xref: /openbmc/linux/kernel/printk/printk.c (revision 812dd0202379a242f764f75aa30abfbef4398ba4)
1 /*
2  *  linux/kernel/printk.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  *
6  * Modified to make sys_syslog() more flexible: added commands to
7  * return the last 4k of kernel messages, regardless of whether
8  * they've been read or not.  Added option to suppress kernel printk's
9  * to the console.  Added hook for sending the console messages
10  * elsewhere, in preparation for a serial line console (someday).
11  * Ted Ts'o, 2/11/93.
12  * Modified for sysctl support, 1/8/97, Chris Horn.
13  * Fixed SMP synchronization, 08/08/99, Manfred Spraul
14  *     manfred@colorfullife.com
15  * Rewrote bits to get rid of console_lock
16  *	01Mar01 Andrew Morton
17  */
18 
19 #include <linux/kernel.h>
20 #include <linux/mm.h>
21 #include <linux/tty.h>
22 #include <linux/tty_driver.h>
23 #include <linux/console.h>
24 #include <linux/init.h>
25 #include <linux/jiffies.h>
26 #include <linux/nmi.h>
27 #include <linux/module.h>
28 #include <linux/moduleparam.h>
29 #include <linux/delay.h>
30 #include <linux/smp.h>
31 #include <linux/security.h>
32 #include <linux/bootmem.h>
33 #include <linux/memblock.h>
34 #include <linux/syscalls.h>
35 #include <linux/crash_core.h>
36 #include <linux/kdb.h>
37 #include <linux/ratelimit.h>
38 #include <linux/kmsg_dump.h>
39 #include <linux/syslog.h>
40 #include <linux/cpu.h>
41 #include <linux/notifier.h>
42 #include <linux/rculist.h>
43 #include <linux/poll.h>
44 #include <linux/irq_work.h>
45 #include <linux/utsname.h>
46 #include <linux/ctype.h>
47 #include <linux/uio.h>
48 #include <linux/sched/clock.h>
49 #include <linux/sched/debug.h>
50 #include <linux/sched/task_stack.h>
51 
52 #include <linux/uaccess.h>
53 #include <asm/sections.h>
54 
55 #define CREATE_TRACE_POINTS
56 #include <trace/events/printk.h>
57 
58 #include "console_cmdline.h"
59 #include "braille.h"
60 #include "internal.h"
61 
62 int console_printk[4] = {
63 	CONSOLE_LOGLEVEL_DEFAULT,	/* console_loglevel */
64 	MESSAGE_LOGLEVEL_DEFAULT,	/* default_message_loglevel */
65 	CONSOLE_LOGLEVEL_MIN,		/* minimum_console_loglevel */
66 	CONSOLE_LOGLEVEL_DEFAULT,	/* default_console_loglevel */
67 };
68 
69 /*
70  * Low level drivers may need that to know if they can schedule in
71  * their unblank() callback or not. So let's export it.
72  */
73 int oops_in_progress;
74 EXPORT_SYMBOL(oops_in_progress);
75 
76 /*
77  * console_sem protects the console_drivers list, and also
78  * provides serialisation for access to the entire console
79  * driver system.
80  */
81 static DEFINE_SEMAPHORE(console_sem);
82 struct console *console_drivers;
83 EXPORT_SYMBOL_GPL(console_drivers);
84 
85 #ifdef CONFIG_LOCKDEP
86 static struct lockdep_map console_lock_dep_map = {
87 	.name = "console_lock"
88 };
89 #endif
90 
91 enum devkmsg_log_bits {
92 	__DEVKMSG_LOG_BIT_ON = 0,
93 	__DEVKMSG_LOG_BIT_OFF,
94 	__DEVKMSG_LOG_BIT_LOCK,
95 };
96 
97 enum devkmsg_log_masks {
98 	DEVKMSG_LOG_MASK_ON             = BIT(__DEVKMSG_LOG_BIT_ON),
99 	DEVKMSG_LOG_MASK_OFF            = BIT(__DEVKMSG_LOG_BIT_OFF),
100 	DEVKMSG_LOG_MASK_LOCK           = BIT(__DEVKMSG_LOG_BIT_LOCK),
101 };
102 
103 /* Keep both the 'on' and 'off' bits clear, i.e. ratelimit by default: */
104 #define DEVKMSG_LOG_MASK_DEFAULT	0
105 
106 static unsigned int __read_mostly devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT;
107 
108 static int __control_devkmsg(char *str)
109 {
110 	if (!str)
111 		return -EINVAL;
112 
113 	if (!strncmp(str, "on", 2)) {
114 		devkmsg_log = DEVKMSG_LOG_MASK_ON;
115 		return 2;
116 	} else if (!strncmp(str, "off", 3)) {
117 		devkmsg_log = DEVKMSG_LOG_MASK_OFF;
118 		return 3;
119 	} else if (!strncmp(str, "ratelimit", 9)) {
120 		devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT;
121 		return 9;
122 	}
123 	return -EINVAL;
124 }
125 
126 static int __init control_devkmsg(char *str)
127 {
128 	if (__control_devkmsg(str) < 0)
129 		return 1;
130 
131 	/*
132 	 * Set sysctl string accordingly:
133 	 */
134 	if (devkmsg_log == DEVKMSG_LOG_MASK_ON)
135 		strcpy(devkmsg_log_str, "on");
136 	else if (devkmsg_log == DEVKMSG_LOG_MASK_OFF)
137 		strcpy(devkmsg_log_str, "off");
138 	/* else "ratelimit" which is set by default. */
139 
140 	/*
141 	 * Sysctl cannot change it anymore. The kernel command line setting of
142 	 * this parameter is to force the setting to be permanent throughout the
143 	 * runtime of the system. This is a precation measure against userspace
144 	 * trying to be a smarta** and attempting to change it up on us.
