xref: /openbmc/linux/kernel/printk/printk.c (revision 8571e645)
1 /*
2  *  linux/kernel/printk.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  *
6  * Modified to make sys_syslog() more flexible: added commands to
7  * return the last 4k of kernel messages, regardless of whether
8  * they've been read or not.  Added option to suppress kernel printk's
9  * to the console.  Added hook for sending the console messages
10  * elsewhere, in preparation for a serial line console (someday).
11  * Ted Ts'o, 2/11/93.
12  * Modified for sysctl support, 1/8/97, Chris Horn.
13  * Fixed SMP synchronization, 08/08/99, Manfred Spraul
14  *     manfred@colorfullife.com
15  * Rewrote bits to get rid of console_lock
16  *	01Mar01 Andrew Morton
17  */
18 
19 #include <linux/kernel.h>
20 #include <linux/mm.h>
21 #include <linux/tty.h>
22 #include <linux/tty_driver.h>
23 #include <linux/console.h>
24 #include <linux/init.h>
25 #include <linux/jiffies.h>
26 #include <linux/nmi.h>
27 #include <linux/module.h>
28 #include <linux/moduleparam.h>
29 #include <linux/interrupt.h>			/* For in_interrupt() */
30 #include <linux/delay.h>
31 #include <linux/smp.h>
32 #include <linux/security.h>
33 #include <linux/bootmem.h>
34 #include <linux/memblock.h>
35 #include <linux/syscalls.h>
36 #include <linux/kexec.h>
37 #include <linux/kdb.h>
38 #include <linux/ratelimit.h>
39 #include <linux/kmsg_dump.h>
40 #include <linux/syslog.h>
41 #include <linux/cpu.h>
42 #include <linux/notifier.h>
43 #include <linux/rculist.h>
44 #include <linux/poll.h>
45 #include <linux/irq_work.h>
46 #include <linux/utsname.h>
47 #include <linux/ctype.h>
48 #include <linux/uio.h>
49 
50 #include <asm/uaccess.h>
51 #include <asm-generic/sections.h>
52 
53 #define CREATE_TRACE_POINTS
54 #include <trace/events/printk.h>
55 
56 #include "console_cmdline.h"
57 #include "braille.h"
58 
59 int console_printk[4] = {
60 	CONSOLE_LOGLEVEL_DEFAULT,	/* console_loglevel */
61 	MESSAGE_LOGLEVEL_DEFAULT,	/* default_message_loglevel */
62 	CONSOLE_LOGLEVEL_MIN,		/* minimum_console_loglevel */
63 	CONSOLE_LOGLEVEL_DEFAULT,	/* default_console_loglevel */
64 };
65 
66 /*
67  * Low level drivers may need that to know if they can schedule in
68  * their unblank() callback or not. So let's export it.
69  */
70 int oops_in_progress;
71 EXPORT_SYMBOL(oops_in_progress);
72 
73 /*
74  * console_sem protects the console_drivers list, and also
75  * provides serialisation for access to the entire console
76  * driver system.
77  */
78 static DEFINE_SEMAPHORE(console_sem);
79 struct console *console_drivers;
80 EXPORT_SYMBOL_GPL(console_drivers);
81 
82 #ifdef CONFIG_LOCKDEP
83 static struct lockdep_map console_lock_dep_map = {
84 	.name = "console_lock"
85 };
86 #endif
87 
88 /*
89  * Number of registered extended console drivers.
90  *
91  * If extended consoles are present, in-kernel cont reassembly is disabled
92  * and each fragment is stored as a separate log entry with proper
93  * continuation flag so that every emitted message has full metadata.  This
94  * doesn't change the result for regular consoles or /proc/kmsg.  For
95  * /dev/kmsg, as long as the reader concatenates messages according to
96  * consecutive continuation flags, the end result should be the same too.
97  */
98 static int nr_ext_console_drivers;
99 
100 /*
101  * Helper macros to handle lockdep when locking/unlocking console_sem. We use
102  * macros instead of functions so that _RET_IP_ contains useful information.
103  */
104 #define down_console_sem() do { \
105 	down(&console_sem);\
106 	mutex_acquire(&console_lock_dep_map, 0, 0, _RET_IP_);\
107 } while (0)
108 
109 static int __down_trylock_console_sem(unsigned long ip)
110 {
111 	if (down_trylock(&console_sem))
112 		return 1;
113 	mutex_acquire(&console_lock_dep_map, 0, 1, ip);
114 	return 0;
115 }
116 #define down_trylock_console_sem() __down_trylock_console_sem(_RET_IP_)
117 
118 #define up_console_sem() do { \
119 	mutex_release(&console_lock_dep_map, 1, _RET_IP_);\
120 	up(&console_sem);\
121 } while (0)
122 
123 /*
124  * This is used for debugging the mess that is the VT code by
125  * keeping track if we have the console semaphore held. It's
126  * definitely not the perfect debug tool (we don't know if _WE_
127  * hold it and are racing, but it helps tracking those weird code
128  * paths in the console code where we end up in places I want
129  * locked without the console sempahore held).
130  */
131 static int console_locked, console_suspended;
132 
133 /*
134  * If exclusive_console is non-NULL then only this console is to be printed to.
135  */
136 static struct console *exclusive_console;
137 
138 /*
139  *	Array of consoles built from command line options (console=)
140  */
141 
142 #define MAX_CMDLINECONSOLES 8
143 
144 static struct console_cmdline console_cmdline[MAX_CMDLINECONSOLES];
145 
146 static int selected_console = -1;
147 static int preferred_console = -1;
148 int console_set_on_cmdline;
149 EXPORT_SYMBOL(console_set_on_cmdline);
150 
151 /* Flag: console code may call schedule() */
152 static int console_may_schedule;
153 
154 /*
155  * The printk log buffer consists of a chain of concatenated variable
156  * length records. Every record starts with a record header, containing
157  * the overall length of the record.
158  *
159  * The heads to the first and last entry in the buffer, as well as the
160  * sequence numbers of these entries are maintained when messages are
161  * stored.
162  *
163  * If the heads indicate available messages, the length in the header
164  * tells the start next message. A length == 0 for the next message
165  * indicates a wrap-around to the beginning of the buffer.
166  *
167  * Every record carries the monotonic timestamp in microseconds, as well as
168  * the standard userspace syslog level and syslog facility. The usual
169  * kernel messages use LOG_KERN; userspace-injected messages always carry
170  * a matching syslog facility, by default LOG_USER. The origin of every
171  * message can be reliably determined that way.
172  *
173  * The human readable log message directly follows the message header. The
174  * length of the message text is stored in the header, the stored message
175  * is not terminated.
176  *
177  * Optionally, a message can carry a dictionary of properties (key/value pairs),
178  * to provide userspace with a machine-readable message context.
179  *
180  * Examples for well-defined, commonly used property names are:
181  *   DEVICE=b12:8               device identifier
182  *                                b12:8         block dev_t
183  *                                c127:3        char dev_t
184  *                                n8            netdev ifindex
185  *                                +sound:card0  subsystem:devname
186  *   SUBSYSTEM=pci              driver-core subsystem name
187  *
188  * Valid characters in property names are [a-zA-Z0-9.-_]. The plain text value
189  * follows directly after a '=' character. Every property is terminated by
190  * a '\0' character. The last property is not terminated.
191  *
192  * Example of a message structure:
193  *   0000  ff 8f 00 00 00 00 00 00      monotonic time in nsec
194  *   0008  34 00                        record is 52 bytes long
195  *   000a        0b 00                  text is 11 bytes long
196  *   000c              1f 00            dictionary is 23 bytes long
197  *   000e                    03 00      LOG_KERN (facility) LOG_ERR (level)
198  *   0010  69 74 27 73 20 61 20 6c      "it's a l"
199  *         69 6e 65                     "ine"
200  *   001b           44 45 56 49 43      "DEVIC"
201  *         45 3d 62 38 3a 32 00 44      "E=b8:2\0D"
202  *         52 49 56 45 52 3d 62 75      "RIVER=bu"
203  *         67                           "g"
204  *   0032     00 00 00                  padding to next message header
205  *
206  * The 'struct printk_log' buffer header must never be directly exported to
207  * userspace, it is a kernel-private implementation detail that might
208  * need to be changed in the future, when the requirements change.
209  *
210  * /dev/kmsg exports the structured data in the following line format:
211  *   "<level>,<sequnum>,<timestamp>,<contflag>[,additional_values, ... ];<message text>\n"
212  *
213  * Users of the export format should ignore possible additional values
214  * separated by ',', and find the message after the ';' character.
215  *
216  * The optional key/value pairs are attached as continuation lines starting
217  * with a space character and terminated by a newline. All possible
218  * non-prinatable characters are escaped in the "\xff" notation.
219  */
220 
221 enum log_flags {
222 	LOG_NOCONS	= 1,	/* already flushed, do not print to console */
223 	LOG_NEWLINE	= 2,	/* text ended with a newline */
224 	LOG_PREFIX	= 4,	/* text started with a prefix */
225 	LOG_CONT	= 8,	/* text is a fragment of a continuation line */
226 };
227 
228 struct printk_log {
229 	u64 ts_nsec;		/* timestamp in nanoseconds */
230 	u16 len;		/* length of entire record */
231 	u16 text_len;		/* length of text buffer */
232 	u16 dict_len;		/* length of dictionary buffer */
233 	u8 facility;		/* syslog facility */
234 	u8 flags:5;		/* internal record flags */
235 	u8 level:3;		/* syslog level */
236 }
237 #ifdef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
238 __packed __aligned(4)
239 #endif
240 ;
241 
242 /*
243  * The logbuf_lock protects kmsg buffer, indices, counters.  This can be taken
244  * within the scheduler's rq lock. It must be released before calling
245  * console_unlock() or anything else that might wake up a process.
246  */
247 static DEFINE_RAW_SPINLOCK(logbuf_lock);
248 
249 #ifdef CONFIG_PRINTK
250 DECLARE_WAIT_QUEUE_HEAD(log_wait);
251 /* the next printk record to read by syslog(READ) or /proc/kmsg */
252 static u64 syslog_seq;
253 static u32 syslog_idx;
254 static enum log_flags syslog_prev;
255 static size_t syslog_partial;
256 
257 /* index and sequence number of the first record stored in the buffer */
258 static u64 log_first_seq;
259 static u32 log_first_idx;
260 
261 /* index and sequence number of the next record to store in the buffer */
262 static u64 log_next_seq;
263 static u32 log_next_idx;
264 
265 /* the next printk record to write to the console */
266 static u64 console_seq;
267 static u32 console_idx;
268 static enum log_flags console_prev;
269 
270 /* the next printk record to read after the last 'clear' command */
271 static u64 clear_seq;
272 static u32 clear_idx;
273 
274 #define PREFIX_MAX		32
275 #define LOG_LINE_MAX		(1024 - PREFIX_MAX)
276 
277 #define LOG_LEVEL(v)		((v) & 0x07)
278 #define LOG_FACILITY(v)		((v) >> 3 & 0xff)
279 
280 /* record buffer */
281 #define LOG_ALIGN __alignof__(struct printk_log)
282 #define __LOG_BUF_LEN (1 << CONFIG_LOG_BUF_SHIFT)
283 static char __log_buf[__LOG_BUF_LEN] __aligned(LOG_ALIGN);
284 static char *log_buf = __log_buf;
285 static u32 log_buf_len = __LOG_BUF_LEN;
286 
287 /* Return log buffer address */
288 char *log_buf_addr_get(void)
289 {
290 	return log_buf;
291 }
292 
293 /* Return log buffer size */
294 u32 log_buf_len_get(void)
295 {
296 	return log_buf_len;
297 }
298 
299 /* human readable text of the record */
300 static char *log_text(const struct printk_log *msg)
301 {
302 	return (char *)msg + sizeof(struct printk_log);
303 }
304 
305 /* optional key/value pair dictionary attached to the record */
306 static char *log_dict(const struct printk_log *msg)
307 {
308 	return (char *)msg + sizeof(struct printk_log) + msg->text_len;
309 }
310 
311 /* get record by index; idx must point to valid msg */
312 static struct printk_log *log_from_idx(u32 idx)
313 {
314 	struct printk_log *msg = (struct printk_log *)(log_buf + idx);
315 
316 	/*
317 	 * A length == 0 record is the end of buffer marker. Wrap around and
318 	 * read the message at the start of the buffer.
319 	 */
320 	if (!msg->len)
321 		return (struct printk_log *)log_buf;
322 	return msg;
323 }
324 
325 /* get next record; idx must point to valid msg */
326 static u32 log_next(u32 idx)
327 {
328 	struct printk_log *msg = (struct printk_log *)(log_buf + idx);
329 
330 	/* length == 0 indicates the end of the buffer; wrap */
331 	/*
332 	 * A length == 0 record is the end of buffer marker. Wrap around and
333 	 * read the message at the start of the buffer as *this* one, and
334 	 * return the one after that.
335 	 */
336 	if (!msg->len) {
337 		msg = (struct printk_log *)log_buf;
338 		return msg->len;
339 	}
340 	return idx + msg->len;
341 }
342 
343 /*
344  * Check whether there is enough free space for the given message.
345  *
346  * The same values of first_idx and next_idx mean that the buffer
347  * is either empty or full.
348  *
349  * If the buffer is empty, we must respect the position of the indexes.
350  * They cannot be reset to the beginning of the buffer.
351  */
352 static int logbuf_has_space(u32 msg_size, bool empty)
353 {
354 	u32 free;
355 
356 	if (log_next_idx > log_first_idx || empty)
357 		free = max(log_buf_len - log_next_idx, log_first_idx);
358 	else
359 		free = log_first_idx - log_next_idx;
360 
361 	/*
362 	 * We need space also for an empty header that signalizes wrapping
363 	 * of the buffer.
