1 /* 2 * linux/kernel/printk.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 * 6 * Modified to make sys_syslog() more flexible: added commands to 7 * return the last 4k of kernel messages, regardless of whether 8 * they've been read or not. Added option to suppress kernel printk's 9 * to the console. Added hook for sending the console messages 10 * elsewhere, in preparation for a serial line console (someday). 11 * Ted Ts'o, 2/11/93. 12 * Modified for sysctl support, 1/8/97, Chris Horn. 13 * Fixed SMP synchronization, 08/08/99, Manfred Spraul 14 * manfred@colorfullife.com 15 * Rewrote bits to get rid of console_lock 16 * 01Mar01 Andrew Morton 17 */ 18 19 #include <linux/kernel.h> 20 #include <linux/mm.h> 21 #include <linux/tty.h> 22 #include <linux/tty_driver.h> 23 #include <linux/console.h> 24 #include <linux/init.h> 25 #include <linux/jiffies.h> 26 #include <linux/nmi.h> 27 #include <linux/module.h> 28 #include <linux/moduleparam.h> 29 #include <linux/interrupt.h> /* For in_interrupt() */ 30 #include <linux/delay.h> 31 #include <linux/smp.h> 32 #include <linux/security.h> 33 #include <linux/bootmem.h> 34 #include <linux/memblock.h> 35 #include <linux/aio.h> 36 #include <linux/syscalls.h> 37 #include <linux/kexec.h> 38 #include <linux/kdb.h> 39 #include <linux/ratelimit.h> 40 #include <linux/kmsg_dump.h> 41 #include <linux/syslog.h> 42 #include <linux/cpu.h> 43 #include <linux/notifier.h> 44 #include <linux/rculist.h> 45 #include <linux/poll.h> 46 #include <linux/irq_work.h> 47 #include <linux/utsname.h> 48 49 #include <asm/uaccess.h> 50 51 #define CREATE_TRACE_POINTS 52 #include <trace/events/printk.h> 53 54 #include "console_cmdline.h" 55 #include "braille.h" 56 57 /* printk's without a loglevel use this.. */ 58 #define DEFAULT_MESSAGE_LOGLEVEL CONFIG_DEFAULT_MESSAGE_LOGLEVEL 59 60 /* We show everything that is MORE important than this.. */ 61 #define MINIMUM_CONSOLE_LOGLEVEL 1 /* Minimum loglevel we let people use */ 62 #define DEFAULT_CONSOLE_LOGLEVEL 7 /* anything MORE serious than KERN_DEBUG */ 63 64 int console_printk[4] = { 65 DEFAULT_CONSOLE_LOGLEVEL, /* console_loglevel */ 66 DEFAULT_MESSAGE_LOGLEVEL, /* default_message_loglevel */ 67 MINIMUM_CONSOLE_LOGLEVEL, /* minimum_console_loglevel */ 68 DEFAULT_CONSOLE_LOGLEVEL, /* default_console_loglevel */ 69 }; 70 71 /* 72 * Low level drivers may need that to know if they can schedule in 73 * their unblank() callback or not. So let's export it. 74 */ 75 int oops_in_progress; 76 EXPORT_SYMBOL(oops_in_progress); 77 78 /* 79 * console_sem protects the console_drivers list, and also 80 * provides serialisation for access to the entire console 81 * driver system. 82 */ 83 static DEFINE_SEMAPHORE(console_sem); 84 struct console *console_drivers; 85 EXPORT_SYMBOL_GPL(console_drivers); 86 87 #ifdef CONFIG_LOCKDEP 88 static struct lockdep_map console_lock_dep_map = { 89 .name = "console_lock" 90 }; 91 #endif 92 93 /* 94 * This is used for debugging the mess that is the VT code by 95 * keeping track if we have the console semaphore held. It's 96 * definitely not the perfect debug tool (we don't know if _WE_ 97 * hold it are racing, but it helps tracking those weird code 98 * path in the console code where we end up in places I want 99 * locked without the console sempahore held 100 */ 101 static int console_locked, console_suspended; 102 103 /* 104 * If exclusive_console is non-NULL then only this console is to be printed to. 105 */ 106 static struct console *exclusive_console; 107 108 /* 109 * Array of consoles built from command line options (console=) 110 */ 111 112 #define MAX_CMDLINECONSOLES 8 113 114 static struct console_cmdline console_cmdline[MAX_CMDLINECONSOLES]; 115 116 static int selected_console = -1; 117 static int preferred_console = -1; 118 int console_set_on_cmdline; 119 EXPORT_SYMBOL(console_set_on_cmdline); 120 121 /* Flag: console code may call schedule() */ 122 static int console_may_schedule; 123 124 /* 125 * The printk log buffer consists of a chain of concatenated variable 126 * length records. Every record starts with a record header, containing 127 * the overall length of the record. 128 * 129 * The heads to the first and last entry in the buffer, as well as the 130 * sequence numbers of these both entries are maintained when messages 131 * are stored.. 132 * 133 * If the heads indicate available messages, the length in the header 134 * tells the start next message. A length == 0 for the next message 135 * indicates a wrap-around to the beginning of the buffer. 136 * 137 * Every record carries the monotonic timestamp in microseconds, as well as 138 * the standard userspace syslog level and syslog facility. The usual 139 * kernel messages use LOG_KERN; userspace-injected messages always carry 140 * a matching syslog facility, by default LOG_USER. The origin of every 141 * message can be reliably determined that way. 142 * 143 * The human readable log message directly follows the message header. The 144 * length of the message text is stored in the header, the stored message 145 * is not terminated. 146 * 147 * Optionally, a message can carry a dictionary of properties (key/value pairs), 148 * to provide userspace with a machine-readable message context. 149 * 150 * Examples for well-defined, commonly used property names are: 151 * DEVICE=b12:8 device identifier 152 * b12:8 block dev_t 153 * c127:3 char dev_t 154 * n8 netdev ifindex 155 * +sound:card0 subsystem:devname 156 * SUBSYSTEM=pci driver-core subsystem name 157 * 158 * Valid characters in property names are [a-zA-Z0-9.-_]. The plain text value 159 * follows directly after a '=' character. Every property is terminated by 160 * a '\0' character. The last property is not terminated. 161 * 162 * Example of a message structure: 163 * 0000 ff 8f 00 00 00 00 00 00 monotonic time in nsec 164 * 0008 34 00 record is 52 bytes long 165 * 000a 0b 00 text is 11 bytes long 166 * 000c 1f 00 dictionary is 23 bytes long 167 * 000e 03 00 LOG_KERN (facility) LOG_ERR (level) 168 * 0010 69 74 27 73 20 61 20 6c "it's a l" 169 * 69 6e 65 "ine" 170 * 001b 44 45 56 49 43 "DEVIC" 171 * 45 3d 62 38 3a 32 00 44 "E=b8:2\0D" 172 * 52 49 56 45 52 3d 62 75 "RIVER=bu" 173 * 67 "g" 174 * 0032 00 00 00 padding to next message header 175 * 176 * The 'struct printk_log' buffer header must never be directly exported to 177 * userspace, it is a kernel-private implementation detail that might 178 * need to be changed in the future, when the requirements change. 179 * 180 * /dev/kmsg exports the structured data in the following line format: 181 * "level,sequnum,timestamp;<message text>\n" 182 * 183 * The optional key/value pairs are attached as continuation lines starting 184 * with a space character and terminated by a newline. All possible 185 * non-prinatable characters are escaped in the "\xff" notation. 186 * 187 * Users of the export format should ignore possible additional values 188 * separated by ',', and find the message after the ';' character. 189 */ 190 191 enum log_flags { 192 LOG_NOCONS = 1, /* already flushed, do not print to console */ 193 LOG_NEWLINE = 2, /* text ended with a newline */ 194 LOG_PREFIX = 4, /* text started with a prefix */ 195 LOG_CONT = 8, /* text is a fragment of a continuation line */ 196 }; 197 198 struct printk_log { 199 u64 ts_nsec; /* timestamp in nanoseconds */ 200 u16 len; /* length of entire record */ 201 u16 text_len; /* length of text buffer */ 202 u16 dict_len; /* length of dictionary buffer */ 203 u8 facility; /* syslog facility */ 204 u8 flags:5; /* internal record flags */ 205 u8 level:3; /* syslog level */ 206 }; 207 208 /* 209 * The logbuf_lock protects kmsg buffer, indices, counters. It is also 210 * used in interesting ways to provide interlocking in console_unlock(); 211 */ 212 static DEFINE_RAW_SPINLOCK(logbuf_lock); 213 214 #ifdef CONFIG_PRINTK 215 DECLARE_WAIT_QUEUE_HEAD(log_wait); 216 /* the next printk record to read by syslog(READ) or /proc/kmsg */ 217 static u64 syslog_seq; 218 static u32 syslog_idx; 219 static enum log_flags syslog_prev; 220 static size_t syslog_partial; 221 222 /* index and sequence number of the first record stored in the buffer */ 223 static u64 log_first_seq; 224 static u32 log_first_idx; 225 226 /* index and sequence number of the next record to store in the buffer */ 227 static u64 log_next_seq; 228 static u32 log_next_idx; 229 230 /* the next printk record to write to the console */ 231 static u64 console_seq; 232 static u32 console_idx; 233 static enum log_flags console_prev; 234 235 /* the next printk record to read after the last 'clear' command */ 236 static u64 clear_seq; 237 static u32 clear_idx; 238 239 #define PREFIX_MAX 32 240 #define LOG_LINE_MAX 1024 - PREFIX_MAX 241 242 /* record buffer */ 243 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) 244 #define LOG_ALIGN 4 245 #else 246 #define LOG_ALIGN __alignof__(struct printk_log) 247 #endif 248 #define __LOG_BUF_LEN (1 << CONFIG_LOG_BUF_SHIFT) 249 static char __log_buf[__LOG_BUF_LEN] __aligned(LOG_ALIGN); 250 static char *log_buf = __log_buf; 251 static u32 log_buf_len = __LOG_BUF_LEN; 252 253 /* cpu currently holding logbuf_lock */ 254 static volatile unsigned int logbuf_cpu = UINT_MAX; 255 256 /* human readable text of the record */ 257 static char *log_text(const struct printk_log *msg) 258 { 259 return (char *)msg + sizeof(struct printk_log); 260 } 261 262 /* optional key/value pair dictionary attached to the record */ 263 static char *log_dict(const struct printk_log *msg) 264 { 265 return (char *)msg + sizeof(struct printk_log) + msg->text_len; 266 } 267 268 /* get record by index; idx must point to valid msg */ 269 static struct printk_log *log_from_idx(u32 idx) 270 { 271 struct printk_log *msg = (struct printk_log *)(log_buf + idx); 272 273 /* 274 * A length == 0 record is the end of buffer marker. Wrap around and 275 * read the message at the start of the buffer. 