1 /* 2 * linux/kernel/printk.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 * 6 * Modified to make sys_syslog() more flexible: added commands to 7 * return the last 4k of kernel messages, regardless of whether 8 * they've been read or not. Added option to suppress kernel printk's 9 * to the console. Added hook for sending the console messages 10 * elsewhere, in preparation for a serial line console (someday). 11 * Ted Ts'o, 2/11/93. 12 * Modified for sysctl support, 1/8/97, Chris Horn. 13 * Fixed SMP synchronization, 08/08/99, Manfred Spraul 14 * manfred@colorfullife.com 15 * Rewrote bits to get rid of console_lock 16 * 01Mar01 Andrew Morton 17 */ 18 19 #include <linux/kernel.h> 20 #include <linux/mm.h> 21 #include <linux/tty.h> 22 #include <linux/tty_driver.h> 23 #include <linux/console.h> 24 #include <linux/init.h> 25 #include <linux/jiffies.h> 26 #include <linux/nmi.h> 27 #include <linux/module.h> 28 #include <linux/moduleparam.h> 29 #include <linux/delay.h> 30 #include <linux/smp.h> 31 #include <linux/security.h> 32 #include <linux/bootmem.h> 33 #include <linux/memblock.h> 34 #include <linux/syscalls.h> 35 #include <linux/kexec.h> 36 #include <linux/kdb.h> 37 #include <linux/ratelimit.h> 38 #include <linux/kmsg_dump.h> 39 #include <linux/syslog.h> 40 #include <linux/cpu.h> 41 #include <linux/notifier.h> 42 #include <linux/rculist.h> 43 #include <linux/poll.h> 44 #include <linux/irq_work.h> 45 #include <linux/utsname.h> 46 #include <linux/ctype.h> 47 #include <linux/uio.h> 48 49 #include <asm/uaccess.h> 50 #include <asm/sections.h> 51 52 #define CREATE_TRACE_POINTS 53 #include <trace/events/printk.h> 54 55 #include "console_cmdline.h" 56 #include "braille.h" 57 #include "internal.h" 58 59 int console_printk[4] = { 60 CONSOLE_LOGLEVEL_DEFAULT, /* console_loglevel */ 61 MESSAGE_LOGLEVEL_DEFAULT, /* default_message_loglevel */ 62 CONSOLE_LOGLEVEL_MIN, /* minimum_console_loglevel */ 63 CONSOLE_LOGLEVEL_DEFAULT, /* default_console_loglevel */ 64 }; 65 66 /* 67 * Low level drivers may need that to know if they can schedule in 68 * their unblank() callback or not. So let's export it. 69 */ 70 int oops_in_progress; 71 EXPORT_SYMBOL(oops_in_progress); 72 73 /* 74 * console_sem protects the console_drivers list, and also 75 * provides serialisation for access to the entire console 76 * driver system. 77 */ 78 static DEFINE_SEMAPHORE(console_sem); 79 struct console *console_drivers; 80 EXPORT_SYMBOL_GPL(console_drivers); 81 82 #ifdef CONFIG_LOCKDEP 83 static struct lockdep_map console_lock_dep_map = { 84 .name = "console_lock" 85 }; 86 #endif 87 88 enum devkmsg_log_bits { 89 __DEVKMSG_LOG_BIT_ON = 0, 90 __DEVKMSG_LOG_BIT_OFF, 91 __DEVKMSG_LOG_BIT_LOCK, 92 }; 93 94 enum devkmsg_log_masks { 95 DEVKMSG_LOG_MASK_ON = BIT(__DEVKMSG_LOG_BIT_ON), 96 DEVKMSG_LOG_MASK_OFF = BIT(__DEVKMSG_LOG_BIT_OFF), 97 DEVKMSG_LOG_MASK_LOCK = BIT(__DEVKMSG_LOG_BIT_LOCK), 98 }; 99 100 /* Keep both the 'on' and 'off' bits clear, i.e. ratelimit by default: */ 101 #define DEVKMSG_LOG_MASK_DEFAULT 0 102 103 static unsigned int __read_mostly devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT; 104 105 static int __control_devkmsg(char *str) 106 { 107 if (!str) 108 return -EINVAL; 109 110 if (!strncmp(str, "on", 2)) { 111 devkmsg_log = DEVKMSG_LOG_MASK_ON; 112 return 2; 113 } else if (!strncmp(str, "off", 3)) { 114 devkmsg_log = DEVKMSG_LOG_MASK_OFF; 115 return 3; 116 } else if (!strncmp(str, "ratelimit", 9)) { 117 devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT; 118 return 9; 119 } 120 return -EINVAL; 121 } 122 123 static int __init control_devkmsg(char *str) 124 { 125 if (__control_devkmsg(str) < 0) 126 return 1; 127 128 /* 129 * Set sysctl string accordingly: 130 */ 131 if (devkmsg_log == DEVKMSG_LOG_MASK_ON) { 132 memset(devkmsg_log_str, 0, DEVKMSG_STR_MAX_SIZE); 133 strncpy(devkmsg_log_str, "on", 2); 134 } else if (devkmsg_log == DEVKMSG_LOG_MASK_OFF) { 135 memset(devkmsg_log_str, 0, DEVKMSG_STR_MAX_SIZE); 136 strncpy(devkmsg_log_str, "off", 3); 137 } 138 /* else "ratelimit" which is set by default. */ 139 140 /* 141 * Sysctl cannot change it anymore. The kernel command line setting of 142 * this parameter is to force the setting to be permanent throughout the 143 * runtime of the system. This is a precation measure against userspace 144 * trying to be a smarta** and attempting to change it up on us. 145 */ 146 devkmsg_log |= DEVKMSG_LOG_MASK_LOCK; 147 148 return 0; 149 } 150 __setup("printk.devkmsg=", control_devkmsg); 151 152 char devkmsg_log_str[DEVKMSG_STR_MAX_SIZE] = "ratelimit"; 153 154 int devkmsg_sysctl_set_loglvl(struct ctl_table *table, int write, 155 void __user *buffer, size_t *lenp, loff_t *ppos) 156 { 157 char old_str[DEVKMSG_STR_MAX_SIZE]; 158 unsigned int old; 159 int err; 160 161 if (write) { 162 if (devkmsg_log & DEVKMSG_LOG_MASK_LOCK) 163 return -EINVAL; 164 165 old = devkmsg_log; 166 strncpy(old_str, devkmsg_log_str, DEVKMSG_STR_MAX_SIZE); 167 } 168 169 err = proc_dostring(table, write, buffer, lenp, ppos); 170 if (err) 171 return err; 172 173 if (write) { 174 err = __control_devkmsg(devkmsg_log_str); 175 176 /* 177 * Do not accept an unknown string OR a known string with 178 * trailing crap... 179 */ 180 if (err < 0 || (err + 1 != *lenp)) { 181 182 /* ... and restore old setting. */ 183 devkmsg_log = old; 184 strncpy(devkmsg_log_str, old_str, DEVKMSG_STR_MAX_SIZE); 185 186 return -EINVAL; 187 } 188 } 189 190 return 0; 191 } 192 193 /* 194 * Number of registered extended console drivers. 195 * 196 * If extended consoles are present, in-kernel cont reassembly is disabled 197 * and each fragment is stored as a separate log entry with proper 198 * continuation flag so that every emitted message has full metadata. This 199 * doesn't change the result for regular consoles or /proc/kmsg. For 200 * /dev/kmsg, as long as the reader concatenates messages according to 201 * consecutive continuation flags, the end result should be the same too. 202 */ 203 static int nr_ext_console_drivers; 204 205 /* 206 * Helper macros to handle lockdep when locking/unlocking console_sem. We use 207 * macros instead of functions so that _RET_IP_ contains useful information. 208 */ 209 #define down_console_sem() do { \ 210 down(&console_sem);\ 211 mutex_acquire(&console_lock_dep_map, 0, 0, _RET_IP_);\ 212 } while (0) 213 214 static int __down_trylock_console_sem(unsigned long ip) 215 { 216 if (down_trylock(&console_sem)) 217 return 1; 218 mutex_acquire(&console_lock_dep_map, 0, 1, ip); 219 return 0; 220 } 221 #define down_trylock_console_sem() __down_trylock_console_sem(_RET_IP_) 222 223 #define up_console_sem() do { \ 224 mutex_release(&console_lock_dep_map, 1, _RET_IP_);\ 225 up(&console_sem);\ 226 } while (0) 227 228 /* 229 * This is used for debugging the mess that is the VT code by 230 * keeping track if we have the console semaphore held. It's 231 * definitely not the perfect debug tool (we don't know if _WE_ 232 * hold it and are racing, but it helps tracking those weird code 233 * paths in the console code where we end up in places I want 234 * locked without the console sempahore held). 235 */ 236 static int console_locked, console_suspended; 237 238 /* 239 * If exclusive_console is non-NULL then only this console is to be printed to. 240 */ 241 static struct console *exclusive_console; 242 243 /* 244 * Array of consoles built from command line options (console=) 245 */ 246 247 #define MAX_CMDLINECONSOLES 8 248 249 static struct console_cmdline console_cmdline[MAX_CMDLINECONSOLES]; 250 251 static int selected_console = -1; 252 static int preferred_console = -1; 253 int console_set_on_cmdline; 254 EXPORT_SYMBOL(console_set_on_cmdline); 255 256 /* Flag: console code may call schedule() */ 257 static int console_may_schedule; 258 259 /* 260 * The printk log buffer consists of a chain of concatenated variable 261 * length records. Every record starts with a record header, containing 262 * the overall length of the record. 263 * 264 * The heads to the first and last entry in the buffer, as well as the 265 * sequence numbers of these entries are maintained when messages are 266 * stored. 267 * 268 * If the heads indicate available messages, the length in the header 269 * tells the start next message. A length == 0 for the next message 270 * indicates a wrap-around to the beginning of the buffer. 271 * 272 * Every record carries the monotonic timestamp in microseconds, as well as 273 * the standard userspace syslog level and syslog facility. The usual 274 * kernel messages use LOG_KERN; userspace-injected messages always carry 275 * a matching syslog facility, by default LOG_USER. The origin of every 276 * message can be reliably determined that way. 277 * 278 * The human readable log message directly follows the message header. The 279 * length of the message text is stored in the header, the stored message 280 * is not terminated. 281 * 282 * Optionally, a message can carry a dictionary of properties (key/value pairs), 283 * to provide userspace with a machine-readable message context. 284 * 285 * Examples for well-defined, commonly used property names are: 286 * DEVICE=b12:8 device identifier 287 * b12:8 block dev_t 288 * c127:3 char dev_t 289 * n8 netdev ifindex 290 * +sound:card0 subsystem:devname 291 * SUBSYSTEM=pci driver-core subsystem name 292 * 293 * Valid characters in property names are [a-zA-Z0-9.-_]. The plain text value 294 * follows directly after a '=' character. Every property is terminated by 295 * a '\0' character. The last property is not terminated. 296 * 297 * Example of a message structure: 298 * 0000 ff 8f 00 00 00 00 00 00 monotonic time in nsec 299 * 0008 34 00 record is 52 bytes long 300 * 000a 0b 00 text is 11 bytes long 301 * 000c 1f 00 dictionary is 23 bytes long 302 * 000e 03 00 LOG_KERN (facility) LOG_ERR (level) 303 * 0010 69 74 27 73 20 61 20 6c "it's a l" 304 * 69 6e 65 "ine" 305 * 001b 44 45 56 49 43 "DEVIC" 306 * 45 3d 62 38 3a 32 00 44 "E=b8:2\0D" 307 * 52 49 56 45 52 3d 62 75 "RIVER=bu" 308 * 67 "g" 309 * 0032 00 00 00 padding to next message header 310 * 311 * The 'struct printk_log' buffer header must never be directly exported to 312 * userspace, it is a kernel-private implementation detail that might 313 * need to be changed in the future, when the requirements change. 314 * 315 * /dev/kmsg exports the structured data in the following line format: 316 * "<level>,<sequnum>,<timestamp>,<contflag>[,additional_values, ... ];<message text>\n" 317 * 318 * Users of the export format should ignore possible additional values 319 * separated by ',', and find the message after the ';' character. 320 * 321 * The optional key/value pairs are attached as continuation lines starting 322 * with a space character and terminated by a newline. All possible 323 * non-prinatable characters are escaped in the "\xff" notation. 324 */ 325 326 enum log_flags { 327 LOG_NOCONS = 1, /* already flushed, do not print to console */ 328 LOG_NEWLINE = 2, /* text ended with a newline */ 329 LOG_PREFIX = 4, /* text started with a prefix */ 330 LOG_CONT = 8, /* text is a fragment of a continuation line */ 331 }; 332 333 struct printk_log { 334 u64 ts_nsec; /* timestamp in nanoseconds */ 335 u16 len; /* length of entire record */ 336 u16 text_len; /* length of text buffer */ 337 u16 dict_len; /* length of dictionary buffer */ 338 u8 facility; /* syslog facility */ 339 u8 flags:5; /* internal record flags */ 340 u8 level:3; /* syslog level */ 341 } 342 #ifdef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS 343 __packed __aligned(4) 344 #endif 345 ; 346 347 /* 348 * The logbuf_lock protects kmsg buffer, indices, counters. This can be taken 349 * within the scheduler's rq lock. It must be released before calling 350 * console_unlock() or anything else that might wake up a process. 