xref: /openbmc/linux/kernel/printk/printk.c (revision 84d517f3)
1 /*
2  *  linux/kernel/printk.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  *
6  * Modified to make sys_syslog() more flexible: added commands to
7  * return the last 4k of kernel messages, regardless of whether
8  * they've been read or not.  Added option to suppress kernel printk's
9  * to the console.  Added hook for sending the console messages
10  * elsewhere, in preparation for a serial line console (someday).
11  * Ted Ts'o, 2/11/93.
12  * Modified for sysctl support, 1/8/97, Chris Horn.
13  * Fixed SMP synchronization, 08/08/99, Manfred Spraul
14  *     manfred@colorfullife.com
15  * Rewrote bits to get rid of console_lock
16  *	01Mar01 Andrew Morton
17  */
18 
19 #include <linux/kernel.h>
20 #include <linux/mm.h>
21 #include <linux/tty.h>
22 #include <linux/tty_driver.h>
23 #include <linux/console.h>
24 #include <linux/init.h>
25 #include <linux/jiffies.h>
26 #include <linux/nmi.h>
27 #include <linux/module.h>
28 #include <linux/moduleparam.h>
29 #include <linux/interrupt.h>			/* For in_interrupt() */
30 #include <linux/delay.h>
31 #include <linux/smp.h>
32 #include <linux/security.h>
33 #include <linux/bootmem.h>
34 #include <linux/memblock.h>
35 #include <linux/aio.h>
36 #include <linux/syscalls.h>
37 #include <linux/kexec.h>
38 #include <linux/kdb.h>
39 #include <linux/ratelimit.h>
40 #include <linux/kmsg_dump.h>
41 #include <linux/syslog.h>
42 #include <linux/cpu.h>
43 #include <linux/notifier.h>
44 #include <linux/rculist.h>
45 #include <linux/poll.h>
46 #include <linux/irq_work.h>
47 #include <linux/utsname.h>
48 
49 #include <asm/uaccess.h>
50 
51 #define CREATE_TRACE_POINTS
52 #include <trace/events/printk.h>
53 
54 #include "console_cmdline.h"
55 #include "braille.h"
56 
57 int console_printk[4] = {
58 	CONSOLE_LOGLEVEL_DEFAULT,	/* console_loglevel */
59 	DEFAULT_MESSAGE_LOGLEVEL,	/* default_message_loglevel */
60 	CONSOLE_LOGLEVEL_MIN,		/* minimum_console_loglevel */
61 	CONSOLE_LOGLEVEL_DEFAULT,	/* default_console_loglevel */
62 };
63 
64 /* Deferred messaged from sched code are marked by this special level */
65 #define SCHED_MESSAGE_LOGLEVEL -2
66 
67 /*
68  * Low level drivers may need that to know if they can schedule in
69  * their unblank() callback or not. So let's export it.
70  */
71 int oops_in_progress;
72 EXPORT_SYMBOL(oops_in_progress);
73 
74 /*
75  * console_sem protects the console_drivers list, and also
76  * provides serialisation for access to the entire console
77  * driver system.
78  */
79 static DEFINE_SEMAPHORE(console_sem);
80 struct console *console_drivers;
81 EXPORT_SYMBOL_GPL(console_drivers);
82 
83 #ifdef CONFIG_LOCKDEP
84 static struct lockdep_map console_lock_dep_map = {
85 	.name = "console_lock"
86 };
87 #endif
88 
89 /*
90  * Helper macros to handle lockdep when locking/unlocking console_sem. We use
91  * macros instead of functions so that _RET_IP_ contains useful information.
92  */
93 #define down_console_sem() do { \
94 	down(&console_sem);\
95 	mutex_acquire(&console_lock_dep_map, 0, 0, _RET_IP_);\
96 } while (0)
97 
98 static int __down_trylock_console_sem(unsigned long ip)
99 {
100 	if (down_trylock(&console_sem))
101 		return 1;
102 	mutex_acquire(&console_lock_dep_map, 0, 1, ip);
103 	return 0;
104 }
105 #define down_trylock_console_sem() __down_trylock_console_sem(_RET_IP_)
106 
107 #define up_console_sem() do { \
108 	mutex_release(&console_lock_dep_map, 1, _RET_IP_);\
109 	up(&console_sem);\
110 } while (0)
111 
112 /*
113  * This is used for debugging the mess that is the VT code by
114  * keeping track if we have the console semaphore held. It's
115  * definitely not the perfect debug tool (we don't know if _WE_
116  * hold it are racing, but it helps tracking those weird code
117  * path in the console code where we end up in places I want
118  * locked without the console sempahore held
119  */
120 static int console_locked, console_suspended;
121 
122 /*
123  * If exclusive_console is non-NULL then only this console is to be printed to.
124  */
125 static struct console *exclusive_console;
126 
127 /*
128  *	Array of consoles built from command line options (console=)
129  */
130 
131 #define MAX_CMDLINECONSOLES 8
132 
133 static struct console_cmdline console_cmdline[MAX_CMDLINECONSOLES];
134 
135 static int selected_console = -1;
136 static int preferred_console = -1;
137 int console_set_on_cmdline;
138 EXPORT_SYMBOL(console_set_on_cmdline);
139 
140 /* Flag: console code may call schedule() */
141 static int console_may_schedule;
142 
143 /*
144  * The printk log buffer consists of a chain of concatenated variable
145  * length records. Every record starts with a record header, containing
146  * the overall length of the record.
147  *
148  * The heads to the first and last entry in the buffer, as well as the
149  * sequence numbers of these both entries are maintained when messages
150  * are stored..
151  *
152  * If the heads indicate available messages, the length in the header
153  * tells the start next message. A length == 0 for the next message
154  * indicates a wrap-around to the beginning of the buffer.
155  *
156  * Every record carries the monotonic timestamp in microseconds, as well as
157  * the standard userspace syslog level and syslog facility. The usual
158  * kernel messages use LOG_KERN; userspace-injected messages always carry
159  * a matching syslog facility, by default LOG_USER. The origin of every
160  * message can be reliably determined that way.
161  *
162  * The human readable log message directly follows the message header. The
163  * length of the message text is stored in the header, the stored message
164  * is not terminated.
165  *
166  * Optionally, a message can carry a dictionary of properties (key/value pairs),
167  * to provide userspace with a machine-readable message context.
168  *
169  * Examples for well-defined, commonly used property names are:
170  *   DEVICE=b12:8               device identifier
171  *                                b12:8         block dev_t
172  *                                c127:3        char dev_t
173  *                                n8            netdev ifindex
174  *                                +sound:card0  subsystem:devname
175  *   SUBSYSTEM=pci              driver-core subsystem name
176  *
177  * Valid characters in property names are [a-zA-Z0-9.-_]. The plain text value
178  * follows directly after a '=' character. Every property is terminated by
179  * a '\0' character. The last property is not terminated.
180  *
181  * Example of a message structure:
182  *   0000  ff 8f 00 00 00 00 00 00      monotonic time in nsec
183  *   0008  34 00                        record is 52 bytes long
184  *   000a        0b 00                  text is 11 bytes long
185  *   000c              1f 00            dictionary is 23 bytes long
186  *   000e                    03 00      LOG_KERN (facility) LOG_ERR (level)
187  *   0010  69 74 27 73 20 61 20 6c      "it's a l"
188  *         69 6e 65                     "ine"
189  *   001b           44 45 56 49 43      "DEVIC"
190  *         45 3d 62 38 3a 32 00 44      "E=b8:2\0D"
191  *         52 49 56 45 52 3d 62 75      "RIVER=bu"
192  *         67                           "g"
193  *   0032     00 00 00                  padding to next message header
194  *
195  * The 'struct printk_log' buffer header must never be directly exported to
196  * userspace, it is a kernel-private implementation detail that might
197  * need to be changed in the future, when the requirements change.
198  *
199  * /dev/kmsg exports the structured data in the following line format:
200  *   "level,sequnum,timestamp;<message text>\n"
201  *
202  * The optional key/value pairs are attached as continuation lines starting
203  * with a space character and terminated by a newline. All possible
204  * non-prinatable characters are escaped in the "\xff" notation.
205  *
206  * Users of the export format should ignore possible additional values
207  * separated by ',', and find the message after the ';' character.
208  */
209 
210 enum log_flags {
211 	LOG_NOCONS	= 1,	/* already flushed, do not print to console */
212 	LOG_NEWLINE	= 2,	/* text ended with a newline */
213 	LOG_PREFIX	= 4,	/* text started with a prefix */
214 	LOG_CONT	= 8,	/* text is a fragment of a continuation line */
215 };
216 
217 struct printk_log {
218 	u64 ts_nsec;		/* timestamp in nanoseconds */
219 	u16 len;		/* length of entire record */
220 	u16 text_len;		/* length of text buffer */
221 	u16 dict_len;		/* length of dictionary buffer */
222 	u8 facility;		/* syslog facility */
223 	u8 flags:5;		/* internal record flags */
224 	u8 level:3;		/* syslog level */
225 };
226 
227 /*
228  * The logbuf_lock protects kmsg buffer, indices, counters.  This can be taken
229  * within the scheduler's rq lock. It must be released before calling
230  * console_unlock() or anything else that might wake up a process.
231  */
232 static DEFINE_RAW_SPINLOCK(logbuf_lock);
233 
234 #ifdef CONFIG_PRINTK
235 DECLARE_WAIT_QUEUE_HEAD(log_wait);
236 /* the next printk record to read by syslog(READ) or /proc/kmsg */
237 static u64 syslog_seq;
238 static u32 syslog_idx;
239 static enum log_flags syslog_prev;
240 static size_t syslog_partial;
241 
242 /* index and sequence number of the first record stored in the buffer */
243 static u64 log_first_seq;
244 static u32 log_first_idx;
245 
246 /* index and sequence number of the next record to store in the buffer */
247 static u64 log_next_seq;
248 static u32 log_next_idx;
249 
250 /* the next printk record to write to the console */
251 static u64 console_seq;
252 static u32 console_idx;
253 static enum log_flags console_prev;
254 
255 /* the next printk record to read after the last 'clear' command */
256 static u64 clear_seq;
257 static u32 clear_idx;
258 
259 #define PREFIX_MAX		32
260 #define LOG_LINE_MAX		1024 - PREFIX_MAX
261 
262 /* record buffer */
263 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)
264 #define LOG_ALIGN 4
265 #else
266 #define LOG_ALIGN __alignof__(struct printk_log)
267 #endif
268 #define __LOG_BUF_LEN (1 << CONFIG_LOG_BUF_SHIFT)
269 static char __log_buf[__LOG_BUF_LEN] __aligned(LOG_ALIGN);
270 static char *log_buf = __log_buf;
271 static u32 log_buf_len = __LOG_BUF_LEN;
272 
273 /* human readable text of the record */
274 static char *log_text(const struct printk_log *msg)
275 {
276 	return (char *)msg + sizeof(struct printk_log);
277 }
278 
279 /* optional key/value pair dictionary attached to the record */
280 static char *log_dict(const struct printk_log *msg)
281 {
282 	return (char *)msg + sizeof(struct printk_log) + msg->text_len;
283 }
284 
285 /* get record by index; idx must point to valid msg */
286 static struct printk_log *log_from_idx(u32 idx)
287 {
288 	struct printk_log *msg = (struct printk_log *)(log_buf + idx);
289 
290 	/*
291 	 * A length == 0 record is the end of buffer marker. Wrap around and
292 	 * read the message at the start of the buffer.
293 	 */
294 	if (!msg->len)
295 		return (struct printk_log *)log_buf;
296 	return msg;
297 }
298 
299 /* get next record; idx must point to valid msg */
300 static u32 log_next(u32 idx)
301 {
302 	struct printk_log *msg = (struct printk_log *)(log_buf + idx);
303 
304 	/* length == 0 indicates the end of the buffer; wrap */
305 	/*
306 	 * A length == 0 record is the end of buffer marker. Wrap around and
307 	 * read the message at the start of the buffer as *this* one, and
308 	 * return the one after that.
309 	 */
310 	if (!msg->len) {
311 		msg = (struct printk_log *)log_buf;
312 		return msg->len;
313 	}
314 	return idx + msg->len;
315 }
316 
317 /*
318  * Check whether there is enough free space for the given message.
319  *
320  * The same values of first_idx and next_idx mean that the buffer
321  * is either empty or full.
322  *
323  * If the buffer is empty, we must respect the position of the indexes.
324  * They cannot be reset to the beginning of the buffer.
325  */
326 static int logbuf_has_space(u32 msg_size, bool empty)
327 {
328 	u32 free;
329 
330 	if (log_next_idx > log_first_idx || empty)
331 		free = max(log_buf_len - log_next_idx, log_first_idx);
332 	else
333 		free = log_first_idx - log_next_idx;
334 
335 	/*
336 	 * We need space also for an empty header that signalizes wrapping
337 	 * of the buffer.