276 */ 277 if (!msg->len) 278 return (struct printk_log *)log_buf; 279 return msg; 280 } 281 282 /* get next record; idx must point to valid msg */ 283 static u32 log_next(u32 idx) 284 { 285 struct printk_log *msg = (struct printk_log *)(log_buf + idx); 286 287 /* length == 0 indicates the end of the buffer; wrap */ 288 /* 289 * A length == 0 record is the end of buffer marker. Wrap around and 290 * read the message at the start of the buffer as *this* one, and 291 * return the one after that. 292 */ 293 if (!msg->len) { 294 msg = (struct printk_log *)log_buf; 295 return msg->len; 296 } 297 return idx + msg->len; 298 } 299 300 /* insert record into the buffer, discard old ones, update heads */ 301 static void log_store(int facility, int level, 302 enum log_flags flags, u64 ts_nsec, 303 const char *dict, u16 dict_len, 304 const char *text, u16 text_len) 305 { 306 struct printk_log *msg; 307 u32 size, pad_len; 308 309 /* number of '\0' padding bytes to next message */ 310 size = sizeof(struct printk_log) + text_len + dict_len; 311 pad_len = (-size) & (LOG_ALIGN - 1); 312 size += pad_len; 313 314 while (log_first_seq < log_next_seq) { 315 u32 free; 316 317 if (log_next_idx > log_first_idx) 318 free = max(log_buf_len - log_next_idx, log_first_idx); 319 else 320 free = log_first_idx - log_next_idx; 321 322 if (free > size + sizeof(struct printk_log)) 323 break; 324 325 /* drop old messages until we have enough contiuous space */ 326 log_first_idx = log_next(log_first_idx); 327 log_first_seq++; 328 } 329 330 if (log_next_idx + size + sizeof(struct printk_log) >= log_buf_len) { 331 /* 332 * This message + an additional empty header does not fit 333 * at the end of the buffer. Add an empty header with len == 0 334 * to signify a wrap around. 335 */ 336 memset(log_buf + log_next_idx, 0, sizeof(struct printk_log)); 337 log_next_idx = 0; 338 } 339 340 /* fill message */ 341 msg = (struct printk_log *)(log_buf + log_next_idx); 342 memcpy(log_text(msg), text, text_len); 343 msg->text_len = text_len; 344 memcpy(log_dict(msg), dict, dict_len); 345 msg->dict_len = dict_len; 346 msg->facility = facility; 347 msg->level = level & 7; 348 msg->flags = flags & 0x1f; 349 if (ts_nsec > 0) 350 msg->ts_nsec = ts_nsec; 351 else 352 msg->ts_nsec = local_clock(); 353 memset(log_dict(msg) + dict_len, 0, pad_len); 354 msg->len = sizeof(struct printk_log) + text_len + dict_len + pad_len; 355 356 /* insert message */ 357 log_next_idx += msg->len; 358 log_next_seq++; 359 } 360 361 #ifdef CONFIG_SECURITY_DMESG_RESTRICT 362 int dmesg_restrict = 1; 363 #else 364 int dmesg_restrict; 365 #endif 366 367 static int syslog_action_restricted(int type) 368 { 369 if (dmesg_restrict) 370 return 1; 371 /* 372 * Unless restricted, we allow "read all" and "get buffer size" 373 * for everybody. 374 */ 375 return type != SYSLOG_ACTION_READ_ALL && 376 type != SYSLOG_ACTION_SIZE_BUFFER; 377 } 378 379 static int check_syslog_permissions(int type, bool from_file) 380 { 381 /* 382 * If this is from /proc/kmsg and we've already opened it, then we've 383 * already done the capabilities checks at open time. 384 */ 385 if (from_file && type != SYSLOG_ACTION_OPEN) 386 return 0; 387 388 if (syslog_action_restricted(type)) { 389 if (capable(CAP_SYSLOG)) 390 return 0; 391 /* 392 * For historical reasons, accept CAP_SYS_ADMIN too, with 393 * a warning. 394 */ 395 if (capable(CAP_SYS_ADMIN)) { 396 pr_warn_once("%s (%d): Attempt to access syslog with " 397 "CAP_SYS_ADMIN but no CAP_SYSLOG " 398 "(deprecated).\n", 399 current->comm, task_pid_nr(current)); 400 return 0; 401 } 402 return -EPERM; 403 } 404 return security_syslog(type); 405 } 406 407 408 /* /dev/kmsg - userspace message inject/listen interface */ 409 struct devkmsg_user { 410 u64 seq; 411 u32 idx; 412 enum log_flags prev; 413 struct mutex lock; 414 char buf[8192]; 415 }; 416 417 static ssize_t devkmsg_writev(struct kiocb *iocb, const struct iovec *iv, 418 unsigned long count, loff_t pos) 419 { 420 char *buf, *line; 421 int i; 422 int level = default_message_loglevel; 423 int facility = 1; /* LOG_USER */ 424 size_t len = iov_length(iv, count); 425 ssize_t ret = len; 426 427 if (len > LOG_LINE_MAX) 428 return -EINVAL; 429 buf = kmalloc(len+1, GFP_KERNEL); 430 if (buf == NULL) 431 return -ENOMEM; 432 433 line = buf; 434 for (i = 0; i < count; i++) { 435 if (copy_from_user(line, iv[i].iov_base, iv[i].iov_len)) { 436 ret = -EFAULT; 437 goto out; 438 } 439 line += iv[i].iov_len; 440 } 441 442 /* 443 * Extract and skip the syslog prefix <[0-9]*>. Coming from userspace 444 * the decimal value represents 32bit, the lower 3 bit are the log 445 * level, the rest are the log facility. 446 * 447 * If no prefix or no userspace facility is specified, we 448 * enforce LOG_USER, to be able to reliably distinguish 449 * kernel-generated messages from userspace-injected ones. 450 */ 451 line = buf; 452 if (line[0] == '<') { 453 char *endp = NULL; 454 455 i = simple_strtoul(line+1, &endp, 10); 456 if (endp && endp[0] == '>') { 457 level = i & 7; 458 if (i >> 3) 459 facility = i >> 3; 460 endp++; 461 len -= endp - line; 462 line = endp; 463 } 464 } 465 line[len] = '\0'; 466 467 printk_emit(facility, level, NULL, 0, "%s", line); 468 out: 469 kfree(buf); 470 return ret; 471 } 472 473 static ssize_t devkmsg_read(struct file *file, char __user *buf, 474 size_t count, loff_t *ppos) 475 { 476 struct devkmsg_user *user = file->private_data; 477 struct printk_log *msg; 478 u64 ts_usec; 479 size_t i; 480 char cont = '-'; 481 size_t len; 482 ssize_t ret; 483 484 if (!user) 485 return -EBADF; 486 487 ret = mutex_lock_interruptible(&user->lock); 488 if (ret) 489 return ret; 490 raw_spin_lock_irq(&logbuf_lock); 491 while (user->seq == log_next_seq) { 492 if (file->f_flags & O_NONBLOCK) { 493 ret = -EAGAIN; 494 raw_spin_unlock_irq(&logbuf_lock); 495 goto out; 496 } 497 498 raw_spin_unlock_irq(&logbuf_lock); 499 ret = wait_event_interruptible(log_wait, 500 user->seq != log_next_seq); 501 if (ret) 502 goto out; 503 raw_spin_lock_irq(&logbuf_lock); 504 } 505 506 if (user->seq < log_first_seq) { 507 /* our last seen message is gone, return error and reset */ 508 user->idx = log_first_idx; 509 user->seq = log_first_seq; 510 ret = -EPIPE; 511 raw_spin_unlock_irq(&logbuf_lock); 512 goto out; 513 } 514 515 msg = log_from_idx(user->idx); 516 ts_usec = msg->ts_nsec; 517 do_div(ts_usec, 1000); 518 519 /* 520 * If we couldn't merge continuation line fragments during the print, 521 * export the stored flags to allow an optional external merge of the 522 * records. Merging the records isn't always neccessarily correct, like 523 * when we hit a race during printing. In most cases though, it produces 524 * better readable output. 'c' in the record flags mark the first 525 * fragment of a line, '+' the following. 526 */ 527 if (msg->flags & LOG_CONT && !(user->prev & LOG_CONT)) 528 cont = 'c'; 529 else if ((msg->flags & LOG_CONT) || 530 ((user->prev & LOG_CONT) && !(msg->flags & LOG_PREFIX))) 531 cont = '+'; 532 533 len = sprintf(user->buf, "%u,%llu,%llu,%c;", 534 (msg->facility << 3) | msg->level, 535 user->seq, ts_usec, cont); 536 user->prev = msg->flags; 537 538 /* escape non-printable characters */ 539 for (i = 0; i < msg->text_len; i++) { 540 unsigned char c = log_text(msg)[i]; 541 542 if (c < ' ' || c >= 127 || c == '\\') 543 len += sprintf(user->buf + len, "\\x%02x", c); 544 else 545 user->buf[len++] = c; 546 } 547 user->buf[len++] = '\n'; 548 549 if (msg->dict_len) { 550 bool line = true; 551 552 for (i = 0; i < msg->dict_len; i++) { 553 unsigned char c = log_dict(msg)[i]; 554 555 if (line) { 556 user->buf[len++] = ' '; 557 line = false; 558 } 559 560 if (c == '\0') { 561 user->buf[len++] = '\n'; 562 line = true; 563 continue; 564 } 565 566 if (c < ' ' || c >= 127 || c == '\\') { 567 len += sprintf(user->buf + len, "\\x%02x", c); 568 continue; 569 } 570 571 user->buf[len++] = c; 572 } 573 user->buf[len++] = '\n'; 574 } 575 576 user->idx = log_next(user->idx); 577 user->seq++; 578 raw_spin_unlock_irq(&logbuf_lock); 579 580 if (len > count) { 581 ret = -EINVAL; 582 goto out; 583 } 584 585 if (copy_to_user(buf, user->buf, len)) { 586 ret = -EFAULT; 587 goto out; 588 } 589 ret = len; 590 out: 591 mutex_unlock(&user->lock); 592 return ret; 593 } 594 595 static loff_t devkmsg_llseek(struct file *file, loff_t offset, int whence) 596 { 597 struct devkmsg_user *user = file->private_data; 598 loff_t ret = 0; 599 600 if (!user) 601 return -EBADF; 602 if (offset) 603 return -ESPIPE; 604 605 raw_spin_lock_irq(&logbuf_lock); 606 switch (whence) { 607 case SEEK_SET: 608 /* the first record */ 609 user->idx = log_first_idx; 610 user->seq = log_first_seq; 611 break; 612 case SEEK_DATA: 613 /* 614 * The first record after the last SYSLOG_ACTION_CLEAR, 615 * like issued by 'dmesg -c'. Reading /dev/kmsg itself 616 * changes no global state, and does not clear anything. 617 */ 618 user->idx = clear_idx; 619 user->seq = clear_seq; 620 break; 621 case SEEK_END: 622 /* after the last record */ 623 user->idx = log_next_idx; 624 user->seq = log_next_seq; 625 break; 626 default: 627 ret = -EINVAL; 628 } 629 raw_spin_unlock_irq(&logbuf_lock); 630 return ret; 631 } 632 633 static unsigned int devkmsg_poll(struct file *file, poll_table *wait) 634 { 635 struct devkmsg_user *user = file->private_data; 636 int ret = 0; 637 638 if (!user) 639 return POLLERR|POLLNVAL; 640 641 poll_wait(file, &log_wait, wait); 642 643 raw_spin_lock_irq(&logbuf_lock); 644 if (user->seq < log_next_seq) { 645 /* return error when data has vanished underneath us */ 646 if (user->seq < log_first_seq) 647 ret = POLLIN|POLLRDNORM|POLLERR|POLLPRI; 648 else 649 ret = POLLIN|POLLRDNORM; 650 } 651 raw_spin_unlock_irq(&logbuf_lock); 652 653 return ret; 654 } 655 656 static int devkmsg_open(struct inode *inode, struct file *file) 657 { 658 struct devkmsg_user *user; 659 int err; 660 661 /* write-only does not need any file context */ 662 if ((file->f_flags & O_ACCMODE) == O_WRONLY) 663 return 0; 664 665 err = check_syslog_permissions(SYSLOG_ACTION_READ_ALL, 666 SYSLOG_FROM_READER); 667 if (err) 668 return err; 669 670 user = kmalloc(sizeof(struct devkmsg_user), GFP_KERNEL); 671 if (!user) 672 return -ENOMEM; 673 674 mutex_init(&user->lock); 675 676 raw_spin_lock_irq(&logbuf_lock); 677 user->idx = log_first_idx; 678 user->seq = log_first_seq; 679 raw_spin_unlock_irq(&logbuf_lock); 680 681 file->private_data = user; 682 return 0; 683 } 684 685 static int devkmsg_release(struct inode *inode, struct file *file) 686 { 687 struct devkmsg_user *user = file->private_data; 688 689 if (!user) 690 return 0; 691 692 mutex_destroy(&user->lock); 693 kfree(user); 694 return 0; 695 } 696 697 const struct file_operations kmsg_fops = { 698 .open = devkmsg_open, 699 .read = devkmsg_read, 700 .aio_write = devkmsg_writev, 701 .llseek = devkmsg_llseek, 702 .poll = devkmsg_poll, 703 .release = devkmsg_release, 704 }; 705 706 #ifdef CONFIG_KEXEC 707 /* 708 * This appends the listed symbols to /proc/vmcore 709 * 710 * /proc/vmcore is used by various utilities, like crash and makedumpfile to 711 * obtain access to symbols that are otherwise very difficult to locate. These 712 * symbols are specifically used so that utilities can access and extract the 713 * dmesg log from a vmcore file after a crash. 