xref: /openbmc/linux/kernel/printk/printk.c (revision 90741096769bd75152a5fe397343e5893c7d905a)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/printk.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  *
7  * Modified to make sys_syslog() more flexible: added commands to
8  * return the last 4k of kernel messages, regardless of whether
9  * they've been read or not.  Added option to suppress kernel printk's
10  * to the console.  Added hook for sending the console messages
11  * elsewhere, in preparation for a serial line console (someday).
12  * Ted Ts'o, 2/11/93.
13  * Modified for sysctl support, 1/8/97, Chris Horn.
14  * Fixed SMP synchronization, 08/08/99, Manfred Spraul
15  *     manfred@colorfullife.com
16  * Rewrote bits to get rid of console_lock
17  *	01Mar01 Andrew Morton
18  */
19 
20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
21 
22 #include <linux/kernel.h>
23 #include <linux/mm.h>
24 #include <linux/tty.h>
25 #include <linux/tty_driver.h>
26 #include <linux/console.h>
27 #include <linux/init.h>
28 #include <linux/jiffies.h>
29 #include <linux/nmi.h>
30 #include <linux/module.h>
31 #include <linux/moduleparam.h>
32 #include <linux/delay.h>
33 #include <linux/smp.h>
34 #include <linux/security.h>
35 #include <linux/memblock.h>
36 #include <linux/syscalls.h>
37 #include <linux/crash_core.h>
38 #include <linux/ratelimit.h>
39 #include <linux/kmsg_dump.h>
40 #include <linux/syslog.h>
41 #include <linux/cpu.h>
42 #include <linux/rculist.h>
43 #include <linux/poll.h>
44 #include <linux/irq_work.h>
45 #include <linux/ctype.h>
46 #include <linux/uio.h>
47 #include <linux/sched/clock.h>
48 #include <linux/sched/debug.h>
49 #include <linux/sched/task_stack.h>
50 
51 #include <linux/uaccess.h>
52 #include <asm/sections.h>
53 
54 #include <trace/events/initcall.h>
55 #define CREATE_TRACE_POINTS
56 #include <trace/events/printk.h>
57 
58 #include "printk_ringbuffer.h"
59 #include "console_cmdline.h"
60 #include "braille.h"
61 #include "internal.h"
62 
63 int console_printk[4] = {
64 	CONSOLE_LOGLEVEL_DEFAULT,	/* console_loglevel */
65 	MESSAGE_LOGLEVEL_DEFAULT,	/* default_message_loglevel */
66 	CONSOLE_LOGLEVEL_MIN,		/* minimum_console_loglevel */
67 	CONSOLE_LOGLEVEL_DEFAULT,	/* default_console_loglevel */
68 };
69 EXPORT_SYMBOL_GPL(console_printk);
70 
71 atomic_t ignore_console_lock_warning __read_mostly = ATOMIC_INIT(0);
72 EXPORT_SYMBOL(ignore_console_lock_warning);
73 
74 /*
75  * Low level drivers may need that to know if they can schedule in
76  * their unblank() callback or not. So let's export it.
77  */
78 int oops_in_progress;
79 EXPORT_SYMBOL(oops_in_progress);
80 
81 /*
82  * console_mutex protects console_list updates and console->flags updates.
83  * The flags are synchronized only for consoles that are registered, i.e.
84  * accessible via the console list.
85  */
86 static DEFINE_MUTEX(console_mutex);
87 
88 /*
89  * console_sem protects updates to console->seq and console_suspended,
90  * and also provides serialization for console printing.
91  */
92 static DEFINE_SEMAPHORE(console_sem);
93 HLIST_HEAD(console_list);
94 EXPORT_SYMBOL_GPL(console_list);
95 DEFINE_STATIC_SRCU(console_srcu);
96 
97 /*
98  * System may need to suppress printk message under certain
99  * circumstances, like after kernel panic happens.
100  */
101 int __read_mostly suppress_printk;
102 
103 /*
104  * During panic, heavy printk by other CPUs can delay the
105  * panic and risk deadlock on console resources.
106  */
107 static int __read_mostly suppress_panic_printk;
108 
109 #ifdef CONFIG_LOCKDEP
110 static struct lockdep_map console_lock_dep_map = {
111 	.name = "console_lock"
112 };
113 
114 void lockdep_assert_console_list_lock_held(void)
115 {
116 	lockdep_assert_held(&console_mutex);
117 }
118 EXPORT_SYMBOL(lockdep_assert_console_list_lock_held);
119 #endif
120 
121 #ifdef CONFIG_DEBUG_LOCK_ALLOC
122 bool console_srcu_read_lock_is_held(void)
123 {
124 	return srcu_read_lock_held(&console_srcu);
125 }
126 #endif
127 
128 enum devkmsg_log_bits {
129 	__DEVKMSG_LOG_BIT_ON = 0,
130 	__DEVKMSG_LOG_BIT_OFF,
131 	__DEVKMSG_LOG_BIT_LOCK,
132 };
133 
134 enum devkmsg_log_masks {
135 	DEVKMSG_LOG_MASK_ON             = BIT(__DEVKMSG_LOG_BIT_ON),
136 	DEVKMSG_LOG_MASK_OFF            = BIT(__DEVKMSG_LOG_BIT_OFF),
137 	DEVKMSG_LOG_MASK_LOCK           = BIT(__DEVKMSG_LOG_BIT_LOCK),
138 };
139 
140 /* Keep both the 'on' and 'off' bits clear, i.e. ratelimit by default: */
141 #define DEVKMSG_LOG_MASK_DEFAULT	0
142 
143 static unsigned int __read_mostly devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT;
144 
145 static int __control_devkmsg(char *str)
146 {
147 	size_t len;
148 
149 	if (!str)
150 		return -EINVAL;
151 
152 	len = str_has_prefix(str, "on");
153 	if (len) {
154 		devkmsg_log = DEVKMSG_LOG_MASK_ON;
155 		return len;
156 	}
157 
158 	len = str_has_prefix(str, "off");
159 	if (len) {
160 		devkmsg_log = DEVKMSG_LOG_MASK_OFF;
161 		return len;
162 	}
163 
164 	len = str_has_prefix(str, "ratelimit");
165 	if (len) {
166 		devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT;
167 		return len;
168 	}
169 
170 	return -EINVAL;
171 }
172 
173 static int __init control_devkmsg(char *str)
174 {
175 	if (__control_devkmsg(str) < 0) {
176 		pr_warn("printk.devkmsg: bad option string '%s'\n", str);
177 		return 1;
178 	}
179 
180 	/*
181 	 * Set sysctl string accordingly:
182 	 */
183 	if (devkmsg_log == DEVKMSG_LOG_MASK_ON)
184 		strcpy(devkmsg_log_str, "on");
185 	else if (devkmsg_log == DEVKMSG_LOG_MASK_OFF)
186 		strcpy(devkmsg_log_str, "off");
187 	/* else "ratelimit" which is set by default. */
188 
189 	/*
190 	 * Sysctl cannot change it anymore. The kernel command line setting of
191 	 * this parameter is to force the setting to be permanent throughout the
192 	 * runtime of the system. This is a precation measure against userspace
193 	 * trying to be a smarta** and attempting to change it up on us.
194 	 */
195 	devkmsg_log |= DEVKMSG_LOG_MASK_LOCK;
196 
197 	return 1;
198 }
199 __setup("printk.devkmsg=", control_devkmsg);
200 
201 char devkmsg_log_str[DEVKMSG_STR_MAX_SIZE] = "ratelimit";
202 #if defined(CONFIG_PRINTK) && defined(CONFIG_SYSCTL)
203 int devkmsg_sysctl_set_loglvl(struct ctl_table *table, int write,
204 			      void *buffer, size_t *lenp, loff_t *ppos)
205 {
206 	char old_str[DEVKMSG_STR_MAX_SIZE];
207 	unsigned int old;
208 	int err;
209 
210 	if (write) {
211 		if (devkmsg_log & DEVKMSG_LOG_MASK_LOCK)
212 			return -EINVAL;
213 
214 		old = devkmsg_log;
215 		strncpy(old_str, devkmsg_log_str, DEVKMSG_STR_MAX_SIZE);
216 	}
217 
218 	err = proc_dostring(table, write, buffer, lenp, ppos);
219 	if (err)
220 		return err;
221 
222 	if (write) {
223 		err = __control_devkmsg(devkmsg_log_str);
224 
225 		/*
226 		 * Do not accept an unknown string OR a known string with
227 		 * trailing crap...
228 		 */
229 		if (err < 0 || (err + 1 != *lenp)) {
230 
231 			/* ... and restore old setting. */
232 			devkmsg_log = old;
233 			strncpy(devkmsg_log_str, old_str, DEVKMSG_STR_MAX_SIZE);
234 
235 			return -EINVAL;
236 		}
237 	}
238 
239 	return 0;
240 }
241 #endif /* CONFIG_PRINTK && CONFIG_SYSCTL */
242 
243 /**
244  * console_list_lock - Lock the console list
245  *
246  * For console list or console->flags updates
247  */
248 void console_list_lock(void)
249 {
250 	/*
251 	 * In unregister_console() and console_force_preferred_locked(),
252 	 * synchronize_srcu() is called with the console_list_lock held.
253 	 * Therefore it is not allowed that the console_list_lock is taken
254 	 * with the srcu_lock held.
255 	 *
256 	 * Detecting if this context is really in the read-side critical
257 	 * section is only possible if the appropriate debug options are
258 	 * enabled.
259 	 */
260 	WARN_ON_ONCE(debug_lockdep_rcu_enabled() &&
261 		     srcu_read_lock_held(&console_srcu));
262 
263 	mutex_lock(&console_mutex);
264 }
265 EXPORT_SYMBOL(console_list_lock);
266 
267 /**
268  * console_list_unlock - Unlock the console list
269  *
270  * Counterpart to console_list_lock()
271  */
272 void console_list_unlock(void)
273 {
274 	mutex_unlock(&console_mutex);
275 }
276 EXPORT_SYMBOL(console_list_unlock);
277 
278 /**
279  * console_srcu_read_lock - Register a new reader for the
280  *	SRCU-protected console list
281  *
282  * Use for_each_console_srcu() to iterate the console list
283  *
284  * Context: Any context.
285  * Return: A cookie to pass to console_srcu_read_unlock().
286  */
287 int console_srcu_read_lock(void)
288 {
289 	return srcu_read_lock_nmisafe(&console_srcu);
290 }
291 EXPORT_SYMBOL(console_srcu_read_lock);
292 
293 /**
294  * console_srcu_read_unlock - Unregister an old reader from
295  *	the SRCU-protected console list
296  * @cookie: cookie returned from console_srcu_read_lock()
297  *
298  * Counterpart to console_srcu_read_lock()
299  */
300 void console_srcu_read_unlock(int cookie)
301 {
302 	srcu_read_unlock_nmisafe(&console_srcu, cookie);
303 }
304 EXPORT_SYMBOL(console_srcu_read_unlock);
305 
306 /*
307  * Helper macros to handle lockdep when locking/unlocking console_sem. We use
308  * macros instead of functions so that _RET_IP_ contains useful information.
309  */
310 #define down_console_sem() do { \
311 	down(&console_sem);\
312 	mutex_acquire(&console_lock_dep_map, 0, 0, _RET_IP_);\
313 } while (0)
314 
315 static int __down_trylock_console_sem(unsigned long ip)
316 {
317 	int lock_failed;
318 	unsigned long flags;
319 
320 	/*
321 	 * Here and in __up_console_sem() we need to be in safe mode,
322 	 * because spindump/WARN/etc from under console ->lock will
323 	 * deadlock in printk()->down_trylock_console_sem() otherwise.
324 	 */
325 	printk_safe_enter_irqsave(flags);
326 	lock_failed = down_trylock(&console_sem);
327 	printk_safe_exit_irqrestore(flags);
328 
329 	if (lock_failed)
330 		return 1;
331 	mutex_acquire(&console_lock_dep_map, 0, 1, ip);
332 	return 0;
333 }
334 #define down_trylock_console_sem() __down_trylock_console_sem(_RET_IP_)
335 
336 static void __up_console_sem(unsigned long ip)
337 {
338 	unsigned long flags;
339 
340 	mutex_release(&console_lock_dep_map, ip);
341 
342 	printk_safe_enter_irqsave(flags);
343 	up(&console_sem);
344 	printk_safe_exit_irqrestore(flags);
345 }
346 #define up_console_sem() __up_console_sem(_RET_IP_)
347 
348 static bool panic_in_progress(void)
349 {
350 	return unlikely(atomic_read(&panic_cpu) != PANIC_CPU_INVALID);
351 }
352 
353 /*
354  * This is used for debugging the mess that is the VT code by
355  * keeping track if we have the console semaphore held. It's
356  * definitely not the perfect debug tool (we don't know if _WE_
357  * hold it and are racing, but it helps tracking those weird code
358  * paths in the console code where we end up in places I want
359  * locked without the console semaphore held).
360  */
361 static int console_locked, console_suspended;
362 
363 /*
364  *	Array of consoles built from command line options (console=)
365  */
366 
367 #define MAX_CMDLINECONSOLES 8
368 
369 static struct console_cmdline console_cmdline[MAX_CMDLINECONSOLES];
370 
371 static int preferred_console = -1;
372 int console_set_on_cmdline;
373 EXPORT_SYMBOL(console_set_on_cmdline);
374 
375 /* Flag: console code may call schedule() */
376 static int console_may_schedule;
377 
378 enum con_msg_format_flags {
379 	MSG_FORMAT_DEFAULT	= 0,
380 	MSG_FORMAT_SYSLOG	= (1 << 0),
381 };
382 
383 static int console_msg_format = MSG_FORMAT_DEFAULT;
384 
385 /*
386  * The printk log buffer consists of a sequenced collection of records, each
387  * containing variable length message text. Every record also contains its
388  * own meta-data (@info).
389  *
390  * Every record meta-data carries the timestamp in microseconds, as well as
391  * the standard userspace syslog level and syslog facility. The usual kernel
392  * messages use LOG_KERN; userspace-injected messages always carry a matching
393  * syslog facility, by default LOG_USER. The origin of every message can be
394  * reliably determined that way.
395  *
396  * The human readable log message of a record is available in @text, the
397  * length of the message text in @text_len. The stored message is not
398  * terminated.
399  *
400  * Optionally, a record can carry a dictionary of properties (key/value
401  * pairs), to provide userspace with a machine-readable message context.
402  *
403  * Examples for well-defined, commonly used property names are:
404  *   DEVICE=b12:8               device identifier
405  *                                b12:8         block dev_t
406  *                                c127:3        char dev_t
407  *                                n8            netdev ifindex
408  *                                +sound:card0  subsystem:devname
409  *   SUBSYSTEM=pci              driver-core subsystem name
410  *
411  * Valid characters in property names are [a-zA-Z0-9.-_]. Property names
412  * and values are terminated by a '\0' character.
413  *
414  * Example of record values:
415  *   record.text_buf                = "it's a line" (unterminated)
416  *   record.info.seq                = 56
417  *   record.info.ts_nsec            = 36863
418  *   record.info.text_len           = 11
419  *   record.info.facility           = 0 (LOG_KERN)
420  *   record.info.flags              = 0
421  *   record.info.level              = 3 (LOG_ERR)
422  *   record.info.caller_id          = 299 (task 299)
423  *   record.info.dev_info.subsystem = "pci" (terminated)
424  *   record.info.dev_info.device    = "+pci:0000:00:01.0" (terminated)
425  *
426  * The 'struct printk_info' buffer must never be directly exported to
427  * userspace, it is a kernel-private implementation detail that might
428  * need to be changed in the future, when the requirements change.
429  *
430  * /dev/kmsg exports the structured data in the following line format:
431  *   "<level>,<sequnum>,<timestamp>,<contflag>[,additional_values, ... ];<message text>\n"
432  *
433  * Users of the export format should ignore possible additional values
434  * separated by ',', and find the message after the ';' character.
435  *
436  * The optional key/value pairs are attached as continuation lines starting
437  * with a space character and terminated by a newline. All possible
438  * non-prinatable characters are escaped in the "\xff" notation.
439  */
440 
441 /* syslog_lock protects syslog_* variables and write access to clear_seq. */
442 static DEFINE_MUTEX(syslog_lock);
443 
444 #ifdef CONFIG_PRINTK
445 DECLARE_WAIT_QUEUE_HEAD(log_wait);
446 /* All 3 protected by @syslog_lock. */
447 /* the next printk record to read by syslog(READ) or /proc/kmsg */
448 static u64 syslog_seq;
449 static size_t syslog_partial;
450 static bool syslog_time;
451 
452 struct latched_seq {
453 	seqcount_latch_t	latch;
454 	u64			val[2];
455 };
456 
457 /*
458  * The next printk record to read after the last 'clear' command. There are
459  * two copies (updated with seqcount_latch) so that reads can locklessly
460  * access a valid value. Writers are synchronized by @syslog_lock.
461  */
462 static struct latched_seq clear_seq = {
463 	.latch		= SEQCNT_LATCH_ZERO(clear_seq.latch),
464 	.val[0]		= 0,
465 	.val[1]		= 0,
466 };
467 
468 #ifdef CONFIG_PRINTK_CALLER
469 #define PREFIX_MAX		48
470 #else
471 #define PREFIX_MAX		32
472 #endif
473 
474 /* the maximum size of a formatted record (i.e. with prefix added per line) */
475 #define CONSOLE_LOG_MAX		1024
476 
477 /* the maximum size for a dropped text message */
478 #define DROPPED_TEXT_MAX	64
479 
480 /* the maximum size allowed to be reserved for a record */
481 #define LOG_LINE_MAX		(CONSOLE_LOG_MAX - PREFIX_MAX)
482 
483 #define LOG_LEVEL(v)		((v) & 0x07)
484 #define LOG_FACILITY(v)		((v) >> 3 & 0xff)
485 
486 /* record buffer */
487 #define LOG_ALIGN __alignof__(unsigned long)
488 #define __LOG_BUF_LEN (1 << CONFIG_LOG_BUF_SHIFT)
489 #define LOG_BUF_LEN_MAX (u32)(1 << 31)
490 static char __log_buf[__LOG_BUF_LEN] __aligned(LOG_ALIGN);
491 static char *log_buf = __log_buf;
492 static u32 log_buf_len = __LOG_BUF_LEN;
493 
494 /*
495  * Define the average message size. This only affects the number of
496  * descriptors that will be available. Underestimating is better than
497  * overestimating (too many available descriptors is better than not enough).
498  */
499 #define PRB_AVGBITS 5	/* 32 character average length */
500 
501 #if CONFIG_LOG_BUF_SHIFT <= PRB_AVGBITS
502 #error CONFIG_LOG_BUF_SHIFT value too small.
503 #endif
504 _DEFINE_PRINTKRB(printk_rb_static, CONFIG_LOG_BUF_SHIFT - PRB_AVGBITS,
505 		 PRB_AVGBITS, &__log_buf[0]);
506 
507 static struct printk_ringbuffer printk_rb_dynamic;
508 
509 static struct printk_ringbuffer *prb = &printk_rb_static;
510 
511 /*
512  * We cannot access per-CPU data (e.g. per-CPU flush irq_work) before
513  * per_cpu_areas are initialised. This variable is set to true when
514  * it's safe to access per-CPU data.