351 */ 352 DEFINE_RAW_SPINLOCK(logbuf_lock); 353 354 #ifdef CONFIG_PRINTK 355 DECLARE_WAIT_QUEUE_HEAD(log_wait); 356 /* the next printk record to read by syslog(READ) or /proc/kmsg */ 357 static u64 syslog_seq; 358 static u32 syslog_idx; 359 static enum log_flags syslog_prev; 360 static size_t syslog_partial; 361 362 /* index and sequence number of the first record stored in the buffer */ 363 static u64 log_first_seq; 364 static u32 log_first_idx; 365 366 /* index and sequence number of the next record to store in the buffer */ 367 static u64 log_next_seq; 368 static u32 log_next_idx; 369 370 /* the next printk record to write to the console */ 371 static u64 console_seq; 372 static u32 console_idx; 373 static enum log_flags console_prev; 374 375 /* the next printk record to read after the last 'clear' command */ 376 static u64 clear_seq; 377 static u32 clear_idx; 378 379 #define PREFIX_MAX 32 380 #define LOG_LINE_MAX (1024 - PREFIX_MAX) 381 382 #define LOG_LEVEL(v) ((v) & 0x07) 383 #define LOG_FACILITY(v) ((v) >> 3 & 0xff) 384 385 /* record buffer */ 386 #define LOG_ALIGN __alignof__(struct printk_log) 387 #define __LOG_BUF_LEN (1 << CONFIG_LOG_BUF_SHIFT) 388 static char __log_buf[__LOG_BUF_LEN] __aligned(LOG_ALIGN); 389 static char *log_buf = __log_buf; 390 static u32 log_buf_len = __LOG_BUF_LEN; 391 392 /* Return log buffer address */ 393 char *log_buf_addr_get(void) 394 { 395 return log_buf; 396 } 397 398 /* Return log buffer size */ 399 u32 log_buf_len_get(void) 400 { 401 return log_buf_len; 402 } 403 404 /* human readable text of the record */ 405 static char *log_text(const struct printk_log *msg) 406 { 407 return (char *)msg + sizeof(struct printk_log); 408 } 409 410 /* optional key/value pair dictionary attached to the record */ 411 static char *log_dict(const struct printk_log *msg) 412 { 413 return (char *)msg + sizeof(struct printk_log) + msg->text_len; 414 } 415 416 /* get record by index; idx must point to valid msg */ 417 static struct printk_log *log_from_idx(u32 idx) 418 { 419 struct printk_log *msg = (struct printk_log *)(log_buf + idx); 420 421 /* 422 * A length == 0 record is the end of buffer marker. Wrap around and 423 * read the message at the start of the buffer. 424 */ 425 if (!msg->len) 426 return (struct printk_log *)log_buf; 427 return msg; 428 } 429 430 /* get next record; idx must point to valid msg */ 431 static u32 log_next(u32 idx) 432 { 433 struct printk_log *msg = (struct printk_log *)(log_buf + idx); 434 435 /* length == 0 indicates the end of the buffer; wrap */ 436 /* 437 * A length == 0 record is the end of buffer marker. Wrap around and 438 * read the message at the start of the buffer as *this* one, and 439 * return the one after that. 440 */ 441 if (!msg->len) { 442 msg = (struct printk_log *)log_buf; 443 return msg->len; 444 } 445 return idx + msg->len; 446 } 447 448 /* 449 * Check whether there is enough free space for the given message. 450 * 451 * The same values of first_idx and next_idx mean that the buffer 452 * is either empty or full. 453 * 454 * If the buffer is empty, we must respect the position of the indexes. 455 * They cannot be reset to the beginning of the buffer. 456 */ 457 static int logbuf_has_space(u32 msg_size, bool empty) 458 { 459 u32 free; 460 461 if (log_next_idx > log_first_idx || empty) 462 free = max(log_buf_len - log_next_idx, log_first_idx); 463 else 464 free = log_first_idx - log_next_idx; 465 466 /* 467 * We need space also for an empty header that signalizes wrapping 468 * of the buffer. 469 */ 470 return free >= msg_size + sizeof(struct printk_log); 471 } 472 473 static int log_make_free_space(u32 msg_size) 474 { 475 while (log_first_seq < log_next_seq && 476 !logbuf_has_space(msg_size, false)) { 477 /* drop old messages until we have enough contiguous space */ 478 log_first_idx = log_next(log_first_idx); 479 log_first_seq++; 480 } 481 482 if (clear_seq < log_first_seq) { 483 clear_seq = log_first_seq; 484 clear_idx = log_first_idx; 485 } 486 487 /* sequence numbers are equal, so the log buffer is empty */ 488 if (logbuf_has_space(msg_size, log_first_seq == log_next_seq)) 489 return 0; 490 491 return -ENOMEM; 492 } 493 494 /* compute the message size including the padding bytes */ 495 static u32 msg_used_size(u16 text_len, u16 dict_len, u32 *pad_len) 496 { 497 u32 size; 498 499 size = sizeof(struct printk_log) + text_len + dict_len; 500 *pad_len = (-size) & (LOG_ALIGN - 1); 501 size += *pad_len; 502 503 return size; 504 } 505 506 /* 507 * Define how much of the log buffer we could take at maximum. The value 508 * must be greater than two. Note that only half of the buffer is available 509 * when the index points to the middle. 510 */ 511 #define MAX_LOG_TAKE_PART 4 512 static const char trunc_msg[] = "<truncated>"; 513 514 static u32 truncate_msg(u16 *text_len, u16 *trunc_msg_len, 515 u16 *dict_len, u32 *pad_len) 516 { 517 /* 518 * The message should not take the whole buffer. Otherwise, it might 519 * get removed too soon. 520 */ 521 u32 max_text_len = log_buf_len / MAX_LOG_TAKE_PART; 522 if (*text_len > max_text_len) 523 *text_len = max_text_len; 524 /* enable the warning message */ 525 *trunc_msg_len = strlen(trunc_msg); 526 /* disable the "dict" completely */ 527 *dict_len = 0; 528 /* compute the size again, count also the warning message */ 529 return msg_used_size(*text_len + *trunc_msg_len, 0, pad_len); 530 } 531 532 /* insert record into the buffer, discard old ones, update heads */ 533 static int log_store(int facility, int level, 534 enum log_flags flags, u64 ts_nsec, 535 const char *dict, u16 dict_len, 536 const char *text, u16 text_len) 537 { 538 struct printk_log *msg; 539 u32 size, pad_len; 540 u16 trunc_msg_len = 0; 541 542 /* number of '\0' padding bytes to next message */ 543 size = msg_used_size(text_len, dict_len, &pad_len); 544 545 if (log_make_free_space(size)) { 546 /* truncate the message if it is too long for empty buffer */ 547 size = truncate_msg(&text_len, &trunc_msg_len, 548 &dict_len, &pad_len); 549 /* survive when the log buffer is too small for trunc_msg */ 550 if (log_make_free_space(size)) 551 return 0; 552 } 553 554 if (log_next_idx + size + sizeof(struct printk_log) > log_buf_len) { 555 /* 556 * This message + an additional empty header does not fit 557 * at the end of the buffer. Add an empty header with len == 0 558 * to signify a wrap around. 559 */ 560 memset(log_buf + log_next_idx, 0, sizeof(struct printk_log)); 561 log_next_idx = 0; 562 } 563 564 /* fill message */ 565 msg = (struct printk_log *)(log_buf + log_next_idx); 566 memcpy(log_text(msg), text, text_len); 567 msg->text_len = text_len; 568 if (trunc_msg_len) { 569 memcpy(log_text(msg) + text_len, trunc_msg, trunc_msg_len); 570 msg->text_len += trunc_msg_len; 571 } 572 memcpy(log_dict(msg), dict, dict_len); 573 msg->dict_len = dict_len; 574 msg->facility = facility; 575 msg->level = level & 7; 576 msg->flags = flags & 0x1f; 577 if (ts_nsec > 0) 578 msg->ts_nsec = ts_nsec; 579 else 580 msg->ts_nsec = local_clock(); 581 memset(log_dict(msg) + dict_len, 0, pad_len); 582 msg->len = size; 583 584 /* insert message */ 585 log_next_idx += msg->len; 586 log_next_seq++; 587 588 return msg->text_len; 589 } 590 591 int dmesg_restrict = IS_ENABLED(CONFIG_SECURITY_DMESG_RESTRICT); 592 593 static int syslog_action_restricted(int type) 594 { 595 if (dmesg_restrict) 596 return 1; 597 /* 598 * Unless restricted, we allow "read all" and "get buffer size" 599 * for everybody. 600 */ 601 return type != SYSLOG_ACTION_READ_ALL && 602 type != SYSLOG_ACTION_SIZE_BUFFER; 603 } 604 605 int check_syslog_permissions(int type, int source) 606 { 607 /* 608 * If this is from /proc/kmsg and we've already opened it, then we've 609 * already done the capabilities checks at open time. 610 */ 611 if (source == SYSLOG_FROM_PROC && type != SYSLOG_ACTION_OPEN) 612 goto ok; 613 614 if (syslog_action_restricted(type)) { 615 if (capable(CAP_SYSLOG)) 616 goto ok; 617 /* 618 * For historical reasons, accept CAP_SYS_ADMIN too, with 619 * a warning. 620 */ 621 if (capable(CAP_SYS_ADMIN)) { 622 pr_warn_once("%s (%d): Attempt to access syslog with " 623 "CAP_SYS_ADMIN but no CAP_SYSLOG " 624 "(deprecated).\n", 625 current->comm, task_pid_nr(current)); 626 goto ok; 627 } 628 return -EPERM; 629 } 630 ok: 631 return security_syslog(type); 632 } 633 EXPORT_SYMBOL_GPL(check_syslog_permissions); 634 635 static void append_char(char **pp, char *e, char c) 636 { 637 if (*pp < e) 638 *(*pp)++ = c; 639 } 640 641 static ssize_t msg_print_ext_header(char *buf, size_t size, 642 struct printk_log *msg, u64 seq, 643 enum log_flags prev_flags) 644 { 645 u64 ts_usec = msg->ts_nsec; 646 char cont = '-'; 647 648 do_div(ts_usec, 1000); 649 650 /* 651 * If we couldn't merge continuation line fragments during the print, 652 * export the stored flags to allow an optional external merge of the 653 * records. Merging the records isn't always neccessarily correct, like 654 * when we hit a race during printing. In most cases though, it produces 655 * better readable output. 'c' in the record flags mark the first 656 * fragment of a line, '+' the following. 657 */ 658 if (msg->flags & LOG_CONT) 659 cont = (prev_flags & LOG_CONT) ? '+' : 'c'; 660 661 return scnprintf(buf, size, "%u,%llu,%llu,%c;", 662 (msg->facility << 3) | msg->level, seq, ts_usec, cont); 663 } 664 665 static ssize_t msg_print_ext_body(char *buf, size_t size, 666 char *dict, size_t dict_len, 667 char *text, size_t text_len) 668 { 669 char *p = buf, *e = buf + size; 670 size_t i; 671 672 /* escape non-printable characters */ 673 for (i = 0; i < text_len; i++) { 674 unsigned char c = text[i]; 675 676 if (c < ' ' || c >= 127 || c == '\\') 677 p += scnprintf(p, e - p, "\\x%02x", c); 678 else 679 append_char(&p, e, c); 680 } 681 append_char(&p, e, '\n'); 682 683 if (dict_len) { 684 bool line = true; 685 686 for (i = 0; i < dict_len; i++) { 687 unsigned char c = dict[i]; 688 689 if (line) { 690 append_char(&p, e, ' '); 691 line = false; 692 } 693 694 if (c == '\0') { 695 append_char(&p, e, '\n'); 696 line = true; 697 continue; 698 } 699 700 if (c < ' ' || c >= 127 || c == '\\') { 701 p += scnprintf(p, e - p, "\\x%02x", c); 702 continue; 703 } 704 705 append_char(&p, e, c); 706 } 707 append_char(&p, e, '\n'); 708 } 709 710 return p - buf; 711 } 712 713 /* /dev/kmsg - userspace message inject/listen interface */ 714 struct devkmsg_user { 715 u64 seq; 716 u32 idx; 717 enum log_flags prev; 718 struct ratelimit_state rs; 719 struct mutex lock; 720 char buf[CONSOLE_EXT_LOG_MAX]; 721 }; 722 723 static ssize_t devkmsg_write(struct kiocb *iocb, struct iov_iter *from) 724 { 725 char *buf, *line; 726 int level = default_message_loglevel; 727 int facility = 1; /* LOG_USER */ 728 struct file *file = iocb->ki_filp; 729 struct devkmsg_user *user = file->private_data; 730 size_t len = iov_iter_count(from); 731 ssize_t ret = len; 732 733 if (!user || len > LOG_LINE_MAX) 734 return -EINVAL; 735 736 /* Ignore when user logging is disabled. */ 737 if (devkmsg_log & DEVKMSG_LOG_MASK_OFF) 738 return len; 739 740 /* Ratelimit when not explicitly enabled. */ 741 if (!(devkmsg_log & DEVKMSG_LOG_MASK_ON)) { 742 if (!___ratelimit(&user->rs, current->comm)) 743 return ret; 744 } 745 746 buf = kmalloc(len+1, GFP_KERNEL); 747 if (buf == NULL) 748 return -ENOMEM; 749 750 buf[len] = '\0'; 751 if (copy_from_iter(buf, len, from) != len) { 752 kfree(buf); 753 return -EFAULT; 754 } 755 756 /* 757 * Extract and skip the syslog prefix <[0-9]*>. Coming from userspace 758 * the decimal value represents 32bit, the lower 3 bit are the log 759 * level, the rest are the log facility. 