145 	 */
146 	devkmsg_log |= DEVKMSG_LOG_MASK_LOCK;
147 
148 	return 0;
149 }
150 __setup("printk.devkmsg=", control_devkmsg);
151 
152 char devkmsg_log_str[DEVKMSG_STR_MAX_SIZE] = "ratelimit";
153 
154 int devkmsg_sysctl_set_loglvl(struct ctl_table *table, int write,
155 			      void __user *buffer, size_t *lenp, loff_t *ppos)
156 {
157 	char old_str[DEVKMSG_STR_MAX_SIZE];
158 	unsigned int old;
159 	int err;
160 
161 	if (write) {
162 		if (devkmsg_log & DEVKMSG_LOG_MASK_LOCK)
163 			return -EINVAL;
164 
165 		old = devkmsg_log;
166 		strncpy(old_str, devkmsg_log_str, DEVKMSG_STR_MAX_SIZE);
167 	}
168 
169 	err = proc_dostring(table, write, buffer, lenp, ppos);
170 	if (err)
171 		return err;
172 
173 	if (write) {
174 		err = __control_devkmsg(devkmsg_log_str);
175 
176 		/*
177 		 * Do not accept an unknown string OR a known string with
178 		 * trailing crap...
179 		 */
180 		if (err < 0 || (err + 1 != *lenp)) {
181 
182 			/* ... and restore old setting. */
183 			devkmsg_log = old;
184 			strncpy(devkmsg_log_str, old_str, DEVKMSG_STR_MAX_SIZE);
185 
186 			return -EINVAL;
187 		}
188 	}
189 
190 	return 0;
191 }
192 
193 /*
194  * Number of registered extended console drivers.
195  *
196  * If extended consoles are present, in-kernel cont reassembly is disabled
197  * and each fragment is stored as a separate log entry with proper
198  * continuation flag so that every emitted message has full metadata.  This
199  * doesn't change the result for regular consoles or /proc/kmsg.  For
200  * /dev/kmsg, as long as the reader concatenates messages according to
201  * consecutive continuation flags, the end result should be the same too.
202  */
203 static int nr_ext_console_drivers;
204 
205 /*
206  * Helper macros to handle lockdep when locking/unlocking console_sem. We use
207  * macros instead of functions so that _RET_IP_ contains useful information.
208  */
209 #define down_console_sem() do { \
210 	down(&console_sem);\
211 	mutex_acquire(&console_lock_dep_map, 0, 0, _RET_IP_);\
212 } while (0)
213 
214 static int __down_trylock_console_sem(unsigned long ip)
215 {
216 	int lock_failed;
217 	unsigned long flags;
218 
219 	/*
220 	 * Here and in __up_console_sem() we need to be in safe mode,
221 	 * because spindump/WARN/etc from under console ->lock will
222 	 * deadlock in printk()->down_trylock_console_sem() otherwise.
