1 /* 2 * linux/kernel/printk.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 * 6 * Modified to make sys_syslog() more flexible: added commands to 7 * return the last 4k of kernel messages, regardless of whether 8 * they've been read or not. Added option to suppress kernel printk's 9 * to the console. Added hook for sending the console messages 10 * elsewhere, in preparation for a serial line console (someday). 11 * Ted Ts'o, 2/11/93. 12 * Modified for sysctl support, 1/8/97, Chris Horn. 13 * Fixed SMP synchronization, 08/08/99, Manfred Spraul 14 * manfred@colorfullife.com 15 * Rewrote bits to get rid of console_lock 16 * 01Mar01 Andrew Morton 17 */ 18 19 #include <linux/kernel.h> 20 #include <linux/mm.h> 21 #include <linux/tty.h> 22 #include <linux/tty_driver.h> 23 #include <linux/console.h> 24 #include <linux/init.h> 25 #include <linux/jiffies.h> 26 #include <linux/nmi.h> 27 #include <linux/module.h> 28 #include <linux/moduleparam.h> 29 #include <linux/interrupt.h> /* For in_interrupt() */ 30 #include <linux/delay.h> 31 #include <linux/smp.h> 32 #include <linux/security.h> 33 #include <linux/bootmem.h> 34 #include <linux/memblock.h> 35 #include <linux/aio.h> 36 #include <linux/syscalls.h> 37 #include <linux/kexec.h> 38 #include <linux/kdb.h> 39 #include <linux/ratelimit.h> 40 #include <linux/kmsg_dump.h> 41 #include <linux/syslog.h> 42 #include <linux/cpu.h> 43 #include <linux/notifier.h> 44 #include <linux/rculist.h> 45 #include <linux/poll.h> 46 #include <linux/irq_work.h> 47 #include <linux/utsname.h> 48 49 #include <asm/uaccess.h> 50 51 #define CREATE_TRACE_POINTS 52 #include <trace/events/printk.h> 53 54 #include "console_cmdline.h" 55 #include "braille.h" 56 57 int console_printk[4] = { 58 CONSOLE_LOGLEVEL_DEFAULT, /* console_loglevel */ 59 DEFAULT_MESSAGE_LOGLEVEL, /* default_message_loglevel */ 60 CONSOLE_LOGLEVEL_MIN, /* minimum_console_loglevel */ 61 CONSOLE_LOGLEVEL_DEFAULT, /* default_console_loglevel */ 62 }; 63 64 /* Deferred messaged from sched code are marked by this special level */ 65 #define SCHED_MESSAGE_LOGLEVEL -2 66 67 /* 68 * Low level drivers may need that to know if they can schedule in 69 * their unblank() callback or not. So let's export it. 70 */ 71 int oops_in_progress; 72 EXPORT_SYMBOL(oops_in_progress); 73 74 /* 75 * console_sem protects the console_drivers list, and also 76 * provides serialisation for access to the entire console 77 * driver system. 78 */ 79 static DEFINE_SEMAPHORE(console_sem); 80 struct console *console_drivers; 81 EXPORT_SYMBOL_GPL(console_drivers); 82 83 #ifdef CONFIG_LOCKDEP 84 static struct lockdep_map console_lock_dep_map = { 85 .name = "console_lock" 86 }; 87 #endif 88 89 /* 90 * Helper macros to handle lockdep when locking/unlocking console_sem. We use 91 * macros instead of functions so that _RET_IP_ contains useful information. 92 */ 93 #define down_console_sem() do { \ 94 down(&console_sem);\ 95 mutex_acquire(&console_lock_dep_map, 0, 0, _RET_IP_);\ 96 } while (0) 97 98 static int __down_trylock_console_sem(unsigned long ip) 99 { 100 if (down_trylock(&console_sem)) 101 return 1; 102 mutex_acquire(&console_lock_dep_map, 0, 1, ip); 103 return 0; 104 } 105 #define down_trylock_console_sem() __down_trylock_console_sem(_RET_IP_) 106 107 #define up_console_sem() do { \ 108 mutex_release(&console_lock_dep_map, 1, _RET_IP_);\ 109 up(&console_sem);\ 110 } while (0) 111 112 /* 113 * This is used for debugging the mess that is the VT code by 114 * keeping track if we have the console semaphore held. It's 115 * definitely not the perfect debug tool (we don't know if _WE_ 116 * hold it are racing, but it helps tracking those weird code 117 * path in the console code where we end up in places I want 118 * locked without the console sempahore held 119 */ 120 static int console_locked, console_suspended; 121 122 /* 123 * If exclusive_console is non-NULL then only this console is to be printed to. 124 */ 125 static struct console *exclusive_console; 126 127 /* 128 * Array of consoles built from command line options (console=) 129 */ 130 131 #define MAX_CMDLINECONSOLES 8 132 133 static struct console_cmdline console_cmdline[MAX_CMDLINECONSOLES]; 134 135 static int selected_console = -1; 136 static int preferred_console = -1; 137 int console_set_on_cmdline; 138 EXPORT_SYMBOL(console_set_on_cmdline); 139 140 /* Flag: console code may call schedule() */ 141 static int console_may_schedule; 142 143 /* 144 * The printk log buffer consists of a chain of concatenated variable 145 * length records. Every record starts with a record header, containing 146 * the overall length of the record. 147 * 148 * The heads to the first and last entry in the buffer, as well as the 149 * sequence numbers of these both entries are maintained when messages 150 * are stored.. 151 * 152 * If the heads indicate available messages, the length in the header 153 * tells the start next message. A length == 0 for the next message 154 * indicates a wrap-around to the beginning of the buffer. 155 * 156 * Every record carries the monotonic timestamp in microseconds, as well as 157 * the standard userspace syslog level and syslog facility. The usual 158 * kernel messages use LOG_KERN; userspace-injected messages always carry 159 * a matching syslog facility, by default LOG_USER. The origin of every 160 * message can be reliably determined that way. 161 * 162 * The human readable log message directly follows the message header. The 163 * length of the message text is stored in the header, the stored message 164 * is not terminated. 165 * 166 * Optionally, a message can carry a dictionary of properties (key/value pairs), 167 * to provide userspace with a machine-readable message context. 168 * 169 * Examples for well-defined, commonly used property names are: 170 * DEVICE=b12:8 device identifier 171 * b12:8 block dev_t 172 * c127:3 char dev_t 173 * n8 netdev ifindex 174 * +sound:card0 subsystem:devname 175 * SUBSYSTEM=pci driver-core subsystem name 176 * 177 * Valid characters in property names are [a-zA-Z0-9.-_]. The plain text value 178 * follows directly after a '=' character. Every property is terminated by 179 * a '\0' character. The last property is not terminated. 180 * 181 * Example of a message structure: 182 * 0000 ff 8f 00 00 00 00 00 00 monotonic time in nsec 183 * 0008 34 00 record is 52 bytes long 184 * 000a 0b 00 text is 11 bytes long 185 * 000c 1f 00 dictionary is 23 bytes long 186 * 000e 03 00 LOG_KERN (facility) LOG_ERR (level) 187 * 0010 69 74 27 73 20 61 20 6c "it's a l" 188 * 69 6e 65 "ine" 189 * 001b 44 45 56 49 43 "DEVIC" 190 * 45 3d 62 38 3a 32 00 44 "E=b8:2\0D" 191 * 52 49 56 45 52 3d 62 75 "RIVER=bu" 192 * 67 "g" 193 * 0032 00 00 00 padding to next message header 194 * 195 * The 'struct printk_log' buffer header must never be directly exported to 196 * userspace, it is a kernel-private implementation detail that might 197 * need to be changed in the future, when the requirements change. 198 * 199 * /dev/kmsg exports the structured data in the following line format: 200 * "level,sequnum,timestamp;<message text>\n" 201 * 202 * The optional key/value pairs are attached as continuation lines starting 203 * with a space character and terminated by a newline. All possible 204 * non-prinatable characters are escaped in the "\xff" notation. 205 * 206 * Users of the export format should ignore possible additional values 207 * separated by ',', and find the message after the ';' character. 208 */ 209 210 enum log_flags { 211 LOG_NOCONS = 1, /* already flushed, do not print to console */ 212 LOG_NEWLINE = 2, /* text ended with a newline */ 213 LOG_PREFIX = 4, /* text started with a prefix */ 214 LOG_CONT = 8, /* text is a fragment of a continuation line */ 215 }; 216 217 struct printk_log { 218 u64 ts_nsec; /* timestamp in nanoseconds */ 219 u16 len; /* length of entire record */ 220 u16 text_len; /* length of text buffer */ 221 u16 dict_len; /* length of dictionary buffer */ 222 u8 facility; /* syslog facility */ 223 u8 flags:5; /* internal record flags */ 224 u8 level:3; /* syslog level */ 225 }; 226 227 /* 228 * The logbuf_lock protects kmsg buffer, indices, counters. This can be taken 229 * within the scheduler's rq lock. It must be released before calling 230 * console_unlock() or anything else that might wake up a process. 231 */ 232 static DEFINE_RAW_SPINLOCK(logbuf_lock); 233 234 #ifdef CONFIG_PRINTK 235 DECLARE_WAIT_QUEUE_HEAD(log_wait); 236 /* the next printk record to read by syslog(READ) or /proc/kmsg */ 237 static u64 syslog_seq; 238 static u32 syslog_idx; 239 static enum log_flags syslog_prev; 240 static size_t syslog_partial; 241 242 /* index and sequence number of the first record stored in the buffer */ 243 static u64 log_first_seq; 244 static u32 log_first_idx; 245 246 /* index and sequence number of the next record to store in the buffer */ 247 static u64 log_next_seq; 248 static u32 log_next_idx; 249 250 /* the next printk record to write to the console */ 251 static u64 console_seq; 252 static u32 console_idx; 253 static enum log_flags console_prev; 254 255 /* the next printk record to read after the last 'clear' command */ 256 static u64 clear_seq; 257 static u32 clear_idx; 258 259 #define PREFIX_MAX 32 260 #define LOG_LINE_MAX 1024 - PREFIX_MAX 261 262 /* record buffer */ 263 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) 264 #define LOG_ALIGN 4 265 #else 266 #define LOG_ALIGN __alignof__(struct printk_log) 267 #endif 268 #define __LOG_BUF_LEN (1 << CONFIG_LOG_BUF_SHIFT) 269 static char __log_buf[__LOG_BUF_LEN] __aligned(LOG_ALIGN); 270 static char *log_buf = __log_buf; 271 static u32 log_buf_len = __LOG_BUF_LEN; 272 273 /* human readable text of the record */ 274 static char *log_text(const struct printk_log *msg) 275 { 276 return (char *)msg + sizeof(struct printk_log); 277 } 278 279 /* optional key/value pair dictionary attached to the record */ 280 static char *log_dict(const struct printk_log *msg) 281 { 282 return (char *)msg + sizeof(struct printk_log) + msg->text_len; 283 } 284 285 /* get record by index; idx must point to valid msg */ 286 static struct printk_log *log_from_idx(u32 idx) 287 { 288 struct printk_log *msg = (struct printk_log *)(log_buf + idx); 289 290 /* 291 * A length == 0 record is the end of buffer marker. Wrap around and 292 * read the message at the start of the buffer. 293 */ 294 if (!msg->len) 295 return (struct printk_log *)log_buf; 296 return msg; 297 } 298 299 /* get next record; idx must point to valid msg */ 300 static u32 log_next(u32 idx) 301 { 302 struct printk_log *msg = (struct printk_log *)(log_buf + idx); 303 304 /* length == 0 indicates the end of the buffer; wrap */ 305 /* 306 * A length == 0 record is the end of buffer marker. Wrap around and 307 * read the message at the start of the buffer as *this* one, and 308 * return the one after that. 309 */ 310 if (!msg->len) { 311 msg = (struct printk_log *)log_buf; 312 return msg->len; 313 } 314 return idx + msg->len; 315 } 316 317 /* 318 * Check whether there is enough free space for the given message. 