1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/printk.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 * 7 * Modified to make sys_syslog() more flexible: added commands to 8 * return the last 4k of kernel messages, regardless of whether 9 * they've been read or not. Added option to suppress kernel printk's 10 * to the console. Added hook for sending the console messages 11 * elsewhere, in preparation for a serial line console (someday). 12 * Ted Ts'o, 2/11/93. 13 * Modified for sysctl support, 1/8/97, Chris Horn. 14 * Fixed SMP synchronization, 08/08/99, Manfred Spraul 15 * manfred@colorfullife.com 16 * Rewrote bits to get rid of console_lock 17 * 01Mar01 Andrew Morton 18 */ 19 20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 21 22 #include <linux/kernel.h> 23 #include <linux/mm.h> 24 #include <linux/tty.h> 25 #include <linux/tty_driver.h> 26 #include <linux/console.h> 27 #include <linux/init.h> 28 #include <linux/jiffies.h> 29 #include <linux/nmi.h> 30 #include <linux/module.h> 31 #include <linux/moduleparam.h> 32 #include <linux/delay.h> 33 #include <linux/smp.h> 34 #include <linux/security.h> 35 #include <linux/memblock.h> 36 #include <linux/syscalls.h> 37 #include <linux/crash_core.h> 38 #include <linux/kdb.h> 39 #include <linux/ratelimit.h> 40 #include <linux/kmsg_dump.h> 41 #include <linux/syslog.h> 42 #include <linux/cpu.h> 43 #include <linux/rculist.h> 44 #include <linux/poll.h> 45 #include <linux/irq_work.h> 46 #include <linux/ctype.h> 47 #include <linux/uio.h> 48 #include <linux/sched/clock.h> 49 #include <linux/sched/debug.h> 50 #include <linux/sched/task_stack.h> 51 52 #include <linux/uaccess.h> 53 #include <asm/sections.h> 54 55 #include <trace/events/initcall.h> 56 #define CREATE_TRACE_POINTS 57 #include <trace/events/printk.h> 58 59 #include "console_cmdline.h" 60 #include "braille.h" 61 #include "internal.h" 62 63 int console_printk[4] = { 64 CONSOLE_LOGLEVEL_DEFAULT, /* console_loglevel */ 65 MESSAGE_LOGLEVEL_DEFAULT, /* default_message_loglevel */ 66 CONSOLE_LOGLEVEL_MIN, /* minimum_console_loglevel */ 67 CONSOLE_LOGLEVEL_DEFAULT, /* default_console_loglevel */ 68 }; 69 EXPORT_SYMBOL_GPL(console_printk); 70 71 atomic_t ignore_console_lock_warning __read_mostly = ATOMIC_INIT(0); 72 EXPORT_SYMBOL(ignore_console_lock_warning); 73 74 /* 75 * Low level drivers may need that to know if they can schedule in 76 * their unblank() callback or not. So let's export it. 77 */ 78 int oops_in_progress; 79 EXPORT_SYMBOL(oops_in_progress); 80 81 /* 82 * console_sem protects the console_drivers list, and also 83 * provides serialisation for access to the entire console 84 * driver system. 85 */ 86 static DEFINE_SEMAPHORE(console_sem); 87 struct console *console_drivers; 88 EXPORT_SYMBOL_GPL(console_drivers); 89 90 /* 91 * System may need to suppress printk message under certain 92 * circumstances, like after kernel panic happens. 93 */ 94 int __read_mostly suppress_printk; 95 96 #ifdef CONFIG_LOCKDEP 97 static struct lockdep_map console_lock_dep_map = { 98 .name = "console_lock" 99 }; 100 #endif 101 102 enum devkmsg_log_bits { 103 __DEVKMSG_LOG_BIT_ON = 0, 104 __DEVKMSG_LOG_BIT_OFF, 105 __DEVKMSG_LOG_BIT_LOCK, 106 }; 107 108 enum devkmsg_log_masks { 109 DEVKMSG_LOG_MASK_ON = BIT(__DEVKMSG_LOG_BIT_ON), 110 DEVKMSG_LOG_MASK_OFF = BIT(__DEVKMSG_LOG_BIT_OFF), 111 DEVKMSG_LOG_MASK_LOCK = BIT(__DEVKMSG_LOG_BIT_LOCK), 112 }; 113 114 /* Keep both the 'on' and 'off' bits clear, i.e. ratelimit by default: */ 115 #define DEVKMSG_LOG_MASK_DEFAULT 0 116 117 static unsigned int __read_mostly devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT; 118 119 static int __control_devkmsg(char *str) 120 { 121 size_t len; 122 123 if (!str) 124 return -EINVAL; 125 126 len = str_has_prefix(str, "on"); 127 if (len) { 128 devkmsg_log = DEVKMSG_LOG_MASK_ON; 129 return len; 130 } 131 132 len = str_has_prefix(str, "off"); 133 if (len) { 134 devkmsg_log = DEVKMSG_LOG_MASK_OFF; 135 return len; 136 } 137 138 len = str_has_prefix(str, "ratelimit"); 139 if (len) { 140 devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT; 141 return len; 142 } 143 144 return -EINVAL; 145 } 146 147 static int __init control_devkmsg(char *str) 148 { 149 if (__control_devkmsg(str) < 0) 150 return 1; 151 152 /* 153 * Set sysctl string accordingly: 154 */ 155 if (devkmsg_log == DEVKMSG_LOG_MASK_ON) 156 strcpy(devkmsg_log_str, "on"); 157 else if (devkmsg_log == DEVKMSG_LOG_MASK_OFF) 158 strcpy(devkmsg_log_str, "off"); 159 /* else "ratelimit" which is set by default. */ 160 161 /* 162 * Sysctl cannot change it anymore. The kernel command line setting of 163 * this parameter is to force the setting to be permanent throughout the 164 * runtime of the system. This is a precation measure against userspace 165 * trying to be a smarta** and attempting to change it up on us. 166 */ 167 devkmsg_log |= DEVKMSG_LOG_MASK_LOCK; 168 169 return 0; 170 } 171 __setup("printk.devkmsg=", control_devkmsg); 172 173 char devkmsg_log_str[DEVKMSG_STR_MAX_SIZE] = "ratelimit"; 174 175 int devkmsg_sysctl_set_loglvl(struct ctl_table *table, int write, 176 void __user *buffer, size_t *lenp, loff_t *ppos) 177 { 178 char old_str[DEVKMSG_STR_MAX_SIZE]; 179 unsigned int old; 180 int err; 181 182 if (write) { 183 if (devkmsg_log & DEVKMSG_LOG_MASK_LOCK) 184 return -EINVAL; 185 186 old = devkmsg_log; 187 strncpy(old_str, devkmsg_log_str, DEVKMSG_STR_MAX_SIZE); 188 } 189 190 err = proc_dostring(table, write, buffer, lenp, ppos); 191 if (err) 192 return err; 193 194 if (write) { 195 err = __control_devkmsg(devkmsg_log_str); 196 197 /* 198 * Do not accept an unknown string OR a known string with 199 * trailing crap... 200 */ 201 if (err < 0 || (err + 1 != *lenp)) { 202 203 /* ... and restore old setting. */ 204 devkmsg_log = old; 205 strncpy(devkmsg_log_str, old_str, DEVKMSG_STR_MAX_SIZE); 206 207 return -EINVAL; 208 } 209 } 210 211 return 0; 212 } 213 214 /* Number of registered extended console drivers. */ 215 static int nr_ext_console_drivers; 216 217 /* 218 * Helper macros to handle lockdep when locking/unlocking console_sem. We use 219 * macros instead of functions so that _RET_IP_ contains useful information. 220 */ 221 #define down_console_sem() do { \ 222 down(&console_sem);\ 223 mutex_acquire(&console_lock_dep_map, 0, 0, _RET_IP_);\ 224 } while (0) 225 226 static int __down_trylock_console_sem(unsigned long ip) 227 { 228 int lock_failed; 229 unsigned long flags; 230 231 /* 232 * Here and in __up_console_sem() we need to be in safe mode, 233 * because spindump/WARN/etc from under console ->lock will 234 * deadlock in printk()->down_trylock_console_sem() otherwise. 235 */ 236 printk_safe_enter_irqsave(flags); 237 lock_failed = down_trylock(&console_sem); 238 printk_safe_exit_irqrestore(flags); 239 240 if (lock_failed) 241 return 1; 242 mutex_acquire(&console_lock_dep_map, 0, 1, ip); 243 return 0; 244 } 245 #define down_trylock_console_sem() __down_trylock_console_sem(_RET_IP_) 246 247 static void __up_console_sem(unsigned long ip) 248 { 249 unsigned long flags; 250 251 mutex_release(&console_lock_dep_map, 1, ip); 252 253 printk_safe_enter_irqsave(flags); 254 up(&console_sem); 255 printk_safe_exit_irqrestore(flags); 256 } 257 #define up_console_sem() __up_console_sem(_RET_IP_) 258 259 /* 260 * This is used for debugging the mess that is the VT code by 261 * keeping track if we have the console semaphore held. It's 262 * definitely not the perfect debug tool (we don't know if _WE_ 263 * hold it and are racing, but it helps tracking those weird code 264 * paths in the console code where we end up in places I want 265 * locked without the console sempahore held). 266 */ 267 static int console_locked, console_suspended; 268 269 /* 270 * If exclusive_console is non-NULL then only this console is to be printed to. 271 */ 272 static struct console *exclusive_console; 273 274 /* 275 * Array of consoles built from command line options (console=) 276 */ 277 278 #define MAX_CMDLINECONSOLES 8 279 280 static struct console_cmdline console_cmdline[MAX_CMDLINECONSOLES]; 281 282 static int preferred_console = -1; 283 int console_set_on_cmdline; 284 EXPORT_SYMBOL(console_set_on_cmdline); 285 286 /* Flag: console code may call schedule() */ 287 static int console_may_schedule; 288 289 enum con_msg_format_flags { 290 MSG_FORMAT_DEFAULT = 0, 291 MSG_FORMAT_SYSLOG = (1 << 0), 292 }; 293 294 static int console_msg_format = MSG_FORMAT_DEFAULT; 295 296 /* 297 * The printk log buffer consists of a chain of concatenated variable 298 * length records. Every record starts with a record header, containing 299 * the overall length of the record. 300 * 301 * The heads to the first and last entry in the buffer, as well as the 302 * sequence numbers of these entries are maintained when messages are 303 * stored. 304 * 305 * If the heads indicate available messages, the length in the header 306 * tells the start next message. A length == 0 for the next message 307 * indicates a wrap-around to the beginning of the buffer. 308 * 309 * Every record carries the monotonic timestamp in microseconds, as well as 310 * the standard userspace syslog level and syslog facility. The usual 311 * kernel messages use LOG_KERN; userspace-injected messages always carry 312 * a matching syslog facility, by default LOG_USER. The origin of every 313 * message can be reliably determined that way. 314 * 315 * The human readable log message directly follows the message header. The 316 * length of the message text is stored in the header, the stored message 317 * is not terminated. 318 * 319 * Optionally, a message can carry a dictionary of properties (key/value pairs), 320 * to provide userspace with a machine-readable message context. 321 * 322 * Examples for well-defined, commonly used property names are: 323 * DEVICE=b12:8 device identifier 324 * b12:8 block dev_t 325 * c127:3 char dev_t 326 * n8 netdev ifindex 327 * +sound:card0 subsystem:devname 328 * SUBSYSTEM=pci driver-core subsystem name 329 * 330 * Valid characters in property names are [a-zA-Z0-9.-_]. The plain text value 331 * follows directly after a '=' character. Every property is terminated by 332 * a '\0' character. The last property is not terminated. 333 * 334 * Example of a message structure: 335 * 0000 ff 8f 00 00 00 00 00 00 monotonic time in nsec 336 * 0008 34 00 record is 52 bytes long 337 * 000a 0b 00 text is 11 bytes long 338 * 000c 1f 00 dictionary is 23 bytes long 339 * 000e 03 00 LOG_KERN (facility) LOG_ERR (level) 340 * 0010 69 74 27 73 20 61 20 6c "it's a l" 341 * 69 6e 65 "ine" 342 * 001b 44 45 56 49 43 "DEVIC" 343 * 45 3d 62 38 3a 32 00 44 "E=b8:2\0D" 344 * 52 49 56 45 52 3d 62 75 "RIVER=bu" 345 * 67 "g" 346 * 0032 00 00 00 padding to next message header 347 * 348 * The 'struct printk_log' buffer header must never be directly exported to 349 * userspace, it is a kernel-private implementation detail that might 350 * need to be changed in the future, when the requirements change. 351 * 352 * /dev/kmsg exports the structured data in the following line format: 353 * "<level>,<sequnum>,<timestamp>,<contflag>[,additional_values, ... ];<message text>\n" 354 * 355 * Users of the export format should ignore possible additional values 356 * separated by ',', and find the message after the ';' character. 357 * 358 * The optional key/value pairs are attached as continuation lines starting 359 * with a space character and terminated by a newline. All possible 360 * non-prinatable characters are escaped in the "\xff" notation. 361 */ 362 363 enum log_flags { 364 LOG_NEWLINE = 2, /* text ended with a newline */ 365 LOG_CONT = 8, /* text is a fragment of a continuation line */ 366 }; 367 368 struct printk_log { 369 u64 ts_nsec; /* timestamp in nanoseconds */ 370 u16 len; /* length of entire record */ 371 u16 text_len; /* length of text buffer */ 372 u16 dict_len; /* length of dictionary buffer */ 373 u8 facility; /* syslog facility */ 374 u8 flags:5; /* internal record flags */ 375 u8 level:3; /* syslog level */ 376 #ifdef CONFIG_PRINTK_CALLER 377 u32 caller_id; /* thread id or processor id */ 378 #endif 379 } 380 #ifdef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS 381 __packed __aligned(4) 382 #endif 383 ; 384 385 /* 386 * The logbuf_lock protects kmsg buffer, indices, counters. This can be taken 387 * within the scheduler's rq lock. It must be released before calling 388 * console_unlock() or anything else that might wake up a process. 