714 */ 715 void log_buf_kexec_setup(void) 716 { 717 VMCOREINFO_SYMBOL(log_buf); 718 VMCOREINFO_SYMBOL(log_buf_len); 719 VMCOREINFO_SYMBOL(log_first_idx); 720 VMCOREINFO_SYMBOL(log_next_idx); 721 /* 722 * Export struct printk_log size and field offsets. User space tools can 723 * parse it and detect any changes to structure down the line. 724 */ 725 VMCOREINFO_STRUCT_SIZE(printk_log); 726 VMCOREINFO_OFFSET(printk_log, ts_nsec); 727 VMCOREINFO_OFFSET(printk_log, len); 728 VMCOREINFO_OFFSET(printk_log, text_len); 729 VMCOREINFO_OFFSET(printk_log, dict_len); 730 } 731 #endif 732 733 /* requested log_buf_len from kernel cmdline */ 734 static unsigned long __initdata new_log_buf_len; 735 736 /* save requested log_buf_len since it's too early to process it */ 737 static int __init log_buf_len_setup(char *str) 738 { 739 unsigned size = memparse(str, &str); 740 741 if (size) 742 size = roundup_pow_of_two(size); 743 if (size > log_buf_len) 744 new_log_buf_len = size; 745 746 return 0; 747 } 748 early_param("log_buf_len", log_buf_len_setup); 749 750 void __init setup_log_buf(int early) 751 { 752 unsigned long flags; 753 char *new_log_buf; 754 int free; 755 756 if (!new_log_buf_len) 757 return; 758 759 if (early) { 760 new_log_buf = 761 memblock_virt_alloc(new_log_buf_len, PAGE_SIZE); 762 } else { 763 new_log_buf = memblock_virt_alloc_nopanic(new_log_buf_len, 0); 764 } 765 766 if (unlikely(!new_log_buf)) { 767 pr_err("log_buf_len: %ld bytes not available\n", 768 new_log_buf_len); 769 return; 770 } 771 772 raw_spin_lock_irqsave(&logbuf_lock, flags); 773 log_buf_len = new_log_buf_len; 774 log_buf = new_log_buf; 775 new_log_buf_len = 0; 776 free = __LOG_BUF_LEN - log_next_idx; 777 memcpy(log_buf, __log_buf, __LOG_BUF_LEN); 778 raw_spin_unlock_irqrestore(&logbuf_lock, flags); 779 780 pr_info("log_buf_len: %d\n", log_buf_len); 781 pr_info("early log buf free: %d(%d%%)\n", 782 free, (free * 100) / __LOG_BUF_LEN); 783 } 784 785 static bool __read_mostly ignore_loglevel; 786 787 static int __init ignore_loglevel_setup(char *str) 788 { 789 ignore_loglevel = 1; 790 pr_info("debug: ignoring loglevel setting.\n"); 791 792 return 0; 793 } 794 795 early_param("ignore_loglevel", ignore_loglevel_setup); 796 module_param(ignore_loglevel, bool, S_IRUGO | S_IWUSR); 797 MODULE_PARM_DESC(ignore_loglevel, "ignore loglevel setting, to" 798 "print all kernel messages to the console."); 799 800 #ifdef CONFIG_BOOT_PRINTK_DELAY 801 802 static int boot_delay; /* msecs delay after each printk during bootup */ 803 static unsigned long long loops_per_msec; /* based on boot_delay */ 804 805 static int __init boot_delay_setup(char *str) 806 { 807 unsigned long lpj; 808 809 lpj = preset_lpj ? preset_lpj : 1000000; /* some guess */ 810 loops_per_msec = (unsigned long long)lpj / 1000 * HZ; 811 812 get_option(&str, &boot_delay); 813 if (boot_delay > 10 * 1000) 814 boot_delay = 0; 815 816 pr_debug("boot_delay: %u, preset_lpj: %ld, lpj: %lu, " 817 "HZ: %d, loops_per_msec: %llu\n", 818 boot_delay, preset_lpj, lpj, HZ, loops_per_msec); 819 return 0; 820 } 821 early_param("boot_delay", boot_delay_setup); 822 823 static void boot_delay_msec(int level) 824 { 825 unsigned long long k; 826 unsigned long timeout; 827 828 if ((boot_delay == 0 || system_state != SYSTEM_BOOTING) 829 || (level >= console_loglevel && !ignore_loglevel)) { 830 return; 831 } 832 833 k = (unsigned long long)loops_per_msec * boot_delay; 834 835 timeout = jiffies + msecs_to_jiffies(boot_delay); 836 while (k) { 837 k--; 838 cpu_relax(); 839 /* 840 * use (volatile) jiffies to prevent 841 * compiler reduction; loop termination via jiffies 842 * is secondary and may or may not happen. 843 */ 844 if (time_after(jiffies, timeout)) 845 break; 846 touch_nmi_watchdog(); 847 } 848 } 849 #else 850 static inline void boot_delay_msec(int level) 851 { 852 } 853 #endif 854 855 #if defined(CONFIG_PRINTK_TIME) 856 static bool printk_time = 1; 857 #else 858 static bool printk_time; 859 #endif 860 module_param_named(time, printk_time, bool, S_IRUGO | S_IWUSR); 861 862 static size_t print_time(u64 ts, char *buf) 863 { 864 unsigned long rem_nsec; 865 866 if (!printk_time) 867 return 0; 868 869 rem_nsec = do_div(ts, 1000000000); 870 871 if (!buf) 872 return snprintf(NULL, 0, "[%5lu.000000] ", (unsigned long)ts); 873 874 return sprintf(buf, "[%5lu.%06lu] ", 875 (unsigned long)ts, rem_nsec / 1000); 876 } 877 878 static size_t print_prefix(const struct printk_log *msg, bool syslog, char *buf) 879 { 880 size_t len = 0; 881 unsigned int prefix = (msg->facility << 3) | msg->level; 882 883 if (syslog) { 884 if (buf) { 885 len += sprintf(buf, "<%u>", prefix); 886 } else { 887 len += 3; 888 if (prefix > 999) 889 len += 3; 890 else if (prefix > 99) 891 len += 2; 892 else if (prefix > 9) 893 len++; 894 } 895 } 896 897 len += print_time(msg->ts_nsec, buf ? buf + len : NULL); 898 return len; 899 } 900 901 static size_t msg_print_text(const struct printk_log *msg, enum log_flags prev, 902 bool syslog, char *buf, size_t size) 903 { 904 const char *text = log_text(msg); 905 size_t text_size = msg->text_len; 906 bool prefix = true; 907 bool newline = true; 908 size_t len = 0; 909 910 if ((prev & LOG_CONT) && !(msg->flags & LOG_PREFIX)) 911 prefix = false; 912 913 if (msg->flags & LOG_CONT) { 914 if ((prev & LOG_CONT) && !(prev & LOG_NEWLINE)) 915 prefix = false; 916 917 if (!(msg->flags & LOG_NEWLINE)) 918 newline = false; 919 } 920 921 do { 922 const char *next = memchr(text, '\n', text_size); 923 size_t text_len; 924 925 if (next) { 926 text_len = next - text; 927 next++; 928 text_size -= next - text; 929 } else { 930 text_len = text_size; 931 } 932 933 if (buf) { 934 if (print_prefix(msg, syslog, NULL) + 935 text_len + 1 >= size - len) 936 break; 937 938 if (prefix) 939 len += print_prefix(msg, syslog, buf + len); 940 memcpy(buf + len, text, text_len); 941 len += text_len; 942 if (next || newline) 943 buf[len++] = '\n'; 944 } else { 945 /* SYSLOG_ACTION_* buffer size only calculation */ 946 if (prefix) 947 len += print_prefix(msg, syslog, NULL); 948 len += text_len; 949 if (next || newline) 950 len++; 951 } 952 953 prefix = true; 954 text = next; 955 } while (text); 956 957 return len; 958 } 959 960 static int syslog_print(char __user *buf, int size) 961 { 962 char *text; 963 struct printk_log *msg; 964 int len = 0; 965 966 text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL); 967 if (!text) 968 return -ENOMEM; 969 970 while (size > 0) { 971 size_t n; 972 size_t skip; 973 974 raw_spin_lock_irq(&logbuf_lock); 975 if (syslog_seq < log_first_seq) { 976 /* messages are gone, move to first one */ 977 syslog_seq = log_first_seq; 978 syslog_idx = log_first_idx; 979 syslog_prev = 0; 980 syslog_partial = 0; 981 } 982 if (syslog_seq == log_next_seq) { 983 raw_spin_unlock_irq(&logbuf_lock); 984 break; 985 } 986 987 skip = syslog_partial; 988 msg = log_from_idx(syslog_idx); 989 n = msg_print_text(msg, syslog_prev, true, text, 990 LOG_LINE_MAX + PREFIX_MAX); 991 if (n - syslog_partial <= size) { 992 /* message fits into buffer, move forward */ 993 syslog_idx = log_next(syslog_idx); 994 syslog_seq++; 995 syslog_prev = msg->flags; 996 n -= syslog_partial; 997 syslog_partial = 0; 998 } else if (!len){ 999 /* partial read(), remember position */ 1000 n = size; 1001 syslog_partial += n; 1002 } else 1003 n = 0; 1004 raw_spin_unlock_irq(&logbuf_lock); 1005 1006 if (!n) 1007 break; 1008 1009 if (copy_to_user(buf, text + skip, n)) { 1010 if (!len) 1011 len = -EFAULT; 1012 break; 1013 } 1014 1015 len += n; 1016 size -= n; 1017 buf += n; 1018 } 1019 1020 kfree(text); 1021 return len; 1022 } 1023 1024 static int syslog_print_all(char __user *buf, int size, bool clear) 1025 { 1026 char *text; 1027 int len = 0; 1028 1029 text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL); 1030 if (!text) 1031 return -ENOMEM; 1032 1033 raw_spin_lock_irq(&logbuf_lock); 1034 if (buf) { 1035 u64 next_seq; 1036 u64 seq; 1037 u32 idx; 1038 enum log_flags prev; 1039 1040 if (clear_seq < log_first_seq) { 1041 /* messages are gone, move to first available one */ 1042 clear_seq = log_first_seq; 1043 clear_idx = log_first_idx; 1044 } 1045 1046 /* 1047 * Find first record that fits, including all following records, 1048 * into the user-provided buffer for this dump. 1049 */ 1050 seq = clear_seq; 1051 idx = clear_idx; 1052 prev = 0; 1053 while (seq < log_next_seq) { 1054 struct printk_log *msg = log_from_idx(idx); 1055 1056 len += msg_print_text(msg, prev, true, NULL, 0); 1057 prev = msg->flags; 1058 idx = log_next(idx); 1059 seq++; 1060 } 1061 1062 /* move first record forward until length fits into the buffer */ 1063 seq = clear_seq; 1064 idx = clear_idx; 1065 prev = 0; 1066 while (len > size && seq < log_next_seq) { 1067 struct printk_log *msg = log_from_idx(idx); 1068 1069 len -= msg_print_text(msg, prev, true, NULL, 0); 1070 prev = msg->flags; 1071 idx = log_next(idx); 1072 seq++; 1073 } 1074 1075 /* last message fitting into this dump */ 1076 next_seq = log_next_seq; 1077 1078 len = 0; 1079 prev = 0; 1080 while (len >= 0 && seq < next_seq) { 1081 struct printk_log *msg = log_from_idx(idx); 1082 int textlen; 1083 1084 textlen = msg_print_text(msg, prev, true, text, 1085 LOG_LINE_MAX + PREFIX_MAX); 1086 if (textlen < 0) { 1087 len = textlen; 1088 break; 1089 } 1090 idx = log_next(idx); 1091 seq++; 1092 prev = msg->flags; 1093 1094 raw_spin_unlock_irq(&logbuf_lock); 1095 if (copy_to_user(buf + len, text, textlen)) 1096 len = -EFAULT; 1097 else 1098 len += textlen; 1099 raw_spin_lock_irq(&logbuf_lock); 1100 1101 if (seq < log_first_seq) { 1102 /* messages are gone, move to next one */ 1103 seq = log_first_seq; 1104 idx = log_first_idx; 1105 prev = 0; 1106 } 1107 } 1108 } 1109 1110 if (clear) { 1111 clear_seq = log_next_seq; 1112 clear_idx = log_next_idx; 1113 } 1114 raw_spin_unlock_irq(&logbuf_lock); 1115 1116 kfree(text); 