515  */
516 static bool __printk_percpu_data_ready __ro_after_init;
517 
518 bool printk_percpu_data_ready(void)
519 {
520 	return __printk_percpu_data_ready;
521 }
522 
523 /* Must be called under syslog_lock. */
524 static void latched_seq_write(struct latched_seq *ls, u64 val)
525 {
526 	raw_write_seqcount_latch(&ls->latch);
527 	ls->val[0] = val;
528 	raw_write_seqcount_latch(&ls->latch);
529 	ls->val[1] = val;
530 }
531 
532 /* Can be called from any context. */
533 static u64 latched_seq_read_nolock(struct latched_seq *ls)
534 {
535 	unsigned int seq;
536 	unsigned int idx;
537 	u64 val;
538 
539 	do {
540 		seq = raw_read_seqcount_latch(&ls->latch);
541 		idx = seq & 0x1;
542 		val = ls->val[idx];
543 	} while (read_seqcount_latch_retry(&ls->latch, seq));
544 
545 	return val;
546 }
547 
548 /* Return log buffer address */
549 char *log_buf_addr_get(void)
550 {
551 	return log_buf;
552 }
553 
554 /* Return log buffer size */
555 u32 log_buf_len_get(void)
556 {
557 	return log_buf_len;
558 }
559 
560 /*
561  * Define how much of the log buffer we could take at maximum. The value
562  * must be greater than two. Note that only half of the buffer is available
563  * when the index points to the middle.
564  */
565 #define MAX_LOG_TAKE_PART 4
566 static const char trunc_msg[] = "<truncated>";
567 
568 static void truncate_msg(u16 *text_len, u16 *trunc_msg_len)
569 {
570 	/*
571 	 * The message should not take the whole buffer. Otherwise, it might
572 	 * get removed too soon.
573 	 */
574 	u32 max_text_len = log_buf_len / MAX_LOG_TAKE_PART;
575 
576 	if (*text_len > max_text_len)
577 		*text_len = max_text_len;
578 
579 	/* enable the warning message (if there is room) */
580 	*trunc_msg_len = strlen(trunc_msg);
581 	if (*text_len >= *trunc_msg_len)
582 		*text_len -= *trunc_msg_len;
583 	else
584 		*trunc_msg_len = 0;
585 }
586 
587 int dmesg_restrict = IS_ENABLED(CONFIG_SECURITY_DMESG_RESTRICT);
588 
589 static int syslog_action_restricted(int type)
590 {
591 	if (dmesg_restrict)
592 		return 1;
593 	/*
594 	 * Unless restricted, we allow "read all" and "get buffer size"
595 	 * for everybody.
596 	 */
597 	return type != SYSLOG_ACTION_READ_ALL &&
598 	       type != SYSLOG_ACTION_SIZE_BUFFER;
599 }
600 
601 static int check_syslog_permissions(int type, int source)
602 {
603 	/*
604 	 * If this is from /proc/kmsg and we've already opened it, then we've
605 	 * already done the capabilities checks at open time.
606 	 */
607 	if (source == SYSLOG_FROM_PROC && type != SYSLOG_ACTION_OPEN)
608 		goto ok;
609 
610 	if (syslog_action_restricted(type)) {
611 		if (capable(CAP_SYSLOG))
612 			goto ok;
613 		/*
614 		 * For historical reasons, accept CAP_SYS_ADMIN too, with
615 		 * a warning.
616 		 */
617 		if (capable(CAP_SYS_ADMIN)) {
618 			pr_warn_once("%s (%d): Attempt to access syslog with "
619 				     "CAP_SYS_ADMIN but no CAP_SYSLOG "
620 				     "(deprecated).\n",
621 				 current->comm, task_pid_nr(current));
622 			goto ok;
623 		}
624 		return -EPERM;
625 	}
626 ok:
627 	return security_syslog(type);
628 }
629 
630 static void append_char(char **pp, char *e, char c)
631 {
632 	if (*pp < e)
633 		*(*pp)++ = c;
634 }
635 
636 static ssize_t info_print_ext_header(char *buf, size_t size,
637 				     struct printk_info *info)
638 {
639 	u64 ts_usec = info->ts_nsec;
640 	char caller[20];
641 #ifdef CONFIG_PRINTK_CALLER
642 	u32 id = info->caller_id;
643 
644 	snprintf(caller, sizeof(caller), ",caller=%c%u",
645 		 id & 0x80000000 ? 'C' : 'T', id & ~0x80000000);
646 #else
647 	caller[0] = '\0';
648 #endif
649 
650 	do_div(ts_usec, 1000);
651 
652 	return scnprintf(buf, size, "%u,%llu,%llu,%c%s;",
653 			 (info->facility << 3) | info->level, info->seq,
654 			 ts_usec, info->flags & LOG_CONT ? 'c' : '-', caller);
655 }
656 
657 static ssize_t msg_add_ext_text(char *buf, size_t size,
658 				const char *text, size_t text_len,
659 				unsigned char endc)
660 {
661 	char *p = buf, *e = buf + size;
662 	size_t i;
663 
664 	/* escape non-printable characters */
665 	for (i = 0; i < text_len; i++) {
666 		unsigned char c = text[i];
667 
668 		if (c < ' ' || c >= 127 || c == '\\')
669 			p += scnprintf(p, e - p, "\\x%02x", c);
670 		else
671 			append_char(&p, e, c);
672 	}
673 	append_char(&p, e, endc);
674 
675 	return p - buf;
676 }
677 
678 static ssize_t msg_add_dict_text(char *buf, size_t size,
679 				 const char *key, const char *val)
680 {
681 	size_t val_len = strlen(val);
682 	ssize_t len;
683 
684 	if (!val_len)
685 		return 0;
686 
687 	len = msg_add_ext_text(buf, size, "", 0, ' ');	/* dict prefix */
688 	len += msg_add_ext_text(buf + len, size - len, key, strlen(key), '=');
689 	len += msg_add_ext_text(buf + len, size - len, val, val_len, '\n');
690 
691 	return len;
692 }
693 
694 static ssize_t msg_print_ext_body(char *buf, size_t size,
695 				  char *text, size_t text_len,
696 				  struct dev_printk_info *dev_info)
697 {
698 	ssize_t len;
699 
700 	len = msg_add_ext_text(buf, size, text, text_len, '\n');
701 
702 	if (!dev_info)
703 		goto out;
704 
705 	len += msg_add_dict_text(buf + len, size - len, "SUBSYSTEM",
706 				 dev_info->subsystem);
707 	len += msg_add_dict_text(buf + len, size - len, "DEVICE",
708 				 dev_info->device);
709 out:
710 	return len;
711 }
712 
713 /* /dev/kmsg - userspace message inject/listen interface */
714 struct devkmsg_user {
715 	atomic64_t seq;
716 	struct ratelimit_state rs;
717 	struct mutex lock;
718 	char buf[CONSOLE_EXT_LOG_MAX];
719 
720 	struct printk_info info;
721 	char text_buf[CONSOLE_EXT_LOG_MAX];
722 	struct printk_record record;
723 };
724 
725 static __printf(3, 4) __cold
726 int devkmsg_emit(int facility, int level, const char *fmt, ...)
727 {
728 	va_list args;
729 	int r;
730 
731 	va_start(args, fmt);
732 	r = vprintk_emit(facility, level, NULL, fmt, args);
733 	va_end(args);
734 
735 	return r;
736 }
737 
738 static ssize_t devkmsg_write(struct kiocb *iocb, struct iov_iter *from)
739 {
740 	char *buf, *line;
741 	int level = default_message_loglevel;
742 	int facility = 1;	/* LOG_USER */
743 	struct file *file = iocb->ki_filp;
744 	struct devkmsg_user *user = file->private_data;
745 	size_t len = iov_iter_count(from);
746 	ssize_t ret = len;
747 
748 	if (!user || len > LOG_LINE_MAX)
749 		return -EINVAL;
750 
751 	/* Ignore when user logging is disabled. */
752 	if (devkmsg_log & DEVKMSG_LOG_MASK_OFF)
753 		return len;
754 
755 	/* Ratelimit when not explicitly enabled. */
756 	if (!(devkmsg_log & DEVKMSG_LOG_MASK_ON)) {
757 		if (!___ratelimit(&user->rs, current->comm))
758 			return ret;
759 	}
760 
761 	buf = kmalloc(len+1, GFP_KERNEL);
762 	if (buf == NULL)
763 		return -ENOMEM;
764 
765 	buf[len] = '\0';
766 	if (!copy_from_iter_full(buf, len, from)) {
767 		kfree(buf);
768 		return -EFAULT;
769 	}
770 
771 	/*
772 	 * Extract and skip the syslog prefix <[0-9]*>. Coming from userspace
773 	 * the decimal value represents 32bit, the lower 3 bit are the log
774 	 * level, the rest are the log facility.
775 	 *
776 	 * If no prefix or no userspace facility is specified, we
777 	 * enforce LOG_USER, to be able to reliably distinguish
778 	 * kernel-generated messages from userspace-injected ones.
779 	 */
780 	line = buf;
781 	if (line[0] == '<') {
782 		char *endp = NULL;
783 		unsigned int u;
784 
785 		u = simple_strtoul(line + 1, &endp, 10);
786 		if (endp && endp[0] == '>') {
787 			level = LOG_LEVEL(u);
788 			if (LOG_FACILITY(u) != 0)
789 				facility = LOG_FACILITY(u);
790 			endp++;
791 			line = endp;
792 		}
793 	}
794 
795 	devkmsg_emit(facility, level, "%s", line);
796 	kfree(buf);
797 	return ret;
798 }
799 
800 static ssize_t devkmsg_read(struct file *file, char __user *buf,
801 			    size_t count, loff_t *ppos)
802 {
803 	struct devkmsg_user *user = file->private_data;
804 	struct printk_record *r = &user->record;
805 	size_t len;
806 	ssize_t ret;
807 
808 	if (!user)
809 		return -EBADF;
810 
811 	ret = mutex_lock_interruptible(&user->lock);
812 	if (ret)
813 		return ret;
814 
815 	if (!prb_read_valid(prb, atomic64_read(&user->seq), r)) {
816 		if (file->f_flags & O_NONBLOCK) {
817 			ret = -EAGAIN;
818 			goto out;
819 		}
820 
821 		/*
822 		 * Guarantee this task is visible on the waitqueue before
823 		 * checking the wake condition.
824 		 *
825 		 * The full memory barrier within set_current_state() of
826 		 * prepare_to_wait_event() pairs with the full memory barrier
827 		 * within wq_has_sleeper().
828 		 *
829 		 * This pairs with __wake_up_klogd:A.
830 		 */
831 		ret = wait_event_interruptible(log_wait,
832 				prb_read_valid(prb,
833 					atomic64_read(&user->seq), r)); /* LMM(devkmsg_read:A) */
834 		if (ret)
835 			goto out;
836 	}
837 
838 	if (r->info->seq != atomic64_read(&user->seq)) {
839 		/* our last seen message is gone, return error and reset */
840 		atomic64_set(&user->seq, r->info->seq);
841 		ret = -EPIPE;
842 		goto out;
843 	}
844 
845 	len = info_print_ext_header(user->buf, sizeof(user->buf), r->info);
846 	len += msg_print_ext_body(user->buf + len, sizeof(user->buf) - len,
847 				  &r->text_buf[0], r->info->text_len,
848 				  &r->info->dev_info);
849 
850 	atomic64_set(&user->seq, r->info->seq + 1);
851 
852 	if (len > count) {
853 		ret = -EINVAL;
854 		goto out;
855 	}
856 
857 	if (copy_to_user(buf, user->buf, len)) {
858 		ret = -EFAULT;
859 		goto out;
860 	}
861 	ret = len;
862 out:
863 	mutex_unlock(&user->lock);
864 	return ret;
865 }
866 
867 /*
868  * Be careful when modifying this function!!!
869  *
870  * Only few operations are supported because the device works only with the
871  * entire variable length messages (records). Non-standard values are
872  * returned in the other cases and has been this way for quite some time.
873  * User space applications might depend on this behavior.
874  */
875 static loff_t devkmsg_llseek(struct file *file, loff_t offset, int whence)
876 {
877 	struct devkmsg_user *user = file->private_data;
878 	loff_t ret = 0;
879 
880 	if (!user)
881 		return -EBADF;
882 	if (offset)
883 		return -ESPIPE;
884 
885 	switch (whence) {
886 	case SEEK_SET:
887 		/* the first record */
888 		atomic64_set(&user->seq, prb_first_valid_seq(prb));
889 		break;
890 	case SEEK_DATA:
891 		/*
892 		 * The first record after the last SYSLOG_ACTION_CLEAR,
893 		 * like issued by 'dmesg -c'. Reading /dev/kmsg itself
894 		 * changes no global state, and does not clear anything.
895 		 */
896 		atomic64_set(&user->seq, latched_seq_read_nolock(&clear_seq));
897 		break;
898 	case SEEK_END:
899 		/* after the last record */
900 		atomic64_set(&user->seq, prb_next_seq(prb));
901 		break;
902 	default:
903 		ret = -EINVAL;
904 	}
905 	return ret;
906 }
907 
908 static __poll_t devkmsg_poll(struct file *file, poll_table *wait)
909 {
910 	struct devkmsg_user *user = file->private_data;
911 	struct printk_info info;
912 	__poll_t ret = 0;
913 
914 	if (!user)
915 		return EPOLLERR|EPOLLNVAL;
916 
917 	poll_wait(file, &log_wait, wait);
918 
919 	if (prb_read_valid_info(prb, atomic64_read(&user->seq), &info, NULL)) {
920 		/* return error when data has vanished underneath us */
921 		if (info.seq != atomic64_read(&user->seq))
922 			ret = EPOLLIN|EPOLLRDNORM|EPOLLERR|EPOLLPRI;
923 		else
924 			ret = EPOLLIN|EPOLLRDNORM;
925 	}
926 
927 	return ret;
928 }
929 
930 static int devkmsg_open(struct inode *inode, struct file *file)
931 {
932 	struct devkmsg_user *user;
933 	int err;
934 
935 	if (devkmsg_log & DEVKMSG_LOG_MASK_OFF)
936 		return -EPERM;
937 
938 	/* write-only does not need any file context */
939 	if ((file->f_flags & O_ACCMODE) != O_WRONLY) {
940 		err = check_syslog_permissions(SYSLOG_ACTION_READ_ALL,
941 					       SYSLOG_FROM_READER);
942 		if (err)
943 			return err;
944 	}
945 
946 	user = kvmalloc(sizeof(struct devkmsg_user), GFP_KERNEL);
947 	if (!user)
948 		return -ENOMEM;
949 
950 	ratelimit_default_init(&user->rs);
951 	ratelimit_set_flags(&user->rs, RATELIMIT_MSG_ON_RELEASE);
952 
953 	mutex_init(&user->lock);
954 
955 	prb_rec_init_rd(&user->record, &user->info,
956 			&user->text_buf[0], sizeof(user->text_buf));
957 
958 	atomic64_set(&user->seq, prb_first_valid_seq(prb));
959 
960 	file->private_data = user;
961 	return 0;
962 }
963 
964 static int devkmsg_release(struct inode *inode, struct file *file)
965 {
966 	struct devkmsg_user *user = file->private_data;
967 
968 	if (!user)
969 		return 0;
970 
971 	ratelimit_state_exit(&user->rs);
972 
973 	mutex_destroy(&user->lock);
974 	kvfree(user);
975 	return 0;
976 }
977 
978 const struct file_operations kmsg_fops = {
979 	.open = devkmsg_open,
980 	.read = devkmsg_read,
981 	.write_iter = devkmsg_write,
982 	.llseek = devkmsg_llseek,
983 	.poll = devkmsg_poll,
984 	.release = devkmsg_release,
985 };
986 
987 #ifdef CONFIG_CRASH_CORE
988 /*
989  * This appends the listed symbols to /proc/vmcore
990  *
991  * /proc/vmcore is used by various utilities, like crash and makedumpfile to
992  * obtain access to symbols that are otherwise very difficult to locate.  These
993  * symbols are specifically used so that utilities can access and extract the
994  * dmesg log from a vmcore file after a crash.
995  */
996 void log_buf_vmcoreinfo_setup(void)
997 {
998 	struct dev_printk_info *dev_info = NULL;
999 
1000 	VMCOREINFO_SYMBOL(prb);
1001 	VMCOREINFO_SYMBOL(printk_rb_static);
1002 	VMCOREINFO_SYMBOL(clear_seq);
1003 
1004 	/*
1005 	 * Export struct size and field offsets. User space tools can
1006 	 * parse it and detect any changes to structure down the line.
1007 	 */
1008 
1009 	VMCOREINFO_STRUCT_SIZE(printk_ringbuffer);
1010 	VMCOREINFO_OFFSET(printk_ringbuffer, desc_ring);
1011 	VMCOREINFO_OFFSET(printk_ringbuffer, text_data_ring);
1012 	VMCOREINFO_OFFSET(printk_ringbuffer, fail);
1013 
1014 	VMCOREINFO_STRUCT_SIZE(prb_desc_ring);
1015 	VMCOREINFO_OFFSET(prb_desc_ring, count_bits);
1016 	VMCOREINFO_OFFSET(prb_desc_ring, descs);
1017 	VMCOREINFO_OFFSET(prb_desc_ring, infos);
1018 	VMCOREINFO_OFFSET(prb_desc_ring, head_id);
1019 	VMCOREINFO_OFFSET(prb_desc_ring, tail_id);
1020 
1021 	VMCOREINFO_STRUCT_SIZE(prb_desc);
1022 	VMCOREINFO_OFFSET(prb_desc, state_var);
1023 	VMCOREINFO_OFFSET(prb_desc, text_blk_lpos);
1024 
1025 	VMCOREINFO_STRUCT_SIZE(prb_data_blk_lpos);
1026 	VMCOREINFO_OFFSET(prb_data_blk_lpos, begin);
1027 	VMCOREINFO_OFFSET(prb_data_blk_lpos, next);
1028 
1029 	VMCOREINFO_STRUCT_SIZE(printk_info);
1030 	VMCOREINFO_OFFSET(printk_info, seq);
1031 	VMCOREINFO_OFFSET(printk_info, ts_nsec);
1032 	VMCOREINFO_OFFSET(printk_info, text_len);
1033 	VMCOREINFO_OFFSET(printk_info, caller_id);
1034 	VMCOREINFO_OFFSET(printk_info, dev_info);
1035 
1036 	VMCOREINFO_STRUCT_SIZE(dev_printk_info);
1037 	VMCOREINFO_OFFSET(dev_printk_info, subsystem);
1038 	VMCOREINFO_LENGTH(printk_info_subsystem, sizeof(dev_info->subsystem));
1039 	VMCOREINFO_OFFSET(dev_printk_info, device);
1040 	VMCOREINFO_LENGTH(printk_info_device, sizeof(dev_info->device));
1041 
1042 	VMCOREINFO_STRUCT_SIZE(prb_data_ring);
1043 	VMCOREINFO_OFFSET(prb_data_ring, size_bits);
1044 	VMCOREINFO_OFFSET(prb_data_ring, data);
1045 	VMCOREINFO_OFFSET(prb_data_ring, head_lpos);
1046 	VMCOREINFO_OFFSET(prb_data_ring, tail_lpos);
1047 
1048 	VMCOREINFO_SIZE(atomic_long_t);
1049 	VMCOREINFO_TYPE_OFFSET(atomic_long_t, counter);
1050 
1051 	VMCOREINFO_STRUCT_SIZE(latched_seq);
1052 	VMCOREINFO_OFFSET(latched_seq, val);
1053 }
1054 #endif
1055 
1056 /* requested log_buf_len from kernel cmdline */
1057 static unsigned long __initdata new_log_buf_len;
1058 
1059 /* we practice scaling the ring buffer by powers of 2 */
1060 static void __init log_buf_len_update(u64 size)
1061 {
1062 	if (size > (u64)LOG_BUF_LEN_MAX) {
1063 		size = (u64)LOG_BUF_LEN_MAX;
1064 		pr_err("log_buf over 2G is not supported.\n");
1065 	}
1066 
1067 	if (size)
1068 		size = roundup_pow_of_two(size);
1069 	if (size > log_buf_len)
1070 		new_log_buf_len = (unsigned long)size;
1071 }
1072 
1073 /* save requested log_buf_len since it's too early to process it */
1074 static int __init log_buf_len_setup(char *str)
1075 {
1076 	u64 size;
1077 
1078 	if (!str)
1079 		return -EINVAL;
1080 
1081 	size = memparse(str, &str);
1082 
1083 	log_buf_len_update(size);
1084 
1085 	return 0;
1086 }
1087 early_param("log_buf_len", log_buf_len_setup);
1088 
1089 #ifdef CONFIG_SMP
1090 #define __LOG_CPU_MAX_BUF_LEN (1 << CONFIG_LOG_CPU_MAX_BUF_SHIFT)
1091 
1092 static void __init log_buf_add_cpu(void)
1093 {
1094 	unsigned int cpu_extra;
1095 
1096 	/*
1097 	 * archs should set up cpu_possible_bits properly with
1098 	 * set_cpu_possible() after setup_arch() but just in
1099 	 * case lets ensure this is valid.
