xref: /openbmc/linux/kernel/printk/printk.c (revision 8a10bc9d)
1 /*
2  *  linux/kernel/printk.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  *
6  * Modified to make sys_syslog() more flexible: added commands to
7  * return the last 4k of kernel messages, regardless of whether
8  * they've been read or not.  Added option to suppress kernel printk's
9  * to the console.  Added hook for sending the console messages
10  * elsewhere, in preparation for a serial line console (someday).
11  * Ted Ts'o, 2/11/93.
12  * Modified for sysctl support, 1/8/97, Chris Horn.
13  * Fixed SMP synchronization, 08/08/99, Manfred Spraul
14  *     manfred@colorfullife.com
15  * Rewrote bits to get rid of console_lock
16  *	01Mar01 Andrew Morton
17  */
18 
19 #include <linux/kernel.h>
20 #include <linux/mm.h>
21 #include <linux/tty.h>
22 #include <linux/tty_driver.h>
23 #include <linux/console.h>
24 #include <linux/init.h>
25 #include <linux/jiffies.h>
26 #include <linux/nmi.h>
27 #include <linux/module.h>
28 #include <linux/moduleparam.h>
29 #include <linux/interrupt.h>			/* For in_interrupt() */
30 #include <linux/delay.h>
31 #include <linux/smp.h>
32 #include <linux/security.h>
33 #include <linux/bootmem.h>
34 #include <linux/memblock.h>
35 #include <linux/aio.h>
36 #include <linux/syscalls.h>
37 #include <linux/kexec.h>
38 #include <linux/kdb.h>
39 #include <linux/ratelimit.h>
40 #include <linux/kmsg_dump.h>
41 #include <linux/syslog.h>
42 #include <linux/cpu.h>
43 #include <linux/notifier.h>
44 #include <linux/rculist.h>
45 #include <linux/poll.h>
46 #include <linux/irq_work.h>
47 #include <linux/utsname.h>
48 
49 #include <asm/uaccess.h>
50 
51 #define CREATE_TRACE_POINTS
52 #include <trace/events/printk.h>
53 
54 #include "console_cmdline.h"
55 #include "braille.h"
56 
57 /* printk's without a loglevel use this.. */
58 #define DEFAULT_MESSAGE_LOGLEVEL CONFIG_DEFAULT_MESSAGE_LOGLEVEL
59 
60 /* We show everything that is MORE important than this.. */
61 #define MINIMUM_CONSOLE_LOGLEVEL 1 /* Minimum loglevel we let people use */
62 #define DEFAULT_CONSOLE_LOGLEVEL 7 /* anything MORE serious than KERN_DEBUG */
63 
64 int console_printk[4] = {
65 	DEFAULT_CONSOLE_LOGLEVEL,	/* console_loglevel */
66 	DEFAULT_MESSAGE_LOGLEVEL,	/* default_message_loglevel */
67 	MINIMUM_CONSOLE_LOGLEVEL,	/* minimum_console_loglevel */
68 	DEFAULT_CONSOLE_LOGLEVEL,	/* default_console_loglevel */
69 };
70 
71 /*
72  * Low level drivers may need that to know if they can schedule in
73  * their unblank() callback or not. So let's export it.
74  */
75 int oops_in_progress;
76 EXPORT_SYMBOL(oops_in_progress);
77 
78 /*
79  * console_sem protects the console_drivers list, and also
80  * provides serialisation for access to the entire console
81  * driver system.
82  */
83 static DEFINE_SEMAPHORE(console_sem);
84 struct console *console_drivers;
85 EXPORT_SYMBOL_GPL(console_drivers);
86 
87 #ifdef CONFIG_LOCKDEP
88 static struct lockdep_map console_lock_dep_map = {
89 	.name = "console_lock"
90 };
91 #endif
92 
93 /*
94  * This is used for debugging the mess that is the VT code by
95  * keeping track if we have the console semaphore held. It's
96  * definitely not the perfect debug tool (we don't know if _WE_
97  * hold it are racing, but it helps tracking those weird code
98  * path in the console code where we end up in places I want
99  * locked without the console sempahore held
100  */
101 static int console_locked, console_suspended;
102 
103 /*
104  * If exclusive_console is non-NULL then only this console is to be printed to.
105  */
106 static struct console *exclusive_console;
107 
108 /*
109  *	Array of consoles built from command line options (console=)
110  */
111 
112 #define MAX_CMDLINECONSOLES 8
113 
114 static struct console_cmdline console_cmdline[MAX_CMDLINECONSOLES];
115 
116 static int selected_console = -1;
117 static int preferred_console = -1;
118 int console_set_on_cmdline;
119 EXPORT_SYMBOL(console_set_on_cmdline);
120 
121 /* Flag: console code may call schedule() */
122 static int console_may_schedule;
123 
124 /*
125  * The printk log buffer consists of a chain of concatenated variable
126  * length records. Every record starts with a record header, containing
127  * the overall length of the record.
128  *
129  * The heads to the first and last entry in the buffer, as well as the
130  * sequence numbers of these both entries are maintained when messages
131  * are stored..
132  *
133  * If the heads indicate available messages, the length in the header
134  * tells the start next message. A length == 0 for the next message
135  * indicates a wrap-around to the beginning of the buffer.
136  *
137  * Every record carries the monotonic timestamp in microseconds, as well as
138  * the standard userspace syslog level and syslog facility. The usual
139  * kernel messages use LOG_KERN; userspace-injected messages always carry
140  * a matching syslog facility, by default LOG_USER. The origin of every
141  * message can be reliably determined that way.
142  *
143  * The human readable log message directly follows the message header. The
144  * length of the message text is stored in the header, the stored message
145  * is not terminated.
146  *
147  * Optionally, a message can carry a dictionary of properties (key/value pairs),
148  * to provide userspace with a machine-readable message context.
149  *
150  * Examples for well-defined, commonly used property names are:
151  *   DEVICE=b12:8               device identifier
152  *                                b12:8         block dev_t
153  *                                c127:3        char dev_t
154  *                                n8            netdev ifindex
155  *                                +sound:card0  subsystem:devname
156  *   SUBSYSTEM=pci              driver-core subsystem name
157  *
158  * Valid characters in property names are [a-zA-Z0-9.-_]. The plain text value
159  * follows directly after a '=' character. Every property is terminated by
160  * a '\0' character. The last property is not terminated.
161  *
162  * Example of a message structure:
163  *   0000  ff 8f 00 00 00 00 00 00      monotonic time in nsec
164  *   0008  34 00                        record is 52 bytes long
165  *   000a        0b 00                  text is 11 bytes long
166  *   000c              1f 00            dictionary is 23 bytes long
167  *   000e                    03 00      LOG_KERN (facility) LOG_ERR (level)
168  *   0010  69 74 27 73 20 61 20 6c      "it's a l"
169  *         69 6e 65                     "ine"
170  *   001b           44 45 56 49 43      "DEVIC"
171  *         45 3d 62 38 3a 32 00 44      "E=b8:2\0D"
172  *         52 49 56 45 52 3d 62 75      "RIVER=bu"
173  *         67                           "g"
174  *   0032     00 00 00                  padding to next message header
175  *
176  * The 'struct printk_log' buffer header must never be directly exported to
177  * userspace, it is a kernel-private implementation detail that might
178  * need to be changed in the future, when the requirements change.
179  *
180  * /dev/kmsg exports the structured data in the following line format:
181  *   "level,sequnum,timestamp;<message text>\n"
182  *
183  * The optional key/value pairs are attached as continuation lines starting
184  * with a space character and terminated by a newline. All possible
185  * non-prinatable characters are escaped in the "\xff" notation.
186  *
187  * Users of the export format should ignore possible additional values
188  * separated by ',', and find the message after the ';' character.
189  */
190 
191 enum log_flags {
192 	LOG_NOCONS	= 1,	/* already flushed, do not print to console */
193 	LOG_NEWLINE	= 2,	/* text ended with a newline */
194 	LOG_PREFIX	= 4,	/* text started with a prefix */
195 	LOG_CONT	= 8,	/* text is a fragment of a continuation line */
196 };
197 
198 struct printk_log {
199 	u64 ts_nsec;		/* timestamp in nanoseconds */
200 	u16 len;		/* length of entire record */
201 	u16 text_len;		/* length of text buffer */
202 	u16 dict_len;		/* length of dictionary buffer */
203 	u8 facility;		/* syslog facility */
204 	u8 flags:5;		/* internal record flags */
205 	u8 level:3;		/* syslog level */
206 };
207 
208 /*
209  * The logbuf_lock protects kmsg buffer, indices, counters. It is also
210  * used in interesting ways to provide interlocking in console_unlock();
211  */
212 static DEFINE_RAW_SPINLOCK(logbuf_lock);
213 
214 #ifdef CONFIG_PRINTK
215 DECLARE_WAIT_QUEUE_HEAD(log_wait);
216 /* the next printk record to read by syslog(READ) or /proc/kmsg */
217 static u64 syslog_seq;
218 static u32 syslog_idx;
219 static enum log_flags syslog_prev;
220 static size_t syslog_partial;
221 
222 /* index and sequence number of the first record stored in the buffer */
223 static u64 log_first_seq;
224 static u32 log_first_idx;
225 
226 /* index and sequence number of the next record to store in the buffer */
227 static u64 log_next_seq;
228 static u32 log_next_idx;
229 
230 /* the next printk record to write to the console */
231 static u64 console_seq;
232 static u32 console_idx;
233 static enum log_flags console_prev;
234 
235 /* the next printk record to read after the last 'clear' command */
236 static u64 clear_seq;
237 static u32 clear_idx;
238 
239 #define PREFIX_MAX		32
240 #define LOG_LINE_MAX		1024 - PREFIX_MAX
241 
242 /* record buffer */
243 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)
244 #define LOG_ALIGN 4
245 #else
246 #define LOG_ALIGN __alignof__(struct printk_log)
247 #endif
248 #define __LOG_BUF_LEN (1 << CONFIG_LOG_BUF_SHIFT)
249 static char __log_buf[__LOG_BUF_LEN] __aligned(LOG_ALIGN);
250 static char *log_buf = __log_buf;
251 static u32 log_buf_len = __LOG_BUF_LEN;
252 
253 /* cpu currently holding logbuf_lock */
254 static volatile unsigned int logbuf_cpu = UINT_MAX;
255 
256 /* human readable text of the record */
257 static char *log_text(const struct printk_log *msg)
258 {
259 	return (char *)msg + sizeof(struct printk_log);
260 }
261 
262 /* optional key/value pair dictionary attached to the record */
263 static char *log_dict(const struct printk_log *msg)
264 {
265 	return (char *)msg + sizeof(struct printk_log) + msg->text_len;
266 }
267 
268 /* get record by index; idx must point to valid msg */
269 static struct printk_log *log_from_idx(u32 idx)
270 {
271 	struct printk_log *msg = (struct printk_log *)(log_buf + idx);
272 
273 	/*
274 	 * A length == 0 record is the end of buffer marker. Wrap around and
275 	 * read the message at the start of the buffer.
276 	 */
277 	if (!msg->len)
278 		return (struct printk_log *)log_buf;
279 	return msg;
280 }
281 
282 /* get next record; idx must point to valid msg */
283 static u32 log_next(u32 idx)
284 {
285 	struct printk_log *msg = (struct printk_log *)(log_buf + idx);
286 
287 	/* length == 0 indicates the end of the buffer; wrap */
288 	/*
289 	 * A length == 0 record is the end of buffer marker. Wrap around and
290 	 * read the message at the start of the buffer as *this* one, and
291 	 * return the one after that.
292 	 */
293 	if (!msg->len) {
294 		msg = (struct printk_log *)log_buf;
295 		return msg->len;
296 	}
297 	return idx + msg->len;
298 }
299 
300 /* insert record into the buffer, discard old ones, update heads */
301 static void log_store(int facility, int level,
302 		      enum log_flags flags, u64 ts_nsec,
303 		      const char *dict, u16 dict_len,
304 		      const char *text, u16 text_len)
305 {
306 	struct printk_log *msg;
307 	u32 size, pad_len;
308 
309 	/* number of '\0' padding bytes to next message */
310 	size = sizeof(struct printk_log) + text_len + dict_len;
311 	pad_len = (-size) & (LOG_ALIGN - 1);
312 	size += pad_len;
313 
314 	while (log_first_seq < log_next_seq) {
315 		u32 free;
316 
317 		if (log_next_idx > log_first_idx)
318 			free = max(log_buf_len - log_next_idx, log_first_idx);
319 		else
320 			free = log_first_idx - log_next_idx;
321 
322 		if (free > size + sizeof(struct printk_log))
323 			break;
324 
325 		/* drop old messages until we have enough contiuous space */
326 		log_first_idx = log_next(log_first_idx);
327 		log_first_seq++;
328 	}
329 
330 	if (log_next_idx + size + sizeof(struct printk_log) >= log_buf_len) {
331 		/*
332 		 * This message + an additional empty header does not fit
333 		 * at the end of the buffer. Add an empty header with len == 0
334 		 * to signify a wrap around.