364 	 */
365 	return free >= msg_size + sizeof(struct printk_log);
366 }
367 
368 static int log_make_free_space(u32 msg_size)
369 {
370 	while (log_first_seq < log_next_seq &&
371 	       !logbuf_has_space(msg_size, false)) {
372 		/* drop old messages until we have enough contiguous space */
373 		log_first_idx = log_next(log_first_idx);
374 		log_first_seq++;
375 	}
376 
377 	if (clear_seq < log_first_seq) {
378 		clear_seq = log_first_seq;
379 		clear_idx = log_first_idx;
380 	}
381 
382 	/* sequence numbers are equal, so the log buffer is empty */
383 	if (logbuf_has_space(msg_size, log_first_seq == log_next_seq))
384 		return 0;
385 
386 	return -ENOMEM;
387 }
388 
389 /* compute the message size including the padding bytes */
390 static u32 msg_used_size(u16 text_len, u16 dict_len, u32 *pad_len)
391 {
392 	u32 size;
393 
394 	size = sizeof(struct printk_log) + text_len + dict_len;
395 	*pad_len = (-size) & (LOG_ALIGN - 1);
396 	size += *pad_len;
397 
398 	return size;
399 }
400 
401 /*
402  * Define how much of the log buffer we could take at maximum. The value
403  * must be greater than two. Note that only half of the buffer is available
404  * when the index points to the middle.
405  */
406 #define MAX_LOG_TAKE_PART 4
407 static const char trunc_msg[] = "<truncated>";
408 
409 static u32 truncate_msg(u16 *text_len, u16 *trunc_msg_len,
410 			u16 *dict_len, u32 *pad_len)
411 {
412 	/*
413 	 * The message should not take the whole buffer. Otherwise, it might
414 	 * get removed too soon.
415 	 */
416 	u32 max_text_len = log_buf_len / MAX_LOG_TAKE_PART;
417 	if (*text_len > max_text_len)
418 		*text_len = max_text_len;
419 	/* enable the warning message */
420 	*trunc_msg_len = strlen(trunc_msg);
421 	/* disable the "dict" completely */
422 	*dict_len = 0;
423 	/* compute the size again, count also the warning message */
424 	return msg_used_size(*text_len + *trunc_msg_len, 0, pad_len);
425 }
426 
427 /* insert record into the buffer, discard old ones, update heads */
428 static int log_store(int facility, int level,
429 		     enum log_flags flags, u64 ts_nsec,
430 		     const char *dict, u16 dict_len,
431 		     const char *text, u16 text_len)
432 {
433 	struct printk_log *msg;
434 	u32 size, pad_len;
435 	u16 trunc_msg_len = 0;
436 
437 	/* number of '\0' padding bytes to next message */
438 	size = msg_used_size(text_len, dict_len, &pad_len);
439 
440 	if (log_make_free_space(size)) {
441 		/* truncate the message if it is too long for empty buffer */
442 		size = truncate_msg(&text_len, &trunc_msg_len,
443 				    &dict_len, &pad_len);
444 		/* survive when the log buffer is too small for trunc_msg */
445 		if (log_make_free_space(size))
446 			return 0;
447 	}
448 
449 	if (log_next_idx + size + sizeof(struct printk_log) > log_buf_len) {
450 		/*
451 		 * This message + an additional empty header does not fit
452 		 * at the end of the buffer. Add an empty header with len == 0
453 		 * to signify a wrap around.
454 		 */
455 		memset(log_buf + log_next_idx, 0, sizeof(struct printk_log));
456 		log_next_idx = 0;
457 	}
458 
459 	/* fill message */
460 	msg = (struct printk_log *)(log_buf + log_next_idx);
461 	memcpy(log_text(msg), text, text_len);
462 	msg->text_len = text_len;
463 	if (trunc_msg_len) {
464 		memcpy(log_text(msg) + text_len, trunc_msg, trunc_msg_len);
465 		msg->text_len += trunc_msg_len;
466 	}
467 	memcpy(log_dict(msg), dict, dict_len);
468 	msg->dict_len = dict_len;
469 	msg->facility = facility;
470 	msg->level = level & 7;
471 	msg->flags = flags & 0x1f;
472 	if (ts_nsec > 0)
473 		msg->ts_nsec = ts_nsec;
474 	else
475 		msg->ts_nsec = local_clock();
476 	memset(log_dict(msg) + dict_len, 0, pad_len);
477 	msg->len = size;
478 
479 	/* insert message */
480 	log_next_idx += msg->len;
481 	log_next_seq++;
482 
483 	return msg->text_len;
484 }
485 
486 int dmesg_restrict = IS_ENABLED(CONFIG_SECURITY_DMESG_RESTRICT);
487 
488 static int syslog_action_restricted(int type)
489 {
490 	if (dmesg_restrict)
491 		return 1;
492 	/*
493 	 * Unless restricted, we allow "read all" and "get buffer size"
494 	 * for everybody.
495 	 */
496 	return type != SYSLOG_ACTION_READ_ALL &&
497 	       type != SYSLOG_ACTION_SIZE_BUFFER;
498 }
499 
500 int check_syslog_permissions(int type, int source)
501 {
502 	/*
503 	 * If this is from /proc/kmsg and we've already opened it, then we've
504 	 * already done the capabilities checks at open time.
505 	 */
506 	if (source == SYSLOG_FROM_PROC && type != SYSLOG_ACTION_OPEN)
507 		goto ok;
508 
509 	if (syslog_action_restricted(type)) {
510 		if (capable(CAP_SYSLOG))
511 			goto ok;
512 		/*
513 		 * For historical reasons, accept CAP_SYS_ADMIN too, with
514 		 * a warning.
515 		 */
516 		if (capable(CAP_SYS_ADMIN)) {
517 			pr_warn_once("%s (%d): Attempt to access syslog with "
518 				     "CAP_SYS_ADMIN but no CAP_SYSLOG "
519 				     "(deprecated).\n",
520 				 current->comm, task_pid_nr(current));
521 			goto ok;
522 		}
523 		return -EPERM;
524 	}
525 ok:
526 	return security_syslog(type);
527 }
528 EXPORT_SYMBOL_GPL(check_syslog_permissions);
529 
530 static void append_char(char **pp, char *e, char c)
531 {
532 	if (*pp < e)
533 		*(*pp)++ = c;
534 }
535 
536 static ssize_t msg_print_ext_header(char *buf, size_t size,
537 				    struct printk_log *msg, u64 seq,
538 				    enum log_flags prev_flags)
539 {
540 	u64 ts_usec = msg->ts_nsec;
541 	char cont = '-';
542 
543 	do_div(ts_usec, 1000);
544 
545 	/*
546 	 * If we couldn't merge continuation line fragments during the print,
547 	 * export the stored flags to allow an optional external merge of the
548 	 * records. Merging the records isn't always neccessarily correct, like
549 	 * when we hit a race during printing. In most cases though, it produces
550 	 * better readable output. 'c' in the record flags mark the first
551 	 * fragment of a line, '+' the following.
552 	 */
553 	if (msg->flags & LOG_CONT && !(prev_flags & LOG_CONT))
554 		cont = 'c';
555 	else if ((msg->flags & LOG_CONT) ||
556 		 ((prev_flags & LOG_CONT) && !(msg->flags & LOG_PREFIX)))
557 		cont = '+';
558 
559 	return scnprintf(buf, size, "%u,%llu,%llu,%c;",
560 		       (msg->facility << 3) | msg->level, seq, ts_usec, cont);
561 }
562 
563 static ssize_t msg_print_ext_body(char *buf, size_t size,
564 				  char *dict, size_t dict_len,
565 				  char *text, size_t text_len)
566 {
567 	char *p = buf, *e = buf + size;
568 	size_t i;
569 
570 	/* escape non-printable characters */
571 	for (i = 0; i < text_len; i++) {
572 		unsigned char c = text[i];
573 
574 		if (c < ' ' || c >= 127 || c == '\\')
575 			p += scnprintf(p, e - p, "\\x%02x", c);
576 		else
577 			append_char(&p, e, c);
578 	}
579 	append_char(&p, e, '\n');
580 
581 	if (dict_len) {
582 		bool line = true;
583 
584 		for (i = 0; i < dict_len; i++) {
585 			unsigned char c = dict[i];
586 
587 			if (line) {
588 				append_char(&p, e, ' ');
589 				line = false;
590 			}
591 
592 			if (c == '\0') {
593 				append_char(&p, e, '\n');
594 				line = true;
595 				continue;
596 			}
597 
598 			if (c < ' ' || c >= 127 || c == '\\') {
599 				p += scnprintf(p, e - p, "\\x%02x", c);
600 				continue;
601 			}
602 
603 			append_char(&p, e, c);
604 		}
605 		append_char(&p, e, '\n');
606 	}
607 
608 	return p - buf;
609 }
610 
611 /* /dev/kmsg - userspace message inject/listen interface */
612 struct devkmsg_user {
613 	u64 seq;
614 	u32 idx;
615 	enum log_flags prev;
616 	struct mutex lock;
617 	char buf[CONSOLE_EXT_LOG_MAX];
618 };
619 
620 static ssize_t devkmsg_write(struct kiocb *iocb, struct iov_iter *from)
621 {
622 	char *buf, *line;
623 	int level = default_message_loglevel;
624 	int facility = 1;	/* LOG_USER */
625 	size_t len = iov_iter_count(from);
626 	ssize_t ret = len;
627 
628 	if (len > LOG_LINE_MAX)
629 		return -EINVAL;
630 	buf = kmalloc(len+1, GFP_KERNEL);
631 	if (buf == NULL)
632 		return -ENOMEM;
633 
634 	buf[len] = '\0';
635 	if (copy_from_iter(buf, len, from) != len) {
636 		kfree(buf);
637 		return -EFAULT;
638 	}
639 
640 	/*
641 	 * Extract and skip the syslog prefix <[0-9]*>. Coming from userspace
642 	 * the decimal value represents 32bit, the lower 3 bit are the log
643 	 * level, the rest are the log facility.
644 	 *
645 	 * If no prefix or no userspace facility is specified, we
646 	 * enforce LOG_USER, to be able to reliably distinguish
647 	 * kernel-generated messages from userspace-injected ones.
648 	 */
649 	line = buf;
650 	if (line[0] == '<') {
651 		char *endp = NULL;
652 		unsigned int u;
653 
654 		u = simple_strtoul(line + 1, &endp, 10);
655 		if (endp && endp[0] == '>') {
656 			level = LOG_LEVEL(u);
657 			if (LOG_FACILITY(u) != 0)
658 				facility = LOG_FACILITY(u);
659 			endp++;
660 			len -= endp - line;
661 			line = endp;
662 		}
663 	}
664 
665 	printk_emit(facility, level, NULL, 0, "%s", line);
666 	kfree(buf);
667 	return ret;
668 }
669 
670 static ssize_t devkmsg_read(struct file *file, char __user *buf,
671 			    size_t count, loff_t *ppos)
672 {
673 	struct devkmsg_user *user = file->private_data;
674 	struct printk_log *msg;
675 	size_t len;
676 	ssize_t ret;
677 
678 	if (!user)
679 		return -EBADF;
680 
681 	ret = mutex_lock_interruptible(&user->lock);
682 	if (ret)
683 		return ret;
684 	raw_spin_lock_irq(&logbuf_lock);
685 	while (user->seq == log_next_seq) {
686 		if (file->f_flags & O_NONBLOCK) {
687 			ret = -EAGAIN;
688 			raw_spin_unlock_irq(&logbuf_lock);
689 			goto out;
690 		}
691 
692 		raw_spin_unlock_irq(&logbuf_lock);
693 		ret = wait_event_interruptible(log_wait,
694 					       user->seq != log_next_seq);
695 		if (ret)
696 			goto out;
697 		raw_spin_lock_irq(&logbuf_lock);
698 	}
699 
700 	if (user->seq < log_first_seq) {
701 		/* our last seen message is gone, return error and reset */
702 		user->idx = log_first_idx;
703 		user->seq = log_first_seq;
704 		ret = -EPIPE;
705 		raw_spin_unlock_irq(&logbuf_lock);
706 		goto out;
707 	}
708 
709 	msg = log_from_idx(user->idx);
710 	len = msg_print_ext_header(user->buf, sizeof(user->buf),
711 				   msg, user->seq, user->prev);
712 	len += msg_print_ext_body(user->buf + len, sizeof(user->buf) - len,
713 				  log_dict(msg), msg->dict_len,
714 				  log_text(msg), msg->text_len);
715 
716 	user->prev = msg->flags;
717 	user->idx = log_next(user->idx);
718 	user->seq++;
719 	raw_spin_unlock_irq(&logbuf_lock);
720 
721 	if (len > count) {
722 		ret = -EINVAL;
723 		goto out;
724 	}
725 
726 	if (copy_to_user(buf, user->buf, len)) {
727 		ret = -EFAULT;
728 		goto out;
729 	}
730 	ret = len;
731 out:
732 	mutex_unlock(&user->lock);
733 	return ret;
734 }
735 
736 static loff_t devkmsg_llseek(struct file *file, loff_t offset, int whence)
737 {
738 	struct devkmsg_user *user = file->private_data;
739 	loff_t ret = 0;
740 
741 	if (!user)
742 		return -EBADF;
743 	if (offset)
744 		return -ESPIPE;
745 
746 	raw_spin_lock_irq(&logbuf_lock);
747 	switch (whence) {
748 	case SEEK_SET:
749 		/* the first record */
750 		user->idx = log_first_idx;
751 		user->seq = log_first_seq;
752 		break;
753 	case SEEK_DATA:
754 		/*
755 		 * The first record after the last SYSLOG_ACTION_CLEAR,
756 		 * like issued by 'dmesg -c'. Reading /dev/kmsg itself
757 		 * changes no global state, and does not clear anything.
