1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/printk.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 * 7 * Modified to make sys_syslog() more flexible: added commands to 8 * return the last 4k of kernel messages, regardless of whether 9 * they've been read or not. Added option to suppress kernel printk's 10 * to the console. Added hook for sending the console messages 11 * elsewhere, in preparation for a serial line console (someday). 12 * Ted Ts'o, 2/11/93. 13 * Modified for sysctl support, 1/8/97, Chris Horn. 14 * Fixed SMP synchronization, 08/08/99, Manfred Spraul 15 * manfred@colorfullife.com 16 * Rewrote bits to get rid of console_lock 17 * 01Mar01 Andrew Morton 18 */ 19 20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 21 22 #include <linux/kernel.h> 23 #include <linux/mm.h> 24 #include <linux/tty.h> 25 #include <linux/tty_driver.h> 26 #include <linux/console.h> 27 #include <linux/init.h> 28 #include <linux/jiffies.h> 29 #include <linux/nmi.h> 30 #include <linux/module.h> 31 #include <linux/moduleparam.h> 32 #include <linux/delay.h> 33 #include <linux/smp.h> 34 #include <linux/security.h> 35 #include <linux/memblock.h> 36 #include <linux/syscalls.h> 37 #include <linux/crash_core.h> 38 #include <linux/ratelimit.h> 39 #include <linux/kmsg_dump.h> 40 #include <linux/syslog.h> 41 #include <linux/cpu.h> 42 #include <linux/rculist.h> 43 #include <linux/poll.h> 44 #include <linux/irq_work.h> 45 #include <linux/ctype.h> 46 #include <linux/uio.h> 47 #include <linux/sched/clock.h> 48 #include <linux/sched/debug.h> 49 #include <linux/sched/task_stack.h> 50 51 #include <linux/uaccess.h> 52 #include <asm/sections.h> 53 54 #include <trace/events/initcall.h> 55 #define CREATE_TRACE_POINTS 56 #include <trace/events/printk.h> 57 58 #include "printk_ringbuffer.h" 59 #include "console_cmdline.h" 60 #include "braille.h" 61 #include "internal.h" 62 63 int console_printk[4] = { 64 CONSOLE_LOGLEVEL_DEFAULT, /* console_loglevel */ 65 MESSAGE_LOGLEVEL_DEFAULT, /* default_message_loglevel */ 66 CONSOLE_LOGLEVEL_MIN, /* minimum_console_loglevel */ 67 CONSOLE_LOGLEVEL_DEFAULT, /* default_console_loglevel */ 68 }; 69 EXPORT_SYMBOL_GPL(console_printk); 70 71 atomic_t ignore_console_lock_warning __read_mostly = ATOMIC_INIT(0); 72 EXPORT_SYMBOL(ignore_console_lock_warning); 73 74 EXPORT_TRACEPOINT_SYMBOL_GPL(console); 75 76 /* 77 * Low level drivers may need that to know if they can schedule in 78 * their unblank() callback or not. So let's export it. 79 */ 80 int oops_in_progress; 81 EXPORT_SYMBOL(oops_in_progress); 82 83 /* 84 * console_mutex protects console_list updates and console->flags updates. 85 * The flags are synchronized only for consoles that are registered, i.e. 86 * accessible via the console list. 87 */ 88 static DEFINE_MUTEX(console_mutex); 89 90 /* 91 * console_sem protects updates to console->seq and console_suspended, 92 * and also provides serialization for console printing. 93 */ 94 static DEFINE_SEMAPHORE(console_sem, 1); 95 HLIST_HEAD(console_list); 96 EXPORT_SYMBOL_GPL(console_list); 97 DEFINE_STATIC_SRCU(console_srcu); 98 99 /* 100 * System may need to suppress printk message under certain 101 * circumstances, like after kernel panic happens. 102 */ 103 int __read_mostly suppress_printk; 104 105 /* 106 * During panic, heavy printk by other CPUs can delay the 107 * panic and risk deadlock on console resources. 108 */ 109 static int __read_mostly suppress_panic_printk; 110 111 #ifdef CONFIG_LOCKDEP 112 static struct lockdep_map console_lock_dep_map = { 113 .name = "console_lock" 114 }; 115 116 void lockdep_assert_console_list_lock_held(void) 117 { 118 lockdep_assert_held(&console_mutex); 119 } 120 EXPORT_SYMBOL(lockdep_assert_console_list_lock_held); 121 #endif 122 123 #ifdef CONFIG_DEBUG_LOCK_ALLOC 124 bool console_srcu_read_lock_is_held(void) 125 { 126 return srcu_read_lock_held(&console_srcu); 127 } 128 EXPORT_SYMBOL(console_srcu_read_lock_is_held); 129 #endif 130 131 enum devkmsg_log_bits { 132 __DEVKMSG_LOG_BIT_ON = 0, 133 __DEVKMSG_LOG_BIT_OFF, 134 __DEVKMSG_LOG_BIT_LOCK, 135 }; 136 137 enum devkmsg_log_masks { 138 DEVKMSG_LOG_MASK_ON = BIT(__DEVKMSG_LOG_BIT_ON), 139 DEVKMSG_LOG_MASK_OFF = BIT(__DEVKMSG_LOG_BIT_OFF), 140 DEVKMSG_LOG_MASK_LOCK = BIT(__DEVKMSG_LOG_BIT_LOCK), 141 }; 142 143 /* Keep both the 'on' and 'off' bits clear, i.e. ratelimit by default: */ 144 #define DEVKMSG_LOG_MASK_DEFAULT 0 145 146 static unsigned int __read_mostly devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT; 147 148 static int __control_devkmsg(char *str) 149 { 150 size_t len; 151 152 if (!str) 153 return -EINVAL; 154 155 len = str_has_prefix(str, "on"); 156 if (len) { 157 devkmsg_log = DEVKMSG_LOG_MASK_ON; 158 return len; 159 } 160 161 len = str_has_prefix(str, "off"); 162 if (len) { 163 devkmsg_log = DEVKMSG_LOG_MASK_OFF; 164 return len; 165 } 166 167 len = str_has_prefix(str, "ratelimit"); 168 if (len) { 169 devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT; 170 return len; 171 } 172 173 return -EINVAL; 174 } 175 176 static int __init control_devkmsg(char *str) 177 { 178 if (__control_devkmsg(str) < 0) { 179 pr_warn("printk.devkmsg: bad option string '%s'\n", str); 180 return 1; 181 } 182 183 /* 184 * Set sysctl string accordingly: 185 */ 186 if (devkmsg_log == DEVKMSG_LOG_MASK_ON) 187 strcpy(devkmsg_log_str, "on"); 188 else if (devkmsg_log == DEVKMSG_LOG_MASK_OFF) 189 strcpy(devkmsg_log_str, "off"); 190 /* else "ratelimit" which is set by default. */ 191 192 /* 193 * Sysctl cannot change it anymore. The kernel command line setting of 194 * this parameter is to force the setting to be permanent throughout the 195 * runtime of the system. This is a precation measure against userspace 196 * trying to be a smarta** and attempting to change it up on us. 197 */ 198 devkmsg_log |= DEVKMSG_LOG_MASK_LOCK; 199 200 return 1; 201 } 202 __setup("printk.devkmsg=", control_devkmsg); 203 204 char devkmsg_log_str[DEVKMSG_STR_MAX_SIZE] = "ratelimit"; 205 #if defined(CONFIG_PRINTK) && defined(CONFIG_SYSCTL) 206 int devkmsg_sysctl_set_loglvl(struct ctl_table *table, int write, 207 void *buffer, size_t *lenp, loff_t *ppos) 208 { 209 char old_str[DEVKMSG_STR_MAX_SIZE]; 210 unsigned int old; 211 int err; 212 213 if (write) { 214 if (devkmsg_log & DEVKMSG_LOG_MASK_LOCK) 215 return -EINVAL; 216 217 old = devkmsg_log; 218 strncpy(old_str, devkmsg_log_str, DEVKMSG_STR_MAX_SIZE); 219 } 220 221 err = proc_dostring(table, write, buffer, lenp, ppos); 222 if (err) 223 return err; 224 225 if (write) { 226 err = __control_devkmsg(devkmsg_log_str); 227 228 /* 229 * Do not accept an unknown string OR a known string with 230 * trailing crap... 231 */ 232 if (err < 0 || (err + 1 != *lenp)) { 233 234 /* ... and restore old setting. */ 235 devkmsg_log = old; 236 strncpy(devkmsg_log_str, old_str, DEVKMSG_STR_MAX_SIZE); 237 238 return -EINVAL; 239 } 240 } 241 242 return 0; 243 } 244 #endif /* CONFIG_PRINTK && CONFIG_SYSCTL */ 245 246 /** 247 * console_list_lock - Lock the console list 248 * 249 * For console list or console->flags updates 250 */ 251 void console_list_lock(void) 252 { 253 /* 254 * In unregister_console() and console_force_preferred_locked(), 255 * synchronize_srcu() is called with the console_list_lock held. 256 * Therefore it is not allowed that the console_list_lock is taken 257 * with the srcu_lock held. 258 * 259 * Detecting if this context is really in the read-side critical 260 * section is only possible if the appropriate debug options are 261 * enabled. 262 */ 263 WARN_ON_ONCE(debug_lockdep_rcu_enabled() && 264 srcu_read_lock_held(&console_srcu)); 265 266 mutex_lock(&console_mutex); 267 } 268 EXPORT_SYMBOL(console_list_lock); 269 270 /** 271 * console_list_unlock - Unlock the console list 272 * 273 * Counterpart to console_list_lock() 274 */ 275 void console_list_unlock(void) 276 { 277 mutex_unlock(&console_mutex); 278 } 279 EXPORT_SYMBOL(console_list_unlock); 280 281 /** 282 * console_srcu_read_lock - Register a new reader for the 283 * SRCU-protected console list 284 * 285 * Use for_each_console_srcu() to iterate the console list 286 * 287 * Context: Any context. 288 * Return: A cookie to pass to console_srcu_read_unlock(). 289 */ 290 int console_srcu_read_lock(void) 291 { 292 return srcu_read_lock_nmisafe(&console_srcu); 293 } 294 EXPORT_SYMBOL(console_srcu_read_lock); 295 296 /** 297 * console_srcu_read_unlock - Unregister an old reader from 298 * the SRCU-protected console list 299 * @cookie: cookie returned from console_srcu_read_lock() 300 * 301 * Counterpart to console_srcu_read_lock() 302 */ 303 void console_srcu_read_unlock(int cookie) 304 { 305 srcu_read_unlock_nmisafe(&console_srcu, cookie); 306 } 307 EXPORT_SYMBOL(console_srcu_read_unlock); 308 309 /* 310 * Helper macros to handle lockdep when locking/unlocking console_sem. We use 311 * macros instead of functions so that _RET_IP_ contains useful information. 312 */ 313 #define down_console_sem() do { \ 314 down(&console_sem);\ 315 mutex_acquire(&console_lock_dep_map, 0, 0, _RET_IP_);\ 316 } while (0) 317 318 static int __down_trylock_console_sem(unsigned long ip) 319 { 320 int lock_failed; 321 unsigned long flags; 322 323 /* 324 * Here and in __up_console_sem() we need to be in safe mode, 325 * because spindump/WARN/etc from under console ->lock will 326 * deadlock in printk()->down_trylock_console_sem() otherwise. 327 */ 328 printk_safe_enter_irqsave(flags); 329 lock_failed = down_trylock(&console_sem); 330 printk_safe_exit_irqrestore(flags); 331 332 if (lock_failed) 333 return 1; 334 mutex_acquire(&console_lock_dep_map, 0, 1, ip); 335 return 0; 336 } 337 #define down_trylock_console_sem() __down_trylock_console_sem(_RET_IP_) 338 339 static void __up_console_sem(unsigned long ip) 340 { 341 unsigned long flags; 342 343 mutex_release(&console_lock_dep_map, ip); 344 345 printk_safe_enter_irqsave(flags); 346 up(&console_sem); 347 printk_safe_exit_irqrestore(flags); 348 } 349 #define up_console_sem() __up_console_sem(_RET_IP_) 350 351 static bool panic_in_progress(void) 352 { 353 return unlikely(atomic_read(&panic_cpu) != PANIC_CPU_INVALID); 354 } 355 356 /* 357 * This is used for debugging the mess that is the VT code by 358 * keeping track if we have the console semaphore held. It's 359 * definitely not the perfect debug tool (we don't know if _WE_ 360 * hold it and are racing, but it helps tracking those weird code 361 * paths in the console code where we end up in places I want 362 * locked without the console semaphore held). 363 */ 364 static int console_locked, console_suspended; 365 366 /* 367 * Array of consoles built from command line options (console=) 368 */ 369 370 #define MAX_CMDLINECONSOLES 8 371 372 static struct console_cmdline console_cmdline[MAX_CMDLINECONSOLES]; 373 374 static int preferred_console = -1; 375 int console_set_on_cmdline; 376 EXPORT_SYMBOL(console_set_on_cmdline); 377 378 /* Flag: console code may call schedule() */ 379 static int console_may_schedule; 380 381 enum con_msg_format_flags { 382 MSG_FORMAT_DEFAULT = 0, 383 MSG_FORMAT_SYSLOG = (1 << 0), 384 }; 385 386 static int console_msg_format = MSG_FORMAT_DEFAULT; 387 388 /* 389 * The printk log buffer consists of a sequenced collection of records, each 390 * containing variable length message text. Every record also contains its 391 * own meta-data (@info). 392 * 393 * Every record meta-data carries the timestamp in microseconds, as well as 394 * the standard userspace syslog level and syslog facility. The usual kernel 395 * messages use LOG_KERN; userspace-injected messages always carry a matching 396 * syslog facility, by default LOG_USER. The origin of every message can be 397 * reliably determined that way. 398 * 399 * The human readable log message of a record is available in @text, the 400 * length of the message text in @text_len. The stored message is not 401 * terminated. 402 * 403 * Optionally, a record can carry a dictionary of properties (key/value 404 * pairs), to provide userspace with a machine-readable message context. 405 * 406 * Examples for well-defined, commonly used property names are: 407 * DEVICE=b12:8 device identifier 408 * b12:8 block dev_t 409 * c127:3 char dev_t 410 * n8 netdev ifindex 411 * +sound:card0 subsystem:devname 412 * SUBSYSTEM=pci driver-core subsystem name 413 * 414 * Valid characters in property names are [a-zA-Z0-9.-_]. Property names 415 * and values are terminated by a '\0' character. 416 * 417 * Example of record values: 418 * record.text_buf = "it's a line" (unterminated) 419 * record.info.seq = 56 420 * record.info.ts_nsec = 36863 421 * record.info.text_len = 11 422 * record.info.facility = 0 (LOG_KERN) 423 * record.info.flags = 0 424 * record.info.level = 3 (LOG_ERR) 425 * record.info.caller_id = 299 (task 299) 426 * record.info.dev_info.subsystem = "pci" (terminated) 427 * record.info.dev_info.device = "+pci:0000:00:01.0" (terminated) 428 * 429 * The 'struct printk_info' buffer must never be directly exported to 430 * userspace, it is a kernel-private implementation detail that might 431 * need to be changed in the future, when the requirements change. 432 * 433 * /dev/kmsg exports the structured data in the following line format: 434 * "<level>,<sequnum>,<timestamp>,<contflag>[,additional_values, ... ];<message text>\n" 435 * 436 * Users of the export format should ignore possible additional values 437 * separated by ',', and find the message after the ';' character. 438 * 439 * The optional key/value pairs are attached as continuation lines starting 440 * with a space character and terminated by a newline. All possible 441 * non-prinatable characters are escaped in the "\xff" notation. 442 */ 443 444 /* syslog_lock protects syslog_* variables and write access to clear_seq. */ 445 static DEFINE_MUTEX(syslog_lock); 446 447 #ifdef CONFIG_PRINTK 448 DECLARE_WAIT_QUEUE_HEAD(log_wait); 449 /* All 3 protected by @syslog_lock. */ 450 /* the next printk record to read by syslog(READ) or /proc/kmsg */ 451 static u64 syslog_seq; 452 static size_t syslog_partial; 453 static bool syslog_time; 454 455 struct latched_seq { 456 seqcount_latch_t latch; 457 u64 val[2]; 458 }; 459 460 /* 461 * The next printk record to read after the last 'clear' command. There are 462 * two copies (updated with seqcount_latch) so that reads can locklessly 463 * access a valid value. Writers are synchronized by @syslog_lock. 464 */ 465 static struct latched_seq clear_seq = { 466 .latch = SEQCNT_LATCH_ZERO(clear_seq.latch), 467 .val[0] = 0, 468 .val[1] = 0, 469 }; 470 471 #define LOG_LEVEL(v) ((v) & 0x07) 472 #define LOG_FACILITY(v) ((v) >> 3 & 0xff) 473 474 /* record buffer */ 475 #define LOG_ALIGN __alignof__(unsigned long) 476 #define __LOG_BUF_LEN (1 << CONFIG_LOG_BUF_SHIFT) 477 #define LOG_BUF_LEN_MAX (u32)(1 << 31) 478 static char __log_buf[__LOG_BUF_LEN] __aligned(LOG_ALIGN); 479 static char *log_buf = __log_buf; 480 static u32 log_buf_len = __LOG_BUF_LEN; 481 482 /* 483 * Define the average message size. This only affects the number of 484 * descriptors that will be available. Underestimating is better than 485 * overestimating (too many available descriptors is better than not enough). 486 */ 487 #define PRB_AVGBITS 5 /* 32 character average length */ 488 489 #if CONFIG_LOG_BUF_SHIFT <= PRB_AVGBITS 490 #error CONFIG_LOG_BUF_SHIFT value too small. 