335 		 */
336 		memset(log_buf + log_next_idx, 0, sizeof(struct printk_log));
337 		log_next_idx = 0;
338 	}
339 
340 	/* fill message */
341 	msg = (struct printk_log *)(log_buf + log_next_idx);
342 	memcpy(log_text(msg), text, text_len);
343 	msg->text_len = text_len;
344 	memcpy(log_dict(msg), dict, dict_len);
345 	msg->dict_len = dict_len;
346 	msg->facility = facility;
347 	msg->level = level & 7;
348 	msg->flags = flags & 0x1f;
349 	if (ts_nsec > 0)
350 		msg->ts_nsec = ts_nsec;
351 	else
352 		msg->ts_nsec = local_clock();
353 	memset(log_dict(msg) + dict_len, 0, pad_len);
354 	msg->len = sizeof(struct printk_log) + text_len + dict_len + pad_len;
355 
356 	/* insert message */
357 	log_next_idx += msg->len;
358 	log_next_seq++;
359 }
360 
361 #ifdef CONFIG_SECURITY_DMESG_RESTRICT
362 int dmesg_restrict = 1;
363 #else
364 int dmesg_restrict;
365 #endif
366 
367 static int syslog_action_restricted(int type)
368 {
369 	if (dmesg_restrict)
370 		return 1;
371 	/*
372 	 * Unless restricted, we allow "read all" and "get buffer size"
373 	 * for everybody.
374 	 */
375 	return type != SYSLOG_ACTION_READ_ALL &&
376 	       type != SYSLOG_ACTION_SIZE_BUFFER;
377 }
378 
379 static int check_syslog_permissions(int type, bool from_file)
380 {
381 	/*
382 	 * If this is from /proc/kmsg and we've already opened it, then we've
383 	 * already done the capabilities checks at open time.
384 	 */
385 	if (from_file && type != SYSLOG_ACTION_OPEN)
386 		return 0;
387 
388 	if (syslog_action_restricted(type)) {
389 		if (capable(CAP_SYSLOG))
390 			return 0;
391 		/*
392 		 * For historical reasons, accept CAP_SYS_ADMIN too, with
393 		 * a warning.
394 		 */
395 		if (capable(CAP_SYS_ADMIN)) {
396 			pr_warn_once("%s (%d): Attempt to access syslog with "
397 				     "CAP_SYS_ADMIN but no CAP_SYSLOG "
398 				     "(deprecated).\n",
399 				 current->comm, task_pid_nr(current));
400 			return 0;
401 		}
402 		return -EPERM;
403 	}
404 	return security_syslog(type);
405 }
406 
407 
408 /* /dev/kmsg - userspace message inject/listen interface */
409 struct devkmsg_user {
410 	u64 seq;
411 	u32 idx;
412 	enum log_flags prev;
413 	struct mutex lock;
414 	char buf[8192];
415 };
416 
417 static ssize_t devkmsg_writev(struct kiocb *iocb, const struct iovec *iv,
418 			      unsigned long count, loff_t pos)
419 {
420 	char *buf, *line;
421 	int i;
422 	int level = default_message_loglevel;
423 	int facility = 1;	/* LOG_USER */
424 	size_t len = iov_length(iv, count);
425 	ssize_t ret = len;
426 
427 	if (len > LOG_LINE_MAX)
428 		return -EINVAL;
429 	buf = kmalloc(len+1, GFP_KERNEL);
430 	if (buf == NULL)
431 		return -ENOMEM;
432 
433 	line = buf;
434 	for (i = 0; i < count; i++) {
435 		if (copy_from_user(line, iv[i].iov_base, iv[i].iov_len)) {
436 			ret = -EFAULT;
437 			goto out;
438 		}
439 		line += iv[i].iov_len;
440 	}
441 
442 	/*
443 	 * Extract and skip the syslog prefix <[0-9]*>. Coming from userspace
444 	 * the decimal value represents 32bit, the lower 3 bit are the log
445 	 * level, the rest are the log facility.
446 	 *
447 	 * If no prefix or no userspace facility is specified, we
448 	 * enforce LOG_USER, to be able to reliably distinguish
449 	 * kernel-generated messages from userspace-injected ones.
450 	 */
451 	line = buf;
452 	if (line[0] == '<') {
453 		char *endp = NULL;
454 
455 		i = simple_strtoul(line+1, &endp, 10);
456 		if (endp && endp[0] == '>') {
457 			level = i & 7;
458 			if (i >> 3)
459 				facility = i >> 3;
460 			endp++;
461 			len -= endp - line;
462 			line = endp;
463 		}
464 	}
465 	line[len] = '\0';
466 
467 	printk_emit(facility, level, NULL, 0, "%s", line);
468 out:
469 	kfree(buf);
470 	return ret;
471 }
472 
473 static ssize_t devkmsg_read(struct file *file, char __user *buf,
474 			    size_t count, loff_t *ppos)
475 {
476 	struct devkmsg_user *user = file->private_data;
477 	struct printk_log *msg;
478 	u64 ts_usec;
479 	size_t i;
480 	char cont = '-';
481 	size_t len;
482 	ssize_t ret;
483 
484 	if (!user)
485 		return -EBADF;
486 
487 	ret = mutex_lock_interruptible(&user->lock);
488 	if (ret)
489 		return ret;
490 	raw_spin_lock_irq(&logbuf_lock);
491 	while (user->seq == log_next_seq) {
492 		if (file->f_flags & O_NONBLOCK) {
493 			ret = -EAGAIN;
494 			raw_spin_unlock_irq(&logbuf_lock);
495 			goto out;
496 		}
497 
498 		raw_spin_unlock_irq(&logbuf_lock);
499 		ret = wait_event_interruptible(log_wait,
500 					       user->seq != log_next_seq);
501 		if (ret)
502 			goto out;
503 		raw_spin_lock_irq(&logbuf_lock);
504 	}
505 
506 	if (user->seq < log_first_seq) {
507 		/* our last seen message is gone, return error and reset */
508 		user->idx = log_first_idx;
509 		user->seq = log_first_seq;
510 		ret = -EPIPE;
511 		raw_spin_unlock_irq(&logbuf_lock);
512 		goto out;
513 	}
514 
515 	msg = log_from_idx(user->idx);
516 	ts_usec = msg->ts_nsec;
517 	do_div(ts_usec, 1000);
518 
519 	/*
520 	 * If we couldn't merge continuation line fragments during the print,
521 	 * export the stored flags to allow an optional external merge of the
522 	 * records. Merging the records isn't always neccessarily correct, like
523 	 * when we hit a race during printing. In most cases though, it produces
524 	 * better readable output. 'c' in the record flags mark the first
525 	 * fragment of a line, '+' the following.
526 	 */
527 	if (msg->flags & LOG_CONT && !(user->prev & LOG_CONT))
528 		cont = 'c';
529 	else if ((msg->flags & LOG_CONT) ||
530 		 ((user->prev & LOG_CONT) && !(msg->flags & LOG_PREFIX)))
531 		cont = '+';
532 
533 	len = sprintf(user->buf, "%u,%llu,%llu,%c;",
534 		      (msg->facility << 3) | msg->level,
535 		      user->seq, ts_usec, cont);
536 	user->prev = msg->flags;
537 
538 	/* escape non-printable characters */
539 	for (i = 0; i < msg->text_len; i++) {
540 		unsigned char c = log_text(msg)[i];
541 
542 		if (c < ' ' || c >= 127 || c == '\\')
543 			len += sprintf(user->buf + len, "\\x%02x", c);
544 		else
545 			user->buf[len++] = c;
546 	}
547 	user->buf[len++] = '\n';
548 
549 	if (msg->dict_len) {
550 		bool line = true;
551 
552 		for (i = 0; i < msg->dict_len; i++) {
553 			unsigned char c = log_dict(msg)[i];
554 
555 			if (line) {
556 				user->buf[len++] = ' ';
557 				line = false;
558 			}
559 
560 			if (c == '\0') {
561 				user->buf[len++] = '\n';
562 				line = true;
563 				continue;
564 			}
565 
566 			if (c < ' ' || c >= 127 || c == '\\') {
567 				len += sprintf(user->buf + len, "\\x%02x", c);
568 				continue;
569 			}
570 
571 			user->buf[len++] = c;
572 		}
573 		user->buf[len++] = '\n';
574 	}
575 
576 	user->idx = log_next(user->idx);
577 	user->seq++;
578 	raw_spin_unlock_irq(&logbuf_lock);
579 
580 	if (len > count) {
581 		ret = -EINVAL;
582 		goto out;
583 	}
584 
585 	if (copy_to_user(buf, user->buf, len)) {
586 		ret = -EFAULT;
587 		goto out;
588 	}
589 	ret = len;
590 out:
591 	mutex_unlock(&user->lock);
592 	return ret;
593 }
594 
595 static loff_t devkmsg_llseek(struct file *file, loff_t offset, int whence)
596 {
597 	struct devkmsg_user *user = file->private_data;
598 	loff_t ret = 0;
599 
600 	if (!user)
601 		return -EBADF;
602 	if (offset)
603 		return -ESPIPE;
604 
605 	raw_spin_lock_irq(&logbuf_lock);
606 	switch (whence) {
607 	case SEEK_SET:
608 		/* the first record */
609 		user->idx = log_first_idx;
610 		user->seq = log_first_seq;
611 		break;
612 	case SEEK_DATA:
613 		/*
614 		 * The first record after the last SYSLOG_ACTION_CLEAR,
615 		 * like issued by 'dmesg -c'. Reading /dev/kmsg itself
616 		 * changes no global state, and does not clear anything.
617 		 */
618 		user->idx = clear_idx;
619 		user->seq = clear_seq;
620 		break;
621 	case SEEK_END:
622 		/* after the last record */
623 		user->idx = log_next_idx;
624 		user->seq = log_next_seq;
625 		break;
626 	default:
627 		ret = -EINVAL;
628 	}
629 	raw_spin_unlock_irq(&logbuf_lock);
630 	return ret;
631 }
632 
633 static unsigned int devkmsg_poll(struct file *file, poll_table *wait)
634 {
635 	struct devkmsg_user *user = file->private_data;
636 	int ret = 0;
637 
638 	if (!user)
639 		return POLLERR|POLLNVAL;
640 
641 	poll_wait(file, &log_wait, wait);
642 
643 	raw_spin_lock_irq(&logbuf_lock);
644 	if (user->seq < log_next_seq) {
645 		/* return error when data has vanished underneath us */
646 		if (user->seq < log_first_seq)
647 			ret = POLLIN|POLLRDNORM|POLLERR|POLLPRI;
648 		else
649 			ret = POLLIN|POLLRDNORM;
650 	}
651 	raw_spin_unlock_irq(&logbuf_lock);
652 
653 	return ret;
654 }
655 
656 static int devkmsg_open(struct inode *inode, struct file *file)
657 {
658 	struct devkmsg_user *user;
659 	int err;
660 
661 	/* write-only does not need any file context */
662 	if ((file->f_flags & O_ACCMODE) == O_WRONLY)
663 		return 0;
664 
665 	err = check_syslog_permissions(SYSLOG_ACTION_READ_ALL,
666 				       SYSLOG_FROM_READER);
667 	if (err)
668 		return err;
669 
670 	user = kmalloc(sizeof(struct devkmsg_user), GFP_KERNEL);
671 	if (!user)
672 		return -ENOMEM;
673 
674 	mutex_init(&user->lock);
675 
676 	raw_spin_lock_irq(&logbuf_lock);
677 	user->idx = log_first_idx;
678 	user->seq = log_first_seq;
679 	raw_spin_unlock_irq(&logbuf_lock);
680 
681 	file->private_data = user;
682 	return 0;
683 }
684 
685 static int devkmsg_release(struct inode *inode, struct file *file)
686 {
687 	struct devkmsg_user *user = file->private_data;
688 
689 	if (!user)
690 		return 0;
691 
692 	mutex_destroy(&user->lock);
693 	kfree(user);
694 	return 0;
695 }
696 
697 const struct file_operations kmsg_fops = {
698 	.open = devkmsg_open,
699 	.read = devkmsg_read,
700 	.aio_write = devkmsg_writev,
701 	.llseek = devkmsg_llseek,
702 	.poll = devkmsg_poll,
703 	.release = devkmsg_release,
704 };
705 
706 #ifdef CONFIG_KEXEC
707 /*
708  * This appends the listed symbols to /proc/vmcore
709  *
710  * /proc/vmcore is used by various utilities, like crash and makedumpfile to
711  * obtain access to symbols that are otherwise very difficult to locate.  These
712  * symbols are specifically used so that utilities can access and extract the
713  * dmesg log from a vmcore file after a crash.