389 */ 390 DEFINE_RAW_SPINLOCK(logbuf_lock); 391 392 /* 393 * Helper macros to lock/unlock logbuf_lock and switch between 394 * printk-safe/unsafe modes. 395 */ 396 #define logbuf_lock_irq() \ 397 do { \ 398 printk_safe_enter_irq(); \ 399 raw_spin_lock(&logbuf_lock); \ 400 } while (0) 401 402 #define logbuf_unlock_irq() \ 403 do { \ 404 raw_spin_unlock(&logbuf_lock); \ 405 printk_safe_exit_irq(); \ 406 } while (0) 407 408 #define logbuf_lock_irqsave(flags) \ 409 do { \ 410 printk_safe_enter_irqsave(flags); \ 411 raw_spin_lock(&logbuf_lock); \ 412 } while (0) 413 414 #define logbuf_unlock_irqrestore(flags) \ 415 do { \ 416 raw_spin_unlock(&logbuf_lock); \ 417 printk_safe_exit_irqrestore(flags); \ 418 } while (0) 419 420 #ifdef CONFIG_PRINTK 421 DECLARE_WAIT_QUEUE_HEAD(log_wait); 422 /* the next printk record to read by syslog(READ) or /proc/kmsg */ 423 static u64 syslog_seq; 424 static u32 syslog_idx; 425 static size_t syslog_partial; 426 static bool syslog_time; 427 428 /* index and sequence number of the first record stored in the buffer */ 429 static u64 log_first_seq; 430 static u32 log_first_idx; 431 432 /* index and sequence number of the next record to store in the buffer */ 433 static u64 log_next_seq; 434 static u32 log_next_idx; 435 436 /* the next printk record to write to the console */ 437 static u64 console_seq; 438 static u32 console_idx; 439 static u64 exclusive_console_stop_seq; 440 441 /* the next printk record to read after the last 'clear' command */ 442 static u64 clear_seq; 443 static u32 clear_idx; 444 445 #ifdef CONFIG_PRINTK_CALLER 446 #define PREFIX_MAX 48 447 #else 448 #define PREFIX_MAX 32 449 #endif 450 #define LOG_LINE_MAX (1024 - PREFIX_MAX) 451 452 #define LOG_LEVEL(v) ((v) & 0x07) 453 #define LOG_FACILITY(v) ((v) >> 3 & 0xff) 454 455 /* record buffer */ 456 #define LOG_ALIGN __alignof__(struct printk_log) 457 #define __LOG_BUF_LEN (1 << CONFIG_LOG_BUF_SHIFT) 458 #define LOG_BUF_LEN_MAX (u32)(1 << 31) 459 static char __log_buf[__LOG_BUF_LEN] __aligned(LOG_ALIGN); 460 static char *log_buf = __log_buf; 461 static u32 log_buf_len = __LOG_BUF_LEN; 462 463 /* Return log buffer address */ 464 char *log_buf_addr_get(void) 465 { 466 return log_buf; 467 } 468 469 /* Return log buffer size */ 470 u32 log_buf_len_get(void) 471 { 472 return log_buf_len; 473 } 474 475 /* human readable text of the record */ 476 static char *log_text(const struct printk_log *msg) 477 { 478 return (char *)msg + sizeof(struct printk_log); 479 } 480 481 /* optional key/value pair dictionary attached to the record */ 482 static char *log_dict(const struct printk_log *msg) 483 { 484 return (char *)msg + sizeof(struct printk_log) + msg->text_len; 485 } 486 487 /* get record by index; idx must point to valid msg */ 488 static struct printk_log *log_from_idx(u32 idx) 489 { 490 struct printk_log *msg = (struct printk_log *)(log_buf + idx); 491 492 /* 493 * A length == 0 record is the end of buffer marker. Wrap around and 494 * read the message at the start of the buffer. 495 */ 496 if (!msg->len) 497 return (struct printk_log *)log_buf; 498 return msg; 499 } 500 501 /* get next record; idx must point to valid msg */ 502 static u32 log_next(u32 idx) 503 { 504 struct printk_log *msg = (struct printk_log *)(log_buf + idx); 505 506 /* length == 0 indicates the end of the buffer; wrap */ 507 /* 508 * A length == 0 record is the end of buffer marker. Wrap around and 509 * read the message at the start of the buffer as *this* one, and 510 * return the one after that. 511 */ 512 if (!msg->len) { 513 msg = (struct printk_log *)log_buf; 514 return msg->len; 515 } 516 return idx + msg->len; 517 } 518 519 /* 520 * Check whether there is enough free space for the given message. 521 * 522 * The same values of first_idx and next_idx mean that the buffer 523 * is either empty or full. 524 * 525 * If the buffer is empty, we must respect the position of the indexes. 526 * They cannot be reset to the beginning of the buffer. 527 */ 528 static int logbuf_has_space(u32 msg_size, bool empty) 529 { 530 u32 free; 531 532 if (log_next_idx > log_first_idx || empty) 533 free = max(log_buf_len - log_next_idx, log_first_idx); 534 else 535 free = log_first_idx - log_next_idx; 536 537 /* 538 * We need space also for an empty header that signalizes wrapping 539 * of the buffer. 540 */ 541 return free >= msg_size + sizeof(struct printk_log); 542 } 543 544 static int log_make_free_space(u32 msg_size) 545 { 546 while (log_first_seq < log_next_seq && 547 !logbuf_has_space(msg_size, false)) { 548 /* drop old messages until we have enough contiguous space */ 549 log_first_idx = log_next(log_first_idx); 550 log_first_seq++; 551 } 552 553 if (clear_seq < log_first_seq) { 554 clear_seq = log_first_seq; 555 clear_idx = log_first_idx; 556 } 557 558 /* sequence numbers are equal, so the log buffer is empty */ 559 if (logbuf_has_space(msg_size, log_first_seq == log_next_seq)) 560 return 0; 561 562 return -ENOMEM; 563 } 564 565 /* compute the message size including the padding bytes */ 566 static u32 msg_used_size(u16 text_len, u16 dict_len, u32 *pad_len) 567 { 568 u32 size; 569 570 size = sizeof(struct printk_log) + text_len + dict_len; 571 *pad_len = (-size) & (LOG_ALIGN - 1); 572 size += *pad_len; 573 574 return size; 575 } 576 577 /* 578 * Define how much of the log buffer we could take at maximum. The value 579 * must be greater than two. Note that only half of the buffer is available 580 * when the index points to the middle. 581 */ 582 #define MAX_LOG_TAKE_PART 4 583 static const char trunc_msg[] = "<truncated>"; 584 585 static u32 truncate_msg(u16 *text_len, u16 *trunc_msg_len, 586 u16 *dict_len, u32 *pad_len) 587 { 588 /* 589 * The message should not take the whole buffer. Otherwise, it might 590 * get removed too soon. 591 */ 592 u32 max_text_len = log_buf_len / MAX_LOG_TAKE_PART; 593 if (*text_len > max_text_len) 594 *text_len = max_text_len; 595 /* enable the warning message */ 596 *trunc_msg_len = strlen(trunc_msg); 597 /* disable the "dict" completely */ 598 *dict_len = 0; 599 /* compute the size again, count also the warning message */ 600 return msg_used_size(*text_len + *trunc_msg_len, 0, pad_len); 601 } 602 603 /* insert record into the buffer, discard old ones, update heads */ 604 static int log_store(u32 caller_id, int facility, int level, 605 enum log_flags flags, u64 ts_nsec, 606 const char *dict, u16 dict_len, 607 const char *text, u16 text_len) 608 { 609 struct printk_log *msg; 610 u32 size, pad_len; 611 u16 trunc_msg_len = 0; 612 613 /* number of '\0' padding bytes to next message */ 614 size = msg_used_size(text_len, dict_len, &pad_len); 615 616 if (log_make_free_space(size)) { 617 /* truncate the message if it is too long for empty buffer */ 618 size = truncate_msg(&text_len, &trunc_msg_len, 619 &dict_len, &pad_len); 620 /* survive when the log buffer is too small for trunc_msg */ 621 if (log_make_free_space(size)) 622 return 0; 623 } 624 625 if (log_next_idx + size + sizeof(struct printk_log) > log_buf_len) { 626 /* 627 * This message + an additional empty header does not fit 628 * at the end of the buffer. Add an empty header with len == 0 629 * to signify a wrap around. 630 */ 631 memset(log_buf + log_next_idx, 0, sizeof(struct printk_log)); 632 log_next_idx = 0; 633 } 634 635 /* fill message */ 636 msg = (struct printk_log *)(log_buf + log_next_idx); 637 memcpy(log_text(msg), text, text_len); 638 msg->text_len = text_len; 639 if (trunc_msg_len) { 640 memcpy(log_text(msg) + text_len, trunc_msg, trunc_msg_len); 641 msg->text_len += trunc_msg_len; 642 } 643 memcpy(log_dict(msg), dict, dict_len); 644 msg->dict_len = dict_len; 645 msg->facility = facility; 646 msg->level = level & 7; 647 msg->flags = flags & 0x1f; 648 if (ts_nsec > 0) 649 msg->ts_nsec = ts_nsec; 650 else 651 msg->ts_nsec = local_clock(); 652 #ifdef CONFIG_PRINTK_CALLER 653 msg->caller_id = caller_id; 654 #endif 655 memset(log_dict(msg) + dict_len, 0, pad_len); 656 msg->len = size; 657 658 /* insert message */ 659 log_next_idx += msg->len; 660 log_next_seq++; 661 662 return msg->text_len; 663 } 664 665 int dmesg_restrict = IS_ENABLED(CONFIG_SECURITY_DMESG_RESTRICT); 666 667 static int syslog_action_restricted(int type) 668 { 669 if (dmesg_restrict) 670 return 1; 671 /* 672 * Unless restricted, we allow "read all" and "get buffer size" 673 * for everybody. 674 */ 675 return type != SYSLOG_ACTION_READ_ALL && 676 type != SYSLOG_ACTION_SIZE_BUFFER; 677 } 678 679 static int check_syslog_permissions(int type, int source) 680 { 681 /* 682 * If this is from /proc/kmsg and we've already opened it, then we've 683 * already done the capabilities checks at open time. 684 */ 685 if (source == SYSLOG_FROM_PROC && type != SYSLOG_ACTION_OPEN) 686 goto ok; 687 688 if (syslog_action_restricted(type)) { 689 if (capable(CAP_SYSLOG)) 690 goto ok; 691 /* 692 * For historical reasons, accept CAP_SYS_ADMIN too, with 693 * a warning. 694 */ 695 if (capable(CAP_SYS_ADMIN)) { 696 pr_warn_once("%s (%d): Attempt to access syslog with " 697 "CAP_SYS_ADMIN but no CAP_SYSLOG " 698 "(deprecated).\n", 699 current->comm, task_pid_nr(current)); 700 goto ok; 701 } 702 return -EPERM; 703 } 704 ok: 705 return security_syslog(type); 706 } 707 708 static void append_char(char **pp, char *e, char c) 709 { 710 if (*pp < e) 711 *(*pp)++ = c; 712 } 713 714 static ssize_t msg_print_ext_header(char *buf, size_t size, 715 struct printk_log *msg, u64 seq) 716 { 717 u64 ts_usec = msg->ts_nsec; 718 char caller[20]; 719 #ifdef CONFIG_PRINTK_CALLER 720 u32 id = msg->caller_id; 721 722 snprintf(caller, sizeof(caller), ",caller=%c%u", 723 id & 0x80000000 ? 'C' : 'T', id & ~0x80000000); 724 #else 725 caller[0] = '\0'; 726 #endif 727 728 do_div(ts_usec, 1000); 729 730 return scnprintf(buf, size, "%u,%llu,%llu,%c%s;", 731 (msg->facility << 3) | msg->level, seq, ts_usec, 732 msg->flags & LOG_CONT ? 'c' : '-', caller); 733 } 734 735 static ssize_t msg_print_ext_body(char *buf, size_t size, 736 char *dict, size_t dict_len, 737 char *text, size_t text_len) 738 { 739 char *p = buf, *e = buf + size; 740 size_t i; 741 742 /* escape non-printable characters */ 743 for (i = 0; i < text_len; i++) { 744 unsigned char c = text[i]; 745 746 if (c < ' ' || c >= 127 || c == '\\') 747 p += scnprintf(p, e - p, "\\x%02x", c); 748 else 749 append_char(&p, e, c); 750 } 751 append_char(&p, e, '\n'); 752 753 if (dict_len) { 754 bool line = true; 755 756 for (i = 0; i < dict_len; i++) { 757 unsigned char c = dict[i]; 758 759 if (line) { 760 append_char(&p, e, ' '); 761 line = false; 762 } 763 764 if (c == '\0') { 765 append_char(&p, e, '\n'); 766 line = true; 767 continue; 768 } 769 770 if (c < ' ' || c >= 127 || c == '\\') { 771 p += scnprintf(p, e - p, "\\x%02x", c); 772 continue; 773 } 774 775 append_char(&p, e, c); 776 } 777 append_char(&p, e, '\n'); 778 } 779 780 return p - buf; 781 } 782 783 /* /dev/kmsg - userspace message inject/listen interface */ 784 struct devkmsg_user { 785 u64 seq; 786 u32 idx; 787 struct ratelimit_state rs; 788 struct mutex lock; 789 char buf[CONSOLE_EXT_LOG_MAX]; 790 }; 791 792 static __printf(3, 4) __cold 793 int devkmsg_emit(int facility, int level, const char *fmt, ...) 794 { 795 va_list args; 796 int r; 797 798 va_start(args, fmt); 799 r = vprintk_emit(facility, level, NULL, 0, fmt, args); 800 va_end(args); 801 802 return r; 803 } 804 805 static ssize_t devkmsg_write(struct kiocb *iocb, struct iov_iter *from) 806 { 807 char *buf, *line; 808 int level = default_message_loglevel; 809 int facility = 1; /* LOG_USER */ 810 struct file *file = iocb->ki_filp; 811 struct devkmsg_user *user = file->private_data; 812 size_t len = iov_iter_count(from); 813 ssize_t ret = len; 814 815 if (!user || len > LOG_LINE_MAX) 816 return -EINVAL; 817 818 /* Ignore when user logging is disabled. */ 819 if (devkmsg_log & DEVKMSG_LOG_MASK_OFF) 820 return len; 821 822 /* Ratelimit when not explicitly enabled. */ 823 if (!