1100 	 */
1101 	if (num_possible_cpus() == 1)
1102 		return;
1103 
1104 	cpu_extra = (num_possible_cpus() - 1) * __LOG_CPU_MAX_BUF_LEN;
1105 
1106 	/* by default this will only continue through for large > 64 CPUs */
1107 	if (cpu_extra <= __LOG_BUF_LEN / 2)
1108 		return;
1109 
1110 	pr_info("log_buf_len individual max cpu contribution: %d bytes\n",
1111 		__LOG_CPU_MAX_BUF_LEN);
1112 	pr_info("log_buf_len total cpu_extra contributions: %d bytes\n",
1113 		cpu_extra);
1114 	pr_info("log_buf_len min size: %d bytes\n", __LOG_BUF_LEN);
1115 
1116 	log_buf_len_update(cpu_extra + __LOG_BUF_LEN);
1117 }
1118 #else /* !CONFIG_SMP */
1119 static inline void log_buf_add_cpu(void) {}
1120 #endif /* CONFIG_SMP */
1121 
1122 static void __init set_percpu_data_ready(void)
1123 {
1124 	__printk_percpu_data_ready = true;
1125 }
1126 
1127 static unsigned int __init add_to_rb(struct printk_ringbuffer *rb,
1128 				     struct printk_record *r)
1129 {
1130 	struct prb_reserved_entry e;
1131 	struct printk_record dest_r;
1132 
1133 	prb_rec_init_wr(&dest_r, r->info->text_len);
1134 
1135 	if (!prb_reserve(&e, rb, &dest_r))
1136 		return 0;
1137 
1138 	memcpy(&dest_r.text_buf[0], &r->text_buf[0], r->info->text_len);
1139 	dest_r.info->text_len = r->info->text_len;
1140 	dest_r.info->facility = r->info->facility;
1141 	dest_r.info->level = r->info->level;
1142 	dest_r.info->flags = r->info->flags;
1143 	dest_r.info->ts_nsec = r->info->ts_nsec;
1144 	dest_r.info->caller_id = r->info->caller_id;
1145 	memcpy(&dest_r.info->dev_info, &r->info->dev_info, sizeof(dest_r.info->dev_info));
1146 
1147 	prb_final_commit(&e);
1148 
1149 	return prb_record_text_space(&e);
1150 }
1151 
1152 static char setup_text_buf[LOG_LINE_MAX] __initdata;
1153 
1154 void __init setup_log_buf(int early)
1155 {
1156 	struct printk_info *new_infos;
1157 	unsigned int new_descs_count;
1158 	struct prb_desc *new_descs;
1159 	struct printk_info info;
1160 	struct printk_record r;
1161 	unsigned int text_size;
1162 	size_t new_descs_size;
1163 	size_t new_infos_size;
1164 	unsigned long flags;
1165 	char *new_log_buf;
1166 	unsigned int free;
1167 	u64 seq;
1168 
1169 	/*
1170 	 * Some archs call setup_log_buf() multiple times - first is very
1171 	 * early, e.g. from setup_arch(), and second - when percpu_areas
1172 	 * are initialised.
1173 	 */
1174 	if (!early)
1175 		set_percpu_data_ready();
1176 
1177 	if (log_buf != __log_buf)
1178 		return;
1179 
1180 	if (!early && !new_log_buf_len)
1181 		log_buf_add_cpu();
1182 
1183 	if (!new_log_buf_len)
1184 		return;
1185 
1186 	new_descs_count = new_log_buf_len >> PRB_AVGBITS;
1187 	if (new_descs_count == 0) {
1188 		pr_err("new_log_buf_len: %lu too small\n", new_log_buf_len);
1189 		return;
1190 	}
1191 
1192 	new_log_buf = memblock_alloc(new_log_buf_len, LOG_ALIGN);
1193 	if (unlikely(!new_log_buf)) {
1194 		pr_err("log_buf_len: %lu text bytes not available\n",
1195 		       new_log_buf_len);
1196 		return;
1197 	}
1198 
1199 	new_descs_size = new_descs_count * sizeof(struct prb_desc);
1200 	new_descs = memblock_alloc(new_descs_size, LOG_ALIGN);
1201 	if (unlikely(!new_descs)) {
1202 		pr_err("log_buf_len: %zu desc bytes not available\n",
1203 		       new_descs_size);
1204 		goto err_free_log_buf;
1205 	}
1206 
1207 	new_infos_size = new_descs_count * sizeof(struct printk_info);
1208 	new_infos = memblock_alloc(new_infos_size, LOG_ALIGN);
1209 	if (unlikely(!new_infos)) {
1210 		pr_err("log_buf_len: %zu info bytes not available\n",
1211 		       new_infos_size);
1212 		goto err_free_descs;
1213 	}
1214 
1215 	prb_rec_init_rd(&r, &info, &setup_text_buf[0], sizeof(setup_text_buf));
1216 
1217 	prb_init(&printk_rb_dynamic,
1218 		 new_log_buf, ilog2(new_log_buf_len),
1219 		 new_descs, ilog2(new_descs_count),
1220 		 new_infos);
1221 
1222 	local_irq_save(flags);
1223 
1224 	log_buf_len = new_log_buf_len;
1225 	log_buf = new_log_buf;
1226 	new_log_buf_len = 0;
1227 
1228 	free = __LOG_BUF_LEN;
1229 	prb_for_each_record(0, &printk_rb_static, seq, &r) {
1230 		text_size = add_to_rb(&printk_rb_dynamic, &r);
1231 		if (text_size > free)
1232 			free = 0;
1233 		else
1234 			free -= text_size;
1235 	}
1236 
1237 	prb = &printk_rb_dynamic;
1238 
1239 	local_irq_restore(flags);
1240 
1241 	/*
1242 	 * Copy any remaining messages that might have appeared from
1243 	 * NMI context after copying but before switching to the
1244 	 * dynamic buffer.
1245 	 */
1246 	prb_for_each_record(seq, &printk_rb_static, seq, &r) {
1247 		text_size = add_to_rb(&printk_rb_dynamic, &r);
1248 		if (text_size > free)
1249 			free = 0;
1250 		else
1251 			free -= text_size;
1252 	}
1253 
1254 	if (seq != prb_next_seq(&printk_rb_static)) {
1255 		pr_err("dropped %llu messages\n",
1256 		       prb_next_seq(&printk_rb_static) - seq);
1257 	}
1258 
1259 	pr_info("log_buf_len: %u bytes\n", log_buf_len);
1260 	pr_info("early log buf free: %u(%u%%)\n",
1261 		free, (free * 100) / __LOG_BUF_LEN);
1262 	return;
1263 
1264 err_free_descs:
1265 	memblock_free(new_descs, new_descs_size);
1266 err_free_log_buf:
1267 	memblock_free(new_log_buf, new_log_buf_len);
1268 }
1269 
1270 static bool __read_mostly ignore_loglevel;
1271 
1272 static int __init ignore_loglevel_setup(char *str)
1273 {
1274 	ignore_loglevel = true;
1275 	pr_info("debug: ignoring loglevel setting.\n");
1276 
1277 	return 0;
1278 }
1279 
1280 early_param("ignore_loglevel", ignore_loglevel_setup);
1281 module_param(ignore_loglevel, bool, S_IRUGO | S_IWUSR);
1282 MODULE_PARM_DESC(ignore_loglevel,
1283 		 "ignore loglevel setting (prints all kernel messages to the console)");
1284 
1285 static bool suppress_message_printing(int level)
1286 {
1287 	return (level >= console_loglevel && !ignore_loglevel);
1288 }
1289 
1290 #ifdef CONFIG_BOOT_PRINTK_DELAY
1291 
1292 static int boot_delay; /* msecs delay after each printk during bootup */
1293 static unsigned long long loops_per_msec;	/* based on boot_delay */
1294 
1295 static int __init boot_delay_setup(char *str)
1296 {
1297 	unsigned long lpj;
1298 
1299 	lpj = preset_lpj ? preset_lpj : 1000000;	/* some guess */
1300 	loops_per_msec = (unsigned long long)lpj / 1000 * HZ;
1301 
1302 	get_option(&str, &boot_delay);
1303 	if (boot_delay > 10 * 1000)
1304 		boot_delay = 0;
1305 
1306 	pr_debug("boot_delay: %u, preset_lpj: %ld, lpj: %lu, "
1307 		"HZ: %d, loops_per_msec: %llu\n",
1308 		boot_delay, preset_lpj, lpj, HZ, loops_per_msec);
1309 	return 0;
1310 }
1311 early_param("boot_delay", boot_delay_setup);
1312 
1313 static void boot_delay_msec(int level)
1314 {
1315 	unsigned long long k;
1316 	unsigned long timeout;
1317 
1318 	if ((boot_delay == 0 || system_state >= SYSTEM_RUNNING)
1319 		|| suppress_message_printing(level)) {
1320 		return;
1321 	}
1322 
1323 	k = (unsigned long long)loops_per_msec * boot_delay;
1324 
1325 	timeout = jiffies + msecs_to_jiffies(boot_delay);
1326 	while (k) {
1327 		k--;
1328 		cpu_relax();
1329 		/*
1330 		 * use (volatile) jiffies to prevent
1331 		 * compiler reduction; loop termination via jiffies
1332 		 * is secondary and may or may not happen.
1333 		 */
1334 		if (time_after(jiffies, timeout))
1335 			break;
1336 		touch_nmi_watchdog();
1337 	}
1338 }
1339 #else
1340 static inline void boot_delay_msec(int level)
1341 {
1342 }
1343 #endif
1344 
1345 static bool printk_time = IS_ENABLED(CONFIG_PRINTK_TIME);
1346 module_param_named(time, printk_time, bool, S_IRUGO | S_IWUSR);
1347 
1348 static size_t print_syslog(unsigned int level, char *buf)
1349 {
1350 	return sprintf(buf, "<%u>", level);
1351 }
1352 
1353 static size_t print_time(u64 ts, char *buf)
1354 {
1355 	unsigned long rem_nsec = do_div(ts, 1000000000);
1356 
1357 	return sprintf(buf, "[%5lu.%06lu]",
1358 		       (unsigned long)ts, rem_nsec / 1000);
1359 }
1360 
1361 #ifdef CONFIG_PRINTK_CALLER
1362 static size_t print_caller(u32 id, char *buf)
1363 {
1364 	char caller[12];
1365 
1366 	snprintf(caller, sizeof(caller), "%c%u",
1367 		 id & 0x80000000 ? 'C' : 'T', id & ~0x80000000);
1368 	return sprintf(buf, "[%6s]", caller);
1369 }
1370 #else
1371 #define print_caller(id, buf) 0
1372 #endif
1373 
1374 static size_t info_print_prefix(const struct printk_info  *info, bool syslog,
1375 				bool time, char *buf)
1376 {
1377 	size_t len = 0;
1378 
1379 	if (syslog)
1380 		len = print_syslog((info->facility << 3) | info->level, buf);
1381 
1382 	if (time)
1383 		len += print_time(info->ts_nsec, buf + len);
1384 
1385 	len += print_caller(info->caller_id, buf + len);
1386 
1387 	if (IS_ENABLED(CONFIG_PRINTK_CALLER) || time) {
1388 		buf[len++] = ' ';
1389 		buf[len] = '\0';
1390 	}
1391 
1392 	return len;
1393 }
1394 
1395 /*
1396  * Prepare the record for printing. The text is shifted within the given
1397  * buffer to avoid a need for another one. The following operations are
1398  * done:
1399  *
1400  *   - Add prefix for each line.
1401  *   - Drop truncated lines that no longer fit into the buffer.
1402  *   - Add the trailing newline that has been removed in vprintk_store().
1403  *   - Add a string terminator.
1404  *
1405  * Since the produced string is always terminated, the maximum possible
1406  * return value is @r->text_buf_size - 1;
1407  *
1408  * Return: The length of the updated/prepared text, including the added
1409  * prefixes and the newline. The terminator is not counted. The dropped
1410  * line(s) are not counted.
1411  */
1412 static size_t record_print_text(struct printk_record *r, bool syslog,
1413 				bool time)
1414 {
1415 	size_t text_len = r->info->text_len;
1416 	size_t buf_size = r->text_buf_size;
1417 	char *text = r->text_buf;
1418 	char prefix[PREFIX_MAX];
1419 	bool truncated = false;
1420 	size_t prefix_len;
1421 	size_t line_len;
1422 	size_t len = 0;
1423 	char *next;
1424 
1425 	/*
1426 	 * If the message was truncated because the buffer was not large
1427 	 * enough, treat the available text as if it were the full text.
1428 	 */
1429 	if (text_len > buf_size)
1430 		text_len = buf_size;
1431 
1432 	prefix_len = info_print_prefix(r->info, syslog, time, prefix);
1433 
1434 	/*
1435 	 * @text_len: bytes of unprocessed text
1436 	 * @line_len: bytes of current line _without_ newline
1437 	 * @text:     pointer to beginning of current line
1438 	 * @len:      number of bytes prepared in r->text_buf
1439 	 */
1440 	for (;;) {
1441 		next = memchr(text, '\n', text_len);
1442 		if (next) {
1443 			line_len = next - text;
1444 		} else {
1445 			/* Drop truncated line(s). */
1446 			if (truncated)
1447 				break;
1448 			line_len = text_len;
1449 		}
1450 
1451 		/*
1452 		 * Truncate the text if there is not enough space to add the
1453 		 * prefix and a trailing newline and a terminator.
1454 		 */
1455 		if (len + prefix_len + text_len + 1 + 1 > buf_size) {
1456 			/* Drop even the current line if no space. */
1457 			if (len + prefix_len + line_len + 1 + 1 > buf_size)
1458 				break;
1459 
1460 			text_len = buf_size - len - prefix_len - 1 - 1;
1461 			truncated = true;
1462 		}
1463 
1464 		memmove(text + prefix_len, text, text_len);
1465 		memcpy(text, prefix, prefix_len);
1466 
1467 		/*
1468 		 * Increment the prepared length to include the text and
1469 		 * prefix that were just moved+copied. Also increment for the
1470 		 * newline at the end of this line. If this is the last line,
1471 		 * there is no newline, but it will be added immediately below.
1472 		 */
1473 		len += prefix_len + line_len + 1;
1474 		if (text_len == line_len) {
1475 			/*
1476 			 * This is the last line. Add the trailing newline
1477 			 * removed in vprintk_store().
1478 			 */
1479 			text[prefix_len + line_len] = '\n';
1480 			break;
1481 		}
1482 
1483 		/*
1484 		 * Advance beyond the added prefix and the related line with
1485 		 * its newline.
1486 		 */
1487 		text += prefix_len + line_len + 1;
1488 
1489 		/*
1490 		 * The remaining text has only decreased by the line with its
1491 		 * newline.
1492 		 *
1493 		 * Note that @text_len can become zero. It happens when @text
1494 		 * ended with a newline (either due to truncation or the
1495 		 * original string ending with "\n\n"). The loop is correctly
1496 		 * repeated and (if not truncated) an empty line with a prefix
1497 		 * will be prepared.
1498 		 */
1499 		text_len -= line_len + 1;
1500 	}
1501 
1502 	/*
1503 	 * If a buffer was provided, it will be terminated. Space for the
1504 	 * string terminator is guaranteed to be available. The terminator is
1505 	 * not counted in the return value.
1506 	 */
1507 	if (buf_size > 0)
1508 		r->text_buf[len] = 0;
1509 
1510 	return len;
1511 }
1512 
1513 static size_t get_record_print_text_size(struct printk_info *info,
1514 					 unsigned int line_count,
1515 					 bool syslog, bool time)
1516 {
1517 	char prefix[PREFIX_MAX];
1518 	size_t prefix_len;
1519 
1520 	prefix_len = info_print_prefix(info, syslog, time, prefix);
1521 
1522 	/*
1523 	 * Each line will be preceded with a prefix. The intermediate
1524 	 * newlines are already within the text, but a final trailing
1525 	 * newline will be added.
1526 	 */
1527 	return ((prefix_len * line_count) + info->text_len + 1);
1528 }
1529 
1530 /*
1531  * Beginning with @start_seq, find the first record where it and all following
1532  * records up to (but not including) @max_seq fit into @size.
1533  *
1534  * @max_seq is simply an upper bound and does not need to exist. If the caller
1535  * does not require an upper bound, -1 can be used for @max_seq.
1536  */
1537 static u64 find_first_fitting_seq(u64 start_seq, u64 max_seq, size_t size,
1538 				  bool syslog, bool time)
1539 {
1540 	struct printk_info info;
1541 	unsigned int line_count;
1542 	size_t len = 0;
1543 	u64 seq;
1544 
1545 	/* Determine the size of the records up to @max_seq. */
1546 	prb_for_each_info(start_seq, prb, seq, &info, &line_count) {
1547 		if (info.seq >= max_seq)
1548 			break;
1549 		len += get_record_print_text_size(&info, line_count, syslog, time);
1550 	}
1551 
1552 	/*
1553 	 * Adjust the upper bound for the next loop to avoid subtracting
1554 	 * lengths that were never added.
1555 	 */
1556 	if (seq < max_seq)
1557 		max_seq = seq;
1558 
1559 	/*
1560 	 * Move first record forward until length fits into the buffer. Ignore
1561 	 * newest messages that were not counted in the above cycle. Messages
1562 	 * might appear and get lost in the meantime. This is a best effort
1563 	 * that prevents an infinite loop that could occur with a retry.