223 	 */
224 	printk_safe_enter_irqsave(flags);
225 	lock_failed = down_trylock(&console_sem);
226 	printk_safe_exit_irqrestore(flags);
227 
228 	if (lock_failed)
229 		return 1;
230 	mutex_acquire(&console_lock_dep_map, 0, 1, ip);
231 	return 0;
232 }
233 #define down_trylock_console_sem() __down_trylock_console_sem(_RET_IP_)
234 
235 static void __up_console_sem(unsigned long ip)
236 {
237 	unsigned long flags;
238 
239 	mutex_release(&console_lock_dep_map, 1, ip);
240 
241 	printk_safe_enter_irqsave(flags);
242 	up(&console_sem);
243 	printk_safe_exit_irqrestore(flags);
244 }
245 #define up_console_sem() __up_console_sem(_RET_IP_)
246 
247 /*
248  * This is used for debugging the mess that is the VT code by
249  * keeping track if we have the console semaphore held. It's
250  * definitely not the perfect debug tool (we don't know if _WE_
251  * hold it and are racing, but it helps tracking those weird code
252  * paths in the console code where we end up in places I want
253  * locked without the console sempahore held).
254  */
255 static int console_locked, console_suspended;
256 
257 /*
258  * If exclusive_console is non-NULL then only this console is to be printed to.
259  */
260 static struct console *exclusive_console;
261 
262 /*
263  *	Array of consoles built from command line options (console=)
264  */
265 
266 #define MAX_CMDLINECONSOLES 8
267 
268 static struct console_cmdline console_cmdline[MAX_CMDLINECONSOLES];
269 
270 static int preferred_console = -1;
271 int console_set_on_cmdline;
272 EXPORT_SYMBOL(console_set_on_cmdline);
273 
274 /* Flag: console code may call schedule() */
275 static int console_may_schedule;
276 
277 enum con_msg_format_flags {
278 	MSG_FORMAT_DEFAULT	= 0,
279 	MSG_FORMAT_SYSLOG	= (1 << 0),
280 };
281 
282 static int console_msg_format = MSG_FORMAT_DEFAULT;
283 
284 /*
285  * The printk log buffer consists of a chain of concatenated variable
286  * length records. Every record starts with a record header, containing
287  * the overall length of the record.
288  *
289  * The heads to the first and last entry in the buffer, as well as the
290  * sequence numbers of these entries are maintained when messages are
291  * stored.
292  *
293  * If the heads indicate available messages, the length in the header
294  * tells the start next message. A length == 0 for the next message
295  * indicates a wrap-around to the beginning of the buffer.
296  *
297  * Every record carries the monotonic timestamp in microseconds, as well as
298  * the standard userspace syslog level and syslog facility. The usual
299  * kernel messages use LOG_KERN; userspace-injected messages always carry
300  * a matching syslog facility, by default LOG_USER. The origin of every
301  * message can be reliably determined that way.
302  *
303  * The human readable log message directly follows the message header. The
304  * length of the message text is stored in the header, the stored message
305  * is not terminated.
306  *
307  * Optionally, a message can carry a dictionary of properties (key/value pairs),
308  * to provide userspace with a machine-readable message context.
309  *
310  * Examples for well-defined, commonly used property names are:
311  *   DEVICE=b12:8               device identifier
312  *                                b12:8         block dev_t
313  *                                c127:3        char dev_t
314  *                                n8            netdev ifindex
315  *                                +sound:card0  subsystem:devname
316  *   SUBSYSTEM=pci              driver-core subsystem name
317  *
318  * Valid characters in property names are [a-zA-Z0-9.-_]. The plain text value
319  * follows directly after a '=' character. Every property is terminated by
320  * a '\0' character. The last property is not terminated.
321  *
322  * Example of a message structure:
323  *   0000  ff 8f 00 00 00 00 00 00      monotonic time in nsec
324  *   0008  34 00                        record is 52 bytes long
325  *   000a        0b 00                  text is 11 bytes long
326  *   000c              1f 00            dictionary is 23 bytes long
327  *   000e                    03 00      LOG_KERN (facility) LOG_ERR (level)
328  *   0010  69 74 27 73 20 61 20 6c      "it's a l"
329  *         69 6e 65                     "ine"
330  *   001b           44 45 56 49 43      "DEVIC"
331  *         45 3d 62 38 3a 32 00 44      "E=b8:2\0D"
332  *         52 49 56 45 52 3d 62 75      "RIVER=bu"
333  *         67                           "g"
334  *   0032     00 00 00                  padding to next message header
335  *
336  * The 'struct printk_log' buffer header must never be directly exported to
337  * userspace, it is a kernel-private implementation detail that might
338  * need to be changed in the future, when the requirements change.
339  *
340  * /dev/kmsg exports the structured data in the following line format:
341  *   "<level>,<sequnum>,<timestamp>,<contflag>[,additional_values, ... ];<message text>\n"
342  *
343  * Users of the export format should ignore possible additional values
344  * separated by ',', and find the message after the ';' character.