(devkmsg_log & DEVKMSG_LOG_MASK_ON)) { 824 if (!___ratelimit(&user->rs, current->comm)) 825 return ret; 826 } 827 828 buf = kmalloc(len+1, GFP_KERNEL); 829 if (buf == NULL) 830 return -ENOMEM; 831 832 buf[len] = '\0'; 833 if (!copy_from_iter_full(buf, len, from)) { 834 kfree(buf); 835 return -EFAULT; 836 } 837 838 /* 839 * Extract and skip the syslog prefix <[0-9]*>. Coming from userspace 840 * the decimal value represents 32bit, the lower 3 bit are the log 841 * level, the rest are the log facility. 842 * 843 * If no prefix or no userspace facility is specified, we 844 * enforce LOG_USER, to be able to reliably distinguish 845 * kernel-generated messages from userspace-injected ones. 846 */ 847 line = buf; 848 if (line[0] == '<') { 849 char *endp = NULL; 850 unsigned int u; 851 852 u = simple_strtoul(line + 1, &endp, 10); 853 if (endp && endp[0] == '>') { 854 level = LOG_LEVEL(u); 855 if (LOG_FACILITY(u) != 0) 856 facility = LOG_FACILITY(u); 857 endp++; 858 len -= endp - line; 859 line = endp; 860 } 861 } 862 863 devkmsg_emit(facility, level, "%s", line); 864 kfree(buf); 865 return ret; 866 } 867 868 static ssize_t devkmsg_read(struct file *file, char __user *buf, 869 size_t count, loff_t *ppos) 870 { 871 struct devkmsg_user *user = file->private_data; 872 struct printk_log *msg; 873 size_t len; 874 ssize_t ret; 875 876 if (!user) 877 return -EBADF; 878 879 ret = mutex_lock_interruptible(&user->lock); 880 if (ret) 881 return ret; 882 883 logbuf_lock_irq(); 884 while (user->seq == log_next_seq) { 885 if (file->f_flags & O_NONBLOCK) { 886 ret = -EAGAIN; 887 logbuf_unlock_irq(); 888 goto out; 889 } 890 891 logbuf_unlock_irq(); 892 ret = wait_event_interruptible(log_wait, 893 user->seq != log_next_seq); 894 if (ret) 895 goto out; 896 logbuf_lock_irq(); 897 } 898 899 if (user->seq < log_first_seq) { 900 /* our last seen message is gone, return error and reset */ 901 user->idx = log_first_idx; 902 user->seq = log_first_seq; 903 ret = -EPIPE; 904 logbuf_unlock_irq(); 905 goto out; 906 } 907 908 msg = log_from_idx(user->idx); 909 len = msg_print_ext_header(user->buf, sizeof(user->buf), 910 msg, user->seq); 911 len += msg_print_ext_body(user->buf + len, sizeof(user->buf) - len, 912 log_dict(msg), msg->dict_len, 913 log_text(msg), msg->text_len); 914 915 user->idx = log_next(user->idx); 916 user->seq++; 917 logbuf_unlock_irq(); 918 919 if (len > count) { 920 ret = -EINVAL; 921 goto out; 922 } 923 924 if (copy_to_user(buf, user->buf, len)) { 925 ret = -EFAULT; 926 goto out; 927 } 928 ret = len; 929 out: 930 mutex_unlock(&user->lock); 931 return ret; 932 } 933 934 static loff_t devkmsg_llseek(struct file *file, loff_t offset, int whence) 935 { 936 struct devkmsg_user *user = file->private_data; 937 loff_t ret = 0; 938 939 if (!user) 940 return -EBADF; 941 if (offset) 942 return -ESPIPE; 943 944 logbuf_lock_irq(); 945 switch (whence) { 946 case SEEK_SET: 947 /* the first record */ 948 user->idx = log_first_idx; 949 user->seq = log_first_seq; 950 break; 951 case SEEK_DATA: 952 /* 953 * The first record after the last SYSLOG_ACTION_CLEAR, 954 * like issued by 'dmesg -c'. Reading /dev/kmsg itself 955 * changes no global state, and does not clear anything. 956 */ 957 user->idx = clear_idx; 958 user->seq = clear_seq; 959 break; 960 case SEEK_END: 961 /* after the last record */ 962 user->idx = log_next_idx; 963 user->seq = log_next_seq; 964 break; 965 default: 966 ret = -EINVAL; 967 } 968 logbuf_unlock_irq(); 969 return ret; 970 } 971 972 static __poll_t devkmsg_poll(struct file *file, poll_table *wait) 973 { 974 struct devkmsg_user *user = file->private_data; 975 __poll_t ret = 0; 976 977 if (!user) 978 return EPOLLERR|EPOLLNVAL; 979 980 poll_wait(file, &log_wait, wait); 981 982 logbuf_lock_irq(); 983 if (user->seq < log_next_seq) { 984 /* return error when data has vanished underneath us */ 985 if (user->seq < log_first_seq) 986 ret = EPOLLIN|EPOLLRDNORM|EPOLLERR|EPOLLPRI; 987 else 988 ret = EPOLLIN|EPOLLRDNORM; 989 } 990 logbuf_unlock_irq(); 991 992 return ret; 993 } 994 995 static int devkmsg_open(struct inode *inode, struct file *file) 996 { 997 struct devkmsg_user *user; 998 int err; 999 1000 if (devkmsg_log & DEVKMSG_LOG_MASK_OFF) 1001 return -EPERM; 1002 1003 /* write-only does not need any file context */ 1004 if ((file->f_flags & O_ACCMODE) != O_WRONLY) { 1005 err = check_syslog_permissions(SYSLOG_ACTION_READ_ALL, 1006 SYSLOG_FROM_READER); 1007 if (err) 1008 return err; 1009 } 1010 1011 user = kmalloc(sizeof(struct devkmsg_user), GFP_KERNEL); 1012 if (!user) 1013 return -ENOMEM; 1014 1015 ratelimit_default_init(&user->rs); 1016 ratelimit_set_flags(&user->rs, RATELIMIT_MSG_ON_RELEASE); 1017 1018 mutex_init(&user->lock); 1019 1020 logbuf_lock_irq(); 1021 user->idx = log_first_idx; 1022 user->seq = log_first_seq; 1023 logbuf_unlock_irq(); 1024 1025 file->private_data = user; 1026 return 0; 1027 } 1028 1029 static int devkmsg_release(struct inode *inode, struct file *file) 1030 { 1031 struct devkmsg_user *user = file->private_data; 1032 1033 if (!user) 1034 return 0; 1035 1036 ratelimit_state_exit(&user->rs); 1037 1038 mutex_destroy(&user->lock); 1039 kfree(user); 1040 return 0; 1041 } 1042 1043 const struct file_operations kmsg_fops = { 1044 .open = devkmsg_open, 1045 .read = devkmsg_read, 1046 .write_iter = devkmsg_write, 1047 .llseek = devkmsg_llseek, 1048 .poll = devkmsg_poll, 1049 .release = devkmsg_release, 1050 }; 1051 1052 #ifdef CONFIG_CRASH_CORE 1053 /* 1054 * This appends the listed symbols to /proc/vmcore 1055 * 1056 * /proc/vmcore is used by various utilities, like crash and makedumpfile to 1057 * obtain access to symbols that are otherwise very difficult to locate. These 1058 * symbols are specifically used so that utilities can access and extract the 1059 * dmesg log from a vmcore file after a crash. 1060 */ 1061 void log_buf_vmcoreinfo_setup(void) 1062 { 1063 VMCOREINFO_SYMBOL(log_buf); 1064 VMCOREINFO_SYMBOL(log_buf_len); 1065 VMCOREINFO_SYMBOL(log_first_idx); 1066 VMCOREINFO_SYMBOL(clear_idx); 1067 VMCOREINFO_SYMBOL(log_next_idx); 1068 /* 1069 * Export struct printk_log size and field offsets. User space tools can 1070 * parse it and detect any changes to structure down the line. 1071 */ 1072 VMCOREINFO_STRUCT_SIZE(printk_log); 1073 VMCOREINFO_OFFSET(printk_log, ts_nsec); 1074 VMCOREINFO_OFFSET(printk_log, len); 1075 VMCOREINFO_OFFSET(printk_log, text_len); 1076 VMCOREINFO_OFFSET(printk_log, dict_len); 1077 #ifdef CONFIG_PRINTK_CALLER 1078 VMCOREINFO_OFFSET(printk_log, caller_id); 1079 #endif 1080 } 1081 #endif 1082 1083 /* requested log_buf_len from kernel cmdline */ 1084 static unsigned long __initdata new_log_buf_len; 1085 1086 /* we practice scaling the ring buffer by powers of 2 */ 1087 static void __init log_buf_len_update(u64 size) 1088 { 1089 if (size > (u64)LOG_BUF_LEN_MAX) { 1090 size = (u64)LOG_BUF_LEN_MAX; 1091 pr_err("log_buf over 2G is not supported.\n"); 1092 } 1093 1094 if (size) 1095 size = roundup_pow_of_two(size); 1096 if (size > log_buf_len) 1097 new_log_buf_len = (unsigned long)size; 1098 } 1099 1100 /* save requested log_buf_len since it's too early to process it */ 1101 static int __init log_buf_len_setup(char *str) 1102 { 1103 u64 size; 1104 1105 if (!str) 1106 return -EINVAL; 1107 1108 size = memparse(str, &str); 1109 1110 log_buf_len_update(size); 1111 1112 return 0; 1113 } 1114 early_param("log_buf_len", log_buf_len_setup); 1115 1116 #ifdef CONFIG_SMP 1117 #define __LOG_CPU_MAX_BUF_LEN (1 << CONFIG_LOG_CPU_MAX_BUF_SHIFT) 1118 1119 static void __init log_buf_add_cpu(void) 1120 { 1121 unsigned int cpu_extra; 1122 1123 /* 1124 * archs should set up cpu_possible_bits properly with 1125 * set_cpu_possible() after setup_arch() but just in 1126 * case lets ensure this is valid. 1127 */ 1128 if (num_possible_cpus() == 1) 1129 return; 1130 1131 cpu_extra = (num_possible_cpus() - 1) * __LOG_CPU_MAX_BUF_LEN; 1132 1133 /* by default this will only continue through for large > 64 CPUs */ 1134 if (cpu_extra <= __LOG_BUF_LEN / 2) 1135 return; 1136 1137 pr_info("log_buf_len individual max cpu contribution: %d bytes\n", 1138 __LOG_CPU_MAX_BUF_LEN); 1139 pr_info("log_buf_len total cpu_extra contributions: %d bytes\n", 1140 cpu_extra); 1141 pr_info("log_buf_len min size: %d bytes\n", __LOG_BUF_LEN); 1142 1143 log_buf_len_update(cpu_extra + __LOG_BUF_LEN); 1144 } 1145 #else /* !CONFIG_SMP */ 1146 static inline void log_buf_add_cpu(void) {} 1147 #endif /* CONFIG_SMP */ 1148 1149 void __init setup_log_buf(int early) 1150 { 1151 unsigned long flags; 1152 char *new_log_buf; 1153 unsigned int free; 1154 1155 if (log_buf != __log_buf) 1156 return; 1157 1158 if (!early && !new_log_buf_len) 1159 log_buf_add_cpu(); 1160 1161 if (!new_log_buf_len) 1162 return; 1163 1164 new_log_buf = memblock_alloc(new_log_buf_len, LOG_ALIGN); 1165 if (unlikely(!new_log_buf)) { 1166 pr_err("log_buf_len: %lu bytes not available\n", 1167 new_log_buf_len); 1168 return; 1169 } 1170 1171 logbuf_lock_irqsave(flags); 1172 log_buf_len = new_log_buf_len; 1173 log_buf = new_log_buf; 1174 new_log_buf_len = 0; 1175 free = __LOG_BUF_LEN - log_next_idx; 1176 memcpy(log_buf, __log_buf, __LOG_BUF_LEN); 1177 logbuf_unlock_irqrestore(flags); 1178 1179 pr_info("log_buf_len: %u bytes\n", log_buf_len); 1180 pr_info("early log buf free: %u(%u%%)\n", 1181 free, (free * 100) / __LOG_BUF_LEN); 1182 } 1183 1184 static bool __read_mostly ignore_loglevel; 1185 1186 static int __init ignore_loglevel_setup(char *str) 1187 { 1188 ignore_loglevel = true; 1189 pr_info("debug: ignoring loglevel setting.\n"); 1190 1191 return 0; 1192 } 1193 1194 early_param("ignore_loglevel", ignore_loglevel_setup); 1195 module_param(ignore_loglevel, bool, S_IRUGO | S_IWUSR); 1196 MODULE_PARM_DESC(ignore_loglevel, 1197 "ignore loglevel setting (prints all kernel messages to the console)"); 1198 1199 static bool suppress_message_printing(int level) 1200 { 1201 return (level >= console_loglevel && !ignore_loglevel); 1202 } 1203 1204 #ifdef CONFIG_BOOT_PRINTK_DELAY 1205 1206 static int boot_delay; /* msecs delay after each printk during bootup */ 1207 static unsigned long long loops_per_msec; /* based on boot_delay */ 1208 1209 static int __init boot_delay_setup(char *str) 1210 { 1211 unsigned long lpj; 1212 1213 lpj = preset_lpj ? preset_lpj : 1000000; /* some guess */ 1214 loops_per_msec = (unsigned long long)lpj / 1000 * HZ; 1215 1216 get_option(&str, &boot_delay); 1217 if (boot_delay > 10 * 1000) 1218 boot_delay = 0; 1219 1220 pr_debug("boot_delay: %u, preset_lpj: %ld, lpj: %lu, " 1221 "HZ: %d, loops_per_msec: %llu\n", 1222 boot_delay, preset_lpj, lpj, HZ, loops_per_msec); 1223 return 0; 1224 } 1225 early_param("boot_delay", boot_delay_setup); 1226 1227 static void boot_delay_msec(int level) 1228 { 1229 unsigned long long k; 1230 unsigned long timeout; 1231 1232 if ((boot_delay == 0 || system_state >= SYSTEM_RUNNING) 1233 || suppress_message_printing(level)) { 1234 return; 1235 } 1236 1237 k = (unsigned long long)loops_per_msec * boot_delay; 1238 1239 timeout = jiffies + msecs_to_jiffies(boot_delay); 1240 while (k) { 1241 k--; 1242 cpu_relax(); 1243 /* 1244 * use (volatile) jiffies to prevent 1245 * compiler reduction; loop termination via jiffies 1246 * is secondary and may or may not happen. 1247 */ 1248 if (time_after(jiffies, timeout)) 1249 break; 1250 touch_nmi_watchdog(); 1251 } 1252 } 1253 #else 1254 static inline void boot_delay_msec(int level) 1255 { 1256 } 1257 #endif 1258 1259 static bool printk_time = IS_ENABLED(CONFIG_PRINTK_TIME); 1260 module_param_named(time, printk_time, bool, S_IRUGO | S_IWUSR); 1261 1262 static size_t print_syslog(unsigned int level, char *buf) 1263 { 1264 return sprintf(buf, "<%u>", level); 1265 } 1266 1267 static size_t print_time(u64 ts, char *buf) 1268 { 1269 unsigned long rem_nsec = do_div(ts, 1000000000); 1270 1271 return sprintf(buf, "[%5lu.%06lu]", 1272 (unsigned long)ts, rem_nsec / 1000); 1273 } 1274 1275 #ifdef CONFIG_PRINTK_CALLER 1276 static size_t print_caller(u32 id, char *buf) 1277 { 1278 char caller[12]; 1279 1280 snprintf(caller, sizeof(caller), "%c%u", 1281 id & 0x80000000 ? 