491 #endif 492 _DEFINE_PRINTKRB(printk_rb_static, CONFIG_LOG_BUF_SHIFT - PRB_AVGBITS, 493 PRB_AVGBITS, &__log_buf[0]); 494 495 static struct printk_ringbuffer printk_rb_dynamic; 496 497 static struct printk_ringbuffer *prb = &printk_rb_static; 498 499 /* 500 * We cannot access per-CPU data (e.g. per-CPU flush irq_work) before 501 * per_cpu_areas are initialised. This variable is set to true when 502 * it's safe to access per-CPU data. 503 */ 504 static bool __printk_percpu_data_ready __ro_after_init; 505 506 bool printk_percpu_data_ready(void) 507 { 508 return __printk_percpu_data_ready; 509 } 510 511 /* Must be called under syslog_lock. */ 512 static void latched_seq_write(struct latched_seq *ls, u64 val) 513 { 514 raw_write_seqcount_latch(&ls->latch); 515 ls->val[0] = val; 516 raw_write_seqcount_latch(&ls->latch); 517 ls->val[1] = val; 518 } 519 520 /* Can be called from any context. */ 521 static u64 latched_seq_read_nolock(struct latched_seq *ls) 522 { 523 unsigned int seq; 524 unsigned int idx; 525 u64 val; 526 527 do { 528 seq = raw_read_seqcount_latch(&ls->latch); 529 idx = seq & 0x1; 530 val = ls->val[idx]; 531 } while (raw_read_seqcount_latch_retry(&ls->latch, seq)); 532 533 return val; 534 } 535 536 /* Return log buffer address */ 537 char *log_buf_addr_get(void) 538 { 539 return log_buf; 540 } 541 542 /* Return log buffer size */ 543 u32 log_buf_len_get(void) 544 { 545 return log_buf_len; 546 } 547 548 /* 549 * Define how much of the log buffer we could take at maximum. The value 550 * must be greater than two. Note that only half of the buffer is available 551 * when the index points to the middle. 552 */ 553 #define MAX_LOG_TAKE_PART 4 554 static const char trunc_msg[] = "<truncated>"; 555 556 static void truncate_msg(u16 *text_len, u16 *trunc_msg_len) 557 { 558 /* 559 * The message should not take the whole buffer. Otherwise, it might 560 * get removed too soon. 561 */ 562 u32 max_text_len = log_buf_len / MAX_LOG_TAKE_PART; 563 564 if (*text_len > max_text_len) 565 *text_len = max_text_len; 566 567 /* enable the warning message (if there is room) */ 568 *trunc_msg_len = strlen(trunc_msg); 569 if (*text_len >= *trunc_msg_len) 570 *text_len -= *trunc_msg_len; 571 else 572 *trunc_msg_len = 0; 573 } 574 575 int dmesg_restrict = IS_ENABLED(CONFIG_SECURITY_DMESG_RESTRICT); 576 577 static int syslog_action_restricted(int type) 578 { 579 if (dmesg_restrict) 580 return 1; 581 /* 582 * Unless restricted, we allow "read all" and "get buffer size" 583 * for everybody. 584 */ 585 return type != SYSLOG_ACTION_READ_ALL && 586 type != SYSLOG_ACTION_SIZE_BUFFER; 587 } 588 589 static int check_syslog_permissions(int type, int source) 590 { 591 /* 592 * If this is from /proc/kmsg and we've already opened it, then we've 593 * already done the capabilities checks at open time. 594 */ 595 if (source == SYSLOG_FROM_PROC && type != SYSLOG_ACTION_OPEN) 596 goto ok; 597 598 if (syslog_action_restricted(type)) { 599 if (capable(CAP_SYSLOG)) 600 goto ok; 601 /* 602 * For historical reasons, accept CAP_SYS_ADMIN too, with 603 * a warning. 604 */ 605 if (capable(CAP_SYS_ADMIN)) { 606 pr_warn_once("%s (%d): Attempt to access syslog with " 607 "CAP_SYS_ADMIN but no CAP_SYSLOG " 608 "(deprecated).\n", 609 current->comm, task_pid_nr(current)); 610 goto ok; 611 } 612 return -EPERM; 613 } 614 ok: 615 return security_syslog(type); 616 } 617 618 static void append_char(char **pp, char *e, char c) 619 { 620 if (*pp < e) 621 *(*pp)++ = c; 622 } 623 624 static ssize_t info_print_ext_header(char *buf, size_t size, 625 struct printk_info *info) 626 { 627 u64 ts_usec = info->ts_nsec; 628 char caller[20]; 629 #ifdef CONFIG_PRINTK_CALLER 630 u32 id = info->caller_id; 631 632 snprintf(caller, sizeof(caller), ",caller=%c%u", 633 id & 0x80000000 ? 'C' : 'T', id & ~0x80000000); 634 #else 635 caller[0] = '\0'; 636 #endif 637 638 do_div(ts_usec, 1000); 639 640 return scnprintf(buf, size, "%u,%llu,%llu,%c%s;", 641 (info->facility << 3) | info->level, info->seq, 642 ts_usec, info->flags & LOG_CONT ? 'c' : '-', caller); 643 } 644 645 static ssize_t msg_add_ext_text(char *buf, size_t size, 646 const char *text, size_t text_len, 647 unsigned char endc) 648 { 649 char *p = buf, *e = buf + size; 650 size_t i; 651 652 /* escape non-printable characters */ 653 for (i = 0; i < text_len; i++) { 654 unsigned char c = text[i]; 655 656 if (c < ' ' || c >= 127 || c == '\\') 657 p += scnprintf(p, e - p, "\\x%02x", c); 658 else 659 append_char(&p, e, c); 660 } 661 append_char(&p, e, endc); 662 663 return p - buf; 664 } 665 666 static ssize_t msg_add_dict_text(char *buf, size_t size, 667 const char *key, const char *val) 668 { 669 size_t val_len = strlen(val); 670 ssize_t len; 671 672 if (!val_len) 673 return 0; 674 675 len = msg_add_ext_text(buf, size, "", 0, ' '); /* dict prefix */ 676 len += msg_add_ext_text(buf + len, size - len, key, strlen(key), '='); 677 len += msg_add_ext_text(buf + len, size - len, val, val_len, '\n'); 678 679 return len; 680 } 681 682 static ssize_t msg_print_ext_body(char *buf, size_t size, 683 char *text, size_t text_len, 684 struct dev_printk_info *dev_info) 685 { 686 ssize_t len; 687 688 len = msg_add_ext_text(buf, size, text, text_len, '\n'); 689 690 if (!dev_info) 691 goto out; 692 693 len += msg_add_dict_text(buf + len, size - len, "SUBSYSTEM", 694 dev_info->subsystem); 695 len += msg_add_dict_text(buf + len, size - len, "DEVICE", 696 dev_info->device); 697 out: 698 return len; 699 } 700 701 static bool printk_get_next_message(struct printk_message *pmsg, u64 seq, 702 bool is_extended, bool may_supress); 703 704 /* /dev/kmsg - userspace message inject/listen interface */ 705 struct devkmsg_user { 706 atomic64_t seq; 707 struct ratelimit_state rs; 708 struct mutex lock; 709 struct printk_buffers pbufs; 710 }; 711 712 static __printf(3, 4) __cold 713 int devkmsg_emit(int facility, int level, const char *fmt, ...) 714 { 715 va_list args; 716 int r; 717 718 va_start(args, fmt); 719 r = vprintk_emit(facility, level, NULL, fmt, args); 720 va_end(args); 721 722 return r; 723 } 724 725 static ssize_t devkmsg_write(struct kiocb *iocb, struct iov_iter *from) 726 { 727 char *buf, *line; 728 int level = default_message_loglevel; 729 int facility = 1; /* LOG_USER */ 730 struct file *file = iocb->ki_filp; 731 struct devkmsg_user *user = file->private_data; 732 size_t len = iov_iter_count(from); 733 ssize_t ret = len; 734 735 if (len > PRINTKRB_RECORD_MAX) 736 return -EINVAL; 737 738 /* Ignore when user logging is disabled. */ 739 if (devkmsg_log & DEVKMSG_LOG_MASK_OFF) 740 return len; 741 742 /* Ratelimit when not explicitly enabled. */ 743 if (!(devkmsg_log & DEVKMSG_LOG_MASK_ON)) { 744 if (!___ratelimit(&user->rs, current->comm)) 745 return ret; 746 } 747 748 buf = kmalloc(len+1, GFP_KERNEL); 749 if (buf == NULL) 750 return -ENOMEM; 751 752 buf[len] = '\0'; 753 if (!copy_from_iter_full(buf, len, from)) { 754 kfree(buf); 755 return -EFAULT; 756 } 757 758 /* 759 * Extract and skip the syslog prefix <[0-9]*>. Coming from userspace 760 * the decimal value represents 32bit, the lower 3 bit are the log 761 * level, the rest are the log facility. 762 * 763 * If no prefix or no userspace facility is specified, we 764 * enforce LOG_USER, to be able to reliably distinguish 765 * kernel-generated messages from userspace-injected ones. 766 */ 767 line = buf; 768 if (line[0] == '<') { 769 char *endp = NULL; 770 unsigned int u; 771 772 u = simple_strtoul(line + 1, &endp, 10); 773 if (endp && endp[0] == '>') { 774 level = LOG_LEVEL(u); 775 if (LOG_FACILITY(u) != 0) 776 facility = LOG_FACILITY(u); 777 endp++; 778 line = endp; 779 } 780 } 781 782 devkmsg_emit(facility, level, "%s", line); 783 kfree(buf); 784 return ret; 785 } 786 787 static ssize_t devkmsg_read(struct file *file, char __user *buf, 788 size_t count, loff_t *ppos) 789 { 790 struct devkmsg_user *user = file->private_data; 791 char *outbuf = &user->pbufs.outbuf[0]; 792 struct printk_message pmsg = { 793 .pbufs = &user->pbufs, 794 }; 795 ssize_t ret; 796 797 ret = mutex_lock_interruptible(&user->lock); 798 if (ret) 799 return ret; 800 801 if (!printk_get_next_message(&pmsg, atomic64_read(&user->seq), true, false)) { 802 if (file->f_flags & O_NONBLOCK) { 803 ret = -EAGAIN; 804 goto out; 805 } 806 807 /* 808 * Guarantee this task is visible on the waitqueue before 809 * checking the wake condition. 810 * 811 * The full memory barrier within set_current_state() of 812 * prepare_to_wait_event() pairs with the full memory barrier 813 * within wq_has_sleeper(). 814 * 815 * This pairs with __wake_up_klogd:A. 816 */ 817 ret = wait_event_interruptible(log_wait, 818 printk_get_next_message(&pmsg, atomic64_read(&user->seq), true, 819 false)); /* LMM(devkmsg_read:A) */ 820 if (ret) 821 goto out; 822 } 823 824 if (pmsg.dropped) { 825 /* our last seen message is gone, return error and reset */ 826 atomic64_set(&user->seq, pmsg.seq); 827 ret = -EPIPE; 828 goto out; 829 } 830 831 atomic64_set(&user->seq, pmsg.seq + 1); 832 833 if (pmsg.outbuf_len > count) { 834 ret = -EINVAL; 835 goto out; 836 } 837 838 if (copy_to_user(buf, outbuf, pmsg.outbuf_len)) { 839 ret = -EFAULT; 840 goto out; 841 } 842 ret = pmsg.outbuf_len; 843 out: 844 mutex_unlock(&user->lock); 845 return ret; 846 } 847 848 /* 849 * Be careful when modifying this function!!! 850 * 851 * Only few operations are supported because the device works only with the 852 * entire variable length messages (records). Non-standard values are 853 * returned in the other cases and has been this way for quite some time. 854 * User space applications might depend on this behavior. 855 */ 856 static loff_t devkmsg_llseek(struct file *file, loff_t offset, int whence) 857 { 858 struct devkmsg_user *user = file->private_data; 859 loff_t ret = 0; 860 861 if (offset) 862 return -ESPIPE; 863 864 switch (whence) { 865 case SEEK_SET: 866 /* the first record */ 867 atomic64_set(&user->seq, prb_first_valid_seq(prb)); 868 break; 869 case SEEK_DATA: 870 /* 871 * The first record after the last SYSLOG_ACTION_CLEAR, 872 * like issued by 'dmesg -c'. Reading /dev/kmsg itself 873 * changes no global state, and does not clear anything. 874 */ 875 atomic64_set(&user->seq, latched_seq_read_nolock(&clear_seq)); 876 break; 877 case SEEK_END: 878 /* after the last record */ 879 atomic64_set(&user->seq, prb_next_seq(prb)); 880 break; 881 default: 882 ret = -EINVAL; 883 } 884 return ret; 885 } 886 887 static __poll_t devkmsg_poll(struct file *file, poll_table *wait) 888 { 889 struct devkmsg_user *user = file->private_data; 890 struct printk_info info; 891 __poll_t ret = 0; 892 893 poll_wait(file, &log_wait, wait); 894 895 if (prb_read_valid_info(prb, atomic64_read(&user->seq), &info, NULL)) { 896 /* return error when data has vanished underneath us */ 897 if (info.seq != atomic64_read(&user->seq)) 898 ret = EPOLLIN|EPOLLRDNORM|EPOLLERR|EPOLLPRI; 899 else 900 ret = EPOLLIN|EPOLLRDNORM; 901 } 902 903 return ret; 904 } 905 906 static int devkmsg_open(struct inode *inode, struct file *file) 907 { 908 struct devkmsg_user *user; 909 int err; 910 911 if (devkmsg_log & DEVKMSG_LOG_MASK_OFF) 912 return -EPERM; 913 914 /* write-only does not need any file context */ 915 if ((file->f_flags & O_ACCMODE) != O_WRONLY) { 916 err = check_syslog_permissions(SYSLOG_ACTION_READ_ALL, 917 SYSLOG_FROM_READER); 918 if (err) 919 return err; 920 } 921 922 user = kvmalloc(sizeof(struct devkmsg_user), GFP_KERNEL); 923 if (!user) 924 return -ENOMEM; 925 926 ratelimit_default_init(&user->rs); 927 ratelimit_set_flags(&user->rs, RATELIMIT_MSG_ON_RELEASE); 928 929 mutex_init(&user->lock); 930 931 atomic64_set(&user->seq, prb_first_valid_seq(prb)); 932 933 file->private_data = user; 934 return 0; 935 } 936 937 static int devkmsg_release(struct inode *inode, struct file *file) 938 { 939 struct devkmsg_user *user = file->private_data; 940 941 ratelimit_state_exit(&user->rs); 942 943 mutex_destroy(&user->lock); 944 kvfree(user); 945 return 0; 946 } 947 948 const struct file_operations kmsg_fops = { 949 .open = devkmsg_open, 950 .read = devkmsg_read, 951 .write_iter = devkmsg_write, 952 .llseek = devkmsg_llseek, 953 .poll = devkmsg_poll, 954 .release = devkmsg_release, 955 }; 956 957 #ifdef CONFIG_CRASH_CORE 958 /* 959 * This appends the listed symbols to /proc/vmcore 960 * 961 * /proc/vmcore is used by various utilities, like crash and makedumpfile to 962 * obtain access to symbols that are otherwise very difficult to locate. These 963 * symbols are specifically used so that utilities can access and extract the 964 * dmesg log from a vmcore file after a crash. 965 */ 966 void log_buf_vmcoreinfo_setup(void) 967 { 968 struct dev_printk_info *dev_info = NULL; 969 970 VMCOREINFO_SYMBOL(prb); 971 VMCOREINFO_SYMBOL(printk_rb_static); 972 VMCOREINFO_SYMBOL(clear_seq); 973 974 /* 975 * Export struct size and field offsets. User space tools can 976 * parse it and detect any changes to structure down the line. 977 */ 978 979 VMCOREINFO_STRUCT_SIZE(printk_ringbuffer); 980 VMCOREINFO_OFFSET(printk_ringbuffer, desc_ring); 981 VMCOREINFO_OFFSET(printk_ringbuffer, text_data_ring); 982 VMCOREINFO_OFFSET(printk_ringbuffer, fail); 983 984 VMCOREINFO_STRUCT_SIZE(prb_desc_ring); 985 VMCOREINFO_OFFSET(prb_desc_ring, count_bits); 986 VMCOREINFO_OFFSET(prb_desc_ring, descs); 987 VMCOREINFO_OFFSET(prb_desc_ring, infos); 988 VMCOREINFO_OFFSET(prb_desc_ring, head_id); 989 VMCOREINFO_OFFSET(prb_desc_ring, tail_id); 990 991 VMCOREINFO_STRUCT_SIZE(prb_desc); 992 VMCOREINFO_OFFSET(prb_desc, state_var); 993 VMCOREINFO_OFFSET(prb_desc, text_blk_lpos); 994 995 VMCOREINFO_STRUCT_SIZE(prb_data_blk_lpos); 996 VMCOREINFO_OFFSET(prb_data_blk_lpos, begin); 997 VMCOREINFO_OFFSET(prb_data_blk_lpos, next); 998 999 VMCOREINFO_STRUCT_SIZE(printk_info); 1000 VMCOREINFO_OFFSET(printk_info, seq); 1001 VMCOREINFO_OFFSET(printk_info, ts_nsec); 1002 VMCOREINFO_OFFSET(printk_info, text_len); 1003 VMCOREINFO_OFFSET(printk_info, caller_id); 1004 VMCOREINFO_OFFSET(printk_info, dev_info); 1005 1006 VMCOREINFO_STRUCT_SIZE(dev_printk_info); 1007 VMCOREINFO_OFFSET(dev_printk_info, subsystem); 1008 VMCOREINFO_LENGTH(printk_info_subsystem, sizeof(dev_info->subsystem)); 1009 VMCOREINFO_OFFSET(dev_printk_info, device); 1010 VMCOREINFO_LENGTH(printk_info_device, sizeof(dev_info->device)); 1011 1012 VMCOREINFO_STRUCT_SIZE(prb_data_ring); 1013 VMCOREINFO_OFFSET(prb_data_ring, size_bits); 1014 VMCOREINFO_OFFSET(prb_data_ring, data); 1015 VMCOREINFO_OFFSET(prb_data_ring, head_lpos); 1016 VMCOREINFO_OFFSET(prb_data_ring, tail_lpos); 1017 1018 VMCOREINFO_SIZE(atomic_long_t); 1019 VMCOREINFO_TYPE_OFFSET(atomic_long_t, counter); 1020 1021 VMCOREINFO_STRUCT_SIZE(latched_seq); 1022 VMCOREINFO_OFFSET(latched_seq, val); 1023 } 1024 #endif 1025 1026 /* requested log_buf_len from kernel cmdline */ 1027 static unsigned long __initdata new_log_buf_len; 1028 1029 /* we practice scaling the ring buffer by powers of 2 */ 1030 static void __init log_buf_len_update(u64 size) 1031 { 1032 if (size > (u64)LOG_BUF_LEN_MAX) { 1033 size = (u64)LOG_BUF_LEN_MAX; 1034 pr_err("log_buf over 2G is not supported.\n"); 1035 } 1036 1037 if (size) 1038 size = roundup_pow_of_two(size); 1039 if (size > log_buf_len) 1040 new_log_buf_len = (unsigned long)size; 1041 } 1042 1043 /* save requested log_buf_len since it's too early to process it */ 1044 static int __init log_buf_len_setup(char *str) 1045 { 1046 u64 size; 1047 1048 if (!str) 1049 return -EINVAL; 1050 1051 size = memparse(str, &str); 1052 1053 log_buf_len_update(size); 1054 1055 return 0; 1056 } 1057 early_param("log_buf_len", log_buf_len_setup); 1058 1059 #ifdef CONFIG_SMP 1060 #define __LOG_CPU_MAX_BUF_LEN (1 << CONFIG_LOG_CPU_MAX_BUF_SHIFT) 1061 1062 static void __init log_buf_add_cpu(void) 1063 { 1064 unsigned int cpu_extra; 1065 1066 /* 1067 * archs should set up cpu_possible_bits properly with 1068 * set_cpu_possible() after setup_arch() but just in 1069 * case lets ensure this is valid. 