345  *
346  * The optional key/value pairs are attached as continuation lines starting
347  * with a space character and terminated by a newline. All possible
348  * non-prinatable characters are escaped in the "\xff" notation.
349  */
350 
351 enum log_flags {
352 	LOG_NOCONS	= 1,	/* already flushed, do not print to console */
353 	LOG_NEWLINE	= 2,	/* text ended with a newline */
354 	LOG_PREFIX	= 4,	/* text started with a prefix */
355 	LOG_CONT	= 8,	/* text is a fragment of a continuation line */
356 };
357 
358 struct printk_log {
359 	u64 ts_nsec;		/* timestamp in nanoseconds */
360 	u16 len;		/* length of entire record */
361 	u16 text_len;		/* length of text buffer */
362 	u16 dict_len;		/* length of dictionary buffer */
363 	u8 facility;		/* syslog facility */
364 	u8 flags:5;		/* internal record flags */
365 	u8 level:3;		/* syslog level */
366 }
367 #ifdef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
368 __packed __aligned(4)
369 #endif
370 ;
371 
372 /*
373  * The logbuf_lock protects kmsg buffer, indices, counters.  This can be taken
374  * within the scheduler's rq lock. It must be released before calling
375  * console_unlock() or anything else that might wake up a process.
376  */
377 DEFINE_RAW_SPINLOCK(logbuf_lock);
378 
379 /*
380  * Helper macros to lock/unlock logbuf_lock and switch between
381  * printk-safe/unsafe modes.
382  */
383 #define logbuf_lock_irq()				\
384 	do {						\
385 		printk_safe_enter_irq();		\
386 		raw_spin_lock(&logbuf_lock);		\
387 	} while (0)
388 
389 #define logbuf_unlock_irq()				\
390 	do {						\
391 		raw_spin_unlock(&logbuf_lock);		\
392 		printk_safe_exit_irq();			\
393 	} while (0)
394 
395 #define logbuf_lock_irqsave(flags)			\
396 	do {						\
397 		printk_safe_enter_irqsave(flags);	\
398 		raw_spin_lock(&logbuf_lock);		\
399 	} while (0)
400 
401 #define logbuf_unlock_irqrestore(flags)		\
402 	do {						\
403 		raw_spin_unlock(&logbuf_lock);		\
404 		printk_safe_exit_irqrestore(flags);	\
405 	} while (0)
406 
407 #ifdef CONFIG_PRINTK
408 DECLARE_WAIT_QUEUE_HEAD(log_wait);
409 /* the next printk record to read by syslog(READ) or /proc/kmsg */
410 static u64 syslog_seq;
411 static u32 syslog_idx;
412 static size_t syslog_partial;
413 
414 /* index and sequence number of the first record stored in the buffer */
415 static u64 log_first_seq;
416 static u32 log_first_idx;
417 
418 /* index and sequence number of the next record to store in the buffer */
419 static u64 log_next_seq;
420 static u32 log_next_idx;
421 
422 /* the next printk record to write to the console */
423 static u64 console_seq;
424 static u32 console_idx;
425 
426 /* the next printk record to read after the last 'clear' command */
427 static u64 clear_seq;
428 static u32 clear_idx;
429 
430 #define PREFIX_MAX		32
431 #define LOG_LINE_MAX		(1024 - PREFIX_MAX)
432 
433 #define LOG_LEVEL(v)		((v) & 0x07)
434 #define LOG_FACILITY(v)		((v) >> 3 & 0xff)
435 
436 /* record buffer */
437 #define LOG_ALIGN __alignof__(struct printk_log)
438 #define __LOG_BUF_LEN (1 << CONFIG_LOG_BUF_SHIFT)
439 static char __log_buf[__LOG_BUF_LEN] __aligned(LOG_ALIGN);
440 static char *log_buf = __log_buf;
441 static u32 log_buf_len = __LOG_BUF_LEN;
442 
443 /* Return log buffer address */
444 char *log_buf_addr_get(void)
445 {
446 	return log_buf;
447 }
448 
449 /* Return log buffer size */
450 u32 log_buf_len_get(void)
451 {
452 	return log_buf_len;
453 }
454 
455 /* human readable text of the record */
456 static char *log_text(const struct printk_log *msg)
457 {
458 	return (char *)msg + sizeof(struct printk_log);
459 }
460 
461 /* optional key/value pair dictionary attached to the record */
462 static char *log_dict(const struct printk_log *msg)
463 {
464 	return (char *)msg + sizeof(struct printk_log) + msg->text_len;
465 }
466 
467 /* get record by index; idx must point to valid msg */
468 static struct printk_log *log_from_idx(u32 idx)
469 {
470 	struct printk_log *msg = (struct printk_log *)(log_buf + idx);
471 
472 	/*
473 	 * A length == 0 record is the end of buffer marker. Wrap around and
474 	 * read the message at the start of the buffer.