1117 return len; 1118 } 1119 1120 int do_syslog(int type, char __user *buf, int len, bool from_file) 1121 { 1122 bool clear = false; 1123 static int saved_console_loglevel = -1; 1124 int error; 1125 1126 error = check_syslog_permissions(type, from_file); 1127 if (error) 1128 goto out; 1129 1130 error = security_syslog(type); 1131 if (error) 1132 return error; 1133 1134 switch (type) { 1135 case SYSLOG_ACTION_CLOSE: /* Close log */ 1136 break; 1137 case SYSLOG_ACTION_OPEN: /* Open log */ 1138 break; 1139 case SYSLOG_ACTION_READ: /* Read from log */ 1140 error = -EINVAL; 1141 if (!buf || len < 0) 1142 goto out; 1143 error = 0; 1144 if (!len) 1145 goto out; 1146 if (!access_ok(VERIFY_WRITE, buf, len)) { 1147 error = -EFAULT; 1148 goto out; 1149 } 1150 error = wait_event_interruptible(log_wait, 1151 syslog_seq != log_next_seq); 1152 if (error) 1153 goto out; 1154 error = syslog_print(buf, len); 1155 break; 1156 /* Read/clear last kernel messages */ 1157 case SYSLOG_ACTION_READ_CLEAR: 1158 clear = true; 1159 /* FALL THRU */ 1160 /* Read last kernel messages */ 1161 case SYSLOG_ACTION_READ_ALL: 1162 error = -EINVAL; 1163 if (!buf || len < 0) 1164 goto out; 1165 error = 0; 1166 if (!len) 1167 goto out; 1168 if (!access_ok(VERIFY_WRITE, buf, len)) { 1169 error = -EFAULT; 1170 goto out; 1171 } 1172 error = syslog_print_all(buf, len, clear); 1173 break; 1174 /* Clear ring buffer */ 1175 case SYSLOG_ACTION_CLEAR: 1176 syslog_print_all(NULL, 0, true); 1177 break; 1178 /* Disable logging to console */ 1179 case SYSLOG_ACTION_CONSOLE_OFF: 1180 if (saved_console_loglevel == -1) 1181 saved_console_loglevel = console_loglevel; 1182 console_loglevel = minimum_console_loglevel; 1183 break; 1184 /* Enable logging to console */ 1185 case SYSLOG_ACTION_CONSOLE_ON: 1186 if (saved_console_loglevel != -1) { 1187 console_loglevel = saved_console_loglevel; 1188 saved_console_loglevel = -1; 1189 } 1190 break; 1191 /* Set level of messages printed to console */ 1192 case SYSLOG_ACTION_CONSOLE_LEVEL: 1193 error = -EINVAL; 1194 if (len < 1 || len > 8) 1195 goto out; 1196 if (len < minimum_console_loglevel) 1197 len = minimum_console_loglevel; 1198 console_loglevel = len; 1199 /* Implicitly re-enable logging to console */ 1200 saved_console_loglevel = -1; 1201 error = 0; 1202 break; 1203 /* Number of chars in the log buffer */ 1204 case SYSLOG_ACTION_SIZE_UNREAD: 1205 raw_spin_lock_irq(&logbuf_lock); 1206 if (syslog_seq < log_first_seq) { 1207 /* messages are gone, move to first one */ 1208 syslog_seq = log_first_seq; 1209 syslog_idx = log_first_idx; 1210 syslog_prev = 0; 1211 syslog_partial = 0; 1212 } 1213 if (from_file) { 1214 /* 1215 * Short-cut for poll(/"proc/kmsg") which simply checks 1216 * for pending data, not the size; return the count of 1217 * records, not the length. 1218 */ 1219 error = log_next_idx - syslog_idx; 1220 } else { 1221 u64 seq = syslog_seq; 1222 u32 idx = syslog_idx; 1223 enum log_flags prev = syslog_prev; 1224 1225 error = 0; 1226 while (seq < log_next_seq) { 1227 struct printk_log *msg = log_from_idx(idx); 1228 1229 error += msg_print_text(msg, prev, true, NULL, 0); 1230 idx = log_next(idx); 1231 seq++; 1232 prev = msg->flags; 1233 } 1234 error -= syslog_partial; 1235 } 1236 raw_spin_unlock_irq(&logbuf_lock); 1237 break; 1238 /* Size of the log buffer */ 1239 case SYSLOG_ACTION_SIZE_BUFFER: 1240 error = log_buf_len; 1241 break; 1242 default: 1243 error = -EINVAL; 1244 break; 1245 } 1246 out: 1247 return error; 1248 } 1249 1250 SYSCALL_DEFINE3(syslog, int, type, char __user *, buf, int, len) 1251 { 1252 return do_syslog(type, buf, len, SYSLOG_FROM_READER); 1253 } 1254 1255 /* 1256 * Call the console drivers, asking them to write out 1257 * log_buf[start] to log_buf[end - 1]. 1258 * The console_lock must be held. 1259 */ 1260 static void call_console_drivers(int level, const char *text, size_t len) 1261 { 1262 struct console *con; 1263 1264 trace_console(text, len); 1265 1266 if (level >= console_loglevel && !ignore_loglevel) 1267 return; 1268 if (!console_drivers) 1269 return; 1270 1271 for_each_console(con) { 1272 if (exclusive_console && con != exclusive_console) 1273 continue; 1274 if (!(con->flags & CON_ENABLED)) 1275 continue; 1276 if (!con->write) 1277 continue; 1278 if (!cpu_online(smp_processor_id()) && 1279 !(con->flags & CON_ANYTIME)) 1280 continue; 1281 con->write(con, text, len); 1282 } 1283 } 1284 1285 /* 1286 * Zap console related locks when oopsing. Only zap at most once 1287 * every 10 seconds, to leave time for slow consoles to print a 1288 * full oops. 1289 */ 1290 static void zap_locks(void) 1291 { 1292 static unsigned long oops_timestamp; 1293 1294 if (time_after_eq(jiffies, oops_timestamp) && 1295 !time_after(jiffies, oops_timestamp + 30 * HZ)) 1296 return; 1297 1298 oops_timestamp = jiffies; 1299 1300 debug_locks_off(); 1301 /* If a crash is occurring, make sure we can't deadlock */ 1302 raw_spin_lock_init(&logbuf_lock); 1303 /* And make sure that we print immediately */ 1304 sema_init(&console_sem, 1); 1305 } 1306 1307 /* Check if we have any console registered that can be called early in boot. */ 1308 static int have_callable_console(void) 1309 { 1310 struct console *con; 1311 1312 for_each_console(con) 1313 if (con->flags & CON_ANYTIME) 1314 return 1; 1315 1316 return 0; 1317 } 1318 1319 /* 1320 * Can we actually use the console at this time on this cpu? 1321 * 1322 * Console drivers may assume that per-cpu resources have 1323 * been allocated. So unless they're explicitly marked as 1324 * being able to cope (CON_ANYTIME) don't call them until 1325 * this CPU is officially up. 1326 */ 1327 static inline int can_use_console(unsigned int cpu) 1328 { 1329 return cpu_online(cpu) || have_callable_console(); 1330 } 1331 1332 /* 1333 * Try to get console ownership to actually show the kernel 1334 * messages from a 'printk'. Return true (and with the 1335 * console_lock held, and 'console_locked' set) if it 1336 * is successful, false otherwise. 1337 * 1338 * This gets called with the 'logbuf_lock' spinlock held and 1339 * interrupts disabled. It should return with 'lockbuf_lock' 1340 * released but interrupts still disabled. 1341 */ 1342 static int console_trylock_for_printk(unsigned int cpu) 1343 __releases(&logbuf_lock) 1344 { 1345 int retval = 0, wake = 0; 1346 1347 if (console_trylock()) { 1348 retval = 1; 1349 1350 /* 1351 * If we can't use the console, we need to release 1352 * the console semaphore by hand to avoid flushing 1353 * the buffer. We need to hold the console semaphore 1354 * in order to do this test safely. 1355 */ 1356 if (!can_use_console(cpu)) { 1357 console_locked = 0; 1358 wake = 1; 1359 retval = 0; 1360 } 1361 } 1362 logbuf_cpu = UINT_MAX; 1363 raw_spin_unlock(&logbuf_lock); 1364 if (wake) 1365 up(&console_sem); 1366 return retval; 1367 } 1368 1369 int printk_delay_msec __read_mostly; 1370 1371 static inline void printk_delay(void) 1372 { 1373 if (unlikely(printk_delay_msec)) { 1374 int m = printk_delay_msec; 1375 1376 while (m--) { 1377 mdelay(1); 1378 touch_nmi_watchdog(); 1379 } 1380 } 1381 } 1382 1383 /* 1384 * Continuation lines are buffered, and not committed to the record buffer 1385 * until the line is complete, or a race forces it. The line fragments 1386 * though, are printed immediately to the consoles to ensure everything has 1387 * reached the console in case of a kernel crash. 1388 */ 1389 static struct cont { 1390 char buf[LOG_LINE_MAX]; 1391 size_t len; /* length == 0 means unused buffer */ 1392 size_t cons; /* bytes written to console */ 1393 struct task_struct *owner; /* task of first print*/ 1394 u64 ts_nsec; /* time of first print */ 1395 u8 level; /* log level of first message */ 1396 u8 facility; /* log level of first message */ 1397 enum log_flags flags; /* prefix, newline flags */ 1398 bool flushed:1; /* buffer sealed and committed */ 1399 } cont; 1400 1401 static void cont_flush(enum log_flags flags) 1402 { 1403 if (cont.flushed) 1404 return; 1405 if (cont.len == 0) 1406 return; 1407 1408 if (cont.cons) { 1409 /* 1410 * If a fragment of this line was directly flushed to the 1411 * console; wait for the console to pick up the rest of the 1412 * line. LOG_NOCONS suppresses a duplicated output. 1413 */ 1414 log_store(cont.facility, cont.level, flags | LOG_NOCONS, 1415 cont.ts_nsec, NULL, 0, cont.buf, cont.len); 1416 cont.flags = flags; 1417 cont.flushed = true; 1418 } else { 1419 /* 1420 * If no fragment of this line ever reached the console, 1421 * just submit it to the store and free the buffer. 1422 */ 1423 log_store(cont.facility, cont.level, flags, 0, 1424 NULL, 0, cont.buf, cont.len); 1425 cont.len = 0; 1426 } 1427 } 1428 1429 static bool cont_add(int facility, int level, const char *text, size_t len) 1430 { 1431 if (cont.len && cont.flushed) 1432 return false; 1433 1434 if (cont.len + len > sizeof(cont.buf)) { 1435 /* the line gets too long, split it up in separate records */ 1436 cont_flush(LOG_CONT); 1437 return false; 1438 } 1439 1440 if (!cont.len) { 1441 cont.facility = facility; 1442 cont.level = level; 1443 cont.owner = current; 1444 cont.ts_nsec = local_clock(); 1445 cont.flags = 0; 1446 cont.cons = 0; 1447 cont.flushed = false; 1448 } 1449 1450 memcpy(cont.buf + cont.len, text, len); 1451 cont.len += len; 1452 1453 if (cont.len > (sizeof(cont.buf) * 80) / 100) 1454 cont_flush(LOG_CONT); 1455 1456 return true; 1457 } 1458 1459 static size_t cont_print_text(char *text, size_t size) 1460 { 1461 size_t textlen = 0; 1462 size_t len; 1463 1464 if (cont.cons == 0 && (console_prev & LOG_NEWLINE)) { 1465 textlen += print_time(cont.ts_nsec, text); 1466 size -= textlen; 1467 } 1468 1469 len = cont.len - cont.cons; 1470 if (len > 0) { 1471 if (len+1 > size) 1472 len = size-1; 1473 memcpy(text + textlen, cont.buf + cont.cons, len); 1474 textlen += len; 1475 cont.cons = cont.len; 1476 } 1477 1478 if (cont.flushed) { 1479 if (cont.flags & LOG_NEWLINE) 1480 text[textlen++] = '\n'; 1481 /* got everything, release buffer */ 1482 cont.len = 0; 1483 } 1484 return textlen; 1485 } 1486 1487 asmlinkage int vprintk_emit(int facility, int level, 1488 const char *dict, size_t dictlen, 1489 const char *fmt, va_list args) 1490 { 1491 static int recursion_bug; 1492 static char textbuf[LOG_LINE_MAX]; 1493 char *text = textbuf; 1494 size_t text_len; 1495 enum log_flags lflags = 0; 1496 unsigned long flags; 1497 int this_cpu; 1498 int printed_len = 0; 1499 1500 boot_delay_msec(level); 1501 printk_delay(); 1502 1503 /* This stops the holder of console_sem just where we want him */ 1504 local_irq_save(flags); 1505 this_cpu = smp_processor_id(); 1506 1507 /* 1508 * Ouch, printk recursed into itself! 