xref: /openbmc/linux/kernel/printk/printk.c (revision 82003e04)
1 /*
2  *  linux/kernel/printk.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  *
6  * Modified to make sys_syslog() more flexible: added commands to
7  * return the last 4k of kernel messages, regardless of whether
8  * they've been read or not.  Added option to suppress kernel printk's
9  * to the console.  Added hook for sending the console messages
10  * elsewhere, in preparation for a serial line console (someday).
11  * Ted Ts'o, 2/11/93.
12  * Modified for sysctl support, 1/8/97, Chris Horn.
13  * Fixed SMP synchronization, 08/08/99, Manfred Spraul
14  *     manfred@colorfullife.com
15  * Rewrote bits to get rid of console_lock
16  *	01Mar01 Andrew Morton
17  */
18 
19 #include <linux/kernel.h>
20 #include <linux/mm.h>
21 #include <linux/tty.h>
22 #include <linux/tty_driver.h>
23 #include <linux/console.h>
24 #include <linux/init.h>
25 #include <linux/jiffies.h>
26 #include <linux/nmi.h>
27 #include <linux/module.h>
28 #include <linux/moduleparam.h>
29 #include <linux/delay.h>
30 #include <linux/smp.h>
31 #include <linux/security.h>
32 #include <linux/bootmem.h>
33 #include <linux/memblock.h>
34 #include <linux/syscalls.h>
35 #include <linux/kexec.h>
36 #include <linux/kdb.h>
37 #include <linux/ratelimit.h>
38 #include <linux/kmsg_dump.h>
39 #include <linux/syslog.h>
40 #include <linux/cpu.h>
41 #include <linux/notifier.h>
42 #include <linux/rculist.h>
43 #include <linux/poll.h>
44 #include <linux/irq_work.h>
45 #include <linux/utsname.h>
46 #include <linux/ctype.h>
47 #include <linux/uio.h>
48 
49 #include <asm/uaccess.h>
50 #include <asm/sections.h>
51 
52 #define CREATE_TRACE_POINTS
53 #include <trace/events/printk.h>
54 
55 #include "console_cmdline.h"
56 #include "braille.h"
57 #include "internal.h"
58 
59 int console_printk[4] = {
60 	CONSOLE_LOGLEVEL_DEFAULT,	/* console_loglevel */
61 	MESSAGE_LOGLEVEL_DEFAULT,	/* default_message_loglevel */
62 	CONSOLE_LOGLEVEL_MIN,		/* minimum_console_loglevel */
63 	CONSOLE_LOGLEVEL_DEFAULT,	/* default_console_loglevel */
64 };
65 
66 /*
67  * Low level drivers may need that to know if they can schedule in
68  * their unblank() callback or not. So let's export it.
69  */
70 int oops_in_progress;
71 EXPORT_SYMBOL(oops_in_progress);
72 
73 /*
74  * console_sem protects the console_drivers list, and also
75  * provides serialisation for access to the entire console
76  * driver system.
77  */
78 static DEFINE_SEMAPHORE(console_sem);
79 struct console *console_drivers;
80 EXPORT_SYMBOL_GPL(console_drivers);
81 
82 #ifdef CONFIG_LOCKDEP
83 static struct lockdep_map console_lock_dep_map = {
84 	.name = "console_lock"
85 };
86 #endif
87 
88 enum devkmsg_log_bits {
89 	__DEVKMSG_LOG_BIT_ON = 0,
90 	__DEVKMSG_LOG_BIT_OFF,
91 	__DEVKMSG_LOG_BIT_LOCK,
92 };
93 
94 enum devkmsg_log_masks {
95 	DEVKMSG_LOG_MASK_ON             = BIT(__DEVKMSG_LOG_BIT_ON),
96 	DEVKMSG_LOG_MASK_OFF            = BIT(__DEVKMSG_LOG_BIT_OFF),
97 	DEVKMSG_LOG_MASK_LOCK           = BIT(__DEVKMSG_LOG_BIT_LOCK),
98 };
99 
100 /* Keep both the 'on' and 'off' bits clear, i.e. ratelimit by default: */
101 #define DEVKMSG_LOG_MASK_DEFAULT	0
102 
103 static unsigned int __read_mostly devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT;
104 
105 static int __control_devkmsg(char *str)
106 {
107 	if (!str)
108 		return -EINVAL;
109 
110 	if (!strncmp(str, "on", 2)) {
111 		devkmsg_log = DEVKMSG_LOG_MASK_ON;
112 		return 2;
113 	} else if (!strncmp(str, "off", 3)) {
114 		devkmsg_log = DEVKMSG_LOG_MASK_OFF;
115 		return 3;
116 	} else if (!strncmp(str, "ratelimit", 9)) {
117 		devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT;
118 		return 9;
119 	}
120 	return -EINVAL;
121 }
122 
123 static int __init control_devkmsg(char *str)
124 {
125 	if (__control_devkmsg(str) < 0)
126 		return 1;
127 
128 	/*
129 	 * Set sysctl string accordingly:
130 	 */
131 	if (devkmsg_log == DEVKMSG_LOG_MASK_ON) {
132 		memset(devkmsg_log_str, 0, DEVKMSG_STR_MAX_SIZE);
133 		strncpy(devkmsg_log_str, "on", 2);
134 	} else if (devkmsg_log == DEVKMSG_LOG_MASK_OFF) {
135 		memset(devkmsg_log_str, 0, DEVKMSG_STR_MAX_SIZE);
136 		strncpy(devkmsg_log_str, "off", 3);
137 	}
138 	/* else "ratelimit" which is set by default. */
139 
140 	/*
141 	 * Sysctl cannot change it anymore. The kernel command line setting of
142 	 * this parameter is to force the setting to be permanent throughout the
143 	 * runtime of the system. This is a precation measure against userspace
144 	 * trying to be a smarta** and attempting to change it up on us.
145 	 */
146 	devkmsg_log |= DEVKMSG_LOG_MASK_LOCK;
147 
148 	return 0;
149 }
150 __setup("printk.devkmsg=", control_devkmsg);
151 
152 char devkmsg_log_str[DEVKMSG_STR_MAX_SIZE] = "ratelimit";
153 
154 int devkmsg_sysctl_set_loglvl(struct ctl_table *table, int write,
155 			      void __user *buffer, size_t *lenp, loff_t *ppos)
156 {
157 	char old_str[DEVKMSG_STR_MAX_SIZE];
158 	unsigned int old;
159 	int err;
160 
161 	if (write) {
162 		if (devkmsg_log & DEVKMSG_LOG_MASK_LOCK)
163 			return -EINVAL;
164 
165 		old = devkmsg_log;
166 		strncpy(old_str, devkmsg_log_str, DEVKMSG_STR_MAX_SIZE);
167 	}
168 
169 	err = proc_dostring(table, write, buffer, lenp, ppos);
170 	if (err)
171 		return err;
172 
173 	if (write) {
174 		err = __control_devkmsg(devkmsg_log_str);
175 
176 		/*
177 		 * Do not accept an unknown string OR a known string with
178 		 * trailing crap...
179 		 */
180 		if (err < 0 || (err + 1 != *lenp)) {
181 
182 			/* ... and restore old setting. */
183 			devkmsg_log = old;
184 			strncpy(devkmsg_log_str, old_str, DEVKMSG_STR_MAX_SIZE);
185 
186 			return -EINVAL;
187 		}
188 	}
189 
190 	return 0;
191 }
192 
193 /*
194  * Number of registered extended console drivers.
195  *
196  * If extended consoles are present, in-kernel cont reassembly is disabled
197  * and each fragment is stored as a separate log entry with proper
198  * continuation flag so that every emitted message has full metadata.  This
199  * doesn't change the result for regular consoles or /proc/kmsg.  For
200  * /dev/kmsg, as long as the reader concatenates messages according to
201  * consecutive continuation flags, the end result should be the same too.
202  */
203 static int nr_ext_console_drivers;
204 
205 /*
206  * Helper macros to handle lockdep when locking/unlocking console_sem. We use
207  * macros instead of functions so that _RET_IP_ contains useful information.
208  */
209 #define down_console_sem() do { \
210 	down(&console_sem);\
211 	mutex_acquire(&console_lock_dep_map, 0, 0, _RET_IP_);\
212 } while (0)
213 
214 static int __down_trylock_console_sem(unsigned long ip)
215 {
216 	if (down_trylock(&console_sem))
217 		return 1;
218 	mutex_acquire(&console_lock_dep_map, 0, 1, ip);
219 	return 0;
220 }
221 #define down_trylock_console_sem() __down_trylock_console_sem(_RET_IP_)
222 
223 #define up_console_sem() do { \
224 	mutex_release(&console_lock_dep_map, 1, _RET_IP_);\
225 	up(&console_sem);\
226 } while (0)
227 
228 /*
229  * This is used for debugging the mess that is the VT code by
230  * keeping track if we have the console semaphore held. It's
231  * definitely not the perfect debug tool (we don't know if _WE_
232  * hold it and are racing, but it helps tracking those weird code
233  * paths in the console code where we end up in places I want
234  * locked without the console sempahore held).
235  */
236 static int console_locked, console_suspended;
237 
238 /*
239  * If exclusive_console is non-NULL then only this console is to be printed to.
240  */
241 static struct console *exclusive_console;
242 
243 /*
244  *	Array of consoles built from command line options (console=)
245  */
246 
247 #define MAX_CMDLINECONSOLES 8
248 
249 static struct console_cmdline console_cmdline[MAX_CMDLINECONSOLES];
250 
251 static int selected_console = -1;
252 static int preferred_console = -1;
253 int console_set_on_cmdline;
254 EXPORT_SYMBOL(console_set_on_cmdline);
255 
256 /* Flag: console code may call schedule() */
257 static int console_may_schedule;
258 
259 /*
260  * The printk log buffer consists of a chain of concatenated variable
261  * length records. Every record starts with a record header, containing
262  * the overall length of the record.
263  *
264  * The heads to the first and last entry in the buffer, as well as the
265  * sequence numbers of these entries are maintained when messages are
266  * stored.
267  *
268  * If the heads indicate available messages, the length in the header
269  * tells the start next message. A length == 0 for the next message
270  * indicates a wrap-around to the beginning of the buffer.
271  *
272  * Every record carries the monotonic timestamp in microseconds, as well as
273  * the standard userspace syslog level and syslog facility. The usual
274  * kernel messages use LOG_KERN; userspace-injected messages always carry
275  * a matching syslog facility, by default LOG_USER. The origin of every
276  * message can be reliably determined that way.
277  *
278  * The human readable log message directly follows the message header. The
279  * length of the message text is stored in the header, the stored message
280  * is not terminated.
281  *
282  * Optionally, a message can carry a dictionary of properties (key/value pairs),
283  * to provide userspace with a machine-readable message context.
284  *
285  * Examples for well-defined, commonly used property names are:
286  *   DEVICE=b12:8               device identifier
287  *                                b12:8         block dev_t
288  *                                c127:3        char dev_t
289  *                                n8            netdev ifindex
290  *                                +sound:card0  subsystem:devname
291  *   SUBSYSTEM=pci              driver-core subsystem name
292  *
293  * Valid characters in property names are [a-zA-Z0-9.-_]. The plain text value
294  * follows directly after a '=' character. Every property is terminated by
295  * a '\0' character. The last property is not terminated.
296  *
297  * Example of a message structure:
298  *   0000  ff 8f 00 00 00 00 00 00      monotonic time in nsec
299  *   0008  34 00                        record is 52 bytes long
300  *   000a        0b 00                  text is 11 bytes long
301  *   000c              1f 00            dictionary is 23 bytes long
302  *   000e                    03 00      LOG_KERN (facility) LOG_ERR (level)
303  *   0010  69 74 27 73 20 61 20 6c      "it's a l"
304  *         69 6e 65                     "ine"
305  *   001b           44 45 56 49 43      "DEVIC"
306  *         45 3d 62 38 3a 32 00 44      "E=b8:2\0D"
307  *         52 49 56 45 52 3d 62 75      "RIVER=bu"
308  *         67                           "g"
309  *   0032     00 00 00                  padding to next message header
310  *
311  * The 'struct printk_log' buffer header must never be directly exported to
312  * userspace, it is a kernel-private implementation detail that might
313  * need to be changed in the future, when the requirements change.
314  *
315  * /dev/kmsg exports the structured data in the following line format:
316  *   "<level>,<sequnum>,<timestamp>,<contflag>[,additional_values, ... ];<message text>\n"
317  *
318  * Users of the export format should ignore possible additional values
319  * separated by ',', and find the message after the ';' character.
320  *
321  * The optional key/value pairs are attached as continuation lines starting
322  * with a space character and terminated by a newline. All possible
323  * non-prinatable characters are escaped in the "\xff" notation.
324  */
325 
326 enum log_flags {
327 	LOG_NOCONS	= 1,	/* already flushed, do not print to console */
328 	LOG_NEWLINE	= 2,	/* text ended with a newline */
329 	LOG_PREFIX	= 4,	/* text started with a prefix */
330 	LOG_CONT	= 8,	/* text is a fragment of a continuation line */
331 };
332 
333 struct printk_log {
334 	u64 ts_nsec;		/* timestamp in nanoseconds */
335 	u16 len;		/* length of entire record */
336 	u16 text_len;		/* length of text buffer */
337 	u16 dict_len;		/* length of dictionary buffer */
338 	u8 facility;		/* syslog facility */
339 	u8 flags:5;		/* internal record flags */
340 	u8 level:3;		/* syslog level */
341 }
342 #ifdef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
343 __packed __aligned(4)
344 #endif
345 ;
346 
347 /*
348  * The logbuf_lock protects kmsg buffer, indices, counters.  This can be taken
349  * within the scheduler's rq lock. It must be released before calling
350  * console_unlock() or anything else that might wake up a process.