475 	 */
476 	if (!msg->len)
477 		return (struct printk_log *)log_buf;
478 	return msg;
479 }
480 
481 /* get next record; idx must point to valid msg */
482 static u32 log_next(u32 idx)
483 {
484 	struct printk_log *msg = (struct printk_log *)(log_buf + idx);
485 
486 	/* length == 0 indicates the end of the buffer; wrap */
487 	/*
488 	 * A length == 0 record is the end of buffer marker. Wrap around and
489 	 * read the message at the start of the buffer as *this* one, and
490 	 * return the one after that.
491 	 */
492 	if (!msg->len) {
493 		msg = (struct printk_log *)log_buf;
494 		return msg->len;
495 	}
496 	return idx + msg->len;
497 }
498 
499 /*
500  * Check whether there is enough free space for the given message.
501  *
502  * The same values of first_idx and next_idx mean that the buffer
503  * is either empty or full.
504  *
505  * If the buffer is empty, we must respect the position of the indexes.
506  * They cannot be reset to the beginning of the buffer.
507  */
508 static int logbuf_has_space(u32 msg_size, bool empty)
509 {
510 	u32 free;
511 
512 	if (log_next_idx > log_first_idx || empty)
513 		free = max(log_buf_len - log_next_idx, log_first_idx);
514 	else
515 		free = log_first_idx - log_next_idx;
516 
517 	/*
518 	 * We need space also for an empty header that signalizes wrapping
519 	 * of the buffer.
520 	 */
521 	return free >= msg_size + sizeof(struct printk_log);
522 }
523 
524 static int log_make_free_space(u32 msg_size)
525 {
526 	while (log_first_seq < log_next_seq &&
527 	       !logbuf_has_space(msg_size, false)) {
528 		/* drop old messages until we have enough contiguous space */
529 		log_first_idx = log_next(log_first_idx);
530 		log_first_seq++;
531 	}
532 
533 	if (clear_seq < log_first_seq) {
534 		clear_seq = log_first_seq;
535 		clear_idx = log_first_idx;
536 	}
537 
538 	/* sequence numbers are equal, so the log buffer is empty */
539 	if (logbuf_has_space(msg_size, log_first_seq == log_next_seq))
540 		return 0;
541 
542 	return -ENOMEM;
543 }
544 
545 /* compute the message size including the padding bytes */
546 static u32 msg_used_size(u16 text_len, u16 dict_len, u32 *pad_len)
547 {
548 	u32 size;
549 
550 	size = sizeof(struct printk_log) + text_len + dict_len;
551 	*pad_len = (-size) & (LOG_ALIGN - 1);
552 	size += *pad_len;
553 
554 	return size;
555 }
556 
557 /*
558  * Define how much of the log buffer we could take at maximum. The value
559  * must be greater than two. Note that only half of the buffer is available
560  * when the index points to the middle.
561  */
562 #define MAX_LOG_TAKE_PART 4
563 static const char trunc_msg[] = "<truncated>";
564 
565 static u32 truncate_msg(u16 *text_len, u16 *trunc_msg_len,
566 			u16 *dict_len, u32 *pad_len)
567 {
568 	/*
569 	 * The message should not take the whole buffer. Otherwise, it might
570 	 * get removed too soon.
571 	 */
572 	u32 max_text_len = log_buf_len / MAX_LOG_TAKE_PART;
573 	if (*text_len > max_text_len)
574 		*text_len = max_text_len;
575 	/* enable the warning message */
576 	*trunc_msg_len = strlen(trunc_msg);
577 	/* disable the "dict" completely */
578 	*dict_len = 0;
579 	/* compute the size again, count also the warning message */
580 	return msg_used_size(*text_len + *trunc_msg_len, 0, pad_len);
581 }
582 
583 /* insert record into the buffer, discard old ones, update heads */
584 static int log_store(int facility, int level,
585 		     enum log_flags flags, u64 ts_nsec,
586 		     const char *dict, u16 dict_len,
587 		     const char *text, u16 text_len)
588 {
589 	struct printk_log *msg;
590 	u32 size, pad_len;
591 	u16 trunc_msg_len = 0;
592 
593 	/* number of '\0' padding bytes to next message */
594 	size = msg_used_size(text_len, dict_len, &pad_len);
595 
596 	if (log_make_free_space(size)) {
597 		/* truncate the message if it is too long for empty buffer */
598 		size = truncate_msg(&text_len, &trunc_msg_len,
599 				    &dict_len, &pad_len);
600 		/* survive when the log buffer is too small for trunc_msg */
601 		if (log_make_free_space(size))
602 			return 0;
603 	}
604 
605 	if (log_next_idx + size + sizeof(struct printk_log) > log_buf_len) {
606 		/*
607 		 * This message + an additional empty header does not fit
608 		 * at the end of the buffer. Add an empty header with len == 0
609 		 * to signify a wrap around.