758 		 */
759 		user->idx = clear_idx;
760 		user->seq = clear_seq;
761 		break;
762 	case SEEK_END:
763 		/* after the last record */
764 		user->idx = log_next_idx;
765 		user->seq = log_next_seq;
766 		break;
767 	default:
768 		ret = -EINVAL;
769 	}
770 	raw_spin_unlock_irq(&logbuf_lock);
771 	return ret;
772 }
773 
774 static unsigned int devkmsg_poll(struct file *file, poll_table *wait)
775 {
776 	struct devkmsg_user *user = file->private_data;
777 	int ret = 0;
778 
779 	if (!user)
780 		return POLLERR|POLLNVAL;
781 
782 	poll_wait(file, &log_wait, wait);
783 
784 	raw_spin_lock_irq(&logbuf_lock);
785 	if (user->seq < log_next_seq) {
786 		/* return error when data has vanished underneath us */
787 		if (user->seq < log_first_seq)
788 			ret = POLLIN|POLLRDNORM|POLLERR|POLLPRI;
789 		else
790 			ret = POLLIN|POLLRDNORM;
791 	}
792 	raw_spin_unlock_irq(&logbuf_lock);
793 
794 	return ret;
795 }
796 
797 static int devkmsg_open(struct inode *inode, struct file *file)
798 {
799 	struct devkmsg_user *user;
800 	int err;
801 
802 	/* write-only does not need any file context */
803 	if ((file->f_flags & O_ACCMODE) == O_WRONLY)
804 		return 0;
805 
806 	err = check_syslog_permissions(SYSLOG_ACTION_READ_ALL,
807 				       SYSLOG_FROM_READER);
808 	if (err)
809 		return err;
810 
811 	user = kmalloc(sizeof(struct devkmsg_user), GFP_KERNEL);
812 	if (!user)
813 		return -ENOMEM;
814 
815 	mutex_init(&user->lock);
816 
817 	raw_spin_lock_irq(&logbuf_lock);
818 	user->idx = log_first_idx;
819 	user->seq = log_first_seq;
820 	raw_spin_unlock_irq(&logbuf_lock);
821 
822 	file->private_data = user;
823 	return 0;
824 }
825 
826 static int devkmsg_release(struct inode *inode, struct file *file)
827 {
828 	struct devkmsg_user *user = file->private_data;
829 
830 	if (!user)
831 		return 0;
832 
833 	mutex_destroy(&user->lock);
834 	kfree(user);
835 	return 0;
836 }
837 
838 const struct file_operations kmsg_fops = {
839 	.open = devkmsg_open,
840 	.read = devkmsg_read,
841 	.write_iter = devkmsg_write,
842 	.llseek = devkmsg_llseek,
843 	.poll = devkmsg_poll,
844 	.release = devkmsg_release,
845 };
846 
847 #ifdef CONFIG_KEXEC_CORE
848 /*
849  * This appends the listed symbols to /proc/vmcore
850  *
851  * /proc/vmcore is used by various utilities, like crash and makedumpfile to
852  * obtain access to symbols that are otherwise very difficult to locate.  These
853  * symbols are specifically used so that utilities can access and extract the
854  * dmesg log from a vmcore file after a crash.
855  */
856 void log_buf_kexec_setup(void)
857 {
858 	VMCOREINFO_SYMBOL(log_buf);
859 	VMCOREINFO_SYMBOL(log_buf_len);
860 	VMCOREINFO_SYMBOL(log_first_idx);
861 	VMCOREINFO_SYMBOL(clear_idx);
862 	VMCOREINFO_SYMBOL(log_next_idx);
863 	/*
864 	 * Export struct printk_log size and field offsets. User space tools can
865 	 * parse it and detect any changes to structure down the line.
866 	 */
867 	VMCOREINFO_STRUCT_SIZE(printk_log);
868 	VMCOREINFO_OFFSET(printk_log, ts_nsec);
869 	VMCOREINFO_OFFSET(printk_log, len);
870 	VMCOREINFO_OFFSET(printk_log, text_len);
871 	VMCOREINFO_OFFSET(printk_log, dict_len);
872 }
873 #endif
874 
875 /* requested log_buf_len from kernel cmdline */
876 static unsigned long __initdata new_log_buf_len;
877 
878 /* we practice scaling the ring buffer by powers of 2 */
879 static void __init log_buf_len_update(unsigned size)
880 {
881 	if (size)
882 		size = roundup_pow_of_two(size);
883 	if (size > log_buf_len)
884 		new_log_buf_len = size;
885 }
886 
887 /* save requested log_buf_len since it's too early to process it */
888 static int __init log_buf_len_setup(char *str)
889 {
890 	unsigned size = memparse(str, &str);
891 
892 	log_buf_len_update(size);
893 
894 	return 0;
895 }
896 early_param("log_buf_len", log_buf_len_setup);
897 
898 #ifdef CONFIG_SMP
899 #define __LOG_CPU_MAX_BUF_LEN (1 << CONFIG_LOG_CPU_MAX_BUF_SHIFT)
900 
901 static void __init log_buf_add_cpu(void)
902 {
903 	unsigned int cpu_extra;
904 
905 	/*
906 	 * archs should set up cpu_possible_bits properly with
907 	 * set_cpu_possible() after setup_arch() but just in
908 	 * case lets ensure this is valid.
909 	 */
910 	if (num_possible_cpus() == 1)
911 		return;
912 
913 	cpu_extra = (num_possible_cpus() - 1) * __LOG_CPU_MAX_BUF_LEN;
914 
915 	/* by default this will only continue through for large > 64 CPUs */
916 	if (cpu_extra <= __LOG_BUF_LEN / 2)
917 		return;
918 
919 	pr_info("log_buf_len individual max cpu contribution: %d bytes\n",
920 		__LOG_CPU_MAX_BUF_LEN);
921 	pr_info("log_buf_len total cpu_extra contributions: %d bytes\n",
922 		cpu_extra);
923 	pr_info("log_buf_len min size: %d bytes\n", __LOG_BUF_LEN);
924 
925 	log_buf_len_update(cpu_extra + __LOG_BUF_LEN);
926 }
927 #else /* !CONFIG_SMP */
928 static inline void log_buf_add_cpu(void) {}
929 #endif /* CONFIG_SMP */
930 
931 void __init setup_log_buf(int early)
932 {
933 	unsigned long flags;
934 	char *new_log_buf;
935 	int free;
936 
937 	if (log_buf != __log_buf)
938 		return;
939 
940 	if (!early && !new_log_buf_len)
941 		log_buf_add_cpu();
942 
943 	if (!new_log_buf_len)
944 		return;
945 
946 	if (early) {
947 		new_log_buf =
948 			memblock_virt_alloc(new_log_buf_len, LOG_ALIGN);
949 	} else {
950 		new_log_buf = memblock_virt_alloc_nopanic(new_log_buf_len,
951 							  LOG_ALIGN);
952 	}
953 
954 	if (unlikely(!new_log_buf)) {
955 		pr_err("log_buf_len: %ld bytes not available\n",
956 			new_log_buf_len);
957 		return;
958 	}
959 
960 	raw_spin_lock_irqsave(&logbuf_lock, flags);
961 	log_buf_len = new_log_buf_len;
962 	log_buf = new_log_buf;
963 	new_log_buf_len = 0;
964 	free = __LOG_BUF_LEN - log_next_idx;
965 	memcpy(log_buf, __log_buf, __LOG_BUF_LEN);
966 	raw_spin_unlock_irqrestore(&logbuf_lock, flags);
967 
968 	pr_info("log_buf_len: %d bytes\n", log_buf_len);
969 	pr_info("early log buf free: %d(%d%%)\n",
970 		free, (free * 100) / __LOG_BUF_LEN);
971 }
972 
973 static bool __read_mostly ignore_loglevel;
974 
975 static int __init ignore_loglevel_setup(char *str)
976 {
977 	ignore_loglevel = true;
978 	pr_info("debug: ignoring loglevel setting.\n");
979 
980 	return 0;
981 }
982 
983 early_param("ignore_loglevel", ignore_loglevel_setup);
984 module_param(ignore_loglevel, bool, S_IRUGO | S_IWUSR);
985 MODULE_PARM_DESC(ignore_loglevel,
986 		 "ignore loglevel setting (prints all kernel messages to the console)");
987 
988 #ifdef CONFIG_BOOT_PRINTK_DELAY
989 
990 static int boot_delay; /* msecs delay after each printk during bootup */
991 static unsigned long long loops_per_msec;	/* based on boot_delay */
992 
993 static int __init boot_delay_setup(char *str)
994 {
995 	unsigned long lpj;
996 
997 	lpj = preset_lpj ? preset_lpj : 1000000;	/* some guess */
998 	loops_per_msec = (unsigned long long)lpj / 1000 * HZ;
999 
1000 	get_option(&str, &boot_delay);
1001 	if (boot_delay > 10 * 1000)
1002 		boot_delay = 0;
1003 
1004 	pr_debug("boot_delay: %u, preset_lpj: %ld, lpj: %lu, "
1005 		"HZ: %d, loops_per_msec: %llu\n",
1006 		boot_delay, preset_lpj, lpj, HZ, loops_per_msec);
1007 	return 0;
1008 }
1009 early_param("boot_delay", boot_delay_setup);
1010 
1011 static void boot_delay_msec(int level)
1012 {
1013 	unsigned long long k;
1014 	unsigned long timeout;
1015 
1016 	if ((boot_delay == 0 || system_state != SYSTEM_BOOTING)
1017 		|| (level >= console_loglevel && !ignore_loglevel)) {
1018 		return;
1019 	}
1020 
1021 	k = (unsigned long long)loops_per_msec * boot_delay;
1022 
1023 	timeout = jiffies + msecs_to_jiffies(boot_delay);
1024 	while (k) {
1025 		k--;
1026 		cpu_relax();
1027 		/*
1028 		 * use (volatile) jiffies to prevent
1029 		 * compiler reduction; loop termination via jiffies
1030 		 * is secondary and may or may not happen.
1031 		 */
1032 		if (time_after(jiffies, timeout))
1033 			break;
1034 		touch_nmi_watchdog();
1035 	}
1036 }
1037 #else
1038 static inline void boot_delay_msec(int level)
1039 {
1040 }
1041 #endif
1042 
1043 static bool printk_time = IS_ENABLED(CONFIG_PRINTK_TIME);
1044 module_param_named(time, printk_time, bool, S_IRUGO | S_IWUSR);
1045 
1046 static size_t print_time(u64 ts, char *buf)
1047 {
1048 	unsigned long rem_nsec;
1049 
1050 	if (!printk_time)
1051 		return 0;
1052 
1053 	rem_nsec = do_div(ts, 1000000000);
1054 
1055 	if (!buf)
1056 		return snprintf(NULL, 0, "[%5lu.000000] ", (unsigned long)ts);
1057 
1058 	return sprintf(buf, "[%5lu.%06lu] ",
1059 		       (unsigned long)ts, rem_nsec / 1000);
1060 }
1061 
1062 static size_t print_prefix(const struct printk_log *msg, bool syslog, char *buf)
1063 {
1064 	size_t len = 0;
1065 	unsigned int prefix = (msg->facility << 3) | msg->level;
1066 
1067 	if (syslog) {
1068 		if (buf) {
1069 			len += sprintf(buf, "<%u>", prefix);
1070 		} else {
1071 			len += 3;
1072 			if (prefix > 999)
1073 				len += 3;
1074 			else if (prefix > 99)
1075 				len += 2;
1076 			else if (prefix > 9)
1077 				len++;
1078 		}
1079 	}
1080 
1081 	len += print_time(msg->ts_nsec, buf ? buf + len : NULL);
1082 	return len;
1083 }
1084 
1085 static size_t msg_print_text(const struct printk_log *msg, enum log_flags prev,
1086 			     bool syslog, char *buf, size_t size)
1087 {
1088 	const char *text = log_text(msg);
1089 	size_t text_size = msg->text_len;
1090 	bool prefix = true;
1091 	bool newline = true;
1092 	size_t len = 0;
1093 
1094 	if ((prev & LOG_CONT) && !(msg->flags & LOG_PREFIX))
1095 		prefix = false;
1096 
1097 	if (msg->flags & LOG_CONT) {
1098 		if ((prev & LOG_CONT) && !(prev & LOG_NEWLINE))
1099 			prefix = false;
1100 
1101 		if (!(msg->flags & LOG_NEWLINE))
1102 			newline = false;
1103 	}
1104 
1105 	do {
1106 		const char *next = memchr(text, '\n', text_size);
1107 		size_t text_len;
1108 
1109 		if (next) {
1110 			text_len = next - text;
1111 			next++;
1112 			text_size -= next - text;
1113 		} else {
1114 			text_len = text_size;
1115 		}
1116 
1117 		if (buf) {
1118 			if (print_prefix(msg, syslog, NULL) +
1119 			    text_len + 1 >= size - len)
1120 				break;
1121 
1122 			if (prefix)
1123 				len += print_prefix(msg, syslog, buf + len);
1124 			memcpy(buf + len, text, text_len);
1125 			len += text_len;
1126 			if (next || newline)
1127 				buf[len++] = '\n';
1128 		} else {
1129 			/* SYSLOG_ACTION_* buffer size only calculation */
1130 			if (prefix)
1131 				len += print_prefix(msg, syslog, NULL);
1132 			len += text_len;
1133 			if (next || newline)
1134 				len++;
1135 		}
1136 
1137 		prefix = true;
1138 		text = next;
1139 	} while (text);
1140 
1141 	return len;
1142 }
1143 
1144 static int syslog_print(char __user *buf, int size)
1145 {
1146 	char *text;
1147 	struct printk_log *msg;
1148 	int len = 0;
1149 
1150 	text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
1151 	if (!text)
1152 		return -ENOMEM;
1153 
1154 	while (size > 0) {
1155 		size_t n;
1156 		size_t skip;
1157 
1158 		raw_spin_lock_irq(&logbuf_lock);
1159 		if (syslog_seq < log_first_seq) {
1160 			/* messages are gone, move to first one */
1161 			syslog_seq = log_first_seq;
1162 			syslog_idx = log_first_idx;
1163 			syslog_prev = 0;
1164 			syslog_partial = 0;
1165 		}
1166 		if (syslog_seq == log_next_seq) {
1167 			raw_spin_unlock_irq(&logbuf_lock);
1168 			break;
1169 		}
1170 
1171 		skip = syslog_partial;
1172 		msg = log_from_idx(syslog_idx);
1173 		n = msg_print_text(msg, syslog_prev, true, text,
1174 				   LOG_LINE_MAX + PREFIX_MAX);
1175 		if (n - syslog_partial <= size) {
1176 			/* message fits into buffer, move forward */
1177 			syslog_idx = log_next(syslog_idx);
1178 			syslog_seq++;
1179 			syslog_prev = msg->flags;
1180 			n -= syslog_partial;
1181 			syslog_partial = 0;
1182 		} else if (!len){
1183 			/* partial read(), remember position */
1184 			n = size;
1185 			syslog_partial += n;
1186 		} else
1187 			n = 0;
1188 		raw_spin_unlock_irq(&logbuf_lock);
1189 
1190 		if (!n)
1191 			break;
1192 
1193 		if (copy_to_user(buf, text + skip, n)) {
1194 			if (!len)
1195 				len = -EFAULT;
1196 			break;
1197 		}
1198 
1199 		len += n;
1200 		size -= n;
1201 		buf += n;
1202 	}
1203 
1204 	kfree(text);
1205 	return len;
1206 }
1207 
1208 static int syslog_print_all(char __user *buf, int size, bool clear)
1209 {
1210 	char *text;
1211 	int len = 0;
1212 
1213 	text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
1214 	if (!text)
1215 		return -ENOMEM;
1216 
1217 	raw_spin_lock_irq(&logbuf_lock);
1218 	if (buf) {
1219 		u64 next_seq;
1220 		u64 seq;
1221 		u32 idx;
1222 		enum log_flags prev;
1223 
1224 		/*
1225 		 * Find first record that fits, including all following records,
1226 		 * into the user-provided buffer for this dump.