351  */
352 DEFINE_RAW_SPINLOCK(logbuf_lock);
353 
354 #ifdef CONFIG_PRINTK
355 DECLARE_WAIT_QUEUE_HEAD(log_wait);
356 /* the next printk record to read by syslog(READ) or /proc/kmsg */
357 static u64 syslog_seq;
358 static u32 syslog_idx;
359 static enum log_flags syslog_prev;
360 static size_t syslog_partial;
361 
362 /* index and sequence number of the first record stored in the buffer */
363 static u64 log_first_seq;
364 static u32 log_first_idx;
365 
366 /* index and sequence number of the next record to store in the buffer */
367 static u64 log_next_seq;
368 static u32 log_next_idx;
369 
370 /* the next printk record to write to the console */
371 static u64 console_seq;
372 static u32 console_idx;
373 static enum log_flags console_prev;
374 
375 /* the next printk record to read after the last 'clear' command */
376 static u64 clear_seq;
377 static u32 clear_idx;
378 
379 #define PREFIX_MAX		32
380 #define LOG_LINE_MAX		(1024 - PREFIX_MAX)
381 
382 #define LOG_LEVEL(v)		((v) & 0x07)
383 #define LOG_FACILITY(v)		((v) >> 3 & 0xff)
384 
385 /* record buffer */
386 #define LOG_ALIGN __alignof__(struct printk_log)
387 #define __LOG_BUF_LEN (1 << CONFIG_LOG_BUF_SHIFT)
388 static char __log_buf[__LOG_BUF_LEN] __aligned(LOG_ALIGN);
389 static char *log_buf = __log_buf;
390 static u32 log_buf_len = __LOG_BUF_LEN;
391 
392 /* Return log buffer address */
393 char *log_buf_addr_get(void)
394 {
395 	return log_buf;
396 }
397 
398 /* Return log buffer size */
399 u32 log_buf_len_get(void)
400 {
401 	return log_buf_len;
402 }
403 
404 /* human readable text of the record */
405 static char *log_text(const struct printk_log *msg)
406 {
407 	return (char *)msg + sizeof(struct printk_log);
408 }
409 
410 /* optional key/value pair dictionary attached to the record */
411 static char *log_dict(const struct printk_log *msg)
412 {
413 	return (char *)msg + sizeof(struct printk_log) + msg->text_len;
414 }
415 
416 /* get record by index; idx must point to valid msg */
417 static struct printk_log *log_from_idx(u32 idx)
418 {
419 	struct printk_log *msg = (struct printk_log *)(log_buf + idx);
420 
421 	/*
422 	 * A length == 0 record is the end of buffer marker. Wrap around and
423 	 * read the message at the start of the buffer.
424 	 */
425 	if (!msg->len)
426 		return (struct printk_log *)log_buf;
427 	return msg;
428 }
429 
430 /* get next record; idx must point to valid msg */
431 static u32 log_next(u32 idx)
432 {
433 	struct printk_log *msg = (struct printk_log *)(log_buf + idx);
434 
435 	/* length == 0 indicates the end of the buffer; wrap */
436 	/*
437 	 * A length == 0 record is the end of buffer marker. Wrap around and
438 	 * read the message at the start of the buffer as *this* one, and
439 	 * return the one after that.
440 	 */
441 	if (!msg->len) {
442 		msg = (struct printk_log *)log_buf;
443 		return msg->len;
444 	}
445 	return idx + msg->len;
446 }
447 
448 /*
449  * Check whether there is enough free space for the given message.
450  *
451  * The same values of first_idx and next_idx mean that the buffer
452  * is either empty or full.
453  *
454  * If the buffer is empty, we must respect the position of the indexes.
455  * They cannot be reset to the beginning of the buffer.
456  */
457 static int logbuf_has_space(u32 msg_size, bool empty)
458 {
459 	u32 free;
460 
461 	if (log_next_idx > log_first_idx || empty)
462 		free = max(log_buf_len - log_next_idx, log_first_idx);
463 	else
464 		free = log_first_idx - log_next_idx;
465 
466 	/*
467 	 * We need space also for an empty header that signalizes wrapping
468 	 * of the buffer.
469 	 */
470 	return free >= msg_size + sizeof(struct printk_log);
471 }
472 
473 static int log_make_free_space(u32 msg_size)
474 {
475 	while (log_first_seq < log_next_seq &&
476 	       !logbuf_has_space(msg_size, false)) {
477 		/* drop old messages until we have enough contiguous space */
478 		log_first_idx = log_next(log_first_idx);
479 		log_first_seq++;
480 	}
481 
482 	if (clear_seq < log_first_seq) {
483 		clear_seq = log_first_seq;
484 		clear_idx = log_first_idx;
485 	}
486 
487 	/* sequence numbers are equal, so the log buffer is empty */
488 	if (logbuf_has_space(msg_size, log_first_seq == log_next_seq))
489 		return 0;
490 
491 	return -ENOMEM;
492 }
493 
494 /* compute the message size including the padding bytes */
495 static u32 msg_used_size(u16 text_len, u16 dict_len, u32 *pad_len)
496 {
497 	u32 size;
498 
499 	size = sizeof(struct printk_log) + text_len + dict_len;
500 	*pad_len = (-size) & (LOG_ALIGN - 1);
501 	size += *pad_len;
502 
503 	return size;
504 }
505 
506 /*
507  * Define how much of the log buffer we could take at maximum. The value
508  * must be greater than two. Note that only half of the buffer is available
509  * when the index points to the middle.
510  */
511 #define MAX_LOG_TAKE_PART 4
512 static const char trunc_msg[] = "<truncated>";
513 
514 static u32 truncate_msg(u16 *text_len, u16 *trunc_msg_len,
515 			u16 *dict_len, u32 *pad_len)
516 {
517 	/*
518 	 * The message should not take the whole buffer. Otherwise, it might
519 	 * get removed too soon.
520 	 */
521 	u32 max_text_len = log_buf_len / MAX_LOG_TAKE_PART;
522 	if (*text_len > max_text_len)
523 		*text_len = max_text_len;
524 	/* enable the warning message */
525 	*trunc_msg_len = strlen(trunc_msg);
526 	/* disable the "dict" completely */
527 	*dict_len = 0;
528 	/* compute the size again, count also the warning message */
529 	return msg_used_size(*text_len + *trunc_msg_len, 0, pad_len);
530 }
531 
532 /* insert record into the buffer, discard old ones, update heads */
533 static int log_store(int facility, int level,
534 		     enum log_flags flags, u64 ts_nsec,
535 		     const char *dict, u16 dict_len,
536 		     const char *text, u16 text_len)
537 {
538 	struct printk_log *msg;
539 	u32 size, pad_len;
540 	u16 trunc_msg_len = 0;
541 
542 	/* number of '\0' padding bytes to next message */
543 	size = msg_used_size(text_len, dict_len, &pad_len);
544 
545 	if (log_make_free_space(size)) {
546 		/* truncate the message if it is too long for empty buffer */
547 		size = truncate_msg(&text_len, &trunc_msg_len,
548 				    &dict_len, &pad_len);
549 		/* survive when the log buffer is too small for trunc_msg */
550 		if (log_make_free_space(size))
551 			return 0;
552 	}
553 
554 	if (log_next_idx + size + sizeof(struct printk_log) > log_buf_len) {
555 		/*
556 		 * This message + an additional empty header does not fit
557 		 * at the end of the buffer. Add an empty header with len == 0
558 		 * to signify a wrap around.
559 		 */
560 		memset(log_buf + log_next_idx, 0, sizeof(struct printk_log));
561 		log_next_idx = 0;
562 	}
563 
564 	/* fill message */
565 	msg = (struct printk_log *)(log_buf + log_next_idx);
566 	memcpy(log_text(msg), text, text_len);
567 	msg->text_len = text_len;
568 	if (trunc_msg_len) {
569 		memcpy(log_text(msg) + text_len, trunc_msg, trunc_msg_len);
570 		msg->text_len += trunc_msg_len;
571 	}
572 	memcpy(log_dict(msg), dict, dict_len);
573 	msg->dict_len = dict_len;
574 	msg->facility = facility;
575 	msg->level = level & 7;
576 	msg->flags = flags & 0x1f;
577 	if (ts_nsec > 0)
578 		msg->ts_nsec = ts_nsec;
579 	else
580 		msg->ts_nsec = local_clock();
581 	memset(log_dict(msg) + dict_len, 0, pad_len);
582 	msg->len = size;
583 
584 	/* insert message */
585 	log_next_idx += msg->len;
586 	log_next_seq++;
587 
588 	return msg->text_len;
589 }
590 
591 int dmesg_restrict = IS_ENABLED(CONFIG_SECURITY_DMESG_RESTRICT);
592 
593 static int syslog_action_restricted(int type)
594 {
595 	if (dmesg_restrict)
596 		return 1;
597 	/*
598 	 * Unless restricted, we allow "read all" and "get buffer size"
599 	 * for everybody.
600 	 */
601 	return type != SYSLOG_ACTION_READ_ALL &&
602 	       type != SYSLOG_ACTION_SIZE_BUFFER;
603 }
604 
605 int check_syslog_permissions(int type, int source)
606 {
607 	/*
608 	 * If this is from /proc/kmsg and we've already opened it, then we've
609 	 * already done the capabilities checks at open time.
610 	 */
611 	if (source == SYSLOG_FROM_PROC && type != SYSLOG_ACTION_OPEN)
612 		goto ok;
613 
614 	if (syslog_action_restricted(type)) {
615 		if (capable(CAP_SYSLOG))
616 			goto ok;
617 		/*
618 		 * For historical reasons, accept CAP_SYS_ADMIN too, with
619 		 * a warning.
620 		 */
621 		if (capable(CAP_SYS_ADMIN)) {
622 			pr_warn_once("%s (%d): Attempt to access syslog with "
623 				     "CAP_SYS_ADMIN but no CAP_SYSLOG "
624 				     "(deprecated).\n",
625 				 current->comm, task_pid_nr(current));
626 			goto ok;
627 		}
628 		return -EPERM;
629 	}
630 ok:
631 	return security_syslog(type);
632 }
633 EXPORT_SYMBOL_GPL(check_syslog_permissions);
634 
635 static void append_char(char **pp, char *e, char c)
636 {
637 	if (*pp < e)
638 		*(*pp)++ = c;
639 }
640 
641 static ssize_t msg_print_ext_header(char *buf, size_t size,
642 				    struct printk_log *msg, u64 seq,
643 				    enum log_flags prev_flags)
644 {
645 	u64 ts_usec = msg->ts_nsec;
646 	char cont = '-';
647 
648 	do_div(ts_usec, 1000);
649 
650 	/*
651 	 * If we couldn't merge continuation line fragments during the print,
652 	 * export the stored flags to allow an optional external merge of the
653 	 * records. Merging the records isn't always neccessarily correct, like
654 	 * when we hit a race during printing. In most cases though, it produces
655 	 * better readable output. 'c' in the record flags mark the first
656 	 * fragment of a line, '+' the following.
657 	 */
658 	if (msg->flags & LOG_CONT)
659 		cont = (prev_flags & LOG_CONT) ? '+' : 'c';
660 
661 	return scnprintf(buf, size, "%u,%llu,%llu,%c;",
662 		       (msg->facility << 3) | msg->level, seq, ts_usec, cont);
663 }
664 
665 static ssize_t msg_print_ext_body(char *buf, size_t size,
666 				  char *dict, size_t dict_len,
667 				  char *text, size_t text_len)
668 {
669 	char *p = buf, *e = buf + size;
670 	size_t i;
671 
672 	/* escape non-printable characters */
673 	for (i = 0; i < text_len; i++) {
674 		unsigned char c = text[i];
675 
676 		if (c < ' ' || c >= 127 || c == '\\')
677 			p += scnprintf(p, e - p, "\\x%02x", c);
678 		else
679 			append_char(&p, e, c);
680 	}
681 	append_char(&p, e, '\n');
682 
683 	if (dict_len) {
684 		bool line = true;
685 
686 		for (i = 0; i < dict_len; i++) {
687 			unsigned char c = dict[i];
688 
689 			if (line) {
690 				append_char(&p, e, ' ');
691 				line = false;
692 			}
693 
694 			if (c == '\0') {
695 				append_char(&p, e, '\n');
696 				line = true;
697 				continue;
698 			}
699 
700 			if (c < ' ' || c >= 127 || c == '\\') {
701 				p += scnprintf(p, e - p, "\\x%02x", c);
702 				continue;
703 			}
704 
705 			append_char(&p, e, c);
706 		}
707 		append_char(&p, e, '\n');
708 	}
709 
710 	return p - buf;
711 }
712 
713 /* /dev/kmsg - userspace message inject/listen interface */
714 struct devkmsg_user {
715 	u64 seq;
716 	u32 idx;
717 	enum log_flags prev;
718 	struct ratelimit_state rs;
719 	struct mutex lock;
720 	char buf[CONSOLE_EXT_LOG_MAX];
721 };
722 
723 static ssize_t devkmsg_write(struct kiocb *iocb, struct iov_iter *from)
724 {
725 	char *buf, *line;
726 	int level = default_message_loglevel;
727 	int facility = 1;	/* LOG_USER */
728 	struct file *file = iocb->ki_filp;
729 	struct devkmsg_user *user = file->private_data;
730 	size_t len = iov_iter_count(from);
731 	ssize_t ret = len;
732 
733 	if (!user || len > LOG_LINE_MAX)
734 		return -EINVAL;
735 
736 	/* Ignore when user logging is disabled. */
737 	if (devkmsg_log & DEVKMSG_LOG_MASK_OFF)
738 		return len;
739 
740 	/* Ratelimit when not explicitly enabled. */
741 	if (!(devkmsg_log & DEVKMSG_LOG_MASK_ON)) {
742 		if (!___ratelimit(&user->rs, current->comm))
743 			return ret;
744 	}
745 
746 	buf = kmalloc(len+1, GFP_KERNEL);
747 	if (buf == NULL)
748 		return -ENOMEM;
749 
750 	buf[len] = '\0';
751 	if (copy_from_iter(buf, len, from) != len) {
752 		kfree(buf);
753 		return -EFAULT;
754 	}
755 
756 	/*
757 	 * Extract and skip the syslog prefix <[0-9]*>. Coming from userspace
758 	 * the decimal value represents 32bit, the lower 3 bit are the log
759 	 * level, the rest are the log facility.
760 	 *
761 	 * If no prefix or no userspace facility is specified, we
762 	 * enforce LOG_USER, to be able to reliably distinguish
763 	 * kernel-generated messages from userspace-injected ones.