760 * 761 * If no prefix or no userspace facility is specified, we 762 * enforce LOG_USER, to be able to reliably distinguish 763 * kernel-generated messages from userspace-injected ones. 764 */ 765 line = buf; 766 if (line[0] == '<') { 767 char *endp = NULL; 768 unsigned int u; 769 770 u = simple_strtoul(line + 1, &endp, 10); 771 if (endp && endp[0] == '>') { 772 level = LOG_LEVEL(u); 773 if (LOG_FACILITY(u) != 0) 774 facility = LOG_FACILITY(u); 775 endp++; 776 len -= endp - line; 777 line = endp; 778 } 779 } 780 781 printk_emit(facility, level, NULL, 0, "%s", line); 782 kfree(buf); 783 return ret; 784 } 785 786 static void cont_flush(void); 787 788 static ssize_t devkmsg_read(struct file *file, char __user *buf, 789 size_t count, loff_t *ppos) 790 { 791 struct devkmsg_user *user = file->private_data; 792 struct printk_log *msg; 793 size_t len; 794 ssize_t ret; 795 796 if (!user) 797 return -EBADF; 798 799 ret = mutex_lock_interruptible(&user->lock); 800 if (ret) 801 return ret; 802 raw_spin_lock_irq(&logbuf_lock); 803 cont_flush(); 804 while (user->seq == log_next_seq) { 805 if (file->f_flags & O_NONBLOCK) { 806 ret = -EAGAIN; 807 raw_spin_unlock_irq(&logbuf_lock); 808 goto out; 809 } 810 811 raw_spin_unlock_irq(&logbuf_lock); 812 ret = wait_event_interruptible(log_wait, 813 user->seq != log_next_seq); 814 if (ret) 815 goto out; 816 raw_spin_lock_irq(&logbuf_lock); 817 } 818 819 if (user->seq < log_first_seq) { 820 /* our last seen message is gone, return error and reset */ 821 user->idx = log_first_idx; 822 user->seq = log_first_seq; 823 ret = -EPIPE; 824 raw_spin_unlock_irq(&logbuf_lock); 825 goto out; 826 } 827 828 msg = log_from_idx(user->idx); 829 len = msg_print_ext_header(user->buf, sizeof(user->buf), 830 msg, user->seq, user->prev); 831 len += msg_print_ext_body(user->buf + len, sizeof(user->buf) - len, 832 log_dict(msg), msg->dict_len, 833 log_text(msg), msg->text_len); 834 835 user->prev = msg->flags; 836 user->idx = log_next(user->idx); 837 user->seq++; 838 raw_spin_unlock_irq(&logbuf_lock); 839 840 if (len > count) { 841 ret = -EINVAL; 842 goto out; 843 } 844 845 if (copy_to_user(buf, user->buf, len)) { 846 ret = -EFAULT; 847 goto out; 848 } 849 ret = len; 850 out: 851 mutex_unlock(&user->lock); 852 return ret; 853 } 854 855 static loff_t devkmsg_llseek(struct file *file, loff_t offset, int whence) 856 { 857 struct devkmsg_user *user = file->private_data; 858 loff_t ret = 0; 859 860 if (!user) 861 return -EBADF; 862 if (offset) 863 return -ESPIPE; 864 865 raw_spin_lock_irq(&logbuf_lock); 866 cont_flush(); 867 switch (whence) { 868 case SEEK_SET: 869 /* the first record */ 870 user->idx = log_first_idx; 871 user->seq = log_first_seq; 872 break; 873 case SEEK_DATA: 874 /* 875 * The first record after the last SYSLOG_ACTION_CLEAR, 876 * like issued by 'dmesg -c'. Reading /dev/kmsg itself 877 * changes no global state, and does not clear anything. 878 */ 879 user->idx = clear_idx; 880 user->seq = clear_seq; 881 break; 882 case SEEK_END: 883 /* after the last record */ 884 user->idx = log_next_idx; 885 user->seq = log_next_seq; 886 break; 887 default: 888 ret = -EINVAL; 889 } 890 raw_spin_unlock_irq(&logbuf_lock); 891 return ret; 892 } 893 894 static unsigned int devkmsg_poll(struct file *file, poll_table *wait) 895 { 896 struct devkmsg_user *user = file->private_data; 897 int ret = 0; 898 899 if (!user) 900 return POLLERR|POLLNVAL; 901 902 poll_wait(file, &log_wait, wait); 903 904 raw_spin_lock_irq(&logbuf_lock); 905 cont_flush(); 906 if (user->seq < log_next_seq) { 907 /* return error when data has vanished underneath us */ 908 if (user->seq < log_first_seq) 909 ret = POLLIN|POLLRDNORM|POLLERR|POLLPRI; 910 else 911 ret = POLLIN|POLLRDNORM; 912 } 913 raw_spin_unlock_irq(&logbuf_lock); 914 915 return ret; 916 } 917 918 static int devkmsg_open(struct inode *inode, struct file *file) 919 { 920 struct devkmsg_user *user; 921 int err; 922 923 if (devkmsg_log & DEVKMSG_LOG_MASK_OFF) 924 return -EPERM; 925 926 /* write-only does not need any file context */ 927 if ((file->f_flags & O_ACCMODE) != O_WRONLY) { 928 err = check_syslog_permissions(SYSLOG_ACTION_READ_ALL, 929 SYSLOG_FROM_READER); 930 if (err) 931 return err; 932 } 933 934 user = kmalloc(sizeof(struct devkmsg_user), GFP_KERNEL); 935 if (!user) 936 return -ENOMEM; 937 938 ratelimit_default_init(&user->rs); 939 ratelimit_set_flags(&user->rs, RATELIMIT_MSG_ON_RELEASE); 940 941 mutex_init(&user->lock); 942 943 raw_spin_lock_irq(&logbuf_lock); 944 user->idx = log_first_idx; 945 user->seq = log_first_seq; 946 raw_spin_unlock_irq(&logbuf_lock); 947 948 file->private_data = user; 949 return 0; 950 } 951 952 static int devkmsg_release(struct inode *inode, struct file *file) 953 { 954 struct devkmsg_user *user = file->private_data; 955 956 if (!user) 957 return 0; 958 959 ratelimit_state_exit(&user->rs); 960 961 mutex_destroy(&user->lock); 962 kfree(user); 963 return 0; 964 } 965 966 const struct file_operations kmsg_fops = { 967 .open = devkmsg_open, 968 .read = devkmsg_read, 969 .write_iter = devkmsg_write, 970 .llseek = devkmsg_llseek, 971 .poll = devkmsg_poll, 972 .release = devkmsg_release, 973 }; 974 975 #ifdef CONFIG_KEXEC_CORE 976 /* 977 * This appends the listed symbols to /proc/vmcore 978 * 979 * /proc/vmcore is used by various utilities, like crash and makedumpfile to 980 * obtain access to symbols that are otherwise very difficult to locate. These 981 * symbols are specifically used so that utilities can access and extract the 982 * dmesg log from a vmcore file after a crash. 983 */ 984 void log_buf_kexec_setup(void) 985 { 986 VMCOREINFO_SYMBOL(log_buf); 987 VMCOREINFO_SYMBOL(log_buf_len); 988 VMCOREINFO_SYMBOL(log_first_idx); 989 VMCOREINFO_SYMBOL(clear_idx); 990 VMCOREINFO_SYMBOL(log_next_idx); 991 /* 992 * Export struct printk_log size and field offsets. User space tools can 993 * parse it and detect any changes to structure down the line. 994 */ 995 VMCOREINFO_STRUCT_SIZE(printk_log); 996 VMCOREINFO_OFFSET(printk_log, ts_nsec); 997 VMCOREINFO_OFFSET(printk_log, len); 998 VMCOREINFO_OFFSET(printk_log, text_len); 999 VMCOREINFO_OFFSET(printk_log, dict_len); 1000 } 1001 #endif 1002 1003 /* requested log_buf_len from kernel cmdline */ 1004 static unsigned long __initdata new_log_buf_len; 1005 1006 /* we practice scaling the ring buffer by powers of 2 */ 1007 static void __init log_buf_len_update(unsigned size) 1008 { 1009 if (size) 1010 size = roundup_pow_of_two(size); 1011 if (size > log_buf_len) 1012 new_log_buf_len = size; 1013 } 1014 1015 /* save requested log_buf_len since it's too early to process it */ 1016 static int __init log_buf_len_setup(char *str) 1017 { 1018 unsigned size = memparse(str, &str); 1019 1020 log_buf_len_update(size); 1021 1022 return 0; 1023 } 1024 early_param("log_buf_len", log_buf_len_setup); 1025 1026 #ifdef CONFIG_SMP 1027 #define __LOG_CPU_MAX_BUF_LEN (1 << CONFIG_LOG_CPU_MAX_BUF_SHIFT) 1028 1029 static void __init log_buf_add_cpu(void) 1030 { 1031 unsigned int cpu_extra; 1032 1033 /* 1034 * archs should set up cpu_possible_bits properly with 1035 * set_cpu_possible() after setup_arch() but just in 1036 * case lets ensure this is valid. 1037 */ 1038 if (num_possible_cpus() == 1) 1039 return; 1040 1041 cpu_extra = (num_possible_cpus() - 1) * __LOG_CPU_MAX_BUF_LEN; 1042 1043 /* by default this will only continue through for large > 64 CPUs */ 1044 if (cpu_extra <= __LOG_BUF_LEN / 2) 1045 return; 1046 1047 pr_info("log_buf_len individual max cpu contribution: %d bytes\n", 1048 __LOG_CPU_MAX_BUF_LEN); 1049 pr_info("log_buf_len total cpu_extra contributions: %d bytes\n", 1050 cpu_extra); 1051 pr_info("log_buf_len min size: %d bytes\n", __LOG_BUF_LEN); 1052 1053 log_buf_len_update(cpu_extra + __LOG_BUF_LEN); 1054 } 1055 #else /* !CONFIG_SMP */ 1056 static inline void log_buf_add_cpu(void) {} 1057 #endif /* CONFIG_SMP */ 1058 1059 void __init setup_log_buf(int early) 1060 { 1061 unsigned long flags; 1062 char *new_log_buf; 1063 int free; 1064 1065 if (log_buf != __log_buf) 1066 return; 1067 1068 if (!early && !new_log_buf_len) 1069 log_buf_add_cpu(); 1070 1071 if (!new_log_buf_len) 1072 return; 1073 1074 if (early) { 1075 new_log_buf = 1076 memblock_virt_alloc(new_log_buf_len, LOG_ALIGN); 1077 } else { 1078 new_log_buf = memblock_virt_alloc_nopanic(new_log_buf_len, 1079 LOG_ALIGN); 1080 } 1081 1082 if (unlikely(!new_log_buf)) { 1083 pr_err("log_buf_len: %ld bytes not available\n", 1084 new_log_buf_len); 1085 return; 1086 } 1087 1088 raw_spin_lock_irqsave(&logbuf_lock, flags); 1089 log_buf_len = new_log_buf_len; 1090 log_buf = new_log_buf; 1091 new_log_buf_len = 0; 1092 free = __LOG_BUF_LEN - log_next_idx; 1093 memcpy(log_buf, __log_buf, __LOG_BUF_LEN); 1094 raw_spin_unlock_irqrestore(&logbuf_lock, flags); 1095 1096 pr_info("log_buf_len: %d bytes\n", log_buf_len); 1097 pr_info("early log buf free: %d(%d%%)\n", 1098 free, (free * 100) / __LOG_BUF_LEN); 1099 } 1100 1101 static bool __read_mostly ignore_loglevel; 1102 1103 static int __init ignore_loglevel_setup(char *str) 1104 { 1105 ignore_loglevel = true; 1106 pr_info("debug: ignoring loglevel setting.\n"); 1107 1108 return 0; 1109 } 1110 1111 early_param("ignore_loglevel", ignore_loglevel_setup); 1112 module_param(ignore_loglevel, bool, S_IRUGO | S_IWUSR); 1113 MODULE_PARM_DESC(ignore_loglevel, 1114 "ignore loglevel setting (prints all kernel messages to the console)"); 1115 1116 static bool suppress_message_printing(int level) 1117 { 1118 return (level >= console_loglevel && !ignore_loglevel); 1119 } 1120 1121 #ifdef CONFIG_BOOT_PRINTK_DELAY 1122 1123 static int boot_delay; /* msecs delay after each printk during bootup */ 1124 static unsigned long long loops_per_msec; /* based on boot_delay */ 1125 1126 static int __init boot_delay_setup(char *str) 1127 { 1128 unsigned long lpj; 1129 1130 lpj = preset_lpj ? preset_lpj : 1000000; /* some guess */ 1131 loops_per_msec = (unsigned long long)lpj / 1000 * HZ; 1132 1133 get_option(&str, &boot_delay); 1134 if (boot_delay > 10 * 1000) 1135 boot_delay = 0; 1136 1137 pr_debug("boot_delay: %u, preset_lpj: %ld, lpj: %lu, " 1138 "HZ: %d, loops_per_msec: %llu\n", 1139 boot_delay, preset_lpj, lpj, HZ, loops_per_msec); 1140 return 0; 1141 } 1142 early_param("boot_delay", boot_delay_setup); 1143 1144 static void boot_delay_msec(int level) 1145 { 1146 unsigned long long k; 1147 unsigned long timeout; 1148 1149 if ((boot_delay == 0 || system_state != SYSTEM_BOOTING) 1150 || suppress_message_printing(level)) { 1151 return; 1152 } 1153 1154 k = (unsigned long long)loops_per_msec * boot_delay; 1155 1156 timeout = jiffies + msecs_to_jiffies(boot_delay); 1157 while (k) { 1158 k--; 1159 cpu_relax(); 1160 /* 1161 * use (volatile) jiffies to prevent 1162 * compiler reduction; loop termination via jiffies 1163 * is secondary and may or may not happen. 1164 */ 1165 if (time_after(jiffies, timeout)) 1166 break; 1167 touch_nmi_watchdog(); 1168 } 1169 } 1170 #else 1171 static inline void boot_delay_msec(int level) 1172 { 1173 } 1174 #endif 1175 1176 static bool printk_time = IS_ENABLED(CONFIG_PRINTK_TIME); 1177 module_param_named(time, printk_time, bool, S_IRUGO | S_IWUSR); 1178 1179 static size_t print_time(u64 ts, char *buf) 1180 { 1181 unsigned long rem_nsec; 1182 1183 if (!printk_time) 1184 return 0; 1185 1186 rem_nsec = do_div(ts, 1000000000); 1187 1188 if (!buf) 1189 return snprintf(NULL, 0, "[%5lu.000000] ", (unsigned long)ts); 1190 1191 return sprintf(buf, "[%5lu.%06lu] ", 1192 (unsigned long)ts, rem_nsec / 1000); 1193 } 1194 1195 static size_t print_prefix(const struct printk_log *msg, bool syslog, char *buf) 1196 { 1197 size_t len = 0; 1198 unsigned int prefix = (msg->facility << 3) | msg->level; 1199 1200 if (syslog) { 1201 if (buf) { 1202 len += sprintf(buf, "<%u>", prefix); 1203 } else { 1204 len += 3; 1205 if (prefix > 999) 1206 len += 3; 1207 else if (prefix > 99) 1208 len += 2; 1209 else if (prefix > 9) 1210 len++; 1211 } 1212 } 1213 1214 len += print_time(msg->ts_nsec, buf ? buf + len : NULL); 1215 return len; 1216 } 1217 1218 static size_t msg_print_text(const struct printk_log *msg, enum log_flags prev, 1219 bool syslog, char *buf, size_t size) 1220 { 1221 const char *text = log_text(msg); 1222 size_t text_size = msg->text_len; 1223 bool prefix = true; 1224 bool newline = true; 1225 size_t len = 0; 1226 1227 if ((prev & LOG_CONT) && !(msg->flags & LOG_PREFIX)) 1228 prefix = false; 1229 1230 if (msg->flags & LOG_CONT) { 1231 if ((prev & LOG_CONT) && !(prev & LOG_NEWLINE)) 1232 prefix = false; 1233 1234 if (!