1509 */ 1510 if (unlikely(logbuf_cpu == this_cpu)) { 1511 /* 1512 * If a crash is occurring during printk() on this CPU, 1513 * then try to get the crash message out but make sure 1514 * we can't deadlock. Otherwise just return to avoid the 1515 * recursion and return - but flag the recursion so that 1516 * it can be printed at the next appropriate moment: 1517 */ 1518 if (!oops_in_progress && !lockdep_recursing(current)) { 1519 recursion_bug = 1; 1520 goto out_restore_irqs; 1521 } 1522 zap_locks(); 1523 } 1524 1525 lockdep_off(); 1526 raw_spin_lock(&logbuf_lock); 1527 logbuf_cpu = this_cpu; 1528 1529 if (recursion_bug) { 1530 static const char recursion_msg[] = 1531 "BUG: recent printk recursion!"; 1532 1533 recursion_bug = 0; 1534 printed_len += strlen(recursion_msg); 1535 /* emit KERN_CRIT message */ 1536 log_store(0, 2, LOG_PREFIX|LOG_NEWLINE, 0, 1537 NULL, 0, recursion_msg, printed_len); 1538 } 1539 1540 /* 1541 * The printf needs to come first; we need the syslog 1542 * prefix which might be passed-in as a parameter. 1543 */ 1544 text_len = vscnprintf(text, sizeof(textbuf), fmt, args); 1545 1546 /* mark and strip a trailing newline */ 1547 if (text_len && text[text_len-1] == '\n') { 1548 text_len--; 1549 lflags |= LOG_NEWLINE; 1550 } 1551 1552 /* strip kernel syslog prefix and extract log level or control flags */ 1553 if (facility == 0) { 1554 int kern_level = printk_get_level(text); 1555 1556 if (kern_level) { 1557 const char *end_of_header = printk_skip_level(text); 1558 switch (kern_level) { 1559 case '0' ... '7': 1560 if (level == -1) 1561 level = kern_level - '0'; 1562 case 'd': /* KERN_DEFAULT */ 1563 lflags |= LOG_PREFIX; 1564 case 'c': /* KERN_CONT */ 1565 break; 1566 } 1567 text_len -= end_of_header - text; 1568 text = (char *)end_of_header; 1569 } 1570 } 1571 1572 if (level == -1) 1573 level = default_message_loglevel; 1574 1575 if (dict) 1576 lflags |= LOG_PREFIX|LOG_NEWLINE; 1577 1578 if (!(lflags & LOG_NEWLINE)) { 1579 /* 1580 * Flush the conflicting buffer. An earlier newline was missing, 1581 * or another task also prints continuation lines. 1582 */ 1583 if (cont.len && (lflags & LOG_PREFIX || cont.owner != current)) 1584 cont_flush(LOG_NEWLINE); 1585 1586 /* buffer line if possible, otherwise store it right away */ 1587 if (!cont_add(facility, level, text, text_len)) 1588 log_store(facility, level, lflags | LOG_CONT, 0, 1589 dict, dictlen, text, text_len); 1590 } else { 1591 bool stored = false; 1592 1593 /* 1594 * If an earlier newline was missing and it was the same task, 1595 * either merge it with the current buffer and flush, or if 1596 * there was a race with interrupts (prefix == true) then just 1597 * flush it out and store this line separately. 1598 * If the preceding printk was from a different task and missed 1599 * a newline, flush and append the newline. 1600 */ 1601 if (cont.len) { 1602 if (cont.owner == current && !(lflags & LOG_PREFIX)) 1603 stored = cont_add(facility, level, text, 1604 text_len); 1605 cont_flush(LOG_NEWLINE); 1606 } 1607 1608 if (!stored) 1609 log_store(facility, level, lflags, 0, 1610 dict, dictlen, text, text_len); 1611 } 1612 printed_len += text_len; 1613 1614 /* 1615 * Try to acquire and then immediately release the console semaphore. 1616 * The release will print out buffers and wake up /dev/kmsg and syslog() 1617 * users. 1618 * 1619 * The console_trylock_for_printk() function will release 'logbuf_lock' 1620 * regardless of whether it actually gets the console semaphore or not. 1621 */ 1622 if (console_trylock_for_printk(this_cpu)) 1623 console_unlock(); 1624 1625 lockdep_on(); 1626 out_restore_irqs: 1627 local_irq_restore(flags); 1628 1629 return printed_len; 1630 } 1631 EXPORT_SYMBOL(vprintk_emit); 1632 1633 asmlinkage int vprintk(const char *fmt, va_list args) 1634 { 1635 return vprintk_emit(0, -1, NULL, 0, fmt, args); 1636 } 1637 EXPORT_SYMBOL(vprintk); 1638 1639 asmlinkage int printk_emit(int facility, int level, 1640 const char *dict, size_t dictlen, 1641 const char *fmt, ...) 1642 { 1643 va_list args; 1644 int r; 1645 1646 va_start(args, fmt); 1647 r = vprintk_emit(facility, level, dict, dictlen, fmt, args); 1648 va_end(args); 1649 1650 return r; 1651 } 1652 EXPORT_SYMBOL(printk_emit); 1653 1654 /** 1655 * printk - print a kernel message 1656 * @fmt: format string 1657 * 1658 * This is printk(). It can be called from any context. We want it to work. 1659 * 1660 * We try to grab the console_lock. If we succeed, it's easy - we log the 1661 * output and call the console drivers. If we fail to get the semaphore, we 1662 * place the output into the log buffer and return. The current holder of 1663 * the console_sem will notice the new output in console_unlock(); and will 1664 * send it to the consoles before releasing the lock. 1665 * 1666 * One effect of this deferred printing is that code which calls printk() and 1667 * then changes console_loglevel may break. This is because console_loglevel 1668 * is inspected when the actual printing occurs. 1669 * 1670 * See also: 1671 * printf(3) 1672 * 1673 * See the vsnprintf() documentation for format string extensions over C99. 1674 */ 1675 asmlinkage int printk(const char *fmt, ...) 1676 { 1677 va_list args; 1678 int r; 1679 1680 #ifdef CONFIG_KGDB_KDB 1681 if (unlikely(kdb_trap_printk)) { 1682 va_start(args, fmt); 1683 r = vkdb_printf(fmt, args); 1684 va_end(args); 1685 return r; 1686 } 1687 #endif 1688 va_start(args, fmt); 1689 r = vprintk_emit(0, -1, NULL, 0, fmt, args); 1690 va_end(args); 1691 1692 return r; 1693 } 1694 EXPORT_SYMBOL(printk); 1695 1696 #else /* CONFIG_PRINTK */ 1697 1698 #define LOG_LINE_MAX 0 1699 #define PREFIX_MAX 0 1700 #define LOG_LINE_MAX 0 1701 static u64 syslog_seq; 1702 static u32 syslog_idx; 1703 static u64 console_seq; 1704 static u32 console_idx; 1705 static enum log_flags syslog_prev; 1706 static u64 log_first_seq; 1707 static u32 log_first_idx; 1708 static u64 log_next_seq; 1709 static enum log_flags console_prev; 1710 static struct cont { 1711 size_t len; 1712 size_t cons; 1713 u8 level; 1714 bool flushed:1; 1715 } cont; 1716 static struct printk_log *log_from_idx(u32 idx) { return NULL; } 1717 static u32 log_next(u32 idx) { return 0; } 1718 static void call_console_drivers(int level, const char *text, size_t len) {} 1719 static size_t msg_print_text(const struct printk_log *msg, enum log_flags prev, 1720 bool syslog, char *buf, size_t size) { return 0; } 1721 static size_t cont_print_text(char *text, size_t size) { return 0; } 1722 1723 #endif /* CONFIG_PRINTK */ 1724 1725 #ifdef CONFIG_EARLY_PRINTK 1726 struct console *early_console; 1727 1728 void early_vprintk(const char *fmt, va_list ap) 1729 { 1730 if (early_console) { 1731 char buf[512]; 1732 int n = vscnprintf(buf, sizeof(buf), fmt, ap); 1733 1734 early_console->write(early_console, buf, n); 1735 } 1736 } 1737 1738 asmlinkage void early_printk(const char *fmt, ...) 1739 { 1740 va_list ap; 1741 1742 va_start(ap, fmt); 1743 early_vprintk(fmt, ap); 1744 va_end(ap); 1745 } 1746 #endif 1747 1748 static int __add_preferred_console(char *name, int idx, char *options, 1749 char *brl_options) 1750 { 1751 struct console_cmdline *c; 1752 int i; 1753 1754 /* 1755 * See if this tty is not yet registered, and 1756 * if we have a slot free. 1757 */ 1758 for (i = 0, c = console_cmdline; 1759 i < MAX_CMDLINECONSOLES && c->name[0]; 1760 i++, c++) { 1761 if (strcmp(c->name, name) == 0 && c->index == idx) { 1762 if (!brl_options) 1763 selected_console = i; 1764 return 0; 1765 } 1766 } 1767 if (i == MAX_CMDLINECONSOLES) 1768 return -E2BIG; 1769 if (!brl_options) 1770 selected_console = i; 1771 strlcpy(c->name, name, sizeof(c->name)); 1772 c->options = options; 1773 braille_set_options(c, brl_options); 1774 1775 c->index = idx; 1776 return 0; 1777 } 1778 /* 1779 * Set up a list of consoles. Called from init/main.c 1780 */ 1781 static int __init console_setup(char *str) 1782 { 1783 char buf[sizeof(console_cmdline[0].name) + 4]; /* 4 for index */ 1784 char *s, *options, *brl_options = NULL; 1785 int idx; 1786 1787 if (_braille_console_setup(&str, &brl_options)) 1788 return 1; 1789 1790 /* 1791 * Decode str into name, index, options. 1792 */ 1793 if (str[0] >= '0' && str[0] <= '9') { 1794 strcpy(buf, "ttyS"); 1795 strncpy(buf + 4, str, sizeof(buf) - 5); 1796 } else { 1797 strncpy(buf, str, sizeof(buf) - 1); 1798 } 1799 buf[sizeof(buf) - 1] = 0; 1800 if ((options = strchr(str, ',')) != NULL) 1801 *(options++) = 0; 1802 #ifdef __sparc__ 1803 if (!strcmp(str, "ttya")) 1804 strcpy(buf, "ttyS0"); 1805 if (!strcmp(str, "ttyb")) 1806 strcpy(buf, "ttyS1"); 1807 #endif 1808 for (s = buf; *s; s++) 1809 if ((*s >= '0' && *s <= '9') || *s == ',') 1810 break; 1811 idx = simple_strtoul(s, NULL, 10); 1812 *s = 0; 1813 1814 __add_preferred_console(buf, idx, options, brl_options); 1815 console_set_on_cmdline = 1; 1816 return 1; 1817 } 1818 __setup("console=", console_setup); 1819 1820 /** 1821 * add_preferred_console - add a device to the list of preferred consoles. 