1227 		 */
1228 		seq = clear_seq;
1229 		idx = clear_idx;
1230 		prev = 0;
1231 		while (seq < log_next_seq) {
1232 			struct printk_log *msg = log_from_idx(idx);
1233 
1234 			len += msg_print_text(msg, prev, true, NULL, 0);
1235 			prev = msg->flags;
1236 			idx = log_next(idx);
1237 			seq++;
1238 		}
1239 
1240 		/* move first record forward until length fits into the buffer */
1241 		seq = clear_seq;
1242 		idx = clear_idx;
1243 		prev = 0;
1244 		while (len > size && seq < log_next_seq) {
1245 			struct printk_log *msg = log_from_idx(idx);
1246 
1247 			len -= msg_print_text(msg, prev, true, NULL, 0);
1248 			prev = msg->flags;
1249 			idx = log_next(idx);
1250 			seq++;
1251 		}
1252 
1253 		/* last message fitting into this dump */
1254 		next_seq = log_next_seq;
1255 
1256 		len = 0;
1257 		while (len >= 0 && seq < next_seq) {
1258 			struct printk_log *msg = log_from_idx(idx);
1259 			int textlen;
1260 
1261 			textlen = msg_print_text(msg, prev, true, text,
1262 						 LOG_LINE_MAX + PREFIX_MAX);
1263 			if (textlen < 0) {
1264 				len = textlen;
1265 				break;
1266 			}
1267 			idx = log_next(idx);
1268 			seq++;
1269 			prev = msg->flags;
1270 
1271 			raw_spin_unlock_irq(&logbuf_lock);
1272 			if (copy_to_user(buf + len, text, textlen))
1273 				len = -EFAULT;
1274 			else
1275 				len += textlen;
1276 			raw_spin_lock_irq(&logbuf_lock);
1277 
1278 			if (seq < log_first_seq) {
1279 				/* messages are gone, move to next one */
1280 				seq = log_first_seq;
1281 				idx = log_first_idx;
1282 				prev = 0;
1283 			}
1284 		}
1285 	}
1286 
1287 	if (clear) {
1288 		clear_seq = log_next_seq;
1289 		clear_idx = log_next_idx;
1290 	}
1291 	raw_spin_unlock_irq(&logbuf_lock);
1292 
1293 	kfree(text);
1294 	return len;
1295 }
1296 
1297 int do_syslog(int type, char __user *buf, int len, int source)
1298 {
1299 	bool clear = false;
1300 	static int saved_console_loglevel = LOGLEVEL_DEFAULT;
1301 	int error;
1302 
1303 	error = check_syslog_permissions(type, source);
1304 	if (error)
1305 		goto out;
1306 
1307 	switch (type) {
1308 	case SYSLOG_ACTION_CLOSE:	/* Close log */
1309 		break;
1310 	case SYSLOG_ACTION_OPEN:	/* Open log */
1311 		break;
1312 	case SYSLOG_ACTION_READ:	/* Read from log */
1313 		error = -EINVAL;
1314 		if (!buf || len < 0)
1315 			goto out;
1316 		error = 0;
1317 		if (!len)
1318 			goto out;
1319 		if (!access_ok(VERIFY_WRITE, buf, len)) {
1320 			error = -EFAULT;
1321 			goto out;
1322 		}
1323 		error = wait_event_interruptible(log_wait,
1324 						 syslog_seq != log_next_seq);
1325 		if (error)
1326 			goto out;
1327 		error = syslog_print(buf, len);
1328 		break;
1329 	/* Read/clear last kernel messages */
1330 	case SYSLOG_ACTION_READ_CLEAR:
1331 		clear = true;
1332 		/* FALL THRU */
1333 	/* Read last kernel messages */
1334 	case SYSLOG_ACTION_READ_ALL:
1335 		error = -EINVAL;
1336 		if (!buf || len < 0)
1337 			goto out;
1338 		error = 0;
1339 		if (!len)
1340 			goto out;
1341 		if (!access_ok(VERIFY_WRITE, buf, len)) {
1342 			error = -EFAULT;
1343 			goto out;
1344 		}
1345 		error = syslog_print_all(buf, len, clear);
1346 		break;
1347 	/* Clear ring buffer */
1348 	case SYSLOG_ACTION_CLEAR:
1349 		syslog_print_all(NULL, 0, true);
1350 		break;
1351 	/* Disable logging to console */
1352 	case SYSLOG_ACTION_CONSOLE_OFF:
1353 		if (saved_console_loglevel == LOGLEVEL_DEFAULT)
1354 			saved_console_loglevel = console_loglevel;
1355 		console_loglevel = minimum_console_loglevel;
1356 		break;
1357 	/* Enable logging to console */
1358 	case SYSLOG_ACTION_CONSOLE_ON:
1359 		if (saved_console_loglevel != LOGLEVEL_DEFAULT) {
1360 			console_loglevel = saved_console_loglevel;
1361 			saved_console_loglevel = LOGLEVEL_DEFAULT;
1362 		}
1363 		break;
1364 	/* Set level of messages printed to console */
1365 	case SYSLOG_ACTION_CONSOLE_LEVEL:
1366 		error = -EINVAL;
1367 		if (len < 1 || len > 8)
1368 			goto out;
1369 		if (len < minimum_console_loglevel)
1370 			len = minimum_console_loglevel;
1371 		console_loglevel = len;
1372 		/* Implicitly re-enable logging to console */
1373 		saved_console_loglevel = LOGLEVEL_DEFAULT;
1374 		error = 0;
1375 		break;
1376 	/* Number of chars in the log buffer */
1377 	case SYSLOG_ACTION_SIZE_UNREAD:
1378 		raw_spin_lock_irq(&logbuf_lock);
1379 		if (syslog_seq < log_first_seq) {
1380 			/* messages are gone, move to first one */
1381 			syslog_seq = log_first_seq;
1382 			syslog_idx = log_first_idx;
1383 			syslog_prev = 0;
1384 			syslog_partial = 0;
1385 		}
1386 		if (source == SYSLOG_FROM_PROC) {
1387 			/*
1388 			 * Short-cut for poll(/"proc/kmsg") which simply checks
1389 			 * for pending data, not the size; return the count of
1390 			 * records, not the length.
1391 			 */
1392 			error = log_next_seq - syslog_seq;
1393 		} else {
1394 			u64 seq = syslog_seq;
1395 			u32 idx = syslog_idx;
1396 			enum log_flags prev = syslog_prev;
1397 
1398 			error = 0;
1399 			while (seq < log_next_seq) {
1400 				struct printk_log *msg = log_from_idx(idx);
1401 
1402 				error += msg_print_text(msg, prev, true, NULL, 0);
1403 				idx = log_next(idx);
1404 				seq++;
1405 				prev = msg->flags;
1406 			}
1407 			error -= syslog_partial;
1408 		}
1409 		raw_spin_unlock_irq(&logbuf_lock);
1410 		break;
1411 	/* Size of the log buffer */
1412 	case SYSLOG_ACTION_SIZE_BUFFER:
1413 		error = log_buf_len;
1414 		break;
1415 	default:
1416 		error = -EINVAL;
1417 		break;
1418 	}
1419 out:
1420 	return error;
1421 }
1422 
1423 SYSCALL_DEFINE3(syslog, int, type, char __user *, buf, int, len)
1424 {
1425 	return do_syslog(type, buf, len, SYSLOG_FROM_READER);
1426 }
1427 
1428 /*
1429  * Call the console drivers, asking them to write out
1430  * log_buf[start] to log_buf[end - 1].
1431  * The console_lock must be held.
1432  */
1433 static void call_console_drivers(int level,
1434 				 const char *ext_text, size_t ext_len,
1435 				 const char *text, size_t len)
1436 {
1437 	struct console *con;
1438 
1439 	trace_console(text, len);
1440 
1441 	if (level >= console_loglevel && !ignore_loglevel)
1442 		return;
1443 	if (!console_drivers)
1444 		return;
1445 
1446 	for_each_console(con) {
1447 		if (exclusive_console && con != exclusive_console)
1448 			continue;
1449 		if (!(con->flags & CON_ENABLED))
1450 			continue;
1451 		if (!con->write)
1452 			continue;
1453 		if (!cpu_online(smp_processor_id()) &&
1454 		    !(con->flags & CON_ANYTIME))
1455 			continue;
1456 		if (con->flags & CON_EXTENDED)
1457 			con->write(con, ext_text, ext_len);
1458 		else
1459 			con->write(con, text, len);
1460 	}
1461 }
1462 
1463 /*
1464  * Zap console related locks when oopsing.
1465  * To leave time for slow consoles to print a full oops,
1466  * only zap at most once every 30 seconds.
1467  */
1468 static void zap_locks(void)
1469 {
1470 	static unsigned long oops_timestamp;
1471 
1472 	if (time_after_eq(jiffies, oops_timestamp) &&
1473 	    !time_after(jiffies, oops_timestamp + 30 * HZ))
1474 		return;
1475 
1476 	oops_timestamp = jiffies;
1477 
1478 	debug_locks_off();
1479 	/* If a crash is occurring, make sure we can't deadlock */
1480 	raw_spin_lock_init(&logbuf_lock);
1481 	/* And make sure that we print immediately */
1482 	sema_init(&console_sem, 1);
1483 }
1484 
1485 int printk_delay_msec __read_mostly;
1486 
1487 static inline void printk_delay(void)
1488 {
1489 	if (unlikely(printk_delay_msec)) {
1490 		int m = printk_delay_msec;
1491 
1492 		while (m--) {
1493 			mdelay(1);
1494 			touch_nmi_watchdog();
1495 		}
1496 	}
1497 }
1498 
1499 /*
1500  * Continuation lines are buffered, and not committed to the record buffer
1501  * until the line is complete, or a race forces it. The line fragments
1502  * though, are printed immediately to the consoles to ensure everything has
1503  * reached the console in case of a kernel crash.
1504  */
1505 static struct cont {
1506 	char buf[LOG_LINE_MAX];
1507 	size_t len;			/* length == 0 means unused buffer */
1508 	size_t cons;			/* bytes written to console */
1509 	struct task_struct *owner;	/* task of first print*/
1510 	u64 ts_nsec;			/* time of first print */
1511 	u8 level;			/* log level of first message */
1512 	u8 facility;			/* log facility of first message */
1513 	enum log_flags flags;		/* prefix, newline flags */
1514 	bool flushed:1;			/* buffer sealed and committed */
1515 } cont;
1516 
1517 static void cont_flush(enum log_flags flags)
1518 {
1519 	if (cont.flushed)
1520 		return;
1521 	if (cont.len == 0)
1522 		return;
1523 
1524 	if (cont.cons) {
1525 		/*
1526 		 * If a fragment of this line was directly flushed to the
1527 		 * console; wait for the console to pick up the rest of the
1528 		 * line. LOG_NOCONS suppresses a duplicated output.
1529 		 */
1530 		log_store(cont.facility, cont.level, flags | LOG_NOCONS,
1531 			  cont.ts_nsec, NULL, 0, cont.buf, cont.len);
1532 		cont.flags = flags;
1533 		cont.flushed = true;
1534 	} else {
1535 		/*
1536 		 * If no fragment of this line ever reached the console,
1537 		 * just submit it to the store and free the buffer.
1538 		 */
1539 		log_store(cont.facility, cont.level, flags, 0,
1540 			  NULL, 0, cont.buf, cont.len);
1541 		cont.len = 0;
1542 	}
1543 }
1544 
1545 static bool cont_add(int facility, int level, const char *text, size_t len)
1546 {
1547 	if (cont.len && cont.flushed)
1548 		return false;
1549 
1550 	/*
1551 	 * If ext consoles are present, flush and skip in-kernel
1552 	 * continuation.  See nr_ext_console_drivers definition.  Also, if
1553 	 * the line gets too long, split it up in separate records.
1554 	 */
1555 	if (nr_ext_console_drivers || cont.len + len > sizeof(cont.buf)) {
1556 		cont_flush(LOG_CONT);
1557 		return false;
1558 	}
1559 
1560 	if (!cont.len) {
1561 		cont.facility = facility;
1562 		cont.level = level;
1563 		cont.owner = current;
1564 		cont.ts_nsec = local_clock();
1565 		cont.flags = 0;
1566 		cont.cons = 0;
1567 		cont.flushed = false;
1568 	}
1569 
1570 	memcpy(cont.buf + cont.len, text, len);
1571 	cont.len += len;
1572 
1573 	if (cont.len > (sizeof(cont.buf) * 80) / 100)
1574 		cont_flush(LOG_CONT);
1575 
1576 	return true;
1577 }
1578 
1579 static size_t cont_print_text(char *text, size_t size)
1580 {
1581 	size_t textlen = 0;
1582 	size_t len;
1583 
1584 	if (cont.cons == 0 && (console_prev & LOG_NEWLINE)) {
1585 		textlen += print_time(cont.ts_nsec, text);
1586 		size -= textlen;
1587 	}
1588 
1589 	len = cont.len - cont.cons;
1590 	if (len > 0) {
1591 		if (len+1 > size)
1592 			len = size-1;
1593 		memcpy(text + textlen, cont.buf + cont.cons, len);
1594 		textlen += len;
1595 		cont.cons = cont.len;
1596 	}
1597 
1598 	if (cont.flushed) {
1599 		if (cont.flags & LOG_NEWLINE)
1600 			text[textlen++] = '\n';
1601 		/* got everything, release buffer */
1602 		cont.len = 0;
1603 	}
1604 	return textlen;
1605 }
1606 
1607 asmlinkage int vprintk_emit(int facility, int level,
1608 			    const char *dict, size_t dictlen,
1609 			    const char *fmt, va_list args)
1610 {
1611 	static bool recursion_bug;
1612 	static char textbuf[LOG_LINE_MAX];
1613 	char *text = textbuf;
1614 	size_t text_len = 0;
1615 	enum log_flags lflags = 0;
1616 	unsigned long flags;
1617 	int this_cpu;
1618 	int printed_len = 0;
1619 	bool in_sched = false;
1620 	/* cpu currently holding logbuf_lock in this function */
1621 	static unsigned int logbuf_cpu = UINT_MAX;
1622 
1623 	if (level == LOGLEVEL_SCHED) {
1624 		level = LOGLEVEL_DEFAULT;
1625 		in_sched = true;
1626 	}
1627 
1628 	boot_delay_msec(level);
1629 	printk_delay();
1630 
1631 	local_irq_save(flags);
1632 	this_cpu = smp_processor_id();
1633 
1634 	/*
1635 	 * Ouch, printk recursed into itself!