(msg->flags & LOG_NEWLINE)) 1235 newline = false; 1236 } 1237 1238 do { 1239 const char *next = memchr(text, '\n', text_size); 1240 size_t text_len; 1241 1242 if (next) { 1243 text_len = next - text; 1244 next++; 1245 text_size -= next - text; 1246 } else { 1247 text_len = text_size; 1248 } 1249 1250 if (buf) { 1251 if (print_prefix(msg, syslog, NULL) + 1252 text_len + 1 >= size - len) 1253 break; 1254 1255 if (prefix) 1256 len += print_prefix(msg, syslog, buf + len); 1257 memcpy(buf + len, text, text_len); 1258 len += text_len; 1259 if (next || newline) 1260 buf[len++] = '\n'; 1261 } else { 1262 /* SYSLOG_ACTION_* buffer size only calculation */ 1263 if (prefix) 1264 len += print_prefix(msg, syslog, NULL); 1265 len += text_len; 1266 if (next || newline) 1267 len++; 1268 } 1269 1270 prefix = true; 1271 text = next; 1272 } while (text); 1273 1274 return len; 1275 } 1276 1277 static int syslog_print(char __user *buf, int size) 1278 { 1279 char *text; 1280 struct printk_log *msg; 1281 int len = 0; 1282 1283 text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL); 1284 if (!text) 1285 return -ENOMEM; 1286 1287 while (size > 0) { 1288 size_t n; 1289 size_t skip; 1290 1291 raw_spin_lock_irq(&logbuf_lock); 1292 cont_flush(); 1293 if (syslog_seq < log_first_seq) { 1294 /* messages are gone, move to first one */ 1295 syslog_seq = log_first_seq; 1296 syslog_idx = log_first_idx; 1297 syslog_prev = 0; 1298 syslog_partial = 0; 1299 } 1300 if (syslog_seq == log_next_seq) { 1301 raw_spin_unlock_irq(&logbuf_lock); 1302 break; 1303 } 1304 1305 skip = syslog_partial; 1306 msg = log_from_idx(syslog_idx); 1307 n = msg_print_text(msg, syslog_prev, true, text, 1308 LOG_LINE_MAX + PREFIX_MAX); 1309 if (n - syslog_partial <= size) { 1310 /* message fits into buffer, move forward */ 1311 syslog_idx = log_next(syslog_idx); 1312 syslog_seq++; 1313 syslog_prev = msg->flags; 1314 n -= syslog_partial; 1315 syslog_partial = 0; 1316 } else if (!len){ 1317 /* partial read(), remember position */ 1318 n = size; 1319 syslog_partial += n; 1320 } else 1321 n = 0; 1322 raw_spin_unlock_irq(&logbuf_lock); 1323 1324 if (!n) 1325 break; 1326 1327 if (copy_to_user(buf, text + skip, n)) { 1328 if (!len) 1329 len = -EFAULT; 1330 break; 1331 } 1332 1333 len += n; 1334 size -= n; 1335 buf += n; 1336 } 1337 1338 kfree(text); 1339 return len; 1340 } 1341 1342 static int syslog_print_all(char __user *buf, int size, bool clear) 1343 { 1344 char *text; 1345 int len = 0; 1346 1347 text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL); 1348 if (!text) 1349 return -ENOMEM; 1350 1351 raw_spin_lock_irq(&logbuf_lock); 1352 cont_flush(); 1353 if (buf) { 1354 u64 next_seq; 1355 u64 seq; 1356 u32 idx; 1357 enum log_flags prev; 1358 1359 /* 1360 * Find first record that fits, including all following records, 1361 * into the user-provided buffer for this dump. 1362 */ 1363 seq = clear_seq; 1364 idx = clear_idx; 1365 prev = 0; 1366 while (seq < log_next_seq) { 1367 struct printk_log *msg = log_from_idx(idx); 1368 1369 len += msg_print_text(msg, prev, true, NULL, 0); 1370 prev = msg->flags; 1371 idx = log_next(idx); 1372 seq++; 1373 } 1374 1375 /* move first record forward until length fits into the buffer */ 1376 seq = clear_seq; 1377 idx = clear_idx; 1378 prev = 0; 1379 while (len > size && seq < log_next_seq) { 1380 struct printk_log *msg = log_from_idx(idx); 1381 1382 len -= msg_print_text(msg, prev, true, NULL, 0); 1383 prev = msg->flags; 1384 idx = log_next(idx); 1385 seq++; 1386 } 1387 1388 /* last message fitting into this dump */ 1389 next_seq = log_next_seq; 1390 1391 len = 0; 1392 while (len >= 0 && seq < next_seq) { 1393 struct printk_log *msg = log_from_idx(idx); 1394 int textlen; 1395 1396 textlen = msg_print_text(msg, prev, true, text, 1397 LOG_LINE_MAX + PREFIX_MAX); 1398 if (textlen < 0) { 1399 len = textlen; 1400 break; 1401 } 1402 idx = log_next(idx); 1403 seq++; 1404 prev = msg->flags; 1405 1406 raw_spin_unlock_irq(&logbuf_lock); 1407 if (copy_to_user(buf + len, text, textlen)) 1408 len = -EFAULT; 1409 else 1410 len += textlen; 1411 raw_spin_lock_irq(&logbuf_lock); 1412 1413 if (seq < log_first_seq) { 1414 /* messages are gone, move to next one */ 1415 seq = log_first_seq; 1416 idx = log_first_idx; 1417 prev = 0; 1418 } 1419 } 1420 } 1421 1422 if (clear) { 1423 clear_seq = log_next_seq; 1424 clear_idx = log_next_idx; 1425 } 1426 raw_spin_unlock_irq(&logbuf_lock); 1427 1428 kfree(text); 1429 return len; 1430 } 1431 1432 int do_syslog(int type, char __user *buf, int len, int source) 1433 { 1434 bool clear = false; 1435 static int saved_console_loglevel = LOGLEVEL_DEFAULT; 1436 int error; 1437 1438 error = check_syslog_permissions(type, source); 1439 if (error) 1440 goto out; 1441 1442 switch (type) { 1443 case SYSLOG_ACTION_CLOSE: /* Close log */ 1444 break; 1445 case SYSLOG_ACTION_OPEN: /* Open log */ 1446 break; 1447 case SYSLOG_ACTION_READ: /* Read from log */ 1448 error = -EINVAL; 1449 if (!buf || len < 0) 1450 goto out; 1451 error = 0; 1452 if (!len) 1453 goto out; 1454 if (!access_ok(VERIFY_WRITE, buf, len)) { 1455 error = -EFAULT; 1456 goto out; 1457 } 1458 error = wait_event_interruptible(log_wait, 1459 syslog_seq != log_next_seq); 1460 if (error) 1461 goto out; 1462 error = syslog_print(buf, len); 1463 break; 1464 /* Read/clear last kernel messages */ 1465 case SYSLOG_ACTION_READ_CLEAR: 1466 clear = true; 1467 /* FALL THRU */ 1468 /* Read last kernel messages */ 1469 case SYSLOG_ACTION_READ_ALL: 1470 error = -EINVAL; 1471 if (!buf || len < 0) 1472 goto out; 1473 error = 0; 1474 if (!len) 1475 goto out; 1476 if (!access_ok(VERIFY_WRITE, buf, len)) { 1477 error = -EFAULT; 1478 goto out; 1479 } 1480 error = syslog_print_all(buf, len, clear); 1481 break; 1482 /* Clear ring buffer */ 1483 case SYSLOG_ACTION_CLEAR: 1484 syslog_print_all(NULL, 0, true); 1485 break; 1486 /* Disable logging to console */ 1487 case SYSLOG_ACTION_CONSOLE_OFF: 1488 if (saved_console_loglevel == LOGLEVEL_DEFAULT) 1489 saved_console_loglevel = console_loglevel; 1490 console_loglevel = minimum_console_loglevel; 1491 break; 1492 /* Enable logging to console */ 1493 case SYSLOG_ACTION_CONSOLE_ON: 1494 if (saved_console_loglevel != LOGLEVEL_DEFAULT) { 1495 console_loglevel = saved_console_loglevel; 1496 saved_console_loglevel = LOGLEVEL_DEFAULT; 1497 } 1498 break; 1499 /* Set level of messages printed to console */ 1500 case SYSLOG_ACTION_CONSOLE_LEVEL: 1501 error = -EINVAL; 1502 if (len < 1 || len > 8) 1503 goto out; 1504 if (len < minimum_console_loglevel) 1505 len = minimum_console_loglevel; 1506 console_loglevel = len; 1507 /* Implicitly re-enable logging to console */ 1508 saved_console_loglevel = LOGLEVEL_DEFAULT; 1509 error = 0; 1510 break; 1511 /* Number of chars in the log buffer */ 1512 case SYSLOG_ACTION_SIZE_UNREAD: 1513 raw_spin_lock_irq(&logbuf_lock); 1514 cont_flush(); 1515 if (syslog_seq < log_first_seq) { 1516 /* messages are gone, move to first one */ 1517 syslog_seq = log_first_seq; 1518 syslog_idx = log_first_idx; 1519 syslog_prev = 0; 1520 syslog_partial = 0; 1521 } 1522 if (source == SYSLOG_FROM_PROC) { 1523 /* 1524 * Short-cut for poll(/"proc/kmsg") which simply checks 1525 * for pending data, not the size; return the count of 1526 * records, not the length. 1527 */ 1528 error = log_next_seq - syslog_seq; 1529 } else { 1530 u64 seq = syslog_seq; 1531 u32 idx = syslog_idx; 1532 enum log_flags prev = syslog_prev; 1533 1534 error = 0; 1535 while (seq < log_next_seq) { 1536 struct printk_log *msg = log_from_idx(idx); 1537 1538 error += msg_print_text(msg, prev, true, NULL, 0); 1539 idx = log_next(idx); 1540 seq++; 1541 prev = msg->flags; 1542 } 1543 error -= syslog_partial; 1544 } 1545 raw_spin_unlock_irq(&logbuf_lock); 1546 break; 1547 /* Size of the log buffer */ 1548 case SYSLOG_ACTION_SIZE_BUFFER: 1549 error = log_buf_len; 1550 break; 1551 default: 1552 error = -EINVAL; 1553 break; 1554 } 1555 out: 1556 return error; 1557 } 1558 1559 SYSCALL_DEFINE3(syslog, int, type, char __user *, buf, int, len) 1560 { 1561 return do_syslog(type, buf, len, SYSLOG_FROM_READER); 1562 } 1563 1564 /* 1565 * Call the console drivers, asking them to write out 1566 * log_buf[start] to log_buf[end - 1]. 1567 * The console_lock must be held. 1568 */ 1569 static void call_console_drivers(int level, 1570 const char *ext_text, size_t ext_len, 1571 const char *text, size_t len) 1572 { 1573 struct console *con; 1574 1575 trace_console(text, len); 1576 1577 if (!console_drivers) 1578 return; 1579 1580 for_each_console(con) { 1581 if (exclusive_console && con != exclusive_console) 1582 continue; 1583 if (!(con->flags & CON_ENABLED)) 1584 continue; 1585 if (!con->write) 1586 continue; 1587 if (!cpu_online(smp_processor_id()) && 1588 !(con->flags & CON_ANYTIME)) 1589 continue; 1590 if (con->flags & CON_EXTENDED) 1591 con->write(con, ext_text, ext_len); 1592 else 1593 con->write(con, text, len); 1594 } 1595 } 1596 1597 /* 1598 * Zap console related locks when oopsing. 1599 * To leave time for slow consoles to print a full oops, 1600 * only zap at most once every 30 seconds. 1601 */ 1602 static void zap_locks(void) 1603 { 1604 static unsigned long oops_timestamp; 1605 1606 if (time_after_eq(jiffies, oops_timestamp) && 1607 !time_after(jiffies, oops_timestamp + 30 * HZ)) 1608 return; 1609 1610 oops_timestamp = jiffies; 1611 1612 debug_locks_off(); 1613 /* If a crash is occurring, make sure we can't deadlock */ 1614 raw_spin_lock_init(&logbuf_lock); 1615 /* And make sure that we print immediately */ 1616 sema_init(&console_sem, 1); 1617 } 1618 1619 int printk_delay_msec __read_mostly; 1620 1621 static inline void printk_delay(void) 1622 { 1623 if (unlikely(printk_delay_msec)) { 1624 int m = printk_delay_msec; 1625 1626 while (m--) { 1627 mdelay(1); 1628 touch_nmi_watchdog(); 1629 } 1630 } 1631 } 1632 1633 /* 1634 * Continuation lines are buffered, and not committed to the record buffer 1635 * until the line is complete, or a race forces it. The line fragments 1636 * though, are printed immediately to the consoles to ensure everything has 1637 * reached the console in case of a kernel crash. 1638 */ 1639 static struct cont { 1640 char buf[LOG_LINE_MAX]; 1641 size_t len; /* length == 0 means unused buffer */ 1642 size_t cons; /* bytes written to console */ 1643 struct task_struct *owner; /* task of first print*/ 1644 u64 ts_nsec; /* time of first print */ 1645 u8 level; /* log level of first message */ 1646 u8 facility; /* log facility of first message */ 1647 enum log_flags flags; /* prefix, newline flags */ 1648 bool flushed:1; /* buffer sealed and committed */ 1649 } cont; 1650 1651 static void cont_flush(void) 1652 { 1653 if (cont.flushed) 1654 return; 1655 if (cont.len == 0) 1656 return; 1657 if (cont.cons) { 1658 /* 1659 * If a fragment of this line was directly flushed to the 1660 * console; wait for the console to pick up the rest of the 1661 * line. LOG_NOCONS suppresses a duplicated output. 1662 */ 1663 log_store(cont.facility, cont.level, cont.flags | LOG_NOCONS, 1664 cont.ts_nsec, NULL, 0, cont.buf, cont.len); 1665 cont.flushed = true; 1666 } else { 1667 /* 1668 * If no fragment of this line ever reached the console, 1669 * just submit it to the store and free the buffer. 1670 */ 1671 log_store(cont.facility, cont.level, cont.flags, 0, 1672 NULL, 0, cont.buf, cont.len); 1673 cont.len = 0; 1674 } 1675 } 1676 1677 static bool cont_add(int facility, int level, enum log_flags flags, const char *text, size_t len) 1678 { 1679 if (cont.len && cont.flushed) 1680 return false; 1681 1682 /* 1683 * If ext consoles are present, flush and skip in-kernel 1684 * continuation. See nr_ext_console_drivers definition. Also, if 1685 * the line gets too long, split it up in separate records. 1686 */ 1687 if (nr_ext_console_drivers || cont.len + len > sizeof(cont.buf)) { 1688 cont_flush(); 1689 return false; 1690 } 1691 1692 if (!cont.len) { 1693 cont.facility = facility; 1694 cont.level = level; 1695 cont.owner = current; 1696 cont.ts_nsec = local_clock(); 1697 cont.flags = flags; 1698 cont.cons = 0; 1699 cont.flushed = false; 1700 } 1701 1702 memcpy(cont.buf + cont.len, text, len); 1703 cont.len += len; 1704 1705 // The original flags come from the first line, 1706 // but later continuations can add a newline. 