338 	 */
339 	return free >= msg_size + sizeof(struct printk_log);
340 }
341 
342 static int log_make_free_space(u32 msg_size)
343 {
344 	while (log_first_seq < log_next_seq) {
345 		if (logbuf_has_space(msg_size, false))
346 			return 0;
347 		/* drop old messages until we have enough continuous space */
348 		log_first_idx = log_next(log_first_idx);
349 		log_first_seq++;
350 	}
351 
352 	/* sequence numbers are equal, so the log buffer is empty */
353 	if (logbuf_has_space(msg_size, true))
354 		return 0;
355 
356 	return -ENOMEM;
357 }
358 
359 /* compute the message size including the padding bytes */
360 static u32 msg_used_size(u16 text_len, u16 dict_len, u32 *pad_len)
361 {
362 	u32 size;
363 
364 	size = sizeof(struct printk_log) + text_len + dict_len;
365 	*pad_len = (-size) & (LOG_ALIGN - 1);
366 	size += *pad_len;
367 
368 	return size;
369 }
370 
371 /*
372  * Define how much of the log buffer we could take at maximum. The value
373  * must be greater than two. Note that only half of the buffer is available
374  * when the index points to the middle.
375  */
376 #define MAX_LOG_TAKE_PART 4
377 static const char trunc_msg[] = "<truncated>";
378 
379 static u32 truncate_msg(u16 *text_len, u16 *trunc_msg_len,
380 			u16 *dict_len, u32 *pad_len)
381 {
382 	/*
383 	 * The message should not take the whole buffer. Otherwise, it might
384 	 * get removed too soon.
385 	 */
386 	u32 max_text_len = log_buf_len / MAX_LOG_TAKE_PART;
387 	if (*text_len > max_text_len)
388 		*text_len = max_text_len;
389 	/* enable the warning message */
390 	*trunc_msg_len = strlen(trunc_msg);
391 	/* disable the "dict" completely */
392 	*dict_len = 0;
393 	/* compute the size again, count also the warning message */
394 	return msg_used_size(*text_len + *trunc_msg_len, 0, pad_len);
395 }
396 
397 /* insert record into the buffer, discard old ones, update heads */
398 static int log_store(int facility, int level,
399 		     enum log_flags flags, u64 ts_nsec,
400 		     const char *dict, u16 dict_len,
401 		     const char *text, u16 text_len)
402 {
403 	struct printk_log *msg;
404 	u32 size, pad_len;
405 	u16 trunc_msg_len = 0;
406 
407 	/* number of '\0' padding bytes to next message */
408 	size = msg_used_size(text_len, dict_len, &pad_len);
409 
410 	if (log_make_free_space(size)) {
411 		/* truncate the message if it is too long for empty buffer */
412 		size = truncate_msg(&text_len, &trunc_msg_len,
413 				    &dict_len, &pad_len);
414 		/* survive when the log buffer is too small for trunc_msg */
415 		if (log_make_free_space(size))
416 			return 0;
417 	}
418 
419 	if (log_next_idx + size + sizeof(struct printk_log) > log_buf_len) {
420 		/*
421 		 * This message + an additional empty header does not fit
422 		 * at the end of the buffer. Add an empty header with len == 0
423 		 * to signify a wrap around.
424 		 */
425 		memset(log_buf + log_next_idx, 0, sizeof(struct printk_log));
426 		log_next_idx = 0;
427 	}
428 
429 	/* fill message */
430 	msg = (struct printk_log *)(log_buf + log_next_idx);
431 	memcpy(log_text(msg), text, text_len);
432 	msg->text_len = text_len;
433 	if (trunc_msg_len) {
434 		memcpy(log_text(msg) + text_len, trunc_msg, trunc_msg_len);
435 		msg->text_len += trunc_msg_len;
436 	}
437 	memcpy(log_dict(msg), dict, dict_len);
438 	msg->dict_len = dict_len;
439 	msg->facility = facility;
440 	msg->level = level & 7;
441 	msg->flags = flags & 0x1f;
442 	if (ts_nsec > 0)
443 		msg->ts_nsec = ts_nsec;
444 	else
445 		msg->ts_nsec = local_clock();
446 	memset(log_dict(msg) + dict_len, 0, pad_len);
447 	msg->len = size;
448 
449 	/* insert message */
450 	log_next_idx += msg->len;
451 	log_next_seq++;
452 
453 	return msg->text_len;
454 }
455 
456 #ifdef CONFIG_SECURITY_DMESG_RESTRICT
457 int dmesg_restrict = 1;
458 #else
459 int dmesg_restrict;
460 #endif
461 
462 static int syslog_action_restricted(int type)
463 {
464 	if (dmesg_restrict)
465 		return 1;
466 	/*
467 	 * Unless restricted, we allow "read all" and "get buffer size"
468 	 * for everybody.
469 	 */
470 	return type != SYSLOG_ACTION_READ_ALL &&
471 	       type != SYSLOG_ACTION_SIZE_BUFFER;
472 }
473 
474 static int check_syslog_permissions(int type, bool from_file)
475 {
476 	/*
477 	 * If this is from /proc/kmsg and we've already opened it, then we've
478 	 * already done the capabilities checks at open time.
479 	 */
480 	if (from_file && type != SYSLOG_ACTION_OPEN)
481 		return 0;
482 
483 	if (syslog_action_restricted(type)) {
484 		if (capable(CAP_SYSLOG))
485 			return 0;
486 		/*
487 		 * For historical reasons, accept CAP_SYS_ADMIN too, with
488 		 * a warning.
489 		 */
490 		if (capable(CAP_SYS_ADMIN)) {
491 			pr_warn_once("%s (%d): Attempt to access syslog with "
492 				     "CAP_SYS_ADMIN but no CAP_SYSLOG "
493 				     "(deprecated).\n",
494 				 current->comm, task_pid_nr(current));
495 			return 0;
496 		}
497 		return -EPERM;
498 	}
499 	return security_syslog(type);
500 }
501 
502 
503 /* /dev/kmsg - userspace message inject/listen interface */
504 struct devkmsg_user {
505 	u64 seq;
506 	u32 idx;
507 	enum log_flags prev;
508 	struct mutex lock;
509 	char buf[8192];
510 };
511 
512 static ssize_t devkmsg_writev(struct kiocb *iocb, const struct iovec *iv,
513 			      unsigned long count, loff_t pos)
514 {
515 	char *buf, *line;
516 	int i;
517 	int level = default_message_loglevel;
518 	int facility = 1;	/* LOG_USER */
519 	size_t len = iov_length(iv, count);
520 	ssize_t ret = len;
521 
522 	if (len > LOG_LINE_MAX)
523 		return -EINVAL;
524 	buf = kmalloc(len+1, GFP_KERNEL);
525 	if (buf == NULL)
526 		return -ENOMEM;
527 
528 	line = buf;
529 	for (i = 0; i < count; i++) {
530 		if (copy_from_user(line, iv[i].iov_base, iv[i].iov_len)) {
531 			ret = -EFAULT;
532 			goto out;
533 		}
534 		line += iv[i].iov_len;
535 	}
536 
537 	/*
538 	 * Extract and skip the syslog prefix <[0-9]*>. Coming from userspace
539 	 * the decimal value represents 32bit, the lower 3 bit are the log
540 	 * level, the rest are the log facility.
541 	 *
542 	 * If no prefix or no userspace facility is specified, we
543 	 * enforce LOG_USER, to be able to reliably distinguish
544 	 * kernel-generated messages from userspace-injected ones.
545 	 */
546 	line = buf;
547 	if (line[0] == '<') {
548 		char *endp = NULL;
549 
550 		i = simple_strtoul(line+1, &endp, 10);
551 		if (endp && endp[0] == '>') {
552 			level = i & 7;
553 			if (i >> 3)
554 				facility = i >> 3;
555 			endp++;
556 			len -= endp - line;
557 			line = endp;
558 		}
559 	}
560 	line[len] = '\0';
561 
562 	printk_emit(facility, level, NULL, 0, "%s", line);
563 out:
564 	kfree(buf);
565 	return ret;
566 }
567 
568 static ssize_t devkmsg_read(struct file *file, char __user *buf,
569 			    size_t count, loff_t *ppos)
570 {
571 	struct devkmsg_user *user = file->private_data;
572 	struct printk_log *msg;
573 	u64 ts_usec;
574 	size_t i;
575 	char cont = '-';
576 	size_t len;
577 	ssize_t ret;
578 
579 	if (!user)
580 		return -EBADF;
581 
582 	ret = mutex_lock_interruptible(&user->lock);
583 	if (ret)
584 		return ret;
585 	raw_spin_lock_irq(&logbuf_lock);
586 	while (user->seq == log_next_seq) {
587 		if (file->f_flags & O_NONBLOCK) {
588 			ret = -EAGAIN;
589 			raw_spin_unlock_irq(&logbuf_lock);
590 			goto out;
591 		}
592 
593 		raw_spin_unlock_irq(&logbuf_lock);
594 		ret = wait_event_interruptible(log_wait,
595 					       user->seq != log_next_seq);
596 		if (ret)
597 			goto out;
598 		raw_spin_lock_irq(&logbuf_lock);
599 	}
600 
601 	if (user->seq < log_first_seq) {
602 		/* our last seen message is gone, return error and reset */
603 		user->idx = log_first_idx;
604 		user->seq = log_first_seq;
605 		ret = -EPIPE;
606 		raw_spin_unlock_irq(&logbuf_lock);
607 		goto out;
608 	}
609 
610 	msg = log_from_idx(user->idx);
611 	ts_usec = msg->ts_nsec;
612 	do_div(ts_usec, 1000);
613 
614 	/*
615 	 * If we couldn't merge continuation line fragments during the print,
616 	 * export the stored flags to allow an optional external merge of the
617 	 * records. Merging the records isn't always neccessarily correct, like
618 	 * when we hit a race during printing. In most cases though, it produces
619 	 * better readable output. 'c' in the record flags mark the first
620 	 * fragment of a line, '+' the following.
621 	 */
622 	if (msg->flags & LOG_CONT && !(user->prev & LOG_CONT))
623 		cont = 'c';
624 	else if ((msg->flags & LOG_CONT) ||
625 		 ((user->prev & LOG_CONT) && !(msg->flags & LOG_PREFIX)))
626 		cont = '+';
627 
628 	len = sprintf(user->buf, "%u,%llu,%llu,%c;",
629 		      (msg->facility << 3) | msg->level,
630 		      user->seq, ts_usec, cont);
631 	user->prev = msg->flags;
632 
633 	/* escape non-printable characters */
634 	for (i = 0; i < msg->text_len; i++) {
635 		unsigned char c = log_text(msg)[i];
636 
637 		if (c < ' ' || c >= 127 || c == '\\')
638 			len += sprintf(user->buf + len, "\\x%02x", c);
639 		else
640 			user->buf[len++] = c;
641 	}
642 	user->buf[len++] = '\n';
643 
644 	if (msg->dict_len) {
645 		bool line = true;
646 
647 		for (i = 0; i < msg->dict_len; i++) {
648 			unsigned char c = log_dict(msg)[i];
649 
650 			if (line) {
651 				user->buf[len++] = ' ';
652 				line = false;
653 			}
654 
655 			if (c == '\0') {
656 				user->buf[len++] = '\n';
657 				line = true;
658 				continue;
659 			}
660 
661 			if (c < ' ' || c >= 127 || c == '\\') {
662 				len += sprintf(user->buf + len, "\\x%02x", c);
663 				continue;
664 			}
665 
666 			user->buf[len++] = c;
667 		}
668 		user->buf[len++] = '\n';
669 	}
670 
671 	user->idx = log_next(user->idx);
672 	user->seq++;
673 	raw_spin_unlock_irq(&logbuf_lock);
674 
675 	if (len > count) {
676 		ret = -EINVAL;
677 		goto out;
678 	}
679 
680 	if (copy_to_user(buf, user->buf, len)) {
681 		ret = -EFAULT;
682 		goto out;
683 	}
684 	ret = len;
685 out:
686 	mutex_unlock(&user->lock);
687 	return ret;
688 }
689 
690 static loff_t devkmsg_llseek(struct file *file, loff_t offset, int whence)
691 {
692 	struct devkmsg_user *user = file->private_data;
693 	loff_t ret = 0;
694 
695 	if (!user)
696 		return -EBADF;
697 	if (offset)
698 		return -ESPIPE;
699 
700 	raw_spin_lock_irq(&logbuf_lock);
701 	switch (whence) {
702 	case SEEK_SET:
703 		/* the first record */
704 		user->idx = log_first_idx;
705 		user->seq = log_first_seq;
706 		break;
707 	case SEEK_DATA:
708 		/*
709 		 * The first record after the last SYSLOG_ACTION_CLEAR,
710 		 * like issued by 'dmesg -c'. Reading /dev/kmsg itself
711 		 * changes no global state, and does not clear anything.