1636 	 */
1637 	if (unlikely(logbuf_cpu == this_cpu)) {
1638 		/*
1639 		 * If a crash is occurring during printk() on this CPU,
1640 		 * then try to get the crash message out but make sure
1641 		 * we can't deadlock. Otherwise just return to avoid the
1642 		 * recursion and return - but flag the recursion so that
1643 		 * it can be printed at the next appropriate moment:
1644 		 */
1645 		if (!oops_in_progress && !lockdep_recursing(current)) {
1646 			recursion_bug = true;
1647 			local_irq_restore(flags);
1648 			return 0;
1649 		}
1650 		zap_locks();
1651 	}
1652 
1653 	lockdep_off();
1654 	/* This stops the holder of console_sem just where we want him */
1655 	raw_spin_lock(&logbuf_lock);
1656 	logbuf_cpu = this_cpu;
1657 
1658 	if (unlikely(recursion_bug)) {
1659 		static const char recursion_msg[] =
1660 			"BUG: recent printk recursion!";
1661 
1662 		recursion_bug = false;
1663 		/* emit KERN_CRIT message */
1664 		printed_len += log_store(0, 2, LOG_PREFIX|LOG_NEWLINE, 0,
1665 					 NULL, 0, recursion_msg,
1666 					 strlen(recursion_msg));
1667 	}
1668 
1669 	/*
1670 	 * The printf needs to come first; we need the syslog
1671 	 * prefix which might be passed-in as a parameter.
1672 	 */
1673 	text_len = vscnprintf(text, sizeof(textbuf), fmt, args);
1674 
1675 	/* mark and strip a trailing newline */
1676 	if (text_len && text[text_len-1] == '\n') {
1677 		text_len--;
1678 		lflags |= LOG_NEWLINE;
1679 	}
1680 
1681 	/* strip kernel syslog prefix and extract log level or control flags */
1682 	if (facility == 0) {
1683 		int kern_level = printk_get_level(text);
1684 
1685 		if (kern_level) {
1686 			const char *end_of_header = printk_skip_level(text);
1687 			switch (kern_level) {
1688 			case '0' ... '7':
1689 				if (level == LOGLEVEL_DEFAULT)
1690 					level = kern_level - '0';
1691 				/* fallthrough */
1692 			case 'd':	/* KERN_DEFAULT */
1693 				lflags |= LOG_PREFIX;
1694 			}
1695 			/*
1696 			 * No need to check length here because vscnprintf
1697 			 * put '\0' at the end of the string. Only valid and
1698 			 * newly printed level is detected.
1699 			 */
1700 			text_len -= end_of_header - text;
1701 			text = (char *)end_of_header;
1702 		}
1703 	}
1704 
1705 	if (level == LOGLEVEL_DEFAULT)
1706 		level = default_message_loglevel;
1707 
1708 	if (dict)
1709 		lflags |= LOG_PREFIX|LOG_NEWLINE;
1710 
1711 	if (!(lflags & LOG_NEWLINE)) {
1712 		/*
1713 		 * Flush the conflicting buffer. An earlier newline was missing,
1714 		 * or another task also prints continuation lines.
1715 		 */
1716 		if (cont.len && (lflags & LOG_PREFIX || cont.owner != current))
1717 			cont_flush(LOG_NEWLINE);
1718 
1719 		/* buffer line if possible, otherwise store it right away */
1720 		if (cont_add(facility, level, text, text_len))
1721 			printed_len += text_len;
1722 		else
1723 			printed_len += log_store(facility, level,
1724 						 lflags | LOG_CONT, 0,
1725 						 dict, dictlen, text, text_len);
1726 	} else {
1727 		bool stored = false;
1728 
1729 		/*
1730 		 * If an earlier newline was missing and it was the same task,
1731 		 * either merge it with the current buffer and flush, or if
1732 		 * there was a race with interrupts (prefix == true) then just
1733 		 * flush it out and store this line separately.
1734 		 * If the preceding printk was from a different task and missed
1735 		 * a newline, flush and append the newline.
1736 		 */
1737 		if (cont.len) {
1738 			if (cont.owner == current && !(lflags & LOG_PREFIX))
1739 				stored = cont_add(facility, level, text,
1740 						  text_len);
1741 			cont_flush(LOG_NEWLINE);
1742 		}
1743 
1744 		if (stored)
1745 			printed_len += text_len;
1746 		else
1747 			printed_len += log_store(facility, level, lflags, 0,
1748 						 dict, dictlen, text, text_len);
1749 	}
1750 
1751 	logbuf_cpu = UINT_MAX;
1752 	raw_spin_unlock(&logbuf_lock);
1753 	lockdep_on();
1754 	local_irq_restore(flags);
1755 
1756 	/* If called from the scheduler, we can not call up(). */
1757 	if (!in_sched) {
1758 		lockdep_off();
1759 		/*
1760 		 * Try to acquire and then immediately release the console
1761 		 * semaphore.  The release will print out buffers and wake up
1762 		 * /dev/kmsg and syslog() users.
1763 		 */
1764 		if (console_trylock())
1765 			console_unlock();
1766 		lockdep_on();
1767 	}
1768 
1769 	return printed_len;
1770 }
1771 EXPORT_SYMBOL(vprintk_emit);
1772 
1773 asmlinkage int vprintk(const char *fmt, va_list args)
1774 {
1775 	return vprintk_emit(0, LOGLEVEL_DEFAULT, NULL, 0, fmt, args);
1776 }
1777 EXPORT_SYMBOL(vprintk);
1778 
1779 asmlinkage int printk_emit(int facility, int level,
1780 			   const char *dict, size_t dictlen,
1781 			   const char *fmt, ...)
1782 {
1783 	va_list args;
1784 	int r;
1785 
1786 	va_start(args, fmt);
1787 	r = vprintk_emit(facility, level, dict, dictlen, fmt, args);
1788 	va_end(args);
1789 
1790 	return r;
1791 }
1792 EXPORT_SYMBOL(printk_emit);
1793 
1794 int vprintk_default(const char *fmt, va_list args)
1795 {
1796 	int r;
1797 
1798 #ifdef CONFIG_KGDB_KDB
1799 	if (unlikely(kdb_trap_printk)) {
1800 		r = vkdb_printf(KDB_MSGSRC_PRINTK, fmt, args);
1801 		return r;
1802 	}
1803 #endif
1804 	r = vprintk_emit(0, LOGLEVEL_DEFAULT, NULL, 0, fmt, args);
1805 
1806 	return r;
1807 }
1808 EXPORT_SYMBOL_GPL(vprintk_default);
1809 
1810 /*
1811  * This allows printk to be diverted to another function per cpu.
1812  * This is useful for calling printk functions from within NMI
1813  * without worrying about race conditions that can lock up the
1814  * box.
1815  */
1816 DEFINE_PER_CPU(printk_func_t, printk_func) = vprintk_default;
1817 
1818 /**
1819  * printk - print a kernel message
1820  * @fmt: format string
1821  *
1822  * This is printk(). It can be called from any context. We want it to work.
1823  *
1824  * We try to grab the console_lock. If we succeed, it's easy - we log the
1825  * output and call the console drivers.  If we fail to get the semaphore, we
1826  * place the output into the log buffer and return. The current holder of
1827  * the console_sem will notice the new output in console_unlock(); and will
1828  * send it to the consoles before releasing the lock.
1829  *
1830  * One effect of this deferred printing is that code which calls printk() and
1831  * then changes console_loglevel may break. This is because console_loglevel
1832  * is inspected when the actual printing occurs.
1833  *
1834  * See also:
1835  * printf(3)
1836  *
1837  * See the vsnprintf() documentation for format string extensions over C99.
1838  */
1839 asmlinkage __visible int printk(const char *fmt, ...)
1840 {
1841 	printk_func_t vprintk_func;
1842 	va_list args;
1843 	int r;
1844 
1845 	va_start(args, fmt);
1846 
1847 	/*
1848 	 * If a caller overrides the per_cpu printk_func, then it needs
1849 	 * to disable preemption when calling printk(). Otherwise
1850 	 * the printk_func should be set to the default. No need to
1851 	 * disable preemption here.
1852 	 */
1853 	vprintk_func = this_cpu_read(printk_func);
1854 	r = vprintk_func(fmt, args);
1855 
1856 	va_end(args);
1857 
1858 	return r;
1859 }
1860 EXPORT_SYMBOL(printk);
1861 
1862 #else /* CONFIG_PRINTK */
1863 
1864 #define LOG_LINE_MAX		0
1865 #define PREFIX_MAX		0
1866 
1867 static u64 syslog_seq;
1868 static u32 syslog_idx;
1869 static u64 console_seq;
1870 static u32 console_idx;
1871 static enum log_flags syslog_prev;
1872 static u64 log_first_seq;
1873 static u32 log_first_idx;
1874 static u64 log_next_seq;
1875 static enum log_flags console_prev;
1876 static struct cont {
1877 	size_t len;
1878 	size_t cons;
1879 	u8 level;
1880 	bool flushed:1;
1881 } cont;
1882 static char *log_text(const struct printk_log *msg) { return NULL; }
1883 static char *log_dict(const struct printk_log *msg) { return NULL; }
1884 static struct printk_log *log_from_idx(u32 idx) { return NULL; }
1885 static u32 log_next(u32 idx) { return 0; }
1886 static ssize_t msg_print_ext_header(char *buf, size_t size,
1887 				    struct printk_log *msg, u64 seq,
1888 				    enum log_flags prev_flags) { return 0; }
1889 static ssize_t msg_print_ext_body(char *buf, size_t size,
1890 				  char *dict, size_t dict_len,
1891 				  char *text, size_t text_len) { return 0; }
1892 static void call_console_drivers(int level,
1893 				 const char *ext_text, size_t ext_len,
1894 				 const char *text, size_t len) {}
1895 static size_t msg_print_text(const struct printk_log *msg, enum log_flags prev,
1896 			     bool syslog, char *buf, size_t size) { return 0; }
1897 static size_t cont_print_text(char *text, size_t size) { return 0; }
1898 
1899 /* Still needs to be defined for users */
1900 DEFINE_PER_CPU(printk_func_t, printk_func);
1901 
1902 #endif /* CONFIG_PRINTK */
1903 
1904 #ifdef CONFIG_EARLY_PRINTK
1905 struct console *early_console;
1906 
1907 asmlinkage __visible void early_printk(const char *fmt, ...)
1908 {
1909 	va_list ap;
1910 	char buf[512];
1911 	int n;
1912 
1913 	if (!early_console)
1914 		return;
1915 
1916 	va_start(ap, fmt);
1917 	n = vscnprintf(buf, sizeof(buf), fmt, ap);
1918 	va_end(ap);
1919 
1920 	early_console->write(early_console, buf, n);
1921 }
1922 #endif
1923 
1924 static int __add_preferred_console(char *name, int idx, char *options,
1925 				   char *brl_options)
1926 {
1927 	struct console_cmdline *c;
1928 	int i;
1929 
1930 	/*
1931 	 *	See if this tty is not yet registered, and
1932 	 *	if we have a slot free.
1933 	 */
1934 	for (i = 0, c = console_cmdline;
1935 	     i < MAX_CMDLINECONSOLES && c->name[0];
1936 	     i++, c++) {
1937 		if (strcmp(c->name, name) == 0 && c->index == idx) {
1938 			if (!brl_options)
1939 				selected_console = i;
1940 			return 0;
1941 		}
1942 	}
1943 	if (i == MAX_CMDLINECONSOLES)
1944 		return -E2BIG;
1945 	if (!brl_options)
1946 		selected_console = i;
1947 	strlcpy(c->name, name, sizeof(c->name));
1948 	c->options = options;
1949 	braille_set_options(c, brl_options);
1950 
1951 	c->index = idx;
1952 	return 0;
1953 }
1954 /*
1955  * Set up a console.  Called via do_early_param() in init/main.c
1956  * for each "console=" parameter in the boot command line.
1957  */
1958 static int __init console_setup(char *str)
1959 {
1960 	char buf[sizeof(console_cmdline[0].name) + 4]; /* 4 for "ttyS" */
1961 	char *s, *options, *brl_options = NULL;
1962 	int idx;
1963 
1964 	if (_braille_console_setup(&str, &brl_options))
1965 		return 1;
1966 
1967 	/*
1968 	 * Decode str into name, index, options.
1969 	 */
1970 	if (str[0] >= '0' && str[0] <= '9') {
1971 		strcpy(buf, "ttyS");
1972 		strncpy(buf + 4, str, sizeof(buf) - 5);
1973 	} else {
1974 		strncpy(buf, str, sizeof(buf) - 1);
1975 	}
1976 	buf[sizeof(buf) - 1] = 0;
1977 	options = strchr(str, ',');
1978 	if (options)
1979 		*(options++) = 0;
1980 #ifdef __sparc__
1981 	if (!strcmp(str, "ttya"))
1982 		strcpy(buf, "ttyS0");
1983 	if (!strcmp(str, "ttyb"))
1984 		strcpy(buf, "ttyS1");
1985 #endif
1986 	for (s = buf; *s; s++)
1987 		if (isdigit(*s) || *s == ',')
1988 			break;
1989 	idx = simple_strtoul(s, NULL, 10);
1990 	*s = 0;
1991 
1992 	__add_preferred_console(buf, idx, options, brl_options);
1993 	console_set_on_cmdline = 1;
1994 	return 1;
1995 }
1996 __setup("console=", console_setup);
1997 
1998 /**
1999  * add_preferred_console - add a device to the list of preferred consoles.