319 * 320 * The same values of first_idx and next_idx mean that the buffer 321 * is either empty or full. 322 * 323 * If the buffer is empty, we must respect the position of the indexes. 324 * They cannot be reset to the beginning of the buffer. 325 */ 326 static int logbuf_has_space(u32 msg_size, bool empty) 327 { 328 u32 free; 329 330 if (log_next_idx > log_first_idx || empty) 331 free = max(log_buf_len - log_next_idx, log_first_idx); 332 else 333 free = log_first_idx - log_next_idx; 334 335 /* 336 * We need space also for an empty header that signalizes wrapping 337 * of the buffer. 338 */ 339 return free >= msg_size + sizeof(struct printk_log); 340 } 341 342 static int log_make_free_space(u32 msg_size) 343 { 344 while (log_first_seq < log_next_seq) { 345 if (logbuf_has_space(msg_size, false)) 346 return 0; 347 /* drop old messages until we have enough continuous space */ 348 log_first_idx = log_next(log_first_idx); 349 log_first_seq++; 350 } 351 352 /* sequence numbers are equal, so the log buffer is empty */ 353 if (logbuf_has_space(msg_size, true)) 354 return 0; 355 356 return -ENOMEM; 357 } 358 359 /* compute the message size including the padding bytes */ 360 static u32 msg_used_size(u16 text_len, u16 dict_len, u32 *pad_len) 361 { 362 u32 size; 363 364 size = sizeof(struct printk_log) + text_len + dict_len; 365 *pad_len = (-size) & (LOG_ALIGN - 1); 366 size += *pad_len; 367 368 return size; 369 } 370 371 /* 372 * Define how much of the log buffer we could take at maximum. The value 373 * must be greater than two. Note that only half of the buffer is available 374 * when the index points to the middle. 375 */ 376 #define MAX_LOG_TAKE_PART 4 377 static const char trunc_msg[] = "<truncated>"; 378 379 static u32 truncate_msg(u16 *text_len, u16 *trunc_msg_len, 380 u16 *dict_len, u32 *pad_len) 381 { 382 /* 383 * The message should not take the whole buffer. Otherwise, it might 384 * get removed too soon. 385 */ 386 u32 max_text_len = log_buf_len / MAX_LOG_TAKE_PART; 387 if (*text_len > max_text_len) 388 *text_len = max_text_len; 389 /* enable the warning message */ 390 *trunc_msg_len = strlen(trunc_msg); 391 /* disable the "dict" completely */ 392 *dict_len = 0; 393 /* compute the size again, count also the warning message */ 394 return msg_used_size(*text_len + *trunc_msg_len, 0, pad_len); 395 } 396 397 /* insert record into the buffer, discard old ones, update heads */ 398 static int log_store(int facility, int level, 399 enum log_flags flags, u64 ts_nsec, 400 const char *dict, u16 dict_len, 401 const char *text, u16 text_len) 402 { 403 struct printk_log *msg; 404 u32 size, pad_len; 405 u16 trunc_msg_len = 0; 406 407 /* number of '\0' padding bytes to next message */ 408 size = msg_used_size(text_len, dict_len, &pad_len); 409 410 if (log_make_free_space(size)) { 411 /* truncate the message if it is too long for empty buffer */ 412 size = truncate_msg(&text_len, &trunc_msg_len, 413 &dict_len, &pad_len); 414 /* survive when the log buffer is too small for trunc_msg */ 415 if (log_make_free_space(size)) 416 return 0; 417 } 418 419 if (log_next_idx + size + sizeof(struct printk_log) > log_buf_len) { 420 /* 421 * This message + an additional empty header does not fit 422 * at the end of the buffer. Add an empty header with len == 0 423 * to signify a wrap around. 424 */ 425 memset(log_buf + log_next_idx, 0, sizeof(struct printk_log)); 426 log_next_idx = 0; 427 } 428 429 /* fill message */ 430 msg = (struct printk_log *)(log_buf + log_next_idx); 431 memcpy(log_text(msg), text, text_len); 432 msg->text_len = text_len; 433 if (trunc_msg_len) { 434 memcpy(log_text(msg) + text_len, trunc_msg, trunc_msg_len); 435 msg->text_len += trunc_msg_len; 436 } 437 memcpy(log_dict(msg), dict, dict_len); 438 msg->dict_len = dict_len; 439 msg->facility = facility; 440 msg->level = level & 7; 441 msg->flags = flags & 0x1f; 442 if (ts_nsec > 0) 443 msg->ts_nsec = ts_nsec; 444 else 445 msg->ts_nsec = local_clock(); 446 memset(log_dict(msg) + dict_len, 0, pad_len); 447 msg->len = size; 448 449 /* insert message */ 450 log_next_idx += msg->len; 451 log_next_seq++; 452 453 return msg->text_len; 454 } 455 456 #ifdef CONFIG_SECURITY_DMESG_RESTRICT 457 int dmesg_restrict = 1; 458 #else 459 int dmesg_restrict; 460 #endif 461 462 static int syslog_action_restricted(int type) 463 { 464 if (dmesg_restrict) 465 return 1; 466 /* 467 * Unless restricted, we allow "read all" and "get buffer size" 468 * for everybody. 469 */ 470 return type != SYSLOG_ACTION_READ_ALL && 471 type != SYSLOG_ACTION_SIZE_BUFFER; 472 } 473 474 static int check_syslog_permissions(int type, bool from_file) 475 { 476 /* 477 * If this is from /proc/kmsg and we've already opened it, then we've 478 * already done the capabilities checks at open time. 479 */ 480 if (from_file && type != SYSLOG_ACTION_OPEN) 481 return 0; 482 483 if (syslog_action_restricted(type)) { 484 if (capable(CAP_SYSLOG)) 485 return 0; 486 /* 487 * For historical reasons, accept CAP_SYS_ADMIN too, with 488 * a warning. 489 */ 490 if (capable(CAP_SYS_ADMIN)) { 491 pr_warn_once("%s (%d): Attempt to access syslog with " 492 "CAP_SYS_ADMIN but no CAP_SYSLOG " 493 "(deprecated).\n", 494 current->comm, task_pid_nr(current)); 495 return 0; 496 } 497 return -EPERM; 498 } 499 return security_syslog(type); 500 } 501 502 503 /* /dev/kmsg - userspace message inject/listen interface */ 504 struct devkmsg_user { 505 u64 seq; 506 u32 idx; 507 enum log_flags prev; 508 struct mutex lock; 509 char buf[8192]; 510 }; 511 512 static ssize_t devkmsg_writev(struct kiocb *iocb, const struct iovec *iv, 513 unsigned long count, loff_t pos) 514 { 515 char *buf, *line; 516 int i; 517 int level = default_message_loglevel; 518 int facility = 1; /* LOG_USER */ 519 size_t len = iov_length(iv, count); 520 ssize_t ret = len; 521 522 if (len > LOG_LINE_MAX) 523 return -EINVAL; 524 buf = kmalloc(len+1, GFP_KERNEL); 525 if (buf == NULL) 526 return -ENOMEM; 527 528 line = buf; 529 for (i = 0; i < count; i++) { 530 if (copy_from_user(line, iv[i].iov_base, iv[i].iov_len)) { 531 ret = -EFAULT; 532 goto out; 533 } 534 line += iv[i].iov_len; 535 } 536 537 /* 538 * Extract and skip the syslog prefix <[0-9]*>. Coming from userspace 539 * the decimal value represents 32bit, the lower 3 bit are the log 540 * level, the rest are the log facility. 541 * 542 * If no prefix or no userspace facility is specified, we 543 * enforce LOG_USER, to be able to reliably distinguish 544 * kernel-generated messages from userspace-injected ones. 545 */ 546 line = buf; 547 if (line[0] == '<') { 548 char *endp = NULL; 549 550 i = simple_strtoul(line+1, &endp, 10); 551 if (endp && endp[0] == '>') { 552 level = i & 7; 553 if (i >> 3) 554 facility = i >> 3; 555 endp++; 556 len -= endp - line; 557 line = endp; 558 } 559 } 560 line[len] = '\0'; 561 562 printk_emit(facility, level, NULL, 0, "%s", line); 563 out: 564 kfree(buf); 565 return ret; 566 } 567 568 static ssize_t devkmsg_read(struct file *file, char __user *buf, 569 size_t count, loff_t *ppos) 570 { 571 struct devkmsg_user *user = file->private_data; 572 struct printk_log *msg; 573 u64 ts_usec; 574 size_t i; 575 char cont = '-'; 576 size_t len; 577 ssize_t ret; 578 579 if (!user) 580 return -EBADF; 581 582 ret = mutex_lock_interruptible(&user->lock); 583 if (ret) 584 return ret; 585 raw_spin_lock_irq(&logbuf_lock); 586 while (user->seq == log_next_seq) { 587 if (file->f_flags & O_NONBLOCK) { 588 ret = -EAGAIN; 589 raw_spin_unlock_irq(&logbuf_lock); 590 goto out; 591 } 592 593 raw_spin_unlock_irq(&logbuf_lock); 594 ret = wait_event_interruptible(log_wait, 595 user->seq != log_next_seq); 596 if (ret) 597 goto out; 598 raw_spin_lock_irq(&logbuf_lock); 599 } 600 601 if (user->seq < log_first_seq) { 602 /* our last seen message is gone, return error and reset */ 603 user->idx = log_first_idx; 604 user->seq = log_first_seq; 605 ret = -EPIPE; 606 raw_spin_unlock_irq(&logbuf_lock); 607 goto out; 608 } 609 610 msg = log_from_idx(user->idx); 611 ts_usec = msg->ts_nsec; 612 do_div(ts_usec, 1000); 613 614 /* 615 * If we couldn't merge continuation line fragments during the print, 616 * export the stored flags to allow an optional external merge of the 617 * records. Merging the records isn't always neccessarily correct, like 618 * when we hit a race during printing. In most cases though, it produces 619 * better readable output. 'c' in the record flags mark the first 620 * fragment of a line, '+' the following. 621 */ 622 if (msg->flags & LOG_CONT && !(user->prev & LOG_CONT)) 623 cont = 'c'; 624 else if ((msg->flags & LOG_CONT) || 625 ((user->prev & LOG_CONT) && !(msg->flags & LOG_PREFIX))) 626 cont = '+'; 627 628 len = sprintf(user->buf, "%u,%llu,%llu,%c;", 629 (msg->facility << 3) | msg->level, 630 user->seq, ts_usec, cont); 631 user->prev = msg->flags; 632 633 /* escape non-printable characters */ 634 for (i = 0; i < msg->text_len; i++) { 635 unsigned char c = log_text(msg)[i]; 636 637 if (c < ' ' || c >= 127 || c == '\\') 638 len += sprintf(user->buf + len, "\\x%02x", c); 639 else 640 user->buf[len++] = c; 641 } 642 user->buf[len++] = '\n'; 643 644 if (msg->dict_len) { 645 bool line = true; 646 647 for (i = 0; i < msg->dict_len; i++) { 648 unsigned char c = log_dict(msg)[i]; 649 650 if (line) { 651 user->buf[len++] = ' '; 652 line = false; 653 } 654 655 if (c == '\0') { 656 user->buf[len++] = '\n'; 657 line = true; 658 continue; 659 } 660 661 if (c < ' ' || c >= 127 || c == '\\') { 662 len += sprintf(user->buf + len, "\\x%02x", c); 663 continue; 664 } 665 666 user->buf[len++] = c; 667 } 668 user->buf[len++] = '\n'; 669 } 670 671 user->idx = log_next(user->idx); 672 user->seq++; 673 raw_spin_unlock_irq(&logbuf_lock); 674 675 if (len > count) { 676 ret = -EINVAL; 677 goto out; 678 } 679 680 if (copy_to_user(buf, user->buf, len)) { 681 ret = -EFAULT; 682 goto out; 683 } 684 ret = len; 685 out: 686 mutex_unlock(&user->lock); 687 return ret; 688 } 689 690 static loff_t devkmsg_llseek(struct file *file, loff_t offset, int whence) 691 { 692 struct devkmsg_user *user = file->private_data; 693 loff_t ret = 0; 694 695 if (!user) 696 return -EBADF; 697 if (offset) 698 return -ESPIPE; 699 700 raw_spin_lock_irq(&logbuf_lock); 701 switch (whence) { 702 case SEEK_SET: 703 /* the first record */ 704 user->idx = log_first_idx; 705 user->seq = log_first_seq; 706 break; 707 case SEEK_DATA: 708 /* 709 * The first record after the last SYSLOG_ACTION_CLEAR, 710 * like issued by 'dmesg -c'. Reading /dev/kmsg itself 711 * changes no global state, and does not clear anything. 