1070 */ 1071 if (num_possible_cpus() == 1) 1072 return; 1073 1074 cpu_extra = (num_possible_cpus() - 1) * __LOG_CPU_MAX_BUF_LEN; 1075 1076 /* by default this will only continue through for large > 64 CPUs */ 1077 if (cpu_extra <= __LOG_BUF_LEN / 2) 1078 return; 1079 1080 pr_info("log_buf_len individual max cpu contribution: %d bytes\n", 1081 __LOG_CPU_MAX_BUF_LEN); 1082 pr_info("log_buf_len total cpu_extra contributions: %d bytes\n", 1083 cpu_extra); 1084 pr_info("log_buf_len min size: %d bytes\n", __LOG_BUF_LEN); 1085 1086 log_buf_len_update(cpu_extra + __LOG_BUF_LEN); 1087 } 1088 #else /* !CONFIG_SMP */ 1089 static inline void log_buf_add_cpu(void) {} 1090 #endif /* CONFIG_SMP */ 1091 1092 static void __init set_percpu_data_ready(void) 1093 { 1094 __printk_percpu_data_ready = true; 1095 } 1096 1097 static unsigned int __init add_to_rb(struct printk_ringbuffer *rb, 1098 struct printk_record *r) 1099 { 1100 struct prb_reserved_entry e; 1101 struct printk_record dest_r; 1102 1103 prb_rec_init_wr(&dest_r, r->info->text_len); 1104 1105 if (!prb_reserve(&e, rb, &dest_r)) 1106 return 0; 1107 1108 memcpy(&dest_r.text_buf[0], &r->text_buf[0], r->info->text_len); 1109 dest_r.info->text_len = r->info->text_len; 1110 dest_r.info->facility = r->info->facility; 1111 dest_r.info->level = r->info->level; 1112 dest_r.info->flags = r->info->flags; 1113 dest_r.info->ts_nsec = r->info->ts_nsec; 1114 dest_r.info->caller_id = r->info->caller_id; 1115 memcpy(&dest_r.info->dev_info, &r->info->dev_info, sizeof(dest_r.info->dev_info)); 1116 1117 prb_final_commit(&e); 1118 1119 return prb_record_text_space(&e); 1120 } 1121 1122 static char setup_text_buf[PRINTKRB_RECORD_MAX] __initdata; 1123 1124 void __init setup_log_buf(int early) 1125 { 1126 struct printk_info *new_infos; 1127 unsigned int new_descs_count; 1128 struct prb_desc *new_descs; 1129 struct printk_info info; 1130 struct printk_record r; 1131 unsigned int text_size; 1132 size_t new_descs_size; 1133 size_t new_infos_size; 1134 unsigned long flags; 1135 char *new_log_buf; 1136 unsigned int free; 1137 u64 seq; 1138 1139 /* 1140 * Some archs call setup_log_buf() multiple times - first is very 1141 * early, e.g. from setup_arch(), and second - when percpu_areas 1142 * are initialised. 1143 */ 1144 if (!early) 1145 set_percpu_data_ready(); 1146 1147 if (log_buf != __log_buf) 1148 return; 1149 1150 if (!early && !new_log_buf_len) 1151 log_buf_add_cpu(); 1152 1153 if (!new_log_buf_len) 1154 return; 1155 1156 new_descs_count = new_log_buf_len >> PRB_AVGBITS; 1157 if (new_descs_count == 0) { 1158 pr_err("new_log_buf_len: %lu too small\n", new_log_buf_len); 1159 return; 1160 } 1161 1162 new_log_buf = memblock_alloc(new_log_buf_len, LOG_ALIGN); 1163 if (unlikely(!new_log_buf)) { 1164 pr_err("log_buf_len: %lu text bytes not available\n", 1165 new_log_buf_len); 1166 return; 1167 } 1168 1169 new_descs_size = new_descs_count * sizeof(struct prb_desc); 1170 new_descs = memblock_alloc(new_descs_size, LOG_ALIGN); 1171 if (unlikely(!new_descs)) { 1172 pr_err("log_buf_len: %zu desc bytes not available\n", 1173 new_descs_size); 1174 goto err_free_log_buf; 1175 } 1176 1177 new_infos_size = new_descs_count * sizeof(struct printk_info); 1178 new_infos = memblock_alloc(new_infos_size, LOG_ALIGN); 1179 if (unlikely(!new_infos)) { 1180 pr_err("log_buf_len: %zu info bytes not available\n", 1181 new_infos_size); 1182 goto err_free_descs; 1183 } 1184 1185 prb_rec_init_rd(&r, &info, &setup_text_buf[0], sizeof(setup_text_buf)); 1186 1187 prb_init(&printk_rb_dynamic, 1188 new_log_buf, ilog2(new_log_buf_len), 1189 new_descs, ilog2(new_descs_count), 1190 new_infos); 1191 1192 local_irq_save(flags); 1193 1194 log_buf_len = new_log_buf_len; 1195 log_buf = new_log_buf; 1196 new_log_buf_len = 0; 1197 1198 free = __LOG_BUF_LEN; 1199 prb_for_each_record(0, &printk_rb_static, seq, &r) { 1200 text_size = add_to_rb(&printk_rb_dynamic, &r); 1201 if (text_size > free) 1202 free = 0; 1203 else 1204 free -= text_size; 1205 } 1206 1207 prb = &printk_rb_dynamic; 1208 1209 local_irq_restore(flags); 1210 1211 /* 1212 * Copy any remaining messages that might have appeared from 1213 * NMI context after copying but before switching to the 1214 * dynamic buffer. 1215 */ 1216 prb_for_each_record(seq, &printk_rb_static, seq, &r) { 1217 text_size = add_to_rb(&printk_rb_dynamic, &r); 1218 if (text_size > free) 1219 free = 0; 1220 else 1221 free -= text_size; 1222 } 1223 1224 if (seq != prb_next_seq(&printk_rb_static)) { 1225 pr_err("dropped %llu messages\n", 1226 prb_next_seq(&printk_rb_static) - seq); 1227 } 1228 1229 pr_info("log_buf_len: %u bytes\n", log_buf_len); 1230 pr_info("early log buf free: %u(%u%%)\n", 1231 free, (free * 100) / __LOG_BUF_LEN); 1232 return; 1233 1234 err_free_descs: 1235 memblock_free(new_descs, new_descs_size); 1236 err_free_log_buf: 1237 memblock_free(new_log_buf, new_log_buf_len); 1238 } 1239 1240 static bool __read_mostly ignore_loglevel; 1241 1242 static int __init ignore_loglevel_setup(char *str) 1243 { 1244 ignore_loglevel = true; 1245 pr_info("debug: ignoring loglevel setting.\n"); 1246 1247 return 0; 1248 } 1249 1250 early_param("ignore_loglevel", ignore_loglevel_setup); 1251 module_param(ignore_loglevel, bool, S_IRUGO | S_IWUSR); 1252 MODULE_PARM_DESC(ignore_loglevel, 1253 "ignore loglevel setting (prints all kernel messages to the console)"); 1254 1255 static bool suppress_message_printing(int level) 1256 { 1257 return (level >= console_loglevel && !ignore_loglevel); 1258 } 1259 1260 #ifdef CONFIG_BOOT_PRINTK_DELAY 1261 1262 static int boot_delay; /* msecs delay after each printk during bootup */ 1263 static unsigned long long loops_per_msec; /* based on boot_delay */ 1264 1265 static int __init boot_delay_setup(char *str) 1266 { 1267 unsigned long lpj; 1268 1269 lpj = preset_lpj ? preset_lpj : 1000000; /* some guess */ 1270 loops_per_msec = (unsigned long long)lpj / 1000 * HZ; 1271 1272 get_option(&str, &boot_delay); 1273 if (boot_delay > 10 * 1000) 1274 boot_delay = 0; 1275 1276 pr_debug("boot_delay: %u, preset_lpj: %ld, lpj: %lu, " 1277 "HZ: %d, loops_per_msec: %llu\n", 1278 boot_delay, preset_lpj, lpj, HZ, loops_per_msec); 1279 return 0; 1280 } 1281 early_param("boot_delay", boot_delay_setup); 1282 1283 static void boot_delay_msec(int level) 1284 { 1285 unsigned long long k; 1286 unsigned long timeout; 1287 1288 if ((boot_delay == 0 || system_state >= SYSTEM_RUNNING) 1289 || suppress_message_printing(level)) { 1290 return; 1291 } 1292 1293 k = (unsigned long long)loops_per_msec * boot_delay; 1294 1295 timeout = jiffies + msecs_to_jiffies(boot_delay); 1296 while (k) { 1297 k--; 1298 cpu_relax(); 1299 /* 1300 * use (volatile) jiffies to prevent 1301 * compiler reduction; loop termination via jiffies 1302 * is secondary and may or may not happen. 1303 */ 1304 if (time_after(jiffies, timeout)) 1305 break; 1306 touch_nmi_watchdog(); 1307 } 1308 } 1309 #else 1310 static inline void boot_delay_msec(int level) 1311 { 1312 } 1313 #endif 1314 1315 static bool printk_time = IS_ENABLED(CONFIG_PRINTK_TIME); 1316 module_param_named(time, printk_time, bool, S_IRUGO | S_IWUSR); 1317 1318 static size_t print_syslog(unsigned int level, char *buf) 1319 { 1320 return sprintf(buf, "<%u>", level); 1321 } 1322 1323 static size_t print_time(u64 ts, char *buf) 1324 { 1325 unsigned long rem_nsec = do_div(ts, 1000000000); 1326 1327 return sprintf(buf, "[%5lu.%06lu]", 1328 (unsigned long)ts, rem_nsec / 1000); 1329 } 1330 1331 #ifdef CONFIG_PRINTK_CALLER 1332 static size_t print_caller(u32 id, char *buf) 1333 { 1334 char caller[12]; 1335 1336 snprintf(caller, sizeof(caller), "%c%u", 1337 id & 0x80000000 ? 'C' : 'T', id & ~0x80000000); 1338 return sprintf(buf, "[%6s]", caller); 1339 } 1340 #else 1341 #define print_caller(id, buf) 0 1342 #endif 1343 1344 static size_t info_print_prefix(const struct printk_info *info, bool syslog, 1345 bool time, char *buf) 1346 { 1347 size_t len = 0; 1348 1349 if (syslog) 1350 len = print_syslog((info->facility << 3) | info->level, buf); 1351 1352 if (time) 1353 len += print_time(info->ts_nsec, buf + len); 1354 1355 len += print_caller(info->caller_id, buf + len); 1356 1357 if (IS_ENABLED(CONFIG_PRINTK_CALLER) || time) { 1358 buf[len++] = ' '; 1359 buf[len] = '\0'; 1360 } 1361 1362 return len; 1363 } 1364 1365 /* 1366 * Prepare the record for printing. The text is shifted within the given 1367 * buffer to avoid a need for another one. The following operations are 1368 * done: 1369 * 1370 * - Add prefix for each line. 1371 * - Drop truncated lines that no longer fit into the buffer. 1372 * - Add the trailing newline that has been removed in vprintk_store(). 1373 * - Add a string terminator. 1374 * 1375 * Since the produced string is always terminated, the maximum possible 1376 * return value is @r->text_buf_size - 1; 1377 * 1378 * Return: The length of the updated/prepared text, including the added 1379 * prefixes and the newline. The terminator is not counted. The dropped 1380 * line(s) are not counted. 1381 */ 1382 static size_t record_print_text(struct printk_record *r, bool syslog, 1383 bool time) 1384 { 1385 size_t text_len = r->info->text_len; 1386 size_t buf_size = r->text_buf_size; 1387 char *text = r->text_buf; 1388 char prefix[PRINTK_PREFIX_MAX]; 1389 bool truncated = false; 1390 size_t prefix_len; 1391 size_t line_len; 1392 size_t len = 0; 1393 char *next; 1394 1395 /* 1396 * If the message was truncated because the buffer was not large 1397 * enough, treat the available text as if it were the full text. 1398 */ 1399 if (text_len > buf_size) 1400 text_len = buf_size; 1401 1402 prefix_len = info_print_prefix(r->info, syslog, time, prefix); 1403 1404 /* 1405 * @text_len: bytes of unprocessed text 1406 * @line_len: bytes of current line _without_ newline 1407 * @text: pointer to beginning of current line 1408 * @len: number of bytes prepared in r->text_buf 1409 */ 1410 for (;;) { 1411 next = memchr(text, '\n', text_len); 1412 if (next) { 1413 line_len = next - text; 1414 } else { 1415 /* Drop truncated line(s). */ 1416 if (truncated) 1417 break; 1418 line_len = text_len; 1419 } 1420 1421 /* 1422 * Truncate the text if there is not enough space to add the 1423 * prefix and a trailing newline and a terminator. 1424 */ 1425 if (len + prefix_len + text_len + 1 + 1 > buf_size) { 1426 /* Drop even the current line if no space. */ 1427 if (len + prefix_len + line_len + 1 + 1 > buf_size) 1428 break; 1429 1430 text_len = buf_size - len - prefix_len - 1 - 1; 1431 truncated = true; 1432 } 1433 1434 memmove(text + prefix_len, text, text_len); 1435 memcpy(text, prefix, prefix_len); 1436 1437 /* 1438 * Increment the prepared length to include the text and 1439 * prefix that were just moved+copied. Also increment for the 1440 * newline at the end of this line. If this is the last line, 1441 * there is no newline, but it will be added immediately below. 1442 */ 1443 len += prefix_len + line_len + 1; 1444 if (text_len == line_len) { 1445 /* 1446 * This is the last line. Add the trailing newline 1447 * removed in vprintk_store(). 1448 */ 1449 text[prefix_len + line_len] = '\n'; 1450 break; 1451 } 1452 1453 /* 1454 * Advance beyond the added prefix and the related line with 1455 * its newline. 1456 */ 1457 text += prefix_len + line_len + 1; 1458 1459 /* 1460 * The remaining text has only decreased by the line with its 1461 * newline. 1462 * 1463 * Note that @text_len can become zero. It happens when @text 1464 * ended with a newline (either due to truncation or the 1465 * original string ending with "\n\n"). The loop is correctly 1466 * repeated and (if not truncated) an empty line with a prefix 1467 * will be prepared. 1468 */ 1469 text_len -= line_len + 1; 1470 } 1471 1472 /* 1473 * If a buffer was provided, it will be terminated. Space for the 1474 * string terminator is guaranteed to be available. The terminator is 1475 * not counted in the return value. 1476 */ 1477 if (buf_size > 0) 1478 r->text_buf[len] = 0; 1479 1480 return len; 1481 } 1482 1483 static size_t get_record_print_text_size(struct printk_info *info, 1484 unsigned int line_count, 1485 bool syslog, bool time) 1486 { 1487 char prefix[PRINTK_PREFIX_MAX]; 1488 size_t prefix_len; 1489 1490 prefix_len = info_print_prefix(info, syslog, time, prefix); 1491 1492 /* 1493 * Each line will be preceded with a prefix. The intermediate 1494 * newlines are already within the text, but a final trailing 1495 * newline will be added. 1496 */ 1497 return ((prefix_len * line_count) + info->text_len + 1); 1498 } 1499 1500 /* 1501 * Beginning with @start_seq, find the first record where it and all following 1502 * records up to (but not including) @max_seq fit into @size. 1503 * 1504 * @max_seq is simply an upper bound and does not need to exist. If the caller 1505 * does not require an upper bound, -1 can be used for @max_seq. 1506 */ 1507 static u64 find_first_fitting_seq(u64 start_seq, u64 max_seq, size_t size, 1508 bool syslog, bool time) 1509 { 1510 struct printk_info info; 1511 unsigned int line_count; 1512 size_t len = 0; 1513 u64 seq; 1514 1515 /* Determine the size of the records up to @max_seq. */ 1516 prb_for_each_info(start_seq, prb, seq, &info, &line_count) { 1517 if (info.seq >= max_seq) 1518 break; 1519 len += get_record_print_text_size(&info, line_count, syslog, time); 1520 } 1521 1522 /* 1523 * Adjust the upper bound for the next loop to avoid subtracting 1524 * lengths that were never added. 1525 */ 1526 if (seq < max_seq) 1527 max_seq = seq; 1528 1529 /* 1530 * Move first record forward until length fits into the buffer. Ignore 1531 * newest messages that were not counted in the above cycle. Messages 1532 * might appear and get lost in the meantime. This is a best effort 1533 * that prevents an infinite loop that could occur with a retry. 1534 */ 1535 prb_for_each_info(start_seq, prb, seq, &info, &line_count) { 1536 if (len <= size || info.seq >= max_seq) 1537 break; 1538 len -= get_record_print_text_size(&info, line_count, syslog, time); 1539 } 1540 1541 return seq; 1542 } 1543 1544 /* The caller is responsible for making sure @size is greater than 0. */ 1545 static int syslog_print(char __user *buf, int size) 1546 { 1547 struct printk_info info; 1548 struct printk_record r; 1549 char *text; 1550 int len = 0; 1551 u64 seq; 1552 1553 text = kmalloc(PRINTK_MESSAGE_MAX, GFP_KERNEL); 1554 if (!text) 1555 return -ENOMEM; 1556 1557 prb_rec_init_rd(&r, &info, text, PRINTK_MESSAGE_MAX); 1558 1559 mutex_lock(&syslog_lock); 1560 1561 /* 1562 * Wait for the @syslog_seq record to be available. @syslog_seq may 1563 * change while waiting. 1564 */ 1565 do { 1566 seq = syslog_seq; 1567 1568 mutex_unlock(&syslog_lock); 1569 /* 1570 * Guarantee this task is visible on the waitqueue before 1571 * checking the wake condition. 1572 * 1573 * The full memory barrier within set_current_state() of 1574 * prepare_to_wait_event() pairs with the full memory barrier 1575 * within wq_has_sleeper(). 1576 * 1577 * This pairs with __wake_up_klogd:A. 1578 */ 1579 len = wait_event_interruptible(log_wait, 1580 prb_read_valid(prb, seq, NULL)); /* LMM(syslog_print:A) */ 1581 mutex_lock(&syslog_lock); 1582 1583 if (len) 1584 goto out; 1585 } while (syslog_seq != seq); 1586 1587 /* 1588 * Copy records that fit into the buffer. The above cycle makes sure 1589 * that the first record is always available. 