2000  * @name: device name
2001  * @idx: device index
2002  * @options: options for this console
2003  *
2004  * The last preferred console added will be used for kernel messages
2005  * and stdin/out/err for init.  Normally this is used by console_setup
2006  * above to handle user-supplied console arguments; however it can also
2007  * be used by arch-specific code either to override the user or more
2008  * commonly to provide a default console (ie from PROM variables) when
2009  * the user has not supplied one.
2010  */
2011 int add_preferred_console(char *name, int idx, char *options)
2012 {
2013 	return __add_preferred_console(name, idx, options, NULL);
2014 }
2015 
2016 bool console_suspend_enabled = true;
2017 EXPORT_SYMBOL(console_suspend_enabled);
2018 
2019 static int __init console_suspend_disable(char *str)
2020 {
2021 	console_suspend_enabled = false;
2022 	return 1;
2023 }
2024 __setup("no_console_suspend", console_suspend_disable);
2025 module_param_named(console_suspend, console_suspend_enabled,
2026 		bool, S_IRUGO | S_IWUSR);
2027 MODULE_PARM_DESC(console_suspend, "suspend console during suspend"
2028 	" and hibernate operations");
2029 
2030 /**
2031  * suspend_console - suspend the console subsystem
2032  *
2033  * This disables printk() while we go into suspend states
2034  */
2035 void suspend_console(void)
2036 {
2037 	if (!console_suspend_enabled)
2038 		return;
2039 	printk("Suspending console(s) (use no_console_suspend to debug)\n");
2040 	console_lock();
2041 	console_suspended = 1;
2042 	up_console_sem();
2043 }
2044 
2045 void resume_console(void)
2046 {
2047 	if (!console_suspend_enabled)
2048 		return;
2049 	down_console_sem();
2050 	console_suspended = 0;
2051 	console_unlock();
2052 }
2053 
2054 /**
2055  * console_cpu_notify - print deferred console messages after CPU hotplug
2056  * @self: notifier struct
2057  * @action: CPU hotplug event
2058  * @hcpu: unused
2059  *
2060  * If printk() is called from a CPU that is not online yet, the messages
2061  * will be spooled but will not show up on the console.  This function is
2062  * called when a new CPU comes online (or fails to come up), and ensures
2063  * that any such output gets printed.
2064  */
2065 static int console_cpu_notify(struct notifier_block *self,
2066 	unsigned long action, void *hcpu)
2067 {
2068 	switch (action) {
2069 	case CPU_ONLINE:
2070 	case CPU_DEAD:
2071 	case CPU_DOWN_FAILED:
2072 	case CPU_UP_CANCELED:
2073 		console_lock();
2074 		console_unlock();
2075 	}
2076 	return NOTIFY_OK;
2077 }
2078 
2079 /**
2080  * console_lock - lock the console system for exclusive use.
2081  *
2082  * Acquires a lock which guarantees that the caller has
2083  * exclusive access to the console system and the console_drivers list.
2084  *
2085  * Can sleep, returns nothing.
2086  */
2087 void console_lock(void)
2088 {
2089 	might_sleep();
2090 
2091 	down_console_sem();
2092 	if (console_suspended)
2093 		return;
2094 	console_locked = 1;
2095 	console_may_schedule = 1;
2096 }
2097 EXPORT_SYMBOL(console_lock);
2098 
2099 /**
2100  * console_trylock - try to lock the console system for exclusive use.
2101  *
2102  * Try to acquire a lock which guarantees that the caller has exclusive
2103  * access to the console system and the console_drivers list.
2104  *
2105  * returns 1 on success, and 0 on failure to acquire the lock.
2106  */
2107 int console_trylock(void)
2108 {
2109 	if (down_trylock_console_sem())
2110 		return 0;
2111 	if (console_suspended) {
2112 		up_console_sem();
2113 		return 0;
2114 	}
2115 	console_locked = 1;
2116 	/*
2117 	 * When PREEMPT_COUNT disabled we can't reliably detect if it's
2118 	 * safe to schedule (e.g. calling printk while holding a spin_lock),
2119 	 * because preempt_disable()/preempt_enable() are just barriers there
2120 	 * and preempt_count() is always 0.
2121 	 *
2122 	 * RCU read sections have a separate preemption counter when
2123 	 * PREEMPT_RCU enabled thus we must take extra care and check
2124 	 * rcu_preempt_depth(), otherwise RCU read sections modify
2125 	 * preempt_count().
2126 	 */
2127 	console_may_schedule = !oops_in_progress &&
2128 			preemptible() &&
2129 			!rcu_preempt_depth();
2130 	return 1;
2131 }
2132 EXPORT_SYMBOL(console_trylock);
2133 
2134 int is_console_locked(void)
2135 {
2136 	return console_locked;
2137 }
2138 
2139 /*
2140  * Check if we have any console that is capable of printing while cpu is
2141  * booting or shutting down. Requires console_sem.
2142  */
2143 static int have_callable_console(void)
2144 {
2145 	struct console *con;
2146 
2147 	for_each_console(con)
2148 		if ((con->flags & CON_ENABLED) &&
2149 				(con->flags & CON_ANYTIME))
2150 			return 1;
2151 
2152 	return 0;
2153 }
2154 
2155 /*
2156  * Can we actually use the console at this time on this cpu?
2157  *
2158  * Console drivers may assume that per-cpu resources have been allocated. So
2159  * unless they're explicitly marked as being able to cope (CON_ANYTIME) don't
2160  * call them until this CPU is officially up.
2161  */
2162 static inline int can_use_console(void)
2163 {
2164 	return cpu_online(raw_smp_processor_id()) || have_callable_console();
2165 }
2166 
2167 static void console_cont_flush(char *text, size_t size)
2168 {
2169 	unsigned long flags;
2170 	size_t len;
2171 
2172 	raw_spin_lock_irqsave(&logbuf_lock, flags);
2173 
2174 	if (!cont.len)
2175 		goto out;
2176 
2177 	/*
2178 	 * We still queue earlier records, likely because the console was
2179 	 * busy. The earlier ones need to be printed before this one, we
2180 	 * did not flush any fragment so far, so just let it queue up.
2181 	 */
2182 	if (console_seq < log_next_seq && !cont.cons)
2183 		goto out;
2184 
2185 	len = cont_print_text(text, size);
2186 	raw_spin_unlock(&logbuf_lock);
2187 	stop_critical_timings();
2188 	call_console_drivers(cont.level, NULL, 0, text, len);
2189 	start_critical_timings();
2190 	local_irq_restore(flags);
2191 	return;
2192 out:
2193 	raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2194 }
2195 
2196 /**
2197  * console_unlock - unlock the console system
2198  *
2199  * Releases the console_lock which the caller holds on the console system
2200  * and the console driver list.
2201  *
2202  * While the console_lock was held, console output may have been buffered
2203  * by printk().  If this is the case, console_unlock(); emits
2204  * the output prior to releasing the lock.
2205  *
2206  * If there is output waiting, we wake /dev/kmsg and syslog() users.
2207  *
2208  * console_unlock(); may be called from any context.
2209  */
2210 void console_unlock(void)
2211 {
2212 	static char ext_text[CONSOLE_EXT_LOG_MAX];
2213 	static char text[LOG_LINE_MAX + PREFIX_MAX];
2214 	static u64 seen_seq;
2215 	unsigned long flags;
2216 	bool wake_klogd = false;
2217 	bool do_cond_resched, retry;
2218 
2219 	if (console_suspended) {
2220 		up_console_sem();
2221 		return;
2222 	}
2223 
2224 	/*
2225 	 * Console drivers are called under logbuf_lock, so
2226 	 * @console_may_schedule should be cleared before; however, we may
2227 	 * end up dumping a lot of lines, for example, if called from
2228 	 * console registration path, and should invoke cond_resched()
2229 	 * between lines if allowable.  Not doing so can cause a very long
2230 	 * scheduling stall on a slow console leading to RCU stall and
2231 	 * softlockup warnings which exacerbate the issue with more
2232 	 * messages practically incapacitating the system.
2233 	 */
2234 	do_cond_resched = console_may_schedule;
2235 	console_may_schedule = 0;
2236 
2237 again:
2238 	/*
2239 	 * We released the console_sem lock, so we need to recheck if
2240 	 * cpu is online and (if not) is there at least one CON_ANYTIME
2241 	 * console.
2242 	 */
2243 	if (!can_use_console()) {
2244 		console_locked = 0;
2245 		up_console_sem();
2246 		return;
2247 	}
2248 
2249 	/* flush buffered message fragment immediately to console */
2250 	console_cont_flush(text, sizeof(text));
2251 
2252 	for (;;) {
2253 		struct printk_log *msg;
2254 		size_t ext_len = 0;
2255 		size_t len;
2256 		int level;
2257 
2258 		raw_spin_lock_irqsave(&logbuf_lock, flags);
2259 		if (seen_seq != log_next_seq) {
2260 			wake_klogd = true;
2261 			seen_seq = log_next_seq;
2262 		}
2263 
2264 		if (console_seq < log_first_seq) {
2265 			len = sprintf(text, "** %u printk messages dropped ** ",
2266 				      (unsigned)(log_first_seq - console_seq));
2267 
2268 			/* messages are gone, move to first one */
2269 			console_seq = log_first_seq;
2270 			console_idx = log_first_idx;
2271 			console_prev = 0;
2272 		} else {
2273 			len = 0;
2274 		}
2275 skip:
2276 		if (console_seq == log_next_seq)
2277 			break;
2278 
2279 		msg = log_from_idx(console_idx);
2280 		if (msg->flags & LOG_NOCONS) {
2281 			/*
2282 			 * Skip record we have buffered and already printed
2283 			 * directly to the console when we received it.
2284 			 */
2285 			console_idx = log_next(console_idx);
2286 			console_seq++;
2287 			/*
2288 			 * We will get here again when we register a new
2289 			 * CON_PRINTBUFFER console. Clear the flag so we
2290 			 * will properly dump everything later.
2291 			 */
2292 			msg->flags &= ~LOG_NOCONS;
2293 			console_prev = msg->flags;
2294 			goto skip;
2295 		}
2296 
2297 		level = msg->level;
2298 		len += msg_print_text(msg, console_prev, false,
2299 				      text + len, sizeof(text) - len);
2300 		if (nr_ext_console_drivers) {
2301 			ext_len = msg_print_ext_header(ext_text,
2302 						sizeof(ext_text),
2303 						msg, console_seq, console_prev);
2304 			ext_len += msg_print_ext_body(ext_text + ext_len,
2305 						sizeof(ext_text) - ext_len,
2306 						log_dict(msg), msg->dict_len,
2307 						log_text(msg), msg->text_len);
2308 		}
2309 		console_idx = log_next(console_idx);
2310 		console_seq++;
2311 		console_prev = msg->flags;
2312 		raw_spin_unlock(&logbuf_lock);
2313 
2314 		stop_critical_timings();	/* don't trace print latency */
2315 		call_console_drivers(level, ext_text, ext_len, text, len);
2316 		start_critical_timings();
2317 		local_irq_restore(flags);
2318 
2319 		if (do_cond_resched)
2320 			cond_resched();
2321 	}
2322 	console_locked = 0;
2323 
2324 	/* Release the exclusive_console once it is used */
2325 	if (unlikely(exclusive_console))
2326 		exclusive_console = NULL;
2327 
2328 	raw_spin_unlock(&logbuf_lock);
2329 
2330 	up_console_sem();
2331 
2332 	/*
2333 	 * Someone could have filled up the buffer again, so re-check if there's
2334 	 * something to flush. In case we cannot trylock the console_sem again,
2335 	 * there's a new owner and the console_unlock() from them will do the
2336 	 * flush, no worries.
2337 	 */
2338 	raw_spin_lock(&logbuf_lock);
2339 	retry = console_seq != log_next_seq;
2340 	raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2341 
2342 	if (retry && console_trylock())
2343 		goto again;
2344 
2345 	if (wake_klogd)
2346 		wake_up_klogd();
2347 }
2348 EXPORT_SYMBOL(console_unlock);
2349 
2350 /**
2351  * console_conditional_schedule - yield the CPU if required
2352  *
2353  * If the console code is currently allowed to sleep, and
2354  * if this CPU should yield the CPU to another task, do
2355  * so here.
2356  *
2357  * Must be called within console_lock();.
2358  */
2359 void __sched console_conditional_schedule(void)
2360 {
2361 	if (console_may_schedule)
2362 		cond_resched();
2363 }
2364 EXPORT_SYMBOL(console_conditional_schedule);
2365 
2366 void console_unblank(void)
2367 {
2368 	struct console *c;
2369 
2370 	/*
2371 	 * console_unblank can no longer be called in interrupt context unless
2372 	 * oops_in_progress is set to 1..
2373 	 */
2374 	if (oops_in_progress) {
2375 		if (down_trylock_console_sem() != 0)
2376 			return;
2377 	} else
2378 		console_lock();
2379 
2380 	console_locked = 1;
2381 	console_may_schedule = 0;
2382 	for_each_console(c)
2383 		if ((c->flags & CON_ENABLED) && c->unblank)
2384 			c->unblank();
2385 	console_unlock();
2386 }
2387 
2388 /**
2389  * console_flush_on_panic - flush console content on panic
2390  *
2391  * Immediately output all pending messages no matter what.
2392  */
2393 void console_flush_on_panic(void)
2394 {
2395 	/*
2396 	 * If someone else is holding the console lock, trylock will fail
2397 	 * and may_schedule may be set.  Ignore and proceed to unlock so
2398 	 * that messages are flushed out.  As this can be called from any
2399 	 * context and we don't want to get preempted while flushing,
2400 	 * ensure may_schedule is cleared.
2401 	 */
2402 	console_trylock();
2403 	console_may_schedule = 0;
2404 	console_unlock();
2405 }
2406 
2407 /*
2408  * Return the console tty driver structure and its associated index
2409  */
2410 struct tty_driver *console_device(int *index)
2411 {
2412 	struct console *c;
2413 	struct tty_driver *driver = NULL;
2414 
2415 	console_lock();
2416 	for_each_console(c) {
2417 		if (!c->device)
2418 			continue;
2419 		driver = c->device(c, index);
2420 		if (driver)
2421 			break;
2422 	}
2423 	console_unlock();
2424 	return driver;
2425 }
2426 
2427 /*
2428  * Prevent further output on the passed console device so that (for example)
2429  * serial drivers can disable console output before suspending a port, and can
2430  * re-enable output afterwards.