714  */
715 void log_buf_kexec_setup(void)
716 {
717 	VMCOREINFO_SYMBOL(log_buf);
718 	VMCOREINFO_SYMBOL(log_buf_len);
719 	VMCOREINFO_SYMBOL(log_first_idx);
720 	VMCOREINFO_SYMBOL(log_next_idx);
721 	/*
722 	 * Export struct printk_log size and field offsets. User space tools can
723 	 * parse it and detect any changes to structure down the line.
724 	 */
725 	VMCOREINFO_STRUCT_SIZE(printk_log);
726 	VMCOREINFO_OFFSET(printk_log, ts_nsec);
727 	VMCOREINFO_OFFSET(printk_log, len);
728 	VMCOREINFO_OFFSET(printk_log, text_len);
729 	VMCOREINFO_OFFSET(printk_log, dict_len);
730 }
731 #endif
732 
733 /* requested log_buf_len from kernel cmdline */
734 static unsigned long __initdata new_log_buf_len;
735 
736 /* save requested log_buf_len since it's too early to process it */
737 static int __init log_buf_len_setup(char *str)
738 {
739 	unsigned size = memparse(str, &str);
740 
741 	if (size)
742 		size = roundup_pow_of_two(size);
743 	if (size > log_buf_len)
744 		new_log_buf_len = size;
745 
746 	return 0;
747 }
748 early_param("log_buf_len", log_buf_len_setup);
749 
750 void __init setup_log_buf(int early)
751 {
752 	unsigned long flags;
753 	char *new_log_buf;
754 	int free;
755 
756 	if (!new_log_buf_len)
757 		return;
758 
759 	if (early) {
760 		new_log_buf =
761 			memblock_virt_alloc(new_log_buf_len, PAGE_SIZE);
762 	} else {
763 		new_log_buf = memblock_virt_alloc_nopanic(new_log_buf_len, 0);
764 	}
765 
766 	if (unlikely(!new_log_buf)) {
767 		pr_err("log_buf_len: %ld bytes not available\n",
768 			new_log_buf_len);
769 		return;
770 	}
771 
772 	raw_spin_lock_irqsave(&logbuf_lock, flags);
773 	log_buf_len = new_log_buf_len;
774 	log_buf = new_log_buf;
775 	new_log_buf_len = 0;
776 	free = __LOG_BUF_LEN - log_next_idx;
777 	memcpy(log_buf, __log_buf, __LOG_BUF_LEN);
778 	raw_spin_unlock_irqrestore(&logbuf_lock, flags);
779 
780 	pr_info("log_buf_len: %d\n", log_buf_len);
781 	pr_info("early log buf free: %d(%d%%)\n",
782 		free, (free * 100) / __LOG_BUF_LEN);
783 }
784 
785 static bool __read_mostly ignore_loglevel;
786 
787 static int __init ignore_loglevel_setup(char *str)
788 {
789 	ignore_loglevel = 1;
790 	pr_info("debug: ignoring loglevel setting.\n");
791 
792 	return 0;
793 }
794 
795 early_param("ignore_loglevel", ignore_loglevel_setup);
796 module_param(ignore_loglevel, bool, S_IRUGO | S_IWUSR);
797 MODULE_PARM_DESC(ignore_loglevel, "ignore loglevel setting, to"
798 	"print all kernel messages to the console.");
799 
800 #ifdef CONFIG_BOOT_PRINTK_DELAY
801 
802 static int boot_delay; /* msecs delay after each printk during bootup */
803 static unsigned long long loops_per_msec;	/* based on boot_delay */
804 
805 static int __init boot_delay_setup(char *str)
806 {
807 	unsigned long lpj;
808 
809 	lpj = preset_lpj ? preset_lpj : 1000000;	/* some guess */
810 	loops_per_msec = (unsigned long long)lpj / 1000 * HZ;
811 
812 	get_option(&str, &boot_delay);
813 	if (boot_delay > 10 * 1000)
814 		boot_delay = 0;
815 
816 	pr_debug("boot_delay: %u, preset_lpj: %ld, lpj: %lu, "
817 		"HZ: %d, loops_per_msec: %llu\n",
818 		boot_delay, preset_lpj, lpj, HZ, loops_per_msec);
819 	return 0;
820 }
821 early_param("boot_delay", boot_delay_setup);
822 
823 static void boot_delay_msec(int level)
824 {
825 	unsigned long long k;
826 	unsigned long timeout;
827 
828 	if ((boot_delay == 0 || system_state != SYSTEM_BOOTING)
829 		|| (level >= console_loglevel && !ignore_loglevel)) {
830 		return;
831 	}
832 
833 	k = (unsigned long long)loops_per_msec * boot_delay;
834 
835 	timeout = jiffies + msecs_to_jiffies(boot_delay);
836 	while (k) {
837 		k--;
838 		cpu_relax();
839 		/*
840 		 * use (volatile) jiffies to prevent
841 		 * compiler reduction; loop termination via jiffies
842 		 * is secondary and may or may not happen.
843 		 */
844 		if (time_after(jiffies, timeout))
845 			break;
846 		touch_nmi_watchdog();
847 	}
848 }
849 #else
850 static inline void boot_delay_msec(int level)
851 {
852 }
853 #endif
854 
855 #if defined(CONFIG_PRINTK_TIME)
856 static bool printk_time = 1;
857 #else
858 static bool printk_time;
859 #endif
860 module_param_named(time, printk_time, bool, S_IRUGO | S_IWUSR);
861 
862 static size_t print_time(u64 ts, char *buf)
863 {
864 	unsigned long rem_nsec;
865 
866 	if (!printk_time)
867 		return 0;
868 
869 	rem_nsec = do_div(ts, 1000000000);
870 
871 	if (!buf)
872 		return snprintf(NULL, 0, "[%5lu.000000] ", (unsigned long)ts);
873 
874 	return sprintf(buf, "[%5lu.%06lu] ",
875 		       (unsigned long)ts, rem_nsec / 1000);
876 }
877 
878 static size_t print_prefix(const struct printk_log *msg, bool syslog, char *buf)
879 {
880 	size_t len = 0;
881 	unsigned int prefix = (msg->facility << 3) | msg->level;
882 
883 	if (syslog) {
884 		if (buf) {
885 			len += sprintf(buf, "<%u>", prefix);
886 		} else {
887 			len += 3;
888 			if (prefix > 999)
889 				len += 3;
890 			else if (prefix > 99)
891 				len += 2;
892 			else if (prefix > 9)
893 				len++;
894 		}
895 	}
896 
897 	len += print_time(msg->ts_nsec, buf ? buf + len : NULL);
898 	return len;
899 }
900 
901 static size_t msg_print_text(const struct printk_log *msg, enum log_flags prev,
902 			     bool syslog, char *buf, size_t size)
903 {
904 	const char *text = log_text(msg);
905 	size_t text_size = msg->text_len;
906 	bool prefix = true;
907 	bool newline = true;
908 	size_t len = 0;
909 
910 	if ((prev & LOG_CONT) && !(msg->flags & LOG_PREFIX))
911 		prefix = false;
912 
913 	if (msg->flags & LOG_CONT) {
914 		if ((prev & LOG_CONT) && !(prev & LOG_NEWLINE))
915 			prefix = false;
916 
917 		if (!(msg->flags & LOG_NEWLINE))
918 			newline = false;
919 	}
920 
921 	do {
922 		const char *next = memchr(text, '\n', text_size);
923 		size_t text_len;
924 
925 		if (next) {
926 			text_len = next - text;
927 			next++;
928 			text_size -= next - text;
929 		} else {
930 			text_len = text_size;
931 		}
932 
933 		if (buf) {
934 			if (print_prefix(msg, syslog, NULL) +
935 			    text_len + 1 >= size - len)
936 				break;
937 
938 			if (prefix)
939 				len += print_prefix(msg, syslog, buf + len);
940 			memcpy(buf + len, text, text_len);
941 			len += text_len;
942 			if (next || newline)
943 				buf[len++] = '\n';
944 		} else {
945 			/* SYSLOG_ACTION_* buffer size only calculation */
946 			if (prefix)
947 				len += print_prefix(msg, syslog, NULL);
948 			len += text_len;
949 			if (next || newline)
950 				len++;
951 		}
952 
953 		prefix = true;
954 		text = next;
955 	} while (text);
956 
957 	return len;
958 }
959 
960 static int syslog_print(char __user *buf, int size)
961 {
962 	char *text;
963 	struct printk_log *msg;
964 	int len = 0;
965 
966 	text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
967 	if (!text)
968 		return -ENOMEM;
969 
970 	while (size > 0) {
971 		size_t n;
972 		size_t skip;
973 
974 		raw_spin_lock_irq(&logbuf_lock);
975 		if (syslog_seq < log_first_seq) {
976 			/* messages are gone, move to first one */
977 			syslog_seq = log_first_seq;
978 			syslog_idx = log_first_idx;
979 			syslog_prev = 0;
980 			syslog_partial = 0;
981 		}
982 		if (syslog_seq == log_next_seq) {
983 			raw_spin_unlock_irq(&logbuf_lock);
984 			break;
985 		}
986 
987 		skip = syslog_partial;
988 		msg = log_from_idx(syslog_idx);
989 		n = msg_print_text(msg, syslog_prev, true, text,
990 				   LOG_LINE_MAX + PREFIX_MAX);
991 		if (n - syslog_partial <= size) {
992 			/* message fits into buffer, move forward */
993 			syslog_idx = log_next(syslog_idx);
994 			syslog_seq++;
995 			syslog_prev = msg->flags;
996 			n -= syslog_partial;
997 			syslog_partial = 0;
998 		} else if (!len){
999 			/* partial read(), remember position */
1000 			n = size;
1001 			syslog_partial += n;
1002 		} else
1003 			n = 0;
1004 		raw_spin_unlock_irq(&logbuf_lock);
1005 
1006 		if (!n)
1007 			break;
1008 
1009 		if (copy_to_user(buf, text + skip, n)) {
1010 			if (!len)
1011 				len = -EFAULT;
1012 			break;
1013 		}
1014 
1015 		len += n;
1016 		size -= n;
1017 		buf += n;
1018 	}
1019 
1020 	kfree(text);
1021 	return len;
1022 }
1023 
1024 static int syslog_print_all(char __user *buf, int size, bool clear)
1025 {
1026 	char *text;
1027 	int len = 0;
1028 
1029 	text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
1030 	if (!text)
1031 		return -ENOMEM;
1032 
1033 	raw_spin_lock_irq(&logbuf_lock);
1034 	if (buf) {
1035 		u64 next_seq;
1036 		u64 seq;
1037 		u32 idx;
1038 		enum log_flags prev;
1039 
1040 		if (clear_seq < log_first_seq) {
1041 			/* messages are gone, move to first available one */
1042 			clear_seq = log_first_seq;
1043 			clear_idx = log_first_idx;
1044 		}
1045 
1046 		/*
1047 		 * Find first record that fits, including all following records,
1048 		 * into the user-provided buffer for this dump.