'C' : 'T', id & ~0x80000000); 1282 return sprintf(buf, "[%6s]", caller); 1283 } 1284 #else 1285 #define print_caller(id, buf) 0 1286 #endif 1287 1288 static size_t print_prefix(const struct printk_log *msg, bool syslog, 1289 bool time, char *buf) 1290 { 1291 size_t len = 0; 1292 1293 if (syslog) 1294 len = print_syslog((msg->facility << 3) | msg->level, buf); 1295 1296 if (time) 1297 len += print_time(msg->ts_nsec, buf + len); 1298 1299 len += print_caller(msg->caller_id, buf + len); 1300 1301 if (IS_ENABLED(CONFIG_PRINTK_CALLER) || time) { 1302 buf[len++] = ' '; 1303 buf[len] = '\0'; 1304 } 1305 1306 return len; 1307 } 1308 1309 static size_t msg_print_text(const struct printk_log *msg, bool syslog, 1310 bool time, char *buf, size_t size) 1311 { 1312 const char *text = log_text(msg); 1313 size_t text_size = msg->text_len; 1314 size_t len = 0; 1315 char prefix[PREFIX_MAX]; 1316 const size_t prefix_len = print_prefix(msg, syslog, time, prefix); 1317 1318 do { 1319 const char *next = memchr(text, '\n', text_size); 1320 size_t text_len; 1321 1322 if (next) { 1323 text_len = next - text; 1324 next++; 1325 text_size -= next - text; 1326 } else { 1327 text_len = text_size; 1328 } 1329 1330 if (buf) { 1331 if (prefix_len + text_len + 1 >= size - len) 1332 break; 1333 1334 memcpy(buf + len, prefix, prefix_len); 1335 len += prefix_len; 1336 memcpy(buf + len, text, text_len); 1337 len += text_len; 1338 buf[len++] = '\n'; 1339 } else { 1340 /* SYSLOG_ACTION_* buffer size only calculation */ 1341 len += prefix_len + text_len + 1; 1342 } 1343 1344 text = next; 1345 } while (text); 1346 1347 return len; 1348 } 1349 1350 static int syslog_print(char __user *buf, int size) 1351 { 1352 char *text; 1353 struct printk_log *msg; 1354 int len = 0; 1355 1356 text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL); 1357 if (!text) 1358 return -ENOMEM; 1359 1360 while (size > 0) { 1361 size_t n; 1362 size_t skip; 1363 1364 logbuf_lock_irq(); 1365 if (syslog_seq < log_first_seq) { 1366 /* messages are gone, move to first one */ 1367 syslog_seq = log_first_seq; 1368 syslog_idx = log_first_idx; 1369 syslog_partial = 0; 1370 } 1371 if (syslog_seq == log_next_seq) { 1372 logbuf_unlock_irq(); 1373 break; 1374 } 1375 1376 /* 1377 * To keep reading/counting partial line consistent, 1378 * use printk_time value as of the beginning of a line. 1379 */ 1380 if (!syslog_partial) 1381 syslog_time = printk_time; 1382 1383 skip = syslog_partial; 1384 msg = log_from_idx(syslog_idx); 1385 n = msg_print_text(msg, true, syslog_time, text, 1386 LOG_LINE_MAX + PREFIX_MAX); 1387 if (n - syslog_partial <= size) { 1388 /* message fits into buffer, move forward */ 1389 syslog_idx = log_next(syslog_idx); 1390 syslog_seq++; 1391 n -= syslog_partial; 1392 syslog_partial = 0; 1393 } else if (!len){ 1394 /* partial read(), remember position */ 1395 n = size; 1396 syslog_partial += n; 1397 } else 1398 n = 0; 1399 logbuf_unlock_irq(); 1400 1401 if (!n) 1402 break; 1403 1404 if (copy_to_user(buf, text + skip, n)) { 1405 if (!len) 1406 len = -EFAULT; 1407 break; 1408 } 1409 1410 len += n; 1411 size -= n; 1412 buf += n; 1413 } 1414 1415 kfree(text); 1416 return len; 1417 } 1418 1419 static int syslog_print_all(char __user *buf, int size, bool clear) 1420 { 1421 char *text; 1422 int len = 0; 1423 u64 next_seq; 1424 u64 seq; 1425 u32 idx; 1426 bool time; 1427 1428 text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL); 1429 if (!text) 1430 return -ENOMEM; 1431 1432 time = printk_time; 1433 logbuf_lock_irq(); 1434 /* 1435 * Find first record that fits, including all following records, 1436 * into the user-provided buffer for this dump. 1437 */ 1438 seq = clear_seq; 1439 idx = clear_idx; 1440 while (seq < log_next_seq) { 1441 struct printk_log *msg = log_from_idx(idx); 1442 1443 len += msg_print_text(msg, true, time, NULL, 0); 1444 idx = log_next(idx); 1445 seq++; 1446 } 1447 1448 /* move first record forward until length fits into the buffer */ 1449 seq = clear_seq; 1450 idx = clear_idx; 1451 while (len > size && seq < log_next_seq) { 1452 struct printk_log *msg = log_from_idx(idx); 1453 1454 len -= msg_print_text(msg, true, time, NULL, 0); 1455 idx = log_next(idx); 1456 seq++; 1457 } 1458 1459 /* last message fitting into this dump */ 1460 next_seq = log_next_seq; 1461 1462 len = 0; 1463 while (len >= 0 && seq < next_seq) { 1464 struct printk_log *msg = log_from_idx(idx); 1465 int textlen = msg_print_text(msg, true, time, text, 1466 LOG_LINE_MAX + PREFIX_MAX); 1467 1468 idx = log_next(idx); 1469 seq++; 1470 1471 logbuf_unlock_irq(); 1472 if (copy_to_user(buf + len, text, textlen)) 1473 len = -EFAULT; 1474 else 1475 len += textlen; 1476 logbuf_lock_irq(); 1477 1478 if (seq < log_first_seq) { 1479 /* messages are gone, move to next one */ 1480 seq = log_first_seq; 1481 idx = log_first_idx; 1482 } 1483 } 1484 1485 if (clear) { 1486 clear_seq = log_next_seq; 1487 clear_idx = log_next_idx; 1488 } 1489 logbuf_unlock_irq(); 1490 1491 kfree(text); 1492 return len; 1493 } 1494 1495 static void syslog_clear(void) 1496 { 1497 logbuf_lock_irq(); 1498 clear_seq = log_next_seq; 1499 clear_idx = log_next_idx; 1500 logbuf_unlock_irq(); 1501 } 1502 1503 int do_syslog(int type, char __user *buf, int len, int source) 1504 { 1505 bool clear = false; 1506 static int saved_console_loglevel = LOGLEVEL_DEFAULT; 1507 int error; 1508 1509 error = check_syslog_permissions(type, source); 1510 if (error) 1511 return error; 1512 1513 switch (type) { 1514 case SYSLOG_ACTION_CLOSE: /* Close log */ 1515 break; 1516 case SYSLOG_ACTION_OPEN: /* Open log */ 1517 break; 1518 case SYSLOG_ACTION_READ: /* Read from log */ 1519 if (!buf || len < 0) 1520 return -EINVAL; 1521 if (!len) 1522 return 0; 1523 if (!access_ok(buf, len)) 1524 return -EFAULT; 1525 error = wait_event_interruptible(log_wait, 1526 syslog_seq != log_next_seq); 1527 if (error) 1528 return error; 1529 error = syslog_print(buf, len); 1530 break; 1531 /* Read/clear last kernel messages */ 1532 case SYSLOG_ACTION_READ_CLEAR: 1533 clear = true; 1534 /* FALL THRU */ 1535 /* Read last kernel messages */ 1536 case SYSLOG_ACTION_READ_ALL: 1537 if (!buf || len < 0) 1538 return -EINVAL; 1539 if (!len) 1540 return 0; 1541 if (!access_ok(buf, len)) 1542 return -EFAULT; 1543 error = syslog_print_all(buf, len, clear); 1544 break; 1545 /* Clear ring buffer */ 1546 case SYSLOG_ACTION_CLEAR: 1547 syslog_clear(); 1548 break; 1549 /* Disable logging to console */ 1550 case SYSLOG_ACTION_CONSOLE_OFF: 1551 if (saved_console_loglevel == LOGLEVEL_DEFAULT) 1552 saved_console_loglevel = console_loglevel; 1553 console_loglevel = minimum_console_loglevel; 1554 break; 1555 /* Enable logging to console */ 1556 case SYSLOG_ACTION_CONSOLE_ON: 1557 if (saved_console_loglevel != LOGLEVEL_DEFAULT) { 1558 console_loglevel = saved_console_loglevel; 1559 saved_console_loglevel = LOGLEVEL_DEFAULT; 1560 } 1561 break; 1562 /* Set level of messages printed to console */ 1563 case SYSLOG_ACTION_CONSOLE_LEVEL: 1564 if (len < 1 || len > 8) 1565 return -EINVAL; 1566 if (len < minimum_console_loglevel) 1567 len = minimum_console_loglevel; 1568 console_loglevel = len; 1569 /* Implicitly re-enable logging to console */ 1570 saved_console_loglevel = LOGLEVEL_DEFAULT; 1571 break; 1572 /* Number of chars in the log buffer */ 1573 case SYSLOG_ACTION_SIZE_UNREAD: 1574 logbuf_lock_irq(); 1575 if (syslog_seq < log_first_seq) { 1576 /* messages are gone, move to first one */ 1577 syslog_seq = log_first_seq; 1578 syslog_idx = log_first_idx; 1579 syslog_partial = 0; 1580 } 1581 if (source == SYSLOG_FROM_PROC) { 1582 /* 1583 * Short-cut for poll(/"proc/kmsg") which simply checks 1584 * for pending data, not the size; return the count of 1585 * records, not the length. 1586 */ 1587 error = log_next_seq - syslog_seq; 1588 } else { 1589 u64 seq = syslog_seq; 1590 u32 idx = syslog_idx; 1591 bool time = syslog_partial ? syslog_time : printk_time; 1592 1593 while (seq < log_next_seq) { 1594 struct printk_log *msg = log_from_idx(idx); 1595 1596 error += msg_print_text(msg, true, time, NULL, 1597 0); 1598 time = printk_time; 1599 idx = log_next(idx); 1600 seq++; 1601 } 1602 error -= syslog_partial; 1603 } 1604 logbuf_unlock_irq(); 1605 break; 1606 /* Size of the log buffer */ 1607 case SYSLOG_ACTION_SIZE_BUFFER: 1608 error = log_buf_len; 1609 break; 1610 default: 1611 error = -EINVAL; 1612 break; 1613 } 1614 1615 return error; 1616 } 1617 1618 SYSCALL_DEFINE3(syslog, int, type, char __user *, buf, int, len) 1619 { 1620 return do_syslog(type, buf, len, SYSLOG_FROM_READER); 1621 } 1622 1623 /* 1624 * Special console_lock variants that help to reduce the risk of soft-lockups. 1625 * They allow to pass console_lock to another printk() call using a busy wait. 1626 */ 1627 1628 #ifdef CONFIG_LOCKDEP 1629 static struct lockdep_map console_owner_dep_map = { 1630 .name = "console_owner" 1631 }; 1632 #endif 1633 1634 static DEFINE_RAW_SPINLOCK(console_owner_lock); 1635 static struct task_struct *console_owner; 1636 static bool console_waiter; 1637 1638 /** 1639 * console_lock_spinning_enable - mark beginning of code where another 1640 * thread might safely busy wait 1641 * 1642 * This basically converts console_lock into a spinlock. This marks 1643 * the section where the console_lock owner can not sleep, because 1644 * there may be a waiter spinning (like a spinlock). Also it must be 1645 * ready to hand over the lock at the end of the section. 1646 */ 1647 static void console_lock_spinning_enable(void) 1648 { 1649 raw_spin_lock(&console_owner_lock); 1650 console_owner = current; 1651 raw_spin_unlock(&console_owner_lock); 1652 1653 /* The waiter may spin on us after setting console_owner */ 1654 spin_acquire(&console_owner_dep_map, 0, 0, _THIS_IP_); 1655 } 1656 1657 /** 1658 * console_lock_spinning_disable_and_check - mark end of code where another 1659 * thread was able to busy wait and check if there is a waiter 1660 * 1661 * This is called at the end of the section where spinning is allowed. 1662 * It has two functions. First, it is a signal that it is no longer 1663 * safe to start busy waiting for the lock. Second, it checks if 1664 * there is a busy waiter and passes the lock rights to her. 1665 * 1666 * Important: Callers lose the lock if there was a busy waiter. 1667 * They must not touch items synchronized by console_lock 1668 * in this case. 1669 * 1670 * Return: 1 if the lock rights were passed, 0 otherwise. 1671 */ 1672 static int console_lock_spinning_disable_and_check(void) 1673 { 1674 int waiter; 1675 1676 raw_spin_lock(&console_owner_lock); 1677 waiter = READ_ONCE(console_waiter); 1678 console_owner = NULL; 1679 raw_spin_unlock(&console_owner_lock); 1680 1681 if (!waiter) { 1682 spin_release(&console_owner_dep_map, 1, _THIS_IP_); 1683 return 0; 1684 } 1685 1686 /* The waiter is now free to continue */ 1687 WRITE_ONCE(console_waiter, false); 1688 1689 spin_release(&console_owner_dep_map, 1, _THIS_IP_); 1690 1691 /* 1692 * Hand off console_lock to waiter. The waiter will perform 1693 * the up(). After this, the waiter is the console_lock owner. 1694 */ 1695 mutex_release(&console_lock_dep_map, 1, _THIS_IP_); 1696 return 1; 1697 } 1698 1699 /** 1700 * console_trylock_spinning - try to get console_lock by busy waiting 1701 * 1702 * This allows to busy wait for the console_lock when the current 1703 * owner is running in specially marked sections. It means that 1704 * the current owner is running and cannot reschedule until it 1705 * is ready to lose the lock. 1706 * 1707 * Return: 1 if we got the lock, 0 othrewise 1708 */ 1709 static int console_trylock_spinning(void) 1710 { 1711 struct task_struct *owner = NULL; 1712 bool waiter; 1713 bool spin = false; 1714 unsigned long flags; 1715 1716 if (console_trylock()) 1717 return 1; 1718 1719 printk_safe_enter_irqsave(flags); 1720 1721 raw_spin_lock(&console_owner_lock); 1722 owner = READ_ONCE(console_owner); 1723 waiter = READ_ONCE(console_waiter); 1724 if (!waiter && owner && owner != current) { 1725 WRITE_ONCE(console_waiter, true); 1726 spin = true; 1727 } 1728 raw_spin_unlock(&console_owner_lock); 1729 1730 /* 1731 * If there is an active printk() writing to the 1732 * consoles, instead of having it write our data too, 1733 * see if we can offload that load from the active 1734 * printer, and do some printing ourselves. 