1564 	 */
1565 	prb_for_each_info(start_seq, prb, seq, &info, &line_count) {
1566 		if (len <= size || info.seq >= max_seq)
1567 			break;
1568 		len -= get_record_print_text_size(&info, line_count, syslog, time);
1569 	}
1570 
1571 	return seq;
1572 }
1573 
1574 /* The caller is responsible for making sure @size is greater than 0. */
1575 static int syslog_print(char __user *buf, int size)
1576 {
1577 	struct printk_info info;
1578 	struct printk_record r;
1579 	char *text;
1580 	int len = 0;
1581 	u64 seq;
1582 
1583 	text = kmalloc(CONSOLE_LOG_MAX, GFP_KERNEL);
1584 	if (!text)
1585 		return -ENOMEM;
1586 
1587 	prb_rec_init_rd(&r, &info, text, CONSOLE_LOG_MAX);
1588 
1589 	mutex_lock(&syslog_lock);
1590 
1591 	/*
1592 	 * Wait for the @syslog_seq record to be available. @syslog_seq may
1593 	 * change while waiting.
1594 	 */
1595 	do {
1596 		seq = syslog_seq;
1597 
1598 		mutex_unlock(&syslog_lock);
1599 		/*
1600 		 * Guarantee this task is visible on the waitqueue before
1601 		 * checking the wake condition.
1602 		 *
1603 		 * The full memory barrier within set_current_state() of
1604 		 * prepare_to_wait_event() pairs with the full memory barrier
1605 		 * within wq_has_sleeper().
1606 		 *
1607 		 * This pairs with __wake_up_klogd:A.
1608 		 */
1609 		len = wait_event_interruptible(log_wait,
1610 				prb_read_valid(prb, seq, NULL)); /* LMM(syslog_print:A) */
1611 		mutex_lock(&syslog_lock);
1612 
1613 		if (len)
1614 			goto out;
1615 	} while (syslog_seq != seq);
1616 
1617 	/*
1618 	 * Copy records that fit into the buffer. The above cycle makes sure
1619 	 * that the first record is always available.
1620 	 */
1621 	do {
1622 		size_t n;
1623 		size_t skip;
1624 		int err;
1625 
1626 		if (!prb_read_valid(prb, syslog_seq, &r))
1627 			break;
1628 
1629 		if (r.info->seq != syslog_seq) {
1630 			/* message is gone, move to next valid one */
1631 			syslog_seq = r.info->seq;
1632 			syslog_partial = 0;
1633 		}
1634 
1635 		/*
1636 		 * To keep reading/counting partial line consistent,
1637 		 * use printk_time value as of the beginning of a line.
1638 		 */
1639 		if (!syslog_partial)
1640 			syslog_time = printk_time;
1641 
1642 		skip = syslog_partial;
1643 		n = record_print_text(&r, true, syslog_time);
1644 		if (n - syslog_partial <= size) {
1645 			/* message fits into buffer, move forward */
1646 			syslog_seq = r.info->seq + 1;
1647 			n -= syslog_partial;
1648 			syslog_partial = 0;
1649 		} else if (!len){
1650 			/* partial read(), remember position */
1651 			n = size;
1652 			syslog_partial += n;
1653 		} else
1654 			n = 0;
1655 
1656 		if (!n)
1657 			break;
1658 
1659 		mutex_unlock(&syslog_lock);
1660 		err = copy_to_user(buf, text + skip, n);
1661 		mutex_lock(&syslog_lock);
1662 
1663 		if (err) {
1664 			if (!len)
1665 				len = -EFAULT;
1666 			break;
1667 		}
1668 
1669 		len += n;
1670 		size -= n;
1671 		buf += n;
1672 	} while (size);
1673 out:
1674 	mutex_unlock(&syslog_lock);
1675 	kfree(text);
1676 	return len;
1677 }
1678 
1679 static int syslog_print_all(char __user *buf, int size, bool clear)
1680 {
1681 	struct printk_info info;
1682 	struct printk_record r;
1683 	char *text;
1684 	int len = 0;
1685 	u64 seq;
1686 	bool time;
1687 
1688 	text = kmalloc(CONSOLE_LOG_MAX, GFP_KERNEL);
1689 	if (!text)
1690 		return -ENOMEM;
1691 
1692 	time = printk_time;
1693 	/*
1694 	 * Find first record that fits, including all following records,
1695 	 * into the user-provided buffer for this dump.
1696 	 */
1697 	seq = find_first_fitting_seq(latched_seq_read_nolock(&clear_seq), -1,
1698 				     size, true, time);
1699 
1700 	prb_rec_init_rd(&r, &info, text, CONSOLE_LOG_MAX);
1701 
1702 	len = 0;
1703 	prb_for_each_record(seq, prb, seq, &r) {
1704 		int textlen;
1705 
1706 		textlen = record_print_text(&r, true, time);
1707 
1708 		if (len + textlen > size) {
1709 			seq--;
1710 			break;
1711 		}
1712 
1713 		if (copy_to_user(buf + len, text, textlen))
1714 			len = -EFAULT;
1715 		else
1716 			len += textlen;
1717 
1718 		if (len < 0)
1719 			break;
1720 	}
1721 
1722 	if (clear) {
1723 		mutex_lock(&syslog_lock);
1724 		latched_seq_write(&clear_seq, seq);
1725 		mutex_unlock(&syslog_lock);
1726 	}
1727 
1728 	kfree(text);
1729 	return len;
1730 }
1731 
1732 static void syslog_clear(void)
1733 {
1734 	mutex_lock(&syslog_lock);
1735 	latched_seq_write(&clear_seq, prb_next_seq(prb));
1736 	mutex_unlock(&syslog_lock);
1737 }
1738 
1739 int do_syslog(int type, char __user *buf, int len, int source)
1740 {
1741 	struct printk_info info;
1742 	bool clear = false;
1743 	static int saved_console_loglevel = LOGLEVEL_DEFAULT;
1744 	int error;
1745 
1746 	error = check_syslog_permissions(type, source);
1747 	if (error)
1748 		return error;
1749 
1750 	switch (type) {
1751 	case SYSLOG_ACTION_CLOSE:	/* Close log */
1752 		break;
1753 	case SYSLOG_ACTION_OPEN:	/* Open log */
1754 		break;
1755 	case SYSLOG_ACTION_READ:	/* Read from log */
1756 		if (!buf || len < 0)
1757 			return -EINVAL;
1758 		if (!len)
1759 			return 0;
1760 		if (!access_ok(buf, len))
1761 			return -EFAULT;
1762 		error = syslog_print(buf, len);
1763 		break;
1764 	/* Read/clear last kernel messages */
1765 	case SYSLOG_ACTION_READ_CLEAR:
1766 		clear = true;
1767 		fallthrough;
1768 	/* Read last kernel messages */
1769 	case SYSLOG_ACTION_READ_ALL:
1770 		if (!buf || len < 0)
1771 			return -EINVAL;
1772 		if (!len)
1773 			return 0;
1774 		if (!access_ok(buf, len))
1775 			return -EFAULT;
1776 		error = syslog_print_all(buf, len, clear);
1777 		break;
1778 	/* Clear ring buffer */
1779 	case SYSLOG_ACTION_CLEAR:
1780 		syslog_clear();
1781 		break;
1782 	/* Disable logging to console */
1783 	case SYSLOG_ACTION_CONSOLE_OFF:
1784 		if (saved_console_loglevel == LOGLEVEL_DEFAULT)
1785 			saved_console_loglevel = console_loglevel;
1786 		console_loglevel = minimum_console_loglevel;
1787 		break;
1788 	/* Enable logging to console */
1789 	case SYSLOG_ACTION_CONSOLE_ON:
1790 		if (saved_console_loglevel != LOGLEVEL_DEFAULT) {
1791 			console_loglevel = saved_console_loglevel;
1792 			saved_console_loglevel = LOGLEVEL_DEFAULT;
1793 		}
1794 		break;
1795 	/* Set level of messages printed to console */
1796 	case SYSLOG_ACTION_CONSOLE_LEVEL:
1797 		if (len < 1 || len > 8)
1798 			return -EINVAL;
1799 		if (len < minimum_console_loglevel)
1800 			len = minimum_console_loglevel;
1801 		console_loglevel = len;
1802 		/* Implicitly re-enable logging to console */
1803 		saved_console_loglevel = LOGLEVEL_DEFAULT;
1804 		break;
1805 	/* Number of chars in the log buffer */
1806 	case SYSLOG_ACTION_SIZE_UNREAD:
1807 		mutex_lock(&syslog_lock);
1808 		if (!prb_read_valid_info(prb, syslog_seq, &info, NULL)) {
1809 			/* No unread messages. */
1810 			mutex_unlock(&syslog_lock);
1811 			return 0;
1812 		}
1813 		if (info.seq != syslog_seq) {
1814 			/* messages are gone, move to first one */
1815 			syslog_seq = info.seq;
1816 			syslog_partial = 0;
1817 		}
1818 		if (source == SYSLOG_FROM_PROC) {
1819 			/*
1820 			 * Short-cut for poll(/"proc/kmsg") which simply checks
1821 			 * for pending data, not the size; return the count of
1822 			 * records, not the length.
1823 			 */
1824 			error = prb_next_seq(prb) - syslog_seq;
1825 		} else {
1826 			bool time = syslog_partial ? syslog_time : printk_time;
1827 			unsigned int line_count;
1828 			u64 seq;
1829 
1830 			prb_for_each_info(syslog_seq, prb, seq, &info,
1831 					  &line_count) {
1832 				error += get_record_print_text_size(&info, line_count,
1833 								    true, time);
1834 				time = printk_time;
1835 			}
1836 			error -= syslog_partial;
1837 		}
1838 		mutex_unlock(&syslog_lock);
1839 		break;
1840 	/* Size of the log buffer */
1841 	case SYSLOG_ACTION_SIZE_BUFFER:
1842 		error = log_buf_len;
1843 		break;
1844 	default:
1845 		error = -EINVAL;
1846 		break;
1847 	}
1848 
1849 	return error;
1850 }
1851 
1852 SYSCALL_DEFINE3(syslog, int, type, char __user *, buf, int, len)
1853 {
1854 	return do_syslog(type, buf, len, SYSLOG_FROM_READER);
1855 }
1856 
1857 /*
1858  * Special console_lock variants that help to reduce the risk of soft-lockups.
1859  * They allow to pass console_lock to another printk() call using a busy wait.
1860  */
1861 
1862 #ifdef CONFIG_LOCKDEP
1863 static struct lockdep_map console_owner_dep_map = {
1864 	.name = "console_owner"
1865 };
1866 #endif
1867 
1868 static DEFINE_RAW_SPINLOCK(console_owner_lock);
1869 static struct task_struct *console_owner;
1870 static bool console_waiter;
1871 
1872 /**
1873  * console_lock_spinning_enable - mark beginning of code where another
1874  *	thread might safely busy wait
1875  *
1876  * This basically converts console_lock into a spinlock. This marks
1877  * the section where the console_lock owner can not sleep, because
1878  * there may be a waiter spinning (like a spinlock). Also it must be
1879  * ready to hand over the lock at the end of the section.
1880  */
1881 static void console_lock_spinning_enable(void)
1882 {
1883 	raw_spin_lock(&console_owner_lock);
1884 	console_owner = current;
1885 	raw_spin_unlock(&console_owner_lock);
1886 
1887 	/* The waiter may spin on us after setting console_owner */
1888 	spin_acquire(&console_owner_dep_map, 0, 0, _THIS_IP_);
1889 }
1890 
1891 /**
1892  * console_lock_spinning_disable_and_check - mark end of code where another
1893  *	thread was able to busy wait and check if there is a waiter
1894  *
1895  * This is called at the end of the section where spinning is allowed.
1896  * It has two functions. First, it is a signal that it is no longer
1897  * safe to start busy waiting for the lock. Second, it checks if
1898  * there is a busy waiter and passes the lock rights to her.
1899  *
1900  * Important: Callers lose both the console_lock and the SRCU read lock if
1901  *	there was a busy waiter. They must not touch items synchronized by
1902  *	console_lock or SRCU read lock in this case.
1903  *
1904  * Return: 1 if the lock rights were passed, 0 otherwise.
1905  */
1906 static int console_lock_spinning_disable_and_check(int cookie)
1907 {
1908 	int waiter;
1909 
1910 	raw_spin_lock(&console_owner_lock);
1911 	waiter = READ_ONCE(console_waiter);
1912 	console_owner = NULL;
1913 	raw_spin_unlock(&console_owner_lock);
1914 
1915 	if (!waiter) {
1916 		spin_release(&console_owner_dep_map, _THIS_IP_);
1917 		return 0;
1918 	}
1919 
1920 	/* The waiter is now free to continue */
1921 	WRITE_ONCE(console_waiter, false);
1922 
1923 	spin_release(&console_owner_dep_map, _THIS_IP_);
1924 
1925 	/*
1926 	 * Preserve lockdep lock ordering. Release the SRCU read lock before
1927 	 * releasing the console_lock.
1928 	 */
1929 	console_srcu_read_unlock(cookie);
1930 
1931 	/*
1932 	 * Hand off console_lock to waiter. The waiter will perform
1933 	 * the up(). After this, the waiter is the console_lock owner.
1934 	 */
1935 	mutex_release(&console_lock_dep_map, _THIS_IP_);
1936 	return 1;
1937 }
1938 
1939 /**
1940  * console_trylock_spinning - try to get console_lock by busy waiting
1941  *
1942  * This allows to busy wait for the console_lock when the current
1943  * owner is running in specially marked sections. It means that
1944  * the current owner is running and cannot reschedule until it
1945  * is ready to lose the lock.
1946  *
1947  * Return: 1 if we got the lock, 0 othrewise
1948  */
1949 static int console_trylock_spinning(void)
1950 {
1951 	struct task_struct *owner = NULL;
1952 	bool waiter;
1953 	bool spin = false;
1954 	unsigned long flags;
1955 
1956 	if (console_trylock())
1957 		return 1;
1958 
1959 	/*
1960 	 * It's unsafe to spin once a panic has begun. If we are the
1961 	 * panic CPU, we may have already halted the owner of the
1962 	 * console_sem. If we are not the panic CPU, then we should
1963 	 * avoid taking console_sem, so the panic CPU has a better
1964 	 * chance of cleanly acquiring it later.
1965 	 */
1966 	if (panic_in_progress())
1967 		return 0;
1968 
1969 	printk_safe_enter_irqsave(flags);
1970 
1971 	raw_spin_lock(&console_owner_lock);
1972 	owner = READ_ONCE(console_owner);
1973 	waiter = READ_ONCE(console_waiter);
1974 	if (!waiter && owner && owner != current) {
1975 		WRITE_ONCE(console_waiter, true);
1976 		spin = true;
1977 	}
1978 	raw_spin_unlock(&console_owner_lock);
1979 
1980 	/*
1981 	 * If there is an active printk() writing to the
1982 	 * consoles, instead of having it write our data too,
1983 	 * see if we can offload that load from the active
1984 	 * printer, and do some printing ourselves.
1985 	 * Go into a spin only if there isn't already a waiter
1986 	 * spinning, and there is an active printer, and
1987 	 * that active printer isn't us (recursive printk?).
1988 	 */
1989 	if (!spin) {
1990 		printk_safe_exit_irqrestore(flags);
1991 		return 0;
1992 	}
1993 
1994 	/* We spin waiting for the owner to release us */
1995 	spin_acquire(&console_owner_dep_map, 0, 0, _THIS_IP_);
1996 	/* Owner will clear console_waiter on hand off */
1997 	while (READ_ONCE(console_waiter))
1998 		cpu_relax();
1999 	spin_release(&console_owner_dep_map, _THIS_IP_);
2000 
2001 	printk_safe_exit_irqrestore(flags);
2002 	/*
2003 	 * The owner passed the console lock to us.
2004 	 * Since we did not spin on console lock, annotate
2005 	 * this as a trylock. Otherwise lockdep will
2006 	 * complain.
2007 	 */
2008 	mutex_acquire(&console_lock_dep_map, 0, 1, _THIS_IP_);
2009 
2010 	return 1;
2011 }
2012 
2013 /*
2014  * Call the specified console driver, asking it to write out the specified
2015  * text and length. If @dropped_text is non-NULL and any records have been
2016  * dropped, a dropped message will be written out first.
2017  */
2018 static void call_console_driver(struct console *con, const char *text, size_t len,
2019 				char *dropped_text)
2020 {
2021 	size_t dropped_len;
2022 
2023 	if (con->dropped && dropped_text) {
2024 		dropped_len = snprintf(dropped_text, DROPPED_TEXT_MAX,
2025 				       "** %lu printk messages dropped **\n",
2026 				       con->dropped);
2027 		con->dropped = 0;
2028 		con->write(con, dropped_text, dropped_len);
2029 	}
2030 
2031 	con->write(con, text, len);
2032 }
2033 
2034 /*
2035  * Recursion is tracked separately on each CPU. If NMIs are supported, an
2036  * additional NMI context per CPU is also separately tracked. Until per-CPU
2037  * is available, a separate "early tracking" is performed.
2038  */
2039 static DEFINE_PER_CPU(u8, printk_count);
2040 static u8 printk_count_early;
2041 #ifdef CONFIG_HAVE_NMI
2042 static DEFINE_PER_CPU(u8, printk_count_nmi);
2043 static u8 printk_count_nmi_early;
2044 #endif
2045 
2046 /*
2047  * Recursion is limited to keep the output sane. printk() should not require
2048  * more than 1 level of recursion (allowing, for example, printk() to trigger
2049  * a WARN), but a higher value is used in case some printk-internal errors
2050  * exist, such as the ringbuffer validation checks failing.
2051  */
2052 #define PRINTK_MAX_RECURSION 3
2053 
2054 /*
2055  * Return a pointer to the dedicated counter for the CPU+context of the
2056  * caller.
2057  */
2058 static u8 *__printk_recursion_counter(void)
2059 {
2060 #ifdef CONFIG_HAVE_NMI
2061 	if (in_nmi()) {
2062 		if (printk_percpu_data_ready())
2063 			return this_cpu_ptr(&printk_count_nmi);
2064 		return &printk_count_nmi_early;
2065 	}
2066 #endif
2067 	if (printk_percpu_data_ready())
2068 		return this_cpu_ptr(&printk_count);
2069 	return &printk_count_early;
2070 }
2071 
2072 /*
2073  * Enter recursion tracking. Interrupts are disabled to simplify tracking.
2074  * The caller must check the boolean return value to see if the recursion is
2075  * allowed. On failure, interrupts are not disabled.
2076  *
2077  * @recursion_ptr must be a variable of type (u8 *) and is the same variable
2078  * that is passed to printk_exit_irqrestore().