2431  */
2432 void console_stop(struct console *console)
2433 {
2434 	console_lock();
2435 	console->flags &= ~CON_ENABLED;
2436 	console_unlock();
2437 }
2438 EXPORT_SYMBOL(console_stop);
2439 
2440 void console_start(struct console *console)
2441 {
2442 	console_lock();
2443 	console->flags |= CON_ENABLED;
2444 	console_unlock();
2445 }
2446 EXPORT_SYMBOL(console_start);
2447 
2448 static int __read_mostly keep_bootcon;
2449 
2450 static int __init keep_bootcon_setup(char *str)
2451 {
2452 	keep_bootcon = 1;
2453 	pr_info("debug: skip boot console de-registration.\n");
2454 
2455 	return 0;
2456 }
2457 
2458 early_param("keep_bootcon", keep_bootcon_setup);
2459 
2460 /*
2461  * The console driver calls this routine during kernel initialization
2462  * to register the console printing procedure with printk() and to
2463  * print any messages that were printed by the kernel before the
2464  * console driver was initialized.
2465  *
2466  * This can happen pretty early during the boot process (because of
2467  * early_printk) - sometimes before setup_arch() completes - be careful
2468  * of what kernel features are used - they may not be initialised yet.
2469  *
2470  * There are two types of consoles - bootconsoles (early_printk) and
2471  * "real" consoles (everything which is not a bootconsole) which are
2472  * handled differently.
2473  *  - Any number of bootconsoles can be registered at any time.
2474  *  - As soon as a "real" console is registered, all bootconsoles
2475  *    will be unregistered automatically.
2476  *  - Once a "real" console is registered, any attempt to register a
2477  *    bootconsoles will be rejected
2478  */
2479 void register_console(struct console *newcon)
2480 {
2481 	int i;
2482 	unsigned long flags;
2483 	struct console *bcon = NULL;
2484 	struct console_cmdline *c;
2485 
2486 	if (console_drivers)
2487 		for_each_console(bcon)
2488 			if (WARN(bcon == newcon,
2489 					"console '%s%d' already registered\n",
2490 					bcon->name, bcon->index))
2491 				return;
2492 
2493 	/*
2494 	 * before we register a new CON_BOOT console, make sure we don't
2495 	 * already have a valid console
2496 	 */
2497 	if (console_drivers && newcon->flags & CON_BOOT) {
2498 		/* find the last or real console */
2499 		for_each_console(bcon) {
2500 			if (!(bcon->flags & CON_BOOT)) {
2501 				pr_info("Too late to register bootconsole %s%d\n",
2502 					newcon->name, newcon->index);
2503 				return;
2504 			}
2505 		}
2506 	}
2507 
2508 	if (console_drivers && console_drivers->flags & CON_BOOT)
2509 		bcon = console_drivers;
2510 
2511 	if (preferred_console < 0 || bcon || !console_drivers)
2512 		preferred_console = selected_console;
2513 
2514 	/*
2515 	 *	See if we want to use this console driver. If we
2516 	 *	didn't select a console we take the first one
2517 	 *	that registers here.
2518 	 */
2519 	if (preferred_console < 0) {
2520 		if (newcon->index < 0)
2521 			newcon->index = 0;
2522 		if (newcon->setup == NULL ||
2523 		    newcon->setup(newcon, NULL) == 0) {
2524 			newcon->flags |= CON_ENABLED;
2525 			if (newcon->device) {
2526 				newcon->flags |= CON_CONSDEV;
2527 				preferred_console = 0;
2528 			}
2529 		}
2530 	}
2531 
2532 	/*
2533 	 *	See if this console matches one we selected on
2534 	 *	the command line.
2535 	 */
2536 	for (i = 0, c = console_cmdline;
2537 	     i < MAX_CMDLINECONSOLES && c->name[0];
2538 	     i++, c++) {
2539 		if (!newcon->match ||
2540 		    newcon->match(newcon, c->name, c->index, c->options) != 0) {
2541 			/* default matching */
2542 			BUILD_BUG_ON(sizeof(c->name) != sizeof(newcon->name));
2543 			if (strcmp(c->name, newcon->name) != 0)
2544 				continue;
2545 			if (newcon->index >= 0 &&
2546 			    newcon->index != c->index)
2547 				continue;
2548 			if (newcon->index < 0)
2549 				newcon->index = c->index;
2550 
2551 			if (_braille_register_console(newcon, c))
2552 				return;
2553 
2554 			if (newcon->setup &&
2555 			    newcon->setup(newcon, c->options) != 0)
2556 				break;
2557 		}
2558 
2559 		newcon->flags |= CON_ENABLED;
2560 		if (i == selected_console) {
2561 			newcon->flags |= CON_CONSDEV;
2562 			preferred_console = selected_console;
2563 		}
2564 		break;
2565 	}
2566 
2567 	if (!(newcon->flags & CON_ENABLED))
2568 		return;
2569 
2570 	/*
2571 	 * If we have a bootconsole, and are switching to a real console,
2572 	 * don't print everything out again, since when the boot console, and
2573 	 * the real console are the same physical device, it's annoying to
2574 	 * see the beginning boot messages twice
2575 	 */
2576 	if (bcon && ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV))
2577 		newcon->flags &= ~CON_PRINTBUFFER;
2578 
2579 	/*
2580 	 *	Put this console in the list - keep the
2581 	 *	preferred driver at the head of the list.
2582 	 */
2583 	console_lock();
2584 	if ((newcon->flags & CON_CONSDEV) || console_drivers == NULL) {
2585 		newcon->next = console_drivers;
2586 		console_drivers = newcon;
2587 		if (newcon->next)
2588 			newcon->next->flags &= ~CON_CONSDEV;
2589 	} else {
2590 		newcon->next = console_drivers->next;
2591 		console_drivers->next = newcon;
2592 	}
2593 
2594 	if (newcon->flags & CON_EXTENDED)
2595 		if (!nr_ext_console_drivers++)
2596 			pr_info("printk: continuation disabled due to ext consoles, expect more fragments in /dev/kmsg\n");
2597 
2598 	if (newcon->flags & CON_PRINTBUFFER) {
2599 		/*
2600 		 * console_unlock(); will print out the buffered messages
2601 		 * for us.
2602 		 */
2603 		raw_spin_lock_irqsave(&logbuf_lock, flags);
2604 		console_seq = syslog_seq;
2605 		console_idx = syslog_idx;
2606 		console_prev = syslog_prev;
2607 		raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2608 		/*
2609 		 * We're about to replay the log buffer.  Only do this to the
2610 		 * just-registered console to avoid excessive message spam to
2611 		 * the already-registered consoles.
2612 		 */
2613 		exclusive_console = newcon;
2614 	}
2615 	console_unlock();
2616 	console_sysfs_notify();
2617 
2618 	/*
2619 	 * By unregistering the bootconsoles after we enable the real console
2620 	 * we get the "console xxx enabled" message on all the consoles -
2621 	 * boot consoles, real consoles, etc - this is to ensure that end
2622 	 * users know there might be something in the kernel's log buffer that
2623 	 * went to the bootconsole (that they do not see on the real console)
2624 	 */
2625 	pr_info("%sconsole [%s%d] enabled\n",
2626 		(newcon->flags & CON_BOOT) ? "boot" : "" ,
2627 		newcon->name, newcon->index);
2628 	if (bcon &&
2629 	    ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV) &&
2630 	    !keep_bootcon) {
2631 		/* We need to iterate through all boot consoles, to make
2632 		 * sure we print everything out, before we unregister them.
2633 		 */
2634 		for_each_console(bcon)
2635 			if (bcon->flags & CON_BOOT)
2636 				unregister_console(bcon);
2637 	}
2638 }
2639 EXPORT_SYMBOL(register_console);
2640 
2641 int unregister_console(struct console *console)
2642 {
2643         struct console *a, *b;
2644 	int res;
2645 
2646 	pr_info("%sconsole [%s%d] disabled\n",
2647 		(console->flags & CON_BOOT) ? "boot" : "" ,
2648 		console->name, console->index);
2649 
2650 	res = _braille_unregister_console(console);
2651 	if (res)
2652 		return res;
2653 
2654 	res = 1;
2655 	console_lock();
2656 	if (console_drivers == console) {
2657 		console_drivers=console->next;
2658 		res = 0;
2659 	} else if (console_drivers) {
2660 		for (a=console_drivers->next, b=console_drivers ;
2661 		     a; b=a, a=b->next) {
2662 			if (a == console) {
2663 				b->next = a->next;
2664 				res = 0;
2665 				break;
2666 			}
2667 		}
2668 	}
2669 
2670 	if (!res && (console->flags & CON_EXTENDED))
2671 		nr_ext_console_drivers--;
2672 
2673 	/*
2674 	 * If this isn't the last console and it has CON_CONSDEV set, we
2675 	 * need to set it on the next preferred console.
2676 	 */
2677 	if (console_drivers != NULL && console->flags & CON_CONSDEV)
2678 		console_drivers->flags |= CON_CONSDEV;
2679 
2680 	console->flags &= ~CON_ENABLED;
2681 	console_unlock();
2682 	console_sysfs_notify();
2683 	return res;
2684 }
2685 EXPORT_SYMBOL(unregister_console);
2686 
2687 /*
2688  * Some boot consoles access data that is in the init section and which will
2689  * be discarded after the initcalls have been run. To make sure that no code
2690  * will access this data, unregister the boot consoles in a late initcall.
2691  *
2692  * If for some reason, such as deferred probe or the driver being a loadable
2693  * module, the real console hasn't registered yet at this point, there will
2694  * be a brief interval in which no messages are logged to the console, which
2695  * makes it difficult to diagnose problems that occur during this time.
2696  *
2697  * To mitigate this problem somewhat, only unregister consoles whose memory
2698  * intersects with the init section. Note that code exists elsewhere to get
2699  * rid of the boot console as soon as the proper console shows up, so there
2700  * won't be side-effects from postponing the removal.
2701  */
2702 static int __init printk_late_init(void)
2703 {
2704 	struct console *con;
2705 
2706 	for_each_console(con) {
2707 		if (!keep_bootcon && con->flags & CON_BOOT) {
2708 			/*
2709 			 * Make sure to unregister boot consoles whose data
2710 			 * resides in the init section before the init section
2711 			 * is discarded. Boot consoles whose data will stick
2712 			 * around will automatically be unregistered when the
2713 			 * proper console replaces them.
2714 			 */
2715 			if (init_section_intersects(con, sizeof(*con)))
2716 				unregister_console(con);
2717 		}
2718 	}
2719 	hotcpu_notifier(console_cpu_notify, 0);
2720 	return 0;
2721 }
2722 late_initcall(printk_late_init);
2723 
2724 #if defined CONFIG_PRINTK
2725 /*
2726  * Delayed printk version, for scheduler-internal messages:
2727  */
2728 #define PRINTK_PENDING_WAKEUP	0x01
2729 #define PRINTK_PENDING_OUTPUT	0x02
2730 
2731 static DEFINE_PER_CPU(int, printk_pending);
2732 
2733 static void wake_up_klogd_work_func(struct irq_work *irq_work)
2734 {
2735 	int pending = __this_cpu_xchg(printk_pending, 0);
2736 
2737 	if (pending & PRINTK_PENDING_OUTPUT) {
2738 		/* If trylock fails, someone else is doing the printing */
2739 		if (console_trylock())
2740 			console_unlock();
2741 	}
2742 
2743 	if (pending & PRINTK_PENDING_WAKEUP)
2744 		wake_up_interruptible(&log_wait);
2745 }
2746 
2747 static DEFINE_PER_CPU(struct irq_work, wake_up_klogd_work) = {
2748 	.func = wake_up_klogd_work_func,
2749 	.flags = IRQ_WORK_LAZY,
2750 };
2751 
2752 void wake_up_klogd(void)
2753 {
2754 	preempt_disable();
2755 	if (waitqueue_active(&log_wait)) {
2756 		this_cpu_or(printk_pending, PRINTK_PENDING_WAKEUP);
2757 		irq_work_queue(this_cpu_ptr(&wake_up_klogd_work));
2758 	}
2759 	preempt_enable();
2760 }
2761 
2762 int printk_deferred(const char *fmt, ...)
2763 {
2764 	va_list args;
2765 	int r;
2766 
2767 	preempt_disable();
2768 	va_start(args, fmt);
2769 	r = vprintk_emit(0, LOGLEVEL_SCHED, NULL, 0, fmt, args);
2770 	va_end(args);
2771 
2772 	__this_cpu_or(printk_pending, PRINTK_PENDING_OUTPUT);
2773 	irq_work_queue(this_cpu_ptr(&wake_up_klogd_work));
2774 	preempt_enable();
2775 
2776 	return r;
2777 }
2778 
2779 /*
2780  * printk rate limiting, lifted from the networking subsystem.
2781  *
2782  * This enforces a rate limit: not more than 10 kernel messages
2783  * every 5s to make a denial-of-service attack impossible.
2784  */
2785 DEFINE_RATELIMIT_STATE(printk_ratelimit_state, 5 * HZ, 10);
2786 
2787 int __printk_ratelimit(const char *func)
2788 {
2789 	return ___ratelimit(&printk_ratelimit_state, func);
2790 }
2791 EXPORT_SYMBOL(__printk_ratelimit);
2792 
2793 /**
2794  * printk_timed_ratelimit - caller-controlled printk ratelimiting
2795  * @caller_jiffies: pointer to caller's state
2796  * @interval_msecs: minimum interval between prints
2797  *
2798  * printk_timed_ratelimit() returns true if more than @interval_msecs
2799  * milliseconds have elapsed since the last time printk_timed_ratelimit()
2800  * returned true.
2801  */
2802 bool printk_timed_ratelimit(unsigned long *caller_jiffies,
2803 			unsigned int interval_msecs)
2804 {
2805 	unsigned long elapsed = jiffies - *caller_jiffies;
2806 
2807 	if (*caller_jiffies && elapsed <= msecs_to_jiffies(interval_msecs))
2808 		return false;
2809 
2810 	*caller_jiffies = jiffies;
2811 	return true;
2812 }
2813 EXPORT_SYMBOL(printk_timed_ratelimit);
2814 
2815 static DEFINE_SPINLOCK(dump_list_lock);
2816 static LIST_HEAD(dump_list);
2817 
2818 /**
2819  * kmsg_dump_register - register a kernel log dumper.