1735 * Go into a spin only if there isn't already a waiter 1736 * spinning, and there is an active printer, and 1737 * that active printer isn't us (recursive printk?). 1738 */ 1739 if (!spin) { 1740 printk_safe_exit_irqrestore(flags); 1741 return 0; 1742 } 1743 1744 /* We spin waiting for the owner to release us */ 1745 spin_acquire(&console_owner_dep_map, 0, 0, _THIS_IP_); 1746 /* Owner will clear console_waiter on hand off */ 1747 while (READ_ONCE(console_waiter)) 1748 cpu_relax(); 1749 spin_release(&console_owner_dep_map, 1, _THIS_IP_); 1750 1751 printk_safe_exit_irqrestore(flags); 1752 /* 1753 * The owner passed the console lock to us. 1754 * Since we did not spin on console lock, annotate 1755 * this as a trylock. Otherwise lockdep will 1756 * complain. 1757 */ 1758 mutex_acquire(&console_lock_dep_map, 0, 1, _THIS_IP_); 1759 1760 return 1; 1761 } 1762 1763 /* 1764 * Call the console drivers, asking them to write out 1765 * log_buf[start] to log_buf[end - 1]. 1766 * The console_lock must be held. 1767 */ 1768 static void call_console_drivers(const char *ext_text, size_t ext_len, 1769 const char *text, size_t len) 1770 { 1771 struct console *con; 1772 1773 trace_console_rcuidle(text, len); 1774 1775 if (!console_drivers) 1776 return; 1777 1778 for_each_console(con) { 1779 if (exclusive_console && con != exclusive_console) 1780 continue; 1781 if (!(con->flags & CON_ENABLED)) 1782 continue; 1783 if (!con->write) 1784 continue; 1785 if (!cpu_online(smp_processor_id()) && 1786 !(con->flags & CON_ANYTIME)) 1787 continue; 1788 if (con->flags & CON_EXTENDED) 1789 con->write(con, ext_text, ext_len); 1790 else 1791 con->write(con, text, len); 1792 } 1793 } 1794 1795 int printk_delay_msec __read_mostly; 1796 1797 static inline void printk_delay(void) 1798 { 1799 if (unlikely(printk_delay_msec)) { 1800 int m = printk_delay_msec; 1801 1802 while (m--) { 1803 mdelay(1); 1804 touch_nmi_watchdog(); 1805 } 1806 } 1807 } 1808 1809 static inline u32 printk_caller_id(void) 1810 { 1811 return in_task() ? task_pid_nr(current) : 1812 0x80000000 + raw_smp_processor_id(); 1813 } 1814 1815 /* 1816 * Continuation lines are buffered, and not committed to the record buffer 1817 * until the line is complete, or a race forces it. The line fragments 1818 * though, are printed immediately to the consoles to ensure everything has 1819 * reached the console in case of a kernel crash. 1820 */ 1821 static struct cont { 1822 char buf[LOG_LINE_MAX]; 1823 size_t len; /* length == 0 means unused buffer */ 1824 u32 caller_id; /* printk_caller_id() of first print */ 1825 u64 ts_nsec; /* time of first print */ 1826 u8 level; /* log level of first message */ 1827 u8 facility; /* log facility of first message */ 1828 enum log_flags flags; /* prefix, newline flags */ 1829 } cont; 1830 1831 static void cont_flush(void) 1832 { 1833 if (cont.len == 0) 1834 return; 1835 1836 log_store(cont.caller_id, cont.facility, cont.level, cont.flags, 1837 cont.ts_nsec, NULL, 0, cont.buf, cont.len); 1838 cont.len = 0; 1839 } 1840 1841 static bool cont_add(u32 caller_id, int facility, int level, 1842 enum log_flags flags, const char *text, size_t len) 1843 { 1844 /* If the line gets too long, split it up in separate records. */ 1845 if (cont.len + len > sizeof(cont.buf)) { 1846 cont_flush(); 1847 return false; 1848 } 1849 1850 if (!cont.len) { 1851 cont.facility = facility; 1852 cont.level = level; 1853 cont.caller_id = caller_id; 1854 cont.ts_nsec = local_clock(); 1855 cont.flags = flags; 1856 } 1857 1858 memcpy(cont.buf + cont.len, text, len); 1859 cont.len += len; 1860 1861 // The original flags come from the first line, 1862 // but later continuations can add a newline. 1863 if (flags & LOG_NEWLINE) { 1864 cont.flags |= LOG_NEWLINE; 1865 cont_flush(); 1866 } 1867 1868 return true; 1869 } 1870 1871 static size_t log_output(int facility, int level, enum log_flags lflags, const char *dict, size_t dictlen, char *text, size_t text_len) 1872 { 1873 const u32 caller_id = printk_caller_id(); 1874 1875 /* 1876 * If an earlier line was buffered, and we're a continuation 1877 * write from the same context, try to add it to the buffer. 1878 */ 1879 if (cont.len) { 1880 if (cont.caller_id == caller_id && (lflags & LOG_CONT)) { 1881 if (cont_add(caller_id, facility, level, lflags, text, text_len)) 1882 return text_len; 1883 } 1884 /* Otherwise, make sure it's flushed */ 1885 cont_flush(); 1886 } 1887 1888 /* Skip empty continuation lines that couldn't be added - they just flush */ 1889 if (!text_len && (lflags & LOG_CONT)) 1890 return 0; 1891 1892 /* If it doesn't end in a newline, try to buffer the current line */ 1893 if (!(lflags & LOG_NEWLINE)) { 1894 if (cont_add(caller_id, facility, level, lflags, text, text_len)) 1895 return text_len; 1896 } 1897 1898 /* Store it in the record log */ 1899 return log_store(caller_id, facility, level, lflags, 0, 1900 dict, dictlen, text, text_len); 1901 } 1902 1903 /* Must be called under logbuf_lock. */ 1904 int vprintk_store(int facility, int level, 1905 const char *dict, size_t dictlen, 1906 const char *fmt, va_list args) 1907 { 1908 static char textbuf[LOG_LINE_MAX]; 1909 char *text = textbuf; 1910 size_t text_len; 1911 enum log_flags lflags = 0; 1912 1913 /* 1914 * The printf needs to come first; we need the syslog 1915 * prefix which might be passed-in as a parameter. 1916 */ 1917 text_len = vscnprintf(text, sizeof(textbuf), fmt, args); 1918 1919 /* mark and strip a trailing newline */ 1920 if (text_len && text[text_len-1] == '\n') { 1921 text_len--; 1922 lflags |= LOG_NEWLINE; 1923 } 1924 1925 /* strip kernel syslog prefix and extract log level or control flags */ 1926 if (facility == 0) { 1927 int kern_level; 1928 1929 while ((kern_level = printk_get_level(text)) != 0) { 1930 switch (kern_level) { 1931 case '0' ... '7': 1932 if (level == LOGLEVEL_DEFAULT) 1933 level = kern_level - '0'; 1934 break; 1935 case 'c': /* KERN_CONT */ 1936 lflags |= LOG_CONT; 1937 } 1938 1939 text_len -= 2; 1940 text += 2; 1941 } 1942 } 1943 1944 if (level == LOGLEVEL_DEFAULT) 1945 level = default_message_loglevel; 1946 1947 if (dict) 1948 lflags |= LOG_NEWLINE; 1949 1950 return log_output(facility, level, lflags, 1951 dict, dictlen, text, text_len); 1952 } 1953 1954 asmlinkage int vprintk_emit(int facility, int level, 1955 const char *dict, size_t dictlen, 1956 const char *fmt, va_list args) 1957 { 1958 int printed_len; 1959 bool in_sched = false, pending_output; 1960 unsigned long flags; 1961 u64 curr_log_seq; 1962 1963 /* Suppress unimportant messages after panic happens */ 1964 if (unlikely(suppress_printk)) 1965 return 0; 1966 1967 if (level == LOGLEVEL_SCHED) { 1968 level = LOGLEVEL_DEFAULT; 1969 in_sched = true; 1970 } 1971 1972 boot_delay_msec(level); 1973 printk_delay(); 1974 1975 /* This stops the holder of console_sem just where we want him */ 1976 logbuf_lock_irqsave(flags); 1977 curr_log_seq = log_next_seq; 1978 printed_len = vprintk_store(facility, level, dict, dictlen, fmt, args); 1979 pending_output = (curr_log_seq != log_next_seq); 1980 logbuf_unlock_irqrestore(flags); 1981 1982 /* If called from the scheduler, we can not call up(). */ 1983 if (!in_sched && pending_output) { 1984 /* 1985 * Disable preemption to avoid being preempted while holding 1986 * console_sem which would prevent anyone from printing to 1987 * console 1988 */ 1989 preempt_disable(); 1990 /* 1991 * Try to acquire and then immediately release the console 1992 * semaphore. The release will print out buffers and wake up 1993 * /dev/kmsg and syslog() users. 1994 */ 1995 if (console_trylock_spinning()) 1996 console_unlock(); 1997 preempt_enable(); 1998 } 1999 2000 if (pending_output) 2001 wake_up_klogd(); 2002 return printed_len; 2003 } 2004 EXPORT_SYMBOL(vprintk_emit); 2005 2006 asmlinkage int vprintk(const char *fmt, va_list args) 2007 { 2008 return vprintk_func(fmt, args); 2009 } 2010 EXPORT_SYMBOL(vprintk); 2011 2012 int vprintk_default(const char *fmt, va_list args) 2013 { 2014 int r; 2015 2016 #ifdef CONFIG_KGDB_KDB 2017 /* Allow to pass printk() to kdb but avoid a recursion. */ 2018 if (unlikely(kdb_trap_printk && kdb_printf_cpu < 0)) { 2019 r = vkdb_printf(KDB_MSGSRC_PRINTK, fmt, args); 2020 return r; 2021 } 2022 #endif 2023 r = vprintk_emit(0, LOGLEVEL_DEFAULT, NULL, 0, fmt, args); 2024 2025 return r; 2026 } 2027 EXPORT_SYMBOL_GPL(vprintk_default); 2028 2029 /** 2030 * printk - print a kernel message 2031 * @fmt: format string 2032 * 2033 * This is printk(). It can be called from any context. We want it to work. 2034 * 2035 * We try to grab the console_lock. If we succeed, it's easy - we log the 2036 * output and call the console drivers. If we fail to get the semaphore, we 2037 * place the output into the log buffer and return. The current holder of 2038 * the console_sem will notice the new output in console_unlock(); and will 2039 * send it to the consoles before releasing the lock. 2040 * 2041 * One effect of this deferred printing is that code which calls printk() and 2042 * then changes console_loglevel may break. This is because console_loglevel 2043 * is inspected when the actual printing occurs. 2044 * 2045 * See also: 2046 * printf(3) 2047 * 2048 * See the vsnprintf() documentation for format string extensions over C99. 2049 */ 2050 asmlinkage __visible int printk(const char *fmt, ...) 2051 { 2052 va_list args; 2053 int r; 2054 2055 va_start(args, fmt); 2056 r = vprintk_func(fmt, args); 2057 va_end(args); 2058 2059 return r; 2060 } 2061 EXPORT_SYMBOL(printk); 2062 2063 #else /* CONFIG_PRINTK */ 2064 2065 #define LOG_LINE_MAX 0 2066 #define PREFIX_MAX 0 2067 #define printk_time false 2068 2069 static u64 syslog_seq; 2070 static u32 syslog_idx; 2071 static u64 console_seq; 2072 static u32 console_idx; 2073 static u64 exclusive_console_stop_seq; 2074 static u64 log_first_seq; 2075 static u32 log_first_idx; 2076 static u64 log_next_seq; 2077 static char *log_text(const struct printk_log *msg) { return NULL; } 2078 static char *log_dict(const struct printk_log *msg) { return NULL; } 2079 static struct printk_log *log_from_idx(u32 idx) { return NULL; } 2080 static u32 log_next(u32 idx) { return 0; } 2081 static ssize_t msg_print_ext_header(char *buf, size_t size, 2082 struct printk_log *msg, 2083 u64 seq) { return 0; } 2084 static ssize_t msg_print_ext_body(char *buf, size_t size, 2085 char *dict, size_t dict_len, 2086 char *text, size_t text_len) { return 0; } 2087 static void console_lock_spinning_enable(void) { } 2088 static int console_lock_spinning_disable_and_check(void) { return 0; } 2089 static void call_console_drivers(const char *ext_text, size_t ext_len, 2090 const char *text, size_t len) {} 2091 static size_t msg_print_text(const struct printk_log *msg, bool syslog, 2092 bool time, char *buf, size_t size) { return 0; } 2093 static bool suppress_message_printing(int level) { return false; } 2094 2095 #endif /* CONFIG_PRINTK */ 2096 2097 #ifdef CONFIG_EARLY_PRINTK 2098 struct console *early_console; 2099 2100 asmlinkage __visible void early_printk(const char *fmt, ...) 