1822 * @name: device name 1823 * @idx: device index 1824 * @options: options for this console 1825 * 1826 * The last preferred console added will be used for kernel messages 1827 * and stdin/out/err for init. Normally this is used by console_setup 1828 * above to handle user-supplied console arguments; however it can also 1829 * be used by arch-specific code either to override the user or more 1830 * commonly to provide a default console (ie from PROM variables) when 1831 * the user has not supplied one. 1832 */ 1833 int add_preferred_console(char *name, int idx, char *options) 1834 { 1835 return __add_preferred_console(name, idx, options, NULL); 1836 } 1837 1838 int update_console_cmdline(char *name, int idx, char *name_new, int idx_new, char *options) 1839 { 1840 struct console_cmdline *c; 1841 int i; 1842 1843 for (i = 0, c = console_cmdline; 1844 i < MAX_CMDLINECONSOLES && c->name[0]; 1845 i++, c++) 1846 if (strcmp(c->name, name) == 0 && c->index == idx) { 1847 strlcpy(c->name, name_new, sizeof(c->name)); 1848 c->name[sizeof(c->name) - 1] = 0; 1849 c->options = options; 1850 c->index = idx_new; 1851 return i; 1852 } 1853 /* not found */ 1854 return -1; 1855 } 1856 1857 bool console_suspend_enabled = 1; 1858 EXPORT_SYMBOL(console_suspend_enabled); 1859 1860 static int __init console_suspend_disable(char *str) 1861 { 1862 console_suspend_enabled = 0; 1863 return 1; 1864 } 1865 __setup("no_console_suspend", console_suspend_disable); 1866 module_param_named(console_suspend, console_suspend_enabled, 1867 bool, S_IRUGO | S_IWUSR); 1868 MODULE_PARM_DESC(console_suspend, "suspend console during suspend" 1869 " and hibernate operations"); 1870 1871 /** 1872 * suspend_console - suspend the console subsystem 1873 * 1874 * This disables printk() while we go into suspend states 1875 */ 1876 void suspend_console(void) 1877 { 1878 if (!console_suspend_enabled) 1879 return; 1880 printk("Suspending console(s) (use no_console_suspend to debug)\n"); 1881 console_lock(); 1882 console_suspended = 1; 1883 up(&console_sem); 1884 } 1885 1886 void resume_console(void) 1887 { 1888 if (!console_suspend_enabled) 1889 return; 1890 down(&console_sem); 1891 console_suspended = 0; 1892 console_unlock(); 1893 } 1894 1895 /** 1896 * console_cpu_notify - print deferred console messages after CPU hotplug 1897 * @self: notifier struct 1898 * @action: CPU hotplug event 1899 * @hcpu: unused 1900 * 1901 * If printk() is called from a CPU that is not online yet, the messages 1902 * will be spooled but will not show up on the console. This function is 1903 * called when a new CPU comes online (or fails to come up), and ensures 1904 * that any such output gets printed. 1905 */ 1906 static int console_cpu_notify(struct notifier_block *self, 1907 unsigned long action, void *hcpu) 1908 { 1909 switch (action) { 1910 case CPU_ONLINE: 1911 case CPU_DEAD: 1912 case CPU_DOWN_FAILED: 1913 case CPU_UP_CANCELED: 1914 console_lock(); 1915 console_unlock(); 1916 } 1917 return NOTIFY_OK; 1918 } 1919 1920 /** 1921 * console_lock - lock the console system for exclusive use. 1922 * 1923 * Acquires a lock which guarantees that the caller has 1924 * exclusive access to the console system and the console_drivers list. 1925 * 1926 * Can sleep, returns nothing. 1927 */ 1928 void console_lock(void) 1929 { 1930 might_sleep(); 1931 1932 down(&console_sem); 1933 if (console_suspended) 1934 return; 1935 console_locked = 1; 1936 console_may_schedule = 1; 1937 mutex_acquire(&console_lock_dep_map, 0, 0, _RET_IP_); 1938 } 1939 EXPORT_SYMBOL(console_lock); 1940 1941 /** 1942 * console_trylock - try to lock the console system for exclusive use. 1943 * 1944 * Tried to acquire a lock which guarantees that the caller has 1945 * exclusive access to the console system and the console_drivers list. 1946 * 1947 * returns 1 on success, and 0 on failure to acquire the lock. 1948 */ 1949 int console_trylock(void) 1950 { 1951 if (down_trylock(&console_sem)) 1952 return 0; 1953 if (console_suspended) { 1954 up(&console_sem); 1955 return 0; 1956 } 1957 console_locked = 1; 1958 console_may_schedule = 0; 1959 mutex_acquire(&console_lock_dep_map, 0, 1, _RET_IP_); 1960 return 1; 1961 } 1962 EXPORT_SYMBOL(console_trylock); 1963 1964 int is_console_locked(void) 1965 { 1966 return console_locked; 1967 } 1968 1969 static void console_cont_flush(char *text, size_t size) 1970 { 1971 unsigned long flags; 1972 size_t len; 1973 1974 raw_spin_lock_irqsave(&logbuf_lock, flags); 1975 1976 if (!cont.len) 1977 goto out; 1978 1979 /* 1980 * We still queue earlier records, likely because the console was 1981 * busy. The earlier ones need to be printed before this one, we 1982 * did not flush any fragment so far, so just let it queue up. 1983 */ 1984 if (console_seq < log_next_seq && !cont.cons) 1985 goto out; 1986 1987 len = cont_print_text(text, size); 1988 raw_spin_unlock(&logbuf_lock); 1989 stop_critical_timings(); 1990 call_console_drivers(cont.level, text, len); 1991 start_critical_timings(); 1992 local_irq_restore(flags); 1993 return; 1994 out: 1995 raw_spin_unlock_irqrestore(&logbuf_lock, flags); 1996 } 1997 1998 /** 1999 * console_unlock - unlock the console system 2000 * 2001 * Releases the console_lock which the caller holds on the console system 2002 * and the console driver list. 2003 * 2004 * While the console_lock was held, console output may have been buffered 2005 * by printk(). If this is the case, console_unlock(); emits 2006 * the output prior to releasing the lock. 2007 * 2008 * If there is output waiting, we wake /dev/kmsg and syslog() users. 2009 * 2010 * console_unlock(); may be called from any context. 2011 */ 2012 void console_unlock(void) 2013 { 2014 static char text[LOG_LINE_MAX + PREFIX_MAX]; 2015 static u64 seen_seq; 2016 unsigned long flags; 2017 bool wake_klogd = false; 2018 bool retry; 2019 2020 if (console_suspended) { 2021 up(&console_sem); 2022 return; 2023 } 2024 2025 console_may_schedule = 0; 2026 2027 /* flush buffered message fragment immediately to console */ 2028 console_cont_flush(text, sizeof(text)); 2029 again: 2030 for (;;) { 2031 struct printk_log *msg; 2032 size_t len; 2033 int level; 2034 2035 raw_spin_lock_irqsave(&logbuf_lock, flags); 2036 if (seen_seq != log_next_seq) { 2037 wake_klogd = true; 2038 seen_seq = log_next_seq; 2039 } 2040 2041 if (console_seq < log_first_seq) { 2042 /* messages are gone, move to first one */ 2043 console_seq = log_first_seq; 2044 console_idx = log_first_idx; 2045 console_prev = 0; 2046 } 2047 skip: 2048 if (console_seq == log_next_seq) 2049 break; 2050 2051 msg = log_from_idx(console_idx); 2052 if (msg->flags & LOG_NOCONS) { 2053 /* 2054 * Skip record we have buffered and already printed 2055 * directly to the console when we received it. 2056 */ 2057 console_idx = log_next(console_idx); 2058 console_seq++; 2059 /* 2060 * We will get here again when we register a new 2061 * CON_PRINTBUFFER console. Clear the flag so we 2062 * will properly dump everything later. 2063 */ 2064 msg->flags &= ~LOG_NOCONS; 2065 console_prev = msg->flags; 2066 goto skip; 2067 } 2068 2069 level = msg->level; 2070 len = msg_print_text(msg, console_prev, false, 2071 text, sizeof(text)); 2072 console_idx = log_next(console_idx); 2073 console_seq++; 2074 console_prev = msg->flags; 2075 raw_spin_unlock(&logbuf_lock); 2076 2077 stop_critical_timings(); /* don't trace print latency */ 2078 call_console_drivers(level, text, len); 2079 start_critical_timings(); 2080 local_irq_restore(flags); 2081 } 2082 console_locked = 0; 2083 mutex_release(&console_lock_dep_map, 1, _RET_IP_); 2084 2085 /* Release the exclusive_console once it is used */ 2086 if (unlikely(exclusive_console)) 2087 exclusive_console = NULL; 2088 2089 raw_spin_unlock(&logbuf_lock); 2090 2091 up(&console_sem); 2092 2093 /* 2094 * Someone could have filled up the buffer again, so re-check if there's 2095 * something to flush. In case we cannot trylock the console_sem again, 2096 * there's a new owner and the console_unlock() from them will do the 2097 * flush, no worries. 2098 */ 2099 raw_spin_lock(&logbuf_lock); 2100 retry = console_seq != log_next_seq; 2101 raw_spin_unlock_irqrestore(&logbuf_lock, flags); 2102 2103 if (retry && console_trylock()) 2104 goto again; 2105 2106 if (wake_klogd) 2107 wake_up_klogd(); 2108 } 2109 EXPORT_SYMBOL(console_unlock); 2110 2111 /** 2112 * console_conditional_schedule - yield the CPU if required 2113 * 2114 * If the console code is currently allowed to sleep, and 2115 * if this CPU should yield the CPU to another task, do 2116 * so here. 2117 * 2118 * Must be called within console_lock();. 2119 */ 2120 void __sched console_conditional_schedule(void) 2121 { 2122 if (console_may_schedule) 2123 cond_resched(); 2124 } 2125 EXPORT_SYMBOL(console_conditional_schedule); 2126 2127 void console_unblank(void) 2128 { 2129 struct console *c; 2130 2131 /* 2132 * console_unblank can no longer be called in interrupt context unless 2133 * oops_in_progress is set to 1.. 2134 */ 2135 if (oops_in_progress) { 2136 if (down_trylock(&console_sem) != 0) 2137 return; 2138 } else 2139 console_lock(); 2140 2141 console_locked = 1; 2142 console_may_schedule = 0; 2143 for_each_console(c) 2144 if ((c->flags & CON_ENABLED) && c->unblank) 2145 c->unblank(); 2146 console_unlock(); 2147 } 2148 2149 /* 2150 * Return the console tty driver structure and its associated index 2151 */ 2152 struct tty_driver *console_device(int *index) 2153 { 2154 struct console *c; 2155 struct tty_driver *driver = NULL; 2156 2157 console_lock(); 2158 for_each_console(c) { 2159 if (!c->device) 2160 continue; 2161 driver = c->device(c, index); 2162 if (driver) 2163 break; 2164 } 2165 console_unlock(); 2166 return driver; 2167 } 2168 2169 /* 2170 * Prevent further output on the passed console device so that (for example) 2171 * serial drivers can disable console output before suspending a port, and can 2172 * re-enable output afterwards. 2173 */ 2174 void console_stop(struct console *console) 2175 { 2176 console_lock(); 2177 console->flags &= ~CON_ENABLED; 2178 console_unlock(); 2179 } 2180 EXPORT_SYMBOL(console_stop); 2181 2182 void console_start(struct console *console) 2183 { 2184 console_lock(); 2185 console->flags |= CON_ENABLED; 2186 console_unlock(); 2187 } 2188 EXPORT_SYMBOL(console_start); 2189 2190 static int __read_mostly keep_bootcon; 2191 2192 static int __init keep_bootcon_setup(char *str) 2193 { 2194 keep_bootcon = 1; 2195 pr_info("debug: skip boot console de-registration.\n"); 2196 2197 return 0; 2198 } 2199 2200 early_param("keep_bootcon", keep_bootcon_setup); 2201 2202 /* 2203 * The console driver calls this routine during kernel initialization 2204 * to register the console printing procedure with printk() and to 2205 * print any messages that were printed by the kernel before the 2206 * console driver was initialized. 2207 * 2208 * This can happen pretty early during the boot process (because of 2209 * early_printk) - sometimes before setup_arch() completes - be careful 2210 * of what kernel features are used - they may not be initialised yet. 2211 * 2212 * There are two types of consoles - bootconsoles (early_printk) and 2213 * "real" consoles (everything which is not a bootconsole) which are 2214 * handled differently. 2215 * - Any number of bootconsoles can be registered at any time. 2216 * - As soon as a "real" console is registered, all bootconsoles 2217 * will be unregistered automatically. 