712 */ 713 user->idx = clear_idx; 714 user->seq = clear_seq; 715 break; 716 case SEEK_END: 717 /* after the last record */ 718 user->idx = log_next_idx; 719 user->seq = log_next_seq; 720 break; 721 default: 722 ret = -EINVAL; 723 } 724 raw_spin_unlock_irq(&logbuf_lock); 725 return ret; 726 } 727 728 static unsigned int devkmsg_poll(struct file *file, poll_table *wait) 729 { 730 struct devkmsg_user *user = file->private_data; 731 int ret = 0; 732 733 if (!user) 734 return POLLERR|POLLNVAL; 735 736 poll_wait(file, &log_wait, wait); 737 738 raw_spin_lock_irq(&logbuf_lock); 739 if (user->seq < log_next_seq) { 740 /* return error when data has vanished underneath us */ 741 if (user->seq < log_first_seq) 742 ret = POLLIN|POLLRDNORM|POLLERR|POLLPRI; 743 else 744 ret = POLLIN|POLLRDNORM; 745 } 746 raw_spin_unlock_irq(&logbuf_lock); 747 748 return ret; 749 } 750 751 static int devkmsg_open(struct inode *inode, struct file *file) 752 { 753 struct devkmsg_user *user; 754 int err; 755 756 /* write-only does not need any file context */ 757 if ((file->f_flags & O_ACCMODE) == O_WRONLY) 758 return 0; 759 760 err = check_syslog_permissions(SYSLOG_ACTION_READ_ALL, 761 SYSLOG_FROM_READER); 762 if (err) 763 return err; 764 765 user = kmalloc(sizeof(struct devkmsg_user), GFP_KERNEL); 766 if (!user) 767 return -ENOMEM; 768 769 mutex_init(&user->lock); 770 771 raw_spin_lock_irq(&logbuf_lock); 772 user->idx = log_first_idx; 773 user->seq = log_first_seq; 774 raw_spin_unlock_irq(&logbuf_lock); 775 776 file->private_data = user; 777 return 0; 778 } 779 780 static int devkmsg_release(struct inode *inode, struct file *file) 781 { 782 struct devkmsg_user *user = file->private_data; 783 784 if (!user) 785 return 0; 786 787 mutex_destroy(&user->lock); 788 kfree(user); 789 return 0; 790 } 791 792 const struct file_operations kmsg_fops = { 793 .open = devkmsg_open, 794 .read = devkmsg_read, 795 .aio_write = devkmsg_writev, 796 .llseek = devkmsg_llseek, 797 .poll = devkmsg_poll, 798 .release = devkmsg_release, 799 }; 800 801 #ifdef CONFIG_KEXEC 802 /* 803 * This appends the listed symbols to /proc/vmcore 804 * 805 * /proc/vmcore is used by various utilities, like crash and makedumpfile to 806 * obtain access to symbols that are otherwise very difficult to locate. These 807 * symbols are specifically used so that utilities can access and extract the 808 * dmesg log from a vmcore file after a crash. 809 */ 810 void log_buf_kexec_setup(void) 811 { 812 VMCOREINFO_SYMBOL(log_buf); 813 VMCOREINFO_SYMBOL(log_buf_len); 814 VMCOREINFO_SYMBOL(log_first_idx); 815 VMCOREINFO_SYMBOL(log_next_idx); 816 /* 817 * Export struct printk_log size and field offsets. User space tools can 818 * parse it and detect any changes to structure down the line. 819 */ 820 VMCOREINFO_STRUCT_SIZE(printk_log); 821 VMCOREINFO_OFFSET(printk_log, ts_nsec); 822 VMCOREINFO_OFFSET(printk_log, len); 823 VMCOREINFO_OFFSET(printk_log, text_len); 824 VMCOREINFO_OFFSET(printk_log, dict_len); 825 } 826 #endif 827 828 /* requested log_buf_len from kernel cmdline */ 829 static unsigned long __initdata new_log_buf_len; 830 831 /* save requested log_buf_len since it's too early to process it */ 832 static int __init log_buf_len_setup(char *str) 833 { 834 unsigned size = memparse(str, &str); 835 836 if (size) 837 size = roundup_pow_of_two(size); 838 if (size > log_buf_len) 839 new_log_buf_len = size; 840 841 return 0; 842 } 843 early_param("log_buf_len", log_buf_len_setup); 844 845 void __init setup_log_buf(int early) 846 { 847 unsigned long flags; 848 char *new_log_buf; 849 int free; 850 851 if (!new_log_buf_len) 852 return; 853 854 if (early) { 855 new_log_buf = 856 memblock_virt_alloc(new_log_buf_len, PAGE_SIZE); 857 } else { 858 new_log_buf = memblock_virt_alloc_nopanic(new_log_buf_len, 0); 859 } 860 861 if (unlikely(!new_log_buf)) { 862 pr_err("log_buf_len: %ld bytes not available\n", 863 new_log_buf_len); 864 return; 865 } 866 867 raw_spin_lock_irqsave(&logbuf_lock, flags); 868 log_buf_len = new_log_buf_len; 869 log_buf = new_log_buf; 870 new_log_buf_len = 0; 871 free = __LOG_BUF_LEN - log_next_idx; 872 memcpy(log_buf, __log_buf, __LOG_BUF_LEN); 873 raw_spin_unlock_irqrestore(&logbuf_lock, flags); 874 875 pr_info("log_buf_len: %d\n", log_buf_len); 876 pr_info("early log buf free: %d(%d%%)\n", 877 free, (free * 100) / __LOG_BUF_LEN); 878 } 879 880 static bool __read_mostly ignore_loglevel; 881 882 static int __init ignore_loglevel_setup(char *str) 883 { 884 ignore_loglevel = 1; 885 pr_info("debug: ignoring loglevel setting.\n"); 886 887 return 0; 888 } 889 890 early_param("ignore_loglevel", ignore_loglevel_setup); 891 module_param(ignore_loglevel, bool, S_IRUGO | S_IWUSR); 892 MODULE_PARM_DESC(ignore_loglevel, "ignore loglevel setting, to" 893 "print all kernel messages to the console."); 894 895 #ifdef CONFIG_BOOT_PRINTK_DELAY 896 897 static int boot_delay; /* msecs delay after each printk during bootup */ 898 static unsigned long long loops_per_msec; /* based on boot_delay */ 899 900 static int __init boot_delay_setup(char *str) 901 { 902 unsigned long lpj; 903 904 lpj = preset_lpj ? preset_lpj : 1000000; /* some guess */ 905 loops_per_msec = (unsigned long long)lpj / 1000 * HZ; 906 907 get_option(&str, &boot_delay); 908 if (boot_delay > 10 * 1000) 909 boot_delay = 0; 910 911 pr_debug("boot_delay: %u, preset_lpj: %ld, lpj: %lu, " 912 "HZ: %d, loops_per_msec: %llu\n", 913 boot_delay, preset_lpj, lpj, HZ, loops_per_msec); 914 return 0; 915 } 916 early_param("boot_delay", boot_delay_setup); 917 918 static void boot_delay_msec(int level) 919 { 920 unsigned long long k; 921 unsigned long timeout; 922 923 if ((boot_delay == 0 || system_state != SYSTEM_BOOTING) 924 || (level >= console_loglevel && !ignore_loglevel)) { 925 return; 926 } 927 928 k = (unsigned long long)loops_per_msec * boot_delay; 929 930 timeout = jiffies + msecs_to_jiffies(boot_delay); 931 while (k) { 932 k--; 933 cpu_relax(); 934 /* 935 * use (volatile) jiffies to prevent 936 * compiler reduction; loop termination via jiffies 937 * is secondary and may or may not happen. 938 */ 939 if (time_after(jiffies, timeout)) 940 break; 941 touch_nmi_watchdog(); 942 } 943 } 944 #else 945 static inline void boot_delay_msec(int level) 946 { 947 } 948 #endif 949 950 #if defined(CONFIG_PRINTK_TIME) 951 static bool printk_time = 1; 952 #else 953 static bool printk_time; 954 #endif 955 module_param_named(time, printk_time, bool, S_IRUGO | S_IWUSR); 956 957 static size_t print_time(u64 ts, char *buf) 958 { 959 unsigned long rem_nsec; 960 961 if (!printk_time) 962 return 0; 963 964 rem_nsec = do_div(ts, 1000000000); 965 966 if (!buf) 967 return snprintf(NULL, 0, "[%5lu.000000] ", (unsigned long)ts); 968 969 return sprintf(buf, "[%5lu.%06lu] ", 970 (unsigned long)ts, rem_nsec / 1000); 971 } 972 973 static size_t print_prefix(const struct printk_log *msg, bool syslog, char *buf) 974 { 975 size_t len = 0; 976 unsigned int prefix = (msg->facility << 3) | msg->level; 977 978 if (syslog) { 979 if (buf) { 980 len += sprintf(buf, "<%u>", prefix); 981 } else { 982 len += 3; 983 if (prefix > 999) 984 len += 3; 985 else if (prefix > 99) 986 len += 2; 987 else if (prefix > 9) 988 len++; 989 } 990 } 991 992 len += print_time(msg->ts_nsec, buf ? buf + len : NULL); 993 return len; 994 } 995 996 static size_t msg_print_text(const struct printk_log *msg, enum log_flags prev, 997 bool syslog, char *buf, size_t size) 998 { 999 const char *text = log_text(msg); 1000 size_t text_size = msg->text_len; 1001 bool prefix = true; 1002 bool newline = true; 1003 size_t len = 0; 1004 1005 if ((prev & LOG_CONT) && !(msg->flags & LOG_PREFIX)) 1006 prefix = false; 1007 1008 if (msg->flags & LOG_CONT) { 1009 if ((prev & LOG_CONT) && !(prev & LOG_NEWLINE)) 1010 prefix = false; 1011 1012 if (!(msg->flags & LOG_NEWLINE)) 1013 newline = false; 1014 } 1015 1016 do { 1017 const char *next = memchr(text, '\n', text_size); 1018 size_t text_len; 1019 1020 if (next) { 1021 text_len = next - text; 1022 next++; 1023 text_size -= next - text; 1024 } else { 1025 text_len = text_size; 1026 } 1027 1028 if (buf) { 1029 if (print_prefix(msg, syslog, NULL) + 1030 text_len + 1 >= size - len) 1031 break; 1032 1033 if (prefix) 1034 len += print_prefix(msg, syslog, buf + len); 1035 memcpy(buf + len, text, text_len); 1036 len += text_len; 1037 if (next || newline) 1038 buf[len++] = '\n'; 1039 } else { 1040 /* SYSLOG_ACTION_* buffer size only calculation */ 1041 if (prefix) 1042 len += print_prefix(msg, syslog, NULL); 1043 len += text_len; 1044 if (next || newline) 1045 len++; 1046 } 1047 1048 prefix = true; 1049 text = next; 1050 } while (text); 1051 1052 return len; 1053 } 1054 1055 static int syslog_print(char __user *buf, int size) 1056 { 1057 char *text; 1058 struct printk_log *msg; 1059 int len = 0; 1060 1061 text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL); 1062 if (!text) 1063 return -ENOMEM; 1064 1065 while (size > 0) { 1066 size_t n; 1067 size_t skip; 1068 1069 raw_spin_lock_irq(&logbuf_lock); 1070 if (syslog_seq < log_first_seq) { 1071 /* messages are gone, move to first one */ 1072 syslog_seq = log_first_seq; 1073 syslog_idx = log_first_idx; 1074 syslog_prev = 0; 1075 syslog_partial = 0; 1076 } 1077 if (syslog_seq == log_next_seq) { 1078 raw_spin_unlock_irq(&logbuf_lock); 1079 break; 1080 } 1081 1082 skip = syslog_partial; 1083 msg = log_from_idx(syslog_idx); 1084 n = msg_print_text(msg, syslog_prev, true, text, 1085 LOG_LINE_MAX + PREFIX_MAX); 1086 if (n - syslog_partial <= size) { 1087 /* message fits into buffer, move forward */ 1088 syslog_idx = log_next(syslog_idx); 1089 syslog_seq++; 1090 syslog_prev = msg->flags; 1091 n -= syslog_partial; 1092 syslog_partial = 0; 1093 } else if (!len){ 1094 /* partial read(), remember position */ 1095 n = size; 1096 syslog_partial += n; 1097 } else 1098 n = 0; 1099 raw_spin_unlock_irq(&logbuf_lock); 1100 1101 if (!n) 1102 break; 1103 1104 if (copy_to_user(buf, text + skip, n)) { 1105 if (!len) 1106 len = -EFAULT; 1107 break; 1108 } 1109 1110 len += n; 1111 size -= n; 1112 buf += n; 1113 } 1114 1115 kfree(text); 1116 return len; 1117 } 1118 1119 static int syslog_print_all(char __user *buf, int size, bool clear) 1120 { 1121 char *text; 1122 int len = 0; 1123 1124 text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL); 1125 if (!text) 1126 return -ENOMEM; 1127 1128 raw_spin_lock_irq(&logbuf_lock); 1129 if (buf) { 1130 u64 next_seq; 1131 u64 seq; 1132 u32 idx; 1133 enum log_flags prev; 1134 1135 if (clear_seq < log_first_seq) { 1136 /* messages are gone, move to first available one */ 1137 clear_seq = log_first_seq; 1138 clear_idx = log_first_idx; 1139 } 1140 1141 /* 1142 * Find first