1049 		 */
1050 		seq = clear_seq;
1051 		idx = clear_idx;
1052 		prev = 0;
1053 		while (seq < log_next_seq) {
1054 			struct printk_log *msg = log_from_idx(idx);
1055 
1056 			len += msg_print_text(msg, prev, true, NULL, 0);
1057 			prev = msg->flags;
1058 			idx = log_next(idx);
1059 			seq++;
1060 		}
1061 
1062 		/* move first record forward until length fits into the buffer */
1063 		seq = clear_seq;
1064 		idx = clear_idx;
1065 		prev = 0;
1066 		while (len > size && seq < log_next_seq) {
1067 			struct printk_log *msg = log_from_idx(idx);
1068 
1069 			len -= msg_print_text(msg, prev, true, NULL, 0);
1070 			prev = msg->flags;
1071 			idx = log_next(idx);
1072 			seq++;
1073 		}
1074 
1075 		/* last message fitting into this dump */
1076 		next_seq = log_next_seq;
1077 
1078 		len = 0;
1079 		prev = 0;
1080 		while (len >= 0 && seq < next_seq) {
1081 			struct printk_log *msg = log_from_idx(idx);
1082 			int textlen;
1083 
1084 			textlen = msg_print_text(msg, prev, true, text,
1085 						 LOG_LINE_MAX + PREFIX_MAX);
1086 			if (textlen < 0) {
1087 				len = textlen;
1088 				break;
1089 			}
1090 			idx = log_next(idx);
1091 			seq++;
1092 			prev = msg->flags;
1093 
1094 			raw_spin_unlock_irq(&logbuf_lock);
1095 			if (copy_to_user(buf + len, text, textlen))
1096 				len = -EFAULT;
1097 			else
1098 				len += textlen;
1099 			raw_spin_lock_irq(&logbuf_lock);
1100 
1101 			if (seq < log_first_seq) {
1102 				/* messages are gone, move to next one */
1103 				seq = log_first_seq;
1104 				idx = log_first_idx;
1105 				prev = 0;
1106 			}
1107 		}
1108 	}
1109 
1110 	if (clear) {
1111 		clear_seq = log_next_seq;
1112 		clear_idx = log_next_idx;
1113 	}
1114 	raw_spin_unlock_irq(&logbuf_lock);
1115 
1116 	kfree(text);
1117 	return len;
1118 }
1119 
1120 int do_syslog(int type, char __user *buf, int len, bool from_file)
1121 {
1122 	bool clear = false;
1123 	static int saved_console_loglevel = -1;
1124 	int error;
1125 
1126 	error = check_syslog_permissions(type, from_file);
1127 	if (error)
1128 		goto out;
1129 
1130 	error = security_syslog(type);
1131 	if (error)
1132 		return error;
1133 
1134 	switch (type) {
1135 	case SYSLOG_ACTION_CLOSE:	/* Close log */
1136 		break;
1137 	case SYSLOG_ACTION_OPEN:	/* Open log */
1138 		break;
1139 	case SYSLOG_ACTION_READ:	/* Read from log */
1140 		error = -EINVAL;
1141 		if (!buf || len < 0)
1142 			goto out;
1143 		error = 0;
1144 		if (!len)
1145 			goto out;
1146 		if (!access_ok(VERIFY_WRITE, buf, len)) {
1147 			error = -EFAULT;
1148 			goto out;
1149 		}
1150 		error = wait_event_interruptible(log_wait,
1151 						 syslog_seq != log_next_seq);
1152 		if (error)
1153 			goto out;
1154 		error = syslog_print(buf, len);
1155 		break;
1156 	/* Read/clear last kernel messages */
1157 	case SYSLOG_ACTION_READ_CLEAR:
1158 		clear = true;
1159 		/* FALL THRU */
1160 	/* Read last kernel messages */
1161 	case SYSLOG_ACTION_READ_ALL:
1162 		error = -EINVAL;
1163 		if (!buf || len < 0)
1164 			goto out;
1165 		error = 0;
1166 		if (!len)
1167 			goto out;
1168 		if (!access_ok(VERIFY_WRITE, buf, len)) {
1169 			error = -EFAULT;
1170 			goto out;
1171 		}
1172 		error = syslog_print_all(buf, len, clear);
1173 		break;
1174 	/* Clear ring buffer */
1175 	case SYSLOG_ACTION_CLEAR:
1176 		syslog_print_all(NULL, 0, true);
1177 		break;
1178 	/* Disable logging to console */
1179 	case SYSLOG_ACTION_CONSOLE_OFF:
1180 		if (saved_console_loglevel == -1)
1181 			saved_console_loglevel = console_loglevel;
1182 		console_loglevel = minimum_console_loglevel;
1183 		break;
1184 	/* Enable logging to console */
1185 	case SYSLOG_ACTION_CONSOLE_ON:
1186 		if (saved_console_loglevel != -1) {
1187 			console_loglevel = saved_console_loglevel;
1188 			saved_console_loglevel = -1;
1189 		}
1190 		break;
1191 	/* Set level of messages printed to console */
1192 	case SYSLOG_ACTION_CONSOLE_LEVEL:
1193 		error = -EINVAL;
1194 		if (len < 1 || len > 8)
1195 			goto out;
1196 		if (len < minimum_console_loglevel)
1197 			len = minimum_console_loglevel;
1198 		console_loglevel = len;
1199 		/* Implicitly re-enable logging to console */
1200 		saved_console_loglevel = -1;
1201 		error = 0;
1202 		break;
1203 	/* Number of chars in the log buffer */
1204 	case SYSLOG_ACTION_SIZE_UNREAD:
1205 		raw_spin_lock_irq(&logbuf_lock);
1206 		if (syslog_seq < log_first_seq) {
1207 			/* messages are gone, move to first one */
1208 			syslog_seq = log_first_seq;
1209 			syslog_idx = log_first_idx;
1210 			syslog_prev = 0;
1211 			syslog_partial = 0;
1212 		}
1213 		if (from_file) {
1214 			/*
1215 			 * Short-cut for poll(/"proc/kmsg") which simply checks
1216 			 * for pending data, not the size; return the count of
1217 			 * records, not the length.
1218 			 */
1219 			error = log_next_idx - syslog_idx;
1220 		} else {
1221 			u64 seq = syslog_seq;
1222 			u32 idx = syslog_idx;
1223 			enum log_flags prev = syslog_prev;
1224 
1225 			error = 0;
1226 			while (seq < log_next_seq) {
1227 				struct printk_log *msg = log_from_idx(idx);
1228 
1229 				error += msg_print_text(msg, prev, true, NULL, 0);
1230 				idx = log_next(idx);
1231 				seq++;
1232 				prev = msg->flags;
1233 			}
1234 			error -= syslog_partial;
1235 		}
1236 		raw_spin_unlock_irq(&logbuf_lock);
1237 		break;
1238 	/* Size of the log buffer */
1239 	case SYSLOG_ACTION_SIZE_BUFFER:
1240 		error = log_buf_len;
1241 		break;
1242 	default:
1243 		error = -EINVAL;
1244 		break;
1245 	}
1246 out:
1247 	return error;
1248 }
1249 
1250 SYSCALL_DEFINE3(syslog, int, type, char __user *, buf, int, len)
1251 {
1252 	return do_syslog(type, buf, len, SYSLOG_FROM_READER);
1253 }
1254 
1255 /*
1256  * Call the console drivers, asking them to write out
1257  * log_buf[start] to log_buf[end - 1].
1258  * The console_lock must be held.
1259  */
1260 static void call_console_drivers(int level, const char *text, size_t len)
1261 {
1262 	struct console *con;
1263 
1264 	trace_console(text, len);
1265 
1266 	if (level >= console_loglevel && !ignore_loglevel)
1267 		return;
1268 	if (!console_drivers)
1269 		return;
1270 
1271 	for_each_console(con) {
1272 		if (exclusive_console && con != exclusive_console)
1273 			continue;
1274 		if (!(con->flags & CON_ENABLED))
1275 			continue;
1276 		if (!con->write)
1277 			continue;
1278 		if (!cpu_online(smp_processor_id()) &&
1279 		    !(con->flags & CON_ANYTIME))
1280 			continue;
1281 		con->write(con, text, len);
1282 	}
1283 }
1284 
1285 /*
1286  * Zap console related locks when oopsing. Only zap at most once
1287  * every 10 seconds, to leave time for slow consoles to print a
1288  * full oops.
1289  */
1290 static void zap_locks(void)
1291 {
1292 	static unsigned long oops_timestamp;
1293 
1294 	if (time_after_eq(jiffies, oops_timestamp) &&
1295 			!time_after(jiffies, oops_timestamp + 30 * HZ))
1296 		return;
1297 
1298 	oops_timestamp = jiffies;
1299 
1300 	debug_locks_off();
1301 	/* If a crash is occurring, make sure we can't deadlock */
1302 	raw_spin_lock_init(&logbuf_lock);
1303 	/* And make sure that we print immediately */
1304 	sema_init(&console_sem, 1);
1305 }
1306 
1307 /* Check if we have any console registered that can be called early in boot. */
1308 static int have_callable_console(void)
1309 {
1310 	struct console *con;
1311 
1312 	for_each_console(con)
1313 		if (con->flags & CON_ANYTIME)
1314 			return 1;
1315 
1316 	return 0;
1317 }
1318 
1319 /*
1320  * Can we actually use the console at this time on this cpu?
1321  *
1322  * Console drivers may assume that per-cpu resources have
1323  * been allocated. So unless they're explicitly marked as
1324  * being able to cope (CON_ANYTIME) don't call them until
1325  * this CPU is officially up.
1326  */
1327 static inline int can_use_console(unsigned int cpu)
1328 {
1329 	return cpu_online(cpu) || have_callable_console();
1330 }
1331 
1332 /*
1333  * Try to get console ownership to actually show the kernel
1334  * messages from a 'printk'. Return true (and with the
1335  * console_lock held, and 'console_locked' set) if it
1336  * is successful, false otherwise.
1337  *
1338  * This gets called with the 'logbuf_lock' spinlock held and
1339  * interrupts disabled. It should return with 'lockbuf_lock'
1340  * released but interrupts still disabled.
1341  */
1342 static int console_trylock_for_printk(unsigned int cpu)
1343 	__releases(&logbuf_lock)
1344 {
1345 	int retval = 0, wake = 0;
1346 
1347 	if (console_trylock()) {
1348 		retval = 1;
1349 
1350 		/*
1351 		 * If we can't use the console, we need to release
1352 		 * the console semaphore by hand to avoid flushing
1353 		 * the buffer. We need to hold the console semaphore
1354 		 * in order to do this test safely.
1355 		 */
1356 		if (!can_use_console(cpu)) {
1357 			console_locked = 0;
1358 			wake = 1;
1359 			retval = 0;
1360 		}
1361 	}
1362 	logbuf_cpu = UINT_MAX;
1363 	raw_spin_unlock(&logbuf_lock);
1364 	if (wake)
1365 		up(&console_sem);
1366 	return retval;
1367 }
1368 
1369 int printk_delay_msec __read_mostly;
1370 
1371 static inline void printk_delay(void)
1372 {
1373 	if (unlikely(printk_delay_msec)) {
1374 		int m = printk_delay_msec;
1375 
1376 		while (m--) {
1377 			mdelay(1);
1378 			touch_nmi_watchdog();
1379 		}
1380 	}
1381 }
1382 
1383 /*
1384  * Continuation lines are buffered, and not committed to the record buffer
1385  * until the line is complete, or a race forces it. The line fragments
1386  * though, are printed immediately to the consoles to ensure everything has
1387  * reached the console in case of a kernel crash.
1388  */
1389 static struct cont {
1390 	char buf[LOG_LINE_MAX];
1391 	size_t len;			/* length == 0 means unused buffer */
1392 	size_t cons;			/* bytes written to console */
1393 	struct task_struct *owner;	/* task of first print*/
1394 	u64 ts_nsec;			/* time of first print */
1395 	u8 level;			/* log level of first message */
1396 	u8 facility;			/* log level of first message */
1397 	enum log_flags flags;		/* prefix, newline flags */
1398 	bool flushed:1;			/* buffer sealed and committed */
1399 } cont;
1400 
1401 static void cont_flush(enum log_flags flags)
1402 {
1403 	if (cont.flushed)
1404 		return;
1405 	if (cont.len == 0)
1406 		return;
1407 
1408 	if (cont.cons) {
1409 		/*
1410 		 * If a fragment of this line was directly flushed to the
1411 		 * console; wait for the console to pick up the rest of the
1412 		 * line. LOG_NOCONS suppresses a duplicated output.
1413 		 */
1414 		log_store(cont.facility, cont.level, flags | LOG_NOCONS,
1415 			  cont.ts_nsec, NULL, 0, cont.buf, cont.len);
1416 		cont.flags = flags;
1417 		cont.flushed = true;
1418 	} else {
1419 		/*
1420 		 * If no fragment of this line ever reached the console,
1421 		 * just submit it to the store and free the buffer.
1422 		 */
1423 		log_store(cont.facility, cont.level, flags, 0,
1424 			  NULL, 0, cont.buf, cont.len);
1425 		cont.len = 0;
1426 	}
1427 }
1428 
1429 static bool cont_add(int facility, int level, const char *text, size_t len)
1430 {
1431 	if (cont.len && cont.flushed)
1432 		return false;
1433 
1434 	if (cont.len + len > sizeof(cont.buf)) {
1435 		/* the line gets too long, split it up in separate records */
1436 		cont_flush(LOG_CONT);
1437 		return false;
1438 	}
1439 
1440 	if (!cont.len) {
1441 		cont.facility = facility;
1442 		cont.level = level;
1443 		cont.owner = current;
1444 		cont.ts_nsec = local_clock();
1445 		cont.flags = 0;
1446 		cont.cons = 0;
1447 		cont.flushed = false;
1448 	}
1449 
1450 	memcpy(cont.buf + cont.len, text, len);
1451 	cont.len += len;
1452 
1453 	if (cont.len > (sizeof(cont.buf) * 80) / 100)
1454 		cont_flush(LOG_CONT);
1455 
1456 	return true;
1457 }
1458 
1459 static size_t cont_print_text(char *text, size_t size)
1460 {
1461 	size_t textlen = 0;
1462 	size_t len;
1463 
1464 	if (cont.cons == 0 && (console_prev & LOG_NEWLINE)) {
1465 		textlen += print_time(cont.ts_nsec, text);
1466 		size -= textlen;
1467 	}
1468 
1469 	len = cont.len - cont.cons;
1470 	if (len > 0) {
1471 		if (len+1 > size)
1472 			len = size-1;
1473 		memcpy(text + textlen, cont.buf + cont.cons, len);
1474 		textlen += len;
1475 		cont.cons = cont.len;
1476 	}
1477 
1478 	if (cont.flushed) {
1479 		if (cont.flags & LOG_NEWLINE)
1480 			text[textlen++] = '\n';
1481 		/* got everything, release buffer */
1482 		cont.len = 0;
1483 	}
1484 	return textlen;
1485 }
1486 
1487 asmlinkage int vprintk_emit(int facility, int level,
1488 			    const char *dict, size_t dictlen,
1489 			    const char *fmt, va_list args)
1490 {
1491 	static int recursion_bug;
1492 	static char textbuf[LOG_LINE_MAX];
1493 	char *text = textbuf;
1494 	size_t text_len;
1495 	enum log_flags lflags = 0;
1496 	unsigned long flags;
1497 	int this_cpu;
1498 	int printed_len = 0;
1499 
1500 	boot_delay_msec(level);
1501 	printk_delay();
1502 
1503 	/* This stops the holder of console_sem just where we want him */
1504 	local_irq_save(flags);
1505 	this_cpu = smp_processor_id();
1506 
1507 	/*
1508 	 * Ouch, printk recursed into itself!