764 	 */
765 	line = buf;
766 	if (line[0] == '<') {
767 		char *endp = NULL;
768 		unsigned int u;
769 
770 		u = simple_strtoul(line + 1, &endp, 10);
771 		if (endp && endp[0] == '>') {
772 			level = LOG_LEVEL(u);
773 			if (LOG_FACILITY(u) != 0)
774 				facility = LOG_FACILITY(u);
775 			endp++;
776 			len -= endp - line;
777 			line = endp;
778 		}
779 	}
780 
781 	printk_emit(facility, level, NULL, 0, "%s", line);
782 	kfree(buf);
783 	return ret;
784 }
785 
786 static void cont_flush(void);
787 
788 static ssize_t devkmsg_read(struct file *file, char __user *buf,
789 			    size_t count, loff_t *ppos)
790 {
791 	struct devkmsg_user *user = file->private_data;
792 	struct printk_log *msg;
793 	size_t len;
794 	ssize_t ret;
795 
796 	if (!user)
797 		return -EBADF;
798 
799 	ret = mutex_lock_interruptible(&user->lock);
800 	if (ret)
801 		return ret;
802 	raw_spin_lock_irq(&logbuf_lock);
803 	cont_flush();
804 	while (user->seq == log_next_seq) {
805 		if (file->f_flags & O_NONBLOCK) {
806 			ret = -EAGAIN;
807 			raw_spin_unlock_irq(&logbuf_lock);
808 			goto out;
809 		}
810 
811 		raw_spin_unlock_irq(&logbuf_lock);
812 		ret = wait_event_interruptible(log_wait,
813 					       user->seq != log_next_seq);
814 		if (ret)
815 			goto out;
816 		raw_spin_lock_irq(&logbuf_lock);
817 	}
818 
819 	if (user->seq < log_first_seq) {
820 		/* our last seen message is gone, return error and reset */
821 		user->idx = log_first_idx;
822 		user->seq = log_first_seq;
823 		ret = -EPIPE;
824 		raw_spin_unlock_irq(&logbuf_lock);
825 		goto out;
826 	}
827 
828 	msg = log_from_idx(user->idx);
829 	len = msg_print_ext_header(user->buf, sizeof(user->buf),
830 				   msg, user->seq, user->prev);
831 	len += msg_print_ext_body(user->buf + len, sizeof(user->buf) - len,
832 				  log_dict(msg), msg->dict_len,
833 				  log_text(msg), msg->text_len);
834 
835 	user->prev = msg->flags;
836 	user->idx = log_next(user->idx);
837 	user->seq++;
838 	raw_spin_unlock_irq(&logbuf_lock);
839 
840 	if (len > count) {
841 		ret = -EINVAL;
842 		goto out;
843 	}
844 
845 	if (copy_to_user(buf, user->buf, len)) {
846 		ret = -EFAULT;
847 		goto out;
848 	}
849 	ret = len;
850 out:
851 	mutex_unlock(&user->lock);
852 	return ret;
853 }
854 
855 static loff_t devkmsg_llseek(struct file *file, loff_t offset, int whence)
856 {
857 	struct devkmsg_user *user = file->private_data;
858 	loff_t ret = 0;
859 
860 	if (!user)
861 		return -EBADF;
862 	if (offset)
863 		return -ESPIPE;
864 
865 	raw_spin_lock_irq(&logbuf_lock);
866 	cont_flush();
867 	switch (whence) {
868 	case SEEK_SET:
869 		/* the first record */
870 		user->idx = log_first_idx;
871 		user->seq = log_first_seq;
872 		break;
873 	case SEEK_DATA:
874 		/*
875 		 * The first record after the last SYSLOG_ACTION_CLEAR,
876 		 * like issued by 'dmesg -c'. Reading /dev/kmsg itself
877 		 * changes no global state, and does not clear anything.
878 		 */
879 		user->idx = clear_idx;
880 		user->seq = clear_seq;
881 		break;
882 	case SEEK_END:
883 		/* after the last record */
884 		user->idx = log_next_idx;
885 		user->seq = log_next_seq;
886 		break;
887 	default:
888 		ret = -EINVAL;
889 	}
890 	raw_spin_unlock_irq(&logbuf_lock);
891 	return ret;
892 }
893 
894 static unsigned int devkmsg_poll(struct file *file, poll_table *wait)
895 {
896 	struct devkmsg_user *user = file->private_data;
897 	int ret = 0;
898 
899 	if (!user)
900 		return POLLERR|POLLNVAL;
901 
902 	poll_wait(file, &log_wait, wait);
903 
904 	raw_spin_lock_irq(&logbuf_lock);
905 	cont_flush();
906 	if (user->seq < log_next_seq) {
907 		/* return error when data has vanished underneath us */
908 		if (user->seq < log_first_seq)
909 			ret = POLLIN|POLLRDNORM|POLLERR|POLLPRI;
910 		else
911 			ret = POLLIN|POLLRDNORM;
912 	}
913 	raw_spin_unlock_irq(&logbuf_lock);
914 
915 	return ret;
916 }
917 
918 static int devkmsg_open(struct inode *inode, struct file *file)
919 {
920 	struct devkmsg_user *user;
921 	int err;
922 
923 	if (devkmsg_log & DEVKMSG_LOG_MASK_OFF)
924 		return -EPERM;
925 
926 	/* write-only does not need any file context */
927 	if ((file->f_flags & O_ACCMODE) != O_WRONLY) {
928 		err = check_syslog_permissions(SYSLOG_ACTION_READ_ALL,
929 					       SYSLOG_FROM_READER);
930 		if (err)
931 			return err;
932 	}
933 
934 	user = kmalloc(sizeof(struct devkmsg_user), GFP_KERNEL);
935 	if (!user)
936 		return -ENOMEM;
937 
938 	ratelimit_default_init(&user->rs);
939 	ratelimit_set_flags(&user->rs, RATELIMIT_MSG_ON_RELEASE);
940 
941 	mutex_init(&user->lock);
942 
943 	raw_spin_lock_irq(&logbuf_lock);
944 	user->idx = log_first_idx;
945 	user->seq = log_first_seq;
946 	raw_spin_unlock_irq(&logbuf_lock);
947 
948 	file->private_data = user;
949 	return 0;
950 }
951 
952 static int devkmsg_release(struct inode *inode, struct file *file)
953 {
954 	struct devkmsg_user *user = file->private_data;
955 
956 	if (!user)
957 		return 0;
958 
959 	ratelimit_state_exit(&user->rs);
960 
961 	mutex_destroy(&user->lock);
962 	kfree(user);
963 	return 0;
964 }
965 
966 const struct file_operations kmsg_fops = {
967 	.open = devkmsg_open,
968 	.read = devkmsg_read,
969 	.write_iter = devkmsg_write,
970 	.llseek = devkmsg_llseek,
971 	.poll = devkmsg_poll,
972 	.release = devkmsg_release,
973 };
974 
975 #ifdef CONFIG_KEXEC_CORE
976 /*
977  * This appends the listed symbols to /proc/vmcore
978  *
979  * /proc/vmcore is used by various utilities, like crash and makedumpfile to
980  * obtain access to symbols that are otherwise very difficult to locate.  These
981  * symbols are specifically used so that utilities can access and extract the
982  * dmesg log from a vmcore file after a crash.
983  */
984 void log_buf_kexec_setup(void)
985 {
986 	VMCOREINFO_SYMBOL(log_buf);
987 	VMCOREINFO_SYMBOL(log_buf_len);
988 	VMCOREINFO_SYMBOL(log_first_idx);
989 	VMCOREINFO_SYMBOL(clear_idx);
990 	VMCOREINFO_SYMBOL(log_next_idx);
991 	/*
992 	 * Export struct printk_log size and field offsets. User space tools can
993 	 * parse it and detect any changes to structure down the line.
994 	 */
995 	VMCOREINFO_STRUCT_SIZE(printk_log);
996 	VMCOREINFO_OFFSET(printk_log, ts_nsec);
997 	VMCOREINFO_OFFSET(printk_log, len);
998 	VMCOREINFO_OFFSET(printk_log, text_len);
999 	VMCOREINFO_OFFSET(printk_log, dict_len);
1000 }
1001 #endif
1002 
1003 /* requested log_buf_len from kernel cmdline */
1004 static unsigned long __initdata new_log_buf_len;
1005 
1006 /* we practice scaling the ring buffer by powers of 2 */
1007 static void __init log_buf_len_update(unsigned size)
1008 {
1009 	if (size)
1010 		size = roundup_pow_of_two(size);
1011 	if (size > log_buf_len)
1012 		new_log_buf_len = size;
1013 }
1014 
1015 /* save requested log_buf_len since it's too early to process it */
1016 static int __init log_buf_len_setup(char *str)
1017 {
1018 	unsigned size = memparse(str, &str);
1019 
1020 	log_buf_len_update(size);
1021 
1022 	return 0;
1023 }
1024 early_param("log_buf_len", log_buf_len_setup);
1025 
1026 #ifdef CONFIG_SMP
1027 #define __LOG_CPU_MAX_BUF_LEN (1 << CONFIG_LOG_CPU_MAX_BUF_SHIFT)
1028 
1029 static void __init log_buf_add_cpu(void)
1030 {
1031 	unsigned int cpu_extra;
1032 
1033 	/*
1034 	 * archs should set up cpu_possible_bits properly with
1035 	 * set_cpu_possible() after setup_arch() but just in
1036 	 * case lets ensure this is valid.
1037 	 */
1038 	if (num_possible_cpus() == 1)
1039 		return;
1040 
1041 	cpu_extra = (num_possible_cpus() - 1) * __LOG_CPU_MAX_BUF_LEN;
1042 
1043 	/* by default this will only continue through for large > 64 CPUs */
1044 	if (cpu_extra <= __LOG_BUF_LEN / 2)
1045 		return;
1046 
1047 	pr_info("log_buf_len individual max cpu contribution: %d bytes\n",
1048 		__LOG_CPU_MAX_BUF_LEN);
1049 	pr_info("log_buf_len total cpu_extra contributions: %d bytes\n",
1050 		cpu_extra);
1051 	pr_info("log_buf_len min size: %d bytes\n", __LOG_BUF_LEN);
1052 
1053 	log_buf_len_update(cpu_extra + __LOG_BUF_LEN);
1054 }
1055 #else /* !CONFIG_SMP */
1056 static inline void log_buf_add_cpu(void) {}
1057 #endif /* CONFIG_SMP */
1058 
1059 void __init setup_log_buf(int early)
1060 {
1061 	unsigned long flags;
1062 	char *new_log_buf;
1063 	int free;
1064 
1065 	if (log_buf != __log_buf)
1066 		return;
1067 
1068 	if (!early && !new_log_buf_len)
1069 		log_buf_add_cpu();
1070 
1071 	if (!new_log_buf_len)
1072 		return;
1073 
1074 	if (early) {
1075 		new_log_buf =
1076 			memblock_virt_alloc(new_log_buf_len, LOG_ALIGN);
1077 	} else {
1078 		new_log_buf = memblock_virt_alloc_nopanic(new_log_buf_len,
1079 							  LOG_ALIGN);
1080 	}
1081 
1082 	if (unlikely(!new_log_buf)) {
1083 		pr_err("log_buf_len: %ld bytes not available\n",
1084 			new_log_buf_len);
1085 		return;
1086 	}
1087 
1088 	raw_spin_lock_irqsave(&logbuf_lock, flags);
1089 	log_buf_len = new_log_buf_len;
1090 	log_buf = new_log_buf;
1091 	new_log_buf_len = 0;
1092 	free = __LOG_BUF_LEN - log_next_idx;
1093 	memcpy(log_buf, __log_buf, __LOG_BUF_LEN);
1094 	raw_spin_unlock_irqrestore(&logbuf_lock, flags);
1095 
1096 	pr_info("log_buf_len: %d bytes\n", log_buf_len);
1097 	pr_info("early log buf free: %d(%d%%)\n",
1098 		free, (free * 100) / __LOG_BUF_LEN);
1099 }
1100 
1101 static bool __read_mostly ignore_loglevel;
1102 
1103 static int __init ignore_loglevel_setup(char *str)
1104 {
1105 	ignore_loglevel = true;
1106 	pr_info("debug: ignoring loglevel setting.\n");
1107 
1108 	return 0;
1109 }
1110 
1111 early_param("ignore_loglevel", ignore_loglevel_setup);
1112 module_param(ignore_loglevel, bool, S_IRUGO | S_IWUSR);
1113 MODULE_PARM_DESC(ignore_loglevel,
1114 		 "ignore loglevel setting (prints all kernel messages to the console)");
1115 
1116 static bool suppress_message_printing(int level)
1117 {
1118 	return (level >= console_loglevel && !ignore_loglevel);
1119 }
1120 
1121 #ifdef CONFIG_BOOT_PRINTK_DELAY
1122 
1123 static int boot_delay; /* msecs delay after each printk during bootup */
1124 static unsigned long long loops_per_msec;	/* based on boot_delay */
1125 
1126 static int __init boot_delay_setup(char *str)
1127 {
1128 	unsigned long lpj;
1129 
1130 	lpj = preset_lpj ? preset_lpj : 1000000;	/* some guess */
1131 	loops_per_msec = (unsigned long long)lpj / 1000 * HZ;
1132 
1133 	get_option(&str, &boot_delay);
1134 	if (boot_delay > 10 * 1000)
1135 		boot_delay = 0;
1136 
1137 	pr_debug("boot_delay: %u, preset_lpj: %ld, lpj: %lu, "
1138 		"HZ: %d, loops_per_msec: %llu\n",
1139 		boot_delay, preset_lpj, lpj, HZ, loops_per_msec);
1140 	return 0;
1141 }
1142 early_param("boot_delay", boot_delay_setup);
1143 
1144 static void boot_delay_msec(int level)
1145 {
1146 	unsigned long long k;
1147 	unsigned long timeout;
1148 
1149 	if ((boot_delay == 0 || system_state != SYSTEM_BOOTING)
1150 		|| suppress_message_printing(level)) {
1151 		return;
1152 	}
1153 
1154 	k = (unsigned long long)loops_per_msec * boot_delay;
1155 
1156 	timeout = jiffies + msecs_to_jiffies(boot_delay);
1157 	while (k) {
1158 		k--;
1159 		cpu_relax();
1160 		/*
1161 		 * use (volatile) jiffies to prevent
1162 		 * compiler reduction; loop termination via jiffies
1163 		 * is secondary and may or may not happen.