1707 if (flags & LOG_NEWLINE) { 1708 cont.flags |= LOG_NEWLINE; 1709 cont_flush(); 1710 } 1711 1712 if (cont.len > (sizeof(cont.buf) * 80) / 100) 1713 cont_flush(); 1714 1715 return true; 1716 } 1717 1718 static size_t cont_print_text(char *text, size_t size) 1719 { 1720 size_t textlen = 0; 1721 size_t len; 1722 1723 if (cont.cons == 0 && (console_prev & LOG_NEWLINE)) { 1724 textlen += print_time(cont.ts_nsec, text); 1725 size -= textlen; 1726 } 1727 1728 len = cont.len - cont.cons; 1729 if (len > 0) { 1730 if (len+1 > size) 1731 len = size-1; 1732 memcpy(text + textlen, cont.buf + cont.cons, len); 1733 textlen += len; 1734 cont.cons = cont.len; 1735 } 1736 1737 if (cont.flushed) { 1738 if (cont.flags & LOG_NEWLINE) 1739 text[textlen++] = '\n'; 1740 /* got everything, release buffer */ 1741 cont.len = 0; 1742 } 1743 return textlen; 1744 } 1745 1746 static size_t log_output(int facility, int level, enum log_flags lflags, const char *dict, size_t dictlen, char *text, size_t text_len) 1747 { 1748 /* 1749 * If an earlier line was buffered, and we're a continuation 1750 * write from the same process, try to add it to the buffer. 1751 */ 1752 if (cont.len) { 1753 if (cont.owner == current && (lflags & LOG_CONT)) { 1754 if (cont_add(facility, level, lflags, text, text_len)) 1755 return text_len; 1756 } 1757 /* Otherwise, make sure it's flushed */ 1758 cont_flush(); 1759 } 1760 1761 /* Skip empty continuation lines that couldn't be added - they just flush */ 1762 if (!text_len && (lflags & LOG_CONT)) 1763 return 0; 1764 1765 /* If it doesn't end in a newline, try to buffer the current line */ 1766 if (!(lflags & LOG_NEWLINE)) { 1767 if (cont_add(facility, level, lflags, text, text_len)) 1768 return text_len; 1769 } 1770 1771 /* Store it in the record log */ 1772 return log_store(facility, level, lflags, 0, dict, dictlen, text, text_len); 1773 } 1774 1775 asmlinkage int vprintk_emit(int facility, int level, 1776 const char *dict, size_t dictlen, 1777 const char *fmt, va_list args) 1778 { 1779 static bool recursion_bug; 1780 static char textbuf[LOG_LINE_MAX]; 1781 char *text = textbuf; 1782 size_t text_len = 0; 1783 enum log_flags lflags = 0; 1784 unsigned long flags; 1785 int this_cpu; 1786 int printed_len = 0; 1787 int nmi_message_lost; 1788 bool in_sched = false; 1789 /* cpu currently holding logbuf_lock in this function */ 1790 static unsigned int logbuf_cpu = UINT_MAX; 1791 1792 if (level == LOGLEVEL_SCHED) { 1793 level = LOGLEVEL_DEFAULT; 1794 in_sched = true; 1795 } 1796 1797 boot_delay_msec(level); 1798 printk_delay(); 1799 1800 local_irq_save(flags); 1801 this_cpu = smp_processor_id(); 1802 1803 /* 1804 * Ouch, printk recursed into itself! 1805 */ 1806 if (unlikely(logbuf_cpu == this_cpu)) { 1807 /* 1808 * If a crash is occurring during printk() on this CPU, 1809 * then try to get the crash message out but make sure 1810 * we can't deadlock. Otherwise just return to avoid the 1811 * recursion and return - but flag the recursion so that 1812 * it can be printed at the next appropriate moment: 1813 */ 1814 if (!oops_in_progress && !lockdep_recursing(current)) { 1815 recursion_bug = true; 1816 local_irq_restore(flags); 1817 return 0; 1818 } 1819 zap_locks(); 1820 } 1821 1822 lockdep_off(); 1823 /* This stops the holder of console_sem just where we want him */ 1824 raw_spin_lock(&logbuf_lock); 1825 logbuf_cpu = this_cpu; 1826 1827 if (unlikely(recursion_bug)) { 1828 static const char recursion_msg[] = 1829 "BUG: recent printk recursion!"; 1830 1831 recursion_bug = false; 1832 /* emit KERN_CRIT message */ 1833 printed_len += log_store(0, 2, LOG_PREFIX|LOG_NEWLINE, 0, 1834 NULL, 0, recursion_msg, 1835 strlen(recursion_msg)); 1836 } 1837 1838 nmi_message_lost = get_nmi_message_lost(); 1839 if (unlikely(nmi_message_lost)) { 1840 text_len = scnprintf(textbuf, sizeof(textbuf), 1841 "BAD LUCK: lost %d message(s) from NMI context!", 1842 nmi_message_lost); 1843 printed_len += log_store(0, 2, LOG_PREFIX|LOG_NEWLINE, 0, 1844 NULL, 0, textbuf, text_len); 1845 } 1846 1847 /* 1848 * The printf needs to come first; we need the syslog 1849 * prefix which might be passed-in as a parameter. 1850 */ 1851 text_len = vscnprintf(text, sizeof(textbuf), fmt, args); 1852 1853 /* mark and strip a trailing newline */ 1854 if (text_len && text[text_len-1] == '\n') { 1855 text_len--; 1856 lflags |= LOG_NEWLINE; 1857 } 1858 1859 /* strip kernel syslog prefix and extract log level or control flags */ 1860 if (facility == 0) { 1861 int kern_level; 1862 1863 while ((kern_level = printk_get_level(text)) != 0) { 1864 switch (kern_level) { 1865 case '0' ... '7': 1866 if (level == LOGLEVEL_DEFAULT) 1867 level = kern_level - '0'; 1868 /* fallthrough */ 1869 case 'd': /* KERN_DEFAULT */ 1870 lflags |= LOG_PREFIX; 1871 break; 1872 case 'c': /* KERN_CONT */ 1873 lflags |= LOG_CONT; 1874 } 1875 1876 text_len -= 2; 1877 text += 2; 1878 } 1879 } 1880 1881 if (level == LOGLEVEL_DEFAULT) 1882 level = default_message_loglevel; 1883 1884 if (dict) 1885 lflags |= LOG_PREFIX|LOG_NEWLINE; 1886 1887 printed_len += log_output(facility, level, lflags, dict, dictlen, text, text_len); 1888 1889 logbuf_cpu = UINT_MAX; 1890 raw_spin_unlock(&logbuf_lock); 1891 lockdep_on(); 1892 local_irq_restore(flags); 1893 1894 /* If called from the scheduler, we can not call up(). */ 1895 if (!in_sched) { 1896 lockdep_off(); 1897 /* 1898 * Try to acquire and then immediately release the console 1899 * semaphore. The release will print out buffers and wake up 1900 * /dev/kmsg and syslog() users. 1901 */ 1902 if (console_trylock()) 1903 console_unlock(); 1904 lockdep_on(); 1905 } 1906 1907 return printed_len; 1908 } 1909 EXPORT_SYMBOL(vprintk_emit); 1910 1911 asmlinkage int vprintk(const char *fmt, va_list args) 1912 { 1913 return vprintk_emit(0, LOGLEVEL_DEFAULT, NULL, 0, fmt, args); 1914 } 1915 EXPORT_SYMBOL(vprintk); 1916 1917 asmlinkage int printk_emit(int facility, int level, 1918 const char *dict, size_t dictlen, 1919 const char *fmt, ...) 1920 { 1921 va_list args; 1922 int r; 1923 1924 va_start(args, fmt); 1925 r = vprintk_emit(facility, level, dict, dictlen, fmt, args); 1926 va_end(args); 1927 1928 return r; 1929 } 1930 EXPORT_SYMBOL(printk_emit); 1931 1932 int vprintk_default(const char *fmt, va_list args) 1933 { 1934 int r; 1935 1936 #ifdef CONFIG_KGDB_KDB 1937 if (unlikely(kdb_trap_printk)) { 1938 r = vkdb_printf(KDB_MSGSRC_PRINTK, fmt, args); 1939 return r; 1940 } 1941 #endif 1942 r = vprintk_emit(0, LOGLEVEL_DEFAULT, NULL, 0, fmt, args); 1943 1944 return r; 1945 } 1946 EXPORT_SYMBOL_GPL(vprintk_default); 1947 1948 /** 1949 * printk - print a kernel message 1950 * @fmt: format string 1951 * 1952 * This is printk(). It can be called from any context. We want it to work. 1953 * 1954 * We try to grab the console_lock. If we succeed, it's easy - we log the 1955 * output and call the console drivers. If we fail to get the semaphore, we 1956 * place the output into the log buffer and return. The current holder of 1957 * the console_sem will notice the new output in console_unlock(); and will 1958 * send it to the consoles before releasing the lock. 1959 * 1960 * One effect of this deferred printing is that code which calls printk() and 1961 * then changes console_loglevel may break. This is because console_loglevel 1962 * is inspected when the actual printing occurs. 1963 * 1964 * See also: 1965 * printf(3) 1966 * 1967 * See the vsnprintf() documentation for format string extensions over C99. 1968 */ 1969 asmlinkage __visible int printk(const char *fmt, ...) 1970 { 1971 va_list args; 1972 int r; 1973 1974 va_start(args, fmt); 1975 r = vprintk_func(fmt, args); 1976 va_end(args); 1977 1978 return r; 1979 } 1980 EXPORT_SYMBOL(printk); 1981 1982 #else /* CONFIG_PRINTK */ 1983 1984 #define LOG_LINE_MAX 0 1985 #define PREFIX_MAX 0 1986 1987 static u64 syslog_seq; 1988 static u32 syslog_idx; 1989 static u64 console_seq; 1990 static u32 console_idx; 1991 static enum log_flags syslog_prev; 1992 static u64 log_first_seq; 1993 static u32 log_first_idx; 1994 static u64 log_next_seq; 1995 static enum log_flags console_prev; 1996 static struct cont { 1997 size_t len; 1998 size_t cons; 1999 u8 level; 2000 bool flushed:1; 2001 } cont; 2002 static char *log_text(const struct printk_log *msg) { return NULL; } 2003 static char *log_dict(const struct printk_log *msg) { return NULL; } 2004 static struct printk_log *log_from_idx(u32 idx) { return NULL; } 2005 static u32 log_next(u32 idx) { return 0; } 2006 static ssize_t msg_print_ext_header(char *buf, size_t size, 2007 struct printk_log *msg, u64 seq, 2008 enum log_flags prev_flags) { return 0; } 2009 static ssize_t msg_print_ext_body(char *buf, size_t size, 2010 char *dict, size_t dict_len, 2011 char *text, size_t text_len) { return 0; } 2012 static void call_console_drivers(int level, 2013 const char *ext_text, size_t ext_len, 2014 const char *text, size_t len) {} 2015 static size_t msg_print_text(const struct printk_log *msg, enum log_flags prev, 2016 bool syslog, char *buf, size_t size) { return 0; } 2017 static size_t cont_print_text(char *text, size_t size) { return 0; } 2018 static bool suppress_message_printing(int level) { return false; } 2019 2020 /* Still needs to be defined for users */ 2021 DEFINE_PER_CPU(printk_func_t, printk_func); 2022 2023 #endif /* CONFIG_PRINTK */ 2024 2025 #ifdef CONFIG_EARLY_PRINTK 2026 struct console *early_console; 2027 2028 asmlinkage __visible void early_printk(const char *fmt, ...) 2029 { 2030 va_list ap; 2031 char buf[512]; 2032 int n; 2033 2034 if (!early_console) 2035 return; 2036 2037 va_start(ap, fmt); 2038 n = vscnprintf(buf, sizeof(buf), fmt, ap); 2039 va_end(ap); 2040 2041 early_console->write(early_console, buf, n); 2042 } 2043 #endif 2044 2045 static int __add_preferred_console(char *name, int idx, char *options, 2046 char *brl_options) 2047 { 2048 struct console_cmdline *c; 2049 int i; 2050 2051 /* 2052 * See if this tty is not yet registered, and 2053 * if we have a slot free. 2054 */ 2055 for (i = 0, c = console_cmdline; 2056 i < MAX_CMDLINECONSOLES && c->name[0]; 2057 i++, c++) { 2058 if (strcmp(c->name, name) == 0 && c->index == idx) { 2059 if (!brl_options) 2060 selected_console = i; 2061 return 0; 2062 } 2063 } 2064 if (i == MAX_CMDLINECONSOLES) 2065 return -E2BIG; 2066 if (!brl_options) 2067 selected_console = i; 2068 strlcpy(c->name, name, sizeof(c->name)); 2069 c->options = options; 2070 braille_set_options(c, brl_options); 2071 2072 c->index = idx; 2073 return 0; 2074 } 2075 /* 2076 * Set up a console. Called via do_early_param() in init/main.c 2077 * for each "console=" parameter in the boot command line. 2078 */ 2079 static int __init console_setup(char *str) 2080 { 2081 char buf[sizeof(console_cmdline[0].name) + 4]; /* 4 for "ttyS" */ 2082 char *s, *options, *brl_options = NULL; 2083 int idx; 2084 2085 if (_braille_console_setup(&str, &brl_options)) 2086 return 1; 2087 2088 /* 2089 * Decode str into name, index, options. 2090 */ 2091 if (str[0] >= '0' && str[0] <= '9') { 2092 strcpy(buf, "ttyS"); 2093 strncpy(buf + 4, str, sizeof(buf) - 5); 2094 } else { 2095 strncpy(buf, str, sizeof(buf) - 1); 2096 } 2097 buf[sizeof(buf) - 1] = 0; 2098 options = strchr(str, ','); 2099 if (options) 2100 *(options++) = 0; 2101 #ifdef __sparc__ 2102 if (!strcmp(str, "ttya")) 2103 strcpy(buf, "ttyS0"); 2104 if (!strcmp(str, "ttyb")) 2105 strcpy(buf, "ttyS1"); 2106 #endif 2107 for (s = buf; *s; s++) 2108 if (isdigit(*s) || *s == ',') 2109 break; 2110 idx = simple_strtoul(s, NULL, 10); 2111 *s = 0; 2112 2113 __add_preferred_console(buf, idx, options, brl_options); 2114 console_set_on_cmdline = 1; 2115 return 1; 2116 } 2117 __setup("console=", console_setup); 2118 2119 /** 2120 * add_preferred_console - add a device to the list of preferred consoles. 