2218 * - Once a "real" console is registered, any attempt to register a 2219 * bootconsoles will be rejected 2220 */ 2221 void register_console(struct console *newcon) 2222 { 2223 int i; 2224 unsigned long flags; 2225 struct console *bcon = NULL; 2226 struct console_cmdline *c; 2227 2228 if (console_drivers) 2229 for_each_console(bcon) 2230 if (WARN(bcon == newcon, 2231 "console '%s%d' already registered\n", 2232 bcon->name, bcon->index)) 2233 return; 2234 2235 /* 2236 * before we register a new CON_BOOT console, make sure we don't 2237 * already have a valid console 2238 */ 2239 if (console_drivers && newcon->flags & CON_BOOT) { 2240 /* find the last or real console */ 2241 for_each_console(bcon) { 2242 if (!(bcon->flags & CON_BOOT)) { 2243 pr_info("Too late to register bootconsole %s%d\n", 2244 newcon->name, newcon->index); 2245 return; 2246 } 2247 } 2248 } 2249 2250 if (console_drivers && console_drivers->flags & CON_BOOT) 2251 bcon = console_drivers; 2252 2253 if (preferred_console < 0 || bcon || !console_drivers) 2254 preferred_console = selected_console; 2255 2256 if (newcon->early_setup) 2257 newcon->early_setup(); 2258 2259 /* 2260 * See if we want to use this console driver. If we 2261 * didn't select a console we take the first one 2262 * that registers here. 2263 */ 2264 if (preferred_console < 0) { 2265 if (newcon->index < 0) 2266 newcon->index = 0; 2267 if (newcon->setup == NULL || 2268 newcon->setup(newcon, NULL) == 0) { 2269 newcon->flags |= CON_ENABLED; 2270 if (newcon->device) { 2271 newcon->flags |= CON_CONSDEV; 2272 preferred_console = 0; 2273 } 2274 } 2275 } 2276 2277 /* 2278 * See if this console matches one we selected on 2279 * the command line. 2280 */ 2281 for (i = 0, c = console_cmdline; 2282 i < MAX_CMDLINECONSOLES && c->name[0]; 2283 i++, c++) { 2284 if (strcmp(c->name, newcon->name) != 0) 2285 continue; 2286 if (newcon->index >= 0 && 2287 newcon->index != c->index) 2288 continue; 2289 if (newcon->index < 0) 2290 newcon->index = c->index; 2291 2292 if (_braille_register_console(newcon, c)) 2293 return; 2294 2295 if (newcon->setup && 2296 newcon->setup(newcon, console_cmdline[i].options) != 0) 2297 break; 2298 newcon->flags |= CON_ENABLED; 2299 newcon->index = c->index; 2300 if (i == selected_console) { 2301 newcon->flags |= CON_CONSDEV; 2302 preferred_console = selected_console; 2303 } 2304 break; 2305 } 2306 2307 if (!(newcon->flags & CON_ENABLED)) 2308 return; 2309 2310 /* 2311 * If we have a bootconsole, and are switching to a real console, 2312 * don't print everything out again, since when the boot console, and 2313 * the real console are the same physical device, it's annoying to 2314 * see the beginning boot messages twice 2315 */ 2316 if (bcon && ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV)) 2317 newcon->flags &= ~CON_PRINTBUFFER; 2318 2319 /* 2320 * Put this console in the list - keep the 2321 * preferred driver at the head of the list. 2322 */ 2323 console_lock(); 2324 if ((newcon->flags & CON_CONSDEV) || console_drivers == NULL) { 2325 newcon->next = console_drivers; 2326 console_drivers = newcon; 2327 if (newcon->next) 2328 newcon->next->flags &= ~CON_CONSDEV; 2329 } else { 2330 newcon->next = console_drivers->next; 2331 console_drivers->next = newcon; 2332 } 2333 if (newcon->flags & CON_PRINTBUFFER) { 2334 /* 2335 * console_unlock(); will print out the buffered messages 2336 * for us. 2337 */ 2338 raw_spin_lock_irqsave(&logbuf_lock, flags); 2339 console_seq = syslog_seq; 2340 console_idx = syslog_idx; 2341 console_prev = syslog_prev; 2342 raw_spin_unlock_irqrestore(&logbuf_lock, flags); 2343 /* 2344 * We're about to replay the log buffer. Only do this to the 2345 * just-registered console to avoid excessive message spam to 2346 * the already-registered consoles. 2347 */ 2348 exclusive_console = newcon; 2349 } 2350 console_unlock(); 2351 console_sysfs_notify(); 2352 2353 /* 2354 * By unregistering the bootconsoles after we enable the real console 2355 * we get the "console xxx enabled" message on all the consoles - 2356 * boot consoles, real consoles, etc - this is to ensure that end 2357 * users know there might be something in the kernel's log buffer that 2358 * went to the bootconsole (that they do not see on the real console) 2359 */ 2360 pr_info("%sconsole [%s%d] enabled\n", 2361 (newcon->flags & CON_BOOT) ? "boot" : "" , 2362 newcon->name, newcon->index); 2363 if (bcon && 2364 ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV) && 2365 !keep_bootcon) { 2366 /* We need to iterate through all boot consoles, to make 2367 * sure we print everything out, before we unregister them. 2368 */ 2369 for_each_console(bcon) 2370 if (bcon->flags & CON_BOOT) 2371 unregister_console(bcon); 2372 } 2373 } 2374 EXPORT_SYMBOL(register_console); 2375 2376 int unregister_console(struct console *console) 2377 { 2378 struct console *a, *b; 2379 int res; 2380 2381 pr_info("%sconsole [%s%d] disabled\n", 2382 (console->flags & CON_BOOT) ? "boot" : "" , 2383 console->name, console->index); 2384 2385 res = _braille_unregister_console(console); 2386 if (res) 2387 return res; 2388 2389 res = 1; 2390 console_lock(); 2391 if (console_drivers == console) { 2392 console_drivers=console->next; 2393 res = 0; 2394 } else if (console_drivers) { 2395 for (a=console_drivers->next, b=console_drivers ; 2396 a; b=a, a=b->next) { 2397 if (a == console) { 2398 b->next = a->next; 2399 res = 0; 2400 break; 2401 } 2402 } 2403 } 2404 2405 /* 2406 * If this isn't the last console and it has CON_CONSDEV set, we 2407 * need to set it on the next preferred console. 2408 */ 2409 if (console_drivers != NULL && console->flags & CON_CONSDEV) 2410 console_drivers->flags |= CON_CONSDEV; 2411 2412 console_unlock(); 2413 console_sysfs_notify(); 2414 return res; 2415 } 2416 EXPORT_SYMBOL(unregister_console); 2417 2418 static int __init printk_late_init(void) 2419 { 2420 struct console *con; 2421 2422 for_each_console(con) { 2423 if (!keep_bootcon && con->flags & CON_BOOT) { 2424 unregister_console(con); 2425 } 2426 } 2427 hotcpu_notifier(console_cpu_notify, 0); 2428 return 0; 2429 } 2430 late_initcall(printk_late_init); 2431 2432 #if defined CONFIG_PRINTK 2433 /* 2434 * Delayed printk version, for scheduler-internal messages: 2435 */ 2436 #define PRINTK_BUF_SIZE 512 2437 2438 #define PRINTK_PENDING_WAKEUP 0x01 2439 #define PRINTK_PENDING_SCHED 0x02 2440 2441 static DEFINE_PER_CPU(int, printk_pending); 2442 static DEFINE_PER_CPU(char [PRINTK_BUF_SIZE], printk_sched_buf); 2443 2444 static void wake_up_klogd_work_func(struct irq_work *irq_work) 2445 { 2446 int pending = __this_cpu_xchg(printk_pending, 0); 2447 2448 if (pending & PRINTK_PENDING_SCHED) { 2449 char *buf = __get_cpu_var(printk_sched_buf); 2450 pr_warn("[sched_delayed] %s", buf); 2451 } 2452 2453 if (pending & PRINTK_PENDING_WAKEUP) 2454 wake_up_interruptible(&log_wait); 2455 } 2456 2457 static DEFINE_PER_CPU(struct irq_work, wake_up_klogd_work) = { 2458 .func = wake_up_klogd_work_func, 2459 .flags = IRQ_WORK_LAZY, 2460 }; 2461 2462 void wake_up_klogd(void) 2463 { 2464 preempt_disable(); 2465 if (waitqueue_active(&log_wait)) { 2466 this_cpu_or(printk_pending, PRINTK_PENDING_WAKEUP); 2467 irq_work_queue(&__get_cpu_var(wake_up_klogd_work)); 2468 } 2469 preempt_enable(); 2470 } 2471 2472 int printk_sched(const char *fmt, ...) 2473 { 2474 unsigned long flags; 2475 va_list args; 2476 char *buf; 2477 int r; 2478 2479 local_irq_save(flags); 2480 buf = __get_cpu_var(printk_sched_buf); 2481 2482 va_start(args, fmt); 2483 r = vsnprintf(buf, PRINTK_BUF_SIZE, fmt, args); 2484 va_end(args); 2485 2486 __this_cpu_or(printk_pending, PRINTK_PENDING_SCHED); 2487 irq_work_queue(&__get_cpu_var(wake_up_klogd_work)); 2488 local_irq_restore(flags); 2489 2490 return r; 2491 } 2492 2493 /* 2494 * printk rate limiting, lifted from the networking subsystem. 2495 * 2496 * This enforces a rate limit: not more than 10 kernel messages 2497 * every 5s to make a denial-of-service attack impossible. 2498 */ 2499 DEFINE_RATELIMIT_STATE(printk_ratelimit_state, 5 * HZ, 10); 2500 2501 int __printk_ratelimit(const char *func) 2502 { 2503 return ___ratelimit(&printk_ratelimit_state, func); 2504 } 2505 EXPORT_SYMBOL(__printk_ratelimit); 2506 2507 /** 2508 * printk_timed_ratelimit - caller-controlled printk ratelimiting 2509 * @caller_jiffies: pointer to caller's state 2510 * @interval_msecs: minimum interval between prints 2511 * 2512 * printk_timed_ratelimit() returns true if more than @interval_msecs 2513 * milliseconds have elapsed since the last time printk_timed_ratelimit() 2514 * returned true. 2515 */ 2516 bool printk_timed_ratelimit(unsigned long *caller_jiffies, 2517 unsigned int interval_msecs) 2518 { 2519 if (*caller_jiffies == 0 2520 || !time_in_range(jiffies, *caller_jiffies, 2521 *caller_jiffies 2522 + msecs_to_jiffies(interval_msecs))) { 2523 *caller_jiffies = jiffies; 2524 return true; 2525 } 2526 return false; 2527 } 2528 EXPORT_SYMBOL(printk_timed_ratelimit); 2529 2530 static DEFINE_SPINLOCK(dump_list_lock); 2531 static LIST_HEAD(dump_list); 2532 2533 /** 2534 * kmsg_dump_register - register a kernel log dumper. 2535 * @dumper: pointer to the kmsg_dumper structure 2536 * 2537 * Adds a kernel log dumper to the system. The dump callback in the 2538 * structure will be called when the kernel oopses or panics and must be 2539 * set. Returns zero on success and %-EINVAL or %-EBUSY otherwise. 2540 */ 2541 int kmsg_dump_register(struct kmsg_dumper *dumper) 2542 { 2543 unsigned long flags; 2544 int err = -EBUSY; 2545 2546 /* The dump callback needs to be set */ 2547 if (!dumper->dump) 2548 return -EINVAL; 2549 2550 spin_lock_irqsave(&dump_list_lock, flags); 2551 /* Don't allow registering multiple times */ 2552 if (!dumper->registered) { 2553 dumper->registered = 1; 2554 list_add_tail_rcu(&dumper->list, &dump_list); 2555 err = 0; 2556 } 2557 spin_unlock_irqrestore(&dump_list_lock, flags); 2558 2559 return err; 2560 } 2561 EXPORT_SYMBOL_GPL(kmsg_dump_register); 2562 2563 /** 2564 * kmsg_dump_unregister - unregister a kmsg dumper. 2565 * @dumper: pointer to the kmsg_dumper structure 2566 * 2567 * Removes a dump device from the system. Returns zero on success and 2568 * %-EINVAL otherwise. 