1164 		 */
1165 		if (time_after(jiffies, timeout))
1166 			break;
1167 		touch_nmi_watchdog();
1168 	}
1169 }
1170 #else
1171 static inline void boot_delay_msec(int level)
1172 {
1173 }
1174 #endif
1175 
1176 static bool printk_time = IS_ENABLED(CONFIG_PRINTK_TIME);
1177 module_param_named(time, printk_time, bool, S_IRUGO | S_IWUSR);
1178 
1179 static size_t print_time(u64 ts, char *buf)
1180 {
1181 	unsigned long rem_nsec;
1182 
1183 	if (!printk_time)
1184 		return 0;
1185 
1186 	rem_nsec = do_div(ts, 1000000000);
1187 
1188 	if (!buf)
1189 		return snprintf(NULL, 0, "[%5lu.000000] ", (unsigned long)ts);
1190 
1191 	return sprintf(buf, "[%5lu.%06lu] ",
1192 		       (unsigned long)ts, rem_nsec / 1000);
1193 }
1194 
1195 static size_t print_prefix(const struct printk_log *msg, bool syslog, char *buf)
1196 {
1197 	size_t len = 0;
1198 	unsigned int prefix = (msg->facility << 3) | msg->level;
1199 
1200 	if (syslog) {
1201 		if (buf) {
1202 			len += sprintf(buf, "<%u>", prefix);
1203 		} else {
1204 			len += 3;
1205 			if (prefix > 999)
1206 				len += 3;
1207 			else if (prefix > 99)
1208 				len += 2;
1209 			else if (prefix > 9)
1210 				len++;
1211 		}
1212 	}
1213 
1214 	len += print_time(msg->ts_nsec, buf ? buf + len : NULL);
1215 	return len;
1216 }
1217 
1218 static size_t msg_print_text(const struct printk_log *msg, enum log_flags prev,
1219 			     bool syslog, char *buf, size_t size)
1220 {
1221 	const char *text = log_text(msg);
1222 	size_t text_size = msg->text_len;
1223 	bool prefix = true;
1224 	bool newline = true;
1225 	size_t len = 0;
1226 
1227 	if ((prev & LOG_CONT) && !(msg->flags & LOG_PREFIX))
1228 		prefix = false;
1229 
1230 	if (msg->flags & LOG_CONT) {
1231 		if ((prev & LOG_CONT) && !(prev & LOG_NEWLINE))
1232 			prefix = false;
1233 
1234 		if (!(msg->flags & LOG_NEWLINE))
1235 			newline = false;
1236 	}
1237 
1238 	do {
1239 		const char *next = memchr(text, '\n', text_size);
1240 		size_t text_len;
1241 
1242 		if (next) {
1243 			text_len = next - text;
1244 			next++;
1245 			text_size -= next - text;
1246 		} else {
1247 			text_len = text_size;
1248 		}
1249 
1250 		if (buf) {
1251 			if (print_prefix(msg, syslog, NULL) +
1252 			    text_len + 1 >= size - len)
1253 				break;
1254 
1255 			if (prefix)
1256 				len += print_prefix(msg, syslog, buf + len);
1257 			memcpy(buf + len, text, text_len);
1258 			len += text_len;
1259 			if (next || newline)
1260 				buf[len++] = '\n';
1261 		} else {
1262 			/* SYSLOG_ACTION_* buffer size only calculation */
1263 			if (prefix)
1264 				len += print_prefix(msg, syslog, NULL);
1265 			len += text_len;
1266 			if (next || newline)
1267 				len++;
1268 		}
1269 
1270 		prefix = true;
1271 		text = next;
1272 	} while (text);
1273 
1274 	return len;
1275 }
1276 
1277 static int syslog_print(char __user *buf, int size)
1278 {
1279 	char *text;
1280 	struct printk_log *msg;
1281 	int len = 0;
1282 
1283 	text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
1284 	if (!text)
1285 		return -ENOMEM;
1286 
1287 	while (size > 0) {
1288 		size_t n;
1289 		size_t skip;
1290 
1291 		raw_spin_lock_irq(&logbuf_lock);
1292 		cont_flush();
1293 		if (syslog_seq < log_first_seq) {
1294 			/* messages are gone, move to first one */
1295 			syslog_seq = log_first_seq;
1296 			syslog_idx = log_first_idx;
1297 			syslog_prev = 0;
1298 			syslog_partial = 0;
1299 		}
1300 		if (syslog_seq == log_next_seq) {
1301 			raw_spin_unlock_irq(&logbuf_lock);
1302 			break;
1303 		}
1304 
1305 		skip = syslog_partial;
1306 		msg = log_from_idx(syslog_idx);
1307 		n = msg_print_text(msg, syslog_prev, true, text,
1308 				   LOG_LINE_MAX + PREFIX_MAX);
1309 		if (n - syslog_partial <= size) {
1310 			/* message fits into buffer, move forward */
1311 			syslog_idx = log_next(syslog_idx);
1312 			syslog_seq++;
1313 			syslog_prev = msg->flags;
1314 			n -= syslog_partial;
1315 			syslog_partial = 0;
1316 		} else if (!len){
1317 			/* partial read(), remember position */
1318 			n = size;
1319 			syslog_partial += n;
1320 		} else
1321 			n = 0;
1322 		raw_spin_unlock_irq(&logbuf_lock);
1323 
1324 		if (!n)
1325 			break;
1326 
1327 		if (copy_to_user(buf, text + skip, n)) {
1328 			if (!len)
1329 				len = -EFAULT;
1330 			break;
1331 		}
1332 
1333 		len += n;
1334 		size -= n;
1335 		buf += n;
1336 	}
1337 
1338 	kfree(text);
1339 	return len;
1340 }
1341 
1342 static int syslog_print_all(char __user *buf, int size, bool clear)
1343 {
1344 	char *text;
1345 	int len = 0;
1346 
1347 	text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
1348 	if (!text)
1349 		return -ENOMEM;
1350 
1351 	raw_spin_lock_irq(&logbuf_lock);
1352 	cont_flush();
1353 	if (buf) {
1354 		u64 next_seq;
1355 		u64 seq;
1356 		u32 idx;
1357 		enum log_flags prev;
1358 
1359 		/*
1360 		 * Find first record that fits, including all following records,
1361 		 * into the user-provided buffer for this dump.
1362 		 */
1363 		seq = clear_seq;
1364 		idx = clear_idx;
1365 		prev = 0;
1366 		while (seq < log_next_seq) {
1367 			struct printk_log *msg = log_from_idx(idx);
1368 
1369 			len += msg_print_text(msg, prev, true, NULL, 0);
1370 			prev = msg->flags;
1371 			idx = log_next(idx);
1372 			seq++;
1373 		}
1374 
1375 		/* move first record forward until length fits into the buffer */
1376 		seq = clear_seq;
1377 		idx = clear_idx;
1378 		prev = 0;
1379 		while (len > size && seq < log_next_seq) {
1380 			struct printk_log *msg = log_from_idx(idx);
1381 
1382 			len -= msg_print_text(msg, prev, true, NULL, 0);
1383 			prev = msg->flags;
1384 			idx = log_next(idx);
1385 			seq++;
1386 		}
1387 
1388 		/* last message fitting into this dump */
1389 		next_seq = log_next_seq;
1390 
1391 		len = 0;
1392 		while (len >= 0 && seq < next_seq) {
1393 			struct printk_log *msg = log_from_idx(idx);
1394 			int textlen;
1395 
1396 			textlen = msg_print_text(msg, prev, true, text,
1397 						 LOG_LINE_MAX + PREFIX_MAX);
1398 			if (textlen < 0) {
1399 				len = textlen;
1400 				break;
1401 			}
1402 			idx = log_next(idx);
1403 			seq++;
1404 			prev = msg->flags;
1405 
1406 			raw_spin_unlock_irq(&logbuf_lock);
1407 			if (copy_to_user(buf + len, text, textlen))
1408 				len = -EFAULT;
1409 			else
1410 				len += textlen;
1411 			raw_spin_lock_irq(&logbuf_lock);
1412 
1413 			if (seq < log_first_seq) {
1414 				/* messages are gone, move to next one */
1415 				seq = log_first_seq;
1416 				idx = log_first_idx;
1417 				prev = 0;
1418 			}
1419 		}
1420 	}
1421 
1422 	if (clear) {
1423 		clear_seq = log_next_seq;
1424 		clear_idx = log_next_idx;
1425 	}
1426 	raw_spin_unlock_irq(&logbuf_lock);
1427 
1428 	kfree(text);
1429 	return len;
1430 }
1431 
1432 int do_syslog(int type, char __user *buf, int len, int source)
1433 {
1434 	bool clear = false;
1435 	static int saved_console_loglevel = LOGLEVEL_DEFAULT;
1436 	int error;
1437 
1438 	error = check_syslog_permissions(type, source);
1439 	if (error)
1440 		goto out;
1441 
1442 	switch (type) {
1443 	case SYSLOG_ACTION_CLOSE:	/* Close log */
1444 		break;
1445 	case SYSLOG_ACTION_OPEN:	/* Open log */
1446 		break;
1447 	case SYSLOG_ACTION_READ:	/* Read from log */
1448 		error = -EINVAL;
1449 		if (!buf || len < 0)
1450 			goto out;
1451 		error = 0;
1452 		if (!len)
1453 			goto out;
1454 		if (!access_ok(VERIFY_WRITE, buf, len)) {
1455 			error = -EFAULT;
1456 			goto out;
1457 		}
1458 		error = wait_event_interruptible(log_wait,
1459 						 syslog_seq != log_next_seq);
1460 		if (error)
1461 			goto out;
1462 		error = syslog_print(buf, len);
1463 		break;
1464 	/* Read/clear last kernel messages */
1465 	case SYSLOG_ACTION_READ_CLEAR:
1466 		clear = true;
1467 		/* FALL THRU */
1468 	/* Read last kernel messages */
1469 	case SYSLOG_ACTION_READ_ALL:
1470 		error = -EINVAL;
1471 		if (!buf || len < 0)
1472 			goto out;
1473 		error = 0;
1474 		if (!len)
1475 			goto out;
1476 		if (!access_ok(VERIFY_WRITE, buf, len)) {
1477 			error = -EFAULT;
1478 			goto out;
1479 		}
1480 		error = syslog_print_all(buf, len, clear);
1481 		break;
1482 	/* Clear ring buffer */
1483 	case SYSLOG_ACTION_CLEAR:
1484 		syslog_print_all(NULL, 0, true);
1485 		break;
1486 	/* Disable logging to console */
1487 	case SYSLOG_ACTION_CONSOLE_OFF:
1488 		if (saved_console_loglevel == LOGLEVEL_DEFAULT)
1489 			saved_console_loglevel = console_loglevel;
1490 		console_loglevel = minimum_console_loglevel;
1491 		break;
1492 	/* Enable logging to console */
1493 	case SYSLOG_ACTION_CONSOLE_ON:
1494 		if (saved_console_loglevel != LOGLEVEL_DEFAULT) {
1495 			console_loglevel = saved_console_loglevel;
1496 			saved_console_loglevel = LOGLEVEL_DEFAULT;
1497 		}
1498 		break;
1499 	/* Set level of messages printed to console */
1500 	case SYSLOG_ACTION_CONSOLE_LEVEL:
1501 		error = -EINVAL;
1502 		if (len < 1 || len > 8)
1503 			goto out;
1504 		if (len < minimum_console_loglevel)
1505 			len = minimum_console_loglevel;
1506 		console_loglevel = len;
1507 		/* Implicitly re-enable logging to console */
1508 		saved_console_loglevel = LOGLEVEL_DEFAULT;
1509 		error = 0;
1510 		break;
1511 	/* Number of chars in the log buffer */
1512 	case SYSLOG_ACTION_SIZE_UNREAD:
1513 		raw_spin_lock_irq(&logbuf_lock);
1514 		cont_flush();
1515 		if (syslog_seq < log_first_seq) {
1516 			/* messages are gone, move to first one */
1517 			syslog_seq = log_first_seq;
1518 			syslog_idx = log_first_idx;
1519 			syslog_prev = 0;
1520 			syslog_partial = 0;
1521 		}
1522 		if (source == SYSLOG_FROM_PROC) {
1523 			/*
1524 			 * Short-cut for poll(/"proc/kmsg") which simply checks
1525 			 * for pending data, not the size; return the count of
1526 			 * records, not the length.
1527 			 */
1528 			error = log_next_seq - syslog_seq;
1529 		} else {
1530 			u64 seq = syslog_seq;
1531 			u32 idx = syslog_idx;
1532 			enum log_flags prev = syslog_prev;
1533 
1534 			error = 0;
1535 			while (seq < log_next_seq) {
1536 				struct printk_log *msg = log_from_idx(idx);
1537 
1538 				error += msg_print_text(msg, prev, true, NULL, 0);
1539 				idx = log_next(idx);
1540 				seq++;
1541 				prev = msg->flags;
1542 			}
1543 			error -= syslog_partial;
1544 		}
1545 		raw_spin_unlock_irq(&logbuf_lock);
1546 		break;
1547 	/* Size of the log buffer */
1548 	case SYSLOG_ACTION_SIZE_BUFFER:
1549 		error = log_buf_len;
1550 		break;
1551 	default:
1552 		error = -EINVAL;
1553 		break;
1554 	}
1555 out:
1556 	return error;
1557 }
1558 
1559 SYSCALL_DEFINE3(syslog, int, type, char __user *, buf, int, len)
1560 {
1561 	return do_syslog(type, buf, len, SYSLOG_FROM_READER);
1562 }
1563 
1564 /*
1565  * Call the console drivers, asking them to write out
1566  * log_buf[start] to log_buf[end - 1].
1567  * The console_lock must be held.
1568  */
1569 static void call_console_drivers(int level,
1570 				 const char *ext_text, size_t ext_len,
1571 				 const char *text, size_t len)
1572 {
1573 	struct console *con;
1574 
1575 	trace_console(text, len);
1576 
1577 	if (!console_drivers)
1578 		return;
1579 
1580 	for_each_console(con) {
1581 		if (exclusive_console && con != exclusive_console)
1582 			continue;
1583 		if (!(con->flags & CON_ENABLED))
1584 			continue;
1585 		if (!con->write)
1586 			continue;
1587 		if (!cpu_online(smp_processor_id()) &&
1588 		    !(con->flags & CON_ANYTIME))
1589 			continue;
1590 		if (con->flags & CON_EXTENDED)
1591 			con->write(con, ext_text, ext_len);
1592 		else
1593 			con->write(con, text, len);
1594 	}
1595 }
1596 
1597 /*
1598  * Zap console related locks when oopsing.
1599  * To leave time for slow consoles to print a full oops,
1600  * only zap at most once every 30 seconds.
1601  */
1602 static void zap_locks(void)
1603 {
1604 	static unsigned long oops_timestamp;
1605 
1606 	if (time_after_eq(jiffies, oops_timestamp) &&
1607 	    !time_after(jiffies, oops_timestamp + 30 * HZ))
1608 		return;
1609 
1610 	oops_timestamp = jiffies;
1611 
1612 	debug_locks_off();
1613 	/* If a crash is occurring, make sure we can't deadlock */
1614 	raw_spin_lock_init(&logbuf_lock);
1615 	/* And make sure that we print immediately */
1616 	sema_init(&console_sem, 1);
1617 }
1618 
1619 int printk_delay_msec __read_mostly;
1620 
1621 static inline void printk_delay(void)
1622 {
1623 	if (unlikely(printk_delay_msec)) {
1624 		int m = printk_delay_msec;
1625 
1626 		while (m--) {
1627 			mdelay(1);
1628 			touch_nmi_watchdog();
1629 		}
1630 	}
1631 }
1632 
1633 /*
1634  * Continuation lines are buffered, and not committed to the record buffer
1635  * until the line is complete, or a race forces it. The line fragments
1636  * though, are printed immediately to the consoles to ensure everything has
1637  * reached the console in case of a kernel crash.
1638  */
1639 static struct cont {
1640 	char buf[LOG_LINE_MAX];
1641 	size_t len;			/* length == 0 means unused buffer */
1642 	size_t cons;			/* bytes written to console */
1643 	struct task_struct *owner;	/* task of first print*/
1644 	u64 ts_nsec;			/* time of first print */
1645 	u8 level;			/* log level of first message */
1646 	u8 facility;			/* log facility of first message */
1647 	enum log_flags flags;		/* prefix, newline flags */
1648 	bool flushed:1;			/* buffer sealed and committed */
1649 } cont;
1650 
1651 static void cont_flush(void)
1652 {
1653 	if (cont.flushed)
1654 		return;
1655 	if (cont.len == 0)
1656 		return;
1657 	if (cont.cons) {
1658 		/*
1659 		 * If a fragment of this line was directly flushed to the
1660 		 * console; wait for the console to pick up the rest of the
1661 		 * line. LOG_NOCONS suppresses a duplicated output.
1662 		 */
1663 		log_store(cont.facility, cont.level, cont.flags | LOG_NOCONS,
1664 			  cont.ts_nsec, NULL, 0, cont.buf, cont.len);
1665 		cont.flushed = true;
1666 	} else {
1667 		/*
1668 		 * If no fragment of this line ever reached the console,
1669 		 * just submit it to the store and free the buffer.