record that fits, including all following records, 1143 * into the user-provided buffer for this dump. 1144 */ 1145 seq = clear_seq; 1146 idx = clear_idx; 1147 prev = 0; 1148 while (seq < log_next_seq) { 1149 struct printk_log *msg = log_from_idx(idx); 1150 1151 len += msg_print_text(msg, prev, true, NULL, 0); 1152 prev = msg->flags; 1153 idx = log_next(idx); 1154 seq++; 1155 } 1156 1157 /* move first record forward until length fits into the buffer */ 1158 seq = clear_seq; 1159 idx = clear_idx; 1160 prev = 0; 1161 while (len > size && seq < log_next_seq) { 1162 struct printk_log *msg = log_from_idx(idx); 1163 1164 len -= msg_print_text(msg, prev, true, NULL, 0); 1165 prev = msg->flags; 1166 idx = log_next(idx); 1167 seq++; 1168 } 1169 1170 /* last message fitting into this dump */ 1171 next_seq = log_next_seq; 1172 1173 len = 0; 1174 while (len >= 0 && seq < next_seq) { 1175 struct printk_log *msg = log_from_idx(idx); 1176 int textlen; 1177 1178 textlen = msg_print_text(msg, prev, true, text, 1179 LOG_LINE_MAX + PREFIX_MAX); 1180 if (textlen < 0) { 1181 len = textlen; 1182 break; 1183 } 1184 idx = log_next(idx); 1185 seq++; 1186 prev = msg->flags; 1187 1188 raw_spin_unlock_irq(&logbuf_lock); 1189 if (copy_to_user(buf + len, text, textlen)) 1190 len = -EFAULT; 1191 else 1192 len += textlen; 1193 raw_spin_lock_irq(&logbuf_lock); 1194 1195 if (seq < log_first_seq) { 1196 /* messages are gone, move to next one */ 1197 seq = log_first_seq; 1198 idx = log_first_idx; 1199 prev = 0; 1200 } 1201 } 1202 } 1203 1204 if (clear) { 1205 clear_seq = log_next_seq; 1206 clear_idx = log_next_idx; 1207 } 1208 raw_spin_unlock_irq(&logbuf_lock); 1209 1210 kfree(text); 1211 return len; 1212 } 1213 1214 int do_syslog(int type, char __user *buf, int len, bool from_file) 1215 { 1216 bool clear = false; 1217 static int saved_console_loglevel = -1; 1218 int error; 1219 1220 error = check_syslog_permissions(type, from_file); 1221 if (error) 1222 goto out; 1223 1224 error = security_syslog(type); 1225 if (error) 1226 return error; 1227 1228 switch (type) { 1229 case SYSLOG_ACTION_CLOSE: /* Close log */ 1230 break; 1231 case SYSLOG_ACTION_OPEN: /* Open log */ 1232 break; 1233 case SYSLOG_ACTION_READ: /* Read from log */ 1234 error = -EINVAL; 1235 if (!buf || len < 0) 1236 goto out; 1237 error = 0; 1238 if (!len) 1239 goto out; 1240 if (!access_ok(VERIFY_WRITE, buf, len)) { 1241 error = -EFAULT; 1242 goto out; 1243 } 1244 error = wait_event_interruptible(log_wait, 1245 syslog_seq != log_next_seq); 1246 if (error) 1247 goto out; 1248 error = syslog_print(buf, len); 1249 break; 1250 /* Read/clear last kernel messages */ 1251 case SYSLOG_ACTION_READ_CLEAR: 1252 clear = true; 1253 /* FALL THRU */ 1254 /* Read last kernel messages */ 1255 case SYSLOG_ACTION_READ_ALL: 1256 error = -EINVAL; 1257 if (!buf || len < 0) 1258 goto out; 1259 error = 0; 1260 if (!len) 1261 goto out; 1262 if (!access_ok(VERIFY_WRITE, buf, len)) { 1263 error = -EFAULT; 1264 goto out; 1265 } 1266 error = syslog_print_all(buf, len, clear); 1267 break; 1268 /* Clear ring buffer */ 1269 case SYSLOG_ACTION_CLEAR: 1270 syslog_print_all(NULL, 0, true); 1271 break; 1272 /* Disable logging to console */ 1273 case SYSLOG_ACTION_CONSOLE_OFF: 1274 if (saved_console_loglevel == -1) 1275 saved_console_loglevel = console_loglevel; 1276 console_loglevel = minimum_console_loglevel; 1277 break; 1278 /* Enable logging to console */ 1279 case SYSLOG_ACTION_CONSOLE_ON: 1280 if (saved_console_loglevel != -1) { 1281 console_loglevel = saved_console_loglevel; 1282 saved_console_loglevel = -1; 1283 } 1284 break; 1285 /* Set level of messages printed to console */ 1286 case SYSLOG_ACTION_CONSOLE_LEVEL: 1287 error = -EINVAL; 1288 if (len < 1 || len > 8) 1289 goto out; 1290 if (len < minimum_console_loglevel) 1291 len = minimum_console_loglevel; 1292 console_loglevel = len; 1293 /* Implicitly re-enable logging to console */ 1294 saved_console_loglevel = -1; 1295 error = 0; 1296 break; 1297 /* Number of chars in the log buffer */ 1298 case SYSLOG_ACTION_SIZE_UNREAD: 1299 raw_spin_lock_irq(&logbuf_lock); 1300 if (syslog_seq < log_first_seq) { 1301 /* messages are gone, move to first one */ 1302 syslog_seq = log_first_seq; 1303 syslog_idx = log_first_idx; 1304 syslog_prev = 0; 1305 syslog_partial = 0; 1306 } 1307 if (from_file) { 1308 /* 1309 * Short-cut for poll(/"proc/kmsg") which simply checks 1310 * for pending data, not the size; return the count of 1311 * records, not the length. 1312 */ 1313 error = log_next_idx - syslog_idx; 1314 } else { 1315 u64 seq = syslog_seq; 1316 u32 idx = syslog_idx; 1317 enum log_flags prev = syslog_prev; 1318 1319 error = 0; 1320 while (seq < log_next_seq) { 1321 struct printk_log *msg = log_from_idx(idx); 1322 1323 error += msg_print_text(msg, prev, true, NULL, 0); 1324 idx = log_next(idx); 1325 seq++; 1326 prev = msg->flags; 1327 } 1328 error -= syslog_partial; 1329 } 1330 raw_spin_unlock_irq(&logbuf_lock); 1331 break; 1332 /* Size of the log buffer */ 1333 case SYSLOG_ACTION_SIZE_BUFFER: 1334 error = log_buf_len; 1335 break; 1336 default: 1337 error = -EINVAL; 1338 break; 1339 } 1340 out: 1341 return error; 1342 } 1343 1344 SYSCALL_DEFINE3(syslog, int, type, char __user *, buf, int, len) 1345 { 1346 return do_syslog(type, buf, len, SYSLOG_FROM_READER); 1347 } 1348 1349 /* 1350 * Call the console drivers, asking them to write out 1351 * log_buf[start] to log_buf[end - 1]. 1352 * The console_lock must be held. 1353 */ 1354 static void call_console_drivers(int level, const char *text, size_t len) 1355 { 1356 struct console *con; 1357 1358 trace_console(text, len); 1359 1360 if (level >= console_loglevel && !ignore_loglevel) 1361 return; 1362 if (!console_drivers) 1363 return; 1364 1365 for_each_console(con) { 1366 if (exclusive_console && con != exclusive_console) 1367 continue; 1368 if (!(con->flags & CON_ENABLED)) 1369 continue; 1370 if (!con->write) 1371 continue; 1372 if (!cpu_online(smp_processor_id()) && 1373 !(con->flags & CON_ANYTIME)) 1374 continue; 1375 con->write(con, text, len); 1376 } 1377 } 1378 1379 /* 1380 * Zap console related locks when oopsing. Only zap at most once 1381 * every 10 seconds, to leave time for slow consoles to print a 1382 * full oops. 1383 */ 1384 static void zap_locks(void) 1385 { 1386 static unsigned long oops_timestamp; 1387 1388 if (time_after_eq(jiffies, oops_timestamp) && 1389 !time_after(jiffies, oops_timestamp + 30 * HZ)) 1390 return; 1391 1392 oops_timestamp = jiffies; 1393 1394 debug_locks_off(); 1395 /* If a crash is occurring, make sure we can't deadlock */ 1396 raw_spin_lock_init(&logbuf_lock); 1397 /* And make sure that we print immediately */ 1398 sema_init(&console_sem, 1); 1399 } 1400 1401 /* 1402 * Check if we have any console that is capable of printing while cpu is 1403 * booting or shutting down. Requires console_sem. 1404 */ 1405 static int have_callable_console(void) 1406 { 1407 struct console *con; 1408 1409 for_each_console(con) 1410 if (con->flags & CON_ANYTIME) 1411 return 1; 1412 1413 return 0; 1414 } 1415 1416 /* 1417 * Can we actually use the console at this time on this cpu? 1418 * 1419 * Console drivers may assume that per-cpu resources have been allocated. So 1420 * unless they're explicitly marked as being able to cope (CON_ANYTIME) don't 1421 * call them until this CPU is officially up. 1422 */ 1423 static inline int can_use_console(unsigned int cpu) 1424 { 1425 return cpu_online(cpu) || have_callable_console(); 1426 } 1427 1428 /* 1429 * Try to get console ownership to actually show the kernel 1430 * messages from a 'printk'. Return true (and with the 1431 * console_lock held, and 'console_locked' set) if it 1432 * is successful, false otherwise. 1433 */ 1434 static int console_trylock_for_printk(void) 1435 { 1436 unsigned int cpu = smp_processor_id(); 1437 1438 if (!console_trylock()) 1439 return 0; 1440 /* 1441 * If we can't use the console, we need to release the console 1442 * semaphore by hand to avoid flushing the buffer. We need to hold the 1443 * console semaphore in order to do this test safely. 1444 */ 1445 if (!can_use_console(cpu)) { 1446 console_locked = 0; 1447 up_console_sem(); 1448 return 0; 1449 } 1450 return 1; 1451 } 1452 1453 int printk_delay_msec __read_mostly; 1454 1455 static inline void printk_delay(void) 1456 { 1457 if (unlikely(printk_delay_msec)) { 1458 int m = printk_delay_msec; 1459 1460 while (m--) { 1461 mdelay(1); 1462 touch_nmi_watchdog(); 1463 } 1464 } 1465 } 1466 1467 /* 1468 * Continuation lines are buffered, and not committed to the record buffer 1469 * until the line is complete, or a race forces it. The line fragments 1470 * though, are printed immediately to the consoles to ensure everything has 1471 * reached the console in case of a kernel crash. 1472 */ 1473 static struct cont { 1474 char buf[LOG_LINE_MAX]; 1475 size_t len; /* length == 0 means unused buffer */ 1476 size_t cons; /* bytes written to console */ 1477 struct task_struct *owner; /* task of first print*/ 1478 u64 ts_nsec; /* time of first print */ 1479 u8 level; /* log level of first message */ 1480 u8 facility; /* log level of first message */ 1481 enum log_flags flags; /* prefix, newline flags */ 1482 bool flushed:1; /* buffer sealed and committed */ 1483 } cont; 1484 1485 static void cont_flush(enum log_flags flags) 1486 { 1487 if (cont.flushed) 1488 return; 1489 if (cont.len == 0) 1490 return; 1491 1492 if (cont.cons) { 1493 /* 1494 * If a fragment of this line was directly flushed to the 1495 * console; wait for the console to pick up the rest of the 1496 * line. LOG_NOCONS suppresses a duplicated output. 1497 */ 1498 log_store(cont.facility, cont.level, flags | LOG_NOCONS, 1499 cont.ts_nsec, NULL, 0, cont.buf, cont.len); 1500 cont.flags = flags; 1501 cont.flushed = true; 1502 } else { 1503 /* 1504 * If no fragment of this line ever reached the console, 1505 * just submit it to the store and free the buffer. 