1590 */ 1591 do { 1592 size_t n; 1593 size_t skip; 1594 int err; 1595 1596 if (!prb_read_valid(prb, syslog_seq, &r)) 1597 break; 1598 1599 if (r.info->seq != syslog_seq) { 1600 /* message is gone, move to next valid one */ 1601 syslog_seq = r.info->seq; 1602 syslog_partial = 0; 1603 } 1604 1605 /* 1606 * To keep reading/counting partial line consistent, 1607 * use printk_time value as of the beginning of a line. 1608 */ 1609 if (!syslog_partial) 1610 syslog_time = printk_time; 1611 1612 skip = syslog_partial; 1613 n = record_print_text(&r, true, syslog_time); 1614 if (n - syslog_partial <= size) { 1615 /* message fits into buffer, move forward */ 1616 syslog_seq = r.info->seq + 1; 1617 n -= syslog_partial; 1618 syslog_partial = 0; 1619 } else if (!len){ 1620 /* partial read(), remember position */ 1621 n = size; 1622 syslog_partial += n; 1623 } else 1624 n = 0; 1625 1626 if (!n) 1627 break; 1628 1629 mutex_unlock(&syslog_lock); 1630 err = copy_to_user(buf, text + skip, n); 1631 mutex_lock(&syslog_lock); 1632 1633 if (err) { 1634 if (!len) 1635 len = -EFAULT; 1636 break; 1637 } 1638 1639 len += n; 1640 size -= n; 1641 buf += n; 1642 } while (size); 1643 out: 1644 mutex_unlock(&syslog_lock); 1645 kfree(text); 1646 return len; 1647 } 1648 1649 static int syslog_print_all(char __user *buf, int size, bool clear) 1650 { 1651 struct printk_info info; 1652 struct printk_record r; 1653 char *text; 1654 int len = 0; 1655 u64 seq; 1656 bool time; 1657 1658 text = kmalloc(PRINTK_MESSAGE_MAX, GFP_KERNEL); 1659 if (!text) 1660 return -ENOMEM; 1661 1662 time = printk_time; 1663 /* 1664 * Find first record that fits, including all following records, 1665 * into the user-provided buffer for this dump. 1666 */ 1667 seq = find_first_fitting_seq(latched_seq_read_nolock(&clear_seq), -1, 1668 size, true, time); 1669 1670 prb_rec_init_rd(&r, &info, text, PRINTK_MESSAGE_MAX); 1671 1672 len = 0; 1673 prb_for_each_record(seq, prb, seq, &r) { 1674 int textlen; 1675 1676 textlen = record_print_text(&r, true, time); 1677 1678 if (len + textlen > size) { 1679 seq--; 1680 break; 1681 } 1682 1683 if (copy_to_user(buf + len, text, textlen)) 1684 len = -EFAULT; 1685 else 1686 len += textlen; 1687 1688 if (len < 0) 1689 break; 1690 } 1691 1692 if (clear) { 1693 mutex_lock(&syslog_lock); 1694 latched_seq_write(&clear_seq, seq); 1695 mutex_unlock(&syslog_lock); 1696 } 1697 1698 kfree(text); 1699 return len; 1700 } 1701 1702 static void syslog_clear(void) 1703 { 1704 mutex_lock(&syslog_lock); 1705 latched_seq_write(&clear_seq, prb_next_seq(prb)); 1706 mutex_unlock(&syslog_lock); 1707 } 1708 1709 int do_syslog(int type, char __user *buf, int len, int source) 1710 { 1711 struct printk_info info; 1712 bool clear = false; 1713 static int saved_console_loglevel = LOGLEVEL_DEFAULT; 1714 int error; 1715 1716 error = check_syslog_permissions(type, source); 1717 if (error) 1718 return error; 1719 1720 switch (type) { 1721 case SYSLOG_ACTION_CLOSE: /* Close log */ 1722 break; 1723 case SYSLOG_ACTION_OPEN: /* Open log */ 1724 break; 1725 case SYSLOG_ACTION_READ: /* Read from log */ 1726 if (!buf || len < 0) 1727 return -EINVAL; 1728 if (!len) 1729 return 0; 1730 if (!access_ok(buf, len)) 1731 return -EFAULT; 1732 error = syslog_print(buf, len); 1733 break; 1734 /* Read/clear last kernel messages */ 1735 case SYSLOG_ACTION_READ_CLEAR: 1736 clear = true; 1737 fallthrough; 1738 /* Read last kernel messages */ 1739 case SYSLOG_ACTION_READ_ALL: 1740 if (!buf || len < 0) 1741 return -EINVAL; 1742 if (!len) 1743 return 0; 1744 if (!access_ok(buf, len)) 1745 return -EFAULT; 1746 error = syslog_print_all(buf, len, clear); 1747 break; 1748 /* Clear ring buffer */ 1749 case SYSLOG_ACTION_CLEAR: 1750 syslog_clear(); 1751 break; 1752 /* Disable logging to console */ 1753 case SYSLOG_ACTION_CONSOLE_OFF: 1754 if (saved_console_loglevel == LOGLEVEL_DEFAULT) 1755 saved_console_loglevel = console_loglevel; 1756 console_loglevel = minimum_console_loglevel; 1757 break; 1758 /* Enable logging to console */ 1759 case SYSLOG_ACTION_CONSOLE_ON: 1760 if (saved_console_loglevel != LOGLEVEL_DEFAULT) { 1761 console_loglevel = saved_console_loglevel; 1762 saved_console_loglevel = LOGLEVEL_DEFAULT; 1763 } 1764 break; 1765 /* Set level of messages printed to console */ 1766 case SYSLOG_ACTION_CONSOLE_LEVEL: 1767 if (len < 1 || len > 8) 1768 return -EINVAL; 1769 if (len < minimum_console_loglevel) 1770 len = minimum_console_loglevel; 1771 console_loglevel = len; 1772 /* Implicitly re-enable logging to console */ 1773 saved_console_loglevel = LOGLEVEL_DEFAULT; 1774 break; 1775 /* Number of chars in the log buffer */ 1776 case SYSLOG_ACTION_SIZE_UNREAD: 1777 mutex_lock(&syslog_lock); 1778 if (!prb_read_valid_info(prb, syslog_seq, &info, NULL)) { 1779 /* No unread messages. */ 1780 mutex_unlock(&syslog_lock); 1781 return 0; 1782 } 1783 if (info.seq != syslog_seq) { 1784 /* messages are gone, move to first one */ 1785 syslog_seq = info.seq; 1786 syslog_partial = 0; 1787 } 1788 if (source == SYSLOG_FROM_PROC) { 1789 /* 1790 * Short-cut for poll(/"proc/kmsg") which simply checks 1791 * for pending data, not the size; return the count of 1792 * records, not the length. 1793 */ 1794 error = prb_next_seq(prb) - syslog_seq; 1795 } else { 1796 bool time = syslog_partial ? syslog_time : printk_time; 1797 unsigned int line_count; 1798 u64 seq; 1799 1800 prb_for_each_info(syslog_seq, prb, seq, &info, 1801 &line_count) { 1802 error += get_record_print_text_size(&info, line_count, 1803 true, time); 1804 time = printk_time; 1805 } 1806 error -= syslog_partial; 1807 } 1808 mutex_unlock(&syslog_lock); 1809 break; 1810 /* Size of the log buffer */ 1811 case SYSLOG_ACTION_SIZE_BUFFER: 1812 error = log_buf_len; 1813 break; 1814 default: 1815 error = -EINVAL; 1816 break; 1817 } 1818 1819 return error; 1820 } 1821 1822 SYSCALL_DEFINE3(syslog, int, type, char __user *, buf, int, len) 1823 { 1824 return do_syslog(type, buf, len, SYSLOG_FROM_READER); 1825 } 1826 1827 /* 1828 * Special console_lock variants that help to reduce the risk of soft-lockups. 1829 * They allow to pass console_lock to another printk() call using a busy wait. 1830 */ 1831 1832 #ifdef CONFIG_LOCKDEP 1833 static struct lockdep_map console_owner_dep_map = { 1834 .name = "console_owner" 1835 }; 1836 #endif 1837 1838 static DEFINE_RAW_SPINLOCK(console_owner_lock); 1839 static struct task_struct *console_owner; 1840 static bool console_waiter; 1841 1842 /** 1843 * console_lock_spinning_enable - mark beginning of code where another 1844 * thread might safely busy wait 1845 * 1846 * This basically converts console_lock into a spinlock. This marks 1847 * the section where the console_lock owner can not sleep, because 1848 * there may be a waiter spinning (like a spinlock). Also it must be 1849 * ready to hand over the lock at the end of the section. 1850 */ 1851 static void console_lock_spinning_enable(void) 1852 { 1853 raw_spin_lock(&console_owner_lock); 1854 console_owner = current; 1855 raw_spin_unlock(&console_owner_lock); 1856 1857 /* The waiter may spin on us after setting console_owner */ 1858 spin_acquire(&console_owner_dep_map, 0, 0, _THIS_IP_); 1859 } 1860 1861 /** 1862 * console_lock_spinning_disable_and_check - mark end of code where another 1863 * thread was able to busy wait and check if there is a waiter 1864 * @cookie: cookie returned from console_srcu_read_lock() 1865 * 1866 * This is called at the end of the section where spinning is allowed. 1867 * It has two functions. First, it is a signal that it is no longer 1868 * safe to start busy waiting for the lock. Second, it checks if 1869 * there is a busy waiter and passes the lock rights to her. 1870 * 1871 * Important: Callers lose both the console_lock and the SRCU read lock if 1872 * there was a busy waiter. They must not touch items synchronized by 1873 * console_lock or SRCU read lock in this case. 1874 * 1875 * Return: 1 if the lock rights were passed, 0 otherwise. 1876 */ 1877 static int console_lock_spinning_disable_and_check(int cookie) 1878 { 1879 int waiter; 1880 1881 raw_spin_lock(&console_owner_lock); 1882 waiter = READ_ONCE(console_waiter); 1883 console_owner = NULL; 1884 raw_spin_unlock(&console_owner_lock); 1885 1886 if (!waiter) { 1887 spin_release(&console_owner_dep_map, _THIS_IP_); 1888 return 0; 1889 } 1890 1891 /* The waiter is now free to continue */ 1892 WRITE_ONCE(console_waiter, false); 1893 1894 spin_release(&console_owner_dep_map, _THIS_IP_); 1895 1896 /* 1897 * Preserve lockdep lock ordering. Release the SRCU read lock before 1898 * releasing the console_lock. 1899 */ 1900 console_srcu_read_unlock(cookie); 1901 1902 /* 1903 * Hand off console_lock to waiter. The waiter will perform 1904 * the up(). After this, the waiter is the console_lock owner. 1905 */ 1906 mutex_release(&console_lock_dep_map, _THIS_IP_); 1907 return 1; 1908 } 1909 1910 /** 1911 * console_trylock_spinning - try to get console_lock by busy waiting 1912 * 1913 * This allows to busy wait for the console_lock when the current 1914 * owner is running in specially marked sections. It means that 1915 * the current owner is running and cannot reschedule until it 1916 * is ready to lose the lock. 1917 * 1918 * Return: 1 if we got the lock, 0 othrewise 1919 */ 1920 static int console_trylock_spinning(void) 1921 { 1922 struct task_struct *owner = NULL; 1923 bool waiter; 1924 bool spin = false; 1925 unsigned long flags; 1926 1927 if (console_trylock()) 1928 return 1; 1929 1930 /* 1931 * It's unsafe to spin once a panic has begun. If we are the 1932 * panic CPU, we may have already halted the owner of the 1933 * console_sem. If we are not the panic CPU, then we should 1934 * avoid taking console_sem, so the panic CPU has a better 1935 * chance of cleanly acquiring it later. 1936 */ 1937 if (panic_in_progress()) 1938 return 0; 1939 1940 printk_safe_enter_irqsave(flags); 1941 1942 raw_spin_lock(&console_owner_lock); 1943 owner = READ_ONCE(console_owner); 1944 waiter = READ_ONCE(console_waiter); 1945 if (!waiter && owner && owner != current) { 1946 WRITE_ONCE(console_waiter, true); 1947 spin = true; 1948 } 1949 raw_spin_unlock(&console_owner_lock); 1950 1951 /* 1952 * If there is an active printk() writing to the 1953 * consoles, instead of having it write our data too, 1954 * see if we can offload that load from the active 1955 * printer, and do some printing ourselves. 1956 * Go into a spin only if there isn't already a waiter 1957 * spinning, and there is an active printer, and 1958 * that active printer isn't us (recursive printk?). 1959 */ 1960 if (!spin) { 1961 printk_safe_exit_irqrestore(flags); 1962 return 0; 1963 } 1964 1965 /* We spin waiting for the owner to release us */ 1966 spin_acquire(&console_owner_dep_map, 0, 0, _THIS_IP_); 1967 /* Owner will clear console_waiter on hand off */ 1968 while (READ_ONCE(console_waiter)) 1969 cpu_relax(); 1970 spin_release(&console_owner_dep_map, _THIS_IP_); 1971 1972 printk_safe_exit_irqrestore(flags); 1973 /* 1974 * The owner passed the console lock to us. 1975 * Since we did not spin on console lock, annotate 1976 * this as a trylock. Otherwise lockdep will 1977 * complain. 1978 */ 1979 mutex_acquire(&console_lock_dep_map, 0, 1, _THIS_IP_); 1980 1981 return 1; 1982 } 1983 1984 /* 1985 * Recursion is tracked separately on each CPU. If NMIs are supported, an 1986 * additional NMI context per CPU is also separately tracked. Until per-CPU 1987 * is available, a separate "early tracking" is performed. 1988 */ 1989 static DEFINE_PER_CPU(u8, printk_count); 1990 static u8 printk_count_early; 1991 #ifdef CONFIG_HAVE_NMI 1992 static DEFINE_PER_CPU(u8, printk_count_nmi); 1993 static u8 printk_count_nmi_early; 1994 #endif 1995 1996 /* 1997 * Recursion is limited to keep the output sane. printk() should not require 1998 * more than 1 level of recursion (allowing, for example, printk() to trigger 1999 * a WARN), but a higher value is used in case some printk-internal errors 2000 * exist, such as the ringbuffer validation checks failing. 2001 */ 2002 #define PRINTK_MAX_RECURSION 3 2003 2004 /* 2005 * Return a pointer to the dedicated counter for the CPU+context of the 2006 * caller. 2007 */ 2008 static u8 *__printk_recursion_counter(void) 2009 { 2010 #ifdef CONFIG_HAVE_NMI 2011 if (in_nmi()) { 2012 if (printk_percpu_data_ready()) 2013 return this_cpu_ptr(&printk_count_nmi); 2014 return &printk_count_nmi_early; 2015 } 2016 #endif 2017 if (printk_percpu_data_ready()) 2018 return this_cpu_ptr(&printk_count); 2019 return &printk_count_early; 2020 } 2021 2022 /* 2023 * Enter recursion tracking. Interrupts are disabled to simplify tracking. 2024 * The caller must check the boolean return value to see if the recursion is 2025 * allowed. On failure, interrupts are not disabled. 2026 * 2027 * @recursion_ptr must be a variable of type (u8 *) and is the same variable 2028 * that is passed to printk_exit_irqrestore(). 2029 */ 2030 #define printk_enter_irqsave(recursion_ptr, flags) \ 2031 ({ \ 2032 bool success = true; \ 2033 \ 2034 typecheck(u8 *, recursion_ptr); \ 2035 local_irq_save(flags); \ 2036 (recursion_ptr) = __printk_recursion_counter(); \ 2037 if (*(recursion_ptr) > PRINTK_MAX_RECURSION) { \ 2038 local_irq_restore(flags); \ 2039 success = false; \ 2040 } else { \ 2041 (*(recursion_ptr))++; \ 2042 } \ 2043 success; \ 2044 }) 2045 2046 /* Exit recursion tracking, restoring interrupts. */ 2047 #define printk_exit_irqrestore(recursion_ptr, flags) \ 2048 do { \ 2049 typecheck(u8 *, recursion_ptr); \ 2050 (*(recursion_ptr))--; \ 2051 local_irq_restore(flags); \ 2052 } while (0) 2053 2054 int printk_delay_msec __read_mostly; 2055 2056 static inline void printk_delay(int level) 2057 { 2058 boot_delay_msec(level); 2059 2060 if (unlikely(printk_delay_msec)) { 2061 int m = printk_delay_msec; 2062 2063 while (m--) { 2064 mdelay(1); 2065 touch_nmi_watchdog(); 2066 } 2067 } 2068 } 2069 2070 static inline u32 printk_caller_id(void) 2071 { 2072 return in_task() ? task_pid_nr(current) : 2073 0x80000000 + smp_processor_id(); 2074 } 2075 2076 /** 2077 * printk_parse_prefix - Parse level and control flags. 2078 * 2079 * @text: The terminated text message. 2080 * @level: A pointer to the current level value, will be updated. 2081 * @flags: A pointer to the current printk_info flags, will be updated. 2082 * 2083 * @level may be NULL if the caller is not interested in the parsed value. 2084 * Otherwise the variable pointed to by @level must be set to 2085 * LOGLEVEL_DEFAULT in order to be updated with the parsed value. 2086 * 2087 * @flags may be NULL if the caller is not interested in the parsed value. 2088 * Otherwise the variable pointed to by @flags will be OR'd with the parsed 2089 * value. 2090 * 2091 * Return: The length of the parsed level and control flags. 2092 */ 2093 u16 printk_parse_prefix(const char *text, int *level, 2094 enum printk_info_flags *flags) 2095 { 2096 u16 prefix_len = 0; 2097 int kern_level; 2098 2099 while (*text) { 2100 kern_level = printk_get_level(text); 2101 if (!kern_level) 2102 break; 2103 2104 switch (kern_level) { 2105 case '0' ... '7': 2106 if (level && *level == LOGLEVEL_DEFAULT) 2107 *level = kern_level - '0'; 2108 break; 2109 case 'c': /* KERN_CONT */ 2110 if (flags) 2111 *flags |= LOG_CONT; 2112 } 2113 2114 prefix_len += 2; 2115 text += 2; 2116 } 2117 2118 return prefix_len; 2119 } 2120 2121 __printf(5, 0) 2122 static u16 printk_sprint(char *text, u16 size, int facility, 2123 enum printk_info_flags *flags, const char *fmt, 2124 va_list args) 2125 { 2126 u16 text_len; 2127 2128 text_len = vscnprintf(text, size, fmt, args); 2129 2130 /* Mark and strip a trailing newline. */ 2131 if (text_len && text[text_len - 1] == '\n') { 2132 text_len--; 2133 *flags |= LOG_NEWLINE; 2134 } 2135 2136 /* Strip log level and control flags. */ 2137 if (facility == 0) { 2138 u16 prefix_len; 2139 2140 prefix_len = printk_parse_prefix(text, NULL, NULL); 2141 if (prefix_len) { 2142 text_len -= prefix_len; 2143 memmove(text, text + prefix_len, text_len); 2144 } 2145 } 2146 2147 trace_console(text, text_len); 2148 2149 return text_len; 2150 } 2151 2152 __printf(4, 0) 2153 int vprintk_store(int facility, int level, 2154 const struct dev_printk_info *dev_info, 2155 const char *fmt, va_list args) 2156 { 2157 struct prb_reserved_entry e; 2158 enum printk_info_flags flags = 0; 2159 struct printk_record r; 2160 unsigned long irqflags; 2161 u16 trunc_msg_len = 0; 2162 char prefix_buf[8]; 2163 u8 *recursion_ptr; 2164 u16 reserve_size; 2165 va_list args2; 2166 u32 caller_id; 2167 u16 text_len; 2168 int ret = 0; 2169 u64 ts_nsec; 2170 2171 if (!printk_enter_irqsave(recursion_ptr, irqflags)) 2172 return 0; 2173 2174 /* 2175 * Since the duration of printk() can vary depending on the message 2176 * and state of the ringbuffer, grab the timestamp now so that it is 2177 * close to the call of printk(). This provides a more deterministic 2178 * timestamp with respect to the caller. 