610 		 */
611 		memset(log_buf + log_next_idx, 0, sizeof(struct printk_log));
612 		log_next_idx = 0;
613 	}
614 
615 	/* fill message */
616 	msg = (struct printk_log *)(log_buf + log_next_idx);
617 	memcpy(log_text(msg), text, text_len);
618 	msg->text_len = text_len;
619 	if (trunc_msg_len) {
620 		memcpy(log_text(msg) + text_len, trunc_msg, trunc_msg_len);
621 		msg->text_len += trunc_msg_len;
622 	}
623 	memcpy(log_dict(msg), dict, dict_len);
624 	msg->dict_len = dict_len;
625 	msg->facility = facility;
626 	msg->level = level & 7;
627 	msg->flags = flags & 0x1f;
628 	if (ts_nsec > 0)
629 		msg->ts_nsec = ts_nsec;
630 	else
631 		msg->ts_nsec = local_clock();
632 	memset(log_dict(msg) + dict_len, 0, pad_len);
633 	msg->len = size;
634 
635 	/* insert message */
636 	log_next_idx += msg->len;
637 	log_next_seq++;
638 
639 	return msg->text_len;
640 }
641 
642 int dmesg_restrict = IS_ENABLED(CONFIG_SECURITY_DMESG_RESTRICT);
643 
644 static int syslog_action_restricted(int type)
645 {
646 	if (dmesg_restrict)
647 		return 1;
648 	/*
649 	 * Unless restricted, we allow "read all" and "get buffer size"
650 	 * for everybody.
651 	 */
652 	return type != SYSLOG_ACTION_READ_ALL &&
653 	       type != SYSLOG_ACTION_SIZE_BUFFER;
654 }
655 
656 static int check_syslog_permissions(int type, int source)
657 {
658 	/*
659 	 * If this is from /proc/kmsg and we've already opened it, then we've
660 	 * already done the capabilities checks at open time.
661 	 */
662 	if (source == SYSLOG_FROM_PROC && type != SYSLOG_ACTION_OPEN)
663 		goto ok;
664 
665 	if (syslog_action_restricted(type)) {
666 		if (capable(CAP_SYSLOG))
667 			goto ok;
668 		/*
669 		 * For historical reasons, accept CAP_SYS_ADMIN too, with
670 		 * a warning.
671 		 */
672 		if (capable(CAP_SYS_ADMIN)) {
673 			pr_warn_once("%s (%d): Attempt to access syslog with "
674 				     "CAP_SYS_ADMIN but no CAP_SYSLOG "
675 				     "(deprecated).\n",
676 				 current->comm, task_pid_nr(current));
677 			goto ok;
678 		}
679 		return -EPERM;
680 	}
681 ok:
682 	return security_syslog(type);
683 }
684 
685 static void append_char(char **pp, char *e, char c)
686 {
687 	if (*pp < e)
688 		*(*pp)++ = c;
689 }
690 
691 static ssize_t msg_print_ext_header(char *buf, size_t size,
692 				    struct printk_log *msg, u64 seq)
693 {
694 	u64 ts_usec = msg->ts_nsec;
695 
696 	do_div(ts_usec, 1000);
697 
698 	return scnprintf(buf, size, "%u,%llu,%llu,%c;",
699 		       (msg->facility << 3) | msg->level, seq, ts_usec,
700 		       msg->flags & LOG_CONT ? 'c' : '-');
701 }
702 
703 static ssize_t msg_print_ext_body(char *buf, size_t size,
704 				  char *dict, size_t dict_len,
705 				  char *text, size_t text_len)
706 {
707 	char *p = buf, *e = buf + size;
708 	size_t i;
709 
710 	/* escape non-printable characters */
711 	for (i = 0; i < text_len; i++) {
712 		unsigned char c = text[i];
713 
714 		if (c < ' ' || c >= 127 || c == '\\')
715 			p += scnprintf(p, e - p, "\\x%02x", c);
716 		else
717 			append_char(&p, e, c);
718 	}
719 	append_char(&p, e, '\n');
720 
721 	if (dict_len) {
722 		bool line = true;
723 
724 		for (i = 0; i < dict_len; i++) {
725 			unsigned char c = dict[i];
726 
727 			if (line) {
728 				append_char(&p, e, ' ');
729 				line = false;
730 			}
731 
732 			if (c == '\0') {
733 				append_char(&p, e, '\n');
734 				line = true;
735 				continue;
736 			}
737 