2079  */
2080 #define printk_enter_irqsave(recursion_ptr, flags)	\
2081 ({							\
2082 	bool success = true;				\
2083 							\
2084 	typecheck(u8 *, recursion_ptr);			\
2085 	local_irq_save(flags);				\
2086 	(recursion_ptr) = __printk_recursion_counter();	\
2087 	if (*(recursion_ptr) > PRINTK_MAX_RECURSION) {	\
2088 		local_irq_restore(flags);		\
2089 		success = false;			\
2090 	} else {					\
2091 		(*(recursion_ptr))++;			\
2092 	}						\
2093 	success;					\
2094 })
2095 
2096 /* Exit recursion tracking, restoring interrupts. */
2097 #define printk_exit_irqrestore(recursion_ptr, flags)	\
2098 	do {						\
2099 		typecheck(u8 *, recursion_ptr);		\
2100 		(*(recursion_ptr))--;			\
2101 		local_irq_restore(flags);		\
2102 	} while (0)
2103 
2104 int printk_delay_msec __read_mostly;
2105 
2106 static inline void printk_delay(int level)
2107 {
2108 	boot_delay_msec(level);
2109 
2110 	if (unlikely(printk_delay_msec)) {
2111 		int m = printk_delay_msec;
2112 
2113 		while (m--) {
2114 			mdelay(1);
2115 			touch_nmi_watchdog();
2116 		}
2117 	}
2118 }
2119 
2120 static inline u32 printk_caller_id(void)
2121 {
2122 	return in_task() ? task_pid_nr(current) :
2123 		0x80000000 + smp_processor_id();
2124 }
2125 
2126 /**
2127  * printk_parse_prefix - Parse level and control flags.
2128  *
2129  * @text:     The terminated text message.
2130  * @level:    A pointer to the current level value, will be updated.
2131  * @flags:    A pointer to the current printk_info flags, will be updated.
2132  *
2133  * @level may be NULL if the caller is not interested in the parsed value.
2134  * Otherwise the variable pointed to by @level must be set to
2135  * LOGLEVEL_DEFAULT in order to be updated with the parsed value.
2136  *
2137  * @flags may be NULL if the caller is not interested in the parsed value.
2138  * Otherwise the variable pointed to by @flags will be OR'd with the parsed
2139  * value.
2140  *
2141  * Return: The length of the parsed level and control flags.
2142  */
2143 u16 printk_parse_prefix(const char *text, int *level,
2144 			enum printk_info_flags *flags)
2145 {
2146 	u16 prefix_len = 0;
2147 	int kern_level;
2148 
2149 	while (*text) {
2150 		kern_level = printk_get_level(text);
2151 		if (!kern_level)
2152 			break;
2153 
2154 		switch (kern_level) {
2155 		case '0' ... '7':
2156 			if (level && *level == LOGLEVEL_DEFAULT)
2157 				*level = kern_level - '0';
2158 			break;
2159 		case 'c':	/* KERN_CONT */
2160 			if (flags)
2161 				*flags |= LOG_CONT;
2162 		}
2163 
2164 		prefix_len += 2;
2165 		text += 2;
2166 	}
2167 
2168 	return prefix_len;
2169 }
2170 
2171 __printf(5, 0)
2172 static u16 printk_sprint(char *text, u16 size, int facility,
2173 			 enum printk_info_flags *flags, const char *fmt,
2174 			 va_list args)
2175 {
2176 	u16 text_len;
2177 
2178 	text_len = vscnprintf(text, size, fmt, args);
2179 
2180 	/* Mark and strip a trailing newline. */
2181 	if (text_len && text[text_len - 1] == '\n') {
2182 		text_len--;
2183 		*flags |= LOG_NEWLINE;
2184 	}
2185 
2186 	/* Strip log level and control flags. */
2187 	if (facility == 0) {
2188 		u16 prefix_len;
2189 
2190 		prefix_len = printk_parse_prefix(text, NULL, NULL);
2191 		if (prefix_len) {
2192 			text_len -= prefix_len;
2193 			memmove(text, text + prefix_len, text_len);
2194 		}
2195 	}
2196 
2197 	trace_console_rcuidle(text, text_len);
2198 
2199 	return text_len;
2200 }
2201 
2202 __printf(4, 0)
2203 int vprintk_store(int facility, int level,
2204 		  const struct dev_printk_info *dev_info,
2205 		  const char *fmt, va_list args)
2206 {
2207 	struct prb_reserved_entry e;
2208 	enum printk_info_flags flags = 0;
2209 	struct printk_record r;
2210 	unsigned long irqflags;
2211 	u16 trunc_msg_len = 0;
2212 	char prefix_buf[8];
2213 	u8 *recursion_ptr;
2214 	u16 reserve_size;
2215 	va_list args2;
2216 	u32 caller_id;
2217 	u16 text_len;
2218 	int ret = 0;
2219 	u64 ts_nsec;
2220 
2221 	if (!printk_enter_irqsave(recursion_ptr, irqflags))
2222 		return 0;
2223 
2224 	/*
2225 	 * Since the duration of printk() can vary depending on the message
2226 	 * and state of the ringbuffer, grab the timestamp now so that it is
2227 	 * close to the call of printk(). This provides a more deterministic
2228 	 * timestamp with respect to the caller.
2229 	 */
2230 	ts_nsec = local_clock();
2231 
2232 	caller_id = printk_caller_id();
2233 
2234 	/*
2235 	 * The sprintf needs to come first since the syslog prefix might be
2236 	 * passed in as a parameter. An extra byte must be reserved so that
2237 	 * later the vscnprintf() into the reserved buffer has room for the
2238 	 * terminating '\0', which is not counted by vsnprintf().
2239 	 */
2240 	va_copy(args2, args);
2241 	reserve_size = vsnprintf(&prefix_buf[0], sizeof(prefix_buf), fmt, args2) + 1;
2242 	va_end(args2);
2243 
2244 	if (reserve_size > LOG_LINE_MAX)
2245 		reserve_size = LOG_LINE_MAX;
2246 
2247 	/* Extract log level or control flags. */
2248 	if (facility == 0)
2249 		printk_parse_prefix(&prefix_buf[0], &level, &flags);
2250 
2251 	if (level == LOGLEVEL_DEFAULT)
2252 		level = default_message_loglevel;
2253 
2254 	if (dev_info)
2255 		flags |= LOG_NEWLINE;
2256 
2257 	if (flags & LOG_CONT) {
2258 		prb_rec_init_wr(&r, reserve_size);
2259 		if (prb_reserve_in_last(&e, prb, &r, caller_id, LOG_LINE_MAX)) {
2260 			text_len = printk_sprint(&r.text_buf[r.info->text_len], reserve_size,
2261 						 facility, &flags, fmt, args);
2262 			r.info->text_len += text_len;
2263 
2264 			if (flags & LOG_NEWLINE) {
2265 				r.info->flags |= LOG_NEWLINE;
2266 				prb_final_commit(&e);
2267 			} else {
2268 				prb_commit(&e);
2269 			}
2270 
2271 			ret = text_len;
2272 			goto out;
2273 		}
2274 	}
2275 
2276 	/*
2277 	 * Explicitly initialize the record before every prb_reserve() call.
2278 	 * prb_reserve_in_last() and prb_reserve() purposely invalidate the
2279 	 * structure when they fail.
2280 	 */
2281 	prb_rec_init_wr(&r, reserve_size);
2282 	if (!prb_reserve(&e, prb, &r)) {
2283 		/* truncate the message if it is too long for empty buffer */
2284 		truncate_msg(&reserve_size, &trunc_msg_len);
2285 
2286 		prb_rec_init_wr(&r, reserve_size + trunc_msg_len);
2287 		if (!prb_reserve(&e, prb, &r))
2288 			goto out;
2289 	}
2290 
2291 	/* fill message */
2292 	text_len = printk_sprint(&r.text_buf[0], reserve_size, facility, &flags, fmt, args);
2293 	if (trunc_msg_len)
2294 		memcpy(&r.text_buf[text_len], trunc_msg, trunc_msg_len);
2295 	r.info->text_len = text_len + trunc_msg_len;
2296 	r.info->facility = facility;
2297 	r.info->level = level & 7;
2298 	r.info->flags = flags & 0x1f;
2299 	r.info->ts_nsec = ts_nsec;
2300 	r.info->caller_id = caller_id;
2301 	if (dev_info)
2302 		memcpy(&r.info->dev_info, dev_info, sizeof(r.info->dev_info));
2303 
2304 	/* A message without a trailing newline can be continued. */
2305 	if (!(flags & LOG_NEWLINE))
2306 		prb_commit(&e);
2307 	else
2308 		prb_final_commit(&e);
2309 
2310 	ret = text_len + trunc_msg_len;
2311 out:
2312 	printk_exit_irqrestore(recursion_ptr, irqflags);
2313 	return ret;
2314 }
2315 
2316 asmlinkage int vprintk_emit(int facility, int level,
2317 			    const struct dev_printk_info *dev_info,
2318 			    const char *fmt, va_list args)
2319 {
2320 	int printed_len;
2321 	bool in_sched = false;
2322 
2323 	/* Suppress unimportant messages after panic happens */
2324 	if (unlikely(suppress_printk))
2325 		return 0;
2326 
2327 	if (unlikely(suppress_panic_printk) &&
2328 	    atomic_read(&panic_cpu) != raw_smp_processor_id())
2329 		return 0;
2330 
2331 	if (level == LOGLEVEL_SCHED) {
2332 		level = LOGLEVEL_DEFAULT;
2333 		in_sched = true;
2334 	}
2335 
2336 	printk_delay(level);
2337 
2338 	printed_len = vprintk_store(facility, level, dev_info, fmt, args);
2339 
2340 	/* If called from the scheduler, we can not call up(). */
2341 	if (!in_sched) {
2342 		/*
2343 		 * The caller may be holding system-critical or
2344 		 * timing-sensitive locks. Disable preemption during
2345 		 * printing of all remaining records to all consoles so that
2346 		 * this context can return as soon as possible. Hopefully
2347 		 * another printk() caller will take over the printing.
2348 		 */
2349 		preempt_disable();
2350 		/*
2351 		 * Try to acquire and then immediately release the console
2352 		 * semaphore. The release will print out buffers. With the
2353 		 * spinning variant, this context tries to take over the
2354 		 * printing from another printing context.
2355 		 */
2356 		if (console_trylock_spinning())
2357 			console_unlock();
2358 		preempt_enable();
2359 	}
2360 
2361 	wake_up_klogd();
2362 	return printed_len;
2363 }
2364 EXPORT_SYMBOL(vprintk_emit);
2365 
2366 int vprintk_default(const char *fmt, va_list args)
2367 {
2368 	return vprintk_emit(0, LOGLEVEL_DEFAULT, NULL, fmt, args);
2369 }
2370 EXPORT_SYMBOL_GPL(vprintk_default);
2371 
2372 asmlinkage __visible int _printk(const char *fmt, ...)
2373 {
2374 	va_list args;
2375 	int r;
2376 
2377 	va_start(args, fmt);
2378 	r = vprintk(fmt, args);
2379 	va_end(args);
2380 
2381 	return r;
2382 }
2383 EXPORT_SYMBOL(_printk);
2384 
2385 static bool pr_flush(int timeout_ms, bool reset_on_progress);
2386 static bool __pr_flush(struct console *con, int timeout_ms, bool reset_on_progress);
2387 
2388 #else /* CONFIG_PRINTK */
2389 
2390 #define CONSOLE_LOG_MAX		0
2391 #define DROPPED_TEXT_MAX	0
2392 #define printk_time		false
2393 
2394 #define prb_read_valid(rb, seq, r)	false
2395 #define prb_first_valid_seq(rb)		0
2396 #define prb_next_seq(rb)		0
2397 
2398 static u64 syslog_seq;
2399 
2400 static size_t record_print_text(const struct printk_record *r,
2401 				bool syslog, bool time)
2402 {
2403 	return 0;
2404 }
2405 static ssize_t info_print_ext_header(char *buf, size_t size,
2406 				     struct printk_info *info)
2407 {
2408 	return 0;
2409 }
2410 static ssize_t msg_print_ext_body(char *buf, size_t size,
2411 				  char *text, size_t text_len,
2412 				  struct dev_printk_info *dev_info) { return 0; }
2413 static void console_lock_spinning_enable(void) { }
2414 static int console_lock_spinning_disable_and_check(int cookie) { return 0; }
2415 static void call_console_driver(struct console *con, const char *text, size_t len,
2416 				char *dropped_text)
2417 {
2418 }
2419 static bool suppress_message_printing(int level) { return false; }
2420 static bool pr_flush(int timeout_ms, bool reset_on_progress) { return true; }
2421 static bool __pr_flush(struct console *con, int timeout_ms, bool reset_on_progress) { return true; }
2422 
2423 #endif /* CONFIG_PRINTK */
2424 
2425 #ifdef CONFIG_EARLY_PRINTK
2426 struct console *early_console;
2427 
2428 asmlinkage __visible void early_printk(const char *fmt, ...)
2429 {
2430 	va_list ap;
2431 	char buf[512];
2432 	int n;
2433 
2434 	if (!early_console)
2435 		return;
2436 
2437 	va_start(ap, fmt);
2438 	n = vscnprintf(buf, sizeof(buf), fmt, ap);
2439 	va_end(ap);
2440 
2441 	early_console->write(early_console, buf, n);
2442 }
2443 #endif
2444 
2445 static void set_user_specified(struct console_cmdline *c, bool user_specified)
2446 {
2447 	if (!user_specified)
2448 		return;
2449 
2450 	/*
2451 	 * @c console was defined by the user on the command line.
2452 	 * Do not clear when added twice also by SPCR or the device tree.
2453 	 */
2454 	c->user_specified = true;
2455 	/* At least one console defined by the user on the command line. */
2456 	console_set_on_cmdline = 1;
2457 }
2458 
2459 static int __add_preferred_console(char *name, int idx, char *options,
2460 				   char *brl_options, bool user_specified)
2461 {
2462 	struct console_cmdline *c;
2463 	int i;
2464 
2465 	/*
2466 	 *	See if this tty is not yet registered, and
2467 	 *	if we have a slot free.
2468 	 */
2469 	for (i = 0, c = console_cmdline;
2470 	     i < MAX_CMDLINECONSOLES && c->name[0];
2471 	     i++, c++) {
2472 		if (strcmp(c->name, name) == 0 && c->index == idx) {
2473 			if (!brl_options)
2474 				preferred_console = i;
2475 			set_user_specified(c, user_specified);
2476 			return 0;
2477 		}
2478 	}
2479 	if (i == MAX_CMDLINECONSOLES)
2480 		return -E2BIG;
2481 	if (!brl_options)
2482 		preferred_console = i;
2483 	strscpy(c->name, name, sizeof(c->name));
2484 	c->options = options;
2485 	set_user_specified(c, user_specified);
2486 	braille_set_options(c, brl_options);
2487 
2488 	c->index = idx;
2489 	return 0;
2490 }
2491 
2492 static int __init console_msg_format_setup(char *str)
2493 {
2494 	if (!strcmp(str, "syslog"))
2495 		console_msg_format = MSG_FORMAT_SYSLOG;
2496 	if (!strcmp(str, "default"))
2497 		console_msg_format = MSG_FORMAT_DEFAULT;
2498 	return 1;
2499 }
2500 __setup("console_msg_format=", console_msg_format_setup);
2501 
2502 /*
2503  * Set up a console.  Called via do_early_param() in init/main.c
2504  * for each "console=" parameter in the boot command line.
2505  */
2506 static int __init console_setup(char *str)
2507 {
2508 	char buf[sizeof(console_cmdline[0].name) + 4]; /* 4 for "ttyS" */
2509 	char *s, *options, *brl_options = NULL;
2510 	int idx;
2511 
2512 	/*
2513 	 * console="" or console=null have been suggested as a way to
2514 	 * disable console output. Use ttynull that has been created
2515 	 * for exactly this purpose.
2516 	 */
2517 	if (str[0] == 0 || strcmp(str, "null") == 0) {
2518 		__add_preferred_console("ttynull", 0, NULL, NULL, true);
2519 		return 1;
2520 	}
2521 
2522 	if (_braille_console_setup(&str, &brl_options))
2523 		return 1;
2524 
2525 	/*
2526 	 * Decode str into name, index, options.
2527 	 */
2528 	if (str[0] >= '0' && str[0] <= '9') {
2529 		strcpy(buf, "ttyS");
2530 		strncpy(buf + 4, str, sizeof(buf) - 5);
2531 	} else {
2532 		strncpy(buf, str, sizeof(buf) - 1);
2533 	}
2534 	buf[sizeof(buf) - 1] = 0;
2535 	options = strchr(str, ',');
2536 	if (options)
2537 		*(options++) = 0;
2538 #ifdef __sparc__
2539 	if (!strcmp(str, "ttya"))
2540 		strcpy(buf, "ttyS0");
2541 	if (!strcmp(str, "ttyb"))
2542 		strcpy(buf, "ttyS1");
2543 #endif
2544 	for (s = buf; *s; s++)
2545 		if (isdigit(*s) || *s == ',')
2546 			break;
2547 	idx = simple_strtoul(s, NULL, 10);
2548 	*s = 0;
2549 
2550 	__add_preferred_console(buf, idx, options, brl_options, true);
2551 	return 1;
2552 }
2553 __setup("console=", console_setup);
2554 
2555 /**
2556  * add_preferred_console - add a device to the list of preferred consoles.
2557  * @name: device name
2558  * @idx: device index
2559  * @options: options for this console
2560  *
2561  * The last preferred console added will be used for kernel messages
2562  * and stdin/out/err for init.  Normally this is used by console_setup
2563  * above to handle user-supplied console arguments; however it can also
2564  * be used by arch-specific code either to override the user or more
2565  * commonly to provide a default console (ie from PROM variables) when
2566  * the user has not supplied one.
2567  */
2568 int add_preferred_console(char *name, int idx, char *options)
2569 {
2570 	return __add_preferred_console(name, idx, options, NULL, false);
2571 }
2572 
2573 bool console_suspend_enabled = true;
2574 EXPORT_SYMBOL(console_suspend_enabled);
2575 
2576 static int __init console_suspend_disable(char *str)
2577 {
2578 	console_suspend_enabled = false;
2579 	return 1;
2580 }
2581 __setup("no_console_suspend", console_suspend_disable);
2582 module_param_named(console_suspend, console_suspend_enabled,
2583 		bool, S_IRUGO | S_IWUSR);
2584 MODULE_PARM_DESC(console_suspend, "suspend console during suspend"
2585 	" and hibernate operations");
2586 
2587 static bool printk_console_no_auto_verbose;
2588 
2589 void console_verbose(void)
2590 {
2591 	if (console_loglevel && !printk_console_no_auto_verbose)
2592 		console_loglevel = CONSOLE_LOGLEVEL_MOTORMOUTH;
2593 }
2594 EXPORT_SYMBOL_GPL(console_verbose);
2595 
2596 module_param_named(console_no_auto_verbose, printk_console_no_auto_verbose, bool, 0644);
2597 MODULE_PARM_DESC(console_no_auto_verbose, "Disable console loglevel raise to highest on oops/panic/etc");
2598 
2599 /**
2600  * suspend_console - suspend the console subsystem
2601  *
2602  * This disables printk() while we go into suspend states
2603  */
2604 void suspend_console(void)
2605 {
2606 	if (!console_suspend_enabled)
2607 		return;
2608 	pr_info("Suspending console(s) (use no_console_suspend to debug)\n");
2609 	pr_flush(1000, true);
2610 	console_lock();
2611 	console_suspended = 1;
2612 	up_console_sem();
2613 }
2614 
2615 void resume_console(void)
2616 {
2617 	if (!console_suspend_enabled)
2618 		return;
2619 	down_console_sem();
2620 	console_suspended = 0;
2621 	console_unlock();
2622 	pr_flush(1000, true);
2623 }
2624 
2625 /**
2626  * console_cpu_notify - print deferred console messages after CPU hotplug
2627  * @cpu: unused
2628  *
2629  * If printk() is called from a CPU that is not online yet, the messages
2630  * will be printed on the console only if there are CON_ANYTIME consoles.