2569 */ 2570 int kmsg_dump_unregister(struct kmsg_dumper *dumper) 2571 { 2572 unsigned long flags; 2573 int err = -EINVAL; 2574 2575 spin_lock_irqsave(&dump_list_lock, flags); 2576 if (dumper->registered) { 2577 dumper->registered = 0; 2578 list_del_rcu(&dumper->list); 2579 err = 0; 2580 } 2581 spin_unlock_irqrestore(&dump_list_lock, flags); 2582 synchronize_rcu(); 2583 2584 return err; 2585 } 2586 EXPORT_SYMBOL_GPL(kmsg_dump_unregister); 2587 2588 static bool always_kmsg_dump; 2589 module_param_named(always_kmsg_dump, always_kmsg_dump, bool, S_IRUGO | S_IWUSR); 2590 2591 /** 2592 * kmsg_dump - dump kernel log to kernel message dumpers. 2593 * @reason: the reason (oops, panic etc) for dumping 2594 * 2595 * Call each of the registered dumper's dump() callback, which can 2596 * retrieve the kmsg records with kmsg_dump_get_line() or 2597 * kmsg_dump_get_buffer(). 2598 */ 2599 void kmsg_dump(enum kmsg_dump_reason reason) 2600 { 2601 struct kmsg_dumper *dumper; 2602 unsigned long flags; 2603 2604 if ((reason > KMSG_DUMP_OOPS) && !always_kmsg_dump) 2605 return; 2606 2607 rcu_read_lock(); 2608 list_for_each_entry_rcu(dumper, &dump_list, list) { 2609 if (dumper->max_reason && reason > dumper->max_reason) 2610 continue; 2611 2612 /* initialize iterator with data about the stored records */ 2613 dumper->active = true; 2614 2615 raw_spin_lock_irqsave(&logbuf_lock, flags); 2616 dumper->cur_seq = clear_seq; 2617 dumper->cur_idx = clear_idx; 2618 dumper->next_seq = log_next_seq; 2619 dumper->next_idx = log_next_idx; 2620 raw_spin_unlock_irqrestore(&logbuf_lock, flags); 2621 2622 /* invoke dumper which will iterate over records */ 2623 dumper->dump(dumper, reason); 2624 2625 /* reset iterator */ 2626 dumper->active = false; 2627 } 2628 rcu_read_unlock(); 2629 } 2630 2631 /** 2632 * kmsg_dump_get_line_nolock - retrieve one kmsg log line (unlocked version) 2633 * @dumper: registered kmsg dumper 2634 * @syslog: include the "<4>" prefixes 2635 * @line: buffer to copy the line to 2636 * @size: maximum size of the buffer 2637 * @len: length of line placed into buffer 2638 * 2639 * Start at the beginning of the kmsg buffer, with the oldest kmsg 2640 * record, and copy one record into the provided buffer. 2641 * 2642 * Consecutive calls will return the next available record moving 2643 * towards the end of the buffer with the youngest messages. 2644 * 2645 * A return value of FALSE indicates that there are no more records to 2646 * read. 2647 * 2648 * The function is similar to kmsg_dump_get_line(), but grabs no locks. 2649 */ 2650 bool kmsg_dump_get_line_nolock(struct kmsg_dumper *dumper, bool syslog, 2651 char *line, size_t size, size_t *len) 2652 { 2653 struct printk_log *msg; 2654 size_t l = 0; 2655 bool ret = false; 2656 2657 if (!dumper->active) 2658 goto out; 2659 2660 if (dumper->cur_seq < log_first_seq) { 2661 /* messages are gone, move to first available one */ 2662 dumper->cur_seq = log_first_seq; 2663 dumper->cur_idx = log_first_idx; 2664 } 2665 2666 /* last entry */ 2667 if (dumper->cur_seq >= log_next_seq) 2668 goto out; 2669 2670 msg = log_from_idx(dumper->cur_idx); 2671 l = msg_print_text(msg, 0, syslog, line, size); 2672 2673 dumper->cur_idx = log_next(dumper->cur_idx); 2674 dumper->cur_seq++; 2675 ret = true; 2676 out: 2677 if (len) 2678 *len = l; 2679 return ret; 2680 } 2681 2682 /** 2683 * kmsg_dump_get_line - retrieve one kmsg log line 2684 * @dumper: registered kmsg dumper 2685 * @syslog: include the "<4>" prefixes 2686 * @line: buffer to copy the line to 2687 * @size: maximum size of the buffer 2688 * @len: length of line placed into buffer 2689 * 2690 * Start at the beginning of the kmsg buffer, with the oldest kmsg 2691 * record, and copy one record into the provided buffer. 2692 * 2693 * Consecutive calls will return the next available record moving 2694 * towards the end of the buffer with the youngest messages. 2695 * 2696 * A return value of FALSE indicates that there are no more records to 2697 * read. 2698 */ 2699 bool kmsg_dump_get_line(struct kmsg_dumper *dumper, bool syslog, 2700 char *line, size_t size, size_t *len) 2701 { 2702 unsigned long flags; 2703 bool ret; 2704 2705 raw_spin_lock_irqsave(&logbuf_lock, flags); 2706 ret = kmsg_dump_get_line_nolock(dumper, syslog, line, size, len); 2707 raw_spin_unlock_irqrestore(&logbuf_lock, flags); 2708 2709 return ret; 2710 } 2711 EXPORT_SYMBOL_GPL(kmsg_dump_get_line); 2712 2713 /** 2714 * kmsg_dump_get_buffer - copy kmsg log lines 2715 * @dumper: registered kmsg dumper 2716 * @syslog: include the "<4>" prefixes 2717 * @buf: buffer to copy the line to 2718 * @size: maximum size of the buffer 2719 * @len: length of line placed into buffer 2720 * 2721 * Start at the end of the kmsg buffer and fill the provided buffer 2722 * with as many of the the *youngest* kmsg records that fit into it. 2723 * If the buffer is large enough, all available kmsg records will be 2724 * copied with a single call. 2725 * 2726 * Consecutive calls will fill the buffer with the next block of 2727 * available older records, not including the earlier retrieved ones. 2728 * 2729 * A return value of FALSE indicates that there are no more records to 2730 * read. 2731 */ 2732 bool kmsg_dump_get_buffer(struct kmsg_dumper *dumper, bool syslog, 2733 char *buf, size_t size, size_t *len) 2734 { 2735 unsigned long flags; 2736 u64 seq; 2737 u32 idx; 2738 u64 next_seq; 2739 u32 next_idx; 2740 enum log_flags prev; 2741 size_t l = 0; 2742 bool ret = false; 2743 2744 if (!dumper->active) 2745 goto out; 2746 2747 raw_spin_lock_irqsave(&logbuf_lock, flags); 2748 if (dumper->cur_seq < log_first_seq) { 2749 /* messages are gone, move to first available one */ 2750 dumper->cur_seq = log_first_seq; 2751 dumper->cur_idx = log_first_idx; 2752 } 2753 2754 /* last entry */ 2755 if (dumper->cur_seq >= dumper->next_seq) { 2756 raw_spin_unlock_irqrestore(&logbuf_lock, flags); 2757 goto out; 2758 } 2759 2760 /* calculate length of entire buffer */ 2761 seq = dumper->cur_seq; 2762 idx = dumper->cur_idx; 2763 prev = 0; 2764 while (seq < dumper->next_seq) { 2765 struct printk_log *msg = log_from_idx(idx); 2766 2767 l += msg_print_text(msg, prev, true, NULL, 0); 2768 idx = log_next(idx); 2769 seq++; 2770 prev = msg->flags; 2771 } 2772 2773 /* move first record forward until length fits into the buffer */ 2774 seq = dumper->cur_seq; 2775 idx = dumper->cur_idx; 2776 prev = 0; 2777 while (l > size && seq < dumper->next_seq) { 2778 struct printk_log *msg = log_from_idx(idx); 2779 2780 l -= msg_print_text(msg, prev, true, NULL, 0); 2781 idx = log_next(idx); 2782 seq++; 2783 prev = msg->flags; 2784 } 2785 2786 /* last message in next interation */ 2787 next_seq = seq; 2788 next_idx = idx; 2789 2790 l = 0; 2791 prev = 0; 2792 while (seq < dumper->next_seq) { 2793 struct printk_log *msg = log_from_idx(idx); 2794 2795 l += msg_print_text(msg, prev, syslog, buf + l, size - l); 2796 idx = log_next(idx); 2797 seq++; 2798 prev = msg->flags; 2799 } 2800 2801 dumper->next_seq = next_seq; 2802 dumper->next_idx = next_idx; 2803 ret = true; 2804 raw_spin_unlock_irqrestore(&logbuf_lock, flags); 2805 out: 2806 if (len) 2807 *len = l; 2808 return ret; 2809 } 2810 EXPORT_SYMBOL_GPL(kmsg_dump_get_buffer); 2811 2812 /** 2813 * kmsg_dump_rewind_nolock - reset the interator (unlocked version) 2814 * @dumper: registered kmsg dumper 2815 * 2816 * Reset the dumper's iterator so that kmsg_dump_get_line() and 2817 * kmsg_dump_get_buffer() can be called again and used multiple 2818 * times within the same dumper.dump() callback. 2819 * 2820 * The function is similar to kmsg_dump_rewind(), but grabs no locks. 2821 */ 2822 void kmsg_dump_rewind_nolock(struct kmsg_dumper *dumper) 2823 { 2824 dumper->cur_seq = clear_seq; 2825 dumper->cur_idx = clear_idx; 2826 dumper->next_seq = log_next_seq; 2827 dumper->next_idx = log_next_idx; 2828 } 2829 2830 /** 2831 * kmsg_dump_rewind - reset the interator 2832 * @dumper: registered kmsg dumper 2833 * 2834 * Reset the dumper's iterator so that kmsg_dump_get_line() and 2835 * kmsg_dump_get_buffer() can be called again and used multiple 2836 * times within the same dumper.dump() callback. 2837 */ 2838 void kmsg_dump_rewind(struct kmsg_dumper *dumper) 2839 { 2840 unsigned long flags; 2841 2842 raw_spin_lock_irqsave(&logbuf_lock, flags); 2843 kmsg_dump_rewind_nolock(dumper); 2844 raw_spin_unlock_irqrestore(&logbuf_lock, flags); 2845 } 2846 EXPORT_SYMBOL_GPL(kmsg_dump_rewind); 2847 2848 static char dump_stack_arch_desc_str[128]; 2849 2850 /** 2851 * dump_stack_set_arch_desc - set arch-specific str to show with task dumps 2852 * @fmt: printf-style format string 2853 * @...: arguments for the format string 2854 * 2855 * The configured string will be printed right after utsname during task 2856 * dumps. Usually used to add arch-specific system identifiers. If an 2857 * arch wants to make use of such an ID string, it should initialize this 2858 * as soon as possible during boot. 2859 */ 2860 void __init dump_stack_set_arch_desc(const char *fmt, ...) 2861 { 2862 va_list args; 2863 2864 va_start(args, fmt); 2865 vsnprintf(dump_stack_arch_desc_str, sizeof(dump_stack_arch_desc_str), 2866 fmt, args); 2867 va_end(args); 2868 } 2869 2870 /** 2871 * dump_stack_print_info - print generic debug info for dump_stack() 2872 * @log_lvl: log level 2873 * 2874 * Arch-specific dump_stack() implementations can use this function to 2875 * print out the same debug information as the generic dump_stack(). 2876 */ 2877 void dump_stack_print_info(const char *log_lvl) 2878 { 2879 printk("%sCPU: %d PID: %d Comm: %.20s %s %s %.*s\n", 2880 log_lvl, raw_smp_processor_id(), current->pid, current->comm, 2881 print_tainted(), init_utsname()->release, 2882 (int)strcspn(init_utsname()->version, " "), 2883 init_utsname()->version); 2884 2885 if (dump_stack_arch_desc_str[0] != '\0') 2886 printk("%sHardware name: %s\n", 2887 log_lvl, dump_stack_arch_desc_str); 2888 2889 print_worker_info(log_lvl, current); 2890 } 2891 2892 /** 2893 * show_regs_print_info - print generic debug info for show_regs() 2894 * @log_lvl: log level 2895 * 2896 * show_regs() implementations can use this function to print out generic 2897 * debug information. 2898 */ 2899 void show_regs_print_info(const char *log_lvl) 2900 { 2901 dump_stack_print_info(log_lvl); 2902 2903 printk("%stask: %p ti: %p task.ti: %p\n", 2904 log_lvl, current, current_thread_info(), 2905 task_thread_info(current)); 2906 } 2907 2908 #endif 2909