 pr_info("log_buf_len min size: %d bytes\n", __LOG_BUF_LEN); 1087 1088 log_buf_len_update(cpu_extra + __LOG_BUF_LEN); 1089 } 1090 #else /* !CONFIG_SMP */ 1091 static inline void log_buf_add_cpu(void) {} 1092 #endif /* CONFIG_SMP */ 1093 1094 void __init setup_log_buf(int early) 1095 { 1096 unsigned long flags; 1097 char *new_log_buf; 1098 int free; 1099 1100 if (log_buf != __log_buf) 1101 return; 1102 1103 if (!early && !new_log_buf_len) 1104 log_buf_add_cpu(); 1105 1106 if (!new_log_buf_len) 1107 return; 1108 1109 if (early) { 1110 new_log_buf = 1111 memblock_virt_alloc(new_log_buf_len, LOG_ALIGN); 1112 } else { 1113 new_log_buf = memblock_virt_alloc_nopanic(new_log_buf_len, 1114 LOG_ALIGN); 1115 } 1116 1117 if (unlikely(!new_log_buf)) { 1118 pr_err("log_buf_len: %ld bytes not available\n", 1119 new_log_buf_len); 1120 return; 1121 } 1122 1123 logbuf_lock_irqsave(flags); 1124 log_buf_len = new_log_buf_len; 1125 log_buf = new_log_buf; 1126 new_log_buf_len = 0; 1127 free = __LOG_BUF_LEN - log_next_idx; 1128 memcpy(log_buf, __log_buf, __LOG_BUF_LEN); 1129 logbuf_unlock_irqrestore(flags); 1130 1131 pr_info("log_buf_len: %d bytes\n", log_buf_len); 1132 pr_info("early log buf free: %d(%d%%)\n", 1133 free, (free * 100) / __LOG_BUF_LEN); 1134 } 1135 1136 static bool __read_mostly ignore_loglevel; 1137 1138 static int __init ignore_loglevel_setup(char *str) 1139 { 1140 ignore_loglevel = true; 1141 pr_info("debug: ignoring loglevel setting.\n"); 1142 1143 return 0; 1144 } 1145 1146 early_param("ignore_loglevel", ignore_loglevel_setup); 1147 module_param(ignore_loglevel, bool, S_IRUGO | S_IWUSR); 1148 MODULE_PARM_DESC(ignore_loglevel, 1149 "ignore loglevel setting (prints all kernel messages to the console)"); 1150 1151 static bool suppress_message_printing(int level) 1152 { 1153 return (level >= console_loglevel && !ignore_loglevel); 1154 } 1155 1156 #ifdef CONFIG_BOOT_PRINTK_DELAY 1157 1158 static int boot_delay; /* msecs delay after each printk during bootup */ 1159 static unsigned long long loops_per_msec; /* based on boot_delay */ 1160 1161 static int __init boot_delay_setup(char *str) 1162 { 1163 unsigned long lpj; 1164 1165 lpj = preset_lpj ? preset_lpj : 1000000; /* some guess */ 1166 loops_per_msec = (unsigned long long)lpj / 1000 * HZ; 1167 1168 get_option(&str, &boot_delay); 1169 if (boot_delay > 10 * 1000) 1170 boot_delay = 0; 1171 1172 pr_debug("boot_delay: %u, preset_lpj: %ld, lpj: %lu, " 1173 "HZ: %d, loops_per_msec: %llu\n", 1174 boot_delay, preset_lpj, lpj, HZ, loops_per_msec); 1175 return 0; 1176 } 1177 early_param("boot_delay", boot_delay_setup); 1178 1179 static void boot_delay_msec(int level) 1180 { 1181 unsigned long long k; 1182 unsigned long timeout; 1183 1184 if ((boot_delay == 0 || system_state >= SYSTEM_RUNNING) 1185 || suppress_message_printing(level)) { 1186 return; 1187 } 1188 1189 k = (unsigned long long)loops_per_msec * boot_delay; 1190 1191 timeout = jiffies + msecs_to_jiffies(boot_delay); 1192 while (k) { 1193 k--; 1194 cpu_relax(); 1195 /* 1196 * use (volatile) jiffies to prevent 1197 * compiler reduction; loop termination via jiffies 1198 * is secondary and may or may not happen. 1199 */ 1200 if (time_after(jiffies, timeout)) 1201 break; 1202 touch_nmi_watchdog(); 1203 } 1204 } 1205 #else 1206 static inline void boot_delay_msec(int level) 1207 { 1208 } 1209 #endif 1210 1211 static bool printk_time = IS_ENABLED(CONFIG_PRINTK_TIME); 1212 module_param_named(time, printk_time, bool, S_IRUGO | S_IWUSR); 1213 1214 static size_t print_time(u64 ts, char *buf) 1215 { 1216 unsigned long rem_nsec; 1217 1218 if (!printk_time) 1219 return 0; 1220 1221 rem_nsec = do_div(ts, 1000000000); 1222 1223 if (!buf) 1224 return snprintf(NULL, 0, "[%5lu.000000] ", (unsigned long)ts); 1225 1226 return sprintf(buf, "[%5lu.%06lu] ", 1227 (unsigned long)ts, rem_nsec / 1000); 1228 } 1229 1230 static size_t print_prefix(const struct printk_log *msg, bool syslog, char *buf) 1231 { 1232 size_t len = 0; 1233 unsigned int prefix = (msg->facility << 3) | msg->level; 1234 1235 if (syslog) { 1236 if (buf) { 1237 len += sprintf(buf, "<%u>", prefix); 1238 } else { 1239 len += 3; 1240 if (prefix > 999) 1241 len += 3; 1242 else if (prefix > 99) 1243 len += 2; 1244 else if (prefix > 9) 1245 len++; 1246 } 1247 } 1248 1249 len += print_time(msg->ts_nsec, buf ? buf + len : NULL); 1250 return len; 1251 } 1252 1253 static size_t msg_print_text(const struct printk_log *msg, bool syslog, char *buf, size_t size) 1254 { 1255 const char *text = log_text(msg); 1256 size_t text_size = msg->text_len; 1257 size_t len = 0; 1258 1259 do { 1260 const char *next = memchr(text, '\n', text_size); 1261 size_t text_len; 1262 1263 if (next) { 1264 text_len = next - text; 1265 next++; 1266 text_size -= next - text; 1267 } else { 1268 text_len = text_size; 1269 } 1270 1271 if (buf) { 1272 if (print_prefix(msg, syslog, NULL) + 1273 text_len + 1 >= size - len) 1274 break; 1275 1276 len += print_prefix(msg, syslog, buf + len); 1277 memcpy(buf + len, text, text_len); 1278 len += text_len; 1279 buf[len++] = '\n'; 1280 } else { 1281 /* SYSLOG_ACTION_* buffer size only calculation */ 1282 len += print_prefix(msg, syslog, NULL); 1283 len += text_len; 1284 len++; 1285 } 1286 1287 text = next; 1288 } while (text); 1289 1290 return len; 1291 } 1292 1293 static int syslog_print(char __user *buf, int size) 1294 { 1295 char *text; 1296 struct printk_log *msg; 1297 int len = 0; 1298 1299 text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL); 1300 if (!text) 1301 return -ENOMEM; 1302 1303 while (size > 0) { 1304 size_t n; 1305 size_t skip; 1306 1307 logbuf_lock_irq(); 1308 if (syslog_seq < log_first_seq) { 1309 /* messages are gone, move to first one */ 1310 syslog_seq = log_first_seq; 1311 syslog_idx = log_first_idx; 1312 syslog_partial = 0; 1313 } 1314 if (syslog_seq == log_next_seq) { 1315 logbuf_unlock_irq(); 1316 break; 1317 } 1318 1319 skip = syslog_partial; 1320 msg = log_from_idx(syslog_idx); 1321 n = msg_print_text(msg, true, text, LOG_LINE_MAX + PREFIX_MAX); 1322 if (n - syslog_partial <= size) { 1323 /* message fits into buffer, move forward */ 1324 syslog_idx = log_next(syslog_idx); 1325 syslog_seq++; 1326 n -= syslog_partial; 1327 syslog_partial = 0; 1328 } else if (!len){ 1329 /* partial read(), remember position */ 1330 n = size; 1331 syslog_partial += n; 1332 } else 1333 n = 0; 1334 logbuf_unlock_irq(); 1335 1336 if (!n) 1337 break; 1338 1339 if (copy_to_user(buf, text + skip, n)) { 1340 if (!len) 1341 len = -EFAULT; 1342 break; 1343 } 1344 1345 len += n; 1346 size -= n; 1347 buf += n; 1348 } 1349 1350 kfree(text); 1351 return len; 1352 } 1353 1354 static int syslog_print_all(char __user *buf, int size, bool clear) 1355 { 1356 char *text; 1357 int len = 0; 1358 u64 next_seq; 1359 u64 seq; 1360 u32 idx; 1361 1362 text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL); 1363 if (!text) 1364 return -ENOMEM; 1365 1366 logbuf_lock_irq(); 1367 /* 1368 * Find first record that fits, including all following records, 1369 * into the user-provided buffer for this dump. 1370 */ 1371 seq = clear_seq; 1372 idx = clear_idx; 1373 while (seq < log_next_seq) { 1374 struct printk_log *msg = log_from_idx(idx); 1375 1376 len += msg_print_text(msg, true, NULL, 0); 1377 idx = log_next(idx); 1378 seq++; 1379 } 1380 1381 /* move first record forward until length fits into the buffer */ 1382 seq = clear_seq; 1383 idx = clear_idx; 1384 while (len > size && seq < log_next_seq) { 1385 struct printk_log *msg = log_from_idx(idx); 1386 1387 len -= msg_print_text(msg, true, NULL, 0); 1388 idx = log_next(idx); 1389 seq++; 1390 } 1391 1392 /* last message fitting into this dump */ 1393 next_seq = log_next_seq; 1394 1395 len = 0; 1396 while (len >= 0 && seq < next_seq) { 1397 struct printk_log *msg = log_from_idx(idx); 1398 int textlen; 1399 1400 textlen = msg_print_text(msg, true, text, 1401 LOG_LINE_MAX + PREFIX_MAX); 1402 if (textlen < 0) { 1403 len = textlen; 1404 break; 1405 } 1406 idx = log_next(idx); 1407 seq++; 1408 1409 logbuf_unlock_irq(); 1410 if (copy_to_user(buf + len, text, textlen)) 1411 len = -EFAULT; 1412 else 1413 len += textlen; 1414 logbuf_lock_irq(); 1415 1416 if (seq < log_first_seq) { 1417 /* messages are gone, move to next one */ 1418 seq = log_first_seq; 1419 idx = log_first_idx; 1420 } 1421 } 1422 1423 if (clear) { 1424 clear_seq = log_next_seq; 1425 clear_idx = log_next_idx; 1426 } 1427 logbuf_unlock_irq(); 1428 1429 kfree(text); 1430 return len; 1431 } 1432 1433 static void syslog_clear(void) 1434 { 1435 logbuf_lock_irq(); 1436 clear_seq = log_next_seq; 1437 clear_idx = log_next_idx; 1438 logbuf_unlock_irq(); 1439 } 1440 1441 int do_syslog(int type, char __user *buf, int len, int source) 1442 { 1443 bool clear = false; 1444 static int saved_console_loglevel = LOGLEVEL_DEFAULT; 1445 int error; 1446 1447 error = check_syslog_permissions(type, source); 1448 if (error) 1449 return error; 1450 1451 switch (type) { 1452 case SYSLOG_ACTION_CLOSE: /* Close log */ 1453 break; 1454 case SYSLOG_ACTION_OPEN: /* Open log */ 1455 break; 1456 case SYSLOG_ACTION_READ: /* Read from log */ 1457 if (!buf || len < 0) 1458 return -EINVAL; 1459 if (!len) 1460 return 0; 1461 if (!access_ok(VERIFY_WRITE, buf, len)) 1462 return -EFAULT; 1463 error = wait_event_interruptible(log_wait, 1464 syslog_seq != log_next_seq); 1465 if (error) 1466 return error; 1467 error = syslog_print(buf, len); 1468 break; 1469 /* Read/clear last kernel messages */ 1470 case SYSLOG_ACTION_READ_CLEAR: 1471 clear = true; 1472 /* FALL THRU */ 1473 /* Read last kernel messages */ 1474 case SYSLOG_ACTION_READ_ALL: 1475 if (!buf || len < 0) 1476 return -EINVAL; 1477 if (!len) 1478 return 0; 1479 if (!access_ok(VERIFY_WRITE, buf, len)) 1480 return -EFAULT; 1481 error = syslog_print_all(buf, len, clear); 1482 break; 1483 /* Clear ring buffer */ 1484 case SYSLOG_ACTION_CLEAR: 1485 syslog_clear(); 1486 break; 1487 /* Disable logging to console */ 1488 case SYSLOG_ACTION_CONSOLE_OFF: 1489 if (saved_console_loglevel == LOGLEVEL_DEFAULT) 1490 saved_console_loglevel = console_loglevel; 1491 console_loglevel = minimum_console_loglevel; 1492 break; 1493 /* Enable logging to console */ 1494 case SYSLOG_ACTION_CONSOLE_ON: 1495 if (saved_console_loglevel != LOGLEVEL_DEFAULT) { 1496 console_loglevel = saved_console_loglevel; 1497 saved_console_loglevel = LOGLEVEL_DEFAULT; 1498 } 1499 break; 1500 /* Set level of messages printed to console */ 1501 case SYSLOG_ACTION_CONSOLE_LEVEL: 1502 if (len < 1 || len > 8) 1503 return -EINVAL; 1504 if (len < minimum_console_loglevel) 1505 len = minimum_console_loglevel; 1506 console_loglevel = len; 1507 /* Implicitly re-enable logging to console */ 1508 saved_console_loglevel = LOGLEVEL_DEFAULT; 1509 break; 1510 /* Number of chars in the log buffer */ 1511 case SYSLOG_ACTION_SIZE_UNREAD: 1512 logbuf_lock_irq(); 1513 if (syslog_seq < log_first_seq) { 1514 /* messages are gone, move to first one */ 1515 syslog_seq = log_first_seq; 1516 syslog_idx = log_first_idx; 1517 syslog_partial = 0; 1518 } 1519 if (source == SYSLOG_FROM_PROC) { 1520 /* 1521 * Short-cut for poll(/"proc/kmsg") which simply checks 1522 * for pending data, not the size; return the count of 1523 * records, not the length. 1524 */ 1525 error = log_next_seq - syslog_seq; 1526 } else { 1527 u64 seq = syslog_seq; 1528 u32 idx = syslog_idx; 1529 1530 while (seq < log_next_seq) { 1531 struct printk_log *msg = log_from_idx(idx); 1532 1533 error += msg_print_text(msg, true, NULL, 0); 1534 idx = log_next(idx); 1535 seq++; 1536 } 1537 error -= syslog_partial; 1538 } 1539 logbuf_unlock_irq(); 1540 break; 1541 /* Size of the log buffer */ 1542 case SYSLOG_ACTION_SIZE_BUFFER: 1543 error = log_buf_len; 1544 break; 1545 default: 1546 error = -EINVAL; 1547 break; 1548 } 1549 1550 return error; 1551 } 1552 1553 SYSCALL_DEFINE3(syslog, int, type, char __user *, buf, int, len) 1554 { 1555 return do_syslog(type, buf, len, SYSLOG_FROM_READER); 1556 } 1557 1558 /* 1559 * Special console_lock variants that help to reduce the risk of soft-lockups. 1560 * They allow to pass console_lock to another printk() call using a busy wait. 1561 */ 1562 1563 #ifdef CONFIG_LOCKDEP 1564 static struct lockdep_map console_owner_dep_map = { 1565 .name = "console_owner" 1566 }; 1567 #endif 1568 1569 static DEFINE_RAW_SPINLOCK(console_owner_lock); 1570 static struct task_struct *console_owner; 1571 static bool console_waiter; 1572 1573 /** 1574 * console_lock_spinning_enable - mark beginning of code where another 1575 * thread might safely busy wait 1576 * 1577 * This basically converts console_lock into a spinlock. This marks 1578 * the section where the console_lock owner can not sleep, because 1579 * there may be a waiter spinning (like a spinlock). Also it must be 1580 * ready to hand over the lock at the end of the section. 1581 */ 1582 static void console_lock_spinning_enable(void) 1583 { 1584 raw_spin_lock(&console_owner_lock); 1585 console_owner = current; 1586 raw_spin_unlock(&console_owner_lock); 1587 1588 /* The waiter may spin on us after setting console_owner */ 1589 spin_acquire(&console_owner_dep_map, 0, 0, _THIS_IP_); 1590 } 1591 1592 /** 1593 * console_lock_spinning_disable_and_check - mark end of code where another 1594 * thread was able to busy wait and check if there is a waiter 1595 * 1596 * This is called at the end of the section where spinning is allowed. 1597 * It has two functions. First, it is a signal that it is no longer 1598 * safe to start busy waiting for the lock. Second, it checks if 1599 * there is a busy waiter and passes the lock rights to her. 1600 * 1601 * Important: Callers lose the lock if there was a busy waiter. 1602 * They must not touch items synchronized by console_lock 1603 * in this case. 1604 * 1605 * Return: 1 if the lock rights were passed, 0 otherwise. 1606 */ 1607 static int console_lock_spinning_disable_and_check(void) 1608 { 1609 int waiter; 1610 1611 raw_spin_lock(&console_owner_lock); 1612 waiter = READ_ONCE(console_waiter); 1613 console_owner = NULL; 1614 raw_spin_unlock(&console_owner_lock); 1615 1616 if (!waiter) { 1617 spin_release(&console_owner_dep_map, 1, _THIS_IP_); 1618 return 0; 1619 } 1620 1621 /* The waiter is now free to continue */ 1622 WRITE_ONCE(console_waiter, false); 1623 1624 spin_release(&console_owner_dep_map, 1, _THIS_IP_); 1625 1626 /* 1627 * Hand off console_lock to waiter. The waiter will perform 1628 * the up(). After this, the waiter is the console_lock owner. 1629 */ 1630 mutex_release(&console_lock_dep_map, 1, _THIS_IP_); 1631 return 1; 1632 } 1633 1634 /** 1635 * console_trylock_spinning - try to get console_lock by busy waiting 1636 * 1637 * This allows to busy wait for the console_lock when the current 1638 * owner is running in specially marked sections. It means that 1639 * the current owner is running and cannot reschedule until it 1640 * is ready to lose the lock. 1641 * 1642 * Return: 1 if we got the lock, 0 othrewise 1643 */ 1644 static int console_trylock_spinning(void) 1645 { 1646 struct task_struct *owner = NULL; 1647 bool waiter; 1648 bool spin = false; 1649 unsigned long flags; 1650 1651 if (console_trylock()) 1652 return 1; 1653 1654 printk_safe_enter_irqsave(flags); 1655 1656 raw_spin_lock(&console_owner_lock); 1657 owner = READ_ONCE(console_owner); 1658 waiter = READ_ONCE(console_waiter); 1659 if (!waiter && owner && owner != current) { 1660 WRITE_ONCE(console_waiter, true); 1661 spin = true; 1662 } 1663 raw_spin_unlock(&console_owner_lock); 1664 1665 /* 1666 * If there is an active printk() writing to the 1667 * consoles, instead of having it write our data too, 1668 * see if we can offload that load from the active 1669 * printer, and do some printing ourselves. 1670 * Go into a spin only if there isn't already a waiter 1671 * spinning, and there is an active printer, and 1672 * that active printer isn't us (recursive printk?). 