1670 		 */
1671 		log_store(cont.facility, cont.level, cont.flags, 0,
1672 			  NULL, 0, cont.buf, cont.len);
1673 		cont.len = 0;
1674 	}
1675 }
1676 
1677 static bool cont_add(int facility, int level, enum log_flags flags, const char *text, size_t len)
1678 {
1679 	if (cont.len && cont.flushed)
1680 		return false;
1681 
1682 	/*
1683 	 * If ext consoles are present, flush and skip in-kernel
1684 	 * continuation.  See nr_ext_console_drivers definition.  Also, if
1685 	 * the line gets too long, split it up in separate records.
1686 	 */
1687 	if (nr_ext_console_drivers || cont.len + len > sizeof(cont.buf)) {
1688 		cont_flush();
1689 		return false;
1690 	}
1691 
1692 	if (!cont.len) {
1693 		cont.facility = facility;
1694 		cont.level = level;
1695 		cont.owner = current;
1696 		cont.ts_nsec = local_clock();
1697 		cont.flags = flags;
1698 		cont.cons = 0;
1699 		cont.flushed = false;
1700 	}
1701 
1702 	memcpy(cont.buf + cont.len, text, len);
1703 	cont.len += len;
1704 
1705 	// The original flags come from the first line,
1706 	// but later continuations can add a newline.
1707 	if (flags & LOG_NEWLINE) {
1708 		cont.flags |= LOG_NEWLINE;
1709 		cont_flush();
1710 	}
1711 
1712 	if (cont.len > (sizeof(cont.buf) * 80) / 100)
1713 		cont_flush();
1714 
1715 	return true;
1716 }
1717 
1718 static size_t cont_print_text(char *text, size_t size)
1719 {
1720 	size_t textlen = 0;
1721 	size_t len;
1722 
1723 	if (cont.cons == 0 && (console_prev & LOG_NEWLINE)) {
1724 		textlen += print_time(cont.ts_nsec, text);
1725 		size -= textlen;
1726 	}
1727 
1728 	len = cont.len - cont.cons;
1729 	if (len > 0) {
1730 		if (len+1 > size)
1731 			len = size-1;
1732 		memcpy(text + textlen, cont.buf + cont.cons, len);
1733 		textlen += len;
1734 		cont.cons = cont.len;
1735 	}
1736 
1737 	if (cont.flushed) {
1738 		if (cont.flags & LOG_NEWLINE)
1739 			text[textlen++] = '\n';
1740 		/* got everything, release buffer */
1741 		cont.len = 0;
1742 	}
1743 	return textlen;
1744 }
1745 
1746 static size_t log_output(int facility, int level, enum log_flags lflags, const char *dict, size_t dictlen, char *text, size_t text_len)
1747 {
1748 	/*
1749 	 * If an earlier line was buffered, and we're a continuation
1750 	 * write from the same process, try to add it to the buffer.
1751 	 */
1752 	if (cont.len) {
1753 		if (cont.owner == current && (lflags & LOG_CONT)) {
1754 			if (cont_add(facility, level, lflags, text, text_len))
1755 				return text_len;
1756 		}
1757 		/* Otherwise, make sure it's flushed */
1758 		cont_flush();
1759 	}
1760 
1761 	/* Skip empty continuation lines that couldn't be added - they just flush */
1762 	if (!text_len && (lflags & LOG_CONT))
1763 		return 0;
1764 
1765 	/* If it doesn't end in a newline, try to buffer the current line */
1766 	if (!(lflags & LOG_NEWLINE)) {
1767 		if (cont_add(facility, level, lflags, text, text_len))
1768 			return text_len;
1769 	}
1770 
1771 	/* Store it in the record log */
1772 	return log_store(facility, level, lflags, 0, dict, dictlen, text, text_len);
1773 }
1774 
1775 asmlinkage int vprintk_emit(int facility, int level,
1776 			    const char *dict, size_t dictlen,
1777 			    const char *fmt, va_list args)
1778 {
1779 	static bool recursion_bug;
1780 	static char textbuf[LOG_LINE_MAX];
1781 	char *text = textbuf;
1782 	size_t text_len = 0;
1783 	enum log_flags lflags = 0;
1784 	unsigned long flags;
1785 	int this_cpu;
1786 	int printed_len = 0;
1787 	int nmi_message_lost;
1788 	bool in_sched = false;
1789 	/* cpu currently holding logbuf_lock in this function */
1790 	static unsigned int logbuf_cpu = UINT_MAX;
1791 
1792 	if (level == LOGLEVEL_SCHED) {
1793 		level = LOGLEVEL_DEFAULT;
1794 		in_sched = true;
1795 	}
1796 
1797 	boot_delay_msec(level);
1798 	printk_delay();
1799 
1800 	local_irq_save(flags);
1801 	this_cpu = smp_processor_id();
1802 
1803 	/*
1804 	 * Ouch, printk recursed into itself!
1805 	 */
1806 	if (unlikely(logbuf_cpu == this_cpu)) {
1807 		/*
1808 		 * If a crash is occurring during printk() on this CPU,
1809 		 * then try to get the crash message out but make sure
1810 		 * we can't deadlock. Otherwise just return to avoid the
1811 		 * recursion and return - but flag the recursion so that
1812 		 * it can be printed at the next appropriate moment:
1813 		 */
1814 		if (!oops_in_progress && !lockdep_recursing(current)) {
1815 			recursion_bug = true;
1816 			local_irq_restore(flags);
1817 			return 0;
1818 		}
1819 		zap_locks();
1820 	}
1821 
1822 	lockdep_off();
1823 	/* This stops the holder of console_sem just where we want him */
1824 	raw_spin_lock(&logbuf_lock);
1825 	logbuf_cpu = this_cpu;
1826 
1827 	if (unlikely(recursion_bug)) {
1828 		static const char recursion_msg[] =
1829 			"BUG: recent printk recursion!";
1830 
1831 		recursion_bug = false;
1832 		/* emit KERN_CRIT message */
1833 		printed_len += log_store(0, 2, LOG_PREFIX|LOG_NEWLINE, 0,
1834 					 NULL, 0, recursion_msg,
1835 					 strlen(recursion_msg));
1836 	}
1837 
1838 	nmi_message_lost = get_nmi_message_lost();
1839 	if (unlikely(nmi_message_lost)) {
1840 		text_len = scnprintf(textbuf, sizeof(textbuf),
1841 				     "BAD LUCK: lost %d message(s) from NMI context!",
1842 				     nmi_message_lost);
1843 		printed_len += log_store(0, 2, LOG_PREFIX|LOG_NEWLINE, 0,
1844 					 NULL, 0, textbuf, text_len);
1845 	}
1846 
1847 	/*
1848 	 * The printf needs to come first; we need the syslog
1849 	 * prefix which might be passed-in as a parameter.
1850 	 */
1851 	text_len = vscnprintf(text, sizeof(textbuf), fmt, args);
1852 
1853 	/* mark and strip a trailing newline */
1854 	if (text_len && text[text_len-1] == '\n') {
1855 		text_len--;
1856 		lflags |= LOG_NEWLINE;
1857 	}
1858 
1859 	/* strip kernel syslog prefix and extract log level or control flags */
1860 	if (facility == 0) {
1861 		int kern_level;
1862 
1863 		while ((kern_level = printk_get_level(text)) != 0) {
1864 			switch (kern_level) {
1865 			case '0' ... '7':
1866 				if (level == LOGLEVEL_DEFAULT)
1867 					level = kern_level - '0';
1868 				/* fallthrough */
1869 			case 'd':	/* KERN_DEFAULT */
1870 				lflags |= LOG_PREFIX;
1871 				break;
1872 			case 'c':	/* KERN_CONT */
1873 				lflags |= LOG_CONT;
1874 			}
1875 
1876 			text_len -= 2;
1877 			text += 2;
1878 		}
1879 	}
1880 
1881 	if (level == LOGLEVEL_DEFAULT)
1882 		level = default_message_loglevel;
1883 
1884 	if (dict)
1885 		lflags |= LOG_PREFIX|LOG_NEWLINE;
1886 
1887 	printed_len += log_output(facility, level, lflags, dict, dictlen, text, text_len);
1888 
1889 	logbuf_cpu = UINT_MAX;
1890 	raw_spin_unlock(&logbuf_lock);
1891 	lockdep_on();
1892 	local_irq_restore(flags);
1893 
1894 	/* If called from the scheduler, we can not call up(). */
1895 	if (!in_sched) {
1896 		lockdep_off();
1897 		/*
1898 		 * Try to acquire and then immediately release the console
1899 		 * semaphore.  The release will print out buffers and wake up
1900 		 * /dev/kmsg and syslog() users.
1901 		 */
1902 		if (console_trylock())
1903 			console_unlock();
1904 		lockdep_on();
1905 	}
1906 
1907 	return printed_len;
1908 }
1909 EXPORT_SYMBOL(vprintk_emit);
1910 
1911 asmlinkage int vprintk(const char *fmt, va_list args)
1912 {
1913 	return vprintk_emit(0, LOGLEVEL_DEFAULT, NULL, 0, fmt, args);
1914 }
1915 EXPORT_SYMBOL(vprintk);
1916 
1917 asmlinkage int printk_emit(int facility, int level,
1918 			   const char *dict, size_t dictlen,
1919 			   const char *fmt, ...)
1920 {
1921 	va_list args;
1922 	int r;
1923 
1924 	va_start(args, fmt);
1925 	r = vprintk_emit(facility, level, dict, dictlen, fmt, args);
1926 	va_end(args);
1927 
1928 	return r;
1929 }
1930 EXPORT_SYMBOL(printk_emit);
1931 
1932 int vprintk_default(const char *fmt, va_list args)
1933 {
1934 	int r;
1935 
1936 #ifdef CONFIG_KGDB_KDB
1937 	if (unlikely(kdb_trap_printk)) {
1938 		r = vkdb_printf(KDB_MSGSRC_PRINTK, fmt, args);
1939 		return r;
1940 	}
1941 #endif
1942 	r = vprintk_emit(0, LOGLEVEL_DEFAULT, NULL, 0, fmt, args);
1943 
1944 	return r;
1945 }
1946 EXPORT_SYMBOL_GPL(vprintk_default);
1947 
1948 /**
1949  * printk - print a kernel message
1950  * @fmt: format string
1951  *
1952  * This is printk(). It can be called from any context. We want it to work.
1953  *
1954  * We try to grab the console_lock. If we succeed, it's easy - we log the
1955  * output and call the console drivers.  If we fail to get the semaphore, we
1956  * place the output into the log buffer and return. The current holder of
1957  * the console_sem will notice the new output in console_unlock(); and will
1958  * send it to the consoles before releasing the lock.
1959  *
1960  * One effect of this deferred printing is that code which calls printk() and
1961  * then changes console_loglevel may break. This is because console_loglevel
1962  * is inspected when the actual printing occurs.
1963  *
1964  * See also:
1965  * printf(3)
1966  *
1967  * See the vsnprintf() documentation for format string extensions over C99.
1968  */
1969 asmlinkage __visible int printk(const char *fmt, ...)
1970 {
1971 	va_list args;
1972 	int r;
1973 
1974 	va_start(args, fmt);
1975 	r = vprintk_func(fmt, args);
1976 	va_end(args);
1977 
1978 	return r;
1979 }
1980 EXPORT_SYMBOL(printk);
1981 
1982 #else /* CONFIG_PRINTK */
1983 
1984 #define LOG_LINE_MAX		0
1985 #define PREFIX_MAX		0
1986 
1987 static u64 syslog_seq;
1988 static u32 syslog_idx;
1989 static u64 console_seq;
1990 static u32 console_idx;
1991 static enum log_flags syslog_prev;
1992 static u64 log_first_seq;
1993 static u32 log_first_idx;
1994 static u64 log_next_seq;
1995 static enum log_flags console_prev;
1996 static struct cont {
1997 	size_t len;
1998 	size_t cons;
1999 	u8 level;
2000 	bool flushed:1;
2001 } cont;
2002 static char *log_text(const struct printk_log *msg) { return NULL; }
2003 static char *log_dict(const struct printk_log *msg) { return NULL; }
2004 static struct printk_log *log_from_idx(u32 idx) { return NULL; }
2005 static u32 log_next(u32 idx) { return 0; }
2006 static ssize_t msg_print_ext_header(char *buf, size_t size,
2007 				    struct printk_log *msg, u64 seq,
2008 				    enum log_flags prev_flags) { return 0; }
2009 static ssize_t msg_print_ext_body(char *buf, size_t size,
2010 				  char *dict, size_t dict_len,
2011 				  char *text, size_t text_len) { return 0; }
2012 static void call_console_drivers(int level,
2013 				 const char *ext_text, size_t ext_len,
2014 				 const char *text, size_t len) {}
2015 static size_t msg_print_text(const struct printk_log *msg, enum log_flags prev,
2016 			     bool syslog, char *buf, size_t size) { return 0; }
2017 static size_t cont_print_text(char *text, size_t size) { return 0; }
2018 static bool suppress_message_printing(int level) { return false; }
2019 
2020 /* Still needs to be defined for users */
2021 DEFINE_PER_CPU(printk_func_t, printk_func);
2022 
2023 #endif /* CONFIG_PRINTK */
2024 
2025 #ifdef CONFIG_EARLY_PRINTK
2026 struct console *early_console;
2027 
2028 asmlinkage __visible void early_printk(const char *fmt, ...)
2029 {
2030 	va_list ap;
2031 	char buf[512];
2032 	int n;
2033 
2034 	if (!early_console)
2035 		return;
2036 
2037 	va_start(ap, fmt);
2038 	n = vscnprintf(buf, sizeof(buf), fmt, ap);
2039 	va_end(ap);
2040 
2041 	early_console->write(early_console, buf, n);
2042 }
2043 #endif
2044 
2045 static int __add_preferred_console(char *name, int idx, char *options,
2046 				   char *brl_options)
2047 {
2048 	struct console_cmdline *c;
2049 	int i;
2050 
2051 	/*
2052 	 *	See if this tty is not yet registered, and
2053 	 *	if we have a slot free.
2054 	 */
2055 	for (i = 0, c = console_cmdline;
2056 	     i < MAX_CMDLINECONSOLES && c->name[0];
2057 	     i++, c++) {
2058 		if (strcmp(c->name, name) == 0 && c->index == idx) {
2059 			if (!brl_options)
2060 				selected_console = i;
2061 			return 0;
2062 		}
2063 	}
2064 	if (i == MAX_CMDLINECONSOLES)
2065 		return -E2BIG;
2066 	if (!brl_options)
2067 		selected_console = i;
2068 	strlcpy(c->name, name, sizeof(c->name));
2069 	c->options = options;
2070 	braille_set_options(c, brl_options);
2071 
2072 	c->index = idx;
2073 	return 0;
2074 }
2075 /*
2076  * Set up a console.  Called via do_early_param() in init/main.c
2077  * for each "console=" parameter in the boot command line.