2121 * @name: device name 2122 * @idx: device index 2123 * @options: options for this console 2124 * 2125 * The last preferred console added will be used for kernel messages 2126 * and stdin/out/err for init. Normally this is used by console_setup 2127 * above to handle user-supplied console arguments; however it can also 2128 * be used by arch-specific code either to override the user or more 2129 * commonly to provide a default console (ie from PROM variables) when 2130 * the user has not supplied one. 2131 */ 2132 int add_preferred_console(char *name, int idx, char *options) 2133 { 2134 return __add_preferred_console(name, idx, options, NULL); 2135 } 2136 2137 bool console_suspend_enabled = true; 2138 EXPORT_SYMBOL(console_suspend_enabled); 2139 2140 static int __init console_suspend_disable(char *str) 2141 { 2142 console_suspend_enabled = false; 2143 return 1; 2144 } 2145 __setup("no_console_suspend", console_suspend_disable); 2146 module_param_named(console_suspend, console_suspend_enabled, 2147 bool, S_IRUGO | S_IWUSR); 2148 MODULE_PARM_DESC(console_suspend, "suspend console during suspend" 2149 " and hibernate operations"); 2150 2151 /** 2152 * suspend_console - suspend the console subsystem 2153 * 2154 * This disables printk() while we go into suspend states 2155 */ 2156 void suspend_console(void) 2157 { 2158 if (!console_suspend_enabled) 2159 return; 2160 printk("Suspending console(s) (use no_console_suspend to debug)\n"); 2161 console_lock(); 2162 console_suspended = 1; 2163 up_console_sem(); 2164 } 2165 2166 void resume_console(void) 2167 { 2168 if (!console_suspend_enabled) 2169 return; 2170 down_console_sem(); 2171 console_suspended = 0; 2172 console_unlock(); 2173 } 2174 2175 /** 2176 * console_cpu_notify - print deferred console messages after CPU hotplug 2177 * @self: notifier struct 2178 * @action: CPU hotplug event 2179 * @hcpu: unused 2180 * 2181 * If printk() is called from a CPU that is not online yet, the messages 2182 * will be spooled but will not show up on the console. This function is 2183 * called when a new CPU comes online (or fails to come up), and ensures 2184 * that any such output gets printed. 2185 */ 2186 static int console_cpu_notify(struct notifier_block *self, 2187 unsigned long action, void *hcpu) 2188 { 2189 switch (action) { 2190 case CPU_ONLINE: 2191 case CPU_DEAD: 2192 case CPU_DOWN_FAILED: 2193 case CPU_UP_CANCELED: 2194 console_lock(); 2195 console_unlock(); 2196 } 2197 return NOTIFY_OK; 2198 } 2199 2200 /** 2201 * console_lock - lock the console system for exclusive use. 2202 * 2203 * Acquires a lock which guarantees that the caller has 2204 * exclusive access to the console system and the console_drivers list. 2205 * 2206 * Can sleep, returns nothing. 2207 */ 2208 void console_lock(void) 2209 { 2210 might_sleep(); 2211 2212 down_console_sem(); 2213 if (console_suspended) 2214 return; 2215 console_locked = 1; 2216 console_may_schedule = 1; 2217 } 2218 EXPORT_SYMBOL(console_lock); 2219 2220 /** 2221 * console_trylock - try to lock the console system for exclusive use. 2222 * 2223 * Try to acquire a lock which guarantees that the caller has exclusive 2224 * access to the console system and the console_drivers list. 2225 * 2226 * returns 1 on success, and 0 on failure to acquire the lock. 2227 */ 2228 int console_trylock(void) 2229 { 2230 if (down_trylock_console_sem()) 2231 return 0; 2232 if (console_suspended) { 2233 up_console_sem(); 2234 return 0; 2235 } 2236 console_locked = 1; 2237 /* 2238 * When PREEMPT_COUNT disabled we can't reliably detect if it's 2239 * safe to schedule (e.g. calling printk while holding a spin_lock), 2240 * because preempt_disable()/preempt_enable() are just barriers there 2241 * and preempt_count() is always 0. 2242 * 2243 * RCU read sections have a separate preemption counter when 2244 * PREEMPT_RCU enabled thus we must take extra care and check 2245 * rcu_preempt_depth(), otherwise RCU read sections modify 2246 * preempt_count(). 2247 */ 2248 console_may_schedule = !oops_in_progress && 2249 preemptible() && 2250 !rcu_preempt_depth(); 2251 return 1; 2252 } 2253 EXPORT_SYMBOL(console_trylock); 2254 2255 int is_console_locked(void) 2256 { 2257 return console_locked; 2258 } 2259 2260 /* 2261 * Check if we have any console that is capable of printing while cpu is 2262 * booting or shutting down. Requires console_sem. 2263 */ 2264 static int have_callable_console(void) 2265 { 2266 struct console *con; 2267 2268 for_each_console(con) 2269 if ((con->flags & CON_ENABLED) && 2270 (con->flags & CON_ANYTIME)) 2271 return 1; 2272 2273 return 0; 2274 } 2275 2276 /* 2277 * Can we actually use the console at this time on this cpu? 2278 * 2279 * Console drivers may assume that per-cpu resources have been allocated. So 2280 * unless they're explicitly marked as being able to cope (CON_ANYTIME) don't 2281 * call them until this CPU is officially up. 2282 */ 2283 static inline int can_use_console(void) 2284 { 2285 return cpu_online(raw_smp_processor_id()) || have_callable_console(); 2286 } 2287 2288 static void console_cont_flush(char *text, size_t size) 2289 { 2290 unsigned long flags; 2291 size_t len; 2292 2293 raw_spin_lock_irqsave(&logbuf_lock, flags); 2294 2295 if (!cont.len) 2296 goto out; 2297 2298 if (suppress_message_printing(cont.level)) { 2299 cont.cons = cont.len; 2300 if (cont.flushed) 2301 cont.len = 0; 2302 goto out; 2303 } 2304 2305 /* 2306 * We still queue earlier records, likely because the console was 2307 * busy. The earlier ones need to be printed before this one, we 2308 * did not flush any fragment so far, so just let it queue up. 2309 */ 2310 if (console_seq < log_next_seq && !cont.cons) 2311 goto out; 2312 2313 len = cont_print_text(text, size); 2314 raw_spin_unlock(&logbuf_lock); 2315 stop_critical_timings(); 2316 call_console_drivers(cont.level, NULL, 0, text, len); 2317 start_critical_timings(); 2318 local_irq_restore(flags); 2319 return; 2320 out: 2321 raw_spin_unlock_irqrestore(&logbuf_lock, flags); 2322 } 2323 2324 /** 2325 * console_unlock - unlock the console system 2326 * 2327 * Releases the console_lock which the caller holds on the console system 2328 * and the console driver list. 2329 * 2330 * While the console_lock was held, console output may have been buffered 2331 * by printk(). If this is the case, console_unlock(); emits 2332 * the output prior to releasing the lock. 2333 * 2334 * If there is output waiting, we wake /dev/kmsg and syslog() users. 2335 * 2336 * console_unlock(); may be called from any context. 2337 */ 2338 void console_unlock(void) 2339 { 2340 static char ext_text[CONSOLE_EXT_LOG_MAX]; 2341 static char text[LOG_LINE_MAX + PREFIX_MAX]; 2342 static u64 seen_seq; 2343 unsigned long flags; 2344 bool wake_klogd = false; 2345 bool do_cond_resched, retry; 2346 2347 if (console_suspended) { 2348 up_console_sem(); 2349 return; 2350 } 2351 2352 /* 2353 * Console drivers are called under logbuf_lock, so 2354 * @console_may_schedule should be cleared before; however, we may 2355 * end up dumping a lot of lines, for example, if called from 2356 * console registration path, and should invoke cond_resched() 2357 * between lines if allowable. Not doing so can cause a very long 2358 * scheduling stall on a slow console leading to RCU stall and 2359 * softlockup warnings which exacerbate the issue with more 2360 * messages practically incapacitating the system. 2361 */ 2362 do_cond_resched = console_may_schedule; 2363 console_may_schedule = 0; 2364 2365 again: 2366 /* 2367 * We released the console_sem lock, so we need to recheck if 2368 * cpu is online and (if not) is there at least one CON_ANYTIME 2369 * console. 2370 */ 2371 if (!can_use_console()) { 2372 console_locked = 0; 2373 up_console_sem(); 2374 return; 2375 } 2376 2377 /* flush buffered message fragment immediately to console */ 2378 console_cont_flush(text, sizeof(text)); 2379 2380 for (;;) { 2381 struct printk_log *msg; 2382 size_t ext_len = 0; 2383 size_t len; 2384 int level; 2385 2386 raw_spin_lock_irqsave(&logbuf_lock, flags); 2387 if (seen_seq != log_next_seq) { 2388 wake_klogd = true; 2389 seen_seq = log_next_seq; 2390 } 2391 2392 if (console_seq < log_first_seq) { 2393 len = sprintf(text, "** %u printk messages dropped ** ", 2394 (unsigned)(log_first_seq - console_seq)); 2395 2396 /* messages are gone, move to first one */ 2397 console_seq = log_first_seq; 2398 console_idx = log_first_idx; 2399 console_prev = 0; 2400 } else { 2401 len = 0; 2402 } 2403 skip: 2404 if (console_seq == log_next_seq) 2405 break; 2406 2407 msg = log_from_idx(console_idx); 2408 level = msg->level; 2409 if ((msg->flags & LOG_NOCONS) || 2410 suppress_message_printing(level)) { 2411 /* 2412 * Skip record we have buffered and already printed 2413 * directly to the console when we received it, and 2414 * record that has level above the console loglevel. 2415 */ 2416 console_idx = log_next(console_idx); 2417 console_seq++; 2418 /* 2419 * We will get here again when we register a new 2420 * CON_PRINTBUFFER console. Clear the flag so we 2421 * will properly dump everything later. 2422 */ 2423 msg->flags &= ~LOG_NOCONS; 2424 console_prev = msg->flags; 2425 goto skip; 2426 } 2427 2428 len += msg_print_text(msg, console_prev, false, 2429 text + len, sizeof(text) - len); 2430 if (nr_ext_console_drivers) { 2431 ext_len = msg_print_ext_header(ext_text, 2432 sizeof(ext_text), 2433 msg, console_seq, console_prev); 2434 ext_len += msg_print_ext_body(ext_text + ext_len, 2435 sizeof(ext_text) - ext_len, 2436 log_dict(msg), msg->dict_len, 2437 log_text(msg), msg->text_len); 2438 } 2439 console_idx = log_next(console_idx); 2440 console_seq++; 2441 console_prev = msg->flags; 2442 raw_spin_unlock(&logbuf_lock); 2443 2444 stop_critical_timings(); /* don't trace print latency */ 2445 call_console_drivers(level, ext_text, ext_len, text, len); 2446 start_critical_timings(); 2447 local_irq_restore(flags); 2448 2449 if (do_cond_resched) 2450 cond_resched(); 2451 } 2452 console_locked = 0; 2453 2454 /* Release the exclusive_console once it is used */ 2455 if (unlikely(exclusive_console)) 2456 exclusive_console = NULL; 2457 2458 raw_spin_unlock(&logbuf_lock); 2459 2460 up_console_sem(); 2461 2462 /* 2463 * Someone could have filled up the buffer again, so re-check if there's 2464 * something to flush. In case we cannot trylock the console_sem again, 2465 * there's a new owner and the console_unlock() from them will do the 2466 * flush, no worries. 2467 */ 2468 raw_spin_lock(&logbuf_lock); 2469 retry = console_seq != log_next_seq; 2470 raw_spin_unlock_irqrestore(&logbuf_lock, flags); 2471 2472 if (retry && console_trylock()) 2473 goto again; 2474 2475 if (wake_klogd) 2476 wake_up_klogd(); 2477 } 2478 EXPORT_SYMBOL(console_unlock); 2479 2480 /** 2481 * console_conditional_schedule - yield the CPU if required 2482 * 2483 * If the console code is currently allowed to sleep, and 2484 * if this CPU should yield the CPU to another task, do 2485 * so here. 2486 * 2487 * Must be called within console_lock();. 2488 */ 2489 void __sched console_conditional_schedule(void) 2490 { 2491 if (console_may_schedule) 2492 cond_resched(); 2493 } 2494 EXPORT_SYMBOL(console_conditional_schedule); 2495 2496 void console_unblank(void) 2497 { 2498 struct console *c; 2499 2500 /* 2501 * console_unblank can no longer be called in interrupt context unless 2502 * oops_in_progress is set to 1.. 2503 */ 2504 if (oops_in_progress) { 2505 if (down_trylock_console_sem() != 0) 2506 return; 2507 } else 2508 console_lock(); 2509 2510 console_locked = 1; 2511 console_may_schedule = 0; 2512 for_each_console(c) 2513 if ((c->flags & CON_ENABLED) && c->unblank) 2514 c->unblank(); 2515 console_unlock(); 2516 } 2517 2518 /** 2519 * console_flush_on_panic - flush console content on panic 2520 * 2521 * Immediately output all pending messages no matter what. 2522 */ 2523 void console_flush_on_panic(void) 2524 { 2525 /* 2526 * If someone else is holding the console lock, trylock will fail 2527 * and may_schedule may be set. Ignore and proceed to unlock so 2528 * that messages are flushed out. As this can be called from any 2529 * context and we don't want to get preempted while flushing, 2530 * ensure may_schedule is cleared. 