738 			if (c < ' ' || c >= 127 || c == '\\') {
739 				p += scnprintf(p, e - p, "\\x%02x", c);
740 				continue;
741 			}
742 
743 			append_char(&p, e, c);
744 		}
745 		append_char(&p, e, '\n');
746 	}
747 
748 	return p - buf;
749 }
750 
751 /* /dev/kmsg - userspace message inject/listen interface */
752 struct devkmsg_user {
753 	u64 seq;
754 	u32 idx;
755 	struct ratelimit_state rs;
756 	struct mutex lock;
757 	char buf[CONSOLE_EXT_LOG_MAX];
758 };
759 
760 static ssize_t devkmsg_write(struct kiocb *iocb, struct iov_iter *from)
761 {
762 	char *buf, *line;
763 	int level = default_message_loglevel;
764 	int facility = 1;	/* LOG_USER */
765 	struct file *file = iocb->ki_filp;
766 	struct devkmsg_user *user = file->private_data;
767 	size_t len = iov_iter_count(from);
768 	ssize_t ret = len;
769 
770 	if (!user || len > LOG_LINE_MAX)
771 		return -EINVAL;
772 
773 	/* Ignore when user logging is disabled. */
774 	if (devkmsg_log & DEVKMSG_LOG_MASK_OFF)
775 		return len;
776 
777 	/* Ratelimit when not explicitly enabled. */
778 	if (!(devkmsg_log & DEVKMSG_LOG_MASK_ON)) {
779 		if (!___ratelimit(&user->rs, current->comm))
780 			return ret;
781 	}
782 
783 	buf = kmalloc(len+1, GFP_KERNEL);
784 	if (buf == NULL)
785 		return -ENOMEM;
786 
787 	buf[len] = '\0';
788 	if (!copy_from_iter_full(buf, len, from)) {
789 		kfree(buf);
790 		return -EFAULT;
791 	}
792 
793 	/*
794 	 * Extract and skip the syslog prefix <[0-9]*>. Coming from userspace
795 	 * the decimal value represents 32bit, the lower 3 bit are the log
796 	 * level, the rest are the log facility.
797 	 *
798 	 * If no prefix or no userspace facility is specified, we
799 	 * enforce LOG_USER, to be able to reliably distinguish
800 	 * kernel-generated messages from userspace-injected ones.
801 	 */
802 	line = buf;
803 	if (line[0] == '<') {
804 		char *endp = NULL;
805 		unsigned int u;
806 
807 		u = simple_strtoul(line + 1, &endp, 10);
808 		if (endp && endp[0] == '>') {
809 			level = LOG_LEVEL(u);
810 			if (LOG_FACILITY(u) != 0)
811 				facility = LOG_FACILITY(u);
812 			endp++;
813 			len -= endp - line;
814 			line = endp;
815 		}
816 	}
817 
818 	printk_emit(facility, level, NULL, 0, "%s", line);
819 	kfree(buf);
820 	return ret;
821 }
822 
823 static ssize_t devkmsg_read(struct file *file, char __user *buf,
824 			    size_t count, loff_t *ppos)
825 {
826 	struct devkmsg_user *user = file->private_data;
827 	struct printk_log *msg;
828 	size_t len;
829 	ssize_t ret;
830 
831 	if (!user)
832 		return -EBADF;
833 
834 	ret = mutex_lock_interruptible(&user->lock);
835 	if (ret)
836 		return ret;
837 
838 	logbuf_lock_irq();
839 	while (user->seq == log_next_seq) {
840 		if (file->f_flags & O_NONBLOCK) {
841 			ret = -EAGAIN;
842 			logbuf_unlock_irq();
843 			goto out;
844 		}
845 
846 		logbuf_unlock_irq();
847 		ret = wait_event_interruptible(log_wait,
848 					       user->seq != log_next_seq);
849 		if (ret)
850 			goto out;
851 		logbuf_lock_irq();
852 	}
853 
854 	if (user->seq < log_first_seq) {
855 		/* our last seen message is gone, return error and reset */
856 		user->idx = log_first_idx;
857 		user->seq = log_first_seq;
858 		ret = -EPIPE;
859 		logbuf_unlock_irq();
860 		goto out;
861 	}
862 
863 	msg = log_from_idx(user->idx);
864 	len = msg_print_ext_header(user->buf, sizeof(user->buf),
865 				   msg, user->seq);
866 	len += msg_print_ext_body(user->buf + len, sizeof(user->buf) - len,