2179 */ 2180 ts_nsec = local_clock(); 2181 2182 caller_id = printk_caller_id(); 2183 2184 /* 2185 * The sprintf needs to come first since the syslog prefix might be 2186 * passed in as a parameter. An extra byte must be reserved so that 2187 * later the vscnprintf() into the reserved buffer has room for the 2188 * terminating '\0', which is not counted by vsnprintf(). 2189 */ 2190 va_copy(args2, args); 2191 reserve_size = vsnprintf(&prefix_buf[0], sizeof(prefix_buf), fmt, args2) + 1; 2192 va_end(args2); 2193 2194 if (reserve_size > PRINTKRB_RECORD_MAX) 2195 reserve_size = PRINTKRB_RECORD_MAX; 2196 2197 /* Extract log level or control flags. */ 2198 if (facility == 0) 2199 printk_parse_prefix(&prefix_buf[0], &level, &flags); 2200 2201 if (level == LOGLEVEL_DEFAULT) 2202 level = default_message_loglevel; 2203 2204 if (dev_info) 2205 flags |= LOG_NEWLINE; 2206 2207 if (flags & LOG_CONT) { 2208 prb_rec_init_wr(&r, reserve_size); 2209 if (prb_reserve_in_last(&e, prb, &r, caller_id, PRINTKRB_RECORD_MAX)) { 2210 text_len = printk_sprint(&r.text_buf[r.info->text_len], reserve_size, 2211 facility, &flags, fmt, args); 2212 r.info->text_len += text_len; 2213 2214 if (flags & LOG_NEWLINE) { 2215 r.info->flags |= LOG_NEWLINE; 2216 prb_final_commit(&e); 2217 } else { 2218 prb_commit(&e); 2219 } 2220 2221 ret = text_len; 2222 goto out; 2223 } 2224 } 2225 2226 /* 2227 * Explicitly initialize the record before every prb_reserve() call. 2228 * prb_reserve_in_last() and prb_reserve() purposely invalidate the 2229 * structure when they fail. 2230 */ 2231 prb_rec_init_wr(&r, reserve_size); 2232 if (!prb_reserve(&e, prb, &r)) { 2233 /* truncate the message if it is too long for empty buffer */ 2234 truncate_msg(&reserve_size, &trunc_msg_len); 2235 2236 prb_rec_init_wr(&r, reserve_size + trunc_msg_len); 2237 if (!prb_reserve(&e, prb, &r)) 2238 goto out; 2239 } 2240 2241 /* fill message */ 2242 text_len = printk_sprint(&r.text_buf[0], reserve_size, facility, &flags, fmt, args); 2243 if (trunc_msg_len) 2244 memcpy(&r.text_buf[text_len], trunc_msg, trunc_msg_len); 2245 r.info->text_len = text_len + trunc_msg_len; 2246 r.info->facility = facility; 2247 r.info->level = level & 7; 2248 r.info->flags = flags & 0x1f; 2249 r.info->ts_nsec = ts_nsec; 2250 r.info->caller_id = caller_id; 2251 if (dev_info) 2252 memcpy(&r.info->dev_info, dev_info, sizeof(r.info->dev_info)); 2253 2254 /* A message without a trailing newline can be continued. */ 2255 if (!(flags & LOG_NEWLINE)) 2256 prb_commit(&e); 2257 else 2258 prb_final_commit(&e); 2259 2260 ret = text_len + trunc_msg_len; 2261 out: 2262 printk_exit_irqrestore(recursion_ptr, irqflags); 2263 return ret; 2264 } 2265 2266 asmlinkage int vprintk_emit(int facility, int level, 2267 const struct dev_printk_info *dev_info, 2268 const char *fmt, va_list args) 2269 { 2270 int printed_len; 2271 bool in_sched = false; 2272 2273 /* Suppress unimportant messages after panic happens */ 2274 if (unlikely(suppress_printk)) 2275 return 0; 2276 2277 if (unlikely(suppress_panic_printk) && 2278 atomic_read(&panic_cpu) != raw_smp_processor_id()) 2279 return 0; 2280 2281 if (level == LOGLEVEL_SCHED) { 2282 level = LOGLEVEL_DEFAULT; 2283 in_sched = true; 2284 } 2285 2286 printk_delay(level); 2287 2288 printed_len = vprintk_store(facility, level, dev_info, fmt, args); 2289 2290 /* If called from the scheduler, we can not call up(). */ 2291 if (!in_sched) { 2292 /* 2293 * The caller may be holding system-critical or 2294 * timing-sensitive locks. Disable preemption during 2295 * printing of all remaining records to all consoles so that 2296 * this context can return as soon as possible. Hopefully 2297 * another printk() caller will take over the printing. 2298 */ 2299 preempt_disable(); 2300 /* 2301 * Try to acquire and then immediately release the console 2302 * semaphore. The release will print out buffers. With the 2303 * spinning variant, this context tries to take over the 2304 * printing from another printing context. 2305 */ 2306 if (console_trylock_spinning()) 2307 console_unlock(); 2308 preempt_enable(); 2309 } 2310 2311 wake_up_klogd(); 2312 return printed_len; 2313 } 2314 EXPORT_SYMBOL(vprintk_emit); 2315 2316 int vprintk_default(const char *fmt, va_list args) 2317 { 2318 return vprintk_emit(0, LOGLEVEL_DEFAULT, NULL, fmt, args); 2319 } 2320 EXPORT_SYMBOL_GPL(vprintk_default); 2321 2322 asmlinkage __visible int _printk(const char *fmt, ...) 2323 { 2324 va_list args; 2325 int r; 2326 2327 va_start(args, fmt); 2328 r = vprintk(fmt, args); 2329 va_end(args); 2330 2331 return r; 2332 } 2333 EXPORT_SYMBOL(_printk); 2334 2335 static bool pr_flush(int timeout_ms, bool reset_on_progress); 2336 static bool __pr_flush(struct console *con, int timeout_ms, bool reset_on_progress); 2337 2338 #else /* CONFIG_PRINTK */ 2339 2340 #define printk_time false 2341 2342 #define prb_read_valid(rb, seq, r) false 2343 #define prb_first_valid_seq(rb) 0 2344 #define prb_next_seq(rb) 0 2345 2346 static u64 syslog_seq; 2347 2348 static size_t record_print_text(const struct printk_record *r, 2349 bool syslog, bool time) 2350 { 2351 return 0; 2352 } 2353 static ssize_t info_print_ext_header(char *buf, size_t size, 2354 struct printk_info *info) 2355 { 2356 return 0; 2357 } 2358 static ssize_t msg_print_ext_body(char *buf, size_t size, 2359 char *text, size_t text_len, 2360 struct dev_printk_info *dev_info) { return 0; } 2361 static void console_lock_spinning_enable(void) { } 2362 static int console_lock_spinning_disable_and_check(int cookie) { return 0; } 2363 static bool suppress_message_printing(int level) { return false; } 2364 static bool pr_flush(int timeout_ms, bool reset_on_progress) { return true; } 2365 static bool __pr_flush(struct console *con, int timeout_ms, bool reset_on_progress) { return true; } 2366 2367 #endif /* CONFIG_PRINTK */ 2368 2369 #ifdef CONFIG_EARLY_PRINTK 2370 struct console *early_console; 2371 2372 asmlinkage __visible void early_printk(const char *fmt, ...) 2373 { 2374 va_list ap; 2375 char buf[512]; 2376 int n; 2377 2378 if (!early_console) 2379 return; 2380 2381 va_start(ap, fmt); 2382 n = vscnprintf(buf, sizeof(buf), fmt, ap); 2383 va_end(ap); 2384 2385 early_console->write(early_console, buf, n); 2386 } 2387 #endif 2388 2389 static void set_user_specified(struct console_cmdline *c, bool user_specified) 2390 { 2391 if (!user_specified) 2392 return; 2393 2394 /* 2395 * @c console was defined by the user on the command line. 2396 * Do not clear when added twice also by SPCR or the device tree. 2397 */ 2398 c->user_specified = true; 2399 /* At least one console defined by the user on the command line. */ 2400 console_set_on_cmdline = 1; 2401 } 2402 2403 static int __add_preferred_console(char *name, int idx, char *options, 2404 char *brl_options, bool user_specified) 2405 { 2406 struct console_cmdline *c; 2407 int i; 2408 2409 /* 2410 * See if this tty is not yet registered, and 2411 * if we have a slot free. 2412 */ 2413 for (i = 0, c = console_cmdline; 2414 i < MAX_CMDLINECONSOLES && c->name[0]; 2415 i++, c++) { 2416 if (strcmp(c->name, name) == 0 && c->index == idx) { 2417 if (!brl_options) 2418 preferred_console = i; 2419 set_user_specified(c, user_specified); 2420 return 0; 2421 } 2422 } 2423 if (i == MAX_CMDLINECONSOLES) 2424 return -E2BIG; 2425 if (!brl_options) 2426 preferred_console = i; 2427 strscpy(c->name, name, sizeof(c->name)); 2428 c->options = options; 2429 set_user_specified(c, user_specified); 2430 braille_set_options(c, brl_options); 2431 2432 c->index = idx; 2433 return 0; 2434 } 2435 2436 static int __init console_msg_format_setup(char *str) 2437 { 2438 if (!strcmp(str, "syslog")) 2439 console_msg_format = MSG_FORMAT_SYSLOG; 2440 if (!strcmp(str, "default")) 2441 console_msg_format = MSG_FORMAT_DEFAULT; 2442 return 1; 2443 } 2444 __setup("console_msg_format=", console_msg_format_setup); 2445 2446 /* 2447 * Set up a console. Called via do_early_param() in init/main.c 2448 * for each "console=" parameter in the boot command line. 2449 */ 2450 static int __init console_setup(char *str) 2451 { 2452 char buf[sizeof(console_cmdline[0].name) + 4]; /* 4 for "ttyS" */ 2453 char *s, *options, *brl_options = NULL; 2454 int idx; 2455 2456 /* 2457 * console="" or console=null have been suggested as a way to 2458 * disable console output. Use ttynull that has been created 2459 * for exactly this purpose. 2460 */ 2461 if (str[0] == 0 || strcmp(str, "null") == 0) { 2462 __add_preferred_console("ttynull", 0, NULL, NULL, true); 2463 return 1; 2464 } 2465 2466 if (_braille_console_setup(&str, &brl_options)) 2467 return 1; 2468 2469 /* 2470 * Decode str into name, index, options. 2471 */ 2472 if (str[0] >= '0' && str[0] <= '9') { 2473 strcpy(buf, "ttyS"); 2474 strncpy(buf + 4, str, sizeof(buf) - 5); 2475 } else { 2476 strncpy(buf, str, sizeof(buf) - 1); 2477 } 2478 buf[sizeof(buf) - 1] = 0; 2479 options = strchr(str, ','); 2480 if (options) 2481 *(options++) = 0; 2482 #ifdef __sparc__ 2483 if (!strcmp(str, "ttya")) 2484 strcpy(buf, "ttyS0"); 2485 if (!strcmp(str, "ttyb")) 2486 strcpy(buf, "ttyS1"); 2487 #endif 2488 for (s = buf; *s; s++) 2489 if (isdigit(*s) || *s == ',') 2490 break; 2491 idx = simple_strtoul(s, NULL, 10); 2492 *s = 0; 2493 2494 __add_preferred_console(buf, idx, options, brl_options, true); 2495 return 1; 2496 } 2497 __setup("console=", console_setup); 2498 2499 /** 2500 * add_preferred_console - add a device to the list of preferred consoles. 2501 * @name: device name 2502 * @idx: device index 2503 * @options: options for this console 2504 * 2505 * The last preferred console added will be used for kernel messages 2506 * and stdin/out/err for init. Normally this is used by console_setup 2507 * above to handle user-supplied console arguments; however it can also 2508 * be used by arch-specific code either to override the user or more 2509 * commonly to provide a default console (ie from PROM variables) when 2510 * the user has not supplied one. 2511 */ 2512 int add_preferred_console(char *name, int idx, char *options) 2513 { 2514 return __add_preferred_console(name, idx, options, NULL, false); 2515 } 2516 2517 bool console_suspend_enabled = true; 2518 EXPORT_SYMBOL(console_suspend_enabled); 2519 2520 static int __init console_suspend_disable(char *str) 2521 { 2522 console_suspend_enabled = false; 2523 return 1; 2524 } 2525 __setup("no_console_suspend", console_suspend_disable); 2526 module_param_named(console_suspend, console_suspend_enabled, 2527 bool, S_IRUGO | S_IWUSR); 2528 MODULE_PARM_DESC(console_suspend, "suspend console during suspend" 2529 " and hibernate operations"); 2530 2531 static bool printk_console_no_auto_verbose; 2532 2533 void console_verbose(void) 2534 { 2535 if (console_loglevel && !printk_console_no_auto_verbose) 2536 console_loglevel = CONSOLE_LOGLEVEL_MOTORMOUTH; 2537 } 2538 EXPORT_SYMBOL_GPL(console_verbose); 2539 2540 module_param_named(console_no_auto_verbose, printk_console_no_auto_verbose, bool, 0644); 2541 MODULE_PARM_DESC(console_no_auto_verbose, "Disable console loglevel raise to highest on oops/panic/etc"); 2542 2543 /** 2544 * suspend_console - suspend the console subsystem 2545 * 2546 * This disables printk() while we go into suspend states 2547 */ 2548 void suspend_console(void) 2549 { 2550 if (!console_suspend_enabled) 2551 return; 2552 pr_info("Suspending console(s) (use no_console_suspend to debug)\n"); 2553 pr_flush(1000, true); 2554 console_lock(); 2555 console_suspended = 1; 2556 up_console_sem(); 2557 } 2558 2559 void resume_console(void) 2560 { 2561 if (!console_suspend_enabled) 2562 return; 2563 down_console_sem(); 2564 console_suspended = 0; 2565 console_unlock(); 2566 pr_flush(1000, true); 2567 } 2568 2569 /** 2570 * console_cpu_notify - print deferred console messages after CPU hotplug 2571 * @cpu: unused 2572 * 2573 * If printk() is called from a CPU that is not online yet, the messages 2574 * will be printed on the console only if there are CON_ANYTIME consoles. 2575 * This function is called when a new CPU comes online (or fails to come 2576 * up) or goes offline. 2577 */ 2578 static int console_cpu_notify(unsigned int cpu) 2579 { 2580 if (!cpuhp_tasks_frozen) { 2581 /* If trylock fails, someone else is doing the printing */ 2582 if (console_trylock()) 2583 console_unlock(); 2584 } 2585 return 0; 2586 } 2587 2588 /** 2589 * console_lock - block the console subsystem from printing 2590 * 2591 * Acquires a lock which guarantees that no consoles will 2592 * be in or enter their write() callback. 2593 * 2594 * Can sleep, returns nothing. 2595 */ 2596 void console_lock(void) 2597 { 2598 might_sleep(); 2599 2600 down_console_sem(); 2601 if (console_suspended) 2602 return; 2603 console_locked = 1; 2604 console_may_schedule = 1; 2605 } 2606 EXPORT_SYMBOL(console_lock); 2607 2608 /** 2609 * console_trylock - try to block the console subsystem from printing 2610 * 2611 * Try to acquire a lock which guarantees that no consoles will 2612 * be in or enter their write() callback. 2613 * 2614 * returns 1 on success, and 0 on failure to acquire the lock. 2615 */ 2616 int console_trylock(void) 2617 { 2618 if (down_trylock_console_sem()) 2619 return 0; 2620 if (console_suspended) { 2621 up_console_sem(); 2622 return 0; 2623 } 2624 console_locked = 1; 2625 console_may_schedule = 0; 2626 return 1; 2627 } 2628 EXPORT_SYMBOL(console_trylock); 2629 2630 int is_console_locked(void) 2631 { 2632 return console_locked; 2633 } 2634 EXPORT_SYMBOL(is_console_locked); 2635 2636 /* 2637 * Return true when this CPU should unlock console_sem without pushing all 2638 * messages to the console. This reduces the chance that the console is 2639 * locked when the panic CPU tries to use it. 2640 */ 2641 static bool abandon_console_lock_in_panic(void) 2642 { 2643 if (!panic_in_progress()) 2644 return false; 2645 2646 /* 2647 * We can use raw_smp_processor_id() here because it is impossible for 2648 * the task to be migrated to the panic_cpu, or away from it. If 2649 * panic_cpu has already been set, and we're not currently executing on 2650 * that CPU, then we never will be. 2651 */ 2652 return atomic_read(&panic_cpu) != raw_smp_processor_id(); 2653 } 2654 2655 /* 2656 * Check if the given console is currently capable and allowed to print 2657 * records. 2658 * 2659 * Requires the console_srcu_read_lock. 2660 */ 2661 static inline bool console_is_usable(struct console *con) 2662 { 2663 short flags = console_srcu_read_flags(con); 2664 2665 if (!(flags & CON_ENABLED)) 2666 return false; 2667 2668 if (!con->write) 2669 return false; 2670 2671 /* 2672 * Console drivers may assume that per-cpu resources have been 2673 * allocated. So unless they're explicitly marked as being able to 2674 * cope (CON_ANYTIME) don't call them until this CPU is officially up. 2675 */ 2676 if (!cpu_online(raw_smp_processor_id()) && !(flags & CON_ANYTIME)) 2677 return false; 2678 2679 return true; 2680 } 2681 2682 static void __console_unlock(void) 2683 { 2684 console_locked = 0; 2685 up_console_sem(); 2686 } 2687 2688 /* 2689 * Prepend the message in @pmsg->pbufs->outbuf with a "dropped message". This 2690 * is achieved by shifting the existing message over and inserting the dropped 2691 * message. 2692 * 2693 * @pmsg is the printk message to prepend. 2694 * 2695 * @dropped is the dropped count to report in the dropped message. 2696 * 2697 * If the message text in @pmsg->pbufs->outbuf does not have enough space for 2698 * the dropped message, the message text will be sufficiently truncated. 2699 * 2700 * If @pmsg->pbufs->outbuf is modified, @pmsg->outbuf_len is updated. 