1673 */ 1674 if (!spin) { 1675 printk_safe_exit_irqrestore(flags); 1676 return 0; 1677 } 1678 1679 /* We spin waiting for the owner to release us */ 1680 spin_acquire(&console_owner_dep_map, 0, 0, _THIS_IP_); 1681 /* Owner will clear console_waiter on hand off */ 1682 while (READ_ONCE(console_waiter)) 1683 cpu_relax(); 1684 spin_release(&console_owner_dep_map, 1, _THIS_IP_); 1685 1686 printk_safe_exit_irqrestore(flags); 1687 /* 1688 * The owner passed the console lock to us. 1689 * Since we did not spin on console lock, annotate 1690 * this as a trylock. Otherwise lockdep will 1691 * complain. 1692 */ 1693 mutex_acquire(&console_lock_dep_map, 0, 1, _THIS_IP_); 1694 1695 return 1; 1696 } 1697 1698 /* 1699 * Call the console drivers, asking them to write out 1700 * log_buf[start] to log_buf[end - 1]. 1701 * The console_lock must be held. 1702 */ 1703 static void call_console_drivers(const char *ext_text, size_t ext_len, 1704 const char *text, size_t len) 1705 { 1706 struct console *con; 1707 1708 trace_console_rcuidle(text, len); 1709 1710 if (!console_drivers) 1711 return; 1712 1713 for_each_console(con) { 1714 if (exclusive_console && con != exclusive_console) 1715 continue; 1716 if (!(con->flags & CON_ENABLED)) 1717 continue; 1718 if (!con->write) 1719 continue; 1720 if (!cpu_online(smp_processor_id()) && 1721 !(con->flags & CON_ANYTIME)) 1722 continue; 1723 if (con->flags & CON_EXTENDED) 1724 con->write(con, ext_text, ext_len); 1725 else 1726 con->write(con, text, len); 1727 } 1728 } 1729 1730 int printk_delay_msec __read_mostly; 1731 1732 static inline void printk_delay(void) 1733 { 1734 if (unlikely(printk_delay_msec)) { 1735 int m = printk_delay_msec; 1736 1737 while (m--) { 1738 mdelay(1); 1739 touch_nmi_watchdog(); 1740 } 1741 } 1742 } 1743 1744 /* 1745 * Continuation lines are buffered, and not committed to the record buffer 1746 * until the line is complete, or a race forces it. The line fragments 1747 * though, are printed immediately to the consoles to ensure everything has 1748 * reached the console in case of a kernel crash. 1749 */ 1750 static struct cont { 1751 char buf[LOG_LINE_MAX]; 1752 size_t len; /* length == 0 means unused buffer */ 1753 struct task_struct *owner; /* task of first print*/ 1754 u64 ts_nsec; /* time of first print */ 1755 u8 level; /* log level of first message */ 1756 u8 facility; /* log facility of first message */ 1757 enum log_flags flags; /* prefix, newline flags */ 1758 } cont; 1759 1760 static void cont_flush(void) 1761 { 1762 if (cont.len == 0) 1763 return; 1764 1765 log_store(cont.facility, cont.level, cont.flags, cont.ts_nsec, 1766 NULL, 0, cont.buf, cont.len); 1767 cont.len = 0; 1768 } 1769 1770 static bool cont_add(int facility, int level, enum log_flags flags, const char *text, size_t len) 1771 { 1772 /* 1773 * If ext consoles are present, flush and skip in-kernel 1774 * continuation. See nr_ext_console_drivers definition. Also, if 1775 * the line gets too long, split it up in separate records. 1776 */ 1777 if (nr_ext_console_drivers || cont.len + len > sizeof(cont.buf)) { 1778 cont_flush(); 1779 return false; 1780 } 1781 1782 if (!cont.len) { 1783 cont.facility = facility; 1784 cont.level = level; 1785 cont.owner = current; 1786 cont.ts_nsec = local_clock(); 1787 cont.flags = flags; 1788 } 1789 1790 memcpy(cont.buf + cont.len, text, len); 1791 cont.len += len; 1792 1793 // The original flags come from the first line, 1794 // but later continuations can add a newline. 1795 if (flags & LOG_NEWLINE) { 1796 cont.flags |= LOG_NEWLINE; 1797 cont_flush(); 1798 } 1799 1800 if (cont.len > (sizeof(cont.buf) * 80) / 100) 1801 cont_flush(); 1802 1803 return true; 1804 } 1805 1806 static size_t log_output(int facility, int level, enum log_flags lflags, const char *dict, size_t dictlen, char *text, size_t text_len) 1807 { 1808 /* 1809 * If an earlier line was buffered, and we're a continuation 1810 * write from the same process, try to add it to the buffer. 1811 */ 1812 if (cont.len) { 1813 if (cont.owner == current && (lflags & LOG_CONT)) { 1814 if (cont_add(facility, level, lflags, text, text_len)) 1815 return text_len; 1816 } 1817 /* Otherwise, make sure it's flushed */ 1818 cont_flush(); 1819 } 1820 1821 /* Skip empty continuation lines that couldn't be added - they just flush */ 1822 if (!text_len && (lflags & LOG_CONT)) 1823 return 0; 1824 1825 /* If it doesn't end in a newline, try to buffer the current line */ 1826 if (!(lflags & LOG_NEWLINE)) { 1827 if (cont_add(facility, level, lflags, text, text_len)) 1828 return text_len; 1829 } 1830 1831 /* Store it in the record log */ 1832 return log_store(facility, level, lflags, 0, dict, dictlen, text, text_len); 1833 } 1834 1835 /* Must be called under logbuf_lock. */ 1836 int vprintk_store(int facility, int level, 1837 const char *dict, size_t dictlen, 1838 const char *fmt, va_list args) 1839 { 1840 static char textbuf[LOG_LINE_MAX]; 1841 char *text = textbuf; 1842 size_t text_len; 1843 enum log_flags lflags = 0; 1844 1845 /* 1846 * The printf needs to come first; we need the syslog 1847 * prefix which might be passed-in as a parameter. 1848 */ 1849 text_len = vscnprintf(text, sizeof(textbuf), fmt, args); 1850 1851 /* mark and strip a trailing newline */ 1852 if (text_len && text[text_len-1] == '\n') { 1853 text_len--; 1854 lflags |= LOG_NEWLINE; 1855 } 1856 1857 /* strip kernel syslog prefix and extract log level or control flags */ 1858 if (facility == 0) { 1859 int kern_level; 1860 1861 while ((kern_level = printk_get_level(text)) != 0) { 1862 switch (kern_level) { 1863 case '0' ... '7': 1864 if (level == LOGLEVEL_DEFAULT) 1865 level = kern_level - '0'; 1866 /* fallthrough */ 1867 case 'd': /* KERN_DEFAULT */ 1868 lflags |= LOG_PREFIX; 1869 break; 1870 case 'c': /* KERN_CONT */ 1871 lflags |= LOG_CONT; 1872 } 1873 1874 text_len -= 2; 1875 text += 2; 1876 } 1877 } 1878 1879 if (level == LOGLEVEL_DEFAULT) 1880 level = default_message_loglevel; 1881 1882 if (dict) 1883 lflags |= LOG_PREFIX|LOG_NEWLINE; 1884 1885 if (suppress_message_printing(level)) 1886 lflags |= LOG_NOCONS; 1887 1888 return log_output(facility, level, lflags, 1889 dict, dictlen, text, text_len); 1890 } 1891 1892 asmlinkage int vprintk_emit(int facility, int level, 1893 const char *dict, size_t dictlen, 1894 const char *fmt, va_list args) 1895 { 1896 int printed_len; 1897 bool in_sched = false; 1898 unsigned long flags; 1899 1900 if (level == LOGLEVEL_SCHED) { 1901 level = LOGLEVEL_DEFAULT; 1902 in_sched = true; 1903 } 1904 1905 boot_delay_msec(level); 1906 printk_delay(); 1907 1908 /* This stops the holder of console_sem just where we want him */ 1909 logbuf_lock_irqsave(flags); 1910 printed_len = vprintk_store(facility, level, dict, dictlen, fmt, args); 1911 logbuf_unlock_irqrestore(flags); 1912 1913 /* If called from the scheduler, we can not call up(). */ 1914 if (!in_sched) { 1915 /* 1916 * Disable preemption to avoid being preempted while holding 1917 * console_sem which would prevent anyone from printing to 1918 * console 1919 */ 1920 preempt_disable(); 1921 /* 1922 * Try to acquire and then immediately release the console 1923 * semaphore. The release will print out buffers and wake up 1924 * /dev/kmsg and syslog() users. 1925 */ 1926 if (console_trylock_spinning()) 1927 console_unlock(); 1928 preempt_enable(); 1929 } 1930 1931 wake_up_klogd(); 1932 return printed_len; 1933 } 1934 EXPORT_SYMBOL(vprintk_emit); 1935 1936 asmlinkage int vprintk(const char *fmt, va_list args) 1937 { 1938 return vprintk_func(fmt, args); 1939 } 1940 EXPORT_SYMBOL(vprintk); 1941 1942 asmlinkage int printk_emit(int facility, int level, 1943 const char *dict, size_t dictlen, 1944 const char *fmt, ...) 