2820  * @dumper: pointer to the kmsg_dumper structure
2821  *
2822  * Adds a kernel log dumper to the system. The dump callback in the
2823  * structure will be called when the kernel oopses or panics and must be
2824  * set. Returns zero on success and %-EINVAL or %-EBUSY otherwise.
2825  */
2826 int kmsg_dump_register(struct kmsg_dumper *dumper)
2827 {
2828 	unsigned long flags;
2829 	int err = -EBUSY;
2830 
2831 	/* The dump callback needs to be set */
2832 	if (!dumper->dump)
2833 		return -EINVAL;
2834 
2835 	spin_lock_irqsave(&dump_list_lock, flags);
2836 	/* Don't allow registering multiple times */
2837 	if (!dumper->registered) {
2838 		dumper->registered = 1;
2839 		list_add_tail_rcu(&dumper->list, &dump_list);
2840 		err = 0;
2841 	}
2842 	spin_unlock_irqrestore(&dump_list_lock, flags);
2843 
2844 	return err;
2845 }
2846 EXPORT_SYMBOL_GPL(kmsg_dump_register);
2847 
2848 /**
2849  * kmsg_dump_unregister - unregister a kmsg dumper.
2850  * @dumper: pointer to the kmsg_dumper structure
2851  *
2852  * Removes a dump device from the system. Returns zero on success and
2853  * %-EINVAL otherwise.
2854  */
2855 int kmsg_dump_unregister(struct kmsg_dumper *dumper)
2856 {
2857 	unsigned long flags;
2858 	int err = -EINVAL;
2859 
2860 	spin_lock_irqsave(&dump_list_lock, flags);
2861 	if (dumper->registered) {
2862 		dumper->registered = 0;
2863 		list_del_rcu(&dumper->list);
2864 		err = 0;
2865 	}
2866 	spin_unlock_irqrestore(&dump_list_lock, flags);
2867 	synchronize_rcu();
2868 
2869 	return err;
2870 }
2871 EXPORT_SYMBOL_GPL(kmsg_dump_unregister);
2872 
2873 static bool always_kmsg_dump;
2874 module_param_named(always_kmsg_dump, always_kmsg_dump, bool, S_IRUGO | S_IWUSR);
2875 
2876 /**
2877  * kmsg_dump - dump kernel log to kernel message dumpers.
2878  * @reason: the reason (oops, panic etc) for dumping
2879  *
2880  * Call each of the registered dumper's dump() callback, which can
2881  * retrieve the kmsg records with kmsg_dump_get_line() or
2882  * kmsg_dump_get_buffer().
2883  */
2884 void kmsg_dump(enum kmsg_dump_reason reason)
2885 {
2886 	struct kmsg_dumper *dumper;
2887 	unsigned long flags;
2888 
2889 	if ((reason > KMSG_DUMP_OOPS) && !always_kmsg_dump)
2890 		return;
2891 
2892 	rcu_read_lock();
2893 	list_for_each_entry_rcu(dumper, &dump_list, list) {
2894 		if (dumper->max_reason && reason > dumper->max_reason)
2895 			continue;
2896 
2897 		/* initialize iterator with data about the stored records */
2898 		dumper->active = true;
2899 
2900 		raw_spin_lock_irqsave(&logbuf_lock, flags);
2901 		dumper->cur_seq = clear_seq;
2902 		dumper->cur_idx = clear_idx;
2903 		dumper->next_seq = log_next_seq;
2904 		dumper->next_idx = log_next_idx;
2905 		raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2906 
2907 		/* invoke dumper which will iterate over records */
2908 		dumper->dump(dumper, reason);
2909 
2910 		/* reset iterator */
2911 		dumper->active = false;
2912 	}
2913 	rcu_read_unlock();
2914 }
2915 
2916 /**
2917  * kmsg_dump_get_line_nolock - retrieve one kmsg log line (unlocked version)
2918  * @dumper: registered kmsg dumper
2919  * @syslog: include the "<4>" prefixes
2920  * @line: buffer to copy the line to
2921  * @size: maximum size of the buffer
2922  * @len: length of line placed into buffer
2923  *
2924  * Start at the beginning of the kmsg buffer, with the oldest kmsg
2925  * record, and copy one record into the provided buffer.
2926  *
2927  * Consecutive calls will return the next available record moving
2928  * towards the end of the buffer with the youngest messages.
2929  *
2930  * A return value of FALSE indicates that there are no more records to
2931  * read.
2932  *
2933  * The function is similar to kmsg_dump_get_line(), but grabs no locks.
2934  */
2935 bool kmsg_dump_get_line_nolock(struct kmsg_dumper *dumper, bool syslog,
2936 			       char *line, size_t size, size_t *len)
2937 {
2938 	struct printk_log *msg;
2939 	size_t l = 0;
2940 	bool ret = false;
2941 
2942 	if (!dumper->active)
2943 		goto out;
2944 
2945 	if (dumper->cur_seq < log_first_seq) {
2946 		/* messages are gone, move to first available one */
2947 		dumper->cur_seq = log_first_seq;
2948 		dumper->cur_idx = log_first_idx;
2949 	}
2950 
2951 	/* last entry */
2952 	if (dumper->cur_seq >= log_next_seq)
2953 		goto out;
2954 
2955 	msg = log_from_idx(dumper->cur_idx);
2956 	l = msg_print_text(msg, 0, syslog, line, size);
2957 
2958 	dumper->cur_idx = log_next(dumper->cur_idx);
2959 	dumper->cur_seq++;
2960 	ret = true;
2961 out:
2962 	if (len)
2963 		*len = l;
2964 	return ret;
2965 }
2966 
2967 /**
2968  * kmsg_dump_get_line - retrieve one kmsg log line
2969  * @dumper: registered kmsg dumper
2970  * @syslog: include the "<4>" prefixes
2971  * @line: buffer to copy the line to
2972  * @size: maximum size of the buffer
2973  * @len: length of line placed into buffer
2974  *
2975  * Start at the beginning of the kmsg buffer, with the oldest kmsg
2976  * record, and copy one record into the provided buffer.
2977  *
2978  * Consecutive calls will return the next available record moving
2979  * towards the end of the buffer with the youngest messages.
2980  *
2981  * A return value of FALSE indicates that there are no more records to
2982  * read.
2983  */
2984 bool kmsg_dump_get_line(struct kmsg_dumper *dumper, bool syslog,
2985 			char *line, size_t size, size_t *len)
2986 {
2987 	unsigned long flags;
2988 	bool ret;
2989 
2990 	raw_spin_lock_irqsave(&logbuf_lock, flags);
2991 	ret = kmsg_dump_get_line_nolock(dumper, syslog, line, size, len);
2992 	raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2993 
2994 	return ret;
2995 }
2996 EXPORT_SYMBOL_GPL(kmsg_dump_get_line);
2997 
2998 /**
2999  * kmsg_dump_get_buffer - copy kmsg log lines
3000  * @dumper: registered kmsg dumper
3001  * @syslog: include the "<4>" prefixes
3002  * @buf: buffer to copy the line to
3003  * @size: maximum size of the buffer
3004  * @len: length of line placed into buffer
3005  *
3006  * Start at the end of the kmsg buffer and fill the provided buffer
3007  * with as many of the the *youngest* kmsg records that fit into it.
3008  * If the buffer is large enough, all available kmsg records will be
3009  * copied with a single call.
3010  *
3011  * Consecutive calls will fill the buffer with the next block of
3012  * available older records, not including the earlier retrieved ones.
3013  *
3014  * A return value of FALSE indicates that there are no more records to
3015  * read.
3016  */
3017 bool kmsg_dump_get_buffer(struct kmsg_dumper *dumper, bool syslog,
3018 			  char *buf, size_t size, size_t *len)
3019 {
3020 	unsigned long flags;
3021 	u64 seq;
3022 	u32 idx;
3023 	u64 next_seq;
3024 	u32 next_idx;
3025 	enum log_flags prev;
3026 	size_t l = 0;
3027 	bool ret = false;
3028 
3029 	if (!dumper->active)
3030 		goto out;
3031 
3032 	raw_spin_lock_irqsave(&logbuf_lock, flags);
3033 	if (dumper->cur_seq < log_first_seq) {
3034 		/* messages are gone, move to first available one */
3035 		dumper->cur_seq = log_first_seq;
3036 		dumper->cur_idx = log_first_idx;
3037 	}
3038 
3039 	/* last entry */
3040 	if (dumper->cur_seq >= dumper->next_seq) {
3041 		raw_spin_unlock_irqrestore(&logbuf_lock, flags);
3042 		goto out;
3043 	}
3044 
3045 	/* calculate length of entire buffer */
3046 	seq = dumper->cur_seq;
3047 	idx = dumper->cur_idx;
3048 	prev = 0;
3049 	while (seq < dumper->next_seq) {
3050 		struct printk_log *msg = log_from_idx(idx);
3051 
3052 		l += msg_print_text(msg, prev, true, NULL, 0);
3053 		idx = log_next(idx);
3054 		seq++;
3055 		prev = msg->flags;
3056 	}
3057 
3058 	/* move first record forward until length fits into the buffer */
3059 	seq = dumper->cur_seq;
3060 	idx = dumper->cur_idx;
3061 	prev = 0;
3062 	while (l > size && seq < dumper->next_seq) {
3063 		struct printk_log *msg = log_from_idx(idx);
3064 
3065 		l -= msg_print_text(msg, prev, true, NULL, 0);
3066 		idx = log_next(idx);
3067 		seq++;
3068 		prev = msg->flags;
3069 	}
3070 
3071 	/* last message in next interation */
3072 	next_seq = seq;
3073 	next_idx = idx;
3074 
3075 	l = 0;
3076 	while (seq < dumper->next_seq) {
3077 		struct printk_log *msg = log_from_idx(idx);
3078 
3079 		l += msg_print_text(msg, prev, syslog, buf + l, size - l);
3080 		idx = log_next(idx);
3081 		seq++;
3082 		prev = msg->flags;
3083 	}
3084 
3085 	dumper->next_seq = next_seq;
3086 	dumper->next_idx = next_idx;
3087 	ret = true;
3088 	raw_spin_unlock_irqrestore(&logbuf_lock, flags);
3089 out:
3090 	if (len)
3091 		*len = l;
3092 	return ret;
3093 }
3094 EXPORT_SYMBOL_GPL(kmsg_dump_get_buffer);
3095 
3096 /**
3097  * kmsg_dump_rewind_nolock - reset the interator (unlocked version)
3098  * @dumper: registered kmsg dumper
3099  *
3100  * Reset the dumper's iterator so that kmsg_dump_get_line() and
3101  * kmsg_dump_get_buffer() can be called again and used multiple
3102  * times within the same dumper.dump() callback.
3103  *
3104  * The function is similar to kmsg_dump_rewind(), but grabs no locks.
3105  */
3106 void kmsg_dump_rewind_nolock(struct kmsg_dumper *dumper)
3107 {
3108 	dumper->cur_seq = clear_seq;
3109 	dumper->cur_idx = clear_idx;
3110 	dumper->next_seq = log_next_seq;
3111 	dumper->next_idx = log_next_idx;
3112 }
3113 
3114 /**
3115  * kmsg_dump_rewind - reset the interator
3116  * @dumper: registered kmsg dumper
3117  *
3118  * Reset the dumper's iterator so that kmsg_dump_get_line() and
3119  * kmsg_dump_get_buffer() can be called again and used multiple
3120  * times within the same dumper.dump() callback.
3121  */
3122 void kmsg_dump_rewind(struct kmsg_dumper *dumper)
3123 {
3124 	unsigned long flags;
3125 
3126 	raw_spin_lock_irqsave(&logbuf_lock, flags);
3127 	kmsg_dump_rewind_nolock(dumper);
3128 	raw_spin_unlock_irqrestore(&logbuf_lock, flags);
3129 }
3130 EXPORT_SYMBOL_GPL(kmsg_dump_rewind);
3131 
3132 static char dump_stack_arch_desc_str[128];
3133 
3134 /**
3135  * dump_stack_set_arch_desc - set arch-specific str to show with task dumps
3136  * @fmt: printf-style format string
3137  * @...: arguments for the format string
3138  *
3139  * The configured string will be printed right after utsname during task
3140  * dumps.  Usually used to add arch-specific system identifiers.  If an
3141  * arch wants to make use of such an ID string, it should initialize this
3142  * as soon as possible during boot.
3143  */
3144 void __init dump_stack_set_arch_desc(const char *fmt, ...)
3145 {
3146 	va_list args;
3147 
3148 	va_start(args, fmt);
3149 	vsnprintf(dump_stack_arch_desc_str, sizeof(dump_stack_arch_desc_str),
3150 		  fmt, args);
3151 	va_end(args);
3152 }
3153 
3154 /**
3155  * dump_stack_print_info - print generic debug info for dump_stack()
3156  * @log_lvl: log level
3157  *
3158  * Arch-specific dump_stack() implementations can use this function to
3159  * print out the same debug information as the generic dump_stack().
3160  */
3161 void dump_stack_print_info(const char *log_lvl)
3162 {
3163 	printk("%sCPU: %d PID: %d Comm: %.20s %s %s %.*s\n",
3164 	       log_lvl, raw_smp_processor_id(), current->pid, current->comm,
3165 	       print_tainted(), init_utsname()->release,
3166 	       (int)strcspn(init_utsname()->version, " "),
3167 	       init_utsname()->version);
3168 
3169 	if (dump_stack_arch_desc_str[0] != '\0')
3170 		printk("%sHardware name: %s\n",
3171 		       log_lvl, dump_stack_arch_desc_str);
3172 
3173 	print_worker_info(log_lvl, current);
3174 }
3175 
3176 /**
3177  * show_regs_print_info - print generic debug info for show_regs()
3178  * @log_lvl: log level
3179  *
3180  * show_regs() implementations can use this function to print out generic
3181  * debug information.
3182  */
3183 void show_regs_print_info(const char *log_lvl)
3184 {
3185 	dump_stack_print_info(log_lvl);
3186 
3187 	printk("%stask: %p ti: %p task.ti: %p\n",
3188 	       log_lvl, current, current_thread_info(),
3189 	       task_thread_info(current));
3190 }
3191 
3192 #endif
3193