2631  * This function is called when a new CPU comes online (or fails to come
2632  * up) or goes offline.
2633  */
2634 static int console_cpu_notify(unsigned int cpu)
2635 {
2636 	if (!cpuhp_tasks_frozen) {
2637 		/* If trylock fails, someone else is doing the printing */
2638 		if (console_trylock())
2639 			console_unlock();
2640 	}
2641 	return 0;
2642 }
2643 
2644 /**
2645  * console_lock - block the console subsystem from printing
2646  *
2647  * Acquires a lock which guarantees that no consoles will
2648  * be in or enter their write() callback.
2649  *
2650  * Can sleep, returns nothing.
2651  */
2652 void console_lock(void)
2653 {
2654 	might_sleep();
2655 
2656 	down_console_sem();
2657 	if (console_suspended)
2658 		return;
2659 	console_locked = 1;
2660 	console_may_schedule = 1;
2661 }
2662 EXPORT_SYMBOL(console_lock);
2663 
2664 /**
2665  * console_trylock - try to block the console subsystem from printing
2666  *
2667  * Try to acquire a lock which guarantees that no consoles will
2668  * be in or enter their write() callback.
2669  *
2670  * returns 1 on success, and 0 on failure to acquire the lock.
2671  */
2672 int console_trylock(void)
2673 {
2674 	if (down_trylock_console_sem())
2675 		return 0;
2676 	if (console_suspended) {
2677 		up_console_sem();
2678 		return 0;
2679 	}
2680 	console_locked = 1;
2681 	console_may_schedule = 0;
2682 	return 1;
2683 }
2684 EXPORT_SYMBOL(console_trylock);
2685 
2686 int is_console_locked(void)
2687 {
2688 	return console_locked;
2689 }
2690 EXPORT_SYMBOL(is_console_locked);
2691 
2692 /*
2693  * Return true when this CPU should unlock console_sem without pushing all
2694  * messages to the console. This reduces the chance that the console is
2695  * locked when the panic CPU tries to use it.
2696  */
2697 static bool abandon_console_lock_in_panic(void)
2698 {
2699 	if (!panic_in_progress())
2700 		return false;
2701 
2702 	/*
2703 	 * We can use raw_smp_processor_id() here because it is impossible for
2704 	 * the task to be migrated to the panic_cpu, or away from it. If
2705 	 * panic_cpu has already been set, and we're not currently executing on
2706 	 * that CPU, then we never will be.
2707 	 */
2708 	return atomic_read(&panic_cpu) != raw_smp_processor_id();
2709 }
2710 
2711 /*
2712  * Check if the given console is currently capable and allowed to print
2713  * records.
2714  *
2715  * Requires the console_srcu_read_lock.
2716  */
2717 static inline bool console_is_usable(struct console *con)
2718 {
2719 	short flags = console_srcu_read_flags(con);
2720 
2721 	if (!(flags & CON_ENABLED))
2722 		return false;
2723 
2724 	if (!con->write)
2725 		return false;
2726 
2727 	/*
2728 	 * Console drivers may assume that per-cpu resources have been
2729 	 * allocated. So unless they're explicitly marked as being able to
2730 	 * cope (CON_ANYTIME) don't call them until this CPU is officially up.
2731 	 */
2732 	if (!cpu_online(raw_smp_processor_id()) && !(flags & CON_ANYTIME))
2733 		return false;
2734 
2735 	return true;
2736 }
2737 
2738 static void __console_unlock(void)
2739 {
2740 	console_locked = 0;
2741 	up_console_sem();
2742 }
2743 
2744 /*
2745  * Print one record for the given console. The record printed is whatever
2746  * record is the next available record for the given console.
2747  *
2748  * @text is a buffer of size CONSOLE_LOG_MAX.
2749  *
2750  * If extended messages should be printed, @ext_text is a buffer of size
2751  * CONSOLE_EXT_LOG_MAX. Otherwise @ext_text must be NULL.
2752  *
2753  * If dropped messages should be printed, @dropped_text is a buffer of size
2754  * DROPPED_TEXT_MAX. Otherwise @dropped_text must be NULL.
2755  *
2756  * @handover will be set to true if a printk waiter has taken over the
2757  * console_lock, in which case the caller is no longer holding both the
2758  * console_lock and the SRCU read lock. Otherwise it is set to false.
2759  *
2760  * @cookie is the cookie from the SRCU read lock.
2761  *
2762  * Returns false if the given console has no next record to print, otherwise
2763  * true.
2764  *
2765  * Requires the console_lock and the SRCU read lock.
2766  */
2767 static bool console_emit_next_record(struct console *con, char *text, char *ext_text,
2768 				     char *dropped_text, bool *handover, int cookie)
2769 {
2770 	static int panic_console_dropped;
2771 	struct printk_info info;
2772 	struct printk_record r;
2773 	unsigned long flags;
2774 	char *write_text;
2775 	size_t len;
2776 
2777 	prb_rec_init_rd(&r, &info, text, CONSOLE_LOG_MAX);
2778 
2779 	*handover = false;
2780 
2781 	if (!prb_read_valid(prb, con->seq, &r))
2782 		return false;
2783 
2784 	if (con->seq != r.info->seq) {
2785 		con->dropped += r.info->seq - con->seq;
2786 		con->seq = r.info->seq;
2787 		if (panic_in_progress() && panic_console_dropped++ > 10) {
2788 			suppress_panic_printk = 1;
2789 			pr_warn_once("Too many dropped messages. Suppress messages on non-panic CPUs to prevent livelock.\n");
2790 		}
2791 	}
2792 
2793 	/* Skip record that has level above the console loglevel. */
2794 	if (suppress_message_printing(r.info->level)) {
2795 		con->seq++;
2796 		goto skip;
2797 	}
2798 
2799 	if (ext_text) {
2800 		write_text = ext_text;
2801 		len = info_print_ext_header(ext_text, CONSOLE_EXT_LOG_MAX, r.info);
2802 		len += msg_print_ext_body(ext_text + len, CONSOLE_EXT_LOG_MAX - len,
2803 					  &r.text_buf[0], r.info->text_len, &r.info->dev_info);
2804 	} else {
2805 		write_text = text;
2806 		len = record_print_text(&r, console_msg_format & MSG_FORMAT_SYSLOG, printk_time);
2807 	}
2808 
2809 	/*
2810 	 * While actively printing out messages, if another printk()
2811 	 * were to occur on another CPU, it may wait for this one to
2812 	 * finish. This task can not be preempted if there is a
2813 	 * waiter waiting to take over.
2814 	 *
2815 	 * Interrupts are disabled because the hand over to a waiter
2816 	 * must not be interrupted until the hand over is completed
2817 	 * (@console_waiter is cleared).
2818 	 */
2819 	printk_safe_enter_irqsave(flags);
2820 	console_lock_spinning_enable();
2821 
2822 	stop_critical_timings();	/* don't trace print latency */
2823 	call_console_driver(con, write_text, len, dropped_text);
2824 	start_critical_timings();
2825 
2826 	con->seq++;
2827 
2828 	*handover = console_lock_spinning_disable_and_check(cookie);
2829 	printk_safe_exit_irqrestore(flags);
2830 skip:
2831 	return true;
2832 }
2833 
2834 /*
2835  * Print out all remaining records to all consoles.
2836  *
2837  * @do_cond_resched is set by the caller. It can be true only in schedulable
2838  * context.
2839  *
2840  * @next_seq is set to the sequence number after the last available record.
2841  * The value is valid only when this function returns true. It means that all
2842  * usable consoles are completely flushed.
2843  *
2844  * @handover will be set to true if a printk waiter has taken over the
2845  * console_lock, in which case the caller is no longer holding the
2846  * console_lock. Otherwise it is set to false.
2847  *
2848  * Returns true when there was at least one usable console and all messages
2849  * were flushed to all usable consoles. A returned false informs the caller
2850  * that everything was not flushed (either there were no usable consoles or
2851  * another context has taken over printing or it is a panic situation and this
2852  * is not the panic CPU). Regardless the reason, the caller should assume it
2853  * is not useful to immediately try again.
2854  *
2855  * Requires the console_lock.
2856  */
2857 static bool console_flush_all(bool do_cond_resched, u64 *next_seq, bool *handover)
2858 {
2859 	static char dropped_text[DROPPED_TEXT_MAX];
2860 	static char ext_text[CONSOLE_EXT_LOG_MAX];
2861 	static char text[CONSOLE_LOG_MAX];
2862 	bool any_usable = false;
2863 	struct console *con;
2864 	bool any_progress;
2865 	int cookie;
2866 
2867 	*next_seq = 0;
2868 	*handover = false;
2869 
2870 	do {
2871 		any_progress = false;
2872 
2873 		cookie = console_srcu_read_lock();
2874 		for_each_console_srcu(con) {
2875 			bool progress;
2876 
2877 			if (!console_is_usable(con))
2878 				continue;
2879 			any_usable = true;
2880 
2881 			if (console_srcu_read_flags(con) & CON_EXTENDED) {
2882 				/* Extended consoles do not print "dropped messages". */
2883 				progress = console_emit_next_record(con, &text[0],
2884 								    &ext_text[0], NULL,
2885 								    handover, cookie);
2886 			} else {
2887 				progress = console_emit_next_record(con, &text[0],
2888 								    NULL, &dropped_text[0],
2889 								    handover, cookie);
2890 			}
2891 
2892 			/*
2893 			 * If a handover has occurred, the SRCU read lock
2894 			 * is already released.
2895 			 */
2896 			if (*handover)
2897 				return false;
2898 
2899 			/* Track the next of the highest seq flushed. */
2900 			if (con->seq > *next_seq)
2901 				*next_seq = con->seq;
2902 
2903 			if (!progress)
2904 				continue;
2905 			any_progress = true;
2906 
2907 			/* Allow panic_cpu to take over the consoles safely. */
2908 			if (abandon_console_lock_in_panic())
2909 				goto abandon;
2910 
2911 			if (do_cond_resched)
2912 				cond_resched();
2913 		}
2914 		console_srcu_read_unlock(cookie);
2915 	} while (any_progress);
2916 
2917 	return any_usable;
2918 
2919 abandon:
2920 	console_srcu_read_unlock(cookie);
2921 	return false;
2922 }
2923 
2924 /**
2925  * console_unlock - unblock the console subsystem from printing
2926  *
2927  * Releases the console_lock which the caller holds to block printing of
2928  * the console subsystem.
2929  *
2930  * While the console_lock was held, console output may have been buffered
2931  * by printk().  If this is the case, console_unlock(); emits
2932  * the output prior to releasing the lock.
2933  *
2934  * console_unlock(); may be called from any context.
2935  */
2936 void console_unlock(void)
2937 {
2938 	bool do_cond_resched;
2939 	bool handover;
2940 	bool flushed;
2941 	u64 next_seq;
2942 
2943 	if (console_suspended) {
2944 		up_console_sem();
2945 		return;
2946 	}
2947 
2948 	/*
2949 	 * Console drivers are called with interrupts disabled, so
2950 	 * @console_may_schedule should be cleared before; however, we may
2951 	 * end up dumping a lot of lines, for example, if called from
2952 	 * console registration path, and should invoke cond_resched()
2953 	 * between lines if allowable.  Not doing so can cause a very long
2954 	 * scheduling stall on a slow console leading to RCU stall and
2955 	 * softlockup warnings which exacerbate the issue with more
2956 	 * messages practically incapacitating the system. Therefore, create
2957 	 * a local to use for the printing loop.
2958 	 */
2959 	do_cond_resched = console_may_schedule;
2960 
2961 	do {
2962 		console_may_schedule = 0;
2963 
2964 		flushed = console_flush_all(do_cond_resched, &next_seq, &handover);
2965 		if (!handover)
2966 			__console_unlock();
2967 
2968 		/*
2969 		 * Abort if there was a failure to flush all messages to all
2970 		 * usable consoles. Either it is not possible to flush (in
2971 		 * which case it would be an infinite loop of retrying) or
2972 		 * another context has taken over printing.
2973 		 */
2974 		if (!flushed)
2975 			break;
2976 
2977 		/*
2978 		 * Some context may have added new records after
2979 		 * console_flush_all() but before unlocking the console.
2980 		 * Re-check if there is a new record to flush. If the trylock
2981 		 * fails, another context is already handling the printing.
2982 		 */
2983 	} while (prb_read_valid(prb, next_seq, NULL) && console_trylock());
2984 }
2985 EXPORT_SYMBOL(console_unlock);
2986 
2987 /**
2988  * console_conditional_schedule - yield the CPU if required
2989  *
2990  * If the console code is currently allowed to sleep, and
2991  * if this CPU should yield the CPU to another task, do
2992  * so here.
2993  *
2994  * Must be called within console_lock();.
2995  */
2996 void __sched console_conditional_schedule(void)
2997 {
2998 	if (console_may_schedule)
2999 		cond_resched();
3000 }
3001 EXPORT_SYMBOL(console_conditional_schedule);
3002 
3003 void console_unblank(void)
3004 {
3005 	struct console *c;
3006 	int cookie;
3007 
3008 	/*
3009 	 * Stop console printing because the unblank() callback may
3010 	 * assume the console is not within its write() callback.
3011 	 *
3012 	 * If @oops_in_progress is set, this may be an atomic context.
3013 	 * In that case, attempt a trylock as best-effort.
3014 	 */
3015 	if (oops_in_progress) {
3016 		if (down_trylock_console_sem() != 0)
3017 			return;
3018 	} else
3019 		console_lock();
3020 
3021 	console_locked = 1;
3022 	console_may_schedule = 0;
3023 
3024 	cookie = console_srcu_read_lock();
3025 	for_each_console_srcu(c) {
3026 		if ((console_srcu_read_flags(c) & CON_ENABLED) && c->unblank)
3027 			c->unblank();
3028 	}
3029 	console_srcu_read_unlock(cookie);
3030 
3031 	console_unlock();
3032 
3033 	if (!oops_in_progress)
3034 		pr_flush(1000, true);
3035 }
3036 
3037 /**
3038  * console_flush_on_panic - flush console content on panic
3039  * @mode: flush all messages in buffer or just the pending ones
3040  *
3041  * Immediately output all pending messages no matter what.
3042  */
3043 void console_flush_on_panic(enum con_flush_mode mode)
3044 {
3045 	/*
3046 	 * If someone else is holding the console lock, trylock will fail
3047 	 * and may_schedule may be set.  Ignore and proceed to unlock so
3048 	 * that messages are flushed out.  As this can be called from any
3049 	 * context and we don't want to get preempted while flushing,
3050 	 * ensure may_schedule is cleared.
3051 	 */
3052 	console_trylock();
3053 	console_may_schedule = 0;
3054 
3055 	if (mode == CONSOLE_REPLAY_ALL) {
3056 		struct console *c;
3057 		int cookie;
3058 		u64 seq;
3059 
3060 		seq = prb_first_valid_seq(prb);
3061 
3062 		cookie = console_srcu_read_lock();
3063 		for_each_console_srcu(c) {
3064 			/*
3065 			 * If the above console_trylock() failed, this is an
3066 			 * unsynchronized assignment. But in that case, the
3067 			 * kernel is in "hope and pray" mode anyway.
3068 			 */
3069 			c->seq = seq;
3070 		}
3071 		console_srcu_read_unlock(cookie);
3072 	}
3073 	console_unlock();
3074 }
3075 
3076 /*
3077  * Return the console tty driver structure and its associated index
3078  */
3079 struct tty_driver *console_device(int *index)
3080 {
3081 	struct console *c;
3082 	struct tty_driver *driver = NULL;
3083 	int cookie;
3084 
3085 	/*
3086 	 * Take console_lock to serialize device() callback with
3087 	 * other console operations. For example, fg_console is
3088 	 * modified under console_lock when switching vt.
3089 	 */
3090 	console_lock();
3091 
3092 	cookie = console_srcu_read_lock();
3093 	for_each_console_srcu(c) {
3094 		if (!c->device)
3095 			continue;
3096 		driver = c->device(c, index);
3097 		if (driver)
3098 			break;
3099 	}
3100 	console_srcu_read_unlock(cookie);
3101 
3102 	console_unlock();
3103 	return driver;
3104 }
3105 
3106 /*
3107  * Prevent further output on the passed console device so that (for example)
3108  * serial drivers can disable console output before suspending a port, and can
3109  * re-enable output afterwards.
3110  */
3111 void console_stop(struct console *console)
3112 {
3113 	__pr_flush(console, 1000, true);
3114 	console_list_lock();
3115 	console_srcu_write_flags(console, console->flags & ~CON_ENABLED);
3116 	console_list_unlock();
3117 
3118 	/*
3119 	 * Ensure that all SRCU list walks have completed. All contexts must
3120 	 * be able to see that this console is disabled so that (for example)
3121 	 * the caller can suspend the port without risk of another context
3122 	 * using the port.
3123 	 */
3124 	synchronize_srcu(&console_srcu);
3125 }
3126 EXPORT_SYMBOL(console_stop);
3127 
3128 void console_start(struct console *console)
3129 {
3130 	console_list_lock();
3131 	console_srcu_write_flags(console, console->flags | CON_ENABLED);
3132 	console_list_unlock();
3133 	__pr_flush(console, 1000, true);
3134 }
3135 EXPORT_SYMBOL(console_start);
3136 
3137 static int __read_mostly keep_bootcon;
3138 
3139 static int __init keep_bootcon_setup(char *str)
3140 {
3141 	keep_bootcon = 1;
3142 	pr_info("debug: skip boot console de-registration.\n");
3143 
3144 	return 0;
3145 }
3146 
3147 early_param("keep_bootcon", keep_bootcon_setup);
3148 
3149 /*
3150  * This is called by register_console() to try to match
3151  * the newly registered console with any of the ones selected
3152  * by either the command line or add_preferred_console() and
3153  * setup/enable it.
3154  *
3155  * Care need to be taken with consoles that are statically
3156  * enabled such as netconsole
3157  */
3158 static int try_enable_preferred_console(struct console *newcon,
3159 					bool user_specified)
3160 {
3161 	struct console_cmdline *c;
3162 	int i, err;
3163 
3164 	for (i = 0, c = console_cmdline;
3165 	     i < MAX_CMDLINECONSOLES && c->name[0];
3166 	     i++, c++) {
3167 		if (c->user_specified != user_specified)
3168 			continue;
3169 		if (!newcon->match ||
3170 		    newcon->match(newcon, c->name, c->index, c->options) != 0) {
3171 			/* default matching */
3172 			BUILD_BUG_ON(sizeof(c->name) != sizeof(newcon->name));
3173 			if (strcmp(c->name, newcon->name) != 0)
3174 				continue;
3175 			if (newcon->index >= 0 &&
3176 			    newcon->index != c->index)
3177 				continue;
3178 			if (newcon->index < 0)
3179 				newcon->index = c->index;
3180 
3181 			if (_braille_register_console(newcon, c))
3182 				return 0;
3183 
3184 			if (newcon->setup &&
3185 			    (err = newcon->setup(newcon, c->options)) != 0)
3186 				return err;
3187 		}
3188 		newcon->flags |= CON_ENABLED;
3189 		if (i == preferred_console)
3190 			newcon->flags |= CON_CONSDEV;
3191 		return 0;
3192 	}
3193 
3194 	/*
3195 	 * Some consoles, such as pstore and netconsole, can be enabled even
3196 	 * without matching. Accept the pre-enabled consoles only when match()
3197 	 * and setup() had a chance to be called.