1509 	 */
1510 	if (unlikely(logbuf_cpu == this_cpu)) {
1511 		/*
1512 		 * If a crash is occurring during printk() on this CPU,
1513 		 * then try to get the crash message out but make sure
1514 		 * we can't deadlock. Otherwise just return to avoid the
1515 		 * recursion and return - but flag the recursion so that
1516 		 * it can be printed at the next appropriate moment:
1517 		 */
1518 		if (!oops_in_progress && !lockdep_recursing(current)) {
1519 			recursion_bug = 1;
1520 			goto out_restore_irqs;
1521 		}
1522 		zap_locks();
1523 	}
1524 
1525 	lockdep_off();
1526 	raw_spin_lock(&logbuf_lock);
1527 	logbuf_cpu = this_cpu;
1528 
1529 	if (recursion_bug) {
1530 		static const char recursion_msg[] =
1531 			"BUG: recent printk recursion!";
1532 
1533 		recursion_bug = 0;
1534 		printed_len += strlen(recursion_msg);
1535 		/* emit KERN_CRIT message */
1536 		log_store(0, 2, LOG_PREFIX|LOG_NEWLINE, 0,
1537 			  NULL, 0, recursion_msg, printed_len);
1538 	}
1539 
1540 	/*
1541 	 * The printf needs to come first; we need the syslog
1542 	 * prefix which might be passed-in as a parameter.
1543 	 */
1544 	text_len = vscnprintf(text, sizeof(textbuf), fmt, args);
1545 
1546 	/* mark and strip a trailing newline */
1547 	if (text_len && text[text_len-1] == '\n') {
1548 		text_len--;
1549 		lflags |= LOG_NEWLINE;
1550 	}
1551 
1552 	/* strip kernel syslog prefix and extract log level or control flags */
1553 	if (facility == 0) {
1554 		int kern_level = printk_get_level(text);
1555 
1556 		if (kern_level) {
1557 			const char *end_of_header = printk_skip_level(text);
1558 			switch (kern_level) {
1559 			case '0' ... '7':
1560 				if (level == -1)
1561 					level = kern_level - '0';
1562 			case 'd':	/* KERN_DEFAULT */
1563 				lflags |= LOG_PREFIX;
1564 			case 'c':	/* KERN_CONT */
1565 				break;
1566 			}
1567 			text_len -= end_of_header - text;
1568 			text = (char *)end_of_header;
1569 		}
1570 	}
1571 
1572 	if (level == -1)
1573 		level = default_message_loglevel;
1574 
1575 	if (dict)
1576 		lflags |= LOG_PREFIX|LOG_NEWLINE;
1577 
1578 	if (!(lflags & LOG_NEWLINE)) {
1579 		/*
1580 		 * Flush the conflicting buffer. An earlier newline was missing,
1581 		 * or another task also prints continuation lines.
1582 		 */
1583 		if (cont.len && (lflags & LOG_PREFIX || cont.owner != current))
1584 			cont_flush(LOG_NEWLINE);
1585 
1586 		/* buffer line if possible, otherwise store it right away */
1587 		if (!cont_add(facility, level, text, text_len))
1588 			log_store(facility, level, lflags | LOG_CONT, 0,
1589 				  dict, dictlen, text, text_len);
1590 	} else {
1591 		bool stored = false;
1592 
1593 		/*
1594 		 * If an earlier newline was missing and it was the same task,
1595 		 * either merge it with the current buffer and flush, or if
1596 		 * there was a race with interrupts (prefix == true) then just
1597 		 * flush it out and store this line separately.
1598 		 * If the preceding printk was from a different task and missed
1599 		 * a newline, flush and append the newline.
1600 		 */
1601 		if (cont.len) {
1602 			if (cont.owner == current && !(lflags & LOG_PREFIX))
1603 				stored = cont_add(facility, level, text,
1604 						  text_len);
1605 			cont_flush(LOG_NEWLINE);
1606 		}
1607 
1608 		if (!stored)
1609 			log_store(facility, level, lflags, 0,
1610 				  dict, dictlen, text, text_len);
1611 	}
1612 	printed_len += text_len;
1613 
1614 	/*
1615 	 * Try to acquire and then immediately release the console semaphore.
1616 	 * The release will print out buffers and wake up /dev/kmsg and syslog()
1617 	 * users.
1618 	 *
1619 	 * The console_trylock_for_printk() function will release 'logbuf_lock'
1620 	 * regardless of whether it actually gets the console semaphore or not.
1621 	 */
1622 	if (console_trylock_for_printk(this_cpu))
1623 		console_unlock();
1624 
1625 	lockdep_on();
1626 out_restore_irqs:
1627 	local_irq_restore(flags);
1628 
1629 	return printed_len;
1630 }
1631 EXPORT_SYMBOL(vprintk_emit);
1632 
1633 asmlinkage int vprintk(const char *fmt, va_list args)
1634 {
1635 	return vprintk_emit(0, -1, NULL, 0, fmt, args);
1636 }
1637 EXPORT_SYMBOL(vprintk);
1638 
1639 asmlinkage int printk_emit(int facility, int level,
1640 			   const char *dict, size_t dictlen,
1641 			   const char *fmt, ...)
1642 {
1643 	va_list args;
1644 	int r;
1645 
1646 	va_start(args, fmt);
1647 	r = vprintk_emit(facility, level, dict, dictlen, fmt, args);
1648 	va_end(args);
1649 
1650 	return r;
1651 }
1652 EXPORT_SYMBOL(printk_emit);
1653 
1654 /**
1655  * printk - print a kernel message
1656  * @fmt: format string
1657  *
1658  * This is printk(). It can be called from any context. We want it to work.
1659  *
1660  * We try to grab the console_lock. If we succeed, it's easy - we log the
1661  * output and call the console drivers.  If we fail to get the semaphore, we
1662  * place the output into the log buffer and return. The current holder of
1663  * the console_sem will notice the new output in console_unlock(); and will
1664  * send it to the consoles before releasing the lock.
1665  *
1666  * One effect of this deferred printing is that code which calls printk() and
1667  * then changes console_loglevel may break. This is because console_loglevel
1668  * is inspected when the actual printing occurs.
1669  *
1670  * See also:
1671  * printf(3)
1672  *
1673  * See the vsnprintf() documentation for format string extensions over C99.
1674  */
1675 asmlinkage int printk(const char *fmt, ...)
1676 {
1677 	va_list args;
1678 	int r;
1679 
1680 #ifdef CONFIG_KGDB_KDB
1681 	if (unlikely(kdb_trap_printk)) {
1682 		va_start(args, fmt);
1683 		r = vkdb_printf(fmt, args);
1684 		va_end(args);
1685 		return r;
1686 	}
1687 #endif
1688 	va_start(args, fmt);
1689 	r = vprintk_emit(0, -1, NULL, 0, fmt, args);
1690 	va_end(args);
1691 
1692 	return r;
1693 }
1694 EXPORT_SYMBOL(printk);
1695 
1696 #else /* CONFIG_PRINTK */
1697 
1698 #define LOG_LINE_MAX		0
1699 #define PREFIX_MAX		0
1700 #define LOG_LINE_MAX 0
1701 static u64 syslog_seq;
1702 static u32 syslog_idx;
1703 static u64 console_seq;
1704 static u32 console_idx;
1705 static enum log_flags syslog_prev;
1706 static u64 log_first_seq;
1707 static u32 log_first_idx;
1708 static u64 log_next_seq;
1709 static enum log_flags console_prev;
1710 static struct cont {
1711 	size_t len;
1712 	size_t cons;
1713 	u8 level;
1714 	bool flushed:1;
1715 } cont;
1716 static struct printk_log *log_from_idx(u32 idx) { return NULL; }
1717 static u32 log_next(u32 idx) { return 0; }
1718 static void call_console_drivers(int level, const char *text, size_t len) {}
1719 static size_t msg_print_text(const struct printk_log *msg, enum log_flags prev,
1720 			     bool syslog, char *buf, size_t size) { return 0; }
1721 static size_t cont_print_text(char *text, size_t size) { return 0; }
1722 
1723 #endif /* CONFIG_PRINTK */
1724 
1725 #ifdef CONFIG_EARLY_PRINTK
1726 struct console *early_console;
1727 
1728 void early_vprintk(const char *fmt, va_list ap)
1729 {
1730 	if (early_console) {
1731 		char buf[512];
1732 		int n = vscnprintf(buf, sizeof(buf), fmt, ap);
1733 
1734 		early_console->write(early_console, buf, n);
1735 	}
1736 }
1737 
1738 asmlinkage void early_printk(const char *fmt, ...)
1739 {
1740 	va_list ap;
1741 
1742 	va_start(ap, fmt);
1743 	early_vprintk(fmt, ap);
1744 	va_end(ap);
1745 }
1746 #endif
1747 
1748 static int __add_preferred_console(char *name, int idx, char *options,
1749 				   char *brl_options)
1750 {
1751 	struct console_cmdline *c;
1752 	int i;
1753 
1754 	/*
1755 	 *	See if this tty is not yet registered, and
1756 	 *	if we have a slot free.
1757 	 */
1758 	for (i = 0, c = console_cmdline;
1759 	     i < MAX_CMDLINECONSOLES && c->name[0];
1760 	     i++, c++) {
1761 		if (strcmp(c->name, name) == 0 && c->index == idx) {
1762 			if (!brl_options)
1763 				selected_console = i;
1764 			return 0;
1765 		}
1766 	}
1767 	if (i == MAX_CMDLINECONSOLES)
1768 		return -E2BIG;
1769 	if (!brl_options)
1770 		selected_console = i;
1771 	strlcpy(c->name, name, sizeof(c->name));
1772 	c->options = options;
1773 	braille_set_options(c, brl_options);
1774 
1775 	c->index = idx;
1776 	return 0;
1777 }
1778 /*
1779  * Set up a list of consoles.  Called from init/main.c
1780  */
1781 static int __init console_setup(char *str)
1782 {
1783 	char buf[sizeof(console_cmdline[0].name) + 4]; /* 4 for index */
1784 	char *s, *options, *brl_options = NULL;
1785 	int idx;
1786 
1787 	if (_braille_console_setup(&str, &brl_options))
1788 		return 1;
1789 
1790 	/*
1791 	 * Decode str into name, index, options.
1792 	 */
1793 	if (str[0] >= '0' && str[0] <= '9') {
1794 		strcpy(buf, "ttyS");
1795 		strncpy(buf + 4, str, sizeof(buf) - 5);
1796 	} else {
1797 		strncpy(buf, str, sizeof(buf) - 1);
1798 	}
1799 	buf[sizeof(buf) - 1] = 0;
1800 	if ((options = strchr(str, ',')) != NULL)
1801 		*(options++) = 0;
1802 #ifdef __sparc__
1803 	if (!strcmp(str, "ttya"))
1804 		strcpy(buf, "ttyS0");
1805 	if (!strcmp(str, "ttyb"))
1806 		strcpy(buf, "ttyS1");
1807 #endif
1808 	for (s = buf; *s; s++)
1809 		if ((*s >= '0' && *s <= '9') || *s == ',')
1810 			break;
1811 	idx = simple_strtoul(s, NULL, 10);
1812 	*s = 0;
1813 
1814 	__add_preferred_console(buf, idx, options, brl_options);
1815 	console_set_on_cmdline = 1;
1816 	return 1;
1817 }
1818 __setup("console=", console_setup);
1819 
1820 /**
1821  * add_preferred_console - add a device to the list of preferred consoles.
1822  * @name: device name
1823  * @idx: device index
1824  * @options: options for this console
1825  *
1826  * The last preferred console added will be used for kernel messages
1827  * and stdin/out/err for init.  Normally this is used by console_setup
1828  * above to handle user-supplied console arguments; however it can also
1829  * be used by arch-specific code either to override the user or more
1830  * commonly to provide a default console (ie from PROM variables) when
1831  * the user has not supplied one.