2701 */ 2702 #ifdef CONFIG_PRINTK 2703 static void console_prepend_dropped(struct printk_message *pmsg, unsigned long dropped) 2704 { 2705 struct printk_buffers *pbufs = pmsg->pbufs; 2706 const size_t scratchbuf_sz = sizeof(pbufs->scratchbuf); 2707 const size_t outbuf_sz = sizeof(pbufs->outbuf); 2708 char *scratchbuf = &pbufs->scratchbuf[0]; 2709 char *outbuf = &pbufs->outbuf[0]; 2710 size_t len; 2711 2712 len = scnprintf(scratchbuf, scratchbuf_sz, 2713 "** %lu printk messages dropped **\n", dropped); 2714 2715 /* 2716 * Make sure outbuf is sufficiently large before prepending. 2717 * Keep at least the prefix when the message must be truncated. 2718 * It is a rather theoretical problem when someone tries to 2719 * use a minimalist buffer. 2720 */ 2721 if (WARN_ON_ONCE(len + PRINTK_PREFIX_MAX >= outbuf_sz)) 2722 return; 2723 2724 if (pmsg->outbuf_len + len >= outbuf_sz) { 2725 /* Truncate the message, but keep it terminated. */ 2726 pmsg->outbuf_len = outbuf_sz - (len + 1); 2727 outbuf[pmsg->outbuf_len] = 0; 2728 } 2729 2730 memmove(outbuf + len, outbuf, pmsg->outbuf_len + 1); 2731 memcpy(outbuf, scratchbuf, len); 2732 pmsg->outbuf_len += len; 2733 } 2734 #else 2735 #define console_prepend_dropped(pmsg, dropped) 2736 #endif /* CONFIG_PRINTK */ 2737 2738 /* 2739 * Read and format the specified record (or a later record if the specified 2740 * record is not available). 2741 * 2742 * @pmsg will contain the formatted result. @pmsg->pbufs must point to a 2743 * struct printk_buffers. 2744 * 2745 * @seq is the record to read and format. If it is not available, the next 2746 * valid record is read. 2747 * 2748 * @is_extended specifies if the message should be formatted for extended 2749 * console output. 2750 * 2751 * @may_supress specifies if records may be skipped based on loglevel. 2752 * 2753 * Returns false if no record is available. Otherwise true and all fields 2754 * of @pmsg are valid. (See the documentation of struct printk_message 2755 * for information about the @pmsg fields.) 2756 */ 2757 static bool printk_get_next_message(struct printk_message *pmsg, u64 seq, 2758 bool is_extended, bool may_suppress) 2759 { 2760 static int panic_console_dropped; 2761 2762 struct printk_buffers *pbufs = pmsg->pbufs; 2763 const size_t scratchbuf_sz = sizeof(pbufs->scratchbuf); 2764 const size_t outbuf_sz = sizeof(pbufs->outbuf); 2765 char *scratchbuf = &pbufs->scratchbuf[0]; 2766 char *outbuf = &pbufs->outbuf[0]; 2767 struct printk_info info; 2768 struct printk_record r; 2769 size_t len = 0; 2770 2771 /* 2772 * Formatting extended messages requires a separate buffer, so use the 2773 * scratch buffer to read in the ringbuffer text. 2774 * 2775 * Formatting normal messages is done in-place, so read the ringbuffer 2776 * text directly into the output buffer. 2777 */ 2778 if (is_extended) 2779 prb_rec_init_rd(&r, &info, scratchbuf, scratchbuf_sz); 2780 else 2781 prb_rec_init_rd(&r, &info, outbuf, outbuf_sz); 2782 2783 if (!prb_read_valid(prb, seq, &r)) 2784 return false; 2785 2786 pmsg->seq = r.info->seq; 2787 pmsg->dropped = r.info->seq - seq; 2788 2789 /* 2790 * Check for dropped messages in panic here so that printk 2791 * suppression can occur as early as possible if necessary. 2792 */ 2793 if (pmsg->dropped && 2794 panic_in_progress() && 2795 panic_console_dropped++ > 10) { 2796 suppress_panic_printk = 1; 2797 pr_warn_once("Too many dropped messages. Suppress messages on non-panic CPUs to prevent livelock.\n"); 2798 } 2799 2800 /* Skip record that has level above the console loglevel. */ 2801 if (may_suppress && suppress_message_printing(r.info->level)) 2802 goto out; 2803 2804 if (is_extended) { 2805 len = info_print_ext_header(outbuf, outbuf_sz, r.info); 2806 len += msg_print_ext_body(outbuf + len, outbuf_sz - len, 2807 &r.text_buf[0], r.info->text_len, &r.info->dev_info); 2808 } else { 2809 len = record_print_text(&r, console_msg_format & MSG_FORMAT_SYSLOG, printk_time); 2810 } 2811 out: 2812 pmsg->outbuf_len = len; 2813 return true; 2814 } 2815 2816 /* 2817 * Print one record for the given console. The record printed is whatever 2818 * record is the next available record for the given console. 2819 * 2820 * @handover will be set to true if a printk waiter has taken over the 2821 * console_lock, in which case the caller is no longer holding both the 2822 * console_lock and the SRCU read lock. Otherwise it is set to false. 2823 * 2824 * @cookie is the cookie from the SRCU read lock. 2825 * 2826 * Returns false if the given console has no next record to print, otherwise 2827 * true. 2828 * 2829 * Requires the console_lock and the SRCU read lock. 2830 */ 2831 static bool console_emit_next_record(struct console *con, bool *handover, int cookie) 2832 { 2833 static struct printk_buffers pbufs; 2834 2835 bool is_extended = console_srcu_read_flags(con) & CON_EXTENDED; 2836 char *outbuf = &pbufs.outbuf[0]; 2837 struct printk_message pmsg = { 2838 .pbufs = &pbufs, 2839 }; 2840 unsigned long flags; 2841 2842 *handover = false; 2843 2844 if (!printk_get_next_message(&pmsg, con->seq, is_extended, true)) 2845 return false; 2846 2847 con->dropped += pmsg.dropped; 2848 2849 /* Skip messages of formatted length 0. */ 2850 if (pmsg.outbuf_len == 0) { 2851 con->seq = pmsg.seq + 1; 2852 goto skip; 2853 } 2854 2855 if (con->dropped && !is_extended) { 2856 console_prepend_dropped(&pmsg, con->dropped); 2857 con->dropped = 0; 2858 } 2859 2860 /* 2861 * While actively printing out messages, if another printk() 2862 * were to occur on another CPU, it may wait for this one to 2863 * finish. This task can not be preempted if there is a 2864 * waiter waiting to take over. 2865 * 2866 * Interrupts are disabled because the hand over to a waiter 2867 * must not be interrupted until the hand over is completed 2868 * (@console_waiter is cleared). 2869 */ 2870 printk_safe_enter_irqsave(flags); 2871 console_lock_spinning_enable(); 2872 2873 /* Do not trace print latency. */ 2874 stop_critical_timings(); 2875 2876 /* Write everything out to the hardware. */ 2877 con->write(con, outbuf, pmsg.outbuf_len); 2878 2879 start_critical_timings(); 2880 2881 con->seq = pmsg.seq + 1; 2882 2883 *handover = console_lock_spinning_disable_and_check(cookie); 2884 printk_safe_exit_irqrestore(flags); 2885 skip: 2886 return true; 2887 } 2888 2889 /* 2890 * Print out all remaining records to all consoles. 2891 * 2892 * @do_cond_resched is set by the caller. It can be true only in schedulable 2893 * context. 2894 * 2895 * @next_seq is set to the sequence number after the last available record. 2896 * The value is valid only when this function returns true. It means that all 2897 * usable consoles are completely flushed. 2898 * 2899 * @handover will be set to true if a printk waiter has taken over the 2900 * console_lock, in which case the caller is no longer holding the 2901 * console_lock. Otherwise it is set to false. 2902 * 2903 * Returns true when there was at least one usable console and all messages 2904 * were flushed to all usable consoles. A returned false informs the caller 2905 * that everything was not flushed (either there were no usable consoles or 2906 * another context has taken over printing or it is a panic situation and this 2907 * is not the panic CPU). Regardless the reason, the caller should assume it 2908 * is not useful to immediately try again. 2909 * 2910 * Requires the console_lock. 2911 */ 2912 static bool console_flush_all(bool do_cond_resched, u64 *next_seq, bool *handover) 2913 { 2914 bool any_usable = false; 2915 struct console *con; 2916 bool any_progress; 2917 int cookie; 2918 2919 *next_seq = 0; 2920 *handover = false; 2921 2922 do { 2923 any_progress = false; 2924 2925 cookie = console_srcu_read_lock(); 2926 for_each_console_srcu(con) { 2927 bool progress; 2928 2929 if (!console_is_usable(con)) 2930 continue; 2931 any_usable = true; 2932 2933 progress = console_emit_next_record(con, handover, cookie); 2934 2935 /* 2936 * If a handover has occurred, the SRCU read lock 2937 * is already released. 2938 */ 2939 if (*handover) 2940 return false; 2941 2942 /* Track the next of the highest seq flushed. */ 2943 if (con->seq > *next_seq) 2944 *next_seq = con->seq; 2945 2946 if (!progress) 2947 continue; 2948 any_progress = true; 2949 2950 /* Allow panic_cpu to take over the consoles safely. */ 2951 if (abandon_console_lock_in_panic()) 2952 goto abandon; 2953 2954 if (do_cond_resched) 2955 cond_resched(); 2956 } 2957 console_srcu_read_unlock(cookie); 2958 } while (any_progress); 2959 2960 return any_usable; 2961 2962 abandon: 2963 console_srcu_read_unlock(cookie); 2964 return false; 2965 } 2966 2967 /** 2968 * console_unlock - unblock the console subsystem from printing 2969 * 2970 * Releases the console_lock which the caller holds to block printing of 2971 * the console subsystem. 2972 * 2973 * While the console_lock was held, console output may have been buffered 2974 * by printk(). If this is the case, console_unlock(); emits 2975 * the output prior to releasing the lock. 2976 * 2977 * console_unlock(); may be called from any context. 2978 */ 2979 void console_unlock(void) 2980 { 2981 bool do_cond_resched; 2982 bool handover; 2983 bool flushed; 2984 u64 next_seq; 2985 2986 if (console_suspended) { 2987 up_console_sem(); 2988 return; 2989 } 2990 2991 /* 2992 * Console drivers are called with interrupts disabled, so 2993 * @console_may_schedule should be cleared before; however, we may 2994 * end up dumping a lot of lines, for example, if called from 2995 * console registration path, and should invoke cond_resched() 2996 * between lines if allowable. Not doing so can cause a very long 2997 * scheduling stall on a slow console leading to RCU stall and 2998 * softlockup warnings which exacerbate the issue with more 2999 * messages practically incapacitating the system. Therefore, create 3000 * a local to use for the printing loop. 3001 */ 3002 do_cond_resched = console_may_schedule; 3003 3004 do { 3005 console_may_schedule = 0; 3006 3007 flushed = console_flush_all(do_cond_resched, &next_seq, &handover); 3008 if (!handover) 3009 __console_unlock(); 3010 3011 /* 3012 * Abort if there was a failure to flush all messages to all 3013 * usable consoles. Either it is not possible to flush (in 3014 * which case it would be an infinite loop of retrying) or 3015 * another context has taken over printing. 3016 */ 3017 if (!flushed) 3018 break; 3019 3020 /* 3021 * Some context may have added new records after 3022 * console_flush_all() but before unlocking the console. 3023 * Re-check if there is a new record to flush. If the trylock 3024 * fails, another context is already handling the printing. 3025 */ 3026 } while (prb_read_valid(prb, next_seq, NULL) && console_trylock()); 3027 } 3028 EXPORT_SYMBOL(console_unlock); 3029 3030 /** 3031 * console_conditional_schedule - yield the CPU if required 3032 * 3033 * If the console code is currently allowed to sleep, and 3034 * if this CPU should yield the CPU to another task, do 3035 * so here. 3036 * 3037 * Must be called within console_lock();. 3038 */ 3039 void __sched console_conditional_schedule(void) 3040 { 3041 if (console_may_schedule) 3042 cond_resched(); 3043 } 3044 EXPORT_SYMBOL(console_conditional_schedule); 3045 3046 void console_unblank(void) 3047 { 3048 struct console *c; 3049 int cookie; 3050 3051 /* 3052 * Stop console printing because the unblank() callback may 3053 * assume the console is not within its write() callback. 3054 * 3055 * If @oops_in_progress is set, this may be an atomic context. 3056 * In that case, attempt a trylock as best-effort. 3057 */ 3058 if (oops_in_progress) { 3059 if (down_trylock_console_sem() != 0) 3060 return; 3061 } else 3062 console_lock(); 3063 3064 console_locked = 1; 3065 console_may_schedule = 0; 3066 3067 cookie = console_srcu_read_lock(); 3068 for_each_console_srcu(c) { 3069 if ((console_srcu_read_flags(c) & CON_ENABLED) && c->unblank) 3070 c->unblank(); 3071 } 3072 console_srcu_read_unlock(cookie); 3073 3074 console_unlock(); 3075 3076 if (!oops_in_progress) 3077 pr_flush(1000, true); 3078 } 3079 3080 /** 3081 * console_flush_on_panic - flush console content on panic 3082 * @mode: flush all messages in buffer or just the pending ones 3083 * 3084 * Immediately output all pending messages no matter what. 3085 */ 3086 void console_flush_on_panic(enum con_flush_mode mode) 3087 { 3088 /* 3089 * If someone else is holding the console lock, trylock will fail 3090 * and may_schedule may be set. Ignore and proceed to unlock so 3091 * that messages are flushed out. As this can be called from any 3092 * context and we don't want to get preempted while flushing, 3093 * ensure may_schedule is cleared. 3094 */ 3095 console_trylock(); 3096 console_may_schedule = 0; 3097 3098 if (mode == CONSOLE_REPLAY_ALL) { 3099 struct console *c; 3100 int cookie; 3101 u64 seq; 3102 3103 seq = prb_first_valid_seq(prb); 3104 3105 cookie = console_srcu_read_lock(); 3106 for_each_console_srcu(c) { 3107 /* 3108 * If the above console_trylock() failed, this is an 3109 * unsynchronized assignment. But in that case, the 3110 * kernel is in "hope and pray" mode anyway. 3111 */ 3112 c->seq = seq; 3113 } 3114 console_srcu_read_unlock(cookie); 3115 } 3116 console_unlock(); 3117 } 3118 3119 /* 3120 * Return the console tty driver structure and its associated index 3121 */ 3122 struct tty_driver *console_device(int *index) 3123 { 3124 struct console *c; 3125 struct tty_driver *driver = NULL; 3126 int cookie; 3127 3128 /* 3129 * Take console_lock to serialize device() callback with 3130 * other console operations. For example, fg_console is 3131 * modified under console_lock when switching vt. 3132 */ 3133 console_lock(); 3134 3135 cookie = console_srcu_read_lock(); 3136 for_each_console_srcu(c) { 3137 if (!c->device) 3138 continue; 3139 driver = c->device(c, index); 3140 if (driver) 3141 break; 3142 } 3143 console_srcu_read_unlock(cookie); 3144 3145 console_unlock(); 3146 return driver; 3147 } 3148 3149 /* 3150 * Prevent further output on the passed console device so that (for example) 3151 * serial drivers can disable console output before suspending a port, and can 3152 * re-enable output afterwards. 3153 */ 3154 void console_stop(struct console *console) 3155 { 3156 __pr_flush(console, 1000, true); 3157 console_list_lock(); 3158 console_srcu_write_flags(console, console->flags & ~CON_ENABLED); 3159 console_list_unlock(); 3160 3161 /* 3162 * Ensure that all SRCU list walks have completed. All contexts must 3163 * be able to see that this console is disabled so that (for example) 3164 * the caller can suspend the port without risk of another context 3165 * using the port. 3166 */ 3167 synchronize_srcu(&console_srcu); 3168 } 3169 EXPORT_SYMBOL(console_stop); 3170 3171 void console_start(struct console *console) 3172 { 3173 console_list_lock(); 3174 console_srcu_write_flags(console, console->flags | CON_ENABLED); 3175 console_list_unlock(); 3176 __pr_flush(console, 1000, true); 3177 } 3178 EXPORT_SYMBOL(console_start); 3179 3180 static int __read_mostly keep_bootcon; 3181 3182 static int __init keep_bootcon_setup(char *str) 3183 { 3184 keep_bootcon = 1; 3185 pr_info("debug: skip boot console de-registration.\n"); 3186 3187 return 0; 3188 } 3189 3190 early_param("keep_bootcon", keep_bootcon_setup); 3191 3192 /* 3193 * This is called by register_console() to try to match 3194 * the newly registered console with any of the ones selected 3195 * by either the command line or add_preferred_console() and 3196 * setup/enable it. 3197 * 3198 * Care need to be taken with consoles that are statically 3199 * enabled such as netconsole 3200 */ 3201 static int try_enable_preferred_console(struct console *newcon, 3202 bool user_specified) 3203 { 3204 struct console_cmdline *c; 3205 int i, err; 3206 3207 for (i = 0, c = console_cmdline; 3208 i < MAX_CMDLINECONSOLES && c->name[0]; 3209 i++, c++) { 3210 if (c->user_specified != user_specified) 3211 continue; 3212 if (!newcon->match || 3213 newcon->match(newcon, c->name, c->index, c->options) != 0) { 3214 /* default matching */ 3215 BUILD_BUG_ON(sizeof(c->name) != sizeof(newcon->name)); 3216 if (strcmp(c->name, newcon->name) != 0) 3217 continue; 3218 if (newcon->index >= 0 && 3219 newcon->index != c->index) 3220 continue; 3221 if (newcon->index < 0) 3222 newcon->index = c->index; 3223 3224 if (_braille_register_console(newcon, c)) 3225 return 0; 3226 3227 if (newcon->setup && 3228 (err = newcon->setup(newcon, c->options)) != 0) 3229 return err; 3230 } 3231 newcon->flags |= CON_ENABLED; 3232 if (i == preferred_console) 3233 newcon->flags |= CON_CONSDEV; 3234 return 0; 3235 } 3236 3237 /* 3238 * Some consoles, such as pstore and netconsole, can be enabled even 3239 * without matching. Accept the pre-enabled consoles only when match() 3240 * and setup() had a chance to be called. 