2531 */ 2532 console_trylock(); 2533 console_may_schedule = 0; 2534 console_unlock(); 2535 } 2536 2537 /* 2538 * Return the console tty driver structure and its associated index 2539 */ 2540 struct tty_driver *console_device(int *index) 2541 { 2542 struct console *c; 2543 struct tty_driver *driver = NULL; 2544 2545 console_lock(); 2546 for_each_console(c) { 2547 if (!c->device) 2548 continue; 2549 driver = c->device(c, index); 2550 if (driver) 2551 break; 2552 } 2553 console_unlock(); 2554 return driver; 2555 } 2556 2557 /* 2558 * Prevent further output on the passed console device so that (for example) 2559 * serial drivers can disable console output before suspending a port, and can 2560 * re-enable output afterwards. 2561 */ 2562 void console_stop(struct console *console) 2563 { 2564 console_lock(); 2565 console->flags &= ~CON_ENABLED; 2566 console_unlock(); 2567 } 2568 EXPORT_SYMBOL(console_stop); 2569 2570 void console_start(struct console *console) 2571 { 2572 console_lock(); 2573 console->flags |= CON_ENABLED; 2574 console_unlock(); 2575 } 2576 EXPORT_SYMBOL(console_start); 2577 2578 static int __read_mostly keep_bootcon; 2579 2580 static int __init keep_bootcon_setup(char *str) 2581 { 2582 keep_bootcon = 1; 2583 pr_info("debug: skip boot console de-registration.\n"); 2584 2585 return 0; 2586 } 2587 2588 early_param("keep_bootcon", keep_bootcon_setup); 2589 2590 /* 2591 * The console driver calls this routine during kernel initialization 2592 * to register the console printing procedure with printk() and to 2593 * print any messages that were printed by the kernel before the 2594 * console driver was initialized. 2595 * 2596 * This can happen pretty early during the boot process (because of 2597 * early_printk) - sometimes before setup_arch() completes - be careful 2598 * of what kernel features are used - they may not be initialised yet. 2599 * 2600 * There are two types of consoles - bootconsoles (early_printk) and 2601 * "real" consoles (everything which is not a bootconsole) which are 2602 * handled differently. 2603 * - Any number of bootconsoles can be registered at any time. 2604 * - As soon as a "real" console is registered, all bootconsoles 2605 * will be unregistered automatically. 2606 * - Once a "real" console is registered, any attempt to register a 2607 * bootconsoles will be rejected 2608 */ 2609 void register_console(struct console *newcon) 2610 { 2611 int i; 2612 unsigned long flags; 2613 struct console *bcon = NULL; 2614 struct console_cmdline *c; 2615 2616 if (console_drivers) 2617 for_each_console(bcon) 2618 if (WARN(bcon == newcon, 2619 "console '%s%d' already registered\n", 2620 bcon->name, bcon->index)) 2621 return; 2622 2623 /* 2624 * before we register a new CON_BOOT console, make sure we don't 2625 * already have a valid console 2626 */ 2627 if (console_drivers && newcon->flags & CON_BOOT) { 2628 /* find the last or real console */ 2629 for_each_console(bcon) { 2630 if (!(bcon->flags & CON_BOOT)) { 2631 pr_info("Too late to register bootconsole %s%d\n", 2632 newcon->name, newcon->index); 2633 return; 2634 } 2635 } 2636 } 2637 2638 if (console_drivers && console_drivers->flags & CON_BOOT) 2639 bcon = console_drivers; 2640 2641 if (preferred_console < 0 || bcon || !console_drivers) 2642 preferred_console = selected_console; 2643 2644 /* 2645 * See if we want to use this console driver. If we 2646 * didn't select a console we take the first one 2647 * that registers here. 2648 */ 2649 if (preferred_console < 0) { 2650 if (newcon->index < 0) 2651 newcon->index = 0; 2652 if (newcon->setup == NULL || 2653 newcon->setup(newcon, NULL) == 0) { 2654 newcon->flags |= CON_ENABLED; 2655 if (newcon->device) { 2656 newcon->flags |= CON_CONSDEV; 2657 preferred_console = 0; 2658 } 2659 } 2660 } 2661 2662 /* 2663 * See if this console matches one we selected on 2664 * the command line. 2665 */ 2666 for (i = 0, c = console_cmdline; 2667 i < MAX_CMDLINECONSOLES && c->name[0]; 2668 i++, c++) { 2669 if (!newcon->match || 2670 newcon->match(newcon, c->name, c->index, c->options) != 0) { 2671 /* default matching */ 2672 BUILD_BUG_ON(sizeof(c->name) != sizeof(newcon->name)); 2673 if (strcmp(c->name, newcon->name) != 0) 2674 continue; 2675 if (newcon->index >= 0 && 2676 newcon->index != c->index) 2677 continue; 2678 if (newcon->index < 0) 2679 newcon->index = c->index; 2680 2681 if (_braille_register_console(newcon, c)) 2682 return; 2683 2684 if (newcon->setup && 2685 newcon->setup(newcon, c->options) != 0) 2686 break; 2687 } 2688 2689 newcon->flags |= CON_ENABLED; 2690 if (i == selected_console) { 2691 newcon->flags |= CON_CONSDEV; 2692 preferred_console = selected_console; 2693 } 2694 break; 2695 } 2696 2697 if (!(newcon->flags & CON_ENABLED)) 2698 return; 2699 2700 /* 2701 * If we have a bootconsole, and are switching to a real console, 2702 * don't print everything out again, since when the boot console, and 2703 * the real console are the same physical device, it's annoying to 2704 * see the beginning boot messages twice 2705 */ 2706 if (bcon && ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV)) 2707 newcon->flags &= ~CON_PRINTBUFFER; 2708 2709 /* 2710 * Put this console in the list - keep the 2711 * preferred driver at the head of the list. 2712 */ 2713 console_lock(); 2714 if ((newcon->flags & CON_CONSDEV) || console_drivers == NULL) { 2715 newcon->next = console_drivers; 2716 console_drivers = newcon; 2717 if (newcon->next) 2718 newcon->next->flags &= ~CON_CONSDEV; 2719 } else { 2720 newcon->next = console_drivers->next; 2721 console_drivers->next = newcon; 2722 } 2723 2724 if (newcon->flags & CON_EXTENDED) 2725 if (!nr_ext_console_drivers++) 2726 pr_info("printk: continuation disabled due to ext consoles, expect more fragments in /dev/kmsg\n"); 2727 2728 if (newcon->flags & CON_PRINTBUFFER) { 2729 /* 2730 * console_unlock(); will print out the buffered messages 2731 * for us. 2732 */ 2733 raw_spin_lock_irqsave(&logbuf_lock, flags); 2734 console_seq = syslog_seq; 2735 console_idx = syslog_idx; 2736 console_prev = syslog_prev; 2737 raw_spin_unlock_irqrestore(&logbuf_lock, flags); 2738 /* 2739 * We're about to replay the log buffer. Only do this to the 2740 * just-registered console to avoid excessive message spam to 2741 * the already-registered consoles. 2742 */ 2743 exclusive_console = newcon; 2744 } 2745 console_unlock(); 2746 console_sysfs_notify(); 2747 2748 /* 2749 * By unregistering the bootconsoles after we enable the real console 2750 * we get the "console xxx enabled" message on all the consoles - 2751 * boot consoles, real consoles, etc - this is to ensure that end 2752 * users know there might be something in the kernel's log buffer that 2753 * went to the bootconsole (that they do not see on the real console) 2754 */ 2755 pr_info("%sconsole [%s%d] enabled\n", 2756 (newcon->flags & CON_BOOT) ? "boot" : "" , 2757 newcon->name, newcon->index); 2758 if (bcon && 2759 ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV) && 2760 !keep_bootcon) { 2761 /* We need to iterate through all boot consoles, to make 2762 * sure we print everything out, before we unregister them. 2763 */ 2764 for_each_console(bcon) 2765 if (bcon->flags & CON_BOOT) 2766 unregister_console(bcon); 2767 } 2768 } 2769 EXPORT_SYMBOL(register_console); 2770 2771 int unregister_console(struct console *console) 2772 { 2773 struct console *a, *b; 2774 int res; 2775 2776 pr_info("%sconsole [%s%d] disabled\n", 2777 (console->flags & CON_BOOT) ? "boot" : "" , 2778 console->name, console->index); 2779 2780 res = _braille_unregister_console(console); 2781 if (res) 2782 return res; 2783 2784 res = 1; 2785 console_lock(); 2786 if (console_drivers == console) { 2787 console_drivers=console->next; 2788 res = 0; 2789 } else if (console_drivers) { 2790 for (a=console_drivers->next, b=console_drivers ; 2791 a; b=a, a=b->next) { 2792 if (a == console) { 2793 b->next = a->next; 2794 res = 0; 2795 break; 2796 } 2797 } 2798 } 2799 2800 if (!res && (console->flags & CON_EXTENDED)) 2801 nr_ext_console_drivers--; 2802 2803 /* 2804 * If this isn't the last console and it has CON_CONSDEV set, we 2805 * need to set it on the next preferred console. 2806 */ 2807 if (console_drivers != NULL && console->flags & CON_CONSDEV) 2808 console_drivers->flags |= CON_CONSDEV; 2809 2810 console->flags &= ~CON_ENABLED; 2811 console_unlock(); 2812 console_sysfs_notify(); 2813 return res; 2814 } 2815 EXPORT_SYMBOL(unregister_console); 2816 2817 /* 2818 * Some boot consoles access data that is in the init section and which will 2819 * be discarded after the initcalls have been run. To make sure that no code 2820 * will access this data, unregister the boot consoles in a late initcall. 2821 * 2822 * If for some reason, such as deferred probe or the driver being a loadable 2823 * module, the real console hasn't registered yet at this point, there will 2824 * be a brief interval in which no messages are logged to the console, which 2825 * makes it difficult to diagnose problems that occur during this time. 2826 * 2827 * To mitigate this problem somewhat, only unregister consoles whose memory 2828 * intersects with the init section. Note that code exists elsewhere to get 2829 * rid of the boot console as soon as the proper console shows up, so there 2830 * won't be side-effects from postponing the removal. 2831 */ 2832 static int __init printk_late_init(void) 2833 { 2834 struct console *con; 2835 2836 for_each_console(con) { 2837 if (!keep_bootcon && con->flags & CON_BOOT) { 2838 /* 2839 * Make sure to unregister boot consoles whose data 2840 * resides in the init section before the init section 2841 * is discarded. Boot consoles whose data will stick 2842 * around will automatically be unregistered when the 2843 * proper console replaces them. 2844 */ 2845 if (init_section_intersects(con, sizeof(*con))) 2846 unregister_console(con); 2847 } 2848 } 2849 hotcpu_notifier(console_cpu_notify, 0); 2850 return 0; 2851 } 2852 late_initcall(printk_late_init); 2853 2854 #if defined CONFIG_PRINTK 2855 /* 2856 * Delayed printk version, for scheduler-internal messages: 2857 */ 2858 #define PRINTK_PENDING_WAKEUP 0x01 2859 #define PRINTK_PENDING_OUTPUT 0x02 2860 2861 static DEFINE_PER_CPU(int, printk_pending); 2862 2863 static void wake_up_klogd_work_func(struct irq_work *irq_work) 2864 { 2865 int pending = __this_cpu_xchg(printk_pending, 0); 2866 2867 if (pending & PRINTK_PENDING_OUTPUT) { 2868 /* If trylock fails, someone else is doing the printing */ 2869 if (console_trylock()) 2870 console_unlock(); 2871 } 2872 2873 if (pending & PRINTK_PENDING_WAKEUP) 2874 wake_up_interruptible(&log_wait); 2875 } 2876 2877 static DEFINE_PER_CPU(struct irq_work, wake_up_klogd_work) = { 2878 .func = wake_up_klogd_work_func, 2879 .flags = IRQ_WORK_LAZY, 2880 }; 2881 2882 void wake_up_klogd(void) 2883 { 2884 preempt_disable(); 2885 if (waitqueue_active(&log_wait)) { 2886 this_cpu_or(printk_pending, PRINTK_PENDING_WAKEUP); 2887 irq_work_queue(this_cpu_ptr(&wake_up_klogd_work)); 2888 } 2889 preempt_enable(); 2890 } 2891 2892 int printk_deferred(const char *fmt, ...) 2893 { 2894 va_list args; 2895 int r; 2896 2897 preempt_disable(); 2898 va_start(args, fmt); 2899 r = vprintk_emit(0, LOGLEVEL_SCHED, NULL, 0, fmt, args); 2900 va_end(args); 2901 2902 __this_cpu_or(printk_pending, PRINTK_PENDING_OUTPUT); 2903 irq_work_queue(this_cpu_ptr(&wake_up_klogd_work)); 2904 preempt_enable(); 2905 2906 return r; 2907 } 2908 2909 /* 2910 * printk rate limiting, lifted from the networking subsystem. 2911 * 2912 * This enforces a rate limit: not more than 10 kernel messages 2913 * every 5s to make a denial-of-service attack impossible. 2914 */ 2915 DEFINE_RATELIMIT_STATE(printk_ratelimit_state, 5 * HZ, 10); 2916 2917 int __printk_ratelimit(const char *func) 2918 { 2919 return ___ratelimit(&printk_ratelimit_state, func); 2920 } 2921 EXPORT_SYMBOL(__printk_ratelimit); 2922 2923 /** 2924 * printk_timed_ratelimit - caller-controlled printk ratelimiting 2925 * @caller_jiffies: pointer to caller's state 2926 * @interval_msecs: minimum interval between prints 2927 * 2928 * printk_timed_ratelimit() returns true if more than @interval_msecs 2929 * milliseconds have elapsed since the last time printk_timed_ratelimit() 2930 * returned true. 2931 */ 2932 bool printk_timed_ratelimit(unsigned long *caller_jiffies, 2933 unsigned int interval_msecs) 2934 { 2935 unsigned long elapsed = jiffies - *caller_jiffies; 2936 2937 if (*caller_jiffies && elapsed <= msecs_to_jiffies(interval_msecs)) 2938 return false; 2939 2940 *caller_jiffies = jiffies; 2941 return true; 2942 } 2943 EXPORT_SYMBOL(printk_timed_ratelimit); 2944 2945 static DEFINE_SPINLOCK(dump_list_lock); 2946 static LIST_HEAD(dump_list); 2947 2948 /** 2949 * kmsg_dump_register - register a kernel log dumper. 