3198 	 */
3199 	if (newcon->flags & CON_ENABLED && c->user_specified ==	user_specified)
3200 		return 0;
3201 
3202 	return -ENOENT;
3203 }
3204 
3205 /* Try to enable the console unconditionally */
3206 static void try_enable_default_console(struct console *newcon)
3207 {
3208 	if (newcon->index < 0)
3209 		newcon->index = 0;
3210 
3211 	if (newcon->setup && newcon->setup(newcon, NULL) != 0)
3212 		return;
3213 
3214 	newcon->flags |= CON_ENABLED;
3215 
3216 	if (newcon->device)
3217 		newcon->flags |= CON_CONSDEV;
3218 }
3219 
3220 #define con_printk(lvl, con, fmt, ...)			\
3221 	printk(lvl pr_fmt("%sconsole [%s%d] " fmt),	\
3222 	       (con->flags & CON_BOOT) ? "boot" : "",	\
3223 	       con->name, con->index, ##__VA_ARGS__)
3224 
3225 static void console_init_seq(struct console *newcon, bool bootcon_registered)
3226 {
3227 	struct console *con;
3228 	bool handover;
3229 
3230 	if (newcon->flags & (CON_PRINTBUFFER | CON_BOOT)) {
3231 		/* Get a consistent copy of @syslog_seq. */
3232 		mutex_lock(&syslog_lock);
3233 		newcon->seq = syslog_seq;
3234 		mutex_unlock(&syslog_lock);
3235 	} else {
3236 		/* Begin with next message added to ringbuffer. */
3237 		newcon->seq = prb_next_seq(prb);
3238 
3239 		/*
3240 		 * If any enabled boot consoles are due to be unregistered
3241 		 * shortly, some may not be caught up and may be the same
3242 		 * device as @newcon. Since it is not known which boot console
3243 		 * is the same device, flush all consoles and, if necessary,
3244 		 * start with the message of the enabled boot console that is
3245 		 * the furthest behind.
3246 		 */
3247 		if (bootcon_registered && !keep_bootcon) {
3248 			/*
3249 			 * Hold the console_lock to stop console printing and
3250 			 * guarantee safe access to console->seq.
3251 			 */
3252 			console_lock();
3253 
3254 			/*
3255 			 * Flush all consoles and set the console to start at
3256 			 * the next unprinted sequence number.
3257 			 */
3258 			if (!console_flush_all(true, &newcon->seq, &handover)) {
3259 				/*
3260 				 * Flushing failed. Just choose the lowest
3261 				 * sequence of the enabled boot consoles.
3262 				 */
3263 
3264 				/*
3265 				 * If there was a handover, this context no
3266 				 * longer holds the console_lock.
3267 				 */
3268 				if (handover)
3269 					console_lock();
3270 
3271 				newcon->seq = prb_next_seq(prb);
3272 				for_each_console(con) {
3273 					if ((con->flags & CON_BOOT) &&
3274 					    (con->flags & CON_ENABLED) &&
3275 					    con->seq < newcon->seq) {
3276 						newcon->seq = con->seq;
3277 					}
3278 				}
3279 			}
3280 
3281 			console_unlock();
3282 		}
3283 	}
3284 }
3285 
3286 #define console_first()				\
3287 	hlist_entry(console_list.first, struct console, node)
3288 
3289 static int unregister_console_locked(struct console *console);
3290 
3291 /*
3292  * The console driver calls this routine during kernel initialization
3293  * to register the console printing procedure with printk() and to
3294  * print any messages that were printed by the kernel before the
3295  * console driver was initialized.
3296  *
3297  * This can happen pretty early during the boot process (because of
3298  * early_printk) - sometimes before setup_arch() completes - be careful
3299  * of what kernel features are used - they may not be initialised yet.
3300  *
3301  * There are two types of consoles - bootconsoles (early_printk) and
3302  * "real" consoles (everything which is not a bootconsole) which are
3303  * handled differently.
3304  *  - Any number of bootconsoles can be registered at any time.
3305  *  - As soon as a "real" console is registered, all bootconsoles
3306  *    will be unregistered automatically.
3307  *  - Once a "real" console is registered, any attempt to register a
3308  *    bootconsoles will be rejected
3309  */
3310 void register_console(struct console *newcon)
3311 {
3312 	struct console *con;
3313 	bool bootcon_registered = false;
3314 	bool realcon_registered = false;
3315 	int err;
3316 
3317 	console_list_lock();
3318 
3319 	for_each_console(con) {
3320 		if (WARN(con == newcon, "console '%s%d' already registered\n",
3321 					 con->name, con->index)) {
3322 			goto unlock;
3323 		}
3324 
3325 		if (con->flags & CON_BOOT)
3326 			bootcon_registered = true;
3327 		else
3328 			realcon_registered = true;
3329 	}
3330 
3331 	/* Do not register boot consoles when there already is a real one. */
3332 	if ((newcon->flags & CON_BOOT) && realcon_registered) {
3333 		pr_info("Too late to register bootconsole %s%d\n",
3334 			newcon->name, newcon->index);
3335 		goto unlock;
3336 	}
3337 
3338 	/*
3339 	 * See if we want to enable this console driver by default.
3340 	 *
3341 	 * Nope when a console is preferred by the command line, device
3342 	 * tree, or SPCR.
3343 	 *
3344 	 * The first real console with tty binding (driver) wins. More
3345 	 * consoles might get enabled before the right one is found.
3346 	 *
3347 	 * Note that a console with tty binding will have CON_CONSDEV
3348 	 * flag set and will be first in the list.
3349 	 */
3350 	if (preferred_console < 0) {
3351 		if (hlist_empty(&console_list) || !console_first()->device ||
3352 		    console_first()->flags & CON_BOOT) {
3353 			try_enable_default_console(newcon);
3354 		}
3355 	}
3356 
3357 	/* See if this console matches one we selected on the command line */
3358 	err = try_enable_preferred_console(newcon, true);
3359 
3360 	/* If not, try to match against the platform default(s) */
3361 	if (err == -ENOENT)
3362 		err = try_enable_preferred_console(newcon, false);
3363 
3364 	/* printk() messages are not printed to the Braille console. */
3365 	if (err || newcon->flags & CON_BRL)
3366 		goto unlock;
3367 
3368 	/*
3369 	 * If we have a bootconsole, and are switching to a real console,
3370 	 * don't print everything out again, since when the boot console, and
3371 	 * the real console are the same physical device, it's annoying to
3372 	 * see the beginning boot messages twice
3373 	 */
3374 	if (bootcon_registered &&
3375 	    ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV)) {
3376 		newcon->flags &= ~CON_PRINTBUFFER;
3377 	}
3378 
3379 	newcon->dropped = 0;
3380 	console_init_seq(newcon, bootcon_registered);
3381 
3382 	/*
3383 	 * Put this console in the list - keep the
3384 	 * preferred driver at the head of the list.
3385 	 */
3386 	if (hlist_empty(&console_list)) {
3387 		/* Ensure CON_CONSDEV is always set for the head. */
3388 		newcon->flags |= CON_CONSDEV;
3389 		hlist_add_head_rcu(&newcon->node, &console_list);
3390 
3391 	} else if (newcon->flags & CON_CONSDEV) {
3392 		/* Only the new head can have CON_CONSDEV set. */
3393 		console_srcu_write_flags(console_first(), console_first()->flags & ~CON_CONSDEV);
3394 		hlist_add_head_rcu(&newcon->node, &console_list);
3395 
3396 	} else {
3397 		hlist_add_behind_rcu(&newcon->node, console_list.first);
3398 	}
3399 
3400 	/*
3401 	 * No need to synchronize SRCU here! The caller does not rely
3402 	 * on all contexts being able to see the new console before
3403 	 * register_console() completes.
3404 	 */
3405 
3406 	console_sysfs_notify();
3407 
3408 	/*
3409 	 * By unregistering the bootconsoles after we enable the real console
3410 	 * we get the "console xxx enabled" message on all the consoles -
3411 	 * boot consoles, real consoles, etc - this is to ensure that end
3412 	 * users know there might be something in the kernel's log buffer that
3413 	 * went to the bootconsole (that they do not see on the real console)
3414 	 */
3415 	con_printk(KERN_INFO, newcon, "enabled\n");
3416 	if (bootcon_registered &&
3417 	    ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV) &&
3418 	    !keep_bootcon) {
3419 		struct hlist_node *tmp;
3420 
3421 		hlist_for_each_entry_safe(con, tmp, &console_list, node) {
3422 			if (con->flags & CON_BOOT)
3423 				unregister_console_locked(con);
3424 		}
3425 	}
3426 unlock:
3427 	console_list_unlock();
3428 }
3429 EXPORT_SYMBOL(register_console);
3430 
3431 /* Must be called under console_list_lock(). */
3432 static int unregister_console_locked(struct console *console)
3433 {
3434 	int res;
3435 
3436 	lockdep_assert_console_list_lock_held();
3437 
3438 	con_printk(KERN_INFO, console, "disabled\n");
3439 
3440 	res = _braille_unregister_console(console);
3441 	if (res < 0)
3442 		return res;
3443 	if (res > 0)
3444 		return 0;
3445 
3446 	/* Disable it unconditionally */
3447 	console_srcu_write_flags(console, console->flags & ~CON_ENABLED);
3448 
3449 	if (!console_is_registered_locked(console))
3450 		return -ENODEV;
3451 
3452 	hlist_del_init_rcu(&console->node);
3453 
3454 	/*
3455 	 * <HISTORICAL>
3456 	 * If this isn't the last console and it has CON_CONSDEV set, we
3457 	 * need to set it on the next preferred console.
3458 	 * </HISTORICAL>
3459 	 *
3460 	 * The above makes no sense as there is no guarantee that the next
3461 	 * console has any device attached. Oh well....
3462 	 */
3463 	if (!hlist_empty(&console_list) && console->flags & CON_CONSDEV)
3464 		console_srcu_write_flags(console_first(), console_first()->flags | CON_CONSDEV);
3465 
3466 	/*
3467 	 * Ensure that all SRCU list walks have completed. All contexts
3468 	 * must not be able to see this console in the list so that any
3469 	 * exit/cleanup routines can be performed safely.
3470 	 */
3471 	synchronize_srcu(&console_srcu);
3472 
3473 	console_sysfs_notify();
3474 
3475 	if (console->exit)
3476 		res = console->exit(console);
3477 
3478 	return res;
3479 }
3480 
3481 int unregister_console(struct console *console)
3482 {
3483 	int res;
3484 
3485 	console_list_lock();
3486 	res = unregister_console_locked(console);
3487 	console_list_unlock();
3488 	return res;
3489 }
3490 EXPORT_SYMBOL(unregister_console);
3491 
3492 /**
3493  * console_force_preferred_locked - force a registered console preferred
3494  * @con: The registered console to force preferred.
3495  *
3496  * Must be called under console_list_lock().
3497  */
3498 void console_force_preferred_locked(struct console *con)
3499 {
3500 	struct console *cur_pref_con;
3501 
3502 	if (!console_is_registered_locked(con))
3503 		return;
3504 
3505 	cur_pref_con = console_first();
3506 
3507 	/* Already preferred? */
3508 	if (cur_pref_con == con)
3509 		return;
3510 
3511 	/*
3512 	 * Delete, but do not re-initialize the entry. This allows the console
3513 	 * to continue to appear registered (via any hlist_unhashed_lockless()
3514 	 * checks), even though it was briefly removed from the console list.
3515 	 */
3516 	hlist_del_rcu(&con->node);
3517 
3518 	/*
3519 	 * Ensure that all SRCU list walks have completed so that the console
3520 	 * can be added to the beginning of the console list and its forward
3521 	 * list pointer can be re-initialized.
3522 	 */
3523 	synchronize_srcu(&console_srcu);
3524 
3525 	con->flags |= CON_CONSDEV;
3526 	WARN_ON(!con->device);
3527 
3528 	/* Only the new head can have CON_CONSDEV set. */
3529 	console_srcu_write_flags(cur_pref_con, cur_pref_con->flags & ~CON_CONSDEV);
3530 	hlist_add_head_rcu(&con->node, &console_list);
3531 }
3532 EXPORT_SYMBOL(console_force_preferred_locked);
3533 
3534 /*
3535  * Initialize the console device. This is called *early*, so
3536  * we can't necessarily depend on lots of kernel help here.
3537  * Just do some early initializations, and do the complex setup
3538  * later.
3539  */
3540 void __init console_init(void)
3541 {
3542 	int ret;
3543 	initcall_t call;
3544 	initcall_entry_t *ce;
3545 
3546 	/* Setup the default TTY line discipline. */
3547 	n_tty_init();
3548 
3549 	/*
3550 	 * set up the console device so that later boot sequences can
3551 	 * inform about problems etc..
3552 	 */
3553 	ce = __con_initcall_start;
3554 	trace_initcall_level("console");
3555 	while (ce < __con_initcall_end) {
3556 		call = initcall_from_entry(ce);
3557 		trace_initcall_start(call);
3558 		ret = call();
3559 		trace_initcall_finish(call, ret);
3560 		ce++;
3561 	}
3562 }
3563 
3564 /*
3565  * Some boot consoles access data that is in the init section and which will
3566  * be discarded after the initcalls have been run. To make sure that no code
3567  * will access this data, unregister the boot consoles in a late initcall.
3568  *
3569  * If for some reason, such as deferred probe or the driver being a loadable
3570  * module, the real console hasn't registered yet at this point, there will
3571  * be a brief interval in which no messages are logged to the console, which
3572  * makes it difficult to diagnose problems that occur during this time.
3573  *
3574  * To mitigate this problem somewhat, only unregister consoles whose memory
3575  * intersects with the init section. Note that all other boot consoles will
3576  * get unregistered when the real preferred console is registered.
3577  */
3578 static int __init printk_late_init(void)
3579 {
3580 	struct hlist_node *tmp;
3581 	struct console *con;
3582 	int ret;
3583 
3584 	console_list_lock();
3585 	hlist_for_each_entry_safe(con, tmp, &console_list, node) {
3586 		if (!(con->flags & CON_BOOT))
3587 			continue;
3588 
3589 		/* Check addresses that might be used for enabled consoles. */
3590 		if (init_section_intersects(con, sizeof(*con)) ||
3591 		    init_section_contains(con->write, 0) ||
3592 		    init_section_contains(con->read, 0) ||
3593 		    init_section_contains(con->device, 0) ||
3594 		    init_section_contains(con->unblank, 0) ||
3595 		    init_section_contains(con->data, 0)) {
3596 			/*
3597 			 * Please, consider moving the reported consoles out
3598 			 * of the init section.
3599 			 */
3600 			pr_warn("bootconsole [%s%d] uses init memory and must be disabled even before the real one is ready\n",
3601 				con->name, con->index);
3602 			unregister_console_locked(con);
3603 		}
3604 	}
3605 	console_list_unlock();
3606 
3607 	ret = cpuhp_setup_state_nocalls(CPUHP_PRINTK_DEAD, "printk:dead", NULL,
3608 					console_cpu_notify);
3609 	WARN_ON(ret < 0);
3610 	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "printk:online",
3611 					console_cpu_notify, NULL);
3612 	WARN_ON(ret < 0);
3613 	printk_sysctl_init();
3614 	return 0;
3615 }
3616 late_initcall(printk_late_init);
3617 
3618 #if defined CONFIG_PRINTK
3619 /* If @con is specified, only wait for that console. Otherwise wait for all. */
3620 static bool __pr_flush(struct console *con, int timeout_ms, bool reset_on_progress)
3621 {
3622 	int remaining = timeout_ms;
3623 	struct console *c;
3624 	u64 last_diff = 0;
3625 	u64 printk_seq;
3626 	int cookie;
3627 	u64 diff;
3628 	u64 seq;
3629 
3630 	might_sleep();
3631 
3632 	seq = prb_next_seq(prb);
3633 
3634 	for (;;) {
3635 		diff = 0;
3636 
3637 		/*
3638 		 * Hold the console_lock to guarantee safe access to
3639 		 * console->seq and to prevent changes to @console_suspended
3640 		 * until all consoles have been processed.
3641 		 */
3642 		console_lock();
3643 
3644 		cookie = console_srcu_read_lock();
3645 		for_each_console_srcu(c) {
3646 			if (con && con != c)
3647 				continue;
3648 			if (!console_is_usable(c))
3649 				continue;
3650 			printk_seq = c->seq;
3651 			if (printk_seq < seq)
3652 				diff += seq - printk_seq;
3653 		}
3654 		console_srcu_read_unlock(cookie);
3655 
3656 		/*
3657 		 * If consoles are suspended, it cannot be expected that they
3658 		 * make forward progress, so timeout immediately. @diff is
3659 		 * still used to return a valid flush status.
3660 		 */
3661 		if (console_suspended)
3662 			remaining = 0;
3663 		else if (diff != last_diff && reset_on_progress)
3664 			remaining = timeout_ms;
3665 
3666 		console_unlock();
3667 
3668 		if (diff == 0 || remaining == 0)
3669 			break;
3670 
3671 		if (remaining < 0) {
3672 			/* no timeout limit */
3673 			msleep(100);
3674 		} else if (remaining < 100) {
3675 			msleep(remaining);
3676 			remaining = 0;
3677 		} else {
3678 			msleep(100);
3679 			remaining -= 100;
3680 		}
3681 
3682 		last_diff = diff;
3683 	}
3684 
3685 	return (diff == 0);
3686 }
3687 
3688 /**
3689  * pr_flush() - Wait for printing threads to catch up.
3690  *
3691  * @timeout_ms:        The maximum time (in ms) to wait.
3692  * @reset_on_progress: Reset the timeout if forward progress is seen.
3693  *
3694  * A value of 0 for @timeout_ms means no waiting will occur. A value of -1
3695  * represents infinite waiting.
3696  *
3697  * If @reset_on_progress is true, the timeout will be reset whenever any
3698  * printer has been seen to make some forward progress.
3699  *
3700  * Context: Process context. May sleep while acquiring console lock.
3701  * Return: true if all enabled printers are caught up.