2101 { 2102 va_list ap; 2103 char buf[512]; 2104 int n; 2105 2106 if (!early_console) 2107 return; 2108 2109 va_start(ap, fmt); 2110 n = vscnprintf(buf, sizeof(buf), fmt, ap); 2111 va_end(ap); 2112 2113 early_console->write(early_console, buf, n); 2114 } 2115 #endif 2116 2117 static int __add_preferred_console(char *name, int idx, char *options, 2118 char *brl_options) 2119 { 2120 struct console_cmdline *c; 2121 int i; 2122 2123 /* 2124 * See if this tty is not yet registered, and 2125 * if we have a slot free. 2126 */ 2127 for (i = 0, c = console_cmdline; 2128 i < MAX_CMDLINECONSOLES && c->name[0]; 2129 i++, c++) { 2130 if (strcmp(c->name, name) == 0 && c->index == idx) { 2131 if (!brl_options) 2132 preferred_console = i; 2133 return 0; 2134 } 2135 } 2136 if (i == MAX_CMDLINECONSOLES) 2137 return -E2BIG; 2138 if (!brl_options) 2139 preferred_console = i; 2140 strlcpy(c->name, name, sizeof(c->name)); 2141 c->options = options; 2142 braille_set_options(c, brl_options); 2143 2144 c->index = idx; 2145 return 0; 2146 } 2147 2148 static int __init console_msg_format_setup(char *str) 2149 { 2150 if (!strcmp(str, "syslog")) 2151 console_msg_format = MSG_FORMAT_SYSLOG; 2152 if (!strcmp(str, "default")) 2153 console_msg_format = MSG_FORMAT_DEFAULT; 2154 return 1; 2155 } 2156 __setup("console_msg_format=", console_msg_format_setup); 2157 2158 /* 2159 * Set up a console. Called via do_early_param() in init/main.c 2160 * for each "console=" parameter in the boot command line. 2161 */ 2162 static int __init console_setup(char *str) 2163 { 2164 char buf[sizeof(console_cmdline[0].name) + 4]; /* 4 for "ttyS" */ 2165 char *s, *options, *brl_options = NULL; 2166 int idx; 2167 2168 if (_braille_console_setup(&str, &brl_options)) 2169 return 1; 2170 2171 /* 2172 * Decode str into name, index, options. 2173 */ 2174 if (str[0] >= '0' && str[0] <= '9') { 2175 strcpy(buf, "ttyS"); 2176 strncpy(buf + 4, str, sizeof(buf) - 5); 2177 } else { 2178 strncpy(buf, str, sizeof(buf) - 1); 2179 } 2180 buf[sizeof(buf) - 1] = 0; 2181 options = strchr(str, ','); 2182 if (options) 2183 *(options++) = 0; 2184 #ifdef __sparc__ 2185 if (!strcmp(str, "ttya")) 2186 strcpy(buf, "ttyS0"); 2187 if (!strcmp(str, "ttyb")) 2188 strcpy(buf, "ttyS1"); 2189 #endif 2190 for (s = buf; *s; s++) 2191 if (isdigit(*s) || *s == ',') 2192 break; 2193 idx = simple_strtoul(s, NULL, 10); 2194 *s = 0; 2195 2196 __add_preferred_console(buf, idx, options, brl_options); 2197 console_set_on_cmdline = 1; 2198 return 1; 2199 } 2200 __setup("console=", console_setup); 2201 2202 /** 2203 * add_preferred_console - add a device to the list of preferred consoles. 2204 * @name: device name 2205 * @idx: device index 2206 * @options: options for this console 2207 * 2208 * The last preferred console added will be used for kernel messages 2209 * and stdin/out/err for init. Normally this is used by console_setup 2210 * above to handle user-supplied console arguments; however it can also 2211 * be used by arch-specific code either to override the user or more 2212 * commonly to provide a default console (ie from PROM variables) when 2213 * the user has not supplied one. 2214 */ 2215 int add_preferred_console(char *name, int idx, char *options) 2216 { 2217 return __add_preferred_console(name, idx, options, NULL); 2218 } 2219 2220 bool console_suspend_enabled = true; 2221 EXPORT_SYMBOL(console_suspend_enabled); 2222 2223 static int __init console_suspend_disable(char *str) 2224 { 2225 console_suspend_enabled = false; 2226 return 1; 2227 } 2228 __setup("no_console_suspend", console_suspend_disable); 2229 module_param_named(console_suspend, console_suspend_enabled, 2230 bool, S_IRUGO | S_IWUSR); 2231 MODULE_PARM_DESC(console_suspend, "suspend console during suspend" 2232 " and hibernate operations"); 2233 2234 /** 2235 * suspend_console - suspend the console subsystem 2236 * 2237 * This disables printk() while we go into suspend states 2238 */ 2239 void suspend_console(void) 2240 { 2241 if (!console_suspend_enabled) 2242 return; 2243 pr_info("Suspending console(s) (use no_console_suspend to debug)\n"); 2244 console_lock(); 2245 console_suspended = 1; 2246 up_console_sem(); 2247 } 2248 2249 void resume_console(void) 2250 { 2251 if (!console_suspend_enabled) 2252 return; 2253 down_console_sem(); 2254 console_suspended = 0; 2255 console_unlock(); 2256 } 2257 2258 /** 2259 * console_cpu_notify - print deferred console messages after CPU hotplug 2260 * @cpu: unused 2261 * 2262 * If printk() is called from a CPU that is not online yet, the messages 2263 * will be printed on the console only if there are CON_ANYTIME consoles. 2264 * This function is called when a new CPU comes online (or fails to come 2265 * up) or goes offline. 2266 */ 2267 static int console_cpu_notify(unsigned int cpu) 2268 { 2269 if (!cpuhp_tasks_frozen) { 2270 /* If trylock fails, someone else is doing the printing */ 2271 if (console_trylock()) 2272 console_unlock(); 2273 } 2274 return 0; 2275 } 2276 2277 /** 2278 * console_lock - lock the console system for exclusive use. 2279 * 2280 * Acquires a lock which guarantees that the caller has 2281 * exclusive access to the console system and the console_drivers list. 2282 * 2283 * Can sleep, returns nothing. 2284 */ 2285 void console_lock(void) 2286 { 2287 might_sleep(); 2288 2289 down_console_sem(); 2290 if (console_suspended) 2291 return; 2292 console_locked = 1; 2293 console_may_schedule = 1; 2294 } 2295 EXPORT_SYMBOL(console_lock); 2296 2297 /** 2298 * console_trylock - try to lock the console system for exclusive use. 2299 * 2300 * Try to acquire a lock which guarantees that the caller has exclusive 2301 * access to the console system and the console_drivers list. 2302 * 2303 * returns 1 on success, and 0 on failure to acquire the lock. 2304 */ 2305 int console_trylock(void) 2306 { 2307 if (down_trylock_console_sem()) 2308 return 0; 2309 if (console_suspended) { 2310 up_console_sem(); 2311 return 0; 2312 } 2313 console_locked = 1; 2314 console_may_schedule = 0; 2315 return 1; 2316 } 2317 EXPORT_SYMBOL(console_trylock); 2318 2319 int is_console_locked(void) 2320 { 2321 return console_locked; 2322 } 2323 EXPORT_SYMBOL(is_console_locked); 2324 2325 /* 2326 * Check if we have any console that is capable of printing while cpu is 2327 * booting or shutting down. Requires console_sem. 2328 */ 2329 static int have_callable_console(void) 2330 { 2331 struct console *con; 2332 2333 for_each_console(con) 2334 if ((con->flags & CON_ENABLED) && 2335 (con->flags & CON_ANYTIME)) 2336 return 1; 2337 2338 return 0; 2339 } 2340 2341 /* 2342 * Can we actually use the console at this time on this cpu? 2343 * 2344 * Console drivers may assume that per-cpu resources have been allocated. So 2345 * unless they're explicitly marked as being able to cope (CON_ANYTIME) don't 2346 * call them until this CPU is officially up. 2347 */ 2348 static inline int can_use_console(void) 2349 { 2350 return cpu_online(raw_smp_processor_id()) || have_callable_console(); 2351 } 2352 2353 /** 2354 * console_unlock - unlock the console system 2355 * 2356 * Releases the console_lock which the caller holds on the console system 2357 * and the console driver list. 2358 * 2359 * While the console_lock was held, console output may have been buffered 2360 * by printk(). If this is the case, console_unlock(); emits 2361 * the output prior to releasing the lock. 2362 * 2363 * If there is output waiting, we wake /dev/kmsg and syslog() users. 2364 * 2365 * console_unlock(); may be called from any context. 2366 */ 2367 void console_unlock(void) 2368 { 2369 static char ext_text[CONSOLE_EXT_LOG_MAX]; 2370 static char text[LOG_LINE_MAX + PREFIX_MAX]; 2371 unsigned long flags; 2372 bool do_cond_resched, retry; 2373 2374 if (console_suspended) { 2375 up_console_sem(); 2376 return; 2377 } 2378 2379 /* 2380 * Console drivers are called with interrupts disabled, so 2381 * @console_may_schedule should be cleared before; however, we may 2382 * end up dumping a lot of lines, for example, if called from 2383 * console registration path, and should invoke cond_resched() 2384 * between lines if allowable. Not doing so can cause a very long 2385 * scheduling stall on a slow console leading to RCU stall and 2386 * softlockup warnings which exacerbate the issue with more 2387 * messages practically incapacitating the system. 2388 * 2389 * console_trylock() is not able to detect the preemptive 2390 * context reliably. Therefore the value must be stored before 2391 * and cleared after the the "again" goto label. 2392 */ 2393 do_cond_resched = console_may_schedule; 2394 again: 2395 console_may_schedule = 0; 2396 2397 /* 2398 * We released the console_sem lock, so we need to recheck if 2399 * cpu is online and (if not) is there at least one CON_ANYTIME 2400 * console. 2401 */ 2402 if (!can_use_console()) { 2403 console_locked = 0; 2404 up_console_sem(); 2405 return; 2406 } 2407 2408 for (;;) { 2409 struct printk_log *msg; 2410 size_t ext_len = 0; 2411 size_t len; 2412 2413 printk_safe_enter_irqsave(flags); 2414 raw_spin_lock(&logbuf_lock); 2415 if (console_seq < log_first_seq) { 2416 len = sprintf(text, 2417 "** %llu printk messages dropped **\n", 2418 log_first_seq - console_seq); 2419 2420 /* messages are gone, move to first one */ 2421 console_seq = log_first_seq; 2422 console_idx = log_first_idx; 2423 } else { 2424 len = 0; 2425 } 2426 skip: 2427 if (console_seq == log_next_seq) 2428 break; 2429 2430 msg = log_from_idx(console_idx); 2431 if (suppress_message_printing(msg->level)) { 2432 /* 2433 * Skip record we have buffered and already printed 2434 * directly to the console when we received it, and 2435 * record that has level above the console loglevel. 2436 */ 2437 console_idx = log_next(console_idx); 2438 console_seq++; 2439 goto skip; 2440 } 2441 2442 /* Output to all consoles once old messages replayed. */ 2443 if (unlikely(exclusive_console && 2444 console_seq >= exclusive_console_stop_seq)) { 2445 exclusive_console = NULL; 2446 } 2447 2448 len += msg_print_text(msg, 2449 console_msg_format & MSG_FORMAT_SYSLOG, 2450 printk_time, text + len, sizeof(text) - len); 2451 if (nr_ext_console_drivers) { 2452 ext_len = msg_print_ext_header(ext_text, 2453 sizeof(ext_text), 2454 msg, console_seq); 2455 ext_len += msg_print_ext_body(ext_text + ext_len, 2456 sizeof(ext_text) - ext_len, 2457 log_dict(msg), msg->dict_len, 2458 log_text(msg), msg->text_len); 2459 } 2460 console_idx = log_next(console_idx); 2461 console_seq++; 2462 raw_spin_unlock(&logbuf_lock); 2463 2464 /* 2465 * While actively printing out messages, if another printk() 2466 * were to occur on another CPU, it may wait for this one to 2467 * finish. This task can not be preempted if there is a 2468 * waiter waiting to take over. 2469 */ 2470 console_lock_spinning_enable(); 2471 2472 stop_critical_timings(); /* don't trace print latency */ 2473 call_console_drivers(ext_text, ext_len, text, len); 2474 start_critical_timings(); 2475 2476 if (console_lock_spinning_disable_and_check()) { 2477 printk_safe_exit_irqrestore(flags); 2478 return; 2479 } 2480 2481 printk_safe_exit_irqrestore(flags); 2482 2483 if (do_cond_resched) 2484 cond_resched(); 2485 } 2486 2487 console_locked = 0; 2488 2489 raw_spin_unlock(&logbuf_lock); 2490 2491 up_console_sem(); 2492 2493 /* 2494 * Someone could have filled up the buffer again, so re-check if there's 2495 * something to flush. In case we cannot trylock the console_sem again, 2496 * there's a new owner and the console_unlock() from them will do the 2497 * flush, no worries. 2498 */ 2499 raw_spin_lock(&logbuf_lock); 2500 retry = console_seq != log_next_seq; 2501 raw_spin_unlock(&logbuf_lock); 2502 printk_safe_exit_irqrestore(flags); 2503 2504 if (retry && console_trylock()) 2505 goto again; 2506 } 2507 EXPORT_SYMBOL(console_unlock); 2508 2509 /** 2510 * console_conditional_schedule - yield the CPU if required 2511 * 2512 * If the console code is currently allowed to sleep, and 2513 * if this CPU should yield the CPU to another task, do 2514 * so here. 2515 * 2516 * Must be called within console_lock();. 2517 */ 2518 void __sched console_conditional_schedule(void) 2519 { 2520 if (console_may_schedule) 2521 cond_resched(); 2522 } 2523 EXPORT_SYMBOL(console_conditional_schedule); 2524 2525 void console_unblank(void) 2526 { 2527 struct console *c; 2528 2529 /* 2530 * console_unblank can no longer be called in interrupt context unless 2531 * oops_in_progress is set to 1.. 2532 */ 2533 if (oops_in_progress) { 2534 if (down_trylock_console_sem() != 0) 2535 return; 2536 } else 2537 console_lock(); 2538 2539 console_locked = 1; 2540 console_may_schedule = 0; 2541 for_each_console(c) 2542 if ((c->flags & CON_ENABLED) && c->unblank) 2543 c->unblank(); 2544 console_unlock(); 2545 } 2546 2547 /** 2548 * console_flush_on_panic - flush console content on panic 2549 * @mode: flush all messages in buffer or just the pending ones 2550 * 2551 * Immediately output all pending messages no matter what. 2552 */ 2553 void console_flush_on_panic(enum con_flush_mode mode) 2554 { 2555 /* 2556 * If someone else is holding the console lock, trylock will fail 2557 * and may_schedule may be set. Ignore and proceed to unlock so 2558 * that messages are flushed out. As this can be called from any 2559 * context and we don't want to get preempted while flushing, 2560 * ensure may_schedule is cleared. 