1945 { 1946 va_list args; 1947 int r; 1948 1949 va_start(args, fmt); 1950 r = vprintk_emit(facility, level, dict, dictlen, fmt, args); 1951 va_end(args); 1952 1953 return r; 1954 } 1955 EXPORT_SYMBOL(printk_emit); 1956 1957 int vprintk_default(const char *fmt, va_list args) 1958 { 1959 int r; 1960 1961 #ifdef CONFIG_KGDB_KDB 1962 /* Allow to pass printk() to kdb but avoid a recursion. */ 1963 if (unlikely(kdb_trap_printk && kdb_printf_cpu < 0)) { 1964 r = vkdb_printf(KDB_MSGSRC_PRINTK, fmt, args); 1965 return r; 1966 } 1967 #endif 1968 r = vprintk_emit(0, LOGLEVEL_DEFAULT, NULL, 0, fmt, args); 1969 1970 return r; 1971 } 1972 EXPORT_SYMBOL_GPL(vprintk_default); 1973 1974 /** 1975 * printk - print a kernel message 1976 * @fmt: format string 1977 * 1978 * This is printk(). It can be called from any context. We want it to work. 1979 * 1980 * We try to grab the console_lock. If we succeed, it's easy - we log the 1981 * output and call the console drivers. If we fail to get the semaphore, we 1982 * place the output into the log buffer and return. The current holder of 1983 * the console_sem will notice the new output in console_unlock(); and will 1984 * send it to the consoles before releasing the lock. 1985 * 1986 * One effect of this deferred printing is that code which calls printk() and 1987 * then changes console_loglevel may break. This is because console_loglevel 1988 * is inspected when the actual printing occurs. 1989 * 1990 * See also: 1991 * printf(3) 1992 * 1993 * See the vsnprintf() documentation for format string extensions over C99. 1994 */ 1995 asmlinkage __visible int printk(const char *fmt, ...) 1996 { 1997 va_list args; 1998 int r; 1999 2000 va_start(args, fmt); 2001 r = vprintk_func(fmt, args); 2002 va_end(args); 2003 2004 return r; 2005 } 2006 EXPORT_SYMBOL(printk); 2007 2008 #else /* CONFIG_PRINTK */ 2009 2010 #define LOG_LINE_MAX 0 2011 #define PREFIX_MAX 0 2012 2013 static u64 syslog_seq; 2014 static u32 syslog_idx; 2015 static u64 console_seq; 2016 static u32 console_idx; 2017 static u64 log_first_seq; 2018 static u32 log_first_idx; 2019 static u64 log_next_seq; 2020 static char *log_text(const struct printk_log *msg) { return NULL; } 2021 static char *log_dict(const struct printk_log *msg) { return NULL; } 2022 static struct printk_log *log_from_idx(u32 idx) { return NULL; } 2023 static u32 log_next(u32 idx) { return 0; } 2024 static ssize_t msg_print_ext_header(char *buf, size_t size, 2025 struct printk_log *msg, 2026 u64 seq) { return 0; } 2027 static ssize_t msg_print_ext_body(char *buf, size_t size, 2028 char *dict, size_t dict_len, 2029 char *text, size_t text_len) { return 0; } 2030 static void console_lock_spinning_enable(void) { } 2031 static int console_lock_spinning_disable_and_check(void) { return 0; } 2032 static void call_console_drivers(const char *ext_text, size_t ext_len, 2033 const char *text, size_t len) {} 2034 static size_t msg_print_text(const struct printk_log *msg, 2035 bool syslog, char *buf, size_t size) { return 0; } 2036 2037 #endif /* CONFIG_PRINTK */ 2038 2039 #ifdef CONFIG_EARLY_PRINTK 2040 struct console *early_console; 2041 2042 asmlinkage __visible void early_printk(const char *fmt, ...) 2043 { 2044 va_list ap; 2045 char buf[512]; 2046 int n; 2047 2048 if (!early_console) 2049 return; 2050 2051 va_start(ap, fmt); 2052 n = vscnprintf(buf, sizeof(buf), fmt, ap); 2053 va_end(ap); 2054 2055 early_console->write(early_console, buf, n); 2056 } 2057 #endif 2058 2059 static int __add_preferred_console(char *name, int idx, char *options, 2060 char *brl_options) 2061 { 2062 struct console_cmdline *c; 2063 int i; 2064 2065 /* 2066 * See if this tty is not yet registered, and 2067 * if we have a slot free. 2068 */ 2069 for (i = 0, c = console_cmdline; 2070 i < MAX_CMDLINECONSOLES && c->name[0]; 2071 i++, c++) { 2072 if (strcmp(c->name, name) == 0 && c->index == idx) { 2073 if (!brl_options) 2074 preferred_console = i; 2075 return 0; 2076 } 2077 } 2078 if (i == MAX_CMDLINECONSOLES) 2079 return -E2BIG; 2080 if (!brl_options) 2081 preferred_console = i; 2082 strlcpy(c->name, name, sizeof(c->name)); 2083 c->options = options; 2084 braille_set_options(c, brl_options); 2085 2086 c->index = idx; 2087 return 0; 2088 } 2089 2090 static int __init console_msg_format_setup(char *str) 2091 { 2092 if (!strcmp(str, "syslog")) 2093 console_msg_format = MSG_FORMAT_SYSLOG; 2094 if (!strcmp(str, "default")) 2095 console_msg_format = MSG_FORMAT_DEFAULT; 2096 return 1; 2097 } 2098 __setup("console_msg_format=", console_msg_format_setup); 2099 2100 /* 2101 * Set up a console. Called via do_early_param() in init/main.c 2102 * for each "console=" parameter in the boot command line. 2103 */ 2104 static int __init console_setup(char *str) 2105 { 2106 char buf[sizeof(console_cmdline[0].name) + 4]; /* 4 for "ttyS" */ 2107 char *s, *options, *brl_options = NULL; 2108 int idx; 2109 2110 if (_braille_console_setup(&str, &brl_options)) 2111 return 1; 2112 2113 /* 2114 * Decode str into name, index, options. 2115 */ 2116 if (str[0] >= '0' && str[0] <= '9') { 2117 strcpy(buf, "ttyS"); 2118 strncpy(buf + 4, str, sizeof(buf) - 5); 2119 } else { 2120 strncpy(buf, str, sizeof(buf) - 1); 2121 } 2122 buf[sizeof(buf) - 1] = 0; 2123 options = strchr(str, ','); 2124 if (options) 2125 *(options++) = 0; 2126 #ifdef __sparc__ 2127 if (!strcmp(str, "ttya")) 2128 strcpy(buf, "ttyS0"); 2129 if (!strcmp(str, "ttyb")) 2130 strcpy(buf, "ttyS1"); 2131 #endif 2132 for (s = buf; *s; s++) 2133 if (isdigit(*s) || *s == ',') 2134 break; 2135 idx = simple_strtoul(s, NULL, 10); 2136 *s = 0; 2137 2138 __add_preferred_console(buf, idx, options, brl_options); 2139 console_set_on_cmdline = 1; 2140 return 1; 2141 } 2142 __setup("console=", console_setup); 2143 2144 /** 2145 * add_preferred_console - add a device to the list of preferred consoles. 2146 * @name: device name 2147 * @idx: device index 2148 * @options: options for this console 2149 * 2150 * The last preferred console added will be used for kernel messages 2151 * and stdin/out/err for init. Normally this is used by console_setup 2152 * above to handle user-supplied console arguments; however it can also 2153 * be used by arch-specific code either to override the user or more 2154 * commonly to provide a default console (ie from PROM variables) when 2155 * the user has not supplied one. 2156 */ 2157 int add_preferred_console(char *name, int idx, char *options) 2158 { 2159 return __add_preferred_console(name, idx, options, NULL); 2160 } 2161 2162 bool console_suspend_enabled = true; 2163 EXPORT_SYMBOL(console_suspend_enabled); 2164 2165 static int __init console_suspend_disable(char *str) 2166 { 2167 console_suspend_enabled = false; 2168 return 1; 2169 } 2170 __setup("no_console_suspend", console_suspend_disable); 2171 module_param_named(console_suspend, console_suspend_enabled, 2172 bool, S_IRUGO | S_IWUSR); 2173 MODULE_PARM_DESC(console_suspend, "suspend console during suspend" 2174 " and hibernate operations"); 2175 2176 /** 2177 * suspend_console - suspend the console subsystem 2178 * 2179 * This disables printk() while we go into suspend states 2180 */ 2181 void suspend_console(void) 2182 { 2183 if (!console_suspend_enabled) 2184 return; 2185 pr_info("Suspending console(s) (use no_console_suspend to debug)\n"); 2186 console_lock(); 2187 console_suspended = 1; 2188 up_console_sem(); 2189 } 2190 2191 void resume_console(void) 2192 { 2193 if (!console_suspend_enabled) 2194 return; 2195 down_console_sem(); 2196 console_suspended = 0; 2197 console_unlock(); 2198 } 2199 2200 /** 2201 * console_cpu_notify - print deferred console messages after CPU hotplug 2202 * @cpu: unused 2203 * 2204 * If printk() is called from a CPU that is not online yet, the messages 2205 * will be printed on the console only if there are CON_ANYTIME consoles. 2206 * This function is called when a new CPU comes online (or fails to come 2207 * up) or goes offline. 