1506 */ 1507 log_store(cont.facility, cont.level, flags, 0, 1508 NULL, 0, cont.buf, cont.len); 1509 cont.len = 0; 1510 } 1511 } 1512 1513 static bool cont_add(int facility, int level, const char *text, size_t len) 1514 { 1515 if (cont.len && cont.flushed) 1516 return false; 1517 1518 if (cont.len + len > sizeof(cont.buf)) { 1519 /* the line gets too long, split it up in separate records */ 1520 cont_flush(LOG_CONT); 1521 return false; 1522 } 1523 1524 if (!cont.len) { 1525 cont.facility = facility; 1526 cont.level = level; 1527 cont.owner = current; 1528 cont.ts_nsec = local_clock(); 1529 cont.flags = 0; 1530 cont.cons = 0; 1531 cont.flushed = false; 1532 } 1533 1534 memcpy(cont.buf + cont.len, text, len); 1535 cont.len += len; 1536 1537 if (cont.len > (sizeof(cont.buf) * 80) / 100) 1538 cont_flush(LOG_CONT); 1539 1540 return true; 1541 } 1542 1543 static size_t cont_print_text(char *text, size_t size) 1544 { 1545 size_t textlen = 0; 1546 size_t len; 1547 1548 if (cont.cons == 0 && (console_prev & LOG_NEWLINE)) { 1549 textlen += print_time(cont.ts_nsec, text); 1550 size -= textlen; 1551 } 1552 1553 len = cont.len - cont.cons; 1554 if (len > 0) { 1555 if (len+1 > size) 1556 len = size-1; 1557 memcpy(text + textlen, cont.buf + cont.cons, len); 1558 textlen += len; 1559 cont.cons = cont.len; 1560 } 1561 1562 if (cont.flushed) { 1563 if (cont.flags & LOG_NEWLINE) 1564 text[textlen++] = '\n'; 1565 /* got everything, release buffer */ 1566 cont.len = 0; 1567 } 1568 return textlen; 1569 } 1570 1571 asmlinkage int vprintk_emit(int facility, int level, 1572 const char *dict, size_t dictlen, 1573 const char *fmt, va_list args) 1574 { 1575 static int recursion_bug; 1576 static char textbuf[LOG_LINE_MAX]; 1577 char *text = textbuf; 1578 size_t text_len = 0; 1579 enum log_flags lflags = 0; 1580 unsigned long flags; 1581 int this_cpu; 1582 int printed_len = 0; 1583 bool in_sched = false; 1584 /* cpu currently holding logbuf_lock in this function */ 1585 static volatile unsigned int logbuf_cpu = UINT_MAX; 1586 1587 if (level == SCHED_MESSAGE_LOGLEVEL) { 1588 level = -1; 1589 in_sched = true; 1590 } 1591 1592 boot_delay_msec(level); 1593 printk_delay(); 1594 1595 /* This stops the holder of console_sem just where we want him */ 1596 local_irq_save(flags); 1597 this_cpu = smp_processor_id(); 1598 1599 /* 1600 * Ouch, printk recursed into itself! 1601 */ 1602 if (unlikely(logbuf_cpu == this_cpu)) { 1603 /* 1604 * If a crash is occurring during printk() on this CPU, 1605 * then try to get the crash message out but make sure 1606 * we can't deadlock. Otherwise just return to avoid the 1607 * recursion and return - but flag the recursion so that 1608 * it can be printed at the next appropriate moment: 1609 */ 1610 if (!oops_in_progress && !lockdep_recursing(current)) { 1611 recursion_bug = 1; 1612 local_irq_restore(flags); 1613 return 0; 1614 } 1615 zap_locks(); 1616 } 1617 1618 lockdep_off(); 1619 raw_spin_lock(&logbuf_lock); 1620 logbuf_cpu = this_cpu; 1621 1622 if (recursion_bug) { 1623 static const char recursion_msg[] = 1624 "BUG: recent printk recursion!"; 1625 1626 recursion_bug = 0; 1627 text_len = strlen(recursion_msg); 1628 /* emit KERN_CRIT message */ 1629 printed_len += log_store(0, 2, LOG_PREFIX|LOG_NEWLINE, 0, 1630 NULL, 0, recursion_msg, text_len); 1631 } 1632 1633 /* 1634 * The printf needs to come first; we need the syslog 1635 * prefix which might be passed-in as a parameter. 1636 */ 1637 if (in_sched) 1638 text_len = scnprintf(text, sizeof(textbuf), 1639 KERN_WARNING "[sched_delayed] "); 1640 1641 text_len += vscnprintf(text + text_len, 1642 sizeof(textbuf) - text_len, fmt, args); 1643 1644 /* mark and strip a trailing newline */ 1645 if (text_len && text[text_len-1] == '\n') { 1646 text_len--; 1647 lflags |= LOG_NEWLINE; 1648 } 1649 1650 /* strip kernel syslog prefix and extract log level or control flags */ 1651 if (facility == 0) { 1652 int kern_level = printk_get_level(text); 1653 1654 if (kern_level) { 1655 const char *end_of_header = printk_skip_level(text); 1656 switch (kern_level) { 1657 case '0' ... '7': 1658 if (level == -1) 1659 level = kern_level - '0'; 1660 case 'd': /* KERN_DEFAULT */ 1661 lflags |= LOG_PREFIX; 1662 } 1663 /* 1664 * No need to check length here because vscnprintf 1665 * put '\0' at the end of the string. Only valid and 1666 * newly printed level is detected. 1667 */ 1668 text_len -= end_of_header - text; 1669 text = (char *)end_of_header; 1670 } 1671 } 1672 1673 if (level == -1) 1674 level = default_message_loglevel; 1675 1676 if (dict) 1677 lflags |= LOG_PREFIX|LOG_NEWLINE; 1678 1679 if (!(lflags & LOG_NEWLINE)) { 1680 /* 1681 * Flush the conflicting buffer. An earlier newline was missing, 1682 * or another task also prints continuation lines. 1683 */ 1684 if (cont.len && (lflags & LOG_PREFIX || cont.owner != current)) 1685 cont_flush(LOG_NEWLINE); 1686 1687 /* buffer line if possible, otherwise store it right away */ 1688 if (cont_add(facility, level, text, text_len)) 1689 printed_len += text_len; 1690 else 1691 printed_len += log_store(facility, level, 1692 lflags | LOG_CONT, 0, 1693 dict, dictlen, text, text_len); 1694 } else { 1695 bool stored = false; 1696 1697 /* 1698 * If an earlier newline was missing and it was the same task, 1699 * either merge it with the current buffer and flush, or if 1700 * there was a race with interrupts (prefix == true) then just 1701 * flush it out and store this line separately. 1702 * If the preceding printk was from a different task and missed 1703 * a newline, flush and append the newline. 1704 */ 1705 if (cont.len) { 1706 if (cont.owner == current && !(lflags & LOG_PREFIX)) 1707 stored = cont_add(facility, level, text, 1708 text_len); 1709 cont_flush(LOG_NEWLINE); 1710 } 1711 1712 if (stored) 1713 printed_len += text_len; 1714 else 1715 printed_len += log_store(facility, level, lflags, 0, 1716 dict, dictlen, text, text_len); 1717 } 1718 1719 logbuf_cpu = UINT_MAX; 1720 raw_spin_unlock(&logbuf_lock); 1721 lockdep_on(); 1722 local_irq_restore(flags); 1723 1724 /* If called from the scheduler, we can not call up(). */ 1725 if (in_sched) 1726 return printed_len; 1727 1728 /* 1729 * Disable preemption to avoid being preempted while holding 1730 * console_sem which would prevent anyone from printing to console 1731 */ 1732 preempt_disable(); 1733 /* 1734 * Try to acquire and then immediately release the console semaphore. 1735 * The release will print out buffers and wake up /dev/kmsg and syslog() 1736 * users. 1737 */ 1738 if (console_trylock_for_printk()) 1739 console_unlock(); 1740 preempt_enable(); 1741 1742 return printed_len; 1743 } 1744 EXPORT_SYMBOL(vprintk_emit); 1745 1746 asmlinkage int vprintk(const char *fmt, va_list args) 1747 { 1748 return vprintk_emit(0, -1, NULL, 0, fmt, args); 1749 } 1750 EXPORT_SYMBOL(vprintk); 1751 1752 asmlinkage int printk_emit(int facility, int level, 1753 const char *dict, size_t dictlen, 1754 const char *fmt, ...) 1755 { 1756 va_list args; 1757 int r; 1758 1759 va_start(args, fmt); 1760 r = vprintk_emit(facility, level, dict, dictlen, fmt, args); 1761 va_end(args); 1762 1763 return r; 1764 } 1765 EXPORT_SYMBOL(printk_emit); 1766 1767 /** 1768 * printk - print a kernel message 1769 * @fmt: format string 1770 * 1771 * This is printk(). It can be called from any context. We want it to work. 1772 * 1773 * We try to grab the console_lock. If we succeed, it's easy - we log the 1774 * output and call the console drivers. If we fail to get the semaphore, we 1775 * place the output into the log buffer and return. The current holder of 1776 * the console_sem will notice the new output in console_unlock(); and will 1777 * send it to the consoles before releasing the lock. 1778 * 1779 * One effect of this deferred printing is that code which calls printk() and 1780 * then changes console_loglevel may break. This is because console_loglevel 1781 * is inspected when the actual printing occurs. 1782 * 1783 * See also: 1784 * printf(3) 1785 * 1786 * See the vsnprintf() documentation for format string extensions over C99. 1787 */ 1788 asmlinkage __visible int printk(const char *fmt, ...) 1789 { 1790 va_list args; 1791 int r; 1792 1793 #ifdef CONFIG_KGDB_KDB 1794 if (unlikely(kdb_trap_printk)) { 1795 va_start(args, fmt); 1796 r = vkdb_printf(fmt, args); 1797 va_end(args); 1798 return r; 1799 } 1800 #endif 1801 va_start(args, fmt); 1802 r = vprintk_emit(0, -1, NULL, 0, fmt, args); 1803 va_end(args); 1804 1805 return r; 1806 } 1807 EXPORT_SYMBOL(printk); 1808 1809 #else /* CONFIG_PRINTK */ 1810 1811 #define LOG_LINE_MAX 0 1812 #define PREFIX_MAX 0 1813 #define LOG_LINE_MAX 0 1814 static u64 syslog_seq; 1815 static u32 syslog_idx; 1816 static u64 console_seq; 1817 static u32 console_idx; 1818 static enum log_flags syslog_prev; 1819 static u64 log_first_seq; 1820 static u32 log_first_idx; 1821 static u64 log_next_seq; 1822 static enum log_flags console_prev; 1823 static struct cont { 1824 size_t len; 1825 size_t cons; 1826 u8 level; 1827 bool flushed:1; 1828 } cont; 1829 static struct printk_log *log_from_idx(u32 idx) { return NULL; } 1830 static u32 log_next(u32 idx) { return 0; } 1831 static void call_console_drivers(int level, const char *text, size_t len) {} 1832 static size_t msg_print_text(const struct printk_log *msg, enum log_flags prev, 1833 bool syslog, char *buf, size_t size) { return 0; } 1834 static size_t cont_print_text(char *text, size_t size) { return 0; } 1835 1836 #endif /* CONFIG_PRINTK */ 1837 1838 #ifdef CONFIG_EARLY_PRINTK 1839 struct console *early_console; 1840 1841 void early_vprintk(const char *fmt, va_list ap) 1842 { 1843 if (early_console) { 1844 char buf[512]; 1845 int n = vscnprintf(buf, sizeof(buf), fmt, ap); 1846 1847 early_console->write(early_console, buf, n); 1848 } 1849 } 1850 1851 asmlinkage __visible void early_printk(const char *fmt, ...) 1852 { 1853 va_list ap; 1854 1855 va_start(ap, fmt); 1856 early_vprintk(fmt, ap); 1857 va_end(ap); 1858 } 1859 #endif 1860 1861 static int __add_preferred_console(char *name, int idx, char *options, 1862 char *brl_options) 1863 { 1864 struct console_cmdline *c; 1865 int i; 1866 1867 /* 1868 * See if this tty is not yet registered, and 1869 * if we have a slot free. 1870 */ 1871 for (i = 0, c = console_cmdline; 1872 i < MAX_CMDLINECONSOLES && c->name[0]; 1873 i++, c++) { 1874 if (strcmp(c->name, name) == 0 && c->index == idx) { 1875 if (!brl_options) 1876 selected_console = i; 1877 return 0; 1878 } 1879 } 1880 if (i == MAX_CMDLINECONSOLES) 1881 return -E2BIG; 1882 if (!brl_options) 1883 selected_console = i; 1884 strlcpy(c->name, name, sizeof(c->name)); 1885 c->options = options; 1886 braille_set_options(c, brl_options); 1887 1888 c->index = idx; 1889 return 0; 1890 } 1891 /* 1892 * Set up a list of consoles. Called from init/main.c 1893 */ 1894 static int __init console_setup(char *str) 1895 { 1896 char buf[sizeof(console_cmdline[0].name) + 4]; /* 4 for index */ 1897 char *s, *options, *brl_options = NULL; 1898 int idx; 1899 1900 if (_braille_console_setup(&str, &brl_options)) 1901 return 1; 1902 1903 /* 1904 * Decode str into name, index, options. 1905 */ 1906 if (str[0] >= '0' && str[0] <= '9') { 1907 strcpy(buf, "ttyS"); 1908 strncpy(buf + 4, str, sizeof(buf) - 5); 1909 } else { 1910 strncpy(buf, str, sizeof(buf) - 1); 1911 } 1912 buf[sizeof(buf) - 1] = 0; 1913 if ((options = strchr(str, ',')) != NULL) 1914 *(options++) = 0; 1915 #ifdef __sparc__ 1916 if (!strcmp(str, "ttya")) 1917 strcpy(buf, "ttyS0"); 1918 if (!strcmp(str, "ttyb")) 1919 strcpy(buf, "ttyS1"); 1920 #endif 1921 for (s = buf; *s; s++) 1922 if ((*s >= '0' && *s <= '9') || *s == ',') 1923 break; 1924 idx = simple_strtoul(s, NULL, 10); 1925 *s = 0; 1926 1927 __add_preferred_console(buf, idx, options, brl_options); 1928 console_set_on_cmdline = 1; 1929 return 1; 1930 } 1931 __setup("console=", console_setup); 1932 1933 /** 1934 * add_preferred_console - add a device to the list of preferred consoles. 