1832  */
1833 int add_preferred_console(char *name, int idx, char *options)
1834 {
1835 	return __add_preferred_console(name, idx, options, NULL);
1836 }
1837 
1838 int update_console_cmdline(char *name, int idx, char *name_new, int idx_new, char *options)
1839 {
1840 	struct console_cmdline *c;
1841 	int i;
1842 
1843 	for (i = 0, c = console_cmdline;
1844 	     i < MAX_CMDLINECONSOLES && c->name[0];
1845 	     i++, c++)
1846 		if (strcmp(c->name, name) == 0 && c->index == idx) {
1847 			strlcpy(c->name, name_new, sizeof(c->name));
1848 			c->name[sizeof(c->name) - 1] = 0;
1849 			c->options = options;
1850 			c->index = idx_new;
1851 			return i;
1852 		}
1853 	/* not found */
1854 	return -1;
1855 }
1856 
1857 bool console_suspend_enabled = 1;
1858 EXPORT_SYMBOL(console_suspend_enabled);
1859 
1860 static int __init console_suspend_disable(char *str)
1861 {
1862 	console_suspend_enabled = 0;
1863 	return 1;
1864 }
1865 __setup("no_console_suspend", console_suspend_disable);
1866 module_param_named(console_suspend, console_suspend_enabled,
1867 		bool, S_IRUGO | S_IWUSR);
1868 MODULE_PARM_DESC(console_suspend, "suspend console during suspend"
1869 	" and hibernate operations");
1870 
1871 /**
1872  * suspend_console - suspend the console subsystem
1873  *
1874  * This disables printk() while we go into suspend states
1875  */
1876 void suspend_console(void)
1877 {
1878 	if (!console_suspend_enabled)
1879 		return;
1880 	printk("Suspending console(s) (use no_console_suspend to debug)\n");
1881 	console_lock();
1882 	console_suspended = 1;
1883 	up(&console_sem);
1884 }
1885 
1886 void resume_console(void)
1887 {
1888 	if (!console_suspend_enabled)
1889 		return;
1890 	down(&console_sem);
1891 	console_suspended = 0;
1892 	console_unlock();
1893 }
1894 
1895 /**
1896  * console_cpu_notify - print deferred console messages after CPU hotplug
1897  * @self: notifier struct
1898  * @action: CPU hotplug event
1899  * @hcpu: unused
1900  *
1901  * If printk() is called from a CPU that is not online yet, the messages
1902  * will be spooled but will not show up on the console.  This function is
1903  * called when a new CPU comes online (or fails to come up), and ensures
1904  * that any such output gets printed.
1905  */
1906 static int console_cpu_notify(struct notifier_block *self,
1907 	unsigned long action, void *hcpu)
1908 {
1909 	switch (action) {
1910 	case CPU_ONLINE:
1911 	case CPU_DEAD:
1912 	case CPU_DOWN_FAILED:
1913 	case CPU_UP_CANCELED:
1914 		console_lock();
1915 		console_unlock();
1916 	}
1917 	return NOTIFY_OK;
1918 }
1919 
1920 /**
1921  * console_lock - lock the console system for exclusive use.
1922  *
1923  * Acquires a lock which guarantees that the caller has
1924  * exclusive access to the console system and the console_drivers list.
1925  *
1926  * Can sleep, returns nothing.
1927  */
1928 void console_lock(void)
1929 {
1930 	might_sleep();
1931 
1932 	down(&console_sem);
1933 	if (console_suspended)
1934 		return;
1935 	console_locked = 1;
1936 	console_may_schedule = 1;
1937 	mutex_acquire(&console_lock_dep_map, 0, 0, _RET_IP_);
1938 }
1939 EXPORT_SYMBOL(console_lock);
1940 
1941 /**
1942  * console_trylock - try to lock the console system for exclusive use.
1943  *
1944  * Tried to acquire a lock which guarantees that the caller has
1945  * exclusive access to the console system and the console_drivers list.
1946  *
1947  * returns 1 on success, and 0 on failure to acquire the lock.
1948  */
1949 int console_trylock(void)
1950 {
1951 	if (down_trylock(&console_sem))
1952 		return 0;
1953 	if (console_suspended) {
1954 		up(&console_sem);
1955 		return 0;
1956 	}
1957 	console_locked = 1;
1958 	console_may_schedule = 0;
1959 	mutex_acquire(&console_lock_dep_map, 0, 1, _RET_IP_);
1960 	return 1;
1961 }
1962 EXPORT_SYMBOL(console_trylock);
1963 
1964 int is_console_locked(void)
1965 {
1966 	return console_locked;
1967 }
1968 
1969 static void console_cont_flush(char *text, size_t size)
1970 {
1971 	unsigned long flags;
1972 	size_t len;
1973 
1974 	raw_spin_lock_irqsave(&logbuf_lock, flags);
1975 
1976 	if (!cont.len)
1977 		goto out;
1978 
1979 	/*
1980 	 * We still queue earlier records, likely because the console was
1981 	 * busy. The earlier ones need to be printed before this one, we
1982 	 * did not flush any fragment so far, so just let it queue up.
1983 	 */
1984 	if (console_seq < log_next_seq && !cont.cons)
1985 		goto out;
1986 
1987 	len = cont_print_text(text, size);
1988 	raw_spin_unlock(&logbuf_lock);
1989 	stop_critical_timings();
1990 	call_console_drivers(cont.level, text, len);
1991 	start_critical_timings();
1992 	local_irq_restore(flags);
1993 	return;
1994 out:
1995 	raw_spin_unlock_irqrestore(&logbuf_lock, flags);
1996 }
1997 
1998 /**
1999  * console_unlock - unlock the console system
2000  *
2001  * Releases the console_lock which the caller holds on the console system
2002  * and the console driver list.
2003  *
2004  * While the console_lock was held, console output may have been buffered
2005  * by printk().  If this is the case, console_unlock(); emits
2006  * the output prior to releasing the lock.
2007  *
2008  * If there is output waiting, we wake /dev/kmsg and syslog() users.
2009  *
2010  * console_unlock(); may be called from any context.
2011  */
2012 void console_unlock(void)
2013 {
2014 	static char text[LOG_LINE_MAX + PREFIX_MAX];
2015 	static u64 seen_seq;
2016 	unsigned long flags;
2017 	bool wake_klogd = false;
2018 	bool retry;
2019 
2020 	if (console_suspended) {
2021 		up(&console_sem);
2022 		return;
2023 	}
2024 
2025 	console_may_schedule = 0;
2026 
2027 	/* flush buffered message fragment immediately to console */
2028 	console_cont_flush(text, sizeof(text));
2029 again:
2030 	for (;;) {
2031 		struct printk_log *msg;
2032 		size_t len;
2033 		int level;
2034 
2035 		raw_spin_lock_irqsave(&logbuf_lock, flags);
2036 		if (seen_seq != log_next_seq) {
2037 			wake_klogd = true;
2038 			seen_seq = log_next_seq;
2039 		}
2040 
2041 		if (console_seq < log_first_seq) {
2042 			/* messages are gone, move to first one */
2043 			console_seq = log_first_seq;
2044 			console_idx = log_first_idx;
2045 			console_prev = 0;
2046 		}
2047 skip:
2048 		if (console_seq == log_next_seq)
2049 			break;
2050 
2051 		msg = log_from_idx(console_idx);
2052 		if (msg->flags & LOG_NOCONS) {
2053 			/*
2054 			 * Skip record we have buffered and already printed
2055 			 * directly to the console when we received it.
2056 			 */
2057 			console_idx = log_next(console_idx);
2058 			console_seq++;
2059 			/*
2060 			 * We will get here again when we register a new
2061 			 * CON_PRINTBUFFER console. Clear the flag so we
2062 			 * will properly dump everything later.
2063 			 */
2064 			msg->flags &= ~LOG_NOCONS;
2065 			console_prev = msg->flags;
2066 			goto skip;
2067 		}
2068 
2069 		level = msg->level;
2070 		len = msg_print_text(msg, console_prev, false,
2071 				     text, sizeof(text));
2072 		console_idx = log_next(console_idx);
2073 		console_seq++;
2074 		console_prev = msg->flags;
2075 		raw_spin_unlock(&logbuf_lock);
2076 
2077 		stop_critical_timings();	/* don't trace print latency */
2078 		call_console_drivers(level, text, len);
2079 		start_critical_timings();
2080 		local_irq_restore(flags);
2081 	}
2082 	console_locked = 0;
2083 	mutex_release(&console_lock_dep_map, 1, _RET_IP_);
2084 
2085 	/* Release the exclusive_console once it is used */
2086 	if (unlikely(exclusive_console))
2087 		exclusive_console = NULL;
2088 
2089 	raw_spin_unlock(&logbuf_lock);
2090 
2091 	up(&console_sem);
2092 
2093 	/*
2094 	 * Someone could have filled up the buffer again, so re-check if there's
2095 	 * something to flush. In case we cannot trylock the console_sem again,
2096 	 * there's a new owner and the console_unlock() from them will do the
2097 	 * flush, no worries.
2098 	 */
2099 	raw_spin_lock(&logbuf_lock);
2100 	retry = console_seq != log_next_seq;
2101 	raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2102 
2103 	if (retry && console_trylock())
2104 		goto again;
2105 
2106 	if (wake_klogd)
2107 		wake_up_klogd();
2108 }
2109 EXPORT_SYMBOL(console_unlock);
2110 
2111 /**
2112  * console_conditional_schedule - yield the CPU if required
2113  *
2114  * If the console code is currently allowed to sleep, and
2115  * if this CPU should yield the CPU to another task, do
2116  * so here.
2117  *
2118  * Must be called within console_lock();.
2119  */
2120 void __sched console_conditional_schedule(void)
2121 {
2122 	if (console_may_schedule)
2123 		cond_resched();
2124 }
2125 EXPORT_SYMBOL(console_conditional_schedule);
2126 
2127 void console_unblank(void)
2128 {
2129 	struct console *c;
2130 
2131 	/*
2132 	 * console_unblank can no longer be called in interrupt context unless
2133 	 * oops_in_progress is set to 1..
2134 	 */
2135 	if (oops_in_progress) {
2136 		if (down_trylock(&console_sem) != 0)
2137 			return;
2138 	} else
2139 		console_lock();
2140 
2141 	console_locked = 1;
2142 	console_may_schedule = 0;
2143 	for_each_console(c)
2144 		if ((c->flags & CON_ENABLED) && c->unblank)
2145 			c->unblank();
2146 	console_unlock();
2147 }
2148 
2149 /*
2150  * Return the console tty driver structure and its associated index
2151  */
2152 struct tty_driver *console_device(int *index)
2153 {
2154 	struct console *c;
2155 	struct tty_driver *driver = NULL;
2156 
2157 	console_lock();
2158 	for_each_console(c) {
2159 		if (!c->device)
2160 			continue;
2161 		driver = c->device(c, index);
2162 		if (driver)
2163 			break;
2164 	}
2165 	console_unlock();
2166 	return driver;
2167 }
2168 
2169 /*
2170  * Prevent further output on the passed console device so that (for example)
2171  * serial drivers can disable console output before suspending a port, and can
2172  * re-enable output afterwards.
2173  */
2174 void console_stop(struct console *console)
2175 {
2176 	console_lock();
2177 	console->flags &= ~CON_ENABLED;
2178 	console_unlock();
2179 }
2180 EXPORT_SYMBOL(console_stop);
2181 
2182 void console_start(struct console *console)
2183 {
2184 	console_lock();
2185 	console->flags |= CON_ENABLED;
2186 	console_unlock();
2187 }
2188 EXPORT_SYMBOL(console_start);
2189 
2190 static int __read_mostly keep_bootcon;
2191 
2192 static int __init keep_bootcon_setup(char *str)
2193 {
2194 	keep_bootcon = 1;
2195 	pr_info("debug: skip boot console de-registration.\n");
2196 
2197 	return 0;
2198 }
2199 
2200 early_param("keep_bootcon", keep_bootcon_setup);
2201 
2202 /*
2203  * The console driver calls this routine during kernel initialization
2204  * to register the console printing procedure with printk() and to
2205  * print any messages that were printed by the kernel before the
2206  * console driver was initialized.
2207  *
2208  * This can happen pretty early during the boot process (because of
2209  * early_printk) - sometimes before setup_arch() completes - be careful
2210  * of what kernel features are used - they may not be initialised yet.
2211  *
2212  * There are two types of consoles - bootconsoles (early_printk) and
2213  * "real" consoles (everything which is not a bootconsole) which are
2214  * handled differently.
2215  *  - Any number of bootconsoles can be registered at any time.