3241 */ 3242 if (newcon->flags & CON_ENABLED && c->user_specified == user_specified) 3243 return 0; 3244 3245 return -ENOENT; 3246 } 3247 3248 /* Try to enable the console unconditionally */ 3249 static void try_enable_default_console(struct console *newcon) 3250 { 3251 if (newcon->index < 0) 3252 newcon->index = 0; 3253 3254 if (newcon->setup && newcon->setup(newcon, NULL) != 0) 3255 return; 3256 3257 newcon->flags |= CON_ENABLED; 3258 3259 if (newcon->device) 3260 newcon->flags |= CON_CONSDEV; 3261 } 3262 3263 #define con_printk(lvl, con, fmt, ...) \ 3264 printk(lvl pr_fmt("%sconsole [%s%d] " fmt), \ 3265 (con->flags & CON_BOOT) ? "boot" : "", \ 3266 con->name, con->index, ##__VA_ARGS__) 3267 3268 static void console_init_seq(struct console *newcon, bool bootcon_registered) 3269 { 3270 struct console *con; 3271 bool handover; 3272 3273 if (newcon->flags & (CON_PRINTBUFFER | CON_BOOT)) { 3274 /* Get a consistent copy of @syslog_seq. */ 3275 mutex_lock(&syslog_lock); 3276 newcon->seq = syslog_seq; 3277 mutex_unlock(&syslog_lock); 3278 } else { 3279 /* Begin with next message added to ringbuffer. */ 3280 newcon->seq = prb_next_seq(prb); 3281 3282 /* 3283 * If any enabled boot consoles are due to be unregistered 3284 * shortly, some may not be caught up and may be the same 3285 * device as @newcon. Since it is not known which boot console 3286 * is the same device, flush all consoles and, if necessary, 3287 * start with the message of the enabled boot console that is 3288 * the furthest behind. 3289 */ 3290 if (bootcon_registered && !keep_bootcon) { 3291 /* 3292 * Hold the console_lock to stop console printing and 3293 * guarantee safe access to console->seq. 3294 */ 3295 console_lock(); 3296 3297 /* 3298 * Flush all consoles and set the console to start at 3299 * the next unprinted sequence number. 3300 */ 3301 if (!console_flush_all(true, &newcon->seq, &handover)) { 3302 /* 3303 * Flushing failed. Just choose the lowest 3304 * sequence of the enabled boot consoles. 3305 */ 3306 3307 /* 3308 * If there was a handover, this context no 3309 * longer holds the console_lock. 3310 */ 3311 if (handover) 3312 console_lock(); 3313 3314 newcon->seq = prb_next_seq(prb); 3315 for_each_console(con) { 3316 if ((con->flags & CON_BOOT) && 3317 (con->flags & CON_ENABLED) && 3318 con->seq < newcon->seq) { 3319 newcon->seq = con->seq; 3320 } 3321 } 3322 } 3323 3324 console_unlock(); 3325 } 3326 } 3327 } 3328 3329 #define console_first() \ 3330 hlist_entry(console_list.first, struct console, node) 3331 3332 static int unregister_console_locked(struct console *console); 3333 3334 /* 3335 * The console driver calls this routine during kernel initialization 3336 * to register the console printing procedure with printk() and to 3337 * print any messages that were printed by the kernel before the 3338 * console driver was initialized. 3339 * 3340 * This can happen pretty early during the boot process (because of 3341 * early_printk) - sometimes before setup_arch() completes - be careful 3342 * of what kernel features are used - they may not be initialised yet. 3343 * 3344 * There are two types of consoles - bootconsoles (early_printk) and 3345 * "real" consoles (everything which is not a bootconsole) which are 3346 * handled differently. 3347 * - Any number of bootconsoles can be registered at any time. 3348 * - As soon as a "real" console is registered, all bootconsoles 3349 * will be unregistered automatically. 3350 * - Once a "real" console is registered, any attempt to register a 3351 * bootconsoles will be rejected 3352 */ 3353 void register_console(struct console *newcon) 3354 { 3355 struct console *con; 3356 bool bootcon_registered = false; 3357 bool realcon_registered = false; 3358 int err; 3359 3360 console_list_lock(); 3361 3362 for_each_console(con) { 3363 if (WARN(con == newcon, "console '%s%d' already registered\n", 3364 con->name, con->index)) { 3365 goto unlock; 3366 } 3367 3368 if (con->flags & CON_BOOT) 3369 bootcon_registered = true; 3370 else 3371 realcon_registered = true; 3372 } 3373 3374 /* Do not register boot consoles when there already is a real one. */ 3375 if ((newcon->flags & CON_BOOT) && realcon_registered) { 3376 pr_info("Too late to register bootconsole %s%d\n", 3377 newcon->name, newcon->index); 3378 goto unlock; 3379 } 3380 3381 /* 3382 * See if we want to enable this console driver by default. 3383 * 3384 * Nope when a console is preferred by the command line, device 3385 * tree, or SPCR. 3386 * 3387 * The first real console with tty binding (driver) wins. More 3388 * consoles might get enabled before the right one is found. 3389 * 3390 * Note that a console with tty binding will have CON_CONSDEV 3391 * flag set and will be first in the list. 3392 */ 3393 if (preferred_console < 0) { 3394 if (hlist_empty(&console_list) || !console_first()->device || 3395 console_first()->flags & CON_BOOT) { 3396 try_enable_default_console(newcon); 3397 } 3398 } 3399 3400 /* See if this console matches one we selected on the command line */ 3401 err = try_enable_preferred_console(newcon, true); 3402 3403 /* If not, try to match against the platform default(s) */ 3404 if (err == -ENOENT) 3405 err = try_enable_preferred_console(newcon, false); 3406 3407 /* printk() messages are not printed to the Braille console. */ 3408 if (err || newcon->flags & CON_BRL) 3409 goto unlock; 3410 3411 /* 3412 * If we have a bootconsole, and are switching to a real console, 3413 * don't print everything out again, since when the boot console, and 3414 * the real console are the same physical device, it's annoying to 3415 * see the beginning boot messages twice 3416 */ 3417 if (bootcon_registered && 3418 ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV)) { 3419 newcon->flags &= ~CON_PRINTBUFFER; 3420 } 3421 3422 newcon->dropped = 0; 3423 console_init_seq(newcon, bootcon_registered); 3424 3425 /* 3426 * Put this console in the list - keep the 3427 * preferred driver at the head of the list. 3428 */ 3429 if (hlist_empty(&console_list)) { 3430 /* Ensure CON_CONSDEV is always set for the head. */ 3431 newcon->flags |= CON_CONSDEV; 3432 hlist_add_head_rcu(&newcon->node, &console_list); 3433 3434 } else if (newcon->flags & CON_CONSDEV) { 3435 /* Only the new head can have CON_CONSDEV set. */ 3436 console_srcu_write_flags(console_first(), console_first()->flags & ~CON_CONSDEV); 3437 hlist_add_head_rcu(&newcon->node, &console_list); 3438 3439 } else { 3440 hlist_add_behind_rcu(&newcon->node, console_list.first); 3441 } 3442 3443 /* 3444 * No need to synchronize SRCU here! The caller does not rely 3445 * on all contexts being able to see the new console before 3446 * register_console() completes. 3447 */ 3448 3449 console_sysfs_notify(); 3450 3451 /* 3452 * By unregistering the bootconsoles after we enable the real console 3453 * we get the "console xxx enabled" message on all the consoles - 3454 * boot consoles, real consoles, etc - this is to ensure that end 3455 * users know there might be something in the kernel's log buffer that 3456 * went to the bootconsole (that they do not see on the real console) 3457 */ 3458 con_printk(KERN_INFO, newcon, "enabled\n"); 3459 if (bootcon_registered && 3460 ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV) && 3461 !keep_bootcon) { 3462 struct hlist_node *tmp; 3463 3464 hlist_for_each_entry_safe(con, tmp, &console_list, node) { 3465 if (con->flags & CON_BOOT) 3466 unregister_console_locked(con); 3467 } 3468 } 3469 unlock: 3470 console_list_unlock(); 3471 } 3472 EXPORT_SYMBOL(register_console); 3473 3474 /* Must be called under console_list_lock(). */ 3475 static int unregister_console_locked(struct console *console) 3476 { 3477 int res; 3478 3479 lockdep_assert_console_list_lock_held(); 3480 3481 con_printk(KERN_INFO, console, "disabled\n"); 3482 3483 res = _braille_unregister_console(console); 3484 if (res < 0) 3485 return res; 3486 if (res > 0) 3487 return 0; 3488 3489 /* Disable it unconditionally */ 3490 console_srcu_write_flags(console, console->flags & ~CON_ENABLED); 3491 3492 if (!console_is_registered_locked(console)) 3493 return -ENODEV; 3494 3495 hlist_del_init_rcu(&console->node); 3496 3497 /* 3498 * <HISTORICAL> 3499 * If this isn't the last console and it has CON_CONSDEV set, we 3500 * need to set it on the next preferred console. 3501 * </HISTORICAL> 3502 * 3503 * The above makes no sense as there is no guarantee that the next 3504 * console has any device attached. Oh well.... 3505 */ 3506 if (!hlist_empty(&console_list) && console->flags & CON_CONSDEV) 3507 console_srcu_write_flags(console_first(), console_first()->flags | CON_CONSDEV); 3508 3509 /* 3510 * Ensure that all SRCU list walks have completed. All contexts 3511 * must not be able to see this console in the list so that any 3512 * exit/cleanup routines can be performed safely. 3513 */ 3514 synchronize_srcu(&console_srcu); 3515 3516 console_sysfs_notify(); 3517 3518 if (console->exit) 3519 res = console->exit(console); 3520 3521 return res; 3522 } 3523 3524 int unregister_console(struct console *console) 3525 { 3526 int res; 3527 3528 console_list_lock(); 3529 res = unregister_console_locked(console); 3530 console_list_unlock(); 3531 return res; 3532 } 3533 EXPORT_SYMBOL(unregister_console); 3534 3535 /** 3536 * console_force_preferred_locked - force a registered console preferred 3537 * @con: The registered console to force preferred. 3538 * 3539 * Must be called under console_list_lock(). 3540 */ 3541 void console_force_preferred_locked(struct console *con) 3542 { 3543 struct console *cur_pref_con; 3544 3545 if (!console_is_registered_locked(con)) 3546 return; 3547 3548 cur_pref_con = console_first(); 3549 3550 /* Already preferred? */ 3551 if (cur_pref_con == con) 3552 return; 3553 3554 /* 3555 * Delete, but do not re-initialize the entry. This allows the console 3556 * to continue to appear registered (via any hlist_unhashed_lockless() 3557 * checks), even though it was briefly removed from the console list. 3558 */ 3559 hlist_del_rcu(&con->node); 3560 3561 /* 3562 * Ensure that all SRCU list walks have completed so that the console 3563 * can be added to the beginning of the console list and its forward 3564 * list pointer can be re-initialized. 3565 */ 3566 synchronize_srcu(&console_srcu); 3567 3568 con->flags |= CON_CONSDEV; 3569 WARN_ON(!con->device); 3570 3571 /* Only the new head can have CON_CONSDEV set. */ 3572 console_srcu_write_flags(cur_pref_con, cur_pref_con->flags & ~CON_CONSDEV); 3573 hlist_add_head_rcu(&con->node, &console_list); 3574 } 3575 EXPORT_SYMBOL(console_force_preferred_locked); 3576 3577 /* 3578 * Initialize the console device. This is called *early*, so 3579 * we can't necessarily depend on lots of kernel help here. 3580 * Just do some early initializations, and do the complex setup 3581 * later. 3582 */ 3583 void __init console_init(void) 3584 { 3585 int ret; 3586 initcall_t call; 3587 initcall_entry_t *ce; 3588 3589 /* Setup the default TTY line discipline. */ 3590 n_tty_init(); 3591 3592 /* 3593 * set up the console device so that later boot sequences can 3594 * inform about problems etc.. 3595 */ 3596 ce = __con_initcall_start; 3597 trace_initcall_level("console"); 3598 while (ce < __con_initcall_end) { 3599 call = initcall_from_entry(ce); 3600 trace_initcall_start(call); 3601 ret = call(); 3602 trace_initcall_finish(call, ret); 3603 ce++; 3604 } 3605 } 3606 3607 /* 3608 * Some boot consoles access data that is in the init section and which will 3609 * be discarded after the initcalls have been run. To make sure that no code 3610 * will access this data, unregister the boot consoles in a late initcall. 3611 * 3612 * If for some reason, such as deferred probe or the driver being a loadable 3613 * module, the real console hasn't registered yet at this point, there will 3614 * be a brief interval in which no messages are logged to the console, which 3615 * makes it difficult to diagnose problems that occur during this time. 3616 * 3617 * To mitigate this problem somewhat, only unregister consoles whose memory 3618 * intersects with the init section. Note that all other boot consoles will 3619 * get unregistered when the real preferred console is registered. 3620 */ 3621 static int __init printk_late_init(void) 3622 { 3623 struct hlist_node *tmp; 3624 struct console *con; 3625 int ret; 3626 3627 console_list_lock(); 3628 hlist_for_each_entry_safe(con, tmp, &console_list, node) { 3629 if (!(con->flags & CON_BOOT)) 3630 continue; 3631 3632 /* Check addresses that might be used for enabled consoles. */ 3633 if (init_section_intersects(con, sizeof(*con)) || 3634 init_section_contains(con->write, 0) || 3635 init_section_contains(con->read, 0) || 3636 init_section_contains(con->device, 0) || 3637 init_section_contains(con->unblank, 0) || 3638 init_section_contains(con->data, 0)) { 3639 /* 3640 * Please, consider moving the reported consoles out 3641 * of the init section. 3642 */ 3643 pr_warn("bootconsole [%s%d] uses init memory and must be disabled even before the real one is ready\n", 3644 con->name, con->index); 3645 unregister_console_locked(con); 3646 } 3647 } 3648 console_list_unlock(); 3649 3650 ret = cpuhp_setup_state_nocalls(CPUHP_PRINTK_DEAD, "printk:dead", NULL, 3651 console_cpu_notify); 3652 WARN_ON(ret < 0); 3653 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "printk:online", 3654 console_cpu_notify, NULL); 3655 WARN_ON(ret < 0); 3656 printk_sysctl_init(); 3657 return 0; 3658 } 3659 late_initcall(printk_late_init); 3660 3661 #if defined CONFIG_PRINTK 3662 /* If @con is specified, only wait for that console. Otherwise wait for all. */ 3663 static bool __pr_flush(struct console *con, int timeout_ms, bool reset_on_progress) 3664 { 3665 int remaining = timeout_ms; 3666 struct console *c; 3667 u64 last_diff = 0; 3668 u64 printk_seq; 3669 int cookie; 3670 u64 diff; 3671 u64 seq; 3672 3673 might_sleep(); 3674 3675 seq = prb_next_seq(prb); 3676 3677 for (;;) { 3678 diff = 0; 3679 3680 /* 3681 * Hold the console_lock to guarantee safe access to 3682 * console->seq and to prevent changes to @console_suspended 3683 * until all consoles have been processed. 3684 */ 3685 console_lock(); 3686 3687 cookie = console_srcu_read_lock(); 3688 for_each_console_srcu(c) { 3689 if (con && con != c) 3690 continue; 3691 if (!console_is_usable(c)) 3692 continue; 3693 printk_seq = c->seq; 3694 if (printk_seq < seq) 3695 diff += seq - printk_seq; 3696 } 3697 console_srcu_read_unlock(cookie); 3698 3699 /* 3700 * If consoles are suspended, it cannot be expected that they 3701 * make forward progress, so timeout immediately. @diff is 3702 * still used to return a valid flush status. 3703 */ 3704 if (console_suspended) 3705 remaining = 0; 3706 else if (diff != last_diff && reset_on_progress) 3707 remaining = timeout_ms; 3708 3709 console_unlock(); 3710 3711 if (diff == 0 || remaining == 0) 3712 break; 3713 3714 if (remaining < 0) { 3715 /* no timeout limit */ 3716 msleep(100); 3717 } else if (remaining < 100) { 3718 msleep(remaining); 3719 remaining = 0; 3720 } else { 3721 msleep(100); 3722 remaining -= 100; 3723 } 3724 3725 last_diff = diff; 3726 } 3727 3728 return (diff == 0); 3729 } 3730 3731 /** 3732 * pr_flush() - Wait for printing threads to catch up. 3733 * 3734 * @timeout_ms: The maximum time (in ms) to wait. 3735 * @reset_on_progress: Reset the timeout if forward progress is seen. 3736 * 3737 * A value of 0 for @timeout_ms means no waiting will occur. A value of -1 3738 * represents infinite waiting. 