1935 * @name: device name 1936 * @idx: device index 1937 * @options: options for this console 1938 * 1939 * The last preferred console added will be used for kernel messages 1940 * and stdin/out/err for init. Normally this is used by console_setup 1941 * above to handle user-supplied console arguments; however it can also 1942 * be used by arch-specific code either to override the user or more 1943 * commonly to provide a default console (ie from PROM variables) when 1944 * the user has not supplied one. 1945 */ 1946 int add_preferred_console(char *name, int idx, char *options) 1947 { 1948 return __add_preferred_console(name, idx, options, NULL); 1949 } 1950 1951 int update_console_cmdline(char *name, int idx, char *name_new, int idx_new, char *options) 1952 { 1953 struct console_cmdline *c; 1954 int i; 1955 1956 for (i = 0, c = console_cmdline; 1957 i < MAX_CMDLINECONSOLES && c->name[0]; 1958 i++, c++) 1959 if (strcmp(c->name, name) == 0 && c->index == idx) { 1960 strlcpy(c->name, name_new, sizeof(c->name)); 1961 c->name[sizeof(c->name) - 1] = 0; 1962 c->options = options; 1963 c->index = idx_new; 1964 return i; 1965 } 1966 /* not found */ 1967 return -1; 1968 } 1969 1970 bool console_suspend_enabled = 1; 1971 EXPORT_SYMBOL(console_suspend_enabled); 1972 1973 static int __init console_suspend_disable(char *str) 1974 { 1975 console_suspend_enabled = 0; 1976 return 1; 1977 } 1978 __setup("no_console_suspend", console_suspend_disable); 1979 module_param_named(console_suspend, console_suspend_enabled, 1980 bool, S_IRUGO | S_IWUSR); 1981 MODULE_PARM_DESC(console_suspend, "suspend console during suspend" 1982 " and hibernate operations"); 1983 1984 /** 1985 * suspend_console - suspend the console subsystem 1986 * 1987 * This disables printk() while we go into suspend states 1988 */ 1989 void suspend_console(void) 1990 { 1991 if (!console_suspend_enabled) 1992 return; 1993 printk("Suspending console(s) (use no_console_suspend to debug)\n"); 1994 console_lock(); 1995 console_suspended = 1; 1996 up_console_sem(); 1997 } 1998 1999 void resume_console(void) 2000 { 2001 if (!console_suspend_enabled) 2002 return; 2003 down_console_sem(); 2004 console_suspended = 0; 2005 console_unlock(); 2006 } 2007 2008 /** 2009 * console_cpu_notify - print deferred console messages after CPU hotplug 2010 * @self: notifier struct 2011 * @action: CPU hotplug event 2012 * @hcpu: unused 2013 * 2014 * If printk() is called from a CPU that is not online yet, the messages 2015 * will be spooled but will not show up on the console. This function is 2016 * called when a new CPU comes online (or fails to come up), and ensures 2017 * that any such output gets printed. 2018 */ 2019 static int console_cpu_notify(struct notifier_block *self, 2020 unsigned long action, void *hcpu) 2021 { 2022 switch (action) { 2023 case CPU_ONLINE: 2024 case CPU_DEAD: 2025 case CPU_DOWN_FAILED: 2026 case CPU_UP_CANCELED: 2027 console_lock(); 2028 console_unlock(); 2029 } 2030 return NOTIFY_OK; 2031 } 2032 2033 /** 2034 * console_lock - lock the console system for exclusive use. 2035 * 2036 * Acquires a lock which guarantees that the caller has 2037 * exclusive access to the console system and the console_drivers list. 2038 * 2039 * Can sleep, returns nothing. 2040 */ 2041 void console_lock(void) 2042 { 2043 might_sleep(); 2044 2045 down_console_sem(); 2046 if (console_suspended) 2047 return; 2048 console_locked = 1; 2049 console_may_schedule = 1; 2050 } 2051 EXPORT_SYMBOL(console_lock); 2052 2053 /** 2054 * console_trylock - try to lock the console system for exclusive use. 2055 * 2056 * Tried to acquire a lock which guarantees that the caller has 2057 * exclusive access to the console system and the console_drivers list. 2058 * 2059 * returns 1 on success, and 0 on failure to acquire the lock. 2060 */ 2061 int console_trylock(void) 2062 { 2063 if (down_trylock_console_sem()) 2064 return 0; 2065 if (console_suspended) { 2066 up_console_sem(); 2067 return 0; 2068 } 2069 console_locked = 1; 2070 console_may_schedule = 0; 2071 return 1; 2072 } 2073 EXPORT_SYMBOL(console_trylock); 2074 2075 int is_console_locked(void) 2076 { 2077 return console_locked; 2078 } 2079 2080 static void console_cont_flush(char *text, size_t size) 2081 { 2082 unsigned long flags; 2083 size_t len; 2084 2085 raw_spin_lock_irqsave(&logbuf_lock, flags); 2086 2087 if (!cont.len) 2088 goto out; 2089 2090 /* 2091 * We still queue earlier records, likely because the console was 2092 * busy. The earlier ones need to be printed before this one, we 2093 * did not flush any fragment so far, so just let it queue up. 2094 */ 2095 if (console_seq < log_next_seq && !cont.cons) 2096 goto out; 2097 2098 len = cont_print_text(text, size); 2099 raw_spin_unlock(&logbuf_lock); 2100 stop_critical_timings(); 2101 call_console_drivers(cont.level, text, len); 2102 start_critical_timings(); 2103 local_irq_restore(flags); 2104 return; 2105 out: 2106 raw_spin_unlock_irqrestore(&logbuf_lock, flags); 2107 } 2108 2109 /** 2110 * console_unlock - unlock the console system 2111 * 2112 * Releases the console_lock which the caller holds on the console system 2113 * and the console driver list. 2114 * 2115 * While the console_lock was held, console output may have been buffered 2116 * by printk(). If this is the case, console_unlock(); emits 2117 * the output prior to releasing the lock. 2118 * 2119 * If there is output waiting, we wake /dev/kmsg and syslog() users. 2120 * 2121 * console_unlock(); may be called from any context. 2122 */ 2123 void console_unlock(void) 2124 { 2125 static char text[LOG_LINE_MAX + PREFIX_MAX]; 2126 static u64 seen_seq; 2127 unsigned long flags; 2128 bool wake_klogd = false; 2129 bool retry; 2130 2131 if (console_suspended) { 2132 up_console_sem(); 2133 return; 2134 } 2135 2136 console_may_schedule = 0; 2137 2138 /* flush buffered message fragment immediately to console */ 2139 console_cont_flush(text, sizeof(text)); 2140 again: 2141 for (;;) { 2142 struct printk_log *msg; 2143 size_t len; 2144 int level; 2145 2146 raw_spin_lock_irqsave(&logbuf_lock, flags); 2147 if (seen_seq != log_next_seq) { 2148 wake_klogd = true; 2149 seen_seq = log_next_seq; 2150 } 2151 2152 if (console_seq < log_first_seq) { 2153 len = sprintf(text, "** %u printk messages dropped ** ", 2154 (unsigned)(log_first_seq - console_seq)); 2155 2156 /* messages are gone, move to first one */ 2157 console_seq = log_first_seq; 2158 console_idx = log_first_idx; 2159 console_prev = 0; 2160 } else { 2161 len = 0; 2162 } 2163 skip: 2164 if (console_seq == log_next_seq) 2165 break; 2166 2167 msg = log_from_idx(console_idx); 2168 if (msg->flags & LOG_NOCONS) { 2169 /* 2170 * Skip record we have buffered and already printed 2171 * directly to the console when we received it. 2172 */ 2173 console_idx = log_next(console_idx); 2174 console_seq++; 2175 /* 2176 * We will get here again when we register a new 2177 * CON_PRINTBUFFER console. Clear the flag so we 2178 * will properly dump everything later. 2179 */ 2180 msg->flags &= ~LOG_NOCONS; 2181 console_prev = msg->flags; 2182 goto skip; 2183 } 2184 2185 level = msg->level; 2186 len += msg_print_text(msg, console_prev, false, 2187 text + len, sizeof(text) - len); 2188 console_idx = log_next(console_idx); 2189 console_seq++; 2190 console_prev = msg->flags; 2191 raw_spin_unlock(&logbuf_lock); 2192 2193 stop_critical_timings(); /* don't trace print latency */ 2194 call_console_drivers(level, text, len); 2195 start_critical_timings(); 2196 local_irq_restore(flags); 2197 } 2198 console_locked = 0; 2199 2200 /* Release the exclusive_console once it is used */ 2201 if (unlikely(exclusive_console)) 2202 exclusive_console = NULL; 2203 2204 raw_spin_unlock(&logbuf_lock); 2205 2206 up_console_sem(); 2207 2208 /* 2209 * Someone could have filled up the buffer again, so re-check if there's 2210 * something to flush. In case we cannot trylock the console_sem again, 2211 * there's a new owner and the console_unlock() from them will do the 2212 * flush, no worries. 2213 */ 2214 raw_spin_lock(&logbuf_lock); 2215 retry = console_seq != log_next_seq; 2216 raw_spin_unlock_irqrestore(&logbuf_lock, flags); 2217 2218 if (retry && console_trylock()) 2219 goto again; 2220 2221 if (wake_klogd) 2222 wake_up_klogd(); 2223 } 2224 EXPORT_SYMBOL(console_unlock); 2225 2226 /** 2227 * console_conditional_schedule - yield the CPU if required 2228 * 2229 * If the console code is currently allowed to sleep, and 2230 * if this CPU should yield the CPU to another task, do 2231 * so here. 2232 * 2233 * Must be called within console_lock();. 2234 */ 2235 void __sched console_conditional_schedule(void) 2236 { 2237 if (console_may_schedule) 2238 cond_resched(); 2239 } 2240 EXPORT_SYMBOL(console_conditional_schedule); 2241 2242 void console_unblank(void) 2243 { 2244 struct console *c; 2245 2246 /* 2247 * console_unblank can no longer be called in interrupt context unless 2248 * oops_in_progress is set to 1.. 2249 */ 2250 if (oops_in_progress) { 2251 if (down_trylock_console_sem() != 0) 2252 return; 2253 } else 2254 console_lock(); 2255 2256 console_locked = 1; 2257 console_may_schedule = 0; 2258 for_each_console(c) 2259 if ((c->flags & CON_ENABLED) && c->unblank) 2260 c->unblank(); 2261 console_unlock(); 2262 } 2263 2264 /* 2265 * Return the console tty driver structure and its associated index 2266 */ 2267 struct tty_driver *console_device(int *index) 2268 { 2269 struct console *c; 2270 struct tty_driver *driver = NULL; 2271 2272 console_lock(); 2273 for_each_console(c) { 2274 if (!c->device) 2275 continue; 2276 driver = c->device(c, index); 2277 if (driver) 2278 break; 2279 } 2280 console_unlock(); 2281 return driver; 2282 } 2283 2284 /* 2285 * Prevent further output on the passed console device so that (for example) 2286 * serial drivers can disable console output before suspending a port, and can 2287 * re-enable output afterwards. 2288 */ 2289 void console_stop(struct console *console) 2290 { 2291 console_lock(); 2292 console->flags &= ~CON_ENABLED; 2293 console_unlock(); 2294 } 2295 EXPORT_SYMBOL(console_stop); 2296 2297 void console_start(struct console *console) 2298 { 2299 console_lock(); 2300 console->flags |= CON_ENABLED; 2301 console_unlock(); 2302 } 2303 EXPORT_SYMBOL(console_start); 2304 2305 static int __read_mostly keep_bootcon; 2306 2307 static int __init keep_bootcon_setup(char *str) 2308 { 2309 keep_bootcon = 1; 2310 pr_info("debug: skip boot console de-registration.