2208 */ 2209 static int console_cpu_notify(unsigned int cpu) 2210 { 2211 if (!cpuhp_tasks_frozen) { 2212 /* If trylock fails, someone else is doing the printing */ 2213 if (console_trylock()) 2214 console_unlock(); 2215 } 2216 return 0; 2217 } 2218 2219 /** 2220 * console_lock - lock the console system for exclusive use. 2221 * 2222 * Acquires a lock which guarantees that the caller has 2223 * exclusive access to the console system and the console_drivers list. 2224 * 2225 * Can sleep, returns nothing. 2226 */ 2227 void console_lock(void) 2228 { 2229 might_sleep(); 2230 2231 down_console_sem(); 2232 if (console_suspended) 2233 return; 2234 console_locked = 1; 2235 console_may_schedule = 1; 2236 } 2237 EXPORT_SYMBOL(console_lock); 2238 2239 /** 2240 * console_trylock - try to lock the console system for exclusive use. 2241 * 2242 * Try to acquire a lock which guarantees that the caller has exclusive 2243 * access to the console system and the console_drivers list. 2244 * 2245 * returns 1 on success, and 0 on failure to acquire the lock. 2246 */ 2247 int console_trylock(void) 2248 { 2249 if (down_trylock_console_sem()) 2250 return 0; 2251 if (console_suspended) { 2252 up_console_sem(); 2253 return 0; 2254 } 2255 console_locked = 1; 2256 console_may_schedule = 0; 2257 return 1; 2258 } 2259 EXPORT_SYMBOL(console_trylock); 2260 2261 int is_console_locked(void) 2262 { 2263 return console_locked; 2264 } 2265 EXPORT_SYMBOL(is_console_locked); 2266 2267 /* 2268 * Check if we have any console that is capable of printing while cpu is 2269 * booting or shutting down. Requires console_sem. 2270 */ 2271 static int have_callable_console(void) 2272 { 2273 struct console *con; 2274 2275 for_each_console(con) 2276 if ((con->flags & CON_ENABLED) && 2277 (con->flags & CON_ANYTIME)) 2278 return 1; 2279 2280 return 0; 2281 } 2282 2283 /* 2284 * Can we actually use the console at this time on this cpu? 2285 * 2286 * Console drivers may assume that per-cpu resources have been allocated. So 2287 * unless they're explicitly marked as being able to cope (CON_ANYTIME) don't 2288 * call them until this CPU is officially up. 2289 */ 2290 static inline int can_use_console(void) 2291 { 2292 return cpu_online(raw_smp_processor_id()) || have_callable_console(); 2293 } 2294 2295 /** 2296 * console_unlock - unlock the console system 2297 * 2298 * Releases the console_lock which the caller holds on the console system 2299 * and the console driver list. 2300 * 2301 * While the console_lock was held, console output may have been buffered 2302 * by printk(). If this is the case, console_unlock(); emits 2303 * the output prior to releasing the lock. 2304 * 2305 * If there is output waiting, we wake /dev/kmsg and syslog() users. 2306 * 2307 * console_unlock(); may be called from any context. 2308 */ 2309 void console_unlock(void) 2310 { 2311 static char ext_text[CONSOLE_EXT_LOG_MAX]; 2312 static char text[LOG_LINE_MAX + PREFIX_MAX]; 2313 unsigned long flags; 2314 bool do_cond_resched, retry; 2315 2316 if (console_suspended) { 2317 up_console_sem(); 2318 return; 2319 } 2320 2321 /* 2322 * Console drivers are called with interrupts disabled, so 2323 * @console_may_schedule should be cleared before; however, we may 2324 * end up dumping a lot of lines, for example, if called from 2325 * console registration path, and should invoke cond_resched() 2326 * between lines if allowable. Not doing so can cause a very long 2327 * scheduling stall on a slow console leading to RCU stall and 2328 * softlockup warnings which exacerbate the issue with more 2329 * messages practically incapacitating the system. 2330 * 2331 * console_trylock() is not able to detect the preemptive 2332 * context reliably. Therefore the value must be stored before 2333 * and cleared after the the "again" goto label. 2334 */ 2335 do_cond_resched = console_may_schedule; 2336 again: 2337 console_may_schedule = 0; 2338 2339 /* 2340 * We released the console_sem lock, so we need to recheck if 2341 * cpu is online and (if not) is there at least one CON_ANYTIME 2342 * console. 2343 */ 2344 if (!can_use_console()) { 2345 console_locked = 0; 2346 up_console_sem(); 2347 return; 2348 } 2349 2350 for (;;) { 2351 struct printk_log *msg; 2352 size_t ext_len = 0; 2353 size_t len; 2354 2355 printk_safe_enter_irqsave(flags); 2356 raw_spin_lock(&logbuf_lock); 2357 if (console_seq < log_first_seq) { 2358 len = sprintf(text, "** %u printk messages dropped **\n", 2359 (unsigned)(log_first_seq - console_seq)); 2360 2361 /* messages are gone, move to first one */ 2362 console_seq = log_first_seq; 2363 console_idx = log_first_idx; 2364 } else { 2365 len = 0; 2366 } 2367 skip: 2368 if (console_seq == log_next_seq) 2369 break; 2370 2371 msg = log_from_idx(console_idx); 2372 if (msg->flags & LOG_NOCONS) { 2373 /* 2374 * Skip record if !ignore_loglevel, and 2375 * record has level above the console loglevel. 2376 */ 2377 console_idx = log_next(console_idx); 2378 console_seq++; 2379 goto skip; 2380 } 2381 2382 len += msg_print_text(msg, 2383 console_msg_format & MSG_FORMAT_SYSLOG, 2384 text + len, 2385 sizeof(text) - len); 2386 if (nr_ext_console_drivers) { 2387 ext_len = msg_print_ext_header(ext_text, 2388 sizeof(ext_text), 2389 msg, console_seq); 2390 ext_len += msg_print_ext_body(ext_text + ext_len, 2391 sizeof(ext_text) - ext_len, 2392 log_dict(msg), msg->dict_len, 2393 log_text(msg), msg->text_len); 2394 } 2395 console_idx = log_next(console_idx); 2396 console_seq++; 2397 raw_spin_unlock(&logbuf_lock); 2398 2399 /* 2400 * While actively printing out messages, if another printk() 2401 * were to occur on another CPU, it may wait for this one to 2402 * finish. This task can not be preempted if there is a 2403 * waiter waiting to take over. 2404 */ 2405 console_lock_spinning_enable(); 2406 2407 stop_critical_timings(); /* don't trace print latency */ 2408 call_console_drivers(ext_text, ext_len, text, len); 2409 start_critical_timings(); 2410 2411 if (console_lock_spinning_disable_and_check()) { 2412 printk_safe_exit_irqrestore(flags); 2413 return; 2414 } 2415 2416 printk_safe_exit_irqrestore(flags); 2417 2418 if (do_cond_resched) 2419 cond_resched(); 2420 } 2421 2422 console_locked = 0; 2423 2424 /* Release the exclusive_console once it is used */ 2425 if (unlikely(exclusive_console)) 2426 exclusive_console = NULL; 2427 2428 raw_spin_unlock(&logbuf_lock); 2429 2430 up_console_sem(); 2431 2432 /* 2433 * Someone could have filled up the buffer again, so re-check if there's 2434 * something to flush. In case we cannot trylock the console_sem again, 2435 * there's a new owner and the console_unlock() from them will do the 2436 * flush, no worries. 2437 */ 2438 raw_spin_lock(&logbuf_lock); 2439 retry = console_seq != log_next_seq; 2440 raw_spin_unlock(&logbuf_lock); 2441 printk_safe_exit_irqrestore(flags); 2442 2443 if (retry && console_trylock()) 2444 goto again; 2445 } 2446 EXPORT_SYMBOL(console_unlock); 2447 2448 /** 2449 * console_conditional_schedule - yield the CPU if required 2450 * 2451 * If the console code is currently allowed to sleep, and 2452 * if this CPU should yield the CPU to another task, do 2453 * so here. 2454 * 2455 * Must be called within console_lock();. 2456 */ 2457 void __sched console_conditional_schedule(void) 2458 { 2459 if (console_may_schedule) 2460 cond_resched(); 2461 } 2462 EXPORT_SYMBOL(console_conditional_schedule); 2463 2464 void console_unblank(void) 2465 { 2466 struct console *c; 2467 2468 /* 2469 * console_unblank can no longer be called in interrupt context unless 2470 * oops_in_progress is set to 1.. 2471 */ 2472 if (oops_in_progress) { 2473 if (down_trylock_console_sem() != 0) 2474 return; 2475 } else 2476 console_lock(); 2477 2478 console_locked = 1; 2479 console_may_schedule = 0; 2480 for_each_console(c) 2481 if ((c->flags & CON_ENABLED) && c->unblank) 2482 c->unblank(); 2483 console_unlock(); 2484 } 2485 2486 /** 2487 * console_flush_on_panic - flush console content on panic 2488 * 2489 * Immediately output all pending messages no matter what. 2490 */ 2491 void console_flush_on_panic(void) 2492 { 2493 /* 2494 * If someone else is holding the console lock, trylock will fail 2495 * and may_schedule may be set. Ignore and proceed to unlock so 2496 * that messages are flushed out. As this can be called from any 2497 * context and we don't want to get preempted while flushing, 2498 * ensure may_schedule is cleared. 