2561 */ 2562 console_trylock(); 2563 console_may_schedule = 0; 2564 2565 if (mode == CONSOLE_REPLAY_ALL) { 2566 unsigned long flags; 2567 2568 logbuf_lock_irqsave(flags); 2569 console_seq = log_first_seq; 2570 console_idx = log_first_idx; 2571 logbuf_unlock_irqrestore(flags); 2572 } 2573 console_unlock(); 2574 } 2575 2576 /* 2577 * Return the console tty driver structure and its associated index 2578 */ 2579 struct tty_driver *console_device(int *index) 2580 { 2581 struct console *c; 2582 struct tty_driver *driver = NULL; 2583 2584 console_lock(); 2585 for_each_console(c) { 2586 if (!c->device) 2587 continue; 2588 driver = c->device(c, index); 2589 if (driver) 2590 break; 2591 } 2592 console_unlock(); 2593 return driver; 2594 } 2595 2596 /* 2597 * Prevent further output on the passed console device so that (for example) 2598 * serial drivers can disable console output before suspending a port, and can 2599 * re-enable output afterwards. 2600 */ 2601 void console_stop(struct console *console) 2602 { 2603 console_lock(); 2604 console->flags &= ~CON_ENABLED; 2605 console_unlock(); 2606 } 2607 EXPORT_SYMBOL(console_stop); 2608 2609 void console_start(struct console *console) 2610 { 2611 console_lock(); 2612 console->flags |= CON_ENABLED; 2613 console_unlock(); 2614 } 2615 EXPORT_SYMBOL(console_start); 2616 2617 static int __read_mostly keep_bootcon; 2618 2619 static int __init keep_bootcon_setup(char *str) 2620 { 2621 keep_bootcon = 1; 2622 pr_info("debug: skip boot console de-registration.\n"); 2623 2624 return 0; 2625 } 2626 2627 early_param("keep_bootcon", keep_bootcon_setup); 2628 2629 /* 2630 * The console driver calls this routine during kernel initialization 2631 * to register the console printing procedure with printk() and to 2632 * print any messages that were printed by the kernel before the 2633 * console driver was initialized. 2634 * 2635 * This can happen pretty early during the boot process (because of 2636 * early_printk) - sometimes before setup_arch() completes - be careful 2637 * of what kernel features are used - they may not be initialised yet. 2638 * 2639 * There are two types of consoles - bootconsoles (early_printk) and 2640 * "real" consoles (everything which is not a bootconsole) which are 2641 * handled differently. 2642 * - Any number of bootconsoles can be registered at any time. 2643 * - As soon as a "real" console is registered, all bootconsoles 2644 * will be unregistered automatically. 2645 * - Once a "real" console is registered, any attempt to register a 2646 * bootconsoles will be rejected 2647 */ 2648 void register_console(struct console *newcon) 2649 { 2650 int i; 2651 unsigned long flags; 2652 struct console *bcon = NULL; 2653 struct console_cmdline *c; 2654 static bool has_preferred; 2655 2656 if (console_drivers) 2657 for_each_console(bcon) 2658 if (WARN(bcon == newcon, 2659 "console '%s%d' already registered\n", 2660 bcon->name, bcon->index)) 2661 return; 2662 2663 /* 2664 * before we register a new CON_BOOT console, make sure we don't 2665 * already have a valid console 2666 */ 2667 if (console_drivers && newcon->flags & CON_BOOT) { 2668 /* find the last or real console */ 2669 for_each_console(bcon) { 2670 if (!(bcon->flags & CON_BOOT)) { 2671 pr_info("Too late to register bootconsole %s%d\n", 2672 newcon->name, newcon->index); 2673 return; 2674 } 2675 } 2676 } 2677 2678 if (console_drivers && console_drivers->flags & CON_BOOT) 2679 bcon = console_drivers; 2680 2681 if (!has_preferred || bcon || !console_drivers) 2682 has_preferred = preferred_console >= 0; 2683 2684 /* 2685 * See if we want to use this console driver. If we 2686 * didn't select a console we take the first one 2687 * that registers here. 2688 */ 2689 if (!has_preferred) { 2690 if (newcon->index < 0) 2691 newcon->index = 0; 2692 if (newcon->setup == NULL || 2693 newcon->setup(newcon, NULL) == 0) { 2694 newcon->flags |= CON_ENABLED; 2695 if (newcon->device) { 2696 newcon->flags |= CON_CONSDEV; 2697 has_preferred = true; 2698 } 2699 } 2700 } 2701 2702 /* 2703 * See if this console matches one we selected on 2704 * the command line. 2705 */ 2706 for (i = 0, c = console_cmdline; 2707 i < MAX_CMDLINECONSOLES && c->name[0]; 2708 i++, c++) { 2709 if (!newcon->match || 2710 newcon->match(newcon, c->name, c->index, c->options) != 0) { 2711 /* default matching */ 2712 BUILD_BUG_ON(sizeof(c->name) != sizeof(newcon->name)); 2713 if (strcmp(c->name, newcon->name) != 0) 2714 continue; 2715 if (newcon->index >= 0 && 2716 newcon->index != c->index) 2717 continue; 2718 if (newcon->index < 0) 2719 newcon->index = c->index; 2720 2721 if (_braille_register_console(newcon, c)) 2722 return; 2723 2724 if (newcon->setup && 2725 newcon->setup(newcon, c->options) != 0) 2726 break; 2727 } 2728 2729 newcon->flags |= CON_ENABLED; 2730 if (i == preferred_console) { 2731 newcon->flags |= CON_CONSDEV; 2732 has_preferred = true; 2733 } 2734 break; 2735 } 2736 2737 if (!(newcon->flags & CON_ENABLED)) 2738 return; 2739 2740 /* 2741 * If we have a bootconsole, and are switching to a real console, 2742 * don't print everything out again, since when the boot console, and 2743 * the real console are the same physical device, it's annoying to 2744 * see the beginning boot messages twice 2745 */ 2746 if (bcon && ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV)) 2747 newcon->flags &= ~CON_PRINTBUFFER; 2748 2749 /* 2750 * Put this console in the list - keep the 2751 * preferred driver at the head of the list. 2752 */ 2753 console_lock(); 2754 if ((newcon->flags & CON_CONSDEV) || console_drivers == NULL) { 2755 newcon->next = console_drivers; 2756 console_drivers = newcon; 2757 if (newcon->next) 2758 newcon->next->flags &= ~CON_CONSDEV; 2759 } else { 2760 newcon->next = console_drivers->next; 2761 console_drivers->next = newcon; 2762 } 2763 2764 if (newcon->flags & CON_EXTENDED) 2765 nr_ext_console_drivers++; 2766 2767 if (newcon->flags & CON_PRINTBUFFER) { 2768 /* 2769 * console_unlock(); will print out the buffered messages 2770 * for us. 2771 */ 2772 logbuf_lock_irqsave(flags); 2773 console_seq = syslog_seq; 2774 console_idx = syslog_idx; 2775 /* 2776 * We're about to replay the log buffer. Only do this to the 2777 * just-registered console to avoid excessive message spam to 2778 * the already-registered consoles. 2779 * 2780 * Set exclusive_console with disabled interrupts to reduce 2781 * race window with eventual console_flush_on_panic() that 2782 * ignores console_lock. 2783 */ 2784 exclusive_console = newcon; 2785 exclusive_console_stop_seq = console_seq; 2786 logbuf_unlock_irqrestore(flags); 2787 } 2788 console_unlock(); 2789 console_sysfs_notify(); 2790 2791 /* 2792 * By unregistering the bootconsoles after we enable the real console 2793 * we get the "console xxx enabled" message on all the consoles - 2794 * boot consoles, real consoles, etc - this is to ensure that end 2795 * users know there might be something in the kernel's log buffer that 2796 * went to the bootconsole (that they do not see on the real console) 2797 */ 2798 pr_info("%sconsole [%s%d] enabled\n", 2799 (newcon->flags & CON_BOOT) ? "boot" : "" , 2800 newcon->name, newcon->index); 2801 if (bcon && 2802 ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV) && 2803 !keep_bootcon) { 2804 /* We need to iterate through all boot consoles, to make 2805 * sure we print everything out, before we unregister them. 2806 */ 2807 for_each_console(bcon) 2808 if (bcon->flags & CON_BOOT) 2809 unregister_console(bcon); 2810 } 2811 } 2812 EXPORT_SYMBOL(register_console); 2813 2814 int unregister_console(struct console *console) 2815 { 2816 struct console *a, *b; 2817 int res; 2818 2819 pr_info("%sconsole [%s%d] disabled\n", 2820 (console->flags & CON_BOOT) ? "boot" : "" , 2821 console->name, console->index); 2822 2823 res = _braille_unregister_console(console); 2824 if (res) 2825 return res; 2826 2827 res = 1; 2828 console_lock(); 2829 if (console_drivers == console) { 2830 console_drivers=console->next; 2831 res = 0; 2832 } else if (console_drivers) { 2833 for (a=console_drivers->next, b=console_drivers ; 2834 a; b=a, a=b->next) { 2835 if (a == console) { 2836 b->next = a->next; 2837 res = 0; 2838 break; 2839 } 2840 } 2841 } 2842 2843 if (!res && (console->flags & CON_EXTENDED)) 2844 nr_ext_console_drivers--; 2845 2846 /* 2847 * If this isn't the last console and it has CON_CONSDEV set, we 2848 * need to set it on the next preferred console. 2849 */ 2850 if (console_drivers != NULL && console->flags & CON_CONSDEV) 2851 console_drivers->flags |= CON_CONSDEV; 2852 2853 console->flags &= ~CON_ENABLED; 2854 console_unlock(); 2855 console_sysfs_notify(); 2856 return res; 2857 } 2858 EXPORT_SYMBOL(unregister_console); 2859 2860 /* 2861 * Initialize the console device. This is called *early*, so 2862 * we can't necessarily depend on lots of kernel help here. 2863 * Just do some early initializations, and do the complex setup 2864 * later. 2865 */ 2866 void __init console_init(void) 2867 { 2868 int ret; 2869 initcall_t call; 2870 initcall_entry_t *ce; 2871 2872 /* Setup the default TTY line discipline. */ 2873 n_tty_init(); 2874 2875 /* 2876 * set up the console device so that later boot sequences can 2877 * inform about problems etc.. 2878 */ 2879 ce = __con_initcall_start; 2880 trace_initcall_level("console"); 2881 while (ce < __con_initcall_end) { 2882 call = initcall_from_entry(ce); 2883 trace_initcall_start(call); 2884 ret = call(); 2885 trace_initcall_finish(call, ret); 2886 ce++; 2887 } 2888 } 2889 2890 /* 2891 * Some boot consoles access data that is in the init section and which will 2892 * be discarded after the initcalls have been run. To make sure that no code 2893 * will access this data, unregister the boot consoles in a late initcall. 2894 * 2895 * If for some reason, such as deferred probe or the driver being a loadable 2896 * module, the real console hasn't registered yet at this point, there will 2897 * be a brief interval in which no messages are logged to the console, which 2898 * makes it difficult to diagnose problems that occur during this time. 2899 * 2900 * To mitigate this problem somewhat, only unregister consoles whose memory 2901 * intersects with the init section. Note that all other boot consoles will 2902 * get unregistred when the real preferred console is registered. 2903 */ 2904 static int __init printk_late_init(void) 2905 { 2906 struct console *con; 2907 int ret; 2908 2909 for_each_console(con) { 2910 if (!(con->flags & CON_BOOT)) 2911 continue; 2912 2913 /* Check addresses that might be used for enabled consoles. */ 2914 if (init_section_intersects(con, sizeof(*con)) || 2915 init_section_contains(con->write, 0) || 2916 init_section_contains(con->read, 0) || 2917 init_section_contains(con->device, 0) || 2918 init_section_contains(con->unblank, 0) || 2919 init_section_contains(con->data, 0)) { 2920 /* 2921 * Please, consider moving the reported consoles out 2922 * of the init section. 