712 		 */
713 		user->idx = clear_idx;
714 		user->seq = clear_seq;
715 		break;
716 	case SEEK_END:
717 		/* after the last record */
718 		user->idx = log_next_idx;
719 		user->seq = log_next_seq;
720 		break;
721 	default:
722 		ret = -EINVAL;
723 	}
724 	raw_spin_unlock_irq(&logbuf_lock);
725 	return ret;
726 }
727 
728 static unsigned int devkmsg_poll(struct file *file, poll_table *wait)
729 {
730 	struct devkmsg_user *user = file->private_data;
731 	int ret = 0;
732 
733 	if (!user)
734 		return POLLERR|POLLNVAL;
735 
736 	poll_wait(file, &log_wait, wait);
737 
738 	raw_spin_lock_irq(&logbuf_lock);
739 	if (user->seq < log_next_seq) {
740 		/* return error when data has vanished underneath us */
741 		if (user->seq < log_first_seq)
742 			ret = POLLIN|POLLRDNORM|POLLERR|POLLPRI;
743 		else
744 			ret = POLLIN|POLLRDNORM;
745 	}
746 	raw_spin_unlock_irq(&logbuf_lock);
747 
748 	return ret;
749 }
750 
751 static int devkmsg_open(struct inode *inode, struct file *file)
752 {
753 	struct devkmsg_user *user;
754 	int err;
755 
756 	/* write-only does not need any file context */
757 	if ((file->f_flags & O_ACCMODE) == O_WRONLY)
758 		return 0;
759 
760 	err = check_syslog_permissions(SYSLOG_ACTION_READ_ALL,
761 				       SYSLOG_FROM_READER);
762 	if (err)
763 		return err;
764 
765 	user = kmalloc(sizeof(struct devkmsg_user), GFP_KERNEL);
766 	if (!user)
767 		return -ENOMEM;
768 
769 	mutex_init(&user->lock);
770 
771 	raw_spin_lock_irq(&logbuf_lock);
772 	user->idx = log_first_idx;
773 	user->seq = log_first_seq;
774 	raw_spin_unlock_irq(&logbuf_lock);
775 
776 	file->private_data = user;
777 	return 0;
778 }
779 
780 static int devkmsg_release(struct inode *inode, struct file *file)
781 {
782 	struct devkmsg_user *user = file->private_data;
783 
784 	if (!user)
785 		return 0;
786 
787 	mutex_destroy(&user->lock);
788 	kfree(user);
789 	return 0;
790 }
791 
792 const struct file_operations kmsg_fops = {
793 	.open = devkmsg_open,
794 	.read = devkmsg_read,
795 	.aio_write = devkmsg_writev,
796 	.llseek = devkmsg_llseek,
797 	.poll = devkmsg_poll,
798 	.release = devkmsg_release,
799 };
800 
801 #ifdef CONFIG_KEXEC
802 /*
803  * This appends the listed symbols to /proc/vmcore
804  *
805  * /proc/vmcore is used by various utilities, like crash and makedumpfile to
806  * obtain access to symbols that are otherwise very difficult to locate.  These
807  * symbols are specifically used so that utilities can access and extract the
808  * dmesg log from a vmcore file after a crash.
809  */
810 void log_buf_kexec_setup(void)
811 {
812 	VMCOREINFO_SYMBOL(log_buf);
813 	VMCOREINFO_SYMBOL(log_buf_len);
814 	VMCOREINFO_SYMBOL(log_first_idx);
815 	VMCOREINFO_SYMBOL(log_next_idx);
816 	/*
817 	 * Export struct printk_log size and field offsets. User space tools can
818 	 * parse it and detect any changes to structure down the line.
819 	 */
820 	VMCOREINFO_STRUCT_SIZE(printk_log);
821 	VMCOREINFO_OFFSET(printk_log, ts_nsec);
822 	VMCOREINFO_OFFSET(printk_log, len);
823 	VMCOREINFO_OFFSET(printk_log, text_len);
824 	VMCOREINFO_OFFSET(printk_log, dict_len);
825 }
826 #endif
827 
828 /* requested log_buf_len from kernel cmdline */
829 static unsigned long __initdata new_log_buf_len;
830 
831 /* save requested log_buf_len since it's too early to process it */
832 static int __init log_buf_len_setup(char *str)
833 {
834 	unsigned size = memparse(str, &str);
835 
836 	if (size)
837 		size = roundup_pow_of_two(size);
838 	if (size > log_buf_len)
839 		new_log_buf_len = size;
840 
841 	return 0;
842 }
843 early_param("log_buf_len", log_buf_len_setup);
844 
845 void __init setup_log_buf(int early)
846 {
847 	unsigned long flags;
848 	char *new_log_buf;
849 	int free;
850 
851 	if (!new_log_buf_len)
852 		return;
853 
854 	if (early) {
855 		new_log_buf =
856 			memblock_virt_alloc(new_log_buf_len, PAGE_SIZE);
857 	} else {
858 		new_log_buf = memblock_virt_alloc_nopanic(new_log_buf_len, 0);
859 	}
860 
861 	if (unlikely(!new_log_buf)) {
862 		pr_err("log_buf_len: %ld bytes not available\n",
863 			new_log_buf_len);
864 		return;
865 	}
866 
867 	raw_spin_lock_irqsave(&logbuf_lock, flags);
868 	log_buf_len = new_log_buf_len;
869 	log_buf = new_log_buf;
870 	new_log_buf_len = 0;
871 	free = __LOG_BUF_LEN - log_next_idx;
872 	memcpy(log_buf, __log_buf, __LOG_BUF_LEN);
873 	raw_spin_unlock_irqrestore(&logbuf_lock, flags);
874 
875 	pr_info("log_buf_len: %d\n", log_buf_len);
876 	pr_info("early log buf free: %d(%d%%)\n",
877 		free, (free * 100) / __LOG_BUF_LEN);
878 }
879 
880 static bool __read_mostly ignore_loglevel;
881 
882 static int __init ignore_loglevel_setup(char *str)
883 {
884 	ignore_loglevel = 1;
885 	pr_info("debug: ignoring loglevel setting.\n");
886 
887 	return 0;
888 }
889 
890 early_param("ignore_loglevel", ignore_loglevel_setup);
891 module_param(ignore_loglevel, bool, S_IRUGO | S_IWUSR);
892 MODULE_PARM_DESC(ignore_loglevel, "ignore loglevel setting, to"
893 	"print all kernel messages to the console.");
894 
895 #ifdef CONFIG_BOOT_PRINTK_DELAY
896 
897 static int boot_delay; /* msecs delay after each printk during bootup */
898 static unsigned long long loops_per_msec;	/* based on boot_delay */
899 
900 static int __init boot_delay_setup(char *str)
901 {
902 	unsigned long lpj;
903 
904 	lpj = preset_lpj ? preset_lpj : 1000000;	/* some guess */
905 	loops_per_msec = (unsigned long long)lpj / 1000 * HZ;
906 
907 	get_option(&str, &boot_delay);
908 	if (boot_delay > 10 * 1000)
909 		boot_delay = 0;
910 
911 	pr_debug("boot_delay: %u, preset_lpj: %ld, lpj: %lu, "
912 		"HZ: %d, loops_per_msec: %llu\n",
913 		boot_delay, preset_lpj, lpj, HZ, loops_per_msec);
914 	return 0;
915 }
916 early_param("boot_delay", boot_delay_setup);
917 
918 static void boot_delay_msec(int level)
919 {
920 	unsigned long long k;
921 	unsigned long timeout;
922 
923 	if ((boot_delay == 0 || system_state != SYSTEM_BOOTING)
924 		|| (level >= console_loglevel && !ignore_loglevel)) {
925 		return;
926 	}
927 
928 	k = (unsigned long long)loops_per_msec * boot_delay;
929 
930 	timeout = jiffies + msecs_to_jiffies(boot_delay);
931 	while (k) {
932 		k--;
933 		cpu_relax();
934 		/*
935 		 * use (volatile) jiffies to prevent
936 		 * compiler reduction; loop termination via jiffies
937 		 * is secondary and may or may not happen.
938 		 */
939 		if (time_after(jiffies, timeout))
940 			break;
941 		touch_nmi_watchdog();
942 	}
943 }
944 #else
945 static inline void boot_delay_msec(int level)
946 {
947 }
948 #endif
949 
950 #if defined(CONFIG_PRINTK_TIME)
951 static bool printk_time = 1;
952 #else
953 static bool printk_time;
954 #endif
955 module_param_named(time, printk_time, bool, S_IRUGO | S_IWUSR);
956 
957 static size_t print_time(u64 ts, char *buf)
958 {
959 	unsigned long rem_nsec;
960 
961 	if (!printk_time)
962 		return 0;
963 
964 	rem_nsec = do_div(ts, 1000000000);
965 
966 	if (!buf)
967 		return snprintf(NULL, 0, "[%5lu.000000] ", (unsigned long)ts);
968 
969 	return sprintf(buf, "[%5lu.%06lu] ",
970 		       (unsigned long)ts, rem_nsec / 1000);
971 }
972 
973 static size_t print_prefix(const struct printk_log *msg, bool syslog, char *buf)
974 {
975 	size_t len = 0;
976 	unsigned int prefix = (msg->facility << 3) | msg->level;
977 
978 	if (syslog) {
979 		if (buf) {
980 			len += sprintf(buf, "<%u>", prefix);
981 		} else {
982 			len += 3;
983 			if (prefix > 999)
984 				len += 3;
985 			else if (prefix > 99)
986 				len += 2;
987 			else if (prefix > 9)
988 				len++;
989 		}
990 	}
991 
992 	len += print_time(msg->ts_nsec, buf ? buf + len : NULL);
993 	return len;
994 }
995 
996 static size_t msg_print_text(const struct printk_log *msg, enum log_flags prev,
997 			     bool syslog, char *buf, size_t size)
998 {
999 	const char *text = log_text(msg);
1000 	size_t text_size = msg->text_len;
1001 	bool prefix = true;
1002 	bool newline = true;
1003 	size_t len = 0;
1004 
1005 	if ((prev & LOG_CONT) && !(msg->flags & LOG_PREFIX))
1006 		prefix = false;
1007 
1008 	if (msg->flags & LOG_CONT) {
1009 		if ((prev & LOG_CONT) && !(prev & LOG_NEWLINE))
1010 			prefix = false;
1011 
1012 		if (!(msg->flags & LOG_NEWLINE))
1013 			newline = false;
1014 	}
1015 
1016 	do {
1017 		const char *next = memchr(text, '\n', text_size);
1018 		size_t text_len;
1019 
1020 		if (next) {
1021 			text_len = next - text;
1022 			next++;
1023 			text_size -= next - text;
1024 		} else {
1025 			text_len = text_size;
1026 		}
1027 
1028 		if (buf) {
1029 			if (print_prefix(msg, syslog, NULL) +
1030 			    text_len + 1 >= size - len)
1031 				break;
1032 
1033 			if (prefix)
1034 				len += print_prefix(msg, syslog, buf + len);
1035 			memcpy(buf + len, text, text_len);
1036 			len += text_len;
1037 			if (next || newline)
1038 				buf[len++] = '\n';
1039 		} else {
1040 			/* SYSLOG_ACTION_* buffer size only calculation */
1041 			if (prefix)
1042 				len += print_prefix(msg, syslog, NULL);
1043 			len += text_len;
1044 			if (next || newline)
1045 				len++;
1046 		}
1047 
1048 		prefix = true;
1049 		text = next;
1050 	} while (text);
1051 
1052 	return len;
1053 }
1054 
1055 static int syslog_print(char __user *buf, int size)
1056 {
1057 	char *text;
1058 	struct printk_log *msg;
1059 	int len = 0;
1060 
1061 	text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
1062 	if (!text)
1063 		return -ENOMEM;
1064 
1065 	while (size > 0) {
1066 		size_t n;
1067 		size_t skip;
1068 
1069 		raw_spin_lock_irq(&logbuf_lock);
1070 		if (syslog_seq < log_first_seq) {
1071 			/* messages are gone, move to first one */
1072 			syslog_seq = log_first_seq;
1073 			syslog_idx = log_first_idx;
1074 			syslog_prev = 0;
1075 			syslog_partial = 0;
1076 		}
1077 		if (syslog_seq == log_next_seq) {
1078 			raw_spin_unlock_irq(&logbuf_lock);
1079 			break;
1080 		}
1081 
1082 		skip = syslog_partial;
1083 		msg = log_from_idx(syslog_idx);
1084 		n = msg_print_text(msg, syslog_prev, true, text,
1085 				   LOG_LINE_MAX + PREFIX_MAX);
1086 		if (n - syslog_partial <= size) {
1087 			/* message fits into buffer, move forward */
1088 			syslog_idx = log_next(syslog_idx);
1089 			syslog_seq++;
1090 			syslog_prev = msg->flags;
1091 			n -= syslog_partial;
1092 			syslog_partial = 0;
1093 		} else if (!len){
1094 			/* partial read(), remember position */
1095 			n = size;
1096 			syslog_partial += n;
1097 		} else
1098 			n = 0;
1099 		raw_spin_unlock_irq(&logbuf_lock);
1100 
1101 		if (!n)
1102 			break;
1103 
1104 		if (copy_to_user(buf, text + skip, n)) {
1105 			if (!len)
1106 				len = -EFAULT;
1107 			break;
1108 		}
1109 
1110 		len += n;
1111 		size -= n;
1112 		buf += n;
1113 	}
1114 
1115 	kfree(text);
1116 	return len;
1117 }
1118 
1119 static int syslog_print_all(char __user *buf, int size, bool clear)
1120 {
1121 	char *text;
1122 	int len = 0;
1123 
1124 	text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
1125 	if (!text)
1126 		return -ENOMEM;
1127 
1128 	raw_spin_lock_irq(&logbuf_lock);
1129 	if (buf) {
1130 		u64 next_seq;
1131 		u64 seq;
1132 		u32 idx;
1133 		enum log_flags prev;
1134 
1135 		if (clear_seq < log_first_seq) {
1136 			/* messages are gone, move to first available one */
1137 			clear_seq = log_first_seq;
1138 			clear_idx = log_first_idx;
1139 		}
1140 
1141 		/*
1142 		 * Find first record that fits, including all following records,
1143 		 * into the user-provided buffer for this dump.