2950 * @dumper: pointer to the kmsg_dumper structure 2951 * 2952 * Adds a kernel log dumper to the system. The dump callback in the 2953 * structure will be called when the kernel oopses or panics and must be 2954 * set. Returns zero on success and %-EINVAL or %-EBUSY otherwise. 2955 */ 2956 int kmsg_dump_register(struct kmsg_dumper *dumper) 2957 { 2958 unsigned long flags; 2959 int err = -EBUSY; 2960 2961 /* The dump callback needs to be set */ 2962 if (!dumper->dump) 2963 return -EINVAL; 2964 2965 spin_lock_irqsave(&dump_list_lock, flags); 2966 /* Don't allow registering multiple times */ 2967 if (!dumper->registered) { 2968 dumper->registered = 1; 2969 list_add_tail_rcu(&dumper->list, &dump_list); 2970 err = 0; 2971 } 2972 spin_unlock_irqrestore(&dump_list_lock, flags); 2973 2974 return err; 2975 } 2976 EXPORT_SYMBOL_GPL(kmsg_dump_register); 2977 2978 /** 2979 * kmsg_dump_unregister - unregister a kmsg dumper. 2980 * @dumper: pointer to the kmsg_dumper structure 2981 * 2982 * Removes a dump device from the system. Returns zero on success and 2983 * %-EINVAL otherwise. 2984 */ 2985 int kmsg_dump_unregister(struct kmsg_dumper *dumper) 2986 { 2987 unsigned long flags; 2988 int err = -EINVAL; 2989 2990 spin_lock_irqsave(&dump_list_lock, flags); 2991 if (dumper->registered) { 2992 dumper->registered = 0; 2993 list_del_rcu(&dumper->list); 2994 err = 0; 2995 } 2996 spin_unlock_irqrestore(&dump_list_lock, flags); 2997 synchronize_rcu(); 2998 2999 return err; 3000 } 3001 EXPORT_SYMBOL_GPL(kmsg_dump_unregister); 3002 3003 static bool always_kmsg_dump; 3004 module_param_named(always_kmsg_dump, always_kmsg_dump, bool, S_IRUGO | S_IWUSR); 3005 3006 /** 3007 * kmsg_dump - dump kernel log to kernel message dumpers. 3008 * @reason: the reason (oops, panic etc) for dumping 3009 * 3010 * Call each of the registered dumper's dump() callback, which can 3011 * retrieve the kmsg records with kmsg_dump_get_line() or 3012 * kmsg_dump_get_buffer(). 3013 */ 3014 void kmsg_dump(enum kmsg_dump_reason reason) 3015 { 3016 struct kmsg_dumper *dumper; 3017 unsigned long flags; 3018 3019 if ((reason > KMSG_DUMP_OOPS) && !always_kmsg_dump) 3020 return; 3021 3022 rcu_read_lock(); 3023 list_for_each_entry_rcu(dumper, &dump_list, list) { 3024 if (dumper->max_reason && reason > dumper->max_reason) 3025 continue; 3026 3027 /* initialize iterator with data about the stored records */ 3028 dumper->active = true; 3029 3030 raw_spin_lock_irqsave(&logbuf_lock, flags); 3031 cont_flush(); 3032 dumper->cur_seq = clear_seq; 3033 dumper->cur_idx = clear_idx; 3034 dumper->next_seq = log_next_seq; 3035 dumper->next_idx = log_next_idx; 3036 raw_spin_unlock_irqrestore(&logbuf_lock, flags); 3037 3038 /* invoke dumper which will iterate over records */ 3039 dumper->dump(dumper, reason); 3040 3041 /* reset iterator */ 3042 dumper->active = false; 3043 } 3044 rcu_read_unlock(); 3045 } 3046 3047 /** 3048 * kmsg_dump_get_line_nolock - retrieve one kmsg log line (unlocked version) 3049 * @dumper: registered kmsg dumper 3050 * @syslog: include the "<4>" prefixes 3051 * @line: buffer to copy the line to 3052 * @size: maximum size of the buffer 3053 * @len: length of line placed into buffer 3054 * 3055 * Start at the beginning of the kmsg buffer, with the oldest kmsg 3056 * record, and copy one record into the provided buffer. 3057 * 3058 * Consecutive calls will return the next available record moving 3059 * towards the end of the buffer with the youngest messages. 3060 * 3061 * A return value of FALSE indicates that there are no more records to 3062 * read. 3063 * 3064 * The function is similar to kmsg_dump_get_line(), but grabs no locks. 3065 */ 3066 bool kmsg_dump_get_line_nolock(struct kmsg_dumper *dumper, bool syslog, 3067 char *line, size_t size, size_t *len) 3068 { 3069 struct printk_log *msg; 3070 size_t l = 0; 3071 bool ret = false; 3072 3073 if (!dumper->active) 3074 goto out; 3075 3076 if (dumper->cur_seq < log_first_seq) { 3077 /* messages are gone, move to first available one */ 3078 dumper->cur_seq = log_first_seq; 3079 dumper->cur_idx = log_first_idx; 3080 } 3081 3082 /* last entry */ 3083 if (dumper->cur_seq >= log_next_seq) 3084 goto out; 3085 3086 msg = log_from_idx(dumper->cur_idx); 3087 l = msg_print_text(msg, 0, syslog, line, size); 3088 3089 dumper->cur_idx = log_next(dumper->cur_idx); 3090 dumper->cur_seq++; 3091 ret = true; 3092 out: 3093 if (len) 3094 *len = l; 3095 return ret; 3096 } 3097 3098 /** 3099 * kmsg_dump_get_line - retrieve one kmsg log line 3100 * @dumper: registered kmsg dumper 3101 * @syslog: include the "<4>" prefixes 3102 * @line: buffer to copy the line to 3103 * @size: maximum size of the buffer 3104 * @len: length of line placed into buffer 3105 * 3106 * Start at the beginning of the kmsg buffer, with the oldest kmsg 3107 * record, and copy one record into the provided buffer. 3108 * 3109 * Consecutive calls will return the next available record moving 3110 * towards the end of the buffer with the youngest messages. 3111 * 3112 * A return value of FALSE indicates that there are no more records to 3113 * read. 3114 */ 3115 bool kmsg_dump_get_line(struct kmsg_dumper *dumper, bool syslog, 3116 char *line, size_t size, size_t *len) 3117 { 3118 unsigned long flags; 3119 bool ret; 3120 3121 raw_spin_lock_irqsave(&logbuf_lock, flags); 3122 cont_flush(); 3123 ret = kmsg_dump_get_line_nolock(dumper, syslog, line, size, len); 3124 raw_spin_unlock_irqrestore(&logbuf_lock, flags); 3125 3126 return ret; 3127 } 3128 EXPORT_SYMBOL_GPL(kmsg_dump_get_line); 3129 3130 /** 3131 * kmsg_dump_get_buffer - copy kmsg log lines 3132 * @dumper: registered kmsg dumper 3133 * @syslog: include the "<4>" prefixes 3134 * @buf: buffer to copy the line to 3135 * @size: maximum size of the buffer 3136 * @len: length of line placed into buffer 3137 * 3138 * Start at the end of the kmsg buffer and fill the provided buffer 3139 * with as many of the the *youngest* kmsg records that fit into it. 3140 * If the buffer is large enough, all available kmsg records will be 3141 * copied with a single call. 3142 * 3143 * Consecutive calls will fill the buffer with the next block of 3144 * available older records, not including the earlier retrieved ones. 3145 * 3146 * A return value of FALSE indicates that there are no more records to 3147 * read. 3148 */ 3149 bool kmsg_dump_get_buffer(struct kmsg_dumper *dumper, bool syslog, 3150 char *buf, size_t size, size_t *len) 3151 { 3152 unsigned long flags; 3153 u64 seq; 3154 u32 idx; 3155 u64 next_seq; 3156 u32 next_idx; 3157 enum log_flags prev; 3158 size_t l = 0; 3159 bool ret = false; 3160 3161 if (!dumper->active) 3162 goto out; 3163 3164 raw_spin_lock_irqsave(&logbuf_lock, flags); 3165 cont_flush(); 3166 if (dumper->cur_seq < log_first_seq) { 3167 /* messages are gone, move to first available one */ 3168 dumper->cur_seq = log_first_seq; 3169 dumper->cur_idx = log_first_idx; 3170 } 3171 3172 /* last entry */ 3173 if (dumper->cur_seq >= dumper->next_seq) { 3174 raw_spin_unlock_irqrestore(&logbuf_lock, flags); 3175 goto out; 3176 } 3177 3178 /* calculate length of entire buffer */ 3179 seq = dumper->cur_seq; 3180 idx = dumper->cur_idx; 3181 prev = 0; 3182 while (seq < dumper->next_seq) { 3183 struct printk_log *msg = log_from_idx(idx); 3184 3185 l += msg_print_text(msg, prev, true, NULL, 0); 3186 idx = log_next(idx); 3187 seq++; 3188 prev = msg->flags; 3189 } 3190 3191 /* move first record forward until length fits into the buffer */ 3192 seq = dumper->cur_seq; 3193 idx = dumper->cur_idx; 3194 prev = 0; 3195 while (l > size && seq < dumper->next_seq) { 3196 struct printk_log *msg = log_from_idx(idx); 3197 3198 l -= msg_print_text(msg, prev, true, NULL, 0); 3199 idx = log_next(idx); 3200 seq++; 3201 prev = msg->flags; 3202 } 3203 3204 /* last message in next interation */ 3205 next_seq = seq; 3206 next_idx = idx; 3207 3208 l = 0; 3209 while (seq < dumper->next_seq) { 3210 struct printk_log *msg = log_from_idx(idx); 3211 3212 l += msg_print_text(msg, prev, syslog, buf + l, size - l); 3213 idx = log_next(idx); 3214 seq++; 3215 prev = msg->flags; 3216 } 3217 3218 dumper->next_seq = next_seq; 3219 dumper->next_idx = next_idx; 3220 ret = true; 3221 raw_spin_unlock_irqrestore(&logbuf_lock, flags); 3222 out: 3223 if (len) 3224 *len = l; 3225 return ret; 3226 } 3227 EXPORT_SYMBOL_GPL(kmsg_dump_get_buffer); 3228 3229 /** 3230 * kmsg_dump_rewind_nolock - reset the interator (unlocked version) 3231 * @dumper: registered kmsg dumper 3232 * 3233 * Reset the dumper's iterator so that kmsg_dump_get_line() and 3234 * kmsg_dump_get_buffer() can be called again and used multiple 3235 * times within the same dumper.dump() callback. 3236 * 3237 * The function is similar to kmsg_dump_rewind(), but grabs no locks. 3238 */ 3239 void kmsg_dump_rewind_nolock(struct kmsg_dumper *dumper) 3240 { 3241 dumper->cur_seq = clear_seq; 3242 dumper->cur_idx = clear_idx; 3243 dumper->next_seq = log_next_seq; 3244 dumper->next_idx = log_next_idx; 3245 } 3246 3247 /** 3248 * kmsg_dump_rewind - reset the interator 3249 * @dumper: registered kmsg dumper 3250 * 3251 * Reset the dumper's iterator so that kmsg_dump_get_line() and 3252 * kmsg_dump_get_buffer() can be called again and used multiple 3253 * times within the same dumper.dump() callback. 3254 */ 3255 void kmsg_dump_rewind(struct kmsg_dumper *dumper) 3256 { 3257 unsigned long flags; 3258 3259 raw_spin_lock_irqsave(&logbuf_lock, flags); 3260 kmsg_dump_rewind_nolock(dumper); 3261 raw_spin_unlock_irqrestore(&logbuf_lock, flags); 3262 } 3263 EXPORT_SYMBOL_GPL(kmsg_dump_rewind); 3264 3265 static char dump_stack_arch_desc_str[128]; 3266 3267 /** 3268 * dump_stack_set_arch_desc - set arch-specific str to show with task dumps 3269 * @fmt: printf-style format string 3270 * @...: arguments for the format string 3271 * 3272 * The configured string will be printed right after utsname during task 3273 * dumps. Usually used to add arch-specific system identifiers. If an 3274 * arch wants to make use of such an ID string, it should initialize this 3275 * as soon as possible during boot. 3276 */ 3277 void __init dump_stack_set_arch_desc(const char *fmt, ...) 3278 { 3279 va_list args; 3280 3281 va_start(args, fmt); 3282 vsnprintf(dump_stack_arch_desc_str, sizeof(dump_stack_arch_desc_str), 3283 fmt, args); 3284 va_end(args); 3285 } 3286 3287 /** 3288 * dump_stack_print_info - print generic debug info for dump_stack() 3289 * @log_lvl: log level 3290 * 3291 * Arch-specific dump_stack() implementations can use this function to 3292 * print out the same debug information as the generic dump_stack(). 3293 */ 3294 void dump_stack_print_info(const char *log_lvl) 3295 { 3296 printk("%sCPU: %d PID: %d Comm: %.20s %s %s %.*s\n", 3297 log_lvl, raw_smp_processor_id(), current->pid, current->comm, 3298 print_tainted(), init_utsname()->release, 3299 (int)strcspn(init_utsname()->version, " "), 3300 init_utsname()->version); 3301 3302 if (dump_stack_arch_desc_str[0] != '\0') 3303 printk("%sHardware name: %s\n", 3304 log_lvl, dump_stack_arch_desc_str); 3305 3306 print_worker_info(log_lvl, current); 3307 } 3308 3309 /** 3310 * show_regs_print_info - print generic debug info for show_regs() 3311 * @log_lvl: log level 3312 * 3313 * show_regs() implementations can use this function to print out generic 3314 * debug information. 3315 */ 3316 void show_regs_print_info(const char *log_lvl) 3317 { 3318 dump_stack_print_info(log_lvl); 3319 3320 printk("%stask: %p task.stack: %p\n", 3321 log_lvl, current, task_stack_page(current)); 3322 } 3323 3324 #endif 3325