2216  *  - As soon as a "real" console is registered, all bootconsoles
2217  *    will be unregistered automatically.
2218  *  - Once a "real" console is registered, any attempt to register a
2219  *    bootconsoles will be rejected
2220  */
2221 void register_console(struct console *newcon)
2222 {
2223 	int i;
2224 	unsigned long flags;
2225 	struct console *bcon = NULL;
2226 	struct console_cmdline *c;
2227 
2228 	if (console_drivers)
2229 		for_each_console(bcon)
2230 			if (WARN(bcon == newcon,
2231 					"console '%s%d' already registered\n",
2232 					bcon->name, bcon->index))
2233 				return;
2234 
2235 	/*
2236 	 * before we register a new CON_BOOT console, make sure we don't
2237 	 * already have a valid console
2238 	 */
2239 	if (console_drivers && newcon->flags & CON_BOOT) {
2240 		/* find the last or real console */
2241 		for_each_console(bcon) {
2242 			if (!(bcon->flags & CON_BOOT)) {
2243 				pr_info("Too late to register bootconsole %s%d\n",
2244 					newcon->name, newcon->index);
2245 				return;
2246 			}
2247 		}
2248 	}
2249 
2250 	if (console_drivers && console_drivers->flags & CON_BOOT)
2251 		bcon = console_drivers;
2252 
2253 	if (preferred_console < 0 || bcon || !console_drivers)
2254 		preferred_console = selected_console;
2255 
2256 	if (newcon->early_setup)
2257 		newcon->early_setup();
2258 
2259 	/*
2260 	 *	See if we want to use this console driver. If we
2261 	 *	didn't select a console we take the first one
2262 	 *	that registers here.
2263 	 */
2264 	if (preferred_console < 0) {
2265 		if (newcon->index < 0)
2266 			newcon->index = 0;
2267 		if (newcon->setup == NULL ||
2268 		    newcon->setup(newcon, NULL) == 0) {
2269 			newcon->flags |= CON_ENABLED;
2270 			if (newcon->device) {
2271 				newcon->flags |= CON_CONSDEV;
2272 				preferred_console = 0;
2273 			}
2274 		}
2275 	}
2276 
2277 	/*
2278 	 *	See if this console matches one we selected on
2279 	 *	the command line.
2280 	 */
2281 	for (i = 0, c = console_cmdline;
2282 	     i < MAX_CMDLINECONSOLES && c->name[0];
2283 	     i++, c++) {
2284 		if (strcmp(c->name, newcon->name) != 0)
2285 			continue;
2286 		if (newcon->index >= 0 &&
2287 		    newcon->index != c->index)
2288 			continue;
2289 		if (newcon->index < 0)
2290 			newcon->index = c->index;
2291 
2292 		if (_braille_register_console(newcon, c))
2293 			return;
2294 
2295 		if (newcon->setup &&
2296 		    newcon->setup(newcon, console_cmdline[i].options) != 0)
2297 			break;
2298 		newcon->flags |= CON_ENABLED;
2299 		newcon->index = c->index;
2300 		if (i == selected_console) {
2301 			newcon->flags |= CON_CONSDEV;
2302 			preferred_console = selected_console;
2303 		}
2304 		break;
2305 	}
2306 
2307 	if (!(newcon->flags & CON_ENABLED))
2308 		return;
2309 
2310 	/*
2311 	 * If we have a bootconsole, and are switching to a real console,
2312 	 * don't print everything out again, since when the boot console, and
2313 	 * the real console are the same physical device, it's annoying to
2314 	 * see the beginning boot messages twice
2315 	 */
2316 	if (bcon && ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV))
2317 		newcon->flags &= ~CON_PRINTBUFFER;
2318 
2319 	/*
2320 	 *	Put this console in the list - keep the
2321 	 *	preferred driver at the head of the list.
2322 	 */
2323 	console_lock();
2324 	if ((newcon->flags & CON_CONSDEV) || console_drivers == NULL) {
2325 		newcon->next = console_drivers;
2326 		console_drivers = newcon;
2327 		if (newcon->next)
2328 			newcon->next->flags &= ~CON_CONSDEV;
2329 	} else {
2330 		newcon->next = console_drivers->next;
2331 		console_drivers->next = newcon;
2332 	}
2333 	if (newcon->flags & CON_PRINTBUFFER) {
2334 		/*
2335 		 * console_unlock(); will print out the buffered messages
2336 		 * for us.
2337 		 */
2338 		raw_spin_lock_irqsave(&logbuf_lock, flags);
2339 		console_seq = syslog_seq;
2340 		console_idx = syslog_idx;
2341 		console_prev = syslog_prev;
2342 		raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2343 		/*
2344 		 * We're about to replay the log buffer.  Only do this to the
2345 		 * just-registered console to avoid excessive message spam to
2346 		 * the already-registered consoles.
2347 		 */
2348 		exclusive_console = newcon;
2349 	}
2350 	console_unlock();
2351 	console_sysfs_notify();
2352 
2353 	/*
2354 	 * By unregistering the bootconsoles after we enable the real console
2355 	 * we get the "console xxx enabled" message on all the consoles -
2356 	 * boot consoles, real consoles, etc - this is to ensure that end
2357 	 * users know there might be something in the kernel's log buffer that
2358 	 * went to the bootconsole (that they do not see on the real console)
2359 	 */
2360 	pr_info("%sconsole [%s%d] enabled\n",
2361 		(newcon->flags & CON_BOOT) ? "boot" : "" ,
2362 		newcon->name, newcon->index);
2363 	if (bcon &&
2364 	    ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV) &&
2365 	    !keep_bootcon) {
2366 		/* We need to iterate through all boot consoles, to make
2367 		 * sure we print everything out, before we unregister them.
2368 		 */
2369 		for_each_console(bcon)
2370 			if (bcon->flags & CON_BOOT)
2371 				unregister_console(bcon);
2372 	}
2373 }
2374 EXPORT_SYMBOL(register_console);
2375 
2376 int unregister_console(struct console *console)
2377 {
2378         struct console *a, *b;
2379 	int res;
2380 
2381 	pr_info("%sconsole [%s%d] disabled\n",
2382 		(console->flags & CON_BOOT) ? "boot" : "" ,
2383 		console->name, console->index);
2384 
2385 	res = _braille_unregister_console(console);
2386 	if (res)
2387 		return res;
2388 
2389 	res = 1;
2390 	console_lock();
2391 	if (console_drivers == console) {
2392 		console_drivers=console->next;
2393 		res = 0;
2394 	} else if (console_drivers) {
2395 		for (a=console_drivers->next, b=console_drivers ;
2396 		     a; b=a, a=b->next) {
2397 			if (a == console) {
2398 				b->next = a->next;
2399 				res = 0;
2400 				break;
2401 			}
2402 		}
2403 	}
2404 
2405 	/*
2406 	 * If this isn't the last console and it has CON_CONSDEV set, we
2407 	 * need to set it on the next preferred console.
2408 	 */
2409 	if (console_drivers != NULL && console->flags & CON_CONSDEV)
2410 		console_drivers->flags |= CON_CONSDEV;
2411 
2412 	console_unlock();
2413 	console_sysfs_notify();
2414 	return res;
2415 }
2416 EXPORT_SYMBOL(unregister_console);
2417 
2418 static int __init printk_late_init(void)
2419 {
2420 	struct console *con;
2421 
2422 	for_each_console(con) {
2423 		if (!keep_bootcon && con->flags & CON_BOOT) {
2424 			unregister_console(con);
2425 		}
2426 	}
2427 	hotcpu_notifier(console_cpu_notify, 0);
2428 	return 0;
2429 }
2430 late_initcall(printk_late_init);
2431 
2432 #if defined CONFIG_PRINTK
2433 /*
2434  * Delayed printk version, for scheduler-internal messages:
2435  */
2436 #define PRINTK_BUF_SIZE		512
2437 
2438 #define PRINTK_PENDING_WAKEUP	0x01
2439 #define PRINTK_PENDING_SCHED	0x02
2440 
2441 static DEFINE_PER_CPU(int, printk_pending);
2442 static DEFINE_PER_CPU(char [PRINTK_BUF_SIZE], printk_sched_buf);
2443 
2444 static void wake_up_klogd_work_func(struct irq_work *irq_work)
2445 {
2446 	int pending = __this_cpu_xchg(printk_pending, 0);
2447 
2448 	if (pending & PRINTK_PENDING_SCHED) {
2449 		char *buf = __get_cpu_var(printk_sched_buf);
2450 		pr_warn("[sched_delayed] %s", buf);
2451 	}
2452 
2453 	if (pending & PRINTK_PENDING_WAKEUP)
2454 		wake_up_interruptible(&log_wait);
2455 }
2456 
2457 static DEFINE_PER_CPU(struct irq_work, wake_up_klogd_work) = {
2458 	.func = wake_up_klogd_work_func,
2459 	.flags = IRQ_WORK_LAZY,
2460 };
2461 
2462 void wake_up_klogd(void)
2463 {
2464 	preempt_disable();
2465 	if (waitqueue_active(&log_wait)) {
2466 		this_cpu_or(printk_pending, PRINTK_PENDING_WAKEUP);
2467 		irq_work_queue(&__get_cpu_var(wake_up_klogd_work));
2468 	}
2469 	preempt_enable();
2470 }
2471 
2472 int printk_sched(const char *fmt, ...)
2473 {
2474 	unsigned long flags;
2475 	va_list args;
2476 	char *buf;
2477 	int r;
2478 
2479 	local_irq_save(flags);
2480 	buf = __get_cpu_var(printk_sched_buf);
2481 
2482 	va_start(args, fmt);
2483 	r = vsnprintf(buf, PRINTK_BUF_SIZE, fmt, args);
2484 	va_end(args);
2485 
2486 	__this_cpu_or(printk_pending, PRINTK_PENDING_SCHED);
2487 	irq_work_queue(&__get_cpu_var(wake_up_klogd_work));
2488 	local_irq_restore(flags);
2489 
2490 	return r;
2491 }
2492 
2493 /*
2494  * printk rate limiting, lifted from the networking subsystem.
2495  *
2496  * This enforces a rate limit: not more than 10 kernel messages
2497  * every 5s to make a denial-of-service attack impossible.
2498  */
2499 DEFINE_RATELIMIT_STATE(printk_ratelimit_state, 5 * HZ, 10);
2500 
2501 int __printk_ratelimit(const char *func)
2502 {
2503 	return ___ratelimit(&printk_ratelimit_state, func);
2504 }
2505 EXPORT_SYMBOL(__printk_ratelimit);
2506 
2507 /**
2508  * printk_timed_ratelimit - caller-controlled printk ratelimiting
2509  * @caller_jiffies: pointer to caller's state
2510  * @interval_msecs: minimum interval between prints
2511  *
2512  * printk_timed_ratelimit() returns true if more than @interval_msecs
2513  * milliseconds have elapsed since the last time printk_timed_ratelimit()
2514  * returned true.
2515  */
2516 bool printk_timed_ratelimit(unsigned long *caller_jiffies,
2517 			unsigned int interval_msecs)
2518 {
2519 	if (*caller_jiffies == 0
2520 			|| !time_in_range(jiffies, *caller_jiffies,
2521 					*caller_jiffies
2522 					+ msecs_to_jiffies(interval_msecs))) {
2523 		*caller_jiffies = jiffies;
2524 		return true;
2525 	}
2526 	return false;
2527 }
2528 EXPORT_SYMBOL(printk_timed_ratelimit);
2529 
2530 static DEFINE_SPINLOCK(dump_list_lock);
2531 static LIST_HEAD(dump_list);
2532 
2533 /**
2534  * kmsg_dump_register - register a kernel log dumper.
2535  * @dumper: pointer to the kmsg_dumper structure
2536  *
2537  * Adds a kernel log dumper to the system. The dump callback in the
2538  * structure will be called when the kernel oopses or panics and must be
2539  * set. Returns zero on success and %-EINVAL or %-EBUSY otherwise.
2540  */
2541 int kmsg_dump_register(struct kmsg_dumper *dumper)
2542 {
2543 	unsigned long flags;
2544 	int err = -EBUSY;
2545 
2546 	/* The dump callback needs to be set */
2547 	if (!dumper->dump)
2548 		return -EINVAL;
2549 
2550 	spin_lock_irqsave(&dump_list_lock, flags);
2551 	/* Don't allow registering multiple times */
2552 	if (!dumper->registered) {
2553 		dumper->registered = 1;
2554 		list_add_tail_rcu(&dumper->list, &dump_list);
2555 		err = 0;
2556 	}
2557 	spin_unlock_irqrestore(&dump_list_lock, flags);
2558 
2559 	return err;
2560 }
2561 EXPORT_SYMBOL_GPL(kmsg_dump_register);
2562 
2563 /**
2564  * kmsg_dump_unregister - unregister a kmsg dumper.