1144 		 */
1145 		seq = clear_seq;
1146 		idx = clear_idx;
1147 		prev = 0;
1148 		while (seq < log_next_seq) {
1149 			struct printk_log *msg = log_from_idx(idx);
1150 
1151 			len += msg_print_text(msg, prev, true, NULL, 0);
1152 			prev = msg->flags;
1153 			idx = log_next(idx);
1154 			seq++;
1155 		}
1156 
1157 		/* move first record forward until length fits into the buffer */
1158 		seq = clear_seq;
1159 		idx = clear_idx;
1160 		prev = 0;
1161 		while (len > size && seq < log_next_seq) {
1162 			struct printk_log *msg = log_from_idx(idx);
1163 
1164 			len -= msg_print_text(msg, prev, true, NULL, 0);
1165 			prev = msg->flags;
1166 			idx = log_next(idx);
1167 			seq++;
1168 		}
1169 
1170 		/* last message fitting into this dump */
1171 		next_seq = log_next_seq;
1172 
1173 		len = 0;
1174 		while (len >= 0 && seq < next_seq) {
1175 			struct printk_log *msg = log_from_idx(idx);
1176 			int textlen;
1177 
1178 			textlen = msg_print_text(msg, prev, true, text,
1179 						 LOG_LINE_MAX + PREFIX_MAX);
1180 			if (textlen < 0) {
1181 				len = textlen;
1182 				break;
1183 			}
1184 			idx = log_next(idx);
1185 			seq++;
1186 			prev = msg->flags;
1187 
1188 			raw_spin_unlock_irq(&logbuf_lock);
1189 			if (copy_to_user(buf + len, text, textlen))
1190 				len = -EFAULT;
1191 			else
1192 				len += textlen;
1193 			raw_spin_lock_irq(&logbuf_lock);
1194 
1195 			if (seq < log_first_seq) {
1196 				/* messages are gone, move to next one */
1197 				seq = log_first_seq;
1198 				idx = log_first_idx;
1199 				prev = 0;
1200 			}
1201 		}
1202 	}
1203 
1204 	if (clear) {
1205 		clear_seq = log_next_seq;
1206 		clear_idx = log_next_idx;
1207 	}
1208 	raw_spin_unlock_irq(&logbuf_lock);
1209 
1210 	kfree(text);
1211 	return len;
1212 }
1213 
1214 int do_syslog(int type, char __user *buf, int len, bool from_file)
1215 {
1216 	bool clear = false;
1217 	static int saved_console_loglevel = -1;
1218 	int error;
1219 
1220 	error = check_syslog_permissions(type, from_file);
1221 	if (error)
1222 		goto out;
1223 
1224 	error = security_syslog(type);
1225 	if (error)
1226 		return error;
1227 
1228 	switch (type) {
1229 	case SYSLOG_ACTION_CLOSE:	/* Close log */
1230 		break;
1231 	case SYSLOG_ACTION_OPEN:	/* Open log */
1232 		break;
1233 	case SYSLOG_ACTION_READ:	/* Read from log */
1234 		error = -EINVAL;
1235 		if (!buf || len < 0)
1236 			goto out;
1237 		error = 0;
1238 		if (!len)
1239 			goto out;
1240 		if (!access_ok(VERIFY_WRITE, buf, len)) {
1241 			error = -EFAULT;
1242 			goto out;
1243 		}
1244 		error = wait_event_interruptible(log_wait,
1245 						 syslog_seq != log_next_seq);
1246 		if (error)
1247 			goto out;
1248 		error = syslog_print(buf, len);
1249 		break;
1250 	/* Read/clear last kernel messages */
1251 	case SYSLOG_ACTION_READ_CLEAR:
1252 		clear = true;
1253 		/* FALL THRU */
1254 	/* Read last kernel messages */
1255 	case SYSLOG_ACTION_READ_ALL:
1256 		error = -EINVAL;
1257 		if (!buf || len < 0)
1258 			goto out;
1259 		error = 0;
1260 		if (!len)
1261 			goto out;
1262 		if (!access_ok(VERIFY_WRITE, buf, len)) {
1263 			error = -EFAULT;
1264 			goto out;
1265 		}
1266 		error = syslog_print_all(buf, len, clear);
1267 		break;
1268 	/* Clear ring buffer */
1269 	case SYSLOG_ACTION_CLEAR:
1270 		syslog_print_all(NULL, 0, true);
1271 		break;
1272 	/* Disable logging to console */
1273 	case SYSLOG_ACTION_CONSOLE_OFF:
1274 		if (saved_console_loglevel == -1)
1275 			saved_console_loglevel = console_loglevel;
1276 		console_loglevel = minimum_console_loglevel;
1277 		break;
1278 	/* Enable logging to console */
1279 	case SYSLOG_ACTION_CONSOLE_ON:
1280 		if (saved_console_loglevel != -1) {
1281 			console_loglevel = saved_console_loglevel;
1282 			saved_console_loglevel = -1;
1283 		}
1284 		break;
1285 	/* Set level of messages printed to console */
1286 	case SYSLOG_ACTION_CONSOLE_LEVEL:
1287 		error = -EINVAL;
1288 		if (len < 1 || len > 8)
1289 			goto out;
1290 		if (len < minimum_console_loglevel)
1291 			len = minimum_console_loglevel;
1292 		console_loglevel = len;
1293 		/* Implicitly re-enable logging to console */
1294 		saved_console_loglevel = -1;
1295 		error = 0;
1296 		break;
1297 	/* Number of chars in the log buffer */
1298 	case SYSLOG_ACTION_SIZE_UNREAD:
1299 		raw_spin_lock_irq(&logbuf_lock);
1300 		if (syslog_seq < log_first_seq) {
1301 			/* messages are gone, move to first one */
1302 			syslog_seq = log_first_seq;
1303 			syslog_idx = log_first_idx;
1304 			syslog_prev = 0;
1305 			syslog_partial = 0;
1306 		}
1307 		if (from_file) {
1308 			/*
1309 			 * Short-cut for poll(/"proc/kmsg") which simply checks
1310 			 * for pending data, not the size; return the count of
1311 			 * records, not the length.
1312 			 */
1313 			error = log_next_idx - syslog_idx;
1314 		} else {
1315 			u64 seq = syslog_seq;
1316 			u32 idx = syslog_idx;
1317 			enum log_flags prev = syslog_prev;
1318 
1319 			error = 0;
1320 			while (seq < log_next_seq) {
1321 				struct printk_log *msg = log_from_idx(idx);
1322 
1323 				error += msg_print_text(msg, prev, true, NULL, 0);
1324 				idx = log_next(idx);
1325 				seq++;
1326 				prev = msg->flags;
1327 			}
1328 			error -= syslog_partial;
1329 		}
1330 		raw_spin_unlock_irq(&logbuf_lock);
1331 		break;
1332 	/* Size of the log buffer */
1333 	case SYSLOG_ACTION_SIZE_BUFFER:
1334 		error = log_buf_len;
1335 		break;
1336 	default:
1337 		error = -EINVAL;
1338 		break;
1339 	}
1340 out:
1341 	return error;
1342 }
1343 
1344 SYSCALL_DEFINE3(syslog, int, type, char __user *, buf, int, len)
1345 {
1346 	return do_syslog(type, buf, len, SYSLOG_FROM_READER);
1347 }
1348 
1349 /*
1350  * Call the console drivers, asking them to write out
1351  * log_buf[start] to log_buf[end - 1].
1352  * The console_lock must be held.
1353  */
1354 static void call_console_drivers(int level, const char *text, size_t len)
1355 {
1356 	struct console *con;
1357 
1358 	trace_console(text, len);
1359 
1360 	if (level >= console_loglevel && !ignore_loglevel)
1361 		return;
1362 	if (!console_drivers)
1363 		return;
1364 
1365 	for_each_console(con) {
1366 		if (exclusive_console && con != exclusive_console)
1367 			continue;
1368 		if (!(con->flags & CON_ENABLED))
1369 			continue;
1370 		if (!con->write)
1371 			continue;
1372 		if (!cpu_online(smp_processor_id()) &&
1373 		    !(con->flags & CON_ANYTIME))
1374 			continue;
1375 		con->write(con, text, len);
1376 	}
1377 }
1378 
1379 /*
1380  * Zap console related locks when oopsing. Only zap at most once
1381  * every 10 seconds, to leave time for slow consoles to print a
1382  * full oops.
1383  */
1384 static void zap_locks(void)
1385 {
1386 	static unsigned long oops_timestamp;
1387 
1388 	if (time_after_eq(jiffies, oops_timestamp) &&
1389 			!time_after(jiffies, oops_timestamp + 30 * HZ))
1390 		return;
1391 
1392 	oops_timestamp = jiffies;
1393 
1394 	debug_locks_off();
1395 	/* If a crash is occurring, make sure we can't deadlock */
1396 	raw_spin_lock_init(&logbuf_lock);
1397 	/* And make sure that we print immediately */
1398 	sema_init(&console_sem, 1);
1399 }
1400 
1401 /*
1402  * Check if we have any console that is capable of printing while cpu is
1403  * booting or shutting down. Requires console_sem.
1404  */
1405 static int have_callable_console(void)
1406 {
1407 	struct console *con;
1408 
1409 	for_each_console(con)
1410 		if (con->flags & CON_ANYTIME)
1411 			return 1;
1412 
1413 	return 0;
1414 }
1415 
1416 /*
1417  * Can we actually use the console at this time on this cpu?
1418  *
1419  * Console drivers may assume that per-cpu resources have been allocated. So
1420  * unless they're explicitly marked as being able to cope (CON_ANYTIME) don't
1421  * call them until this CPU is officially up.
1422  */
1423 static inline int can_use_console(unsigned int cpu)
1424 {
1425 	return cpu_online(cpu) || have_callable_console();
1426 }
1427 
1428 /*
1429  * Try to get console ownership to actually show the kernel
1430  * messages from a 'printk'. Return true (and with the
1431  * console_lock held, and 'console_locked' set) if it
1432  * is successful, false otherwise.
1433  */
1434 static int console_trylock_for_printk(void)
1435 {
1436 	unsigned int cpu = smp_processor_id();
1437 
1438 	if (!console_trylock())
1439 		return 0;
1440 	/*
1441 	 * If we can't use the console, we need to release the console
1442 	 * semaphore by hand to avoid flushing the buffer. We need to hold the
1443 	 * console semaphore in order to do this test safely.
1444 	 */
1445 	if (!can_use_console(cpu)) {
1446 		console_locked = 0;
1447 		up_console_sem();
1448 		return 0;
1449 	}
1450 	return 1;
1451 }
1452 
1453 int printk_delay_msec __read_mostly;
1454 
1455 static inline void printk_delay(void)
1456 {
1457 	if (unlikely(printk_delay_msec)) {
1458 		int m = printk_delay_msec;
1459 
1460 		while (m--) {
1461 			mdelay(1);
1462 			touch_nmi_watchdog();
1463 		}
1464 	}
1465 }
1466 
1467 /*
1468  * Continuation lines are buffered, and not committed to the record buffer
1469  * until the line is complete, or a race forces it. The line fragments
1470  * though, are printed immediately to the consoles to ensure everything has
1471  * reached the console in case of a kernel crash.
1472  */
1473 static struct cont {
1474 	char buf[LOG_LINE_MAX];
1475 	size_t len;			/* length == 0 means unused buffer */
1476 	size_t cons;			/* bytes written to console */
1477 	struct task_struct *owner;	/* task of first print*/
1478 	u64 ts_nsec;			/* time of first print */
1479 	u8 level;			/* log level of first message */
1480 	u8 facility;			/* log level of first message */
1481 	enum log_flags flags;		/* prefix, newline flags */
1482 	bool flushed:1;			/* buffer sealed and committed */
1483 } cont;
1484 
1485 static void cont_flush(enum log_flags flags)
1486 {
1487 	if (cont.flushed)
1488 		return;
1489 	if (cont.len == 0)
1490 		return;
1491 
1492 	if (cont.cons) {
1493 		/*
1494 		 * If a fragment of this line was directly flushed to the
1495 		 * console; wait for the console to pick up the rest of the
1496 		 * line. LOG_NOCONS suppresses a duplicated output.
1497 		 */
1498 		log_store(cont.facility, cont.level, flags | LOG_NOCONS,
1499 			  cont.ts_nsec, NULL, 0, cont.buf, cont.len);
1500 		cont.flags = flags;
1501 		cont.flushed = true;
1502 	} else {
1503 		/*
1504 		 * If no fragment of this line ever reached the console,
1505 		 * just submit it to the store and free the buffer.