2499 */ 2500 console_trylock(); 2501 console_may_schedule = 0; 2502 console_unlock(); 2503 } 2504 2505 /* 2506 * Return the console tty driver structure and its associated index 2507 */ 2508 struct tty_driver *console_device(int *index) 2509 { 2510 struct console *c; 2511 struct tty_driver *driver = NULL; 2512 2513 console_lock(); 2514 for_each_console(c) { 2515 if (!c->device) 2516 continue; 2517 driver = c->device(c, index); 2518 if (driver) 2519 break; 2520 } 2521 console_unlock(); 2522 return driver; 2523 } 2524 2525 /* 2526 * Prevent further output on the passed console device so that (for example) 2527 * serial drivers can disable console output before suspending a port, and can 2528 * re-enable output afterwards. 2529 */ 2530 void console_stop(struct console *console) 2531 { 2532 console_lock(); 2533 console->flags &= ~CON_ENABLED; 2534 console_unlock(); 2535 } 2536 EXPORT_SYMBOL(console_stop); 2537 2538 void console_start(struct console *console) 2539 { 2540 console_lock(); 2541 console->flags |= CON_ENABLED; 2542 console_unlock(); 2543 } 2544 EXPORT_SYMBOL(console_start); 2545 2546 static int __read_mostly keep_bootcon; 2547 2548 static int __init keep_bootcon_setup(char *str) 2549 { 2550 keep_bootcon = 1; 2551 pr_info("debug: skip boot console de-registration.\n"); 2552 2553 return 0; 2554 } 2555 2556 early_param("keep_bootcon", keep_bootcon_setup); 2557 2558 /* 2559 * The console driver calls this routine during kernel initialization 2560 * to register the console printing procedure with printk() and to 2561 * print any messages that were printed by the kernel before the 2562 * console driver was initialized. 2563 * 2564 * This can happen pretty early during the boot process (because of 2565 * early_printk) - sometimes before setup_arch() completes - be careful 2566 * of what kernel features are used - they may not be initialised yet. 2567 * 2568 * There are two types of consoles - bootconsoles (early_printk) and 2569 * "real" consoles (everything which is not a bootconsole) which are 2570 * handled differently. 2571 * - Any number of bootconsoles can be registered at any time. 2572 * - As soon as a "real" console is registered, all bootconsoles 2573 * will be unregistered automatically. 2574 * - Once a "real" console is registered, any attempt to register a 2575 * bootconsoles will be rejected 2576 */ 2577 void register_console(struct console *newcon) 2578 { 2579 int i; 2580 unsigned long flags; 2581 struct console *bcon = NULL; 2582 struct console_cmdline *c; 2583 static bool has_preferred; 2584 2585 if (console_drivers) 2586 for_each_console(bcon) 2587 if (WARN(bcon == newcon, 2588 "console '%s%d' already registered\n", 2589 bcon->name, bcon->index)) 2590 return; 2591 2592 /* 2593 * before we register a new CON_BOOT console, make sure we don't 2594 * already have a valid console 2595 */ 2596 if (console_drivers && newcon->flags & CON_BOOT) { 2597 /* find the last or real console */ 2598 for_each_console(bcon) { 2599 if (!(bcon->flags & CON_BOOT)) { 2600 pr_info("Too late to register bootconsole %s%d\n", 2601 newcon->name, newcon->index); 2602 return; 2603 } 2604 } 2605 } 2606 2607 if (console_drivers && console_drivers->flags & CON_BOOT) 2608 bcon = console_drivers; 2609 2610 if (!has_preferred || bcon || !console_drivers) 2611 has_preferred = preferred_console >= 0; 2612 2613 /* 2614 * See if we want to use this console driver. If we 2615 * didn't select a console we take the first one 2616 * that registers here. 2617 */ 2618 if (!has_preferred) { 2619 if (newcon->index < 0) 2620 newcon->index = 0; 2621 if (newcon->setup == NULL || 2622 newcon->setup(newcon, NULL) == 0) { 2623 newcon->flags |= CON_ENABLED; 2624 if (newcon->device) { 2625 newcon->flags |= CON_CONSDEV; 2626 has_preferred = true; 2627 } 2628 } 2629 } 2630 2631 /* 2632 * See if this console matches one we selected on 2633 * the command line. 2634 */ 2635 for (i = 0, c = console_cmdline; 2636 i < MAX_CMDLINECONSOLES && c->name[0]; 2637 i++, c++) { 2638 if (!newcon->match || 2639 newcon->match(newcon, c->name, c->index, c->options) != 0) { 2640 /* default matching */ 2641 BUILD_BUG_ON(sizeof(c->name) != sizeof(newcon->name)); 2642 if (strcmp(c->name, newcon->name) != 0) 2643 continue; 2644 if (newcon->index >= 0 && 2645 newcon->index != c->index) 2646 continue; 2647 if (newcon->index < 0) 2648 newcon->index = c->index; 2649 2650 if (_braille_register_console(newcon, c)) 2651 return; 2652 2653 if (newcon->setup && 2654 newcon->setup(newcon, c->options) != 0) 2655 break; 2656 } 2657 2658 newcon->flags |= CON_ENABLED; 2659 if (i == preferred_console) { 2660 newcon->flags |= CON_CONSDEV; 2661 has_preferred = true; 2662 } 2663 break; 2664 } 2665 2666 if (!(newcon->flags & CON_ENABLED)) 2667 return; 2668 2669 /* 2670 * If we have a bootconsole, and are switching to a real console, 2671 * don't print everything out again, since when the boot console, and 2672 * the real console are the same physical device, it's annoying to 2673 * see the beginning boot messages twice 2674 */ 2675 if (bcon && ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV)) 2676 newcon->flags &= ~CON_PRINTBUFFER; 2677 2678 /* 2679 * Put this console in the list - keep the 2680 * preferred driver at the head of the list. 2681 */ 2682 console_lock(); 2683 if ((newcon->flags & CON_CONSDEV) || console_drivers == NULL) { 2684 newcon->next = console_drivers; 2685 console_drivers = newcon; 2686 if (newcon->next) 2687 newcon->next->flags &= ~CON_CONSDEV; 2688 } else { 2689 newcon->next = console_drivers->next; 2690 console_drivers->next = newcon; 2691 } 2692 2693 if (newcon->flags & CON_EXTENDED) 2694 if (!nr_ext_console_drivers++) 2695 pr_info("printk: continuation disabled due to ext consoles, expect more fragments in /dev/kmsg\n"); 2696 2697 if (newcon->flags & CON_PRINTBUFFER) { 2698 /* 2699 * console_unlock(); will print out the buffered messages 2700 * for us. 2701 */ 2702 logbuf_lock_irqsave(flags); 2703 console_seq = syslog_seq; 2704 console_idx = syslog_idx; 2705 logbuf_unlock_irqrestore(flags); 2706 /* 2707 * We're about to replay the log buffer. Only do this to the 2708 * just-registered console to avoid excessive message spam to 2709 * the already-registered consoles. 2710 */ 2711 exclusive_console = newcon; 2712 } 2713 console_unlock(); 2714 console_sysfs_notify(); 2715 2716 /* 2717 * By unregistering the bootconsoles after we enable the real console 2718 * we get the "console xxx enabled" message on all the consoles - 2719 * boot consoles, real consoles, etc - this is to ensure that end 2720 * users know there might be something in the kernel's log buffer that 2721 * went to the bootconsole (that they do not see on the real console) 2722 */ 2723 pr_info("%sconsole [%s%d] enabled\n", 2724 (newcon->flags & CON_BOOT) ? "boot" : "" , 2725 newcon->name, newcon->index); 2726 if (bcon && 2727 ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV) && 2728 !keep_bootcon) { 2729 /* We need to iterate through all boot consoles, to make 2730 * sure we print everything out, before we unregister them. 2731 */ 2732 for_each_console(bcon) 2733 if (bcon->flags & CON_BOOT) 2734 unregister_console(bcon); 2735 } 2736 } 2737 EXPORT_SYMBOL(register_console); 2738 2739 int unregister_console(struct console *console) 2740 { 2741 struct console *a, *b; 2742 int res; 2743 2744 pr_info("%sconsole [%s%d] disabled\n", 2745 (console->flags & CON_BOOT) ? "boot" : "" , 2746 console->name, console->index); 2747 2748 res = _braille_unregister_console(console); 2749 if (res) 2750 return res; 2751 2752 res = 1; 2753 console_lock(); 2754 if (console_drivers == console) { 2755 console_drivers=console->next; 2756 res = 0; 2757 } else if (console_drivers) { 2758 for (a=console_drivers->next, b=console_drivers ; 2759 a; b=a, a=b->next) { 2760 if (a == console) { 2761 b->next = a->next; 2762 res = 0; 2763 break; 2764 } 2765 } 2766 } 2767 2768 if (!res && (console->flags & CON_EXTENDED)) 2769 nr_ext_console_drivers--; 2770 2771 /* 2772 * If this isn't the last console and it has CON_CONSDEV set, we 2773 * need to set it on the next preferred console. 