3702  */
3703 static bool pr_flush(int timeout_ms, bool reset_on_progress)
3704 {
3705 	return __pr_flush(NULL, timeout_ms, reset_on_progress);
3706 }
3707 
3708 /*
3709  * Delayed printk version, for scheduler-internal messages:
3710  */
3711 #define PRINTK_PENDING_WAKEUP	0x01
3712 #define PRINTK_PENDING_OUTPUT	0x02
3713 
3714 static DEFINE_PER_CPU(int, printk_pending);
3715 
3716 static void wake_up_klogd_work_func(struct irq_work *irq_work)
3717 {
3718 	int pending = this_cpu_xchg(printk_pending, 0);
3719 
3720 	if (pending & PRINTK_PENDING_OUTPUT) {
3721 		/* If trylock fails, someone else is doing the printing */
3722 		if (console_trylock())
3723 			console_unlock();
3724 	}
3725 
3726 	if (pending & PRINTK_PENDING_WAKEUP)
3727 		wake_up_interruptible(&log_wait);
3728 }
3729 
3730 static DEFINE_PER_CPU(struct irq_work, wake_up_klogd_work) =
3731 	IRQ_WORK_INIT_LAZY(wake_up_klogd_work_func);
3732 
3733 static void __wake_up_klogd(int val)
3734 {
3735 	if (!printk_percpu_data_ready())
3736 		return;
3737 
3738 	preempt_disable();
3739 	/*
3740 	 * Guarantee any new records can be seen by tasks preparing to wait
3741 	 * before this context checks if the wait queue is empty.
3742 	 *
3743 	 * The full memory barrier within wq_has_sleeper() pairs with the full
3744 	 * memory barrier within set_current_state() of
3745 	 * prepare_to_wait_event(), which is called after ___wait_event() adds
3746 	 * the waiter but before it has checked the wait condition.
3747 	 *
3748 	 * This pairs with devkmsg_read:A and syslog_print:A.
3749 	 */
3750 	if (wq_has_sleeper(&log_wait) || /* LMM(__wake_up_klogd:A) */
3751 	    (val & PRINTK_PENDING_OUTPUT)) {
3752 		this_cpu_or(printk_pending, val);
3753 		irq_work_queue(this_cpu_ptr(&wake_up_klogd_work));
3754 	}
3755 	preempt_enable();
3756 }
3757 
3758 void wake_up_klogd(void)
3759 {
3760 	__wake_up_klogd(PRINTK_PENDING_WAKEUP);
3761 }
3762 
3763 void defer_console_output(void)
3764 {
3765 	/*
3766 	 * New messages may have been added directly to the ringbuffer
3767 	 * using vprintk_store(), so wake any waiters as well.
3768 	 */
3769 	__wake_up_klogd(PRINTK_PENDING_WAKEUP | PRINTK_PENDING_OUTPUT);
3770 }
3771 
3772 void printk_trigger_flush(void)
3773 {
3774 	defer_console_output();
3775 }
3776 
3777 int vprintk_deferred(const char *fmt, va_list args)
3778 {
3779 	int r;
3780 
3781 	r = vprintk_emit(0, LOGLEVEL_SCHED, NULL, fmt, args);
3782 	defer_console_output();
3783 
3784 	return r;
3785 }
3786 
3787 int _printk_deferred(const char *fmt, ...)
3788 {
3789 	va_list args;
3790 	int r;
3791 
3792 	va_start(args, fmt);
3793 	r = vprintk_deferred(fmt, args);
3794 	va_end(args);
3795 
3796 	return r;
3797 }
3798 
3799 /*
3800  * printk rate limiting, lifted from the networking subsystem.
3801  *
3802  * This enforces a rate limit: not more than 10 kernel messages
3803  * every 5s to make a denial-of-service attack impossible.
3804  */
3805 DEFINE_RATELIMIT_STATE(printk_ratelimit_state, 5 * HZ, 10);
3806 
3807 int __printk_ratelimit(const char *func)
3808 {
3809 	return ___ratelimit(&printk_ratelimit_state, func);
3810 }
3811 EXPORT_SYMBOL(__printk_ratelimit);
3812 
3813 /**
3814  * printk_timed_ratelimit - caller-controlled printk ratelimiting
3815  * @caller_jiffies: pointer to caller's state
3816  * @interval_msecs: minimum interval between prints
3817  *
3818  * printk_timed_ratelimit() returns true if more than @interval_msecs
3819  * milliseconds have elapsed since the last time printk_timed_ratelimit()
3820  * returned true.
3821  */
3822 bool printk_timed_ratelimit(unsigned long *caller_jiffies,
3823 			unsigned int interval_msecs)
3824 {
3825 	unsigned long elapsed = jiffies - *caller_jiffies;
3826 
3827 	if (*caller_jiffies && elapsed <= msecs_to_jiffies(interval_msecs))
3828 		return false;
3829 
3830 	*caller_jiffies = jiffies;
3831 	return true;
3832 }
3833 EXPORT_SYMBOL(printk_timed_ratelimit);
3834 
3835 static DEFINE_SPINLOCK(dump_list_lock);
3836 static LIST_HEAD(dump_list);
3837 
3838 /**
3839  * kmsg_dump_register - register a kernel log dumper.
3840  * @dumper: pointer to the kmsg_dumper structure
3841  *
3842  * Adds a kernel log dumper to the system. The dump callback in the
3843  * structure will be called when the kernel oopses or panics and must be
3844  * set. Returns zero on success and %-EINVAL or %-EBUSY otherwise.
3845  */
3846 int kmsg_dump_register(struct kmsg_dumper *dumper)
3847 {
3848 	unsigned long flags;
3849 	int err = -EBUSY;
3850 
3851 	/* The dump callback needs to be set */
3852 	if (!dumper->dump)
3853 		return -EINVAL;
3854 
3855 	spin_lock_irqsave(&dump_list_lock, flags);
3856 	/* Don't allow registering multiple times */
3857 	if (!dumper->registered) {
3858 		dumper->registered = 1;
3859 		list_add_tail_rcu(&dumper->list, &dump_list);
3860 		err = 0;
3861 	}
3862 	spin_unlock_irqrestore(&dump_list_lock, flags);
3863 
3864 	return err;
3865 }
3866 EXPORT_SYMBOL_GPL(kmsg_dump_register);
3867 
3868 /**
3869  * kmsg_dump_unregister - unregister a kmsg dumper.
3870  * @dumper: pointer to the kmsg_dumper structure
3871  *
3872  * Removes a dump device from the system. Returns zero on success and
3873  * %-EINVAL otherwise.
3874  */
3875 int kmsg_dump_unregister(struct kmsg_dumper *dumper)
3876 {
3877 	unsigned long flags;
3878 	int err = -EINVAL;
3879 
3880 	spin_lock_irqsave(&dump_list_lock, flags);
3881 	if (dumper->registered) {
3882 		dumper->registered = 0;
3883 		list_del_rcu(&dumper->list);
3884 		err = 0;
3885 	}
3886 	spin_unlock_irqrestore(&dump_list_lock, flags);
3887 	synchronize_rcu();
3888 
3889 	return err;
3890 }
3891 EXPORT_SYMBOL_GPL(kmsg_dump_unregister);
3892 
3893 static bool always_kmsg_dump;
3894 module_param_named(always_kmsg_dump, always_kmsg_dump, bool, S_IRUGO | S_IWUSR);
3895 
3896 const char *kmsg_dump_reason_str(enum kmsg_dump_reason reason)
3897 {
3898 	switch (reason) {
3899 	case KMSG_DUMP_PANIC:
3900 		return "Panic";
3901 	case KMSG_DUMP_OOPS:
3902 		return "Oops";
3903 	case KMSG_DUMP_EMERG:
3904 		return "Emergency";
3905 	case KMSG_DUMP_SHUTDOWN:
3906 		return "Shutdown";
3907 	default:
3908 		return "Unknown";
3909 	}
3910 }
3911 EXPORT_SYMBOL_GPL(kmsg_dump_reason_str);
3912 
3913 /**
3914  * kmsg_dump - dump kernel log to kernel message dumpers.
3915  * @reason: the reason (oops, panic etc) for dumping
3916  *
3917  * Call each of the registered dumper's dump() callback, which can
3918  * retrieve the kmsg records with kmsg_dump_get_line() or
3919  * kmsg_dump_get_buffer().
3920  */
3921 void kmsg_dump(enum kmsg_dump_reason reason)
3922 {
3923 	struct kmsg_dumper *dumper;
3924 
3925 	rcu_read_lock();
3926 	list_for_each_entry_rcu(dumper, &dump_list, list) {
3927 		enum kmsg_dump_reason max_reason = dumper->max_reason;
3928 
3929 		/*
3930 		 * If client has not provided a specific max_reason, default
3931 		 * to KMSG_DUMP_OOPS, unless always_kmsg_dump was set.
3932 		 */
3933 		if (max_reason == KMSG_DUMP_UNDEF) {
3934 			max_reason = always_kmsg_dump ? KMSG_DUMP_MAX :
3935 							KMSG_DUMP_OOPS;
3936 		}
3937 		if (reason > max_reason)
3938 			continue;
3939 
3940 		/* invoke dumper which will iterate over records */
3941 		dumper->dump(dumper, reason);
3942 	}
3943 	rcu_read_unlock();
3944 }
3945 
3946 /**
3947  * kmsg_dump_get_line - retrieve one kmsg log line
3948  * @iter: kmsg dump iterator
3949  * @syslog: include the "<4>" prefixes
3950  * @line: buffer to copy the line to
3951  * @size: maximum size of the buffer
3952  * @len: length of line placed into buffer
3953  *
3954  * Start at the beginning of the kmsg buffer, with the oldest kmsg
3955  * record, and copy one record into the provided buffer.
3956  *
3957  * Consecutive calls will return the next available record moving
3958  * towards the end of the buffer with the youngest messages.
3959  *
3960  * A return value of FALSE indicates that there are no more records to
3961  * read.
3962  */
3963 bool kmsg_dump_get_line(struct kmsg_dump_iter *iter, bool syslog,
3964 			char *line, size_t size, size_t *len)
3965 {
3966 	u64 min_seq = latched_seq_read_nolock(&clear_seq);
3967 	struct printk_info info;
3968 	unsigned int line_count;
3969 	struct printk_record r;
3970 	size_t l = 0;
3971 	bool ret = false;
3972 
3973 	if (iter->cur_seq < min_seq)
3974 		iter->cur_seq = min_seq;
3975 
3976 	prb_rec_init_rd(&r, &info, line, size);
3977 
3978 	/* Read text or count text lines? */
3979 	if (line) {
3980 		if (!prb_read_valid(prb, iter->cur_seq, &r))
3981 			goto out;
3982 		l = record_print_text(&r, syslog, printk_time);
3983 	} else {
3984 		if (!prb_read_valid_info(prb, iter->cur_seq,
3985 					 &info, &line_count)) {
3986 			goto out;
3987 		}
3988 		l = get_record_print_text_size(&info, line_count, syslog,
3989 					       printk_time);
3990 
3991 	}
3992 
3993 	iter->cur_seq = r.info->seq + 1;
3994 	ret = true;
3995 out:
3996 	if (len)
3997 		*len = l;
3998 	return ret;
3999 }
4000 EXPORT_SYMBOL_GPL(kmsg_dump_get_line);
4001 
4002 /**
4003  * kmsg_dump_get_buffer - copy kmsg log lines
4004  * @iter: kmsg dump iterator
4005  * @syslog: include the "<4>" prefixes
4006  * @buf: buffer to copy the line to
4007  * @size: maximum size of the buffer
4008  * @len_out: length of line placed into buffer
4009  *
4010  * Start at the end of the kmsg buffer and fill the provided buffer
4011  * with as many of the *youngest* kmsg records that fit into it.
4012  * If the buffer is large enough, all available kmsg records will be
4013  * copied with a single call.
4014  *
4015  * Consecutive calls will fill the buffer with the next block of
4016  * available older records, not including the earlier retrieved ones.
4017  *
4018  * A return value of FALSE indicates that there are no more records to
4019  * read.
4020  */
4021 bool kmsg_dump_get_buffer(struct kmsg_dump_iter *iter, bool syslog,
4022 			  char *buf, size_t size, size_t *len_out)
4023 {
4024 	u64 min_seq = latched_seq_read_nolock(&clear_seq);
4025 	struct printk_info info;
4026 	struct printk_record r;
4027 	u64 seq;
4028 	u64 next_seq;
4029 	size_t len = 0;
4030 	bool ret = false;
4031 	bool time = printk_time;
4032 
4033 	if (!buf || !size)
4034 		goto out;
4035 
4036 	if (iter->cur_seq < min_seq)
4037 		iter->cur_seq = min_seq;
4038 
4039 	if (prb_read_valid_info(prb, iter->cur_seq, &info, NULL)) {
4040 		if (info.seq != iter->cur_seq) {
4041 			/* messages are gone, move to first available one */
4042 			iter->cur_seq = info.seq;
4043 		}
4044 	}
4045 
4046 	/* last entry */
4047 	if (iter->cur_seq >= iter->next_seq)
4048 		goto out;
4049 
4050 	/*
4051 	 * Find first record that fits, including all following records,
4052 	 * into the user-provided buffer for this dump. Pass in size-1
4053 	 * because this function (by way of record_print_text()) will
4054 	 * not write more than size-1 bytes of text into @buf.
4055 	 */
4056 	seq = find_first_fitting_seq(iter->cur_seq, iter->next_seq,
4057 				     size - 1, syslog, time);
4058 
4059 	/*
4060 	 * Next kmsg_dump_get_buffer() invocation will dump block of
4061 	 * older records stored right before this one.
4062 	 */
4063 	next_seq = seq;
4064 
4065 	prb_rec_init_rd(&r, &info, buf, size);
4066 
4067 	len = 0;
4068 	prb_for_each_record(seq, prb, seq, &r) {
4069 		if (r.info->seq >= iter->next_seq)
4070 			break;
4071 
4072 		len += record_print_text(&r, syslog, time);
4073 
4074 		/* Adjust record to store to remaining buffer space. */
4075 		prb_rec_init_rd(&r, &info, buf + len, size - len);
4076 	}
4077 
4078 	iter->next_seq = next_seq;
4079 	ret = true;
4080 out:
4081 	if (len_out)
4082 		*len_out = len;
4083 	return ret;
4084 }
4085 EXPORT_SYMBOL_GPL(kmsg_dump_get_buffer);
4086 
4087 /**
4088  * kmsg_dump_rewind - reset the iterator
4089  * @iter: kmsg dump iterator
4090  *
4091  * Reset the dumper's iterator so that kmsg_dump_get_line() and
4092  * kmsg_dump_get_buffer() can be called again and used multiple
4093  * times within the same dumper.dump() callback.
4094  */
4095 void kmsg_dump_rewind(struct kmsg_dump_iter *iter)
4096 {
4097 	iter->cur_seq = latched_seq_read_nolock(&clear_seq);
4098 	iter->next_seq = prb_next_seq(prb);
4099 }
4100 EXPORT_SYMBOL_GPL(kmsg_dump_rewind);
4101 
4102 #endif
4103 
4104 #ifdef CONFIG_SMP
4105 static atomic_t printk_cpu_sync_owner = ATOMIC_INIT(-1);
4106 static atomic_t printk_cpu_sync_nested = ATOMIC_INIT(0);
4107 
4108 /**
4109  * __printk_cpu_sync_wait() - Busy wait until the printk cpu-reentrant
4110  *                            spinning lock is not owned by any CPU.
4111  *
4112  * Context: Any context.
4113  */
4114 void __printk_cpu_sync_wait(void)
4115 {
4116 	do {
4117 		cpu_relax();
4118 	} while (atomic_read(&printk_cpu_sync_owner) != -1);
4119 }
4120 EXPORT_SYMBOL(__printk_cpu_sync_wait);
4121 
4122 /**
4123  * __printk_cpu_sync_try_get() - Try to acquire the printk cpu-reentrant
4124  *                               spinning lock.
4125  *
4126  * If no processor has the lock, the calling processor takes the lock and
4127  * becomes the owner. If the calling processor is already the owner of the
4128  * lock, this function succeeds immediately.
4129  *
4130  * Context: Any context. Expects interrupts to be disabled.
4131  * Return: 1 on success, otherwise 0.
4132  */
4133 int __printk_cpu_sync_try_get(void)
4134 {
4135 	int cpu;
4136 	int old;
4137 
4138 	cpu = smp_processor_id();
4139 
4140 	/*
4141 	 * Guarantee loads and stores from this CPU when it is the lock owner
4142 	 * are _not_ visible to the previous lock owner. This pairs with
4143 	 * __printk_cpu_sync_put:B.
4144 	 *
4145 	 * Memory barrier involvement:
4146 	 *
4147 	 * If __printk_cpu_sync_try_get:A reads from __printk_cpu_sync_put:B,
4148 	 * then __printk_cpu_sync_put:A can never read from
4149 	 * __printk_cpu_sync_try_get:B.
4150 	 *
4151 	 * Relies on:
4152 	 *
4153 	 * RELEASE from __printk_cpu_sync_put:A to __printk_cpu_sync_put:B
4154 	 * of the previous CPU
4155 	 *    matching
4156 	 * ACQUIRE from __printk_cpu_sync_try_get:A to
4157 	 * __printk_cpu_sync_try_get:B of this CPU
4158 	 */
4159 	old = atomic_cmpxchg_acquire(&printk_cpu_sync_owner, -1,
4160 				     cpu); /* LMM(__printk_cpu_sync_try_get:A) */
4161 	if (old == -1) {
4162 		/*
4163 		 * This CPU is now the owner and begins loading/storing
4164 		 * data: LMM(__printk_cpu_sync_try_get:B)
4165 		 */
4166 		return 1;
4167 
4168 	} else if (old == cpu) {
4169 		/* This CPU is already the owner. */
4170 		atomic_inc(&printk_cpu_sync_nested);
4171 		return 1;
4172 	}
4173 
4174 	return 0;
4175 }
4176 EXPORT_SYMBOL(__printk_cpu_sync_try_get);
4177 
4178 /**
4179  * __printk_cpu_sync_put() - Release the printk cpu-reentrant spinning lock.
4180  *
4181  * The calling processor must be the owner of the lock.
4182  *
4183  * Context: Any context. Expects interrupts to be disabled.
4184  */
4185 void __printk_cpu_sync_put(void)
4186 {
4187 	if (atomic_read(&printk_cpu_sync_nested)) {
4188 		atomic_dec(&printk_cpu_sync_nested);
4189 		return;
4190 	}
4191 
4192 	/*
4193 	 * This CPU is finished loading/storing data:
4194 	 * LMM(__printk_cpu_sync_put:A)
4195 	 */
4196 
4197 	/*
4198 	 * Guarantee loads and stores from this CPU when it was the
4199 	 * lock owner are visible to the next lock owner. This pairs
4200 	 * with __printk_cpu_sync_try_get:A.
4201 	 *
4202 	 * Memory barrier involvement:
4203 	 *
4204 	 * If __printk_cpu_sync_try_get:A reads from __printk_cpu_sync_put:B,
4205 	 * then __printk_cpu_sync_try_get:B reads from __printk_cpu_sync_put:A.
4206 	 *
4207 	 * Relies on:
4208 	 *
4209 	 * RELEASE from __printk_cpu_sync_put:A to __printk_cpu_sync_put:B
4210 	 * of this CPU
4211 	 *    matching
4212 	 * ACQUIRE from __printk_cpu_sync_try_get:A to
4213 	 * __printk_cpu_sync_try_get:B of the next CPU
4214 	 */
4215 	atomic_set_release(&printk_cpu_sync_owner,
4216 			   -1); /* LMM(__printk_cpu_sync_put:B) */
4217 }
4218 EXPORT_SYMBOL(__printk_cpu_sync_put);
4219 #endif /* CONFIG_SMP */
4220