1506 		 */
1507 		log_store(cont.facility, cont.level, flags, 0,
1508 			  NULL, 0, cont.buf, cont.len);
1509 		cont.len = 0;
1510 	}
1511 }
1512 
1513 static bool cont_add(int facility, int level, const char *text, size_t len)
1514 {
1515 	if (cont.len && cont.flushed)
1516 		return false;
1517 
1518 	if (cont.len + len > sizeof(cont.buf)) {
1519 		/* the line gets too long, split it up in separate records */
1520 		cont_flush(LOG_CONT);
1521 		return false;
1522 	}
1523 
1524 	if (!cont.len) {
1525 		cont.facility = facility;
1526 		cont.level = level;
1527 		cont.owner = current;
1528 		cont.ts_nsec = local_clock();
1529 		cont.flags = 0;
1530 		cont.cons = 0;
1531 		cont.flushed = false;
1532 	}
1533 
1534 	memcpy(cont.buf + cont.len, text, len);
1535 	cont.len += len;
1536 
1537 	if (cont.len > (sizeof(cont.buf) * 80) / 100)
1538 		cont_flush(LOG_CONT);
1539 
1540 	return true;
1541 }
1542 
1543 static size_t cont_print_text(char *text, size_t size)
1544 {
1545 	size_t textlen = 0;
1546 	size_t len;
1547 
1548 	if (cont.cons == 0 && (console_prev & LOG_NEWLINE)) {
1549 		textlen += print_time(cont.ts_nsec, text);
1550 		size -= textlen;
1551 	}
1552 
1553 	len = cont.len - cont.cons;
1554 	if (len > 0) {
1555 		if (len+1 > size)
1556 			len = size-1;
1557 		memcpy(text + textlen, cont.buf + cont.cons, len);
1558 		textlen += len;
1559 		cont.cons = cont.len;
1560 	}
1561 
1562 	if (cont.flushed) {
1563 		if (cont.flags & LOG_NEWLINE)
1564 			text[textlen++] = '\n';
1565 		/* got everything, release buffer */
1566 		cont.len = 0;
1567 	}
1568 	return textlen;
1569 }
1570 
1571 asmlinkage int vprintk_emit(int facility, int level,
1572 			    const char *dict, size_t dictlen,
1573 			    const char *fmt, va_list args)
1574 {
1575 	static int recursion_bug;
1576 	static char textbuf[LOG_LINE_MAX];
1577 	char *text = textbuf;
1578 	size_t text_len = 0;
1579 	enum log_flags lflags = 0;
1580 	unsigned long flags;
1581 	int this_cpu;
1582 	int printed_len = 0;
1583 	bool in_sched = false;
1584 	/* cpu currently holding logbuf_lock in this function */
1585 	static volatile unsigned int logbuf_cpu = UINT_MAX;
1586 
1587 	if (level == SCHED_MESSAGE_LOGLEVEL) {
1588 		level = -1;
1589 		in_sched = true;
1590 	}
1591 
1592 	boot_delay_msec(level);
1593 	printk_delay();
1594 
1595 	/* This stops the holder of console_sem just where we want him */
1596 	local_irq_save(flags);
1597 	this_cpu = smp_processor_id();
1598 
1599 	/*
1600 	 * Ouch, printk recursed into itself!
1601 	 */
1602 	if (unlikely(logbuf_cpu == this_cpu)) {
1603 		/*
1604 		 * If a crash is occurring during printk() on this CPU,
1605 		 * then try to get the crash message out but make sure
1606 		 * we can't deadlock. Otherwise just return to avoid the
1607 		 * recursion and return - but flag the recursion so that
1608 		 * it can be printed at the next appropriate moment:
1609 		 */
1610 		if (!oops_in_progress && !lockdep_recursing(current)) {
1611 			recursion_bug = 1;
1612 			local_irq_restore(flags);
1613 			return 0;
1614 		}
1615 		zap_locks();
1616 	}
1617 
1618 	lockdep_off();
1619 	raw_spin_lock(&logbuf_lock);
1620 	logbuf_cpu = this_cpu;
1621 
1622 	if (recursion_bug) {
1623 		static const char recursion_msg[] =
1624 			"BUG: recent printk recursion!";
1625 
1626 		recursion_bug = 0;
1627 		text_len = strlen(recursion_msg);
1628 		/* emit KERN_CRIT message */
1629 		printed_len += log_store(0, 2, LOG_PREFIX|LOG_NEWLINE, 0,
1630 					 NULL, 0, recursion_msg, text_len);
1631 	}
1632 
1633 	/*
1634 	 * The printf needs to come first; we need the syslog
1635 	 * prefix which might be passed-in as a parameter.
1636 	 */
1637 	if (in_sched)
1638 		text_len = scnprintf(text, sizeof(textbuf),
1639 				     KERN_WARNING "[sched_delayed] ");
1640 
1641 	text_len += vscnprintf(text + text_len,
1642 			       sizeof(textbuf) - text_len, fmt, args);
1643 
1644 	/* mark and strip a trailing newline */
1645 	if (text_len && text[text_len-1] == '\n') {
1646 		text_len--;
1647 		lflags |= LOG_NEWLINE;
1648 	}
1649 
1650 	/* strip kernel syslog prefix and extract log level or control flags */
1651 	if (facility == 0) {
1652 		int kern_level = printk_get_level(text);
1653 
1654 		if (kern_level) {
1655 			const char *end_of_header = printk_skip_level(text);
1656 			switch (kern_level) {
1657 			case '0' ... '7':
1658 				if (level == -1)
1659 					level = kern_level - '0';
1660 			case 'd':	/* KERN_DEFAULT */
1661 				lflags |= LOG_PREFIX;
1662 			}
1663 			/*
1664 			 * No need to check length here because vscnprintf
1665 			 * put '\0' at the end of the string. Only valid and
1666 			 * newly printed level is detected.
1667 			 */
1668 			text_len -= end_of_header - text;
1669 			text = (char *)end_of_header;
1670 		}
1671 	}
1672 
1673 	if (level == -1)
1674 		level = default_message_loglevel;
1675 
1676 	if (dict)
1677 		lflags |= LOG_PREFIX|LOG_NEWLINE;
1678 
1679 	if (!(lflags & LOG_NEWLINE)) {
1680 		/*
1681 		 * Flush the conflicting buffer. An earlier newline was missing,
1682 		 * or another task also prints continuation lines.
1683 		 */
1684 		if (cont.len && (lflags & LOG_PREFIX || cont.owner != current))
1685 			cont_flush(LOG_NEWLINE);
1686 
1687 		/* buffer line if possible, otherwise store it right away */
1688 		if (cont_add(facility, level, text, text_len))
1689 			printed_len += text_len;
1690 		else
1691 			printed_len += log_store(facility, level,
1692 						 lflags | LOG_CONT, 0,
1693 						 dict, dictlen, text, text_len);
1694 	} else {
1695 		bool stored = false;
1696 
1697 		/*
1698 		 * If an earlier newline was missing and it was the same task,
1699 		 * either merge it with the current buffer and flush, or if
1700 		 * there was a race with interrupts (prefix == true) then just
1701 		 * flush it out and store this line separately.
1702 		 * If the preceding printk was from a different task and missed
1703 		 * a newline, flush and append the newline.
1704 		 */
1705 		if (cont.len) {
1706 			if (cont.owner == current && !(lflags & LOG_PREFIX))
1707 				stored = cont_add(facility, level, text,
1708 						  text_len);
1709 			cont_flush(LOG_NEWLINE);
1710 		}
1711 
1712 		if (stored)
1713 			printed_len += text_len;
1714 		else
1715 			printed_len += log_store(facility, level, lflags, 0,
1716 						 dict, dictlen, text, text_len);
1717 	}
1718 
1719 	logbuf_cpu = UINT_MAX;
1720 	raw_spin_unlock(&logbuf_lock);
1721 	lockdep_on();
1722 	local_irq_restore(flags);
1723 
1724 	/* If called from the scheduler, we can not call up(). */
1725 	if (in_sched)
1726 		return printed_len;
1727 
1728 	/*
1729 	 * Disable preemption to avoid being preempted while holding
1730 	 * console_sem which would prevent anyone from printing to console
1731 	 */
1732 	preempt_disable();
1733 	/*
1734 	 * Try to acquire and then immediately release the console semaphore.
1735 	 * The release will print out buffers and wake up /dev/kmsg and syslog()
1736 	 * users.
1737 	 */
1738 	if (console_trylock_for_printk())
1739 		console_unlock();
1740 	preempt_enable();
1741 
1742 	return printed_len;
1743 }
1744 EXPORT_SYMBOL(vprintk_emit);
1745 
1746 asmlinkage int vprintk(const char *fmt, va_list args)
1747 {
1748 	return vprintk_emit(0, -1, NULL, 0, fmt, args);
1749 }
1750 EXPORT_SYMBOL(vprintk);
1751 
1752 asmlinkage int printk_emit(int facility, int level,
1753 			   const char *dict, size_t dictlen,
1754 			   const char *fmt, ...)
1755 {
1756 	va_list args;
1757 	int r;
1758 
1759 	va_start(args, fmt);
1760 	r = vprintk_emit(facility, level, dict, dictlen, fmt, args);
1761 	va_end(args);
1762 
1763 	return r;
1764 }
1765 EXPORT_SYMBOL(printk_emit);
1766 
1767 /**
1768  * printk - print a kernel message
1769  * @fmt: format string
1770  *
1771  * This is printk(). It can be called from any context. We want it to work.
1772  *
1773  * We try to grab the console_lock. If we succeed, it's easy - we log the
1774  * output and call the console drivers.  If we fail to get the semaphore, we
1775  * place the output into the log buffer and return. The current holder of
1776  * the console_sem will notice the new output in console_unlock(); and will
1777  * send it to the consoles before releasing the lock.
1778  *
1779  * One effect of this deferred printing is that code which calls printk() and
1780  * then changes console_loglevel may break. This is because console_loglevel
1781  * is inspected when the actual printing occurs.
1782  *
1783  * See also:
1784  * printf(3)
1785  *
1786  * See the vsnprintf() documentation for format string extensions over C99.
1787  */
1788 asmlinkage __visible int printk(const char *fmt, ...)
1789 {
1790 	va_list args;
1791 	int r;
1792 
1793 #ifdef CONFIG_KGDB_KDB
1794 	if (unlikely(kdb_trap_printk)) {
1795 		va_start(args, fmt);
1796 		r = vkdb_printf(fmt, args);
1797 		va_end(args);
1798 		return r;
1799 	}
1800 #endif
1801 	va_start(args, fmt);
1802 	r = vprintk_emit(0, -1, NULL, 0, fmt, args);
1803 	va_end(args);
1804 
1805 	return r;
1806 }
1807 EXPORT_SYMBOL(printk);
1808 
1809 #else /* CONFIG_PRINTK */
1810 
1811 #define LOG_LINE_MAX		0
1812 #define PREFIX_MAX		0
1813 #define LOG_LINE_MAX 0
1814 static u64 syslog_seq;
1815 static u32 syslog_idx;
1816 static u64 console_seq;
1817 static u32 console_idx;
1818 static enum log_flags syslog_prev;
1819 static u64 log_first_seq;
1820 static u32 log_first_idx;
1821 static u64 log_next_seq;
1822 static enum log_flags console_prev;
1823 static struct cont {
1824 	size_t len;
1825 	size_t cons;
1826 	u8 level;
1827 	bool flushed:1;
1828 } cont;
1829 static struct printk_log *log_from_idx(u32 idx) { return NULL; }
1830 static u32 log_next(u32 idx) { return 0; }
1831 static void call_console_drivers(int level, const char *text, size_t len) {}
1832 static size_t msg_print_text(const struct printk_log *msg, enum log_flags prev,
1833 			     bool syslog, char *buf, size_t size) { return 0; }
1834 static size_t cont_print_text(char *text, size_t size) { return 0; }
1835 
1836 #endif /* CONFIG_PRINTK */
1837 
1838 #ifdef CONFIG_EARLY_PRINTK
1839 struct console *early_console;
1840 
1841 void early_vprintk(const char *fmt, va_list ap)
1842 {
1843 	if (early_console) {
1844 		char buf[512];
1845 		int n = vscnprintf(buf, sizeof(buf), fmt, ap);
1846 
1847 		early_console->write(early_console, buf, n);
1848 	}
1849 }
1850 
1851 asmlinkage __visible void early_printk(const char *fmt, ...)
1852 {
1853 	va_list ap;
1854 
1855 	va_start(ap, fmt);
1856 	early_vprintk(fmt, ap);
1857 	va_end(ap);
1858 }
1859 #endif
1860 
1861 static int __add_preferred_console(char *name, int idx, char *options,
1862 				   char *brl_options)
1863 {
1864 	struct console_cmdline *c;
1865 	int i;
1866 
1867 	/*
1868 	 *	See if this tty is not yet registered, and
1869 	 *	if we have a slot free.
1870 	 */
1871 	for (i = 0, c = console_cmdline;
1872 	     i < MAX_CMDLINECONSOLES && c->name[0];
1873 	     i++, c++) {
1874 		if (strcmp(c->name, name) == 0 && c->index == idx) {
1875 			if (!brl_options)
1876 				selected_console = i;
1877 			return 0;
1878 		}
1879 	}
1880 	if (i == MAX_CMDLINECONSOLES)
1881 		return -E2BIG;
1882 	if (!brl_options)
1883 		selected_console = i;
1884 	strlcpy(c->name, name, sizeof(c->name));
1885 	c->options = options;
1886 	braille_set_options(c, brl_options);
1887 
1888 	c->index = idx;
1889 	return 0;
1890 }
1891 /*
1892  * Set up a list of consoles.  Called from init/main.c
1893  */
1894 static int __init console_setup(char *str)
1895 {
1896 	char buf[sizeof(console_cmdline[0].name) + 4]; /* 4 for index */
1897 	char *s, *options, *brl_options = NULL;
1898 	int idx;
1899 
1900 	if (_braille_console_setup(&str, &brl_options))
1901 		return 1;
1902 
1903 	/*
1904 	 * Decode str into name, index, options.