2774 */ 2775 if (console_drivers != NULL && console->flags & CON_CONSDEV) 2776 console_drivers->flags |= CON_CONSDEV; 2777 2778 console->flags &= ~CON_ENABLED; 2779 console_unlock(); 2780 console_sysfs_notify(); 2781 return res; 2782 } 2783 EXPORT_SYMBOL(unregister_console); 2784 2785 /* 2786 * Initialize the console device. This is called *early*, so 2787 * we can't necessarily depend on lots of kernel help here. 2788 * Just do some early initializations, and do the complex setup 2789 * later. 2790 */ 2791 void __init console_init(void) 2792 { 2793 int ret; 2794 initcall_t call; 2795 initcall_entry_t *ce; 2796 2797 /* Setup the default TTY line discipline. */ 2798 n_tty_init(); 2799 2800 /* 2801 * set up the console device so that later boot sequences can 2802 * inform about problems etc.. 2803 */ 2804 ce = __con_initcall_start; 2805 trace_initcall_level("console"); 2806 while (ce < __con_initcall_end) { 2807 call = initcall_from_entry(ce); 2808 trace_initcall_start(call); 2809 ret = call(); 2810 trace_initcall_finish(call, ret); 2811 ce++; 2812 } 2813 } 2814 2815 /* 2816 * Some boot consoles access data that is in the init section and which will 2817 * be discarded after the initcalls have been run. To make sure that no code 2818 * will access this data, unregister the boot consoles in a late initcall. 2819 * 2820 * If for some reason, such as deferred probe or the driver being a loadable 2821 * module, the real console hasn't registered yet at this point, there will 2822 * be a brief interval in which no messages are logged to the console, which 2823 * makes it difficult to diagnose problems that occur during this time. 2824 * 2825 * To mitigate this problem somewhat, only unregister consoles whose memory 2826 * intersects with the init section. Note that all other boot consoles will 2827 * get unregistred when the real preferred console is registered. 2828 */ 2829 static int __init printk_late_init(void) 2830 { 2831 struct console *con; 2832 int ret; 2833 2834 for_each_console(con) { 2835 if (!(con->flags & CON_BOOT)) 2836 continue; 2837 2838 /* Check addresses that might be used for enabled consoles. */ 2839 if (init_section_intersects(con, sizeof(*con)) || 2840 init_section_contains(con->write, 0) || 2841 init_section_contains(con->read, 0) || 2842 init_section_contains(con->device, 0) || 2843 init_section_contains(con->unblank, 0) || 2844 init_section_contains(con->data, 0)) { 2845 /* 2846 * Please, consider moving the reported consoles out 2847 * of the init section. 2848 */ 2849 pr_warn("bootconsole [%s%d] uses init memory and must be disabled even before the real one is ready\n", 2850 con->name, con->index); 2851 unregister_console(con); 2852 } 2853 } 2854 ret = cpuhp_setup_state_nocalls(CPUHP_PRINTK_DEAD, "printk:dead", NULL, 2855 console_cpu_notify); 2856 WARN_ON(ret < 0); 2857 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "printk:online", 2858 console_cpu_notify, NULL); 2859 WARN_ON(ret < 0); 2860 return 0; 2861 } 2862 late_initcall(printk_late_init); 2863 2864 #if defined CONFIG_PRINTK 2865 /* 2866 * Delayed printk version, for scheduler-internal messages: 2867 */ 2868 #define PRINTK_PENDING_WAKEUP 0x01 2869 #define PRINTK_PENDING_OUTPUT 0x02 2870 2871 static DEFINE_PER_CPU(int, printk_pending); 2872 2873 static void wake_up_klogd_work_func(struct irq_work *irq_work) 2874 { 2875 int pending = __this_cpu_xchg(printk_pending, 0); 2876 2877 if (pending & PRINTK_PENDING_OUTPUT) { 2878 /* If trylock fails, someone else is doing the printing */ 2879 if (console_trylock()) 2880 console_unlock(); 2881 } 2882 2883 if (pending & PRINTK_PENDING_WAKEUP) 2884 wake_up_interruptible(&log_wait); 2885 } 2886 2887 static DEFINE_PER_CPU(struct irq_work, wake_up_klogd_work) = { 2888 .func = wake_up_klogd_work_func, 2889 .flags = IRQ_WORK_LAZY, 2890 }; 2891 2892 void wake_up_klogd(void) 2893 { 2894 preempt_disable(); 2895 if (waitqueue_active(&log_wait)) { 2896 this_cpu_or(printk_pending, PRINTK_PENDING_WAKEUP); 2897 irq_work_queue(this_cpu_ptr(&wake_up_klogd_work)); 2898 } 2899 preempt_enable(); 2900 } 2901 2902 void defer_console_output(void) 2903 { 2904 preempt_disable(); 2905 __this_cpu_or(printk_pending, PRINTK_PENDING_OUTPUT); 2906 irq_work_queue(this_cpu_ptr(&wake_up_klogd_work)); 2907 preempt_enable(); 2908 } 2909 2910 int vprintk_deferred(const char *fmt, va_list args) 2911 { 2912 int r; 2913 2914 r = vprintk_emit(0, LOGLEVEL_SCHED, NULL, 0, fmt, args); 2915 defer_console_output(); 2916 2917 return r; 2918 } 2919 2920 int printk_deferred(const char *fmt, ...) 2921 { 2922 va_list args; 2923 int r; 2924 2925 va_start(args, fmt); 2926 r = vprintk_deferred(fmt, args); 2927 va_end(args); 2928 2929 return r; 2930 } 2931 2932 /* 2933 * printk rate limiting, lifted from the networking subsystem. 2934 * 2935 * This enforces a rate limit: not more than 10 kernel messages 2936 * every 5s to make a denial-of-service attack impossible. 2937 */ 2938 DEFINE_RATELIMIT_STATE(printk_ratelimit_state, 5 * HZ, 10); 2939 2940 int __printk_ratelimit(const char *func) 2941 { 2942 return ___ratelimit(&printk_ratelimit_state, func); 2943 } 2944 EXPORT_SYMBOL(__printk_ratelimit); 2945 2946 /** 2947 * printk_timed_ratelimit - caller-controlled printk ratelimiting 2948 * @caller_jiffies: pointer to caller's state 2949 * @interval_msecs: minimum interval between prints 2950 * 2951 * printk_timed_ratelimit() returns true if more than @interval_msecs 2952 * milliseconds have elapsed since the last time printk_timed_ratelimit() 2953 * returned true. 2954 */ 2955 bool printk_timed_ratelimit(unsigned long *caller_jiffies, 2956 unsigned int interval_msecs) 2957 { 2958 unsigned long elapsed = jiffies - *caller_jiffies; 2959 2960 if (*caller_jiffies && elapsed <= msecs_to_jiffies(interval_msecs)) 2961 return false; 2962 2963 *caller_jiffies = jiffies; 2964 return true; 2965 } 2966 EXPORT_SYMBOL(printk_timed_ratelimit); 2967 2968 static DEFINE_SPINLOCK(dump_list_lock); 2969 static LIST_HEAD(dump_list); 2970 2971 /** 2972 * kmsg_dump_register - register a kernel log dumper. 2973 * @dumper: pointer to the kmsg_dumper structure 2974 * 2975 * Adds a kernel log dumper to the system. The dump callback in the 2976 * structure will be called when the kernel oopses or panics and must be 2977 * set. Returns zero on success and %-EINVAL or %-EBUSY otherwise. 2978 */ 2979 int kmsg_dump_register(struct kmsg_dumper *dumper) 2980 { 2981 unsigned long flags; 2982 int err = -EBUSY; 2983 2984 /* The dump callback needs to be set */ 2985 if (!dumper->dump) 2986 return -EINVAL; 2987 2988 spin_lock_irqsave(&dump_list_lock, flags); 2989 /* Don't allow registering multiple times */ 2990 if (!dumper->registered) { 2991 dumper->registered = 1; 2992 list_add_tail_rcu(&dumper->list, &dump_list); 2993 err = 0; 2994 } 2995 spin_unlock_irqrestore(&dump_list_lock, flags); 2996 2997 return err; 2998 } 2999 EXPORT_SYMBOL_GPL(kmsg_dump_register); 3000 3001 /** 3002 * kmsg_dump_unregister - unregister a kmsg dumper. 3003 * @dumper: pointer to the kmsg_dumper structure 3004 * 3005 * Removes a dump device from the system. Returns zero on success and 3006 * %-EINVAL otherwise. 