2078  */
2079 static int __init console_setup(char *str)
2080 {
2081 	char buf[sizeof(console_cmdline[0].name) + 4]; /* 4 for "ttyS" */
2082 	char *s, *options, *brl_options = NULL;
2083 	int idx;
2084 
2085 	if (_braille_console_setup(&str, &brl_options))
2086 		return 1;
2087 
2088 	/*
2089 	 * Decode str into name, index, options.
2090 	 */
2091 	if (str[0] >= '0' && str[0] <= '9') {
2092 		strcpy(buf, "ttyS");
2093 		strncpy(buf + 4, str, sizeof(buf) - 5);
2094 	} else {
2095 		strncpy(buf, str, sizeof(buf) - 1);
2096 	}
2097 	buf[sizeof(buf) - 1] = 0;
2098 	options = strchr(str, ',');
2099 	if (options)
2100 		*(options++) = 0;
2101 #ifdef __sparc__
2102 	if (!strcmp(str, "ttya"))
2103 		strcpy(buf, "ttyS0");
2104 	if (!strcmp(str, "ttyb"))
2105 		strcpy(buf, "ttyS1");
2106 #endif
2107 	for (s = buf; *s; s++)
2108 		if (isdigit(*s) || *s == ',')
2109 			break;
2110 	idx = simple_strtoul(s, NULL, 10);
2111 	*s = 0;
2112 
2113 	__add_preferred_console(buf, idx, options, brl_options);
2114 	console_set_on_cmdline = 1;
2115 	return 1;
2116 }
2117 __setup("console=", console_setup);
2118 
2119 /**
2120  * add_preferred_console - add a device to the list of preferred consoles.
2121  * @name: device name
2122  * @idx: device index
2123  * @options: options for this console
2124  *
2125  * The last preferred console added will be used for kernel messages
2126  * and stdin/out/err for init.  Normally this is used by console_setup
2127  * above to handle user-supplied console arguments; however it can also
2128  * be used by arch-specific code either to override the user or more
2129  * commonly to provide a default console (ie from PROM variables) when
2130  * the user has not supplied one.
2131  */
2132 int add_preferred_console(char *name, int idx, char *options)
2133 {
2134 	return __add_preferred_console(name, idx, options, NULL);
2135 }
2136 
2137 bool console_suspend_enabled = true;
2138 EXPORT_SYMBOL(console_suspend_enabled);
2139 
2140 static int __init console_suspend_disable(char *str)
2141 {
2142 	console_suspend_enabled = false;
2143 	return 1;
2144 }
2145 __setup("no_console_suspend", console_suspend_disable);
2146 module_param_named(console_suspend, console_suspend_enabled,
2147 		bool, S_IRUGO | S_IWUSR);
2148 MODULE_PARM_DESC(console_suspend, "suspend console during suspend"
2149 	" and hibernate operations");
2150 
2151 /**
2152  * suspend_console - suspend the console subsystem
2153  *
2154  * This disables printk() while we go into suspend states
2155  */
2156 void suspend_console(void)
2157 {
2158 	if (!console_suspend_enabled)
2159 		return;
2160 	printk("Suspending console(s) (use no_console_suspend to debug)\n");
2161 	console_lock();
2162 	console_suspended = 1;
2163 	up_console_sem();
2164 }
2165 
2166 void resume_console(void)
2167 {
2168 	if (!console_suspend_enabled)
2169 		return;
2170 	down_console_sem();
2171 	console_suspended = 0;
2172 	console_unlock();
2173 }
2174 
2175 /**
2176  * console_cpu_notify - print deferred console messages after CPU hotplug
2177  * @self: notifier struct
2178  * @action: CPU hotplug event
2179  * @hcpu: unused
2180  *
2181  * If printk() is called from a CPU that is not online yet, the messages
2182  * will be spooled but will not show up on the console.  This function is
2183  * called when a new CPU comes online (or fails to come up), and ensures
2184  * that any such output gets printed.
2185  */
2186 static int console_cpu_notify(struct notifier_block *self,
2187 	unsigned long action, void *hcpu)
2188 {
2189 	switch (action) {
2190 	case CPU_ONLINE:
2191 	case CPU_DEAD:
2192 	case CPU_DOWN_FAILED:
2193 	case CPU_UP_CANCELED:
2194 		console_lock();
2195 		console_unlock();
2196 	}
2197 	return NOTIFY_OK;
2198 }
2199 
2200 /**
2201  * console_lock - lock the console system for exclusive use.
2202  *
2203  * Acquires a lock which guarantees that the caller has
2204  * exclusive access to the console system and the console_drivers list.
2205  *
2206  * Can sleep, returns nothing.
2207  */
2208 void console_lock(void)
2209 {
2210 	might_sleep();
2211 
2212 	down_console_sem();
2213 	if (console_suspended)
2214 		return;
2215 	console_locked = 1;
2216 	console_may_schedule = 1;
2217 }
2218 EXPORT_SYMBOL(console_lock);
2219 
2220 /**
2221  * console_trylock - try to lock the console system for exclusive use.
2222  *
2223  * Try to acquire a lock which guarantees that the caller has exclusive
2224  * access to the console system and the console_drivers list.
2225  *
2226  * returns 1 on success, and 0 on failure to acquire the lock.
2227  */
2228 int console_trylock(void)
2229 {
2230 	if (down_trylock_console_sem())
2231 		return 0;
2232 	if (console_suspended) {
2233 		up_console_sem();
2234 		return 0;
2235 	}
2236 	console_locked = 1;
2237 	/*
2238 	 * When PREEMPT_COUNT disabled we can't reliably detect if it's
2239 	 * safe to schedule (e.g. calling printk while holding a spin_lock),
2240 	 * because preempt_disable()/preempt_enable() are just barriers there
2241 	 * and preempt_count() is always 0.
2242 	 *
2243 	 * RCU read sections have a separate preemption counter when
2244 	 * PREEMPT_RCU enabled thus we must take extra care and check
2245 	 * rcu_preempt_depth(), otherwise RCU read sections modify
2246 	 * preempt_count().
2247 	 */
2248 	console_may_schedule = !oops_in_progress &&
2249 			preemptible() &&
2250 			!rcu_preempt_depth();
2251 	return 1;
2252 }
2253 EXPORT_SYMBOL(console_trylock);
2254 
2255 int is_console_locked(void)
2256 {
2257 	return console_locked;
2258 }
2259 
2260 /*
2261  * Check if we have any console that is capable of printing while cpu is
2262  * booting or shutting down. Requires console_sem.
2263  */
2264 static int have_callable_console(void)
2265 {
2266 	struct console *con;
2267 
2268 	for_each_console(con)
2269 		if ((con->flags & CON_ENABLED) &&
2270 				(con->flags & CON_ANYTIME))
2271 			return 1;
2272 
2273 	return 0;
2274 }
2275 
2276 /*
2277  * Can we actually use the console at this time on this cpu?
2278  *
2279  * Console drivers may assume that per-cpu resources have been allocated. So
2280  * unless they're explicitly marked as being able to cope (CON_ANYTIME) don't
2281  * call them until this CPU is officially up.
2282  */
2283 static inline int can_use_console(void)
2284 {
2285 	return cpu_online(raw_smp_processor_id()) || have_callable_console();
2286 }
2287 
2288 static void console_cont_flush(char *text, size_t size)
2289 {
2290 	unsigned long flags;
2291 	size_t len;
2292 
2293 	raw_spin_lock_irqsave(&logbuf_lock, flags);
2294 
2295 	if (!cont.len)
2296 		goto out;
2297 
2298 	if (suppress_message_printing(cont.level)) {
2299 		cont.cons = cont.len;
2300 		if (cont.flushed)
2301 			cont.len = 0;
2302 		goto out;
2303 	}
2304 
2305 	/*
2306 	 * We still queue earlier records, likely because the console was
2307 	 * busy. The earlier ones need to be printed before this one, we
2308 	 * did not flush any fragment so far, so just let it queue up.
2309 	 */
2310 	if (console_seq < log_next_seq && !cont.cons)
2311 		goto out;
2312 
2313 	len = cont_print_text(text, size);
2314 	raw_spin_unlock(&logbuf_lock);
2315 	stop_critical_timings();
2316 	call_console_drivers(cont.level, NULL, 0, text, len);
2317 	start_critical_timings();
2318 	local_irq_restore(flags);
2319 	return;
2320 out:
2321 	raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2322 }
2323 
2324 /**
2325  * console_unlock - unlock the console system
2326  *
2327  * Releases the console_lock which the caller holds on the console system
2328  * and the console driver list.
2329  *
2330  * While the console_lock was held, console output may have been buffered
2331  * by printk().  If this is the case, console_unlock(); emits
2332  * the output prior to releasing the lock.
2333  *
2334  * If there is output waiting, we wake /dev/kmsg and syslog() users.
2335  *
2336  * console_unlock(); may be called from any context.
2337  */
2338 void console_unlock(void)
2339 {
2340 	static char ext_text[CONSOLE_EXT_LOG_MAX];
2341 	static char text[LOG_LINE_MAX + PREFIX_MAX];
2342 	static u64 seen_seq;
2343 	unsigned long flags;
2344 	bool wake_klogd = false;
2345 	bool do_cond_resched, retry;
2346 
2347 	if (console_suspended) {
2348 		up_console_sem();
2349 		return;
2350 	}
2351 
2352 	/*
2353 	 * Console drivers are called under logbuf_lock, so
2354 	 * @console_may_schedule should be cleared before; however, we may
2355 	 * end up dumping a lot of lines, for example, if called from
2356 	 * console registration path, and should invoke cond_resched()
2357 	 * between lines if allowable.  Not doing so can cause a very long
2358 	 * scheduling stall on a slow console leading to RCU stall and
2359 	 * softlockup warnings which exacerbate the issue with more
2360 	 * messages practically incapacitating the system.
2361 	 */
2362 	do_cond_resched = console_may_schedule;
2363 	console_may_schedule = 0;
2364 
2365 again:
2366 	/*
2367 	 * We released the console_sem lock, so we need to recheck if
2368 	 * cpu is online and (if not) is there at least one CON_ANYTIME
2369 	 * console.
2370 	 */
2371 	if (!can_use_console()) {
2372 		console_locked = 0;
2373 		up_console_sem();
2374 		return;
2375 	}
2376 
2377 	/* flush buffered message fragment immediately to console */
2378 	console_cont_flush(text, sizeof(text));
2379 
2380 	for (;;) {
2381 		struct printk_log *msg;
2382 		size_t ext_len = 0;
2383 		size_t len;
2384 		int level;
2385 
2386 		raw_spin_lock_irqsave(&logbuf_lock, flags);
2387 		if (seen_seq != log_next_seq) {
2388 			wake_klogd = true;
2389 			seen_seq = log_next_seq;
2390 		}
2391 
2392 		if (console_seq < log_first_seq) {
2393 			len = sprintf(text, "** %u printk messages dropped ** ",
2394 				      (unsigned)(log_first_seq - console_seq));
2395 
2396 			/* messages are gone, move to first one */
2397 			console_seq = log_first_seq;
2398 			console_idx = log_first_idx;
2399 			console_prev = 0;
2400 		} else {
2401 			len = 0;
2402 		}
2403 skip:
2404 		if (console_seq == log_next_seq)
2405 			break;
2406 
2407 		msg = log_from_idx(console_idx);
2408 		level = msg->level;
2409 		if ((msg->flags & LOG_NOCONS) ||
2410 				suppress_message_printing(level)) {
2411 			/*
2412 			 * Skip record we have buffered and already printed
2413 			 * directly to the console when we received it, and
2414 			 * record that has level above the console loglevel.
2415 			 */
2416 			console_idx = log_next(console_idx);
2417 			console_seq++;
2418 			/*
2419 			 * We will get here again when we register a new
2420 			 * CON_PRINTBUFFER console. Clear the flag so we
2421 			 * will properly dump everything later.
2422 			 */
2423 			msg->flags &= ~LOG_NOCONS;
2424 			console_prev = msg->flags;
2425 			goto skip;
2426 		}
2427 
2428 		len += msg_print_text(msg, console_prev, false,
2429 				      text + len, sizeof(text) - len);
2430 		if (nr_ext_console_drivers) {
2431 			ext_len = msg_print_ext_header(ext_text,
2432 						sizeof(ext_text),
2433 						msg, console_seq, console_prev);
2434 			ext_len += msg_print_ext_body(ext_text + ext_len,
2435 						sizeof(ext_text) - ext_len,
2436 						log_dict(msg), msg->dict_len,
2437 						log_text(msg), msg->text_len);
2438 		}
2439 		console_idx = log_next(console_idx);
2440 		console_seq++;
2441 		console_prev = msg->flags;
2442 		raw_spin_unlock(&logbuf_lock);
2443 
2444 		stop_critical_timings();	/* don't trace print latency */
2445 		call_console_drivers(level, ext_text, ext_len, text, len);
2446 		start_critical_timings();
2447 		local_irq_restore(flags);
2448 
2449 		if (do_cond_resched)
2450 			cond_resched();
2451 	}
2452 	console_locked = 0;
2453 
2454 	/* Release the exclusive_console once it is used */
2455 	if (unlikely(exclusive_console))
2456 		exclusive_console = NULL;
2457 
2458 	raw_spin_unlock(&logbuf_lock);
2459 
2460 	up_console_sem();
2461 
2462 	/*
2463 	 * Someone could have filled up the buffer again, so re-check if there's
2464 	 * something to flush. In case we cannot trylock the console_sem again,
2465 	 * there's a new owner and the console_unlock() from them will do the
2466 	 * flush, no worries.
2467 	 */
2468 	raw_spin_lock(&logbuf_lock);
2469 	retry = console_seq != log_next_seq;
2470 	raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2471 
2472 	if (retry && console_trylock())
2473 		goto again;
2474 
2475 	if (wake_klogd)
2476 		wake_up_klogd();
2477 }
2478 EXPORT_SYMBOL(console_unlock);
2479 
2480 /**
2481  * console_conditional_schedule - yield the CPU if required
2482  *
2483  * If the console code is currently allowed to sleep, and
2484  * if this CPU should yield the CPU to another task, do
2485  * so here.
2486  *
2487  * Must be called within console_lock();.
2488  */
2489 void __sched console_conditional_schedule(void)
2490 {
2491 	if (console_may_schedule)
2492 		cond_resched();
2493 }
2494 EXPORT_SYMBOL(console_conditional_schedule);
2495 
2496 void console_unblank(void)
2497 {
2498 	struct console *c;
2499 
2500 	/*
2501 	 * console_unblank can no longer be called in interrupt context unless
2502 	 * oops_in_progress is set to 1..
2503 	 */
2504 	if (oops_in_progress) {
2505 		if (down_trylock_console_sem() != 0)
2506 			return;
2507 	} else
2508 		console_lock();
2509 
2510 	console_locked = 1;
2511 	console_may_schedule = 0;
2512 	for_each_console(c)
2513 		if ((c->flags & CON_ENABLED) && c->unblank)
2514 			c->unblank();
2515 	console_unlock();
2516 }
2517 
2518 /**
2519  * console_flush_on_panic - flush console content on panic
2520  *
2521  * Immediately output all pending messages no matter what.