1905 	 */
1906 	if (str[0] >= '0' && str[0] <= '9') {
1907 		strcpy(buf, "ttyS");
1908 		strncpy(buf + 4, str, sizeof(buf) - 5);
1909 	} else {
1910 		strncpy(buf, str, sizeof(buf) - 1);
1911 	}
1912 	buf[sizeof(buf) - 1] = 0;
1913 	if ((options = strchr(str, ',')) != NULL)
1914 		*(options++) = 0;
1915 #ifdef __sparc__
1916 	if (!strcmp(str, "ttya"))
1917 		strcpy(buf, "ttyS0");
1918 	if (!strcmp(str, "ttyb"))
1919 		strcpy(buf, "ttyS1");
1920 #endif
1921 	for (s = buf; *s; s++)
1922 		if ((*s >= '0' && *s <= '9') || *s == ',')
1923 			break;
1924 	idx = simple_strtoul(s, NULL, 10);
1925 	*s = 0;
1926 
1927 	__add_preferred_console(buf, idx, options, brl_options);
1928 	console_set_on_cmdline = 1;
1929 	return 1;
1930 }
1931 __setup("console=", console_setup);
1932 
1933 /**
1934  * add_preferred_console - add a device to the list of preferred consoles.
1935  * @name: device name
1936  * @idx: device index
1937  * @options: options for this console
1938  *
1939  * The last preferred console added will be used for kernel messages
1940  * and stdin/out/err for init.  Normally this is used by console_setup
1941  * above to handle user-supplied console arguments; however it can also
1942  * be used by arch-specific code either to override the user or more
1943  * commonly to provide a default console (ie from PROM variables) when
1944  * the user has not supplied one.
1945  */
1946 int add_preferred_console(char *name, int idx, char *options)
1947 {
1948 	return __add_preferred_console(name, idx, options, NULL);
1949 }
1950 
1951 int update_console_cmdline(char *name, int idx, char *name_new, int idx_new, char *options)
1952 {
1953 	struct console_cmdline *c;
1954 	int i;
1955 
1956 	for (i = 0, c = console_cmdline;
1957 	     i < MAX_CMDLINECONSOLES && c->name[0];
1958 	     i++, c++)
1959 		if (strcmp(c->name, name) == 0 && c->index == idx) {
1960 			strlcpy(c->name, name_new, sizeof(c->name));
1961 			c->name[sizeof(c->name) - 1] = 0;
1962 			c->options = options;
1963 			c->index = idx_new;
1964 			return i;
1965 		}
1966 	/* not found */
1967 	return -1;
1968 }
1969 
1970 bool console_suspend_enabled = 1;
1971 EXPORT_SYMBOL(console_suspend_enabled);
1972 
1973 static int __init console_suspend_disable(char *str)
1974 {
1975 	console_suspend_enabled = 0;
1976 	return 1;
1977 }
1978 __setup("no_console_suspend", console_suspend_disable);
1979 module_param_named(console_suspend, console_suspend_enabled,
1980 		bool, S_IRUGO | S_IWUSR);
1981 MODULE_PARM_DESC(console_suspend, "suspend console during suspend"
1982 	" and hibernate operations");
1983 
1984 /**
1985  * suspend_console - suspend the console subsystem
1986  *
1987  * This disables printk() while we go into suspend states
1988  */
1989 void suspend_console(void)
1990 {
1991 	if (!console_suspend_enabled)
1992 		return;
1993 	printk("Suspending console(s) (use no_console_suspend to debug)\n");
1994 	console_lock();
1995 	console_suspended = 1;
1996 	up_console_sem();
1997 }
1998 
1999 void resume_console(void)
2000 {
2001 	if (!console_suspend_enabled)
2002 		return;
2003 	down_console_sem();
2004 	console_suspended = 0;
2005 	console_unlock();
2006 }
2007 
2008 /**
2009  * console_cpu_notify - print deferred console messages after CPU hotplug
2010  * @self: notifier struct
2011  * @action: CPU hotplug event
2012  * @hcpu: unused
2013  *
2014  * If printk() is called from a CPU that is not online yet, the messages
2015  * will be spooled but will not show up on the console.  This function is
2016  * called when a new CPU comes online (or fails to come up), and ensures
2017  * that any such output gets printed.
2018  */
2019 static int console_cpu_notify(struct notifier_block *self,
2020 	unsigned long action, void *hcpu)
2021 {
2022 	switch (action) {
2023 	case CPU_ONLINE:
2024 	case CPU_DEAD:
2025 	case CPU_DOWN_FAILED:
2026 	case CPU_UP_CANCELED:
2027 		console_lock();
2028 		console_unlock();
2029 	}
2030 	return NOTIFY_OK;
2031 }
2032 
2033 /**
2034  * console_lock - lock the console system for exclusive use.
2035  *
2036  * Acquires a lock which guarantees that the caller has
2037  * exclusive access to the console system and the console_drivers list.
2038  *
2039  * Can sleep, returns nothing.
2040  */
2041 void console_lock(void)
2042 {
2043 	might_sleep();
2044 
2045 	down_console_sem();
2046 	if (console_suspended)
2047 		return;
2048 	console_locked = 1;
2049 	console_may_schedule = 1;
2050 }
2051 EXPORT_SYMBOL(console_lock);
2052 
2053 /**
2054  * console_trylock - try to lock the console system for exclusive use.
2055  *
2056  * Tried to acquire a lock which guarantees that the caller has
2057  * exclusive access to the console system and the console_drivers list.
2058  *
2059  * returns 1 on success, and 0 on failure to acquire the lock.
2060  */
2061 int console_trylock(void)
2062 {
2063 	if (down_trylock_console_sem())
2064 		return 0;
2065 	if (console_suspended) {
2066 		up_console_sem();
2067 		return 0;
2068 	}
2069 	console_locked = 1;
2070 	console_may_schedule = 0;
2071 	return 1;
2072 }
2073 EXPORT_SYMBOL(console_trylock);
2074 
2075 int is_console_locked(void)
2076 {
2077 	return console_locked;
2078 }
2079 
2080 static void console_cont_flush(char *text, size_t size)
2081 {
2082 	unsigned long flags;
2083 	size_t len;
2084 
2085 	raw_spin_lock_irqsave(&logbuf_lock, flags);
2086 
2087 	if (!cont.len)
2088 		goto out;
2089 
2090 	/*
2091 	 * We still queue earlier records, likely because the console was
2092 	 * busy. The earlier ones need to be printed before this one, we
2093 	 * did not flush any fragment so far, so just let it queue up.
2094 	 */
2095 	if (console_seq < log_next_seq && !cont.cons)
2096 		goto out;
2097 
2098 	len = cont_print_text(text, size);
2099 	raw_spin_unlock(&logbuf_lock);
2100 	stop_critical_timings();
2101 	call_console_drivers(cont.level, text, len);
2102 	start_critical_timings();
2103 	local_irq_restore(flags);
2104 	return;
2105 out:
2106 	raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2107 }
2108 
2109 /**
2110  * console_unlock - unlock the console system
2111  *
2112  * Releases the console_lock which the caller holds on the console system
2113  * and the console driver list.
2114  *
2115  * While the console_lock was held, console output may have been buffered
2116  * by printk().  If this is the case, console_unlock(); emits
2117  * the output prior to releasing the lock.
2118  *
2119  * If there is output waiting, we wake /dev/kmsg and syslog() users.
2120  *
2121  * console_unlock(); may be called from any context.
2122  */
2123 void console_unlock(void)
2124 {
2125 	static char text[LOG_LINE_MAX + PREFIX_MAX];
2126 	static u64 seen_seq;
2127 	unsigned long flags;
2128 	bool wake_klogd = false;
2129 	bool retry;
2130 
2131 	if (console_suspended) {
2132 		up_console_sem();
2133 		return;
2134 	}
2135 
2136 	console_may_schedule = 0;
2137 
2138 	/* flush buffered message fragment immediately to console */
2139 	console_cont_flush(text, sizeof(text));
2140 again:
2141 	for (;;) {
2142 		struct printk_log *msg;
2143 		size_t len;
2144 		int level;
2145 
2146 		raw_spin_lock_irqsave(&logbuf_lock, flags);
2147 		if (seen_seq != log_next_seq) {
2148 			wake_klogd = true;
2149 			seen_seq = log_next_seq;
2150 		}
2151 
2152 		if (console_seq < log_first_seq) {
2153 			len = sprintf(text, "** %u printk messages dropped ** ",
2154 				      (unsigned)(log_first_seq - console_seq));
2155 
2156 			/* messages are gone, move to first one */
2157 			console_seq = log_first_seq;
2158 			console_idx = log_first_idx;
2159 			console_prev = 0;
2160 		} else {
2161 			len = 0;
2162 		}
2163 skip:
2164 		if (console_seq == log_next_seq)
2165 			break;
2166 
2167 		msg = log_from_idx(console_idx);
2168 		if (msg->flags & LOG_NOCONS) {
2169 			/*
2170 			 * Skip record we have buffered and already printed
2171 			 * directly to the console when we received it.
2172 			 */
2173 			console_idx = log_next(console_idx);
2174 			console_seq++;
2175 			/*
2176 			 * We will get here again when we register a new
2177 			 * CON_PRINTBUFFER console. Clear the flag so we
2178 			 * will properly dump everything later.
2179 			 */
2180 			msg->flags &= ~LOG_NOCONS;
2181 			console_prev = msg->flags;
2182 			goto skip;
2183 		}
2184 
2185 		level = msg->level;
2186 		len += msg_print_text(msg, console_prev, false,
2187 				      text + len, sizeof(text) - len);
2188 		console_idx = log_next(console_idx);
2189 		console_seq++;
2190 		console_prev = msg->flags;
2191 		raw_spin_unlock(&logbuf_lock);
2192 
2193 		stop_critical_timings();	/* don't trace print latency */
2194 		call_console_drivers(level, text, len);
2195 		start_critical_timings();
2196 		local_irq_restore(flags);
2197 	}
2198 	console_locked = 0;
2199 
2200 	/* Release the exclusive_console once it is used */
2201 	if (unlikely(exclusive_console))
2202 		exclusive_console = NULL;
2203 
2204 	raw_spin_unlock(&logbuf_lock);
2205 
2206 	up_console_sem();
2207 
2208 	/*
2209 	 * Someone could have filled up the buffer again, so re-check if there's
2210 	 * something to flush. In case we cannot trylock the console_sem again,
2211 	 * there's a new owner and the console_unlock() from them will do the
2212 	 * flush, no worries.
2213 	 */
2214 	raw_spin_lock(&logbuf_lock);
2215 	retry = console_seq != log_next_seq;
2216 	raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2217 
2218 	if (retry && console_trylock())
2219 		goto again;
2220 
2221 	if (wake_klogd)
2222 		wake_up_klogd();
2223 }
2224 EXPORT_SYMBOL(console_unlock);
2225 
2226 /**
2227  * console_conditional_schedule - yield the CPU if required
2228  *
2229  * If the console code is currently allowed to sleep, and
2230  * if this CPU should yield the CPU to another task, do
2231  * so here.
2232  *
2233  * Must be called within console_lock();.
2234  */
2235 void __sched console_conditional_schedule(void)
2236 {
2237 	if (console_may_schedule)
2238 		cond_resched();
2239 }
2240 EXPORT_SYMBOL(console_conditional_schedule);
2241 
2242 void console_unblank(void)
2243 {
2244 	struct console *c;
2245 
2246 	/*
2247 	 * console_unblank can no longer be called in interrupt context unless
2248 	 * oops_in_progress is set to 1..
2249 	 */
2250 	if (oops_in_progress) {
2251 		if (down_trylock_console_sem() != 0)
2252 			return;
2253 	} else
2254 		console_lock();
2255 
2256 	console_locked = 1;
2257 	console_may_schedule = 0;
2258 	for_each_console(c)
2259 		if ((c->flags & CON_ENABLED) && c->unblank)
2260 			c->unblank();
2261 	console_unlock();
2262 }
2263 
2264 /*
2265  * Return the console tty driver structure and its associated index
2266  */
2267 struct tty_driver *console_device(int *index)
2268 {
2269 	struct console *c;
2270 	struct tty_driver *driver = NULL;
2271 
2272 	console_lock();
2273 	for_each_console(c) {
2274 		if (!c->device)
2275 			continue;
2276 		driver = c->device(c, index);
2277 		if (driver)
2278 			break;
2279 	}
2280 	console_unlock();
2281 	return driver;
2282 }
2283 
2284 /*
2285  * Prevent further output on the passed console device so that (for example)
2286  * serial drivers can disable console output before suspending a port, and can
2287  * re-enable output afterwards.