3007 */ 3008 int kmsg_dump_unregister(struct kmsg_dumper *dumper) 3009 { 3010 unsigned long flags; 3011 int err = -EINVAL; 3012 3013 spin_lock_irqsave(&dump_list_lock, flags); 3014 if (dumper->registered) { 3015 dumper->registered = 0; 3016 list_del_rcu(&dumper->list); 3017 err = 0; 3018 } 3019 spin_unlock_irqrestore(&dump_list_lock, flags); 3020 synchronize_rcu(); 3021 3022 return err; 3023 } 3024 EXPORT_SYMBOL_GPL(kmsg_dump_unregister); 3025 3026 static bool always_kmsg_dump; 3027 module_param_named(always_kmsg_dump, always_kmsg_dump, bool, S_IRUGO | S_IWUSR); 3028 3029 /** 3030 * kmsg_dump - dump kernel log to kernel message dumpers. 3031 * @reason: the reason (oops, panic etc) for dumping 3032 * 3033 * Call each of the registered dumper's dump() callback, which can 3034 * retrieve the kmsg records with kmsg_dump_get_line() or 3035 * kmsg_dump_get_buffer(). 3036 */ 3037 void kmsg_dump(enum kmsg_dump_reason reason) 3038 { 3039 struct kmsg_dumper *dumper; 3040 unsigned long flags; 3041 3042 if ((reason > KMSG_DUMP_OOPS) && !always_kmsg_dump) 3043 return; 3044 3045 rcu_read_lock(); 3046 list_for_each_entry_rcu(dumper, &dump_list, list) { 3047 if (dumper->max_reason && reason > dumper->max_reason) 3048 continue; 3049 3050 /* initialize iterator with data about the stored records */ 3051 dumper->active = true; 3052 3053 logbuf_lock_irqsave(flags); 3054 dumper->cur_seq = clear_seq; 3055 dumper->cur_idx = clear_idx; 3056 dumper->next_seq = log_next_seq; 3057 dumper->next_idx = log_next_idx; 3058 logbuf_unlock_irqrestore(flags); 3059 3060 /* invoke dumper which will iterate over records */ 3061 dumper->dump(dumper, reason); 3062 3063 /* reset iterator */ 3064 dumper->active = false; 3065 } 3066 rcu_read_unlock(); 3067 } 3068 3069 /** 3070 * kmsg_dump_get_line_nolock - retrieve one kmsg log line (unlocked version) 3071 * @dumper: registered kmsg dumper 3072 * @syslog: include the "<4>" prefixes 3073 * @line: buffer to copy the line to 3074 * @size: maximum size of the buffer 3075 * @len: length of line placed into buffer 3076 * 3077 * Start at the beginning of the kmsg buffer, with the oldest kmsg 3078 * record, and copy one record into the provided buffer. 3079 * 3080 * Consecutive calls will return the next available record moving 3081 * towards the end of the buffer with the youngest messages. 3082 * 3083 * A return value of FALSE indicates that there are no more records to 3084 * read. 3085 * 3086 * The function is similar to kmsg_dump_get_line(), but grabs no locks. 3087 */ 3088 bool kmsg_dump_get_line_nolock(struct kmsg_dumper *dumper, bool syslog, 3089 char *line, size_t size, size_t *len) 3090 { 3091 struct printk_log *msg; 3092 size_t l = 0; 3093 bool ret = false; 3094 3095 if (!dumper->active) 3096 goto out; 3097 3098 if (dumper->cur_seq < log_first_seq) { 3099 /* messages are gone, move to first available one */ 3100 dumper->cur_seq = log_first_seq; 3101 dumper->cur_idx = log_first_idx; 3102 } 3103 3104 /* last entry */ 3105 if (dumper->cur_seq >= log_next_seq) 3106 goto out; 3107 3108 msg = log_from_idx(dumper->cur_idx); 3109 l = msg_print_text(msg, syslog, line, size); 3110 3111 dumper->cur_idx = log_next(dumper->cur_idx); 3112 dumper->cur_seq++; 3113 ret = true; 3114 out: 3115 if (len) 3116 *len = l; 3117 return ret; 3118 } 3119 3120 /** 3121 * kmsg_dump_get_line - retrieve one kmsg log line 3122 * @dumper: registered kmsg dumper 3123 * @syslog: include the "<4>" prefixes 3124 * @line: buffer to copy the line to 3125 * @size: maximum size of the buffer 3126 * @len: length of line placed into buffer 3127 * 3128 * Start at the beginning of the kmsg buffer, with the oldest kmsg 3129 * record, and copy one record into the provided buffer. 3130 * 3131 * Consecutive calls will return the next available record moving 3132 * towards the end of the buffer with the youngest messages. 3133 * 3134 * A return value of FALSE indicates that there are no more records to 3135 * read. 3136 */ 3137 bool kmsg_dump_get_line(struct kmsg_dumper *dumper, bool syslog, 3138 char *line, size_t size, size_t *len) 3139 { 3140 unsigned long flags; 3141 bool ret; 3142 3143 logbuf_lock_irqsave(flags); 3144 ret = kmsg_dump_get_line_nolock(dumper, syslog, line, size, len); 3145 logbuf_unlock_irqrestore(flags); 3146 3147 return ret; 3148 } 3149 EXPORT_SYMBOL_GPL(kmsg_dump_get_line); 3150 3151 /** 3152 * kmsg_dump_get_buffer - copy kmsg log lines 3153 * @dumper: registered kmsg dumper 3154 * @syslog: include the "<4>" prefixes 3155 * @buf: buffer to copy the line to 3156 * @size: maximum size of the buffer 3157 * @len: length of line placed into buffer 3158 * 3159 * Start at the end of the kmsg buffer and fill the provided buffer 3160 * with as many of the the *youngest* kmsg records that fit into it. 3161 * If the buffer is large enough, all available kmsg records will be 3162 * copied with a single call. 3163 * 3164 * Consecutive calls will fill the buffer with the next block of 3165 * available older records, not including the earlier retrieved ones. 3166 * 3167 * A return value of FALSE indicates that there are no more records to 3168 * read. 3169 */ 3170 bool kmsg_dump_get_buffer(struct kmsg_dumper *dumper, bool syslog, 3171 char *buf, size_t size, size_t *len) 3172 { 3173 unsigned long flags; 3174 u64 seq; 3175 u32 idx; 3176 u64 next_seq; 3177 u32 next_idx; 3178 size_t l = 0; 3179 bool ret = false; 3180 3181 if (!dumper->active) 3182 goto out; 3183 3184 logbuf_lock_irqsave(flags); 3185 if (dumper->cur_seq < log_first_seq) { 3186 /* messages are gone, move to first available one */ 3187 dumper->cur_seq = log_first_seq; 3188 dumper->cur_idx = log_first_idx; 3189 } 3190 3191 /* last entry */ 3192 if (dumper->cur_seq >= dumper->next_seq) { 3193 logbuf_unlock_irqrestore(flags); 3194 goto out; 3195 } 3196 3197 /* calculate length of entire buffer */ 3198 seq = dumper->cur_seq; 3199 idx = dumper->cur_idx; 3200 while (seq < dumper->next_seq) { 3201 struct printk_log *msg = log_from_idx(idx); 3202 3203 l += msg_print_text(msg, true, NULL, 0); 3204 idx = log_next(idx); 3205 seq++; 3206 } 3207 3208 /* move first record forward until length fits into the buffer */ 3209 seq = dumper->cur_seq; 3210 idx = dumper->cur_idx; 3211 while (l > size && seq < dumper->next_seq) { 3212 struct printk_log *msg = log_from_idx(idx); 3213 3214 l -= msg_print_text(msg, true, NULL, 0); 3215 idx = log_next(idx); 3216 seq++; 3217 } 3218 3219 /* last message in next interation */ 3220 next_seq = seq; 3221 next_idx = idx; 3222 3223 l = 0; 3224 while (seq < dumper->next_seq) { 3225 struct printk_log *msg = log_from_idx(idx); 3226 3227 l += msg_print_text(msg, syslog, buf + l, size - l); 3228 idx = log_next(idx); 3229 seq++; 3230 } 3231 3232 dumper->next_seq = next_seq; 3233 dumper->next_idx = next_idx; 3234 ret = true; 3235 logbuf_unlock_irqrestore(flags); 3236 out: 3237 if (len) 3238 *len = l; 3239 return ret; 3240 } 3241 EXPORT_SYMBOL_GPL(kmsg_dump_get_buffer); 3242 3243 /** 3244 * kmsg_dump_rewind_nolock - reset the interator (unlocked version) 3245 * @dumper: registered kmsg dumper 3246 * 3247 * Reset the dumper's iterator so that kmsg_dump_get_line() and 3248 * kmsg_dump_get_buffer() can be called again and used multiple 3249 * times within the same dumper.dump() callback. 3250 * 3251 * The function is similar to kmsg_dump_rewind(), but grabs no locks. 3252 */ 3253 void kmsg_dump_rewind_nolock(struct kmsg_dumper *dumper) 3254 { 3255 dumper->cur_seq = clear_seq; 3256 dumper->cur_idx = clear_idx; 3257 dumper->next_seq = log_next_seq; 3258 dumper->next_idx = log_next_idx; 3259 } 3260 3261 /** 3262 * kmsg_dump_rewind - reset the interator 3263 * @dumper: registered kmsg dumper 3264 * 3265 * Reset the dumper's iterator so that kmsg_dump_get_line() and 3266 * kmsg_dump_get_buffer() can be called again and used multiple 3267 * times within the same dumper.dump() callback. 3268 */ 3269 void kmsg_dump_rewind(struct kmsg_dumper *dumper) 3270 { 3271 unsigned long flags; 3272 3273 logbuf_lock_irqsave(flags); 3274 kmsg_dump_rewind_nolock(dumper); 3275 logbuf_unlock_irqrestore(flags); 3276 } 3277 EXPORT_SYMBOL_GPL(kmsg_dump_rewind); 3278 3279 #endif 3280