2522  */
2523 void console_flush_on_panic(void)
2524 {
2525 	/*
2526 	 * If someone else is holding the console lock, trylock will fail
2527 	 * and may_schedule may be set.  Ignore and proceed to unlock so
2528 	 * that messages are flushed out.  As this can be called from any
2529 	 * context and we don't want to get preempted while flushing,
2530 	 * ensure may_schedule is cleared.
2531 	 */
2532 	console_trylock();
2533 	console_may_schedule = 0;
2534 	console_unlock();
2535 }
2536 
2537 /*
2538  * Return the console tty driver structure and its associated index
2539  */
2540 struct tty_driver *console_device(int *index)
2541 {
2542 	struct console *c;
2543 	struct tty_driver *driver = NULL;
2544 
2545 	console_lock();
2546 	for_each_console(c) {
2547 		if (!c->device)
2548 			continue;
2549 		driver = c->device(c, index);
2550 		if (driver)
2551 			break;
2552 	}
2553 	console_unlock();
2554 	return driver;
2555 }
2556 
2557 /*
2558  * Prevent further output on the passed console device so that (for example)
2559  * serial drivers can disable console output before suspending a port, and can
2560  * re-enable output afterwards.
2561  */
2562 void console_stop(struct console *console)
2563 {
2564 	console_lock();
2565 	console->flags &= ~CON_ENABLED;
2566 	console_unlock();
2567 }
2568 EXPORT_SYMBOL(console_stop);
2569 
2570 void console_start(struct console *console)
2571 {
2572 	console_lock();
2573 	console->flags |= CON_ENABLED;
2574 	console_unlock();
2575 }
2576 EXPORT_SYMBOL(console_start);
2577 
2578 static int __read_mostly keep_bootcon;
2579 
2580 static int __init keep_bootcon_setup(char *str)
2581 {
2582 	keep_bootcon = 1;
2583 	pr_info("debug: skip boot console de-registration.\n");
2584 
2585 	return 0;
2586 }
2587 
2588 early_param("keep_bootcon", keep_bootcon_setup);
2589 
2590 /*
2591  * The console driver calls this routine during kernel initialization
2592  * to register the console printing procedure with printk() and to
2593  * print any messages that were printed by the kernel before the
2594  * console driver was initialized.
2595  *
2596  * This can happen pretty early during the boot process (because of
2597  * early_printk) - sometimes before setup_arch() completes - be careful
2598  * of what kernel features are used - they may not be initialised yet.
2599  *
2600  * There are two types of consoles - bootconsoles (early_printk) and
2601  * "real" consoles (everything which is not a bootconsole) which are
2602  * handled differently.
2603  *  - Any number of bootconsoles can be registered at any time.
2604  *  - As soon as a "real" console is registered, all bootconsoles
2605  *    will be unregistered automatically.
2606  *  - Once a "real" console is registered, any attempt to register a
2607  *    bootconsoles will be rejected
2608  */
2609 void register_console(struct console *newcon)
2610 {
2611 	int i;
2612 	unsigned long flags;
2613 	struct console *bcon = NULL;
2614 	struct console_cmdline *c;
2615 
2616 	if (console_drivers)
2617 		for_each_console(bcon)
2618 			if (WARN(bcon == newcon,
2619 					"console '%s%d' already registered\n",
2620 					bcon->name, bcon->index))
2621 				return;
2622 
2623 	/*
2624 	 * before we register a new CON_BOOT console, make sure we don't
2625 	 * already have a valid console
2626 	 */
2627 	if (console_drivers && newcon->flags & CON_BOOT) {
2628 		/* find the last or real console */
2629 		for_each_console(bcon) {
2630 			if (!(bcon->flags & CON_BOOT)) {
2631 				pr_info("Too late to register bootconsole %s%d\n",
2632 					newcon->name, newcon->index);
2633 				return;
2634 			}
2635 		}
2636 	}
2637 
2638 	if (console_drivers && console_drivers->flags & CON_BOOT)
2639 		bcon = console_drivers;
2640 
2641 	if (preferred_console < 0 || bcon || !console_drivers)
2642 		preferred_console = selected_console;
2643 
2644 	/*
2645 	 *	See if we want to use this console driver. If we
2646 	 *	didn't select a console we take the first one
2647 	 *	that registers here.
2648 	 */
2649 	if (preferred_console < 0) {
2650 		if (newcon->index < 0)
2651 			newcon->index = 0;
2652 		if (newcon->setup == NULL ||
2653 		    newcon->setup(newcon, NULL) == 0) {
2654 			newcon->flags |= CON_ENABLED;
2655 			if (newcon->device) {
2656 				newcon->flags |= CON_CONSDEV;
2657 				preferred_console = 0;
2658 			}
2659 		}
2660 	}
2661 
2662 	/*
2663 	 *	See if this console matches one we selected on
2664 	 *	the command line.
2665 	 */
2666 	for (i = 0, c = console_cmdline;
2667 	     i < MAX_CMDLINECONSOLES && c->name[0];
2668 	     i++, c++) {
2669 		if (!newcon->match ||
2670 		    newcon->match(newcon, c->name, c->index, c->options) != 0) {
2671 			/* default matching */
2672 			BUILD_BUG_ON(sizeof(c->name) != sizeof(newcon->name));
2673 			if (strcmp(c->name, newcon->name) != 0)
2674 				continue;
2675 			if (newcon->index >= 0 &&
2676 			    newcon->index != c->index)
2677 				continue;
2678 			if (newcon->index < 0)
2679 				newcon->index = c->index;
2680 
2681 			if (_braille_register_console(newcon, c))
2682 				return;
2683 
2684 			if (newcon->setup &&
2685 			    newcon->setup(newcon, c->options) != 0)
2686 				break;
2687 		}
2688 
2689 		newcon->flags |= CON_ENABLED;
2690 		if (i == selected_console) {
2691 			newcon->flags |= CON_CONSDEV;
2692 			preferred_console = selected_console;
2693 		}
2694 		break;
2695 	}
2696 
2697 	if (!(newcon->flags & CON_ENABLED))
2698 		return;
2699 
2700 	/*
2701 	 * If we have a bootconsole, and are switching to a real console,
2702 	 * don't print everything out again, since when the boot console, and
2703 	 * the real console are the same physical device, it's annoying to
2704 	 * see the beginning boot messages twice
2705 	 */
2706 	if (bcon && ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV))
2707 		newcon->flags &= ~CON_PRINTBUFFER;
2708 
2709 	/*
2710 	 *	Put this console in the list - keep the
2711 	 *	preferred driver at the head of the list.
2712 	 */
2713 	console_lock();
2714 	if ((newcon->flags & CON_CONSDEV) || console_drivers == NULL) {
2715 		newcon->next = console_drivers;
2716 		console_drivers = newcon;
2717 		if (newcon->next)
2718 			newcon->next->flags &= ~CON_CONSDEV;
2719 	} else {
2720 		newcon->next = console_drivers->next;
2721 		console_drivers->next = newcon;
2722 	}
2723 
2724 	if (newcon->flags & CON_EXTENDED)
2725 		if (!nr_ext_console_drivers++)
2726 			pr_info("printk: continuation disabled due to ext consoles, expect more fragments in /dev/kmsg\n");
2727 
2728 	if (newcon->flags & CON_PRINTBUFFER) {
2729 		/*
2730 		 * console_unlock(); will print out the buffered messages
2731 		 * for us.
2732 		 */
2733 		raw_spin_lock_irqsave(&logbuf_lock, flags);
2734 		console_seq = syslog_seq;
2735 		console_idx = syslog_idx;
2736 		console_prev = syslog_prev;
2737 		raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2738 		/*
2739 		 * We're about to replay the log buffer.  Only do this to the
2740 		 * just-registered console to avoid excessive message spam to
2741 		 * the already-registered consoles.
2742 		 */
2743 		exclusive_console = newcon;
2744 	}
2745 	console_unlock();
2746 	console_sysfs_notify();
2747 
2748 	/*
2749 	 * By unregistering the bootconsoles after we enable the real console
2750 	 * we get the "console xxx enabled" message on all the consoles -
2751 	 * boot consoles, real consoles, etc - this is to ensure that end
2752 	 * users know there might be something in the kernel's log buffer that
2753 	 * went to the bootconsole (that they do not see on the real console)
2754 	 */
2755 	pr_info("%sconsole [%s%d] enabled\n",
2756 		(newcon->flags & CON_BOOT) ? "boot" : "" ,
2757 		newcon->name, newcon->index);
2758 	if (bcon &&
2759 	    ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV) &&
2760 	    !keep_bootcon) {
2761 		/* We need to iterate through all boot consoles, to make
2762 		 * sure we print everything out, before we unregister them.
2763 		 */
2764 		for_each_console(bcon)
2765 			if (bcon->flags & CON_BOOT)
2766 				unregister_console(bcon);
2767 	}
2768 }
2769 EXPORT_SYMBOL(register_console);
2770 
2771 int unregister_console(struct console *console)
2772 {
2773         struct console *a, *b;
2774 	int res;
2775 
2776 	pr_info("%sconsole [%s%d] disabled\n",
2777 		(console->flags & CON_BOOT) ? "boot" : "" ,
2778 		console->name, console->index);
2779 
2780 	res = _braille_unregister_console(console);
2781 	if (res)
2782 		return res;
2783 
2784 	res = 1;
2785 	console_lock();
2786 	if (console_drivers == console) {
2787 		console_drivers=console->next;
2788 		res = 0;
2789 	} else if (console_drivers) {
2790 		for (a=console_drivers->next, b=console_drivers ;
2791 		     a; b=a, a=b->next) {
2792 			if (a == console) {
2793 				b->next = a->next;
2794 				res = 0;
2795 				break;
2796 			}
2797 		}
2798 	}
2799 
2800 	if (!res && (console->flags & CON_EXTENDED))
2801 		nr_ext_console_drivers--;
2802 
2803 	/*
2804 	 * If this isn't the last console and it has CON_CONSDEV set, we
2805 	 * need to set it on the next preferred console.
2806 	 */
2807 	if (console_drivers != NULL && console->flags & CON_CONSDEV)
2808 		console_drivers->flags |= CON_CONSDEV;
2809 
2810 	console->flags &= ~CON_ENABLED;
2811 	console_unlock();
2812 	console_sysfs_notify();
2813 	return res;
2814 }
2815 EXPORT_SYMBOL(unregister_console);
2816 
2817 /*
2818  * Some boot consoles access data that is in the init section and which will
2819  * be discarded after the initcalls have been run. To make sure that no code
2820  * will access this data, unregister the boot consoles in a late initcall.
2821  *
2822  * If for some reason, such as deferred probe or the driver being a loadable
2823  * module, the real console hasn't registered yet at this point, there will
2824  * be a brief interval in which no messages are logged to the console, which
2825  * makes it difficult to diagnose problems that occur during this time.
2826  *
2827  * To mitigate this problem somewhat, only unregister consoles whose memory
2828  * intersects with the init section. Note that code exists elsewhere to get
2829  * rid of the boot console as soon as the proper console shows up, so there
2830  * won't be side-effects from postponing the removal.
2831  */
2832 static int __init printk_late_init(void)
2833 {
2834 	struct console *con;
2835 
2836 	for_each_console(con) {
2837 		if (!keep_bootcon && con->flags & CON_BOOT) {
2838 			/*
2839 			 * Make sure to unregister boot consoles whose data
2840 			 * resides in the init section before the init section
2841 			 * is discarded. Boot consoles whose data will stick
2842 			 * around will automatically be unregistered when the
2843 			 * proper console replaces them.
2844 			 */
2845 			if (init_section_intersects(con, sizeof(*con)))
2846 				unregister_console(con);
2847 		}
2848 	}
2849 	hotcpu_notifier(console_cpu_notify, 0);
2850 	return 0;
2851 }
2852 late_initcall(printk_late_init);
2853 
2854 #if defined CONFIG_PRINTK
2855 /*
2856  * Delayed printk version, for scheduler-internal messages:
2857  */
2858 #define PRINTK_PENDING_WAKEUP	0x01
2859 #define PRINTK_PENDING_OUTPUT	0x02
2860 
2861 static DEFINE_PER_CPU(int, printk_pending);
2862 
2863 static void wake_up_klogd_work_func(struct irq_work *irq_work)
2864 {
2865 	int pending = __this_cpu_xchg(printk_pending, 0);
2866 
2867 	if (pending & PRINTK_PENDING_OUTPUT) {
2868 		/* If trylock fails, someone else is doing the printing */
2869 		if (console_trylock())
2870 			console_unlock();
2871 	}
2872 
2873 	if (pending & PRINTK_PENDING_WAKEUP)
2874 		wake_up_interruptible(&log_wait);
2875 }
2876 
2877 static DEFINE_PER_CPU(struct irq_work, wake_up_klogd_work) = {
2878 	.func = wake_up_klogd_work_func,
2879 	.flags = IRQ_WORK_LAZY,
2880 };
2881 
2882 void wake_up_klogd(void)
2883 {
2884 	preempt_disable();
2885 	if (waitqueue_active(&log_wait)) {
2886 		this_cpu_or(printk_pending, PRINTK_PENDING_WAKEUP);
2887 		irq_work_queue(this_cpu_ptr(&wake_up_klogd_work));
2888 	}
2889 	preempt_enable();
2890 }
2891 
2892 int printk_deferred(const char *fmt, ...)
2893 {
2894 	va_list args;
2895 	int r;
2896 
2897 	preempt_disable();
2898 	va_start(args, fmt);
2899 	r = vprintk_emit(0, LOGLEVEL_SCHED, NULL, 0, fmt, args);
2900 	va_end(args);
2901 
2902 	__this_cpu_or(printk_pending, PRINTK_PENDING_OUTPUT);
2903 	irq_work_queue(this_cpu_ptr(&wake_up_klogd_work));
2904 	preempt_enable();
2905 
2906 	return r;
2907 }
2908 
2909 /*
2910  * printk rate limiting, lifted from the networking subsystem.
2911  *
2912  * This enforces a rate limit: not more than 10 kernel messages
2913  * every 5s to make a denial-of-service attack impossible.
2914  */
2915 DEFINE_RATELIMIT_STATE(printk_ratelimit_state, 5 * HZ, 10);
2916 
2917 int __printk_ratelimit(const char *func)
2918 {
2919 	return ___ratelimit(&printk_ratelimit_state, func);
2920 }
2921 EXPORT_SYMBOL(__printk_ratelimit);
2922 
2923 /**
2924  * printk_timed_ratelimit - caller-controlled printk ratelimiting
2925  * @caller_jiffies: pointer to caller's state
2926  * @interval_msecs: minimum interval between prints
2927  *
2928  * printk_timed_ratelimit() returns true if more than @interval_msecs
2929  * milliseconds have elapsed since the last time printk_timed_ratelimit()
2930  * returned true.