2288  */
2289 void console_stop(struct console *console)
2290 {
2291 	console_lock();
2292 	console->flags &= ~CON_ENABLED;
2293 	console_unlock();
2294 }
2295 EXPORT_SYMBOL(console_stop);
2296 
2297 void console_start(struct console *console)
2298 {
2299 	console_lock();
2300 	console->flags |= CON_ENABLED;
2301 	console_unlock();
2302 }
2303 EXPORT_SYMBOL(console_start);
2304 
2305 static int __read_mostly keep_bootcon;
2306 
2307 static int __init keep_bootcon_setup(char *str)
2308 {
2309 	keep_bootcon = 1;
2310 	pr_info("debug: skip boot console de-registration.\n");
2311 
2312 	return 0;
2313 }
2314 
2315 early_param("keep_bootcon", keep_bootcon_setup);
2316 
2317 /*
2318  * The console driver calls this routine during kernel initialization
2319  * to register the console printing procedure with printk() and to
2320  * print any messages that were printed by the kernel before the
2321  * console driver was initialized.
2322  *
2323  * This can happen pretty early during the boot process (because of
2324  * early_printk) - sometimes before setup_arch() completes - be careful
2325  * of what kernel features are used - they may not be initialised yet.
2326  *
2327  * There are two types of consoles - bootconsoles (early_printk) and
2328  * "real" consoles (everything which is not a bootconsole) which are
2329  * handled differently.
2330  *  - Any number of bootconsoles can be registered at any time.
2331  *  - As soon as a "real" console is registered, all bootconsoles
2332  *    will be unregistered automatically.
2333  *  - Once a "real" console is registered, any attempt to register a
2334  *    bootconsoles will be rejected
2335  */
2336 void register_console(struct console *newcon)
2337 {
2338 	int i;
2339 	unsigned long flags;
2340 	struct console *bcon = NULL;
2341 	struct console_cmdline *c;
2342 
2343 	if (console_drivers)
2344 		for_each_console(bcon)
2345 			if (WARN(bcon == newcon,
2346 					"console '%s%d' already registered\n",
2347 					bcon->name, bcon->index))
2348 				return;
2349 
2350 	/*
2351 	 * before we register a new CON_BOOT console, make sure we don't
2352 	 * already have a valid console
2353 	 */
2354 	if (console_drivers && newcon->flags & CON_BOOT) {
2355 		/* find the last or real console */
2356 		for_each_console(bcon) {
2357 			if (!(bcon->flags & CON_BOOT)) {
2358 				pr_info("Too late to register bootconsole %s%d\n",
2359 					newcon->name, newcon->index);
2360 				return;
2361 			}
2362 		}
2363 	}
2364 
2365 	if (console_drivers && console_drivers->flags & CON_BOOT)
2366 		bcon = console_drivers;
2367 
2368 	if (preferred_console < 0 || bcon || !console_drivers)
2369 		preferred_console = selected_console;
2370 
2371 	if (newcon->early_setup)
2372 		newcon->early_setup();
2373 
2374 	/*
2375 	 *	See if we want to use this console driver. If we
2376 	 *	didn't select a console we take the first one
2377 	 *	that registers here.
2378 	 */
2379 	if (preferred_console < 0) {
2380 		if (newcon->index < 0)
2381 			newcon->index = 0;
2382 		if (newcon->setup == NULL ||
2383 		    newcon->setup(newcon, NULL) == 0) {
2384 			newcon->flags |= CON_ENABLED;
2385 			if (newcon->device) {
2386 				newcon->flags |= CON_CONSDEV;
2387 				preferred_console = 0;
2388 			}
2389 		}
2390 	}
2391 
2392 	/*
2393 	 *	See if this console matches one we selected on
2394 	 *	the command line.
2395 	 */
2396 	for (i = 0, c = console_cmdline;
2397 	     i < MAX_CMDLINECONSOLES && c->name[0];
2398 	     i++, c++) {
2399 		if (strcmp(c->name, newcon->name) != 0)
2400 			continue;
2401 		if (newcon->index >= 0 &&
2402 		    newcon->index != c->index)
2403 			continue;
2404 		if (newcon->index < 0)
2405 			newcon->index = c->index;
2406 
2407 		if (_braille_register_console(newcon, c))
2408 			return;
2409 
2410 		if (newcon->setup &&
2411 		    newcon->setup(newcon, console_cmdline[i].options) != 0)
2412 			break;
2413 		newcon->flags |= CON_ENABLED;
2414 		newcon->index = c->index;
2415 		if (i == selected_console) {
2416 			newcon->flags |= CON_CONSDEV;
2417 			preferred_console = selected_console;
2418 		}
2419 		break;
2420 	}
2421 
2422 	if (!(newcon->flags & CON_ENABLED))
2423 		return;
2424 
2425 	/*
2426 	 * If we have a bootconsole, and are switching to a real console,
2427 	 * don't print everything out again, since when the boot console, and
2428 	 * the real console are the same physical device, it's annoying to
2429 	 * see the beginning boot messages twice
2430 	 */
2431 	if (bcon && ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV))
2432 		newcon->flags &= ~CON_PRINTBUFFER;
2433 
2434 	/*
2435 	 *	Put this console in the list - keep the
2436 	 *	preferred driver at the head of the list.
2437 	 */
2438 	console_lock();
2439 	if ((newcon->flags & CON_CONSDEV) || console_drivers == NULL) {
2440 		newcon->next = console_drivers;
2441 		console_drivers = newcon;
2442 		if (newcon->next)
2443 			newcon->next->flags &= ~CON_CONSDEV;
2444 	} else {
2445 		newcon->next = console_drivers->next;
2446 		console_drivers->next = newcon;
2447 	}
2448 	if (newcon->flags & CON_PRINTBUFFER) {
2449 		/*
2450 		 * console_unlock(); will print out the buffered messages
2451 		 * for us.
2452 		 */
2453 		raw_spin_lock_irqsave(&logbuf_lock, flags);
2454 		console_seq = syslog_seq;
2455 		console_idx = syslog_idx;
2456 		console_prev = syslog_prev;
2457 		raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2458 		/*
2459 		 * We're about to replay the log buffer.  Only do this to the
2460 		 * just-registered console to avoid excessive message spam to
2461 		 * the already-registered consoles.
2462 		 */
2463 		exclusive_console = newcon;
2464 	}
2465 	console_unlock();
2466 	console_sysfs_notify();
2467 
2468 	/*
2469 	 * By unregistering the bootconsoles after we enable the real console
2470 	 * we get the "console xxx enabled" message on all the consoles -
2471 	 * boot consoles, real consoles, etc - this is to ensure that end
2472 	 * users know there might be something in the kernel's log buffer that
2473 	 * went to the bootconsole (that they do not see on the real console)
2474 	 */
2475 	pr_info("%sconsole [%s%d] enabled\n",
2476 		(newcon->flags & CON_BOOT) ? "boot" : "" ,
2477 		newcon->name, newcon->index);
2478 	if (bcon &&
2479 	    ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV) &&
2480 	    !keep_bootcon) {
2481 		/* We need to iterate through all boot consoles, to make
2482 		 * sure we print everything out, before we unregister them.
2483 		 */
2484 		for_each_console(bcon)
2485 			if (bcon->flags & CON_BOOT)
2486 				unregister_console(bcon);
2487 	}
2488 }
2489 EXPORT_SYMBOL(register_console);
2490 
2491 int unregister_console(struct console *console)
2492 {
2493         struct console *a, *b;
2494 	int res;
2495 
2496 	pr_info("%sconsole [%s%d] disabled\n",
2497 		(console->flags & CON_BOOT) ? "boot" : "" ,
2498 		console->name, console->index);
2499 
2500 	res = _braille_unregister_console(console);
2501 	if (res)
2502 		return res;
2503 
2504 	res = 1;
2505 	console_lock();
2506 	if (console_drivers == console) {
2507 		console_drivers=console->next;
2508 		res = 0;
2509 	} else if (console_drivers) {
2510 		for (a=console_drivers->next, b=console_drivers ;
2511 		     a; b=a, a=b->next) {
2512 			if (a == console) {
2513 				b->next = a->next;
2514 				res = 0;
2515 				break;
2516 			}
2517 		}
2518 	}
2519 
2520 	/*
2521 	 * If this isn't the last console and it has CON_CONSDEV set, we
2522 	 * need to set it on the next preferred console.
2523 	 */
2524 	if (console_drivers != NULL && console->flags & CON_CONSDEV)
2525 		console_drivers->flags |= CON_CONSDEV;
2526 
2527 	console->flags &= ~CON_ENABLED;
2528 	console_unlock();
2529 	console_sysfs_notify();
2530 	return res;
2531 }
2532 EXPORT_SYMBOL(unregister_console);
2533 
2534 static int __init printk_late_init(void)
2535 {
2536 	struct console *con;
2537 
2538 	for_each_console(con) {
2539 		if (!keep_bootcon && con->flags & CON_BOOT) {
2540 			unregister_console(con);
2541 		}
2542 	}
2543 	hotcpu_notifier(console_cpu_notify, 0);
2544 	return 0;
2545 }
2546 late_initcall(printk_late_init);
2547 
2548 #if defined CONFIG_PRINTK
2549 /*
2550  * Delayed printk version, for scheduler-internal messages:
2551  */
2552 #define PRINTK_PENDING_WAKEUP	0x01
2553 #define PRINTK_PENDING_OUTPUT	0x02
2554 
2555 static DEFINE_PER_CPU(int, printk_pending);
2556 
2557 static void wake_up_klogd_work_func(struct irq_work *irq_work)
2558 {
2559 	int pending = __this_cpu_xchg(printk_pending, 0);
2560 
2561 	if (pending & PRINTK_PENDING_OUTPUT) {
2562 		/* If trylock fails, someone else is doing the printing */
2563 		if (console_trylock())
2564 			console_unlock();
2565 	}
2566 
2567 	if (pending & PRINTK_PENDING_WAKEUP)
2568 		wake_up_interruptible(&log_wait);
2569 }
2570 
2571 static DEFINE_PER_CPU(struct irq_work, wake_up_klogd_work) = {
2572 	.func = wake_up_klogd_work_func,
2573 	.flags = IRQ_WORK_LAZY,
2574 };
2575 
2576 void wake_up_klogd(void)
2577 {
2578 	preempt_disable();
2579 	if (waitqueue_active(&log_wait)) {
2580 		this_cpu_or(printk_pending, PRINTK_PENDING_WAKEUP);
2581 		irq_work_queue(&__get_cpu_var(wake_up_klogd_work));
2582 	}
2583 	preempt_enable();
2584 }
2585 
2586 int printk_deferred(const char *fmt, ...)
2587 {
2588 	va_list args;
2589 	int r;
2590 
2591 	preempt_disable();
2592 	va_start(args, fmt);
2593 	r = vprintk_emit(0, SCHED_MESSAGE_LOGLEVEL, NULL, 0, fmt, args);
2594 	va_end(args);
2595 
2596 	__this_cpu_or(printk_pending, PRINTK_PENDING_OUTPUT);
2597 	irq_work_queue(&__get_cpu_var(wake_up_klogd_work));
2598 	preempt_enable();
2599 
2600 	return r;
2601 }
2602 
2603 /*
2604  * printk rate limiting, lifted from the networking subsystem.
2605  *
2606  * This enforces a rate limit: not more than 10 kernel messages
2607  * every 5s to make a denial-of-service attack impossible.
2608  */
2609 DEFINE_RATELIMIT_STATE(printk_ratelimit_state, 5 * HZ, 10);
2610 
2611 int __printk_ratelimit(const char *func)
2612 {
2613 	return ___ratelimit(&printk_ratelimit_state, func);
2614 }
2615 EXPORT_SYMBOL(__printk_ratelimit);
2616 
2617 /**
2618  * printk_timed_ratelimit - caller-controlled printk ratelimiting
2619  * @caller_jiffies: pointer to caller's state
2620  * @interval_msecs: minimum interval between prints
2621  *
2622  * printk_timed_ratelimit() returns true if more than @interval_msecs
2623  * milliseconds have elapsed since the last time printk_timed_ratelimit()
2624  * returned true.
2625  */
2626 bool printk_timed_ratelimit(unsigned long *caller_jiffies,
2627 			unsigned int interval_msecs)
2628 {
2629 	if (*caller_jiffies == 0
2630 			|| !time_in_range(jiffies, *caller_jiffies,
2631 					*caller_jiffies
2632 					+ msecs_to_jiffies(interval_msecs))) {
2633 		*caller_jiffies = jiffies;
2634 		return true;
2635 	}
2636 	return false;
2637 }
2638 EXPORT_SYMBOL(printk_timed_ratelimit);
2639 
2640 static DEFINE_SPINLOCK(dump_list_lock);
2641 static LIST_HEAD(dump_list);
2642 
2643 /**
2644  * kmsg_dump_register - register a kernel log dumper.
2645  * @dumper: pointer to the kmsg_dumper structure
2646  *
2647  * Adds a kernel log dumper to the system. The dump callback in the
2648  * structure will be called when the kernel oopses or panics and must be
2649  * set. Returns zero on success and %-EINVAL or %-EBUSY otherwise.
2650  */
2651 int kmsg_dump_register(struct kmsg_dumper *dumper)
2652 {
2653 	unsigned long flags;
2654 	int err = -EBUSY;
2655 
2656 	/* The dump callback needs to be set */
2657 	if (!dumper->dump)
2658 		return -EINVAL;
2659 
2660 	spin_lock_irqsave(&dump_list_lock, flags);
2661 	/* Don't allow registering multiple times */
2662 	if (!dumper->registered) {
2663 		dumper->registered = 1;
2664 		list_add_tail_rcu(&dumper->list, &dump_list);
2665 		err = 0;
2666 	}
2667 	spin_unlock_irqrestore(&dump_list_lock, flags);
2668 
2669 	return err;
2670 }
2671 EXPORT_SYMBOL_GPL(kmsg_dump_register);
2672 
2673 /**
2674  * kmsg_dump_unregister - unregister a kmsg dumper.