\n"); 2311 2312 return 0; 2313 } 2314 2315 early_param("keep_bootcon", keep_bootcon_setup); 2316 2317 /* 2318 * The console driver calls this routine during kernel initialization 2319 * to register the console printing procedure with printk() and to 2320 * print any messages that were printed by the kernel before the 2321 * console driver was initialized. 2322 * 2323 * This can happen pretty early during the boot process (because of 2324 * early_printk) - sometimes before setup_arch() completes - be careful 2325 * of what kernel features are used - they may not be initialised yet. 2326 * 2327 * There are two types of consoles - bootconsoles (early_printk) and 2328 * "real" consoles (everything which is not a bootconsole) which are 2329 * handled differently. 2330 * - Any number of bootconsoles can be registered at any time. 2331 * - As soon as a "real" console is registered, all bootconsoles 2332 * will be unregistered automatically. 2333 * - Once a "real" console is registered, any attempt to register a 2334 * bootconsoles will be rejected 2335 */ 2336 void register_console(struct console *newcon) 2337 { 2338 int i; 2339 unsigned long flags; 2340 struct console *bcon = NULL; 2341 struct console_cmdline *c; 2342 2343 if (console_drivers) 2344 for_each_console(bcon) 2345 if (WARN(bcon == newcon, 2346 "console '%s%d' already registered\n", 2347 bcon->name, bcon->index)) 2348 return; 2349 2350 /* 2351 * before we register a new CON_BOOT console, make sure we don't 2352 * already have a valid console 2353 */ 2354 if (console_drivers && newcon->flags & CON_BOOT) { 2355 /* find the last or real console */ 2356 for_each_console(bcon) { 2357 if (!(bcon->flags & CON_BOOT)) { 2358 pr_info("Too late to register bootconsole %s%d\n", 2359 newcon->name, newcon->index); 2360 return; 2361 } 2362 } 2363 } 2364 2365 if (console_drivers && console_drivers->flags & CON_BOOT) 2366 bcon = console_drivers; 2367 2368 if (preferred_console < 0 || bcon || !console_drivers) 2369 preferred_console = selected_console; 2370 2371 if (newcon->early_setup) 2372 newcon->early_setup(); 2373 2374 /* 2375 * See if we want to use this console driver. If we 2376 * didn't select a console we take the first one 2377 * that registers here. 2378 */ 2379 if (preferred_console < 0) { 2380 if (newcon->index < 0) 2381 newcon->index = 0; 2382 if (newcon->setup == NULL || 2383 newcon->setup(newcon, NULL) == 0) { 2384 newcon->flags |= CON_ENABLED; 2385 if (newcon->device) { 2386 newcon->flags |= CON_CONSDEV; 2387 preferred_console = 0; 2388 } 2389 } 2390 } 2391 2392 /* 2393 * See if this console matches one we selected on 2394 * the command line. 2395 */ 2396 for (i = 0, c = console_cmdline; 2397 i < MAX_CMDLINECONSOLES && c->name[0]; 2398 i++, c++) { 2399 if (strcmp(c->name, newcon->name) != 0) 2400 continue; 2401 if (newcon->index >= 0 && 2402 newcon->index != c->index) 2403 continue; 2404 if (newcon->index < 0) 2405 newcon->index = c->index; 2406 2407 if (_braille_register_console(newcon, c)) 2408 return; 2409 2410 if (newcon->setup && 2411 newcon->setup(newcon, console_cmdline[i].options) != 0) 2412 break; 2413 newcon->flags |= CON_ENABLED; 2414 newcon->index = c->index; 2415 if (i == selected_console) { 2416 newcon->flags |= CON_CONSDEV; 2417 preferred_console = selected_console; 2418 } 2419 break; 2420 } 2421 2422 if (!(newcon->flags & CON_ENABLED)) 2423 return; 2424 2425 /* 2426 * If we have a bootconsole, and are switching to a real console, 2427 * don't print everything out again, since when the boot console, and 2428 * the real console are the same physical device, it's annoying to 2429 * see the beginning boot messages twice 2430 */ 2431 if (bcon && ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV)) 2432 newcon->flags &= ~CON_PRINTBUFFER; 2433 2434 /* 2435 * Put this console in the list - keep the 2436 * preferred driver at the head of the list. 2437 */ 2438 console_lock(); 2439 if ((newcon->flags & CON_CONSDEV) || console_drivers == NULL) { 2440 newcon->next = console_drivers; 2441 console_drivers = newcon; 2442 if (newcon->next) 2443 newcon->next->flags &= ~CON_CONSDEV; 2444 } else { 2445 newcon->next = console_drivers->next; 2446 console_drivers->next = newcon; 2447 } 2448 if (newcon->flags & CON_PRINTBUFFER) { 2449 /* 2450 * console_unlock(); will print out the buffered messages 2451 * for us. 2452 */ 2453 raw_spin_lock_irqsave(&logbuf_lock, flags); 2454 console_seq = syslog_seq; 2455 console_idx = syslog_idx; 2456 console_prev = syslog_prev; 2457 raw_spin_unlock_irqrestore(&logbuf_lock, flags); 2458 /* 2459 * We're about to replay the log buffer. Only do this to the 2460 * just-registered console to avoid excessive message spam to 2461 * the already-registered consoles. 2462 */ 2463 exclusive_console = newcon; 2464 } 2465 console_unlock(); 2466 console_sysfs_notify(); 2467 2468 /* 2469 * By unregistering the bootconsoles after we enable the real console 2470 * we get the "console xxx enabled" message on all the consoles - 2471 * boot consoles, real consoles, etc - this is to ensure that end 2472 * users know there might be something in the kernel's log buffer that 2473 * went to the bootconsole (that they do not see on the real console) 2474 */ 2475 pr_info("%sconsole [%s%d] enabled\n", 2476 (newcon->flags & CON_BOOT) ? "boot" : "" , 2477 newcon->name, newcon->index); 2478 if (bcon && 2479 ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV) && 2480 !keep_bootcon) { 2481 /* We need to iterate through all boot consoles, to make 2482 * sure we print everything out, before we unregister them. 2483 */ 2484 for_each_console(bcon) 2485 if (bcon->flags & CON_BOOT) 2486 unregister_console(bcon); 2487 } 2488 } 2489 EXPORT_SYMBOL(register_console); 2490 2491 int unregister_console(struct console *console) 2492 { 2493 struct console *a, *b; 2494 int res; 2495 2496 pr_info("%sconsole [%s%d] disabled\n", 2497 (console->flags & CON_BOOT) ? "boot" : "" , 2498 console->name, console->index); 2499 2500 res = _braille_unregister_console(console); 2501 if (res) 2502 return res; 2503 2504 res = 1; 2505 console_lock(); 2506 if (console_drivers == console) { 2507 console_drivers=console->next; 2508 res = 0; 2509 } else if (console_drivers) { 2510 for (a=console_drivers->next, b=console_drivers ; 2511 a; b=a, a=b->next) { 2512 if (a == console) { 2513 b->next = a->next; 2514 res = 0; 2515 break; 2516 } 2517 } 2518 } 2519 2520 /* 2521 * If this isn't the last console and it has CON_CONSDEV set, we 2522 * need to set it on the next preferred console. 2523 */ 2524 if (console_drivers != NULL && console->flags & CON_CONSDEV) 2525 console_drivers->flags |= CON_CONSDEV; 2526 2527 console->flags &= ~CON_ENABLED; 2528 console_unlock(); 2529 console_sysfs_notify(); 2530 return res; 2531 } 2532 EXPORT_SYMBOL(unregister_console); 2533 2534 static int __init printk_late_init(void) 2535 { 2536 struct console *con; 2537 2538 for_each_console(con) { 2539 if (!keep_bootcon && con->flags & CON_BOOT) { 2540 unregister_console(con); 2541 } 2542 } 2543 hotcpu_notifier(console_cpu_notify, 0); 2544 return 0; 2545 } 2546 late_initcall(printk_late_init); 2547 2548 #if defined CONFIG_PRINTK 2549 /* 2550 * Delayed printk version, for scheduler-internal messages: 2551 */ 2552 #define PRINTK_PENDING_WAKEUP 0x01 2553 #define PRINTK_PENDING_OUTPUT 0x02 2554 2555 static DEFINE_PER_CPU(int, printk_pending); 2556 2557 static void wake_up_klogd_work_func(struct irq_work *irq_work) 2558 { 2559 int pending = __this_cpu_xchg(printk_pending, 0); 2560 2561 if (pending & PRINTK_PENDING_OUTPUT) { 2562 /* If trylock fails, someone else is doing the printing */ 2563 if (console_trylock()) 2564 console_unlock(); 2565 } 2566 2567 if (pending & PRINTK_PENDING_WAKEUP) 2568 wake_up_interruptible(&log_wait); 2569 } 2570 2571 static DEFINE_PER_CPU(struct irq_work, wake_up_klogd_work) = { 2572 .func = wake_up_klogd_work_func, 2573 .flags = IRQ_WORK_LAZY, 2574 }; 2575 2576 void wake_up_klogd(void) 2577 { 2578 preempt_disable(); 2579 if (waitqueue_active(&log_wait)) { 2580 this_cpu_or(printk_pending, PRINTK_PENDING_WAKEUP); 2581 irq_work_queue(&__get_cpu_var(wake_up_klogd_work)); 2582 } 2583 preempt_enable(); 2584 } 2585 2586 int printk_deferred(const char *fmt, ...) 2587 { 2588 va_list args; 2589 int r; 2590 2591 preempt_disable(); 2592 va_start(args, fmt); 2593 r = vprintk_emit(0, SCHED_MESSAGE_LOGLEVEL, NULL, 0, fmt, args); 2594 va_end(args); 2595 2596 __this_cpu_or(printk_pending, PRINTK_PENDING_OUTPUT); 2597 irq_work_queue(&__get_cpu_var(wake_up_klogd_work)); 2598 preempt_enable(); 2599 2600 return r; 2601 } 2602 2603 /* 2604 * printk rate limiting, lifted from the networking subsystem. 2605 * 2606 * This enforces a rate limit: not more than 10 kernel messages 2607 * every 5s to make a denial-of-service attack impossible. 2608 */ 2609 DEFINE_RATELIMIT_STATE(printk_ratelimit_state, 5 * HZ, 10); 2610 2611 int __printk_ratelimit(const char *func) 2612 { 2613 return ___ratelimit(&printk_ratelimit_state, func); 2614 } 2615 EXPORT_SYMBOL(__printk_ratelimit); 2616 2617 /** 2618 * printk_timed_ratelimit - caller-controlled printk ratelimiting 2619 * @caller_jiffies: pointer to caller's state 2620 * @interval_msecs: minimum interval between prints 2621 * 2622 * printk_timed_ratelimit() returns true if more than @interval_msecs 2623 * milliseconds have elapsed since the last time printk_timed_ratelimit() 2624 * returned true. 2625 */ 2626 bool printk_timed_ratelimit(unsigned long *caller_jiffies, 2627 unsigned int interval_msecs) 2628 { 2629 if (*caller_jiffies == 0 2630 || !time_in_range(jiffies, *caller_jiffies, 2631 *caller_jiffies 2632 + msecs_to_jiffies(interval_msecs))) { 2633 *caller_jiffies = jiffies; 2634 return true; 2635 } 2636 return false; 2637 } 2638 EXPORT_SYMBOL(printk_timed_ratelimit); 2639 2640 static DEFINE_SPINLOCK(dump_list_lock); 2641 static LIST_HEAD(dump_list); 2642 2643 /** 2644 * kmsg_dump_register - register a kernel log dumper. 2645 * @dumper: pointer to the kmsg_dumper structure 2646 * 2647 * Adds a kernel log dumper to the system. The dump callback in the 2648 * structure will be called when the kernel oopses or panics and must be 2649 * set. Returns zero on success and %-EINVAL or %-EBUSY otherwise. 2650 */ 2651 int kmsg_dump_register(struct kmsg_dumper *dumper) 2652 { 2653 unsigned long flags; 2654 int err = -EBUSY; 2655 2656 /* The dump callback needs to be set */ 2657 if (!dumper->dump) 2658 return -EINVAL; 2659 2660 spin_lock_irqsave(&dump_list_lock, flags); 2661 /* Don't allow registering multiple times */ 2662 if (!dumper->registered) { 2663 dumper->registered = 1; 2664 list_add_tail_rcu(&dumper->list, &dump_list); 2665 err = 0; 2666 } 2667 spin_unlock_irqrestore(&dump_list_lock, flags); 2668 2669 return err; 2670 } 2671 EXPORT_SYMBOL_GPL(kmsg_dump_register); 2672 2673 /** 2674 * kmsg_dump_unregister - unregister a kmsg dumper. 