3739 * 3740 * If @reset_on_progress is true, the timeout will be reset whenever any 3741 * printer has been seen to make some forward progress. 3742 * 3743 * Context: Process context. May sleep while acquiring console lock. 3744 * Return: true if all enabled printers are caught up. 3745 */ 3746 static bool pr_flush(int timeout_ms, bool reset_on_progress) 3747 { 3748 return __pr_flush(NULL, timeout_ms, reset_on_progress); 3749 } 3750 3751 /* 3752 * Delayed printk version, for scheduler-internal messages: 3753 */ 3754 #define PRINTK_PENDING_WAKEUP 0x01 3755 #define PRINTK_PENDING_OUTPUT 0x02 3756 3757 static DEFINE_PER_CPU(int, printk_pending); 3758 3759 static void wake_up_klogd_work_func(struct irq_work *irq_work) 3760 { 3761 int pending = this_cpu_xchg(printk_pending, 0); 3762 3763 if (pending & PRINTK_PENDING_OUTPUT) { 3764 /* If trylock fails, someone else is doing the printing */ 3765 if (console_trylock()) 3766 console_unlock(); 3767 } 3768 3769 if (pending & PRINTK_PENDING_WAKEUP) 3770 wake_up_interruptible(&log_wait); 3771 } 3772 3773 static DEFINE_PER_CPU(struct irq_work, wake_up_klogd_work) = 3774 IRQ_WORK_INIT_LAZY(wake_up_klogd_work_func); 3775 3776 static void __wake_up_klogd(int val) 3777 { 3778 if (!printk_percpu_data_ready()) 3779 return; 3780 3781 preempt_disable(); 3782 /* 3783 * Guarantee any new records can be seen by tasks preparing to wait 3784 * before this context checks if the wait queue is empty. 3785 * 3786 * The full memory barrier within wq_has_sleeper() pairs with the full 3787 * memory barrier within set_current_state() of 3788 * prepare_to_wait_event(), which is called after ___wait_event() adds 3789 * the waiter but before it has checked the wait condition. 3790 * 3791 * This pairs with devkmsg_read:A and syslog_print:A. 3792 */ 3793 if (wq_has_sleeper(&log_wait) || /* LMM(__wake_up_klogd:A) */ 3794 (val & PRINTK_PENDING_OUTPUT)) { 3795 this_cpu_or(printk_pending, val); 3796 irq_work_queue(this_cpu_ptr(&wake_up_klogd_work)); 3797 } 3798 preempt_enable(); 3799 } 3800 3801 void wake_up_klogd(void) 3802 { 3803 __wake_up_klogd(PRINTK_PENDING_WAKEUP); 3804 } 3805 3806 void defer_console_output(void) 3807 { 3808 /* 3809 * New messages may have been added directly to the ringbuffer 3810 * using vprintk_store(), so wake any waiters as well. 3811 */ 3812 __wake_up_klogd(PRINTK_PENDING_WAKEUP | PRINTK_PENDING_OUTPUT); 3813 } 3814 3815 void printk_trigger_flush(void) 3816 { 3817 defer_console_output(); 3818 } 3819 3820 int vprintk_deferred(const char *fmt, va_list args) 3821 { 3822 int r; 3823 3824 r = vprintk_emit(0, LOGLEVEL_SCHED, NULL, fmt, args); 3825 defer_console_output(); 3826 3827 return r; 3828 } 3829 3830 int _printk_deferred(const char *fmt, ...) 3831 { 3832 va_list args; 3833 int r; 3834 3835 va_start(args, fmt); 3836 r = vprintk_deferred(fmt, args); 3837 va_end(args); 3838 3839 return r; 3840 } 3841 3842 /* 3843 * printk rate limiting, lifted from the networking subsystem. 3844 * 3845 * This enforces a rate limit: not more than 10 kernel messages 3846 * every 5s to make a denial-of-service attack impossible. 3847 */ 3848 DEFINE_RATELIMIT_STATE(printk_ratelimit_state, 5 * HZ, 10); 3849 3850 int __printk_ratelimit(const char *func) 3851 { 3852 return ___ratelimit(&printk_ratelimit_state, func); 3853 } 3854 EXPORT_SYMBOL(__printk_ratelimit); 3855 3856 /** 3857 * printk_timed_ratelimit - caller-controlled printk ratelimiting 3858 * @caller_jiffies: pointer to caller's state 3859 * @interval_msecs: minimum interval between prints 3860 * 3861 * printk_timed_ratelimit() returns true if more than @interval_msecs 3862 * milliseconds have elapsed since the last time printk_timed_ratelimit() 3863 * returned true. 3864 */ 3865 bool printk_timed_ratelimit(unsigned long *caller_jiffies, 3866 unsigned int interval_msecs) 3867 { 3868 unsigned long elapsed = jiffies - *caller_jiffies; 3869 3870 if (*caller_jiffies && elapsed <= msecs_to_jiffies(interval_msecs)) 3871 return false; 3872 3873 *caller_jiffies = jiffies; 3874 return true; 3875 } 3876 EXPORT_SYMBOL(printk_timed_ratelimit); 3877 3878 static DEFINE_SPINLOCK(dump_list_lock); 3879 static LIST_HEAD(dump_list); 3880 3881 /** 3882 * kmsg_dump_register - register a kernel log dumper. 3883 * @dumper: pointer to the kmsg_dumper structure 3884 * 3885 * Adds a kernel log dumper to the system. The dump callback in the 3886 * structure will be called when the kernel oopses or panics and must be 3887 * set. Returns zero on success and %-EINVAL or %-EBUSY otherwise. 3888 */ 3889 int kmsg_dump_register(struct kmsg_dumper *dumper) 3890 { 3891 unsigned long flags; 3892 int err = -EBUSY; 3893 3894 /* The dump callback needs to be set */ 3895 if (!dumper->dump) 3896 return -EINVAL; 3897 3898 spin_lock_irqsave(&dump_list_lock, flags); 3899 /* Don't allow registering multiple times */ 3900 if (!dumper->registered) { 3901 dumper->registered = 1; 3902 list_add_tail_rcu(&dumper->list, &dump_list); 3903 err = 0; 3904 } 3905 spin_unlock_irqrestore(&dump_list_lock, flags); 3906 3907 return err; 3908 } 3909 EXPORT_SYMBOL_GPL(kmsg_dump_register); 3910 3911 /** 3912 * kmsg_dump_unregister - unregister a kmsg dumper. 3913 * @dumper: pointer to the kmsg_dumper structure 3914 * 3915 * Removes a dump device from the system. Returns zero on success and 3916 * %-EINVAL otherwise. 3917 */ 3918 int kmsg_dump_unregister(struct kmsg_dumper *dumper) 3919 { 3920 unsigned long flags; 3921 int err = -EINVAL; 3922 3923 spin_lock_irqsave(&dump_list_lock, flags); 3924 if (dumper->registered) { 3925 dumper->registered = 0; 3926 list_del_rcu(&dumper->list); 3927 err = 0; 3928 } 3929 spin_unlock_irqrestore(&dump_list_lock, flags); 3930 synchronize_rcu(); 3931 3932 return err; 3933 } 3934 EXPORT_SYMBOL_GPL(kmsg_dump_unregister); 3935 3936 static bool always_kmsg_dump; 3937 module_param_named(always_kmsg_dump, always_kmsg_dump, bool, S_IRUGO | S_IWUSR); 3938 3939 const char *kmsg_dump_reason_str(enum kmsg_dump_reason reason) 3940 { 3941 switch (reason) { 3942 case KMSG_DUMP_PANIC: 3943 return "Panic"; 3944 case KMSG_DUMP_OOPS: 3945 return "Oops"; 3946 case KMSG_DUMP_EMERG: 3947 return "Emergency"; 3948 case KMSG_DUMP_SHUTDOWN: 3949 return "Shutdown"; 3950 default: 3951 return "Unknown"; 3952 } 3953 } 3954 EXPORT_SYMBOL_GPL(kmsg_dump_reason_str); 3955 3956 /** 3957 * kmsg_dump - dump kernel log to kernel message dumpers. 3958 * @reason: the reason (oops, panic etc) for dumping 3959 * 3960 * Call each of the registered dumper's dump() callback, which can 3961 * retrieve the kmsg records with kmsg_dump_get_line() or 3962 * kmsg_dump_get_buffer(). 3963 */ 3964 void kmsg_dump(enum kmsg_dump_reason reason) 3965 { 3966 struct kmsg_dumper *dumper; 3967 3968 rcu_read_lock(); 3969 list_for_each_entry_rcu(dumper, &dump_list, list) { 3970 enum kmsg_dump_reason max_reason = dumper->max_reason; 3971 3972 /* 3973 * If client has not provided a specific max_reason, default 3974 * to KMSG_DUMP_OOPS, unless always_kmsg_dump was set. 3975 */ 3976 if (max_reason == KMSG_DUMP_UNDEF) { 3977 max_reason = always_kmsg_dump ? KMSG_DUMP_MAX : 3978 KMSG_DUMP_OOPS; 3979 } 3980 if (reason > max_reason) 3981 continue; 3982 3983 /* invoke dumper which will iterate over records */ 3984 dumper->dump(dumper, reason); 3985 } 3986 rcu_read_unlock(); 3987 } 3988 3989 /** 3990 * kmsg_dump_get_line - retrieve one kmsg log line 3991 * @iter: kmsg dump iterator 3992 * @syslog: include the "<4>" prefixes 3993 * @line: buffer to copy the line to 3994 * @size: maximum size of the buffer 3995 * @len: length of line placed into buffer 3996 * 3997 * Start at the beginning of the kmsg buffer, with the oldest kmsg 3998 * record, and copy one record into the provided buffer. 3999 * 4000 * Consecutive calls will return the next available record moving 4001 * towards the end of the buffer with the youngest messages. 4002 * 4003 * A return value of FALSE indicates that there are no more records to 4004 * read. 4005 */ 4006 bool kmsg_dump_get_line(struct kmsg_dump_iter *iter, bool syslog, 4007 char *line, size_t size, size_t *len) 4008 { 4009 u64 min_seq = latched_seq_read_nolock(&clear_seq); 4010 struct printk_info info; 4011 unsigned int line_count; 4012 struct printk_record r; 4013 size_t l = 0; 4014 bool ret = false; 4015 4016 if (iter->cur_seq < min_seq) 4017 iter->cur_seq = min_seq; 4018 4019 prb_rec_init_rd(&r, &info, line, size); 4020 4021 /* Read text or count text lines? */ 4022 if (line) { 4023 if (!prb_read_valid(prb, iter->cur_seq, &r)) 4024 goto out; 4025 l = record_print_text(&r, syslog, printk_time); 4026 } else { 4027 if (!prb_read_valid_info(prb, iter->cur_seq, 4028 &info, &line_count)) { 4029 goto out; 4030 } 4031 l = get_record_print_text_size(&info, line_count, syslog, 4032 printk_time); 4033 4034 } 4035 4036 iter->cur_seq = r.info->seq + 1; 4037 ret = true; 4038 out: 4039 if (len) 4040 *len = l; 4041 return ret; 4042 } 4043 EXPORT_SYMBOL_GPL(kmsg_dump_get_line); 4044 4045 /** 4046 * kmsg_dump_get_buffer - copy kmsg log lines 4047 * @iter: kmsg dump iterator 4048 * @syslog: include the "<4>" prefixes 4049 * @buf: buffer to copy the line to 4050 * @size: maximum size of the buffer 4051 * @len_out: length of line placed into buffer 4052 * 4053 * Start at the end of the kmsg buffer and fill the provided buffer 4054 * with as many of the *youngest* kmsg records that fit into it. 4055 * If the buffer is large enough, all available kmsg records will be 4056 * copied with a single call. 4057 * 4058 * Consecutive calls will fill the buffer with the next block of 4059 * available older records, not including the earlier retrieved ones. 4060 * 4061 * A return value of FALSE indicates that there are no more records to 4062 * read. 4063 */ 4064 bool kmsg_dump_get_buffer(struct kmsg_dump_iter *iter, bool syslog, 4065 char *buf, size_t size, size_t *len_out) 4066 { 4067 u64 min_seq = latched_seq_read_nolock(&clear_seq); 4068 struct printk_info info; 4069 struct printk_record r; 4070 u64 seq; 4071 u64 next_seq; 4072 size_t len = 0; 4073 bool ret = false; 4074 bool time = printk_time; 4075 4076 if (!buf || !size) 4077 goto out; 4078 4079 if (iter->cur_seq < min_seq) 4080 iter->cur_seq = min_seq; 4081 4082 if (prb_read_valid_info(prb, iter->cur_seq, &info, NULL)) { 4083 if (info.seq != iter->cur_seq) { 4084 /* messages are gone, move to first available one */ 4085 iter->cur_seq = info.seq; 4086 } 4087 } 4088 4089 /* last entry */ 4090 if (iter->cur_seq >= iter->next_seq) 4091 goto out; 4092 4093 /* 4094 * Find first record that fits, including all following records, 4095 * into the user-provided buffer for this dump. Pass in size-1 4096 * because this function (by way of record_print_text()) will 4097 * not write more than size-1 bytes of text into @buf. 4098 */ 4099 seq = find_first_fitting_seq(iter->cur_seq, iter->next_seq, 4100 size - 1, syslog, time); 4101 4102 /* 4103 * Next kmsg_dump_get_buffer() invocation will dump block of 4104 * older records stored right before this one. 4105 */ 4106 next_seq = seq; 4107 4108 prb_rec_init_rd(&r, &info, buf, size); 4109 4110 len = 0; 4111 prb_for_each_record(seq, prb, seq, &r) { 4112 if (r.info->seq >= iter->next_seq) 4113 break; 4114 4115 len += record_print_text(&r, syslog, time); 4116 4117 /* Adjust record to store to remaining buffer space. */ 4118 prb_rec_init_rd(&r, &info, buf + len, size - len); 4119 } 4120 4121 iter->next_seq = next_seq; 4122 ret = true; 4123 out: 4124 if (len_out) 4125 *len_out = len; 4126 return ret; 4127 } 4128 EXPORT_SYMBOL_GPL(kmsg_dump_get_buffer); 4129 4130 /** 4131 * kmsg_dump_rewind - reset the iterator 4132 * @iter: kmsg dump iterator 4133 * 4134 * Reset the dumper's iterator so that kmsg_dump_get_line() and 4135 * kmsg_dump_get_buffer() can be called again and used multiple 4136 * times within the same dumper.dump() callback. 4137 */ 4138 void kmsg_dump_rewind(struct kmsg_dump_iter *iter) 4139 { 4140 iter->cur_seq = latched_seq_read_nolock(&clear_seq); 4141 iter->next_seq = prb_next_seq(prb); 4142 } 4143 EXPORT_SYMBOL_GPL(kmsg_dump_rewind); 4144 4145 #endif 4146 4147 #ifdef CONFIG_SMP 4148 static atomic_t printk_cpu_sync_owner = ATOMIC_INIT(-1); 4149 static atomic_t printk_cpu_sync_nested = ATOMIC_INIT(0); 4150 4151 /** 4152 * __printk_cpu_sync_wait() - Busy wait until the printk cpu-reentrant 4153 * spinning lock is not owned by any CPU. 4154 * 4155 * Context: Any context. 4156 */ 4157 void __printk_cpu_sync_wait(void) 4158 { 4159 do { 4160 cpu_relax(); 4161 } while (atomic_read(&printk_cpu_sync_owner) != -1); 4162 } 4163 EXPORT_SYMBOL(__printk_cpu_sync_wait); 4164 4165 /** 4166 * __printk_cpu_sync_try_get() - Try to acquire the printk cpu-reentrant 4167 * spinning lock. 4168 * 4169 * If no processor has the lock, the calling processor takes the lock and 4170 * becomes the owner. If the calling processor is already the owner of the 4171 * lock, this function succeeds immediately. 4172 * 4173 * Context: Any context. Expects interrupts to be disabled. 4174 * Return: 1 on success, otherwise 0. 4175 */ 4176 int __printk_cpu_sync_try_get(void) 4177 { 4178 int cpu; 4179 int old; 4180 4181 cpu = smp_processor_id(); 4182 4183 /* 4184 * Guarantee loads and stores from this CPU when it is the lock owner 4185 * are _not_ visible to the previous lock owner. This pairs with 4186 * __printk_cpu_sync_put:B. 4187 * 4188 * Memory barrier involvement: 4189 * 4190 * If __printk_cpu_sync_try_get:A reads from __printk_cpu_sync_put:B, 4191 * then __printk_cpu_sync_put:A can never read from 4192 * __printk_cpu_sync_try_get:B. 4193 * 4194 * Relies on: 4195 * 4196 * RELEASE from __printk_cpu_sync_put:A to __printk_cpu_sync_put:B 4197 * of the previous CPU 4198 * matching 4199 * ACQUIRE from __printk_cpu_sync_try_get:A to 4200 * __printk_cpu_sync_try_get:B of this CPU 4201 */ 4202 old = atomic_cmpxchg_acquire(&printk_cpu_sync_owner, -1, 4203 cpu); /* LMM(__printk_cpu_sync_try_get:A) */ 4204 if (old == -1) { 4205 /* 4206 * This CPU is now the owner and begins loading/storing 4207 * data: LMM(__printk_cpu_sync_try_get:B) 4208 */ 4209 return 1; 4210 4211 } else if (old == cpu) { 4212 /* This CPU is already the owner. */ 4213 atomic_inc(&printk_cpu_sync_nested); 4214 return 1; 4215 } 4216 4217 return 0; 4218 } 4219 EXPORT_SYMBOL(__printk_cpu_sync_try_get); 4220 4221 /** 4222 * __printk_cpu_sync_put() - Release the printk cpu-reentrant spinning lock. 4223 * 4224 * The calling processor must be the owner of the lock. 4225 * 4226 * Context: Any context. Expects interrupts to be disabled. 4227 */ 4228 void __printk_cpu_sync_put(void) 4229 { 4230 if (atomic_read(&printk_cpu_sync_nested)) { 4231 atomic_dec(&printk_cpu_sync_nested); 4232 return; 4233 } 4234 4235 /* 4236 * This CPU is finished loading/storing data: 4237 * LMM(__printk_cpu_sync_put:A) 4238 */ 4239 4240 /* 4241 * Guarantee loads and stores from this CPU when it was the 4242 * lock owner are visible to the next lock owner. This pairs 4243 * with __printk_cpu_sync_try_get:A. 4244 * 4245 * Memory barrier involvement: 4246 * 4247 * If __printk_cpu_sync_try_get:A reads from __printk_cpu_sync_put:B, 4248 * then __printk_cpu_sync_try_get:B reads from __printk_cpu_sync_put:A. 4249 * 4250 * Relies on: 4251 * 4252 * RELEASE from __printk_cpu_sync_put:A to __printk_cpu_sync_put:B 4253 * of this CPU 4254 * matching 4255 * ACQUIRE from __printk_cpu_sync_try_get:A to 4256 * __printk_cpu_sync_try_get:B of the next CPU 4257 */ 4258 atomic_set_release(&printk_cpu_sync_owner, 4259 -1); /* LMM(__printk_cpu_sync_put:B) */ 4260 } 4261 EXPORT_SYMBOL(__printk_cpu_sync_put); 4262 #endif /* CONFIG_SMP */ 4263