2675  * @dumper: pointer to the kmsg_dumper structure
2676  *
2677  * Removes a dump device from the system. Returns zero on success and
2678  * %-EINVAL otherwise.
2679  */
2680 int kmsg_dump_unregister(struct kmsg_dumper *dumper)
2681 {
2682 	unsigned long flags;
2683 	int err = -EINVAL;
2684 
2685 	spin_lock_irqsave(&dump_list_lock, flags);
2686 	if (dumper->registered) {
2687 		dumper->registered = 0;
2688 		list_del_rcu(&dumper->list);
2689 		err = 0;
2690 	}
2691 	spin_unlock_irqrestore(&dump_list_lock, flags);
2692 	synchronize_rcu();
2693 
2694 	return err;
2695 }
2696 EXPORT_SYMBOL_GPL(kmsg_dump_unregister);
2697 
2698 static bool always_kmsg_dump;
2699 module_param_named(always_kmsg_dump, always_kmsg_dump, bool, S_IRUGO | S_IWUSR);
2700 
2701 /**
2702  * kmsg_dump - dump kernel log to kernel message dumpers.
2703  * @reason: the reason (oops, panic etc) for dumping
2704  *
2705  * Call each of the registered dumper's dump() callback, which can
2706  * retrieve the kmsg records with kmsg_dump_get_line() or
2707  * kmsg_dump_get_buffer().
2708  */
2709 void kmsg_dump(enum kmsg_dump_reason reason)
2710 {
2711 	struct kmsg_dumper *dumper;
2712 	unsigned long flags;
2713 
2714 	if ((reason > KMSG_DUMP_OOPS) && !always_kmsg_dump)
2715 		return;
2716 
2717 	rcu_read_lock();
2718 	list_for_each_entry_rcu(dumper, &dump_list, list) {
2719 		if (dumper->max_reason && reason > dumper->max_reason)
2720 			continue;
2721 
2722 		/* initialize iterator with data about the stored records */
2723 		dumper->active = true;
2724 
2725 		raw_spin_lock_irqsave(&logbuf_lock, flags);
2726 		dumper->cur_seq = clear_seq;
2727 		dumper->cur_idx = clear_idx;
2728 		dumper->next_seq = log_next_seq;
2729 		dumper->next_idx = log_next_idx;
2730 		raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2731 
2732 		/* invoke dumper which will iterate over records */
2733 		dumper->dump(dumper, reason);
2734 
2735 		/* reset iterator */
2736 		dumper->active = false;
2737 	}
2738 	rcu_read_unlock();
2739 }
2740 
2741 /**
2742  * kmsg_dump_get_line_nolock - retrieve one kmsg log line (unlocked version)
2743  * @dumper: registered kmsg dumper
2744  * @syslog: include the "<4>" prefixes
2745  * @line: buffer to copy the line to
2746  * @size: maximum size of the buffer
2747  * @len: length of line placed into buffer
2748  *
2749  * Start at the beginning of the kmsg buffer, with the oldest kmsg
2750  * record, and copy one record into the provided buffer.
2751  *
2752  * Consecutive calls will return the next available record moving
2753  * towards the end of the buffer with the youngest messages.
2754  *
2755  * A return value of FALSE indicates that there are no more records to
2756  * read.
2757  *
2758  * The function is similar to kmsg_dump_get_line(), but grabs no locks.
2759  */
2760 bool kmsg_dump_get_line_nolock(struct kmsg_dumper *dumper, bool syslog,
2761 			       char *line, size_t size, size_t *len)
2762 {
2763 	struct printk_log *msg;
2764 	size_t l = 0;
2765 	bool ret = false;
2766 
2767 	if (!dumper->active)
2768 		goto out;
2769 
2770 	if (dumper->cur_seq < log_first_seq) {
2771 		/* messages are gone, move to first available one */
2772 		dumper->cur_seq = log_first_seq;
2773 		dumper->cur_idx = log_first_idx;
2774 	}
2775 
2776 	/* last entry */
2777 	if (dumper->cur_seq >= log_next_seq)
2778 		goto out;
2779 
2780 	msg = log_from_idx(dumper->cur_idx);
2781 	l = msg_print_text(msg, 0, syslog, line, size);
2782 
2783 	dumper->cur_idx = log_next(dumper->cur_idx);
2784 	dumper->cur_seq++;
2785 	ret = true;
2786 out:
2787 	if (len)
2788 		*len = l;
2789 	return ret;
2790 }
2791 
2792 /**
2793  * kmsg_dump_get_line - retrieve one kmsg log line
2794  * @dumper: registered kmsg dumper
2795  * @syslog: include the "<4>" prefixes
2796  * @line: buffer to copy the line to
2797  * @size: maximum size of the buffer
2798  * @len: length of line placed into buffer
2799  *
2800  * Start at the beginning of the kmsg buffer, with the oldest kmsg
2801  * record, and copy one record into the provided buffer.
2802  *
2803  * Consecutive calls will return the next available record moving
2804  * towards the end of the buffer with the youngest messages.
2805  *
2806  * A return value of FALSE indicates that there are no more records to
2807  * read.
2808  */
2809 bool kmsg_dump_get_line(struct kmsg_dumper *dumper, bool syslog,
2810 			char *line, size_t size, size_t *len)
2811 {
2812 	unsigned long flags;
2813 	bool ret;
2814 
2815 	raw_spin_lock_irqsave(&logbuf_lock, flags);
2816 	ret = kmsg_dump_get_line_nolock(dumper, syslog, line, size, len);
2817 	raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2818 
2819 	return ret;
2820 }
2821 EXPORT_SYMBOL_GPL(kmsg_dump_get_line);
2822 
2823 /**
2824  * kmsg_dump_get_buffer - copy kmsg log lines
2825  * @dumper: registered kmsg dumper
2826  * @syslog: include the "<4>" prefixes
2827  * @buf: buffer to copy the line to
2828  * @size: maximum size of the buffer
2829  * @len: length of line placed into buffer
2830  *
2831  * Start at the end of the kmsg buffer and fill the provided buffer
2832  * with as many of the the *youngest* kmsg records that fit into it.
2833  * If the buffer is large enough, all available kmsg records will be
2834  * copied with a single call.
2835  *
2836  * Consecutive calls will fill the buffer with the next block of
2837  * available older records, not including the earlier retrieved ones.
2838  *
2839  * A return value of FALSE indicates that there are no more records to
2840  * read.
2841  */
2842 bool kmsg_dump_get_buffer(struct kmsg_dumper *dumper, bool syslog,
2843 			  char *buf, size_t size, size_t *len)
2844 {
2845 	unsigned long flags;
2846 	u64 seq;
2847 	u32 idx;
2848 	u64 next_seq;
2849 	u32 next_idx;
2850 	enum log_flags prev;
2851 	size_t l = 0;
2852 	bool ret = false;
2853 
2854 	if (!dumper->active)
2855 		goto out;
2856 
2857 	raw_spin_lock_irqsave(&logbuf_lock, flags);
2858 	if (dumper->cur_seq < log_first_seq) {
2859 		/* messages are gone, move to first available one */
2860 		dumper->cur_seq = log_first_seq;
2861 		dumper->cur_idx = log_first_idx;
2862 	}
2863 
2864 	/* last entry */
2865 	if (dumper->cur_seq >= dumper->next_seq) {
2866 		raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2867 		goto out;
2868 	}
2869 
2870 	/* calculate length of entire buffer */
2871 	seq = dumper->cur_seq;
2872 	idx = dumper->cur_idx;
2873 	prev = 0;
2874 	while (seq < dumper->next_seq) {
2875 		struct printk_log *msg = log_from_idx(idx);
2876 
2877 		l += msg_print_text(msg, prev, true, NULL, 0);
2878 		idx = log_next(idx);
2879 		seq++;
2880 		prev = msg->flags;
2881 	}
2882 
2883 	/* move first record forward until length fits into the buffer */
2884 	seq = dumper->cur_seq;
2885 	idx = dumper->cur_idx;
2886 	prev = 0;
2887 	while (l > size && seq < dumper->next_seq) {
2888 		struct printk_log *msg = log_from_idx(idx);
2889 
2890 		l -= msg_print_text(msg, prev, true, NULL, 0);
2891 		idx = log_next(idx);
2892 		seq++;
2893 		prev = msg->flags;
2894 	}
2895 
2896 	/* last message in next interation */
2897 	next_seq = seq;
2898 	next_idx = idx;
2899 
2900 	l = 0;
2901 	while (seq < dumper->next_seq) {
2902 		struct printk_log *msg = log_from_idx(idx);
2903 
2904 		l += msg_print_text(msg, prev, syslog, buf + l, size - l);
2905 		idx = log_next(idx);
2906 		seq++;
2907 		prev = msg->flags;
2908 	}
2909 
2910 	dumper->next_seq = next_seq;
2911 	dumper->next_idx = next_idx;
2912 	ret = true;
2913 	raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2914 out:
2915 	if (len)
2916 		*len = l;
2917 	return ret;
2918 }
2919 EXPORT_SYMBOL_GPL(kmsg_dump_get_buffer);
2920 
2921 /**
2922  * kmsg_dump_rewind_nolock - reset the interator (unlocked version)
2923  * @dumper: registered kmsg dumper
2924  *
2925  * Reset the dumper's iterator so that kmsg_dump_get_line() and
2926  * kmsg_dump_get_buffer() can be called again and used multiple
2927  * times within the same dumper.dump() callback.
2928  *
2929  * The function is similar to kmsg_dump_rewind(), but grabs no locks.
2930  */
2931 void kmsg_dump_rewind_nolock(struct kmsg_dumper *dumper)
2932 {
2933 	dumper->cur_seq = clear_seq;
2934 	dumper->cur_idx = clear_idx;
2935 	dumper->next_seq = log_next_seq;
2936 	dumper->next_idx = log_next_idx;
2937 }
2938 
2939 /**
2940  * kmsg_dump_rewind - reset the interator
2941  * @dumper: registered kmsg dumper
2942  *
2943  * Reset the dumper's iterator so that kmsg_dump_get_line() and
2944  * kmsg_dump_get_buffer() can be called again and used multiple
2945  * times within the same dumper.dump() callback.
2946  */
2947 void kmsg_dump_rewind(struct kmsg_dumper *dumper)
2948 {
2949 	unsigned long flags;
2950 
2951 	raw_spin_lock_irqsave(&logbuf_lock, flags);
2952 	kmsg_dump_rewind_nolock(dumper);
2953 	raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2954 }
2955 EXPORT_SYMBOL_GPL(kmsg_dump_rewind);
2956 
2957 static char dump_stack_arch_desc_str[128];
2958 
2959 /**
2960  * dump_stack_set_arch_desc - set arch-specific str to show with task dumps
2961  * @fmt: printf-style format string
2962  * @...: arguments for the format string
2963  *
2964  * The configured string will be printed right after utsname during task
2965  * dumps.  Usually used to add arch-specific system identifiers.  If an
2966  * arch wants to make use of such an ID string, it should initialize this
2967  * as soon as possible during boot.
2968  */
2969 void __init dump_stack_set_arch_desc(const char *fmt, ...)
2970 {
2971 	va_list args;
2972 
2973 	va_start(args, fmt);
2974 	vsnprintf(dump_stack_arch_desc_str, sizeof(dump_stack_arch_desc_str),
2975 		  fmt, args);
2976 	va_end(args);
2977 }
2978 
2979 /**
2980  * dump_stack_print_info - print generic debug info for dump_stack()
2981  * @log_lvl: log level
2982  *
2983  * Arch-specific dump_stack() implementations can use this function to
2984  * print out the same debug information as the generic dump_stack().
2985  */
2986 void dump_stack_print_info(const char *log_lvl)
2987 {
2988 	printk("%sCPU: %d PID: %d Comm: %.20s %s %s %.*s\n",
2989 	       log_lvl, raw_smp_processor_id(), current->pid, current->comm,
2990 	       print_tainted(), init_utsname()->release,
2991 	       (int)strcspn(init_utsname()->version, " "),
2992 	       init_utsname()->version);
2993 
2994 	if (dump_stack_arch_desc_str[0] != '\0')
2995 		printk("%sHardware name: %s\n",
2996 		       log_lvl, dump_stack_arch_desc_str);
2997 
2998 	print_worker_info(log_lvl, current);
2999 }
3000 
3001 /**
3002  * show_regs_print_info - print generic debug info for show_regs()
3003  * @log_lvl: log level
3004  *
3005  * show_regs() implementations can use this function to print out generic
3006  * debug information.
3007  */
3008 void show_regs_print_info(const char *log_lvl)
3009 {
3010 	dump_stack_print_info(log_lvl);
3011 
3012 	printk("%stask: %p ti: %p task.ti: %p\n",
3013 	       log_lvl, current, current_thread_info(),
3014 	       task_thread_info(current));
3015 }
3016 
3017 #endif
3018