2675 * @dumper: pointer to the kmsg_dumper structure 2676 * 2677 * Removes a dump device from the system. Returns zero on success and 2678 * %-EINVAL otherwise. 2679 */ 2680 int kmsg_dump_unregister(struct kmsg_dumper *dumper) 2681 { 2682 unsigned long flags; 2683 int err = -EINVAL; 2684 2685 spin_lock_irqsave(&dump_list_lock, flags); 2686 if (dumper->registered) { 2687 dumper->registered = 0; 2688 list_del_rcu(&dumper->list); 2689 err = 0; 2690 } 2691 spin_unlock_irqrestore(&dump_list_lock, flags); 2692 synchronize_rcu(); 2693 2694 return err; 2695 } 2696 EXPORT_SYMBOL_GPL(kmsg_dump_unregister); 2697 2698 static bool always_kmsg_dump; 2699 module_param_named(always_kmsg_dump, always_kmsg_dump, bool, S_IRUGO | S_IWUSR); 2700 2701 /** 2702 * kmsg_dump - dump kernel log to kernel message dumpers. 2703 * @reason: the reason (oops, panic etc) for dumping 2704 * 2705 * Call each of the registered dumper's dump() callback, which can 2706 * retrieve the kmsg records with kmsg_dump_get_line() or 2707 * kmsg_dump_get_buffer(). 2708 */ 2709 void kmsg_dump(enum kmsg_dump_reason reason) 2710 { 2711 struct kmsg_dumper *dumper; 2712 unsigned long flags; 2713 2714 if ((reason > KMSG_DUMP_OOPS) && !always_kmsg_dump) 2715 return; 2716 2717 rcu_read_lock(); 2718 list_for_each_entry_rcu(dumper, &dump_list, list) { 2719 if (dumper->max_reason && reason > dumper->max_reason) 2720 continue; 2721 2722 /* initialize iterator with data about the stored records */ 2723 dumper->active = true; 2724 2725 raw_spin_lock_irqsave(&logbuf_lock, flags); 2726 dumper->cur_seq = clear_seq; 2727 dumper->cur_idx = clear_idx; 2728 dumper->next_seq = log_next_seq; 2729 dumper->next_idx = log_next_idx; 2730 raw_spin_unlock_irqrestore(&logbuf_lock, flags); 2731 2732 /* invoke dumper which will iterate over records */ 2733 dumper->dump(dumper, reason); 2734 2735 /* reset iterator */ 2736 dumper->active = false; 2737 } 2738 rcu_read_unlock(); 2739 } 2740 2741 /** 2742 * kmsg_dump_get_line_nolock - retrieve one kmsg log line (unlocked version) 2743 * @dumper: registered kmsg dumper 2744 * @syslog: include the "<4>" prefixes 2745 * @line: buffer to copy the line to 2746 * @size: maximum size of the buffer 2747 * @len: length of line placed into buffer 2748 * 2749 * Start at the beginning of the kmsg buffer, with the oldest kmsg 2750 * record, and copy one record into the provided buffer. 2751 * 2752 * Consecutive calls will return the next available record moving 2753 * towards the end of the buffer with the youngest messages. 2754 * 2755 * A return value of FALSE indicates that there are no more records to 2756 * read. 2757 * 2758 * The function is similar to kmsg_dump_get_line(), but grabs no locks. 2759 */ 2760 bool kmsg_dump_get_line_nolock(struct kmsg_dumper *dumper, bool syslog, 2761 char *line, size_t size, size_t *len) 2762 { 2763 struct printk_log *msg; 2764 size_t l = 0; 2765 bool ret = false; 2766 2767 if (!dumper->active) 2768 goto out; 2769 2770 if (dumper->cur_seq < log_first_seq) { 2771 /* messages are gone, move to first available one */ 2772 dumper->cur_seq = log_first_seq; 2773 dumper->cur_idx = log_first_idx; 2774 } 2775 2776 /* last entry */ 2777 if (dumper->cur_seq >= log_next_seq) 2778 goto out; 2779 2780 msg = log_from_idx(dumper->cur_idx); 2781 l = msg_print_text(msg, 0, syslog, line, size); 2782 2783 dumper->cur_idx = log_next(dumper->cur_idx); 2784 dumper->cur_seq++; 2785 ret = true; 2786 out: 2787 if (len) 2788 *len = l; 2789 return ret; 2790 } 2791 2792 /** 2793 * kmsg_dump_get_line - retrieve one kmsg log line 2794 * @dumper: registered kmsg dumper 2795 * @syslog: include the "<4>" prefixes 2796 * @line: buffer to copy the line to 2797 * @size: maximum size of the buffer 2798 * @len: length of line placed into buffer 2799 * 2800 * Start at the beginning of the kmsg buffer, with the oldest kmsg 2801 * record, and copy one record into the provided buffer. 2802 * 2803 * Consecutive calls will return the next available record moving 2804 * towards the end of the buffer with the youngest messages. 2805 * 2806 * A return value of FALSE indicates that there are no more records to 2807 * read. 2808 */ 2809 bool kmsg_dump_get_line(struct kmsg_dumper *dumper, bool syslog, 2810 char *line, size_t size, size_t *len) 2811 { 2812 unsigned long flags; 2813 bool ret; 2814 2815 raw_spin_lock_irqsave(&logbuf_lock, flags); 2816 ret = kmsg_dump_get_line_nolock(dumper, syslog, line, size, len); 2817 raw_spin_unlock_irqrestore(&logbuf_lock, flags); 2818 2819 return ret; 2820 } 2821 EXPORT_SYMBOL_GPL(kmsg_dump_get_line); 2822 2823 /** 2824 * kmsg_dump_get_buffer - copy kmsg log lines 2825 * @dumper: registered kmsg dumper 2826 * @syslog: include the "<4>" prefixes 2827 * @buf: buffer to copy the line to 2828 * @size: maximum size of the buffer 2829 * @len: length of line placed into buffer 2830 * 2831 * Start at the end of the kmsg buffer and fill the provided buffer 2832 * with as many of the the *youngest* kmsg records that fit into it. 2833 * If the buffer is large enough, all available kmsg records will be 2834 * copied with a single call. 2835 * 2836 * Consecutive calls will fill the buffer with the next block of 2837 * available older records, not including the earlier retrieved ones. 2838 * 2839 * A return value of FALSE indicates that there are no more records to 2840 * read. 2841 */ 2842 bool kmsg_dump_get_buffer(struct kmsg_dumper *dumper, bool syslog, 2843 char *buf, size_t size, size_t *len) 2844 { 2845 unsigned long flags; 2846 u64 seq; 2847 u32 idx; 2848 u64 next_seq; 2849 u32 next_idx; 2850 enum log_flags prev; 2851 size_t l = 0; 2852 bool ret = false; 2853 2854 if (!dumper->active) 2855 goto out; 2856 2857 raw_spin_lock_irqsave(&logbuf_lock, flags); 2858 if (dumper->cur_seq < log_first_seq) { 2859 /* messages are gone, move to first available one */ 2860 dumper->cur_seq = log_first_seq; 2861 dumper->cur_idx = log_first_idx; 2862 } 2863 2864 /* last entry */ 2865 if (dumper->cur_seq >= dumper->next_seq) { 2866 raw_spin_unlock_irqrestore(&logbuf_lock, flags); 2867 goto out; 2868 } 2869 2870 /* calculate length of entire buffer */ 2871 seq = dumper->cur_seq; 2872 idx = dumper->cur_idx; 2873 prev = 0; 2874 while (seq < dumper->next_seq) { 2875 struct printk_log *msg = log_from_idx(idx); 2876 2877 l += msg_print_text(msg, prev, true, NULL, 0); 2878 idx = log_next(idx); 2879 seq++; 2880 prev = msg->flags; 2881 } 2882 2883 /* move first record forward until length fits into the buffer */ 2884 seq = dumper->cur_seq; 2885 idx = dumper->cur_idx; 2886 prev = 0; 2887 while (l > size && seq < dumper->next_seq) { 2888 struct printk_log *msg = log_from_idx(idx); 2889 2890 l -= msg_print_text(msg, prev, true, NULL, 0); 2891 idx = log_next(idx); 2892 seq++; 2893 prev = msg->flags; 2894 } 2895 2896 /* last message in next interation */ 2897 next_seq = seq; 2898 next_idx = idx; 2899 2900 l = 0; 2901 while (seq < dumper->next_seq) { 2902 struct printk_log *msg = log_from_idx(idx); 2903 2904 l += msg_print_text(msg, prev, syslog, buf + l, size - l); 2905 idx = log_next(idx); 2906 seq++; 2907 prev = msg->flags; 2908 } 2909 2910 dumper->next_seq = next_seq; 2911 dumper->next_idx = next_idx; 2912 ret = true; 2913 raw_spin_unlock_irqrestore(&logbuf_lock, flags); 2914 out: 2915 if (len) 2916 *len = l; 2917 return ret; 2918 } 2919 EXPORT_SYMBOL_GPL(kmsg_dump_get_buffer); 2920 2921 /** 2922 * kmsg_dump_rewind_nolock - reset the interator (unlocked version) 2923 * @dumper: registered kmsg dumper 2924 * 2925 * Reset the dumper's iterator so that kmsg_dump_get_line() and 2926 * kmsg_dump_get_buffer() can be called again and used multiple 2927 * times within the same dumper.dump() callback. 2928 * 2929 * The function is similar to kmsg_dump_rewind(), but grabs no locks. 2930 */ 2931 void kmsg_dump_rewind_nolock(struct kmsg_dumper *dumper) 2932 { 2933 dumper->cur_seq = clear_seq; 2934 dumper->cur_idx = clear_idx; 2935 dumper->next_seq = log_next_seq; 2936 dumper->next_idx = log_next_idx; 2937 } 2938 2939 /** 2940 * kmsg_dump_rewind - reset the interator 2941 * @dumper: registered kmsg dumper 2942 * 2943 * Reset the dumper's iterator so that kmsg_dump_get_line() and 2944 * kmsg_dump_get_buffer() can be called again and used multiple 2945 * times within the same dumper.dump() callback. 2946 */ 2947 void kmsg_dump_rewind(struct kmsg_dumper *dumper) 2948 { 2949 unsigned long flags; 2950 2951 raw_spin_lock_irqsave(&logbuf_lock, flags); 2952 kmsg_dump_rewind_nolock(dumper); 2953 raw_spin_unlock_irqrestore(&logbuf_lock, flags); 2954 } 2955 EXPORT_SYMBOL_GPL(kmsg_dump_rewind); 2956 2957 static char dump_stack_arch_desc_str[128]; 2958 2959 /** 2960 * dump_stack_set_arch_desc - set arch-specific str to show with task dumps 2961 * @fmt: printf-style format string 2962 * @...: arguments for the format string 2963 * 2964 * The configured string will be printed right after utsname during task 2965 * dumps. Usually used to add arch-specific system identifiers. If an 2966 * arch wants to make use of such an ID string, it should initialize this 2967 * as soon as possible during boot. 2968 */ 2969 void __init dump_stack_set_arch_desc(const char *fmt, ...) 2970 { 2971 va_list args; 2972 2973 va_start(args, fmt); 2974 vsnprintf(dump_stack_arch_desc_str, sizeof(dump_stack_arch_desc_str), 2975 fmt, args); 2976 va_end(args); 2977 } 2978 2979 /** 2980 * dump_stack_print_info - print generic debug info for dump_stack() 2981 * @log_lvl: log level 2982 * 2983 * Arch-specific dump_stack() implementations can use this function to 2984 * print out the same debug information as the generic dump_stack(). 2985 */ 2986 void dump_stack_print_info(const char *log_lvl) 2987 { 2988 printk("%sCPU: %d PID: %d Comm: %.20s %s %s %.*s\n", 2989 log_lvl, raw_smp_processor_id(), current->pid, current->comm, 2990 print_tainted(), init_utsname()->release, 2991 (int)strcspn(init_utsname()->version, " "), 2992 init_utsname()->version); 2993 2994 if (dump_stack_arch_desc_str[0] != '\0') 2995 printk("%sHardware name: %s\n", 2996 log_lvl, dump_stack_arch_desc_str); 2997 2998 print_worker_info(log_lvl, current); 2999 } 3000 3001 /** 3002 * show_regs_print_info - print generic debug info for show_regs() 3003 * @log_lvl: log level 3004 * 3005 * show_regs() implementations can use this function to print out generic 3006 * debug information. 3007 */ 3008 void show_regs_print_info(const char *log_lvl) 3009 { 3010 dump_stack_print_info(log_lvl); 3011 3012 printk("%stask: %p ti: %p task.ti: %p\n", 3013 log_lvl, current, current_thread_info(), 3014 task_thread_info(current)); 3015 } 3016 3017 #endif 3018