2565  * @dumper: pointer to the kmsg_dumper structure
2566  *
2567  * Removes a dump device from the system. Returns zero on success and
2568  * %-EINVAL otherwise.
2569  */
2570 int kmsg_dump_unregister(struct kmsg_dumper *dumper)
2571 {
2572 	unsigned long flags;
2573 	int err = -EINVAL;
2574 
2575 	spin_lock_irqsave(&dump_list_lock, flags);
2576 	if (dumper->registered) {
2577 		dumper->registered = 0;
2578 		list_del_rcu(&dumper->list);
2579 		err = 0;
2580 	}
2581 	spin_unlock_irqrestore(&dump_list_lock, flags);
2582 	synchronize_rcu();
2583 
2584 	return err;
2585 }
2586 EXPORT_SYMBOL_GPL(kmsg_dump_unregister);
2587 
2588 static bool always_kmsg_dump;
2589 module_param_named(always_kmsg_dump, always_kmsg_dump, bool, S_IRUGO | S_IWUSR);
2590 
2591 /**
2592  * kmsg_dump - dump kernel log to kernel message dumpers.
2593  * @reason: the reason (oops, panic etc) for dumping
2594  *
2595  * Call each of the registered dumper's dump() callback, which can
2596  * retrieve the kmsg records with kmsg_dump_get_line() or
2597  * kmsg_dump_get_buffer().
2598  */
2599 void kmsg_dump(enum kmsg_dump_reason reason)
2600 {
2601 	struct kmsg_dumper *dumper;
2602 	unsigned long flags;
2603 
2604 	if ((reason > KMSG_DUMP_OOPS) && !always_kmsg_dump)
2605 		return;
2606 
2607 	rcu_read_lock();
2608 	list_for_each_entry_rcu(dumper, &dump_list, list) {
2609 		if (dumper->max_reason && reason > dumper->max_reason)
2610 			continue;
2611 
2612 		/* initialize iterator with data about the stored records */
2613 		dumper->active = true;
2614 
2615 		raw_spin_lock_irqsave(&logbuf_lock, flags);
2616 		dumper->cur_seq = clear_seq;
2617 		dumper->cur_idx = clear_idx;
2618 		dumper->next_seq = log_next_seq;
2619 		dumper->next_idx = log_next_idx;
2620 		raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2621 
2622 		/* invoke dumper which will iterate over records */
2623 		dumper->dump(dumper, reason);
2624 
2625 		/* reset iterator */
2626 		dumper->active = false;
2627 	}
2628 	rcu_read_unlock();
2629 }
2630 
2631 /**
2632  * kmsg_dump_get_line_nolock - retrieve one kmsg log line (unlocked version)
2633  * @dumper: registered kmsg dumper
2634  * @syslog: include the "<4>" prefixes
2635  * @line: buffer to copy the line to
2636  * @size: maximum size of the buffer
2637  * @len: length of line placed into buffer
2638  *
2639  * Start at the beginning of the kmsg buffer, with the oldest kmsg
2640  * record, and copy one record into the provided buffer.
2641  *
2642  * Consecutive calls will return the next available record moving
2643  * towards the end of the buffer with the youngest messages.
2644  *
2645  * A return value of FALSE indicates that there are no more records to
2646  * read.
2647  *
2648  * The function is similar to kmsg_dump_get_line(), but grabs no locks.
2649  */
2650 bool kmsg_dump_get_line_nolock(struct kmsg_dumper *dumper, bool syslog,
2651 			       char *line, size_t size, size_t *len)
2652 {
2653 	struct printk_log *msg;
2654 	size_t l = 0;
2655 	bool ret = false;
2656 
2657 	if (!dumper->active)
2658 		goto out;
2659 
2660 	if (dumper->cur_seq < log_first_seq) {
2661 		/* messages are gone, move to first available one */
2662 		dumper->cur_seq = log_first_seq;
2663 		dumper->cur_idx = log_first_idx;
2664 	}
2665 
2666 	/* last entry */
2667 	if (dumper->cur_seq >= log_next_seq)
2668 		goto out;
2669 
2670 	msg = log_from_idx(dumper->cur_idx);
2671 	l = msg_print_text(msg, 0, syslog, line, size);
2672 
2673 	dumper->cur_idx = log_next(dumper->cur_idx);
2674 	dumper->cur_seq++;
2675 	ret = true;
2676 out:
2677 	if (len)
2678 		*len = l;
2679 	return ret;
2680 }
2681 
2682 /**
2683  * kmsg_dump_get_line - retrieve one kmsg log line
2684  * @dumper: registered kmsg dumper
2685  * @syslog: include the "<4>" prefixes
2686  * @line: buffer to copy the line to
2687  * @size: maximum size of the buffer
2688  * @len: length of line placed into buffer
2689  *
2690  * Start at the beginning of the kmsg buffer, with the oldest kmsg
2691  * record, and copy one record into the provided buffer.
2692  *
2693  * Consecutive calls will return the next available record moving
2694  * towards the end of the buffer with the youngest messages.
2695  *
2696  * A return value of FALSE indicates that there are no more records to
2697  * read.
2698  */
2699 bool kmsg_dump_get_line(struct kmsg_dumper *dumper, bool syslog,
2700 			char *line, size_t size, size_t *len)
2701 {
2702 	unsigned long flags;
2703 	bool ret;
2704 
2705 	raw_spin_lock_irqsave(&logbuf_lock, flags);
2706 	ret = kmsg_dump_get_line_nolock(dumper, syslog, line, size, len);
2707 	raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2708 
2709 	return ret;
2710 }
2711 EXPORT_SYMBOL_GPL(kmsg_dump_get_line);
2712 
2713 /**
2714  * kmsg_dump_get_buffer - copy kmsg log lines
2715  * @dumper: registered kmsg dumper
2716  * @syslog: include the "<4>" prefixes
2717  * @buf: buffer to copy the line to
2718  * @size: maximum size of the buffer
2719  * @len: length of line placed into buffer
2720  *
2721  * Start at the end of the kmsg buffer and fill the provided buffer
2722  * with as many of the the *youngest* kmsg records that fit into it.
2723  * If the buffer is large enough, all available kmsg records will be
2724  * copied with a single call.
2725  *
2726  * Consecutive calls will fill the buffer with the next block of
2727  * available older records, not including the earlier retrieved ones.
2728  *
2729  * A return value of FALSE indicates that there are no more records to
2730  * read.
2731  */
2732 bool kmsg_dump_get_buffer(struct kmsg_dumper *dumper, bool syslog,
2733 			  char *buf, size_t size, size_t *len)
2734 {
2735 	unsigned long flags;
2736 	u64 seq;
2737 	u32 idx;
2738 	u64 next_seq;
2739 	u32 next_idx;
2740 	enum log_flags prev;
2741 	size_t l = 0;
2742 	bool ret = false;
2743 
2744 	if (!dumper->active)
2745 		goto out;
2746 
2747 	raw_spin_lock_irqsave(&logbuf_lock, flags);
2748 	if (dumper->cur_seq < log_first_seq) {
2749 		/* messages are gone, move to first available one */
2750 		dumper->cur_seq = log_first_seq;
2751 		dumper->cur_idx = log_first_idx;
2752 	}
2753 
2754 	/* last entry */
2755 	if (dumper->cur_seq >= dumper->next_seq) {
2756 		raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2757 		goto out;
2758 	}
2759 
2760 	/* calculate length of entire buffer */
2761 	seq = dumper->cur_seq;
2762 	idx = dumper->cur_idx;
2763 	prev = 0;
2764 	while (seq < dumper->next_seq) {
2765 		struct printk_log *msg = log_from_idx(idx);
2766 
2767 		l += msg_print_text(msg, prev, true, NULL, 0);
2768 		idx = log_next(idx);
2769 		seq++;
2770 		prev = msg->flags;
2771 	}
2772 
2773 	/* move first record forward until length fits into the buffer */
2774 	seq = dumper->cur_seq;
2775 	idx = dumper->cur_idx;
2776 	prev = 0;
2777 	while (l > size && seq < dumper->next_seq) {
2778 		struct printk_log *msg = log_from_idx(idx);
2779 
2780 		l -= msg_print_text(msg, prev, true, NULL, 0);
2781 		idx = log_next(idx);
2782 		seq++;
2783 		prev = msg->flags;
2784 	}
2785 
2786 	/* last message in next interation */
2787 	next_seq = seq;
2788 	next_idx = idx;
2789 
2790 	l = 0;
2791 	prev = 0;
2792 	while (seq < dumper->next_seq) {
2793 		struct printk_log *msg = log_from_idx(idx);
2794 
2795 		l += msg_print_text(msg, prev, syslog, buf + l, size - l);
2796 		idx = log_next(idx);
2797 		seq++;
2798 		prev = msg->flags;
2799 	}
2800 
2801 	dumper->next_seq = next_seq;
2802 	dumper->next_idx = next_idx;
2803 	ret = true;
2804 	raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2805 out:
2806 	if (len)
2807 		*len = l;
2808 	return ret;
2809 }
2810 EXPORT_SYMBOL_GPL(kmsg_dump_get_buffer);
2811 
2812 /**
2813  * kmsg_dump_rewind_nolock - reset the interator (unlocked version)
2814  * @dumper: registered kmsg dumper
2815  *
2816  * Reset the dumper's iterator so that kmsg_dump_get_line() and
2817  * kmsg_dump_get_buffer() can be called again and used multiple
2818  * times within the same dumper.dump() callback.
2819  *
2820  * The function is similar to kmsg_dump_rewind(), but grabs no locks.
2821  */
2822 void kmsg_dump_rewind_nolock(struct kmsg_dumper *dumper)
2823 {
2824 	dumper->cur_seq = clear_seq;
2825 	dumper->cur_idx = clear_idx;
2826 	dumper->next_seq = log_next_seq;
2827 	dumper->next_idx = log_next_idx;
2828 }
2829 
2830 /**
2831  * kmsg_dump_rewind - reset the interator
2832  * @dumper: registered kmsg dumper
2833  *
2834  * Reset the dumper's iterator so that kmsg_dump_get_line() and
2835  * kmsg_dump_get_buffer() can be called again and used multiple
2836  * times within the same dumper.dump() callback.
2837  */
2838 void kmsg_dump_rewind(struct kmsg_dumper *dumper)
2839 {
2840 	unsigned long flags;
2841 
2842 	raw_spin_lock_irqsave(&logbuf_lock, flags);
2843 	kmsg_dump_rewind_nolock(dumper);
2844 	raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2845 }
2846 EXPORT_SYMBOL_GPL(kmsg_dump_rewind);
2847 
2848 static char dump_stack_arch_desc_str[128];
2849 
2850 /**
2851  * dump_stack_set_arch_desc - set arch-specific str to show with task dumps
2852  * @fmt: printf-style format string
2853  * @...: arguments for the format string
2854  *
2855  * The configured string will be printed right after utsname during task
2856  * dumps.  Usually used to add arch-specific system identifiers.  If an
2857  * arch wants to make use of such an ID string, it should initialize this
2858  * as soon as possible during boot.
2859  */
2860 void __init dump_stack_set_arch_desc(const char *fmt, ...)
2861 {
2862 	va_list args;
2863 
2864 	va_start(args, fmt);
2865 	vsnprintf(dump_stack_arch_desc_str, sizeof(dump_stack_arch_desc_str),
2866 		  fmt, args);
2867 	va_end(args);
2868 }
2869 
2870 /**
2871  * dump_stack_print_info - print generic debug info for dump_stack()
2872  * @log_lvl: log level
2873  *
2874  * Arch-specific dump_stack() implementations can use this function to
2875  * print out the same debug information as the generic dump_stack().
2876  */
2877 void dump_stack_print_info(const char *log_lvl)
2878 {
2879 	printk("%sCPU: %d PID: %d Comm: %.20s %s %s %.*s\n",
2880 	       log_lvl, raw_smp_processor_id(), current->pid, current->comm,
2881 	       print_tainted(), init_utsname()->release,
2882 	       (int)strcspn(init_utsname()->version, " "),
2883 	       init_utsname()->version);
2884 
2885 	if (dump_stack_arch_desc_str[0] != '\0')
2886 		printk("%sHardware name: %s\n",
2887 		       log_lvl, dump_stack_arch_desc_str);
2888 
2889 	print_worker_info(log_lvl, current);
2890 }
2891 
2892 /**
2893  * show_regs_print_info - print generic debug info for show_regs()
2894  * @log_lvl: log level
2895  *
2896  * show_regs() implementations can use this function to print out generic
2897  * debug information.
2898  */
2899 void show_regs_print_info(const char *log_lvl)
2900 {
2901 	dump_stack_print_info(log_lvl);
2902 
2903 	printk("%stask: %p ti: %p task.ti: %p\n",
2904 	       log_lvl, current, current_thread_info(),
2905 	       task_thread_info(current));
2906 }
2907 
2908 #endif
2909