2923 */ 2924 pr_warn("bootconsole [%s%d] uses init memory and must be disabled even before the real one is ready\n", 2925 con->name, con->index); 2926 unregister_console(con); 2927 } 2928 } 2929 ret = cpuhp_setup_state_nocalls(CPUHP_PRINTK_DEAD, "printk:dead", NULL, 2930 console_cpu_notify); 2931 WARN_ON(ret < 0); 2932 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "printk:online", 2933 console_cpu_notify, NULL); 2934 WARN_ON(ret < 0); 2935 return 0; 2936 } 2937 late_initcall(printk_late_init); 2938 2939 #if defined CONFIG_PRINTK 2940 /* 2941 * Delayed printk version, for scheduler-internal messages: 2942 */ 2943 #define PRINTK_PENDING_WAKEUP 0x01 2944 #define PRINTK_PENDING_OUTPUT 0x02 2945 2946 static DEFINE_PER_CPU(int, printk_pending); 2947 2948 static void wake_up_klogd_work_func(struct irq_work *irq_work) 2949 { 2950 int pending = __this_cpu_xchg(printk_pending, 0); 2951 2952 if (pending & PRINTK_PENDING_OUTPUT) { 2953 /* If trylock fails, someone else is doing the printing */ 2954 if (console_trylock()) 2955 console_unlock(); 2956 } 2957 2958 if (pending & PRINTK_PENDING_WAKEUP) 2959 wake_up_interruptible(&log_wait); 2960 } 2961 2962 static DEFINE_PER_CPU(struct irq_work, wake_up_klogd_work) = { 2963 .func = wake_up_klogd_work_func, 2964 .flags = IRQ_WORK_LAZY, 2965 }; 2966 2967 void wake_up_klogd(void) 2968 { 2969 preempt_disable(); 2970 if (waitqueue_active(&log_wait)) { 2971 this_cpu_or(printk_pending, PRINTK_PENDING_WAKEUP); 2972 irq_work_queue(this_cpu_ptr(&wake_up_klogd_work)); 2973 } 2974 preempt_enable(); 2975 } 2976 2977 void defer_console_output(void) 2978 { 2979 preempt_disable(); 2980 __this_cpu_or(printk_pending, PRINTK_PENDING_OUTPUT); 2981 irq_work_queue(this_cpu_ptr(&wake_up_klogd_work)); 2982 preempt_enable(); 2983 } 2984 2985 int vprintk_deferred(const char *fmt, va_list args) 2986 { 2987 int r; 2988 2989 r = vprintk_emit(0, LOGLEVEL_SCHED, NULL, 0, fmt, args); 2990 defer_console_output(); 2991 2992 return r; 2993 } 2994 2995 int printk_deferred(const char *fmt, ...) 2996 { 2997 va_list args; 2998 int r; 2999 3000 va_start(args, fmt); 3001 r = vprintk_deferred(fmt, args); 3002 va_end(args); 3003 3004 return r; 3005 } 3006 3007 /* 3008 * printk rate limiting, lifted from the networking subsystem. 3009 * 3010 * This enforces a rate limit: not more than 10 kernel messages 3011 * every 5s to make a denial-of-service attack impossible. 3012 */ 3013 DEFINE_RATELIMIT_STATE(printk_ratelimit_state, 5 * HZ, 10); 3014 3015 int __printk_ratelimit(const char *func) 3016 { 3017 return ___ratelimit(&printk_ratelimit_state, func); 3018 } 3019 EXPORT_SYMBOL(__printk_ratelimit); 3020 3021 /** 3022 * printk_timed_ratelimit - caller-controlled printk ratelimiting 3023 * @caller_jiffies: pointer to caller's state 3024 * @interval_msecs: minimum interval between prints 3025 * 3026 * printk_timed_ratelimit() returns true if more than @interval_msecs 3027 * milliseconds have elapsed since the last time printk_timed_ratelimit() 3028 * returned true. 3029 */ 3030 bool printk_timed_ratelimit(unsigned long *caller_jiffies, 3031 unsigned int interval_msecs) 3032 { 3033 unsigned long elapsed = jiffies - *caller_jiffies; 3034 3035 if (*caller_jiffies && elapsed <= msecs_to_jiffies(interval_msecs)) 3036 return false; 3037 3038 *caller_jiffies = jiffies; 3039 return true; 3040 } 3041 EXPORT_SYMBOL(printk_timed_ratelimit); 3042 3043 static DEFINE_SPINLOCK(dump_list_lock); 3044 static LIST_HEAD(dump_list); 3045 3046 /** 3047 * kmsg_dump_register - register a kernel log dumper. 3048 * @dumper: pointer to the kmsg_dumper structure 3049 * 3050 * Adds a kernel log dumper to the system. The dump callback in the 3051 * structure will be called when the kernel oopses or panics and must be 3052 * set. Returns zero on success and %-EINVAL or %-EBUSY otherwise. 3053 */ 3054 int kmsg_dump_register(struct kmsg_dumper *dumper) 3055 { 3056 unsigned long flags; 3057 int err = -EBUSY; 3058 3059 /* The dump callback needs to be set */ 3060 if (!dumper->dump) 3061 return -EINVAL; 3062 3063 spin_lock_irqsave(&dump_list_lock, flags); 3064 /* Don't allow registering multiple times */ 3065 if (!dumper->registered) { 3066 dumper->registered = 1; 3067 list_add_tail_rcu(&dumper->list, &dump_list); 3068 err = 0; 3069 } 3070 spin_unlock_irqrestore(&dump_list_lock, flags); 3071 3072 return err; 3073 } 3074 EXPORT_SYMBOL_GPL(kmsg_dump_register); 3075 3076 /** 3077 * kmsg_dump_unregister - unregister a kmsg dumper. 3078 * @dumper: pointer to the kmsg_dumper structure 3079 * 3080 * Removes a dump device from the system. Returns zero on success and 3081 * %-EINVAL otherwise. 3082 */ 3083 int kmsg_dump_unregister(struct kmsg_dumper *dumper) 3084 { 3085 unsigned long flags; 3086 int err = -EINVAL; 3087 3088 spin_lock_irqsave(&dump_list_lock, flags); 3089 if (dumper->registered) { 3090 dumper->registered = 0; 3091 list_del_rcu(&dumper->list); 3092 err = 0; 3093 } 3094 spin_unlock_irqrestore(&dump_list_lock, flags); 3095 synchronize_rcu(); 3096 3097 return err; 3098 } 3099 EXPORT_SYMBOL_GPL(kmsg_dump_unregister); 3100 3101 static bool always_kmsg_dump; 3102 module_param_named(always_kmsg_dump, always_kmsg_dump, bool, S_IRUGO | S_IWUSR); 3103 3104 /** 3105 * kmsg_dump - dump kernel log to kernel message dumpers. 3106 * @reason: the reason (oops, panic etc) for dumping 3107 * 3108 * Call each of the registered dumper's dump() callback, which can 3109 * retrieve the kmsg records with kmsg_dump_get_line() or 3110 * kmsg_dump_get_buffer(). 3111 */ 3112 void kmsg_dump(enum kmsg_dump_reason reason) 3113 { 3114 struct kmsg_dumper *dumper; 3115 unsigned long flags; 3116 3117 if ((reason > KMSG_DUMP_OOPS) && !always_kmsg_dump) 3118 return; 3119 3120 rcu_read_lock(); 3121 list_for_each_entry_rcu(dumper, &dump_list, list) { 3122 if (dumper->max_reason && reason > dumper->max_reason) 3123 continue; 3124 3125 /* initialize iterator with data about the stored records */ 3126 dumper->active = true; 3127 3128 logbuf_lock_irqsave(flags); 3129 dumper->cur_seq = clear_seq; 3130 dumper->cur_idx = clear_idx; 3131 dumper->next_seq = log_next_seq; 3132 dumper->next_idx = log_next_idx; 3133 logbuf_unlock_irqrestore(flags); 3134 3135 /* invoke dumper which will iterate over records */ 3136 dumper->dump(dumper, reason); 3137 3138 /* reset iterator */ 3139 dumper->active = false; 3140 } 3141 rcu_read_unlock(); 3142 } 3143 3144 /** 3145 * kmsg_dump_get_line_nolock - retrieve one kmsg log line (unlocked version) 3146 * @dumper: registered kmsg dumper 3147 * @syslog: include the "<4>" prefixes 3148 * @line: buffer to copy the line to 3149 * @size: maximum size of the buffer 3150 * @len: length of line placed into buffer 3151 * 3152 * Start at the beginning of the kmsg buffer, with the oldest kmsg 3153 * record, and copy one record into the provided buffer. 3154 * 3155 * Consecutive calls will return the next available record moving 3156 * towards the end of the buffer with the youngest messages. 3157 * 3158 * A return value of FALSE indicates that there are no more records to 3159 * read. 3160 * 3161 * The function is similar to kmsg_dump_get_line(), but grabs no locks. 3162 */ 3163 bool kmsg_dump_get_line_nolock(struct kmsg_dumper *dumper, bool syslog, 3164 char *line, size_t size, size_t *len) 3165 { 3166 struct printk_log *msg; 3167 size_t l = 0; 3168 bool ret = false; 3169 3170 if (!dumper->active) 3171 goto out; 3172 3173 if (dumper->cur_seq < log_first_seq) { 3174 /* messages are gone, move to first available one */ 3175 dumper->cur_seq = log_first_seq; 3176 dumper->cur_idx = log_first_idx; 3177 } 3178 3179 /* last entry */ 3180 if (dumper->cur_seq >= log_next_seq) 3181 goto out; 3182 3183 msg = log_from_idx(dumper->cur_idx); 3184 l = msg_print_text(msg, syslog, printk_time, line, size); 3185 3186 dumper->cur_idx = log_next(dumper->cur_idx); 3187 dumper->cur_seq++; 3188 ret = true; 3189 out: 3190 if (len) 3191 *len = l; 3192 return ret; 3193 } 3194 3195 /** 3196 * kmsg_dump_get_line - retrieve one kmsg log line 3197 * @dumper: registered kmsg dumper 3198 * @syslog: include the "<4>" prefixes 3199 * @line: buffer to copy the line to 3200 * @size: maximum size of the buffer 3201 * @len: length of line placed into buffer 3202 * 3203 * Start at the beginning of the kmsg buffer, with the oldest kmsg 3204 * record, and copy one record into the provided buffer. 3205 * 3206 * Consecutive calls will return the next available record moving 3207 * towards the end of the buffer with the youngest messages. 3208 * 3209 * A return value of FALSE indicates that there are no more records to 3210 * read. 3211 */ 3212 bool kmsg_dump_get_line(struct kmsg_dumper *dumper, bool syslog, 3213 char *line, size_t size, size_t *len) 3214 { 3215 unsigned long flags; 3216 bool ret; 3217 3218 logbuf_lock_irqsave(flags); 3219 ret = kmsg_dump_get_line_nolock(dumper, syslog, line, size, len); 3220 logbuf_unlock_irqrestore(flags); 3221 3222 return ret; 3223 } 3224 EXPORT_SYMBOL_GPL(kmsg_dump_get_line); 3225 3226 /** 3227 * kmsg_dump_get_buffer - copy kmsg log lines 3228 * @dumper: registered kmsg dumper 3229 * @syslog: include the "<4>" prefixes 3230 * @buf: buffer to copy the line to 3231 * @size: maximum size of the buffer 3232 * @len: length of line placed into buffer 3233 * 3234 * Start at the end of the kmsg buffer and fill the provided buffer 3235 * with as many of the the *youngest* kmsg records that fit into it. 3236 * If the buffer is large enough, all available kmsg records will be 3237 * copied with a single call. 3238 * 3239 * Consecutive calls will fill the buffer with the next block of 3240 * available older records, not including the earlier retrieved ones. 3241 * 3242 * A return value of FALSE indicates that there are no more records to 3243 * read. 3244 */ 3245 bool kmsg_dump_get_buffer(struct kmsg_dumper *dumper, bool syslog, 3246 char *buf, size_t size, size_t *len) 3247 { 3248 unsigned long flags; 3249 u64 seq; 3250 u32 idx; 3251 u64 next_seq; 3252 u32 next_idx; 3253 size_t l = 0; 3254 bool ret = false; 3255 bool time = printk_time; 3256 3257 if (!dumper->active) 3258 goto out; 3259 3260 logbuf_lock_irqsave(flags); 3261 if (dumper->cur_seq < log_first_seq) { 3262 /* messages are gone, move to first available one */ 3263 dumper->cur_seq = log_first_seq; 3264 dumper->cur_idx = log_first_idx; 3265 } 3266 3267 /* last entry */ 3268 if (dumper->cur_seq >= dumper->next_seq) { 3269 logbuf_unlock_irqrestore(flags); 3270 goto out; 3271 } 3272 3273 /* calculate length of entire buffer */ 3274 seq = dumper->cur_seq; 3275 idx = dumper->cur_idx; 3276 while (seq < dumper->next_seq) { 3277 struct printk_log *msg = log_from_idx(idx); 3278 3279 l += msg_print_text(msg, true, time, NULL, 0); 3280 idx = log_next(idx); 3281 seq++; 3282 } 3283 3284 /* move first record forward until length fits into the buffer */ 3285 seq = dumper->cur_seq; 3286 idx = dumper->cur_idx; 3287 while (l >= size && seq < dumper->next_seq) { 3288 struct printk_log *msg = log_from_idx(idx); 3289 3290 l -= msg_print_text(msg, true, time, NULL, 0); 3291 idx = log_next(idx); 3292 seq++; 3293 } 3294 3295 /* last message in next interation */ 3296 next_seq = seq; 3297 next_idx = idx; 3298 3299 l = 0; 3300 while (seq < dumper->next_seq) { 3301 struct printk_log *msg = log_from_idx(idx); 3302 3303 l += msg_print_text(msg, syslog, time, buf + l, size - l); 3304 idx = log_next(idx); 3305 seq++; 3306 } 3307 3308 dumper->next_seq = next_seq; 3309 dumper->next_idx = next_idx; 3310 ret = true; 3311 logbuf_unlock_irqrestore(flags); 3312 out: 3313 if (len) 3314 *len = l; 3315 return ret; 3316 } 3317 EXPORT_SYMBOL_GPL(kmsg_dump_get_buffer); 3318 3319 /** 3320 * kmsg_dump_rewind_nolock - reset the interator (unlocked version) 3321 * @dumper: registered kmsg dumper 3322 * 3323 * Reset the dumper's iterator so that kmsg_dump_get_line() and 3324 * kmsg_dump_get_buffer() can be called again and used multiple 3325 * times within the same dumper.dump() callback. 3326 * 3327 * The function is similar to kmsg_dump_rewind(), but grabs no locks. 3328 */ 3329 void kmsg_dump_rewind_nolock(struct kmsg_dumper *dumper) 3330 { 3331 dumper->cur_seq = clear_seq; 3332 dumper->cur_idx = clear_idx; 3333 dumper->next_seq = log_next_seq; 3334 dumper->next_idx = log_next_idx; 3335 } 3336 3337 /** 3338 * kmsg_dump_rewind - reset the interator 3339 * @dumper: registered kmsg dumper 3340 * 3341 * Reset the dumper's iterator so that kmsg_dump_get_line() and 3342 * kmsg_dump_get_buffer() can be called again and used multiple 3343 * times within the same dumper.dump() callback. 3344 */ 3345 void kmsg_dump_rewind(struct kmsg_dumper *dumper) 3346 { 3347 unsigned long flags; 3348 3349 logbuf_lock_irqsave(flags); 3350 kmsg_dump_rewind_nolock(dumper); 3351 logbuf_unlock_irqrestore(flags); 3352 } 3353 EXPORT_SYMBOL_GPL(kmsg_dump_rewind); 3354 3355 #endif 3356