2931  */
2932 bool printk_timed_ratelimit(unsigned long *caller_jiffies,
2933 			unsigned int interval_msecs)
2934 {
2935 	unsigned long elapsed = jiffies - *caller_jiffies;
2936 
2937 	if (*caller_jiffies && elapsed <= msecs_to_jiffies(interval_msecs))
2938 		return false;
2939 
2940 	*caller_jiffies = jiffies;
2941 	return true;
2942 }
2943 EXPORT_SYMBOL(printk_timed_ratelimit);
2944 
2945 static DEFINE_SPINLOCK(dump_list_lock);
2946 static LIST_HEAD(dump_list);
2947 
2948 /**
2949  * kmsg_dump_register - register a kernel log dumper.
2950  * @dumper: pointer to the kmsg_dumper structure
2951  *
2952  * Adds a kernel log dumper to the system. The dump callback in the
2953  * structure will be called when the kernel oopses or panics and must be
2954  * set. Returns zero on success and %-EINVAL or %-EBUSY otherwise.
2955  */
2956 int kmsg_dump_register(struct kmsg_dumper *dumper)
2957 {
2958 	unsigned long flags;
2959 	int err = -EBUSY;
2960 
2961 	/* The dump callback needs to be set */
2962 	if (!dumper->dump)
2963 		return -EINVAL;
2964 
2965 	spin_lock_irqsave(&dump_list_lock, flags);
2966 	/* Don't allow registering multiple times */
2967 	if (!dumper->registered) {
2968 		dumper->registered = 1;
2969 		list_add_tail_rcu(&dumper->list, &dump_list);
2970 		err = 0;
2971 	}
2972 	spin_unlock_irqrestore(&dump_list_lock, flags);
2973 
2974 	return err;
2975 }
2976 EXPORT_SYMBOL_GPL(kmsg_dump_register);
2977 
2978 /**
2979  * kmsg_dump_unregister - unregister a kmsg dumper.
2980  * @dumper: pointer to the kmsg_dumper structure
2981  *
2982  * Removes a dump device from the system. Returns zero on success and
2983  * %-EINVAL otherwise.
2984  */
2985 int kmsg_dump_unregister(struct kmsg_dumper *dumper)
2986 {
2987 	unsigned long flags;
2988 	int err = -EINVAL;
2989 
2990 	spin_lock_irqsave(&dump_list_lock, flags);
2991 	if (dumper->registered) {
2992 		dumper->registered = 0;
2993 		list_del_rcu(&dumper->list);
2994 		err = 0;
2995 	}
2996 	spin_unlock_irqrestore(&dump_list_lock, flags);
2997 	synchronize_rcu();
2998 
2999 	return err;
3000 }
3001 EXPORT_SYMBOL_GPL(kmsg_dump_unregister);
3002 
3003 static bool always_kmsg_dump;
3004 module_param_named(always_kmsg_dump, always_kmsg_dump, bool, S_IRUGO | S_IWUSR);
3005 
3006 /**
3007  * kmsg_dump - dump kernel log to kernel message dumpers.
3008  * @reason: the reason (oops, panic etc) for dumping
3009  *
3010  * Call each of the registered dumper's dump() callback, which can
3011  * retrieve the kmsg records with kmsg_dump_get_line() or
3012  * kmsg_dump_get_buffer().
3013  */
3014 void kmsg_dump(enum kmsg_dump_reason reason)
3015 {
3016 	struct kmsg_dumper *dumper;
3017 	unsigned long flags;
3018 
3019 	if ((reason > KMSG_DUMP_OOPS) && !always_kmsg_dump)
3020 		return;
3021 
3022 	rcu_read_lock();
3023 	list_for_each_entry_rcu(dumper, &dump_list, list) {
3024 		if (dumper->max_reason && reason > dumper->max_reason)
3025 			continue;
3026 
3027 		/* initialize iterator with data about the stored records */
3028 		dumper->active = true;
3029 
3030 		raw_spin_lock_irqsave(&logbuf_lock, flags);
3031 		cont_flush();
3032 		dumper->cur_seq = clear_seq;
3033 		dumper->cur_idx = clear_idx;
3034 		dumper->next_seq = log_next_seq;
3035 		dumper->next_idx = log_next_idx;
3036 		raw_spin_unlock_irqrestore(&logbuf_lock, flags);
3037 
3038 		/* invoke dumper which will iterate over records */
3039 		dumper->dump(dumper, reason);
3040 
3041 		/* reset iterator */
3042 		dumper->active = false;
3043 	}
3044 	rcu_read_unlock();
3045 }
3046 
3047 /**
3048  * kmsg_dump_get_line_nolock - retrieve one kmsg log line (unlocked version)
3049  * @dumper: registered kmsg dumper
3050  * @syslog: include the "<4>" prefixes
3051  * @line: buffer to copy the line to
3052  * @size: maximum size of the buffer
3053  * @len: length of line placed into buffer
3054  *
3055  * Start at the beginning of the kmsg buffer, with the oldest kmsg
3056  * record, and copy one record into the provided buffer.
3057  *
3058  * Consecutive calls will return the next available record moving
3059  * towards the end of the buffer with the youngest messages.
3060  *
3061  * A return value of FALSE indicates that there are no more records to
3062  * read.
3063  *
3064  * The function is similar to kmsg_dump_get_line(), but grabs no locks.
3065  */
3066 bool kmsg_dump_get_line_nolock(struct kmsg_dumper *dumper, bool syslog,
3067 			       char *line, size_t size, size_t *len)
3068 {
3069 	struct printk_log *msg;
3070 	size_t l = 0;
3071 	bool ret = false;
3072 
3073 	if (!dumper->active)
3074 		goto out;
3075 
3076 	if (dumper->cur_seq < log_first_seq) {
3077 		/* messages are gone, move to first available one */
3078 		dumper->cur_seq = log_first_seq;
3079 		dumper->cur_idx = log_first_idx;
3080 	}
3081 
3082 	/* last entry */
3083 	if (dumper->cur_seq >= log_next_seq)
3084 		goto out;
3085 
3086 	msg = log_from_idx(dumper->cur_idx);
3087 	l = msg_print_text(msg, 0, syslog, line, size);
3088 
3089 	dumper->cur_idx = log_next(dumper->cur_idx);
3090 	dumper->cur_seq++;
3091 	ret = true;
3092 out:
3093 	if (len)
3094 		*len = l;
3095 	return ret;
3096 }
3097 
3098 /**
3099  * kmsg_dump_get_line - retrieve one kmsg log line
3100  * @dumper: registered kmsg dumper
3101  * @syslog: include the "<4>" prefixes
3102  * @line: buffer to copy the line to
3103  * @size: maximum size of the buffer
3104  * @len: length of line placed into buffer
3105  *
3106  * Start at the beginning of the kmsg buffer, with the oldest kmsg
3107  * record, and copy one record into the provided buffer.
3108  *
3109  * Consecutive calls will return the next available record moving
3110  * towards the end of the buffer with the youngest messages.
3111  *
3112  * A return value of FALSE indicates that there are no more records to
3113  * read.
3114  */
3115 bool kmsg_dump_get_line(struct kmsg_dumper *dumper, bool syslog,
3116 			char *line, size_t size, size_t *len)
3117 {
3118 	unsigned long flags;
3119 	bool ret;
3120 
3121 	raw_spin_lock_irqsave(&logbuf_lock, flags);
3122 	cont_flush();
3123 	ret = kmsg_dump_get_line_nolock(dumper, syslog, line, size, len);
3124 	raw_spin_unlock_irqrestore(&logbuf_lock, flags);
3125 
3126 	return ret;
3127 }
3128 EXPORT_SYMBOL_GPL(kmsg_dump_get_line);
3129 
3130 /**
3131  * kmsg_dump_get_buffer - copy kmsg log lines
3132  * @dumper: registered kmsg dumper
3133  * @syslog: include the "<4>" prefixes
3134  * @buf: buffer to copy the line to
3135  * @size: maximum size of the buffer
3136  * @len: length of line placed into buffer
3137  *
3138  * Start at the end of the kmsg buffer and fill the provided buffer
3139  * with as many of the the *youngest* kmsg records that fit into it.
3140  * If the buffer is large enough, all available kmsg records will be
3141  * copied with a single call.
3142  *
3143  * Consecutive calls will fill the buffer with the next block of
3144  * available older records, not including the earlier retrieved ones.
3145  *
3146  * A return value of FALSE indicates that there are no more records to
3147  * read.
3148  */
3149 bool kmsg_dump_get_buffer(struct kmsg_dumper *dumper, bool syslog,
3150 			  char *buf, size_t size, size_t *len)
3151 {
3152 	unsigned long flags;
3153 	u64 seq;
3154 	u32 idx;
3155 	u64 next_seq;
3156 	u32 next_idx;
3157 	enum log_flags prev;
3158 	size_t l = 0;
3159 	bool ret = false;
3160 
3161 	if (!dumper->active)
3162 		goto out;
3163 
3164 	raw_spin_lock_irqsave(&logbuf_lock, flags);
3165 	cont_flush();
3166 	if (dumper->cur_seq < log_first_seq) {
3167 		/* messages are gone, move to first available one */
3168 		dumper->cur_seq = log_first_seq;
3169 		dumper->cur_idx = log_first_idx;
3170 	}
3171 
3172 	/* last entry */
3173 	if (dumper->cur_seq >= dumper->next_seq) {
3174 		raw_spin_unlock_irqrestore(&logbuf_lock, flags);
3175 		goto out;
3176 	}
3177 
3178 	/* calculate length of entire buffer */
3179 	seq = dumper->cur_seq;
3180 	idx = dumper->cur_idx;
3181 	prev = 0;
3182 	while (seq < dumper->next_seq) {
3183 		struct printk_log *msg = log_from_idx(idx);
3184 
3185 		l += msg_print_text(msg, prev, true, NULL, 0);
3186 		idx = log_next(idx);
3187 		seq++;
3188 		prev = msg->flags;
3189 	}
3190 
3191 	/* move first record forward until length fits into the buffer */
3192 	seq = dumper->cur_seq;
3193 	idx = dumper->cur_idx;
3194 	prev = 0;
3195 	while (l > size && seq < dumper->next_seq) {
3196 		struct printk_log *msg = log_from_idx(idx);
3197 
3198 		l -= msg_print_text(msg, prev, true, NULL, 0);
3199 		idx = log_next(idx);
3200 		seq++;
3201 		prev = msg->flags;
3202 	}
3203 
3204 	/* last message in next interation */
3205 	next_seq = seq;
3206 	next_idx = idx;
3207 
3208 	l = 0;
3209 	while (seq < dumper->next_seq) {
3210 		struct printk_log *msg = log_from_idx(idx);
3211 
3212 		l += msg_print_text(msg, prev, syslog, buf + l, size - l);
3213 		idx = log_next(idx);
3214 		seq++;
3215 		prev = msg->flags;
3216 	}
3217 
3218 	dumper->next_seq = next_seq;
3219 	dumper->next_idx = next_idx;
3220 	ret = true;
3221 	raw_spin_unlock_irqrestore(&logbuf_lock, flags);
3222 out:
3223 	if (len)
3224 		*len = l;
3225 	return ret;
3226 }
3227 EXPORT_SYMBOL_GPL(kmsg_dump_get_buffer);
3228 
3229 /**
3230  * kmsg_dump_rewind_nolock - reset the interator (unlocked version)
3231  * @dumper: registered kmsg dumper
3232  *
3233  * Reset the dumper's iterator so that kmsg_dump_get_line() and
3234  * kmsg_dump_get_buffer() can be called again and used multiple
3235  * times within the same dumper.dump() callback.
3236  *
3237  * The function is similar to kmsg_dump_rewind(), but grabs no locks.
3238  */
3239 void kmsg_dump_rewind_nolock(struct kmsg_dumper *dumper)
3240 {
3241 	dumper->cur_seq = clear_seq;
3242 	dumper->cur_idx = clear_idx;
3243 	dumper->next_seq = log_next_seq;
3244 	dumper->next_idx = log_next_idx;
3245 }
3246 
3247 /**
3248  * kmsg_dump_rewind - reset the interator
3249  * @dumper: registered kmsg dumper
3250  *
3251  * Reset the dumper's iterator so that kmsg_dump_get_line() and
3252  * kmsg_dump_get_buffer() can be called again and used multiple
3253  * times within the same dumper.dump() callback.
3254  */
3255 void kmsg_dump_rewind(struct kmsg_dumper *dumper)
3256 {
3257 	unsigned long flags;
3258 
3259 	raw_spin_lock_irqsave(&logbuf_lock, flags);
3260 	kmsg_dump_rewind_nolock(dumper);
3261 	raw_spin_unlock_irqrestore(&logbuf_lock, flags);
3262 }
3263 EXPORT_SYMBOL_GPL(kmsg_dump_rewind);
3264 
3265 static char dump_stack_arch_desc_str[128];
3266 
3267 /**
3268  * dump_stack_set_arch_desc - set arch-specific str to show with task dumps
3269  * @fmt: printf-style format string
3270  * @...: arguments for the format string
3271  *
3272  * The configured string will be printed right after utsname during task
3273  * dumps.  Usually used to add arch-specific system identifiers.  If an
3274  * arch wants to make use of such an ID string, it should initialize this
3275  * as soon as possible during boot.
3276  */
3277 void __init dump_stack_set_arch_desc(const char *fmt, ...)
3278 {
3279 	va_list args;
3280 
3281 	va_start(args, fmt);
3282 	vsnprintf(dump_stack_arch_desc_str, sizeof(dump_stack_arch_desc_str),
3283 		  fmt, args);
3284 	va_end(args);
3285 }
3286 
3287 /**
3288  * dump_stack_print_info - print generic debug info for dump_stack()
3289  * @log_lvl: log level
3290  *
3291  * Arch-specific dump_stack() implementations can use this function to
3292  * print out the same debug information as the generic dump_stack().
3293  */
3294 void dump_stack_print_info(const char *log_lvl)
3295 {
3296 	printk("%sCPU: %d PID: %d Comm: %.20s %s %s %.*s\n",
3297 	       log_lvl, raw_smp_processor_id(), current->pid, current->comm,
3298 	       print_tainted(), init_utsname()->release,
3299 	       (int)strcspn(init_utsname()->version, " "),
3300 	       init_utsname()->version);
3301 
3302 	if (dump_stack_arch_desc_str[0] != '\0')
3303 		printk("%sHardware name: %s\n",
3304 		       log_lvl, dump_stack_arch_desc_str);
3305 
3306 	print_worker_info(log_lvl, current);
3307 }
3308 
3309 /**
3310  * show_regs_print_info - print generic debug info for show_regs()
3311  * @log_lvl: log level
3312  *
3313  * show_regs() implementations can use this function to print out generic
3314  * debug information.
3315  */
3316 void show_regs_print_info(const char *log_lvl)
3317 {
3318 	dump_stack_print_info(log_lvl);
3319 
3320 	printk("%stask: %p task.stack: %p\n",
3321 	       log_lvl, current, task_stack_page(current));
3322 }
3323 
3324 #endif
3325