867 				  log_dict(msg), msg->dict_len,
868 				  log_text(msg), msg->text_len);
869 
870 	user->idx = log_next(user->idx);
871 	user->seq++;
872 	logbuf_unlock_irq();
873 
874 	if (len > count) {
875 		ret = -EINVAL;
876 		goto out;
877 	}
878 
879 	if (copy_to_user(buf, user->buf, len)) {
880 		ret = -EFAULT;
881 		goto out;
882 	}
883 	ret = len;
884 out:
885 	mutex_unlock(&user->lock);
886 	return ret;
887 }
888 
889 static loff_t devkmsg_llseek(struct file *file, loff_t offset, int whence)
890 {
891 	struct devkmsg_user *user = file->private_data;
892 	loff_t ret = 0;
893 
894 	if (!user)
895 		return -EBADF;
896 	if (offset)
897 		return -ESPIPE;
898 
899 	logbuf_lock_irq();
900 	switch (whence) {
901 	case SEEK_SET:
902 		/* the first record */
903 		user->idx = log_first_idx;
904 		user->seq = log_first_seq;
905 		break;
906 	case SEEK_DATA:
907 		/*
908 		 * The first record after the last SYSLOG_ACTION_CLEAR,
909 		 * like issued by 'dmesg -c'. Reading /dev/kmsg itself
910 		 * changes no global state, and does not clear anything.
911 		 */
912 		user->idx = clear_idx;
913 		user->seq = clear_seq;
914 		break;
915 	case SEEK_END:
916 		/* after the last record */
917 		user->idx = log_next_idx;
918 		user->seq = log_next_seq;
919 		break;
920 	default:
921 		ret = -EINVAL;
922 	}
923 	logbuf_unlock_irq();
924 	return ret;
925 }
926 
927 static __poll_t devkmsg_poll(struct file *file, poll_table *wait)
928 {
929 	struct devkmsg_user *user = file->private_data;
930 	__poll_t ret = 0;
931 
932 	if (!user)
933 		return EPOLLERR|EPOLLNVAL;
934 
935 	poll_wait(file, &log_wait, wait);
936 
937 	logbuf_lock_irq();
938 	if (user->seq < log_next_seq) {
939 		/* return error when data has vanished underneath us */
940 		if (user->seq < log_first_seq)
941 			ret = EPOLLIN|EPOLLRDNORM|EPOLLERR|EPOLLPRI;
942 		else
943 			ret = EPOLLIN|EPOLLRDNORM;
944 	}
945 	logbuf_unlock_irq();
946 
947 	return ret;
948 }
949 
950 static int devkmsg_open(struct inode *inode, struct file *file)
951 {
952 	struct devkmsg_user *user;
953 	int err;
954 
955 	if (devkmsg_log & DEVKMSG_LOG_MASK_OFF)
956 		return -EPERM;
957 
958 	/* write-only does not need any file context */
959 	if ((file->f_flags & O_ACCMODE) != O_WRONLY) {
960 		err = check_syslog_permissions(SYSLOG_ACTION_READ_ALL,
961 					       SYSLOG_FROM_READER);
962 		if (err)
963 			return err;
964 	}
965 
966 	user = kmalloc(sizeof(struct devkmsg_user), GFP_KERNEL);
967 	if (!user)
968 		return -ENOMEM;
969 
970 	ratelimit_default_init(&user->rs);
971 	ratelimit_set_flags(&user->rs, RATELIMIT_MSG_ON_RELEASE);
972 
973 	mutex_init(&user->lock);
974 
975 	logbuf_lock_irq();
976 	user->idx = log_first_idx;
977 	user->seq = log_first_seq;
978 	logbuf_unlock_irq();
979 
980 	file->private_data = user;
981 	return 0;
982 }
983 
984 static int devkmsg_release(struct inode *inode, struct file *file)
985 {
986 	struct devkmsg_user *user = file->private_data;
987 
988 	if (!user)
989 		return 0;
990 
991 	ratelimit_state_exit(&user->rs);
992 
993 	mutex_destroy(&user->lock);
994 	kfree(user);
995 	return 0;
996 }
997 
998 const struct file_operations kmsg_fops = {
999 	.open = devkmsg_open,
1000 	.read = devkmsg_read,
1001 	.write_iter = devkmsg_write,
1002 	.llseek = devkmsg_llseek,
1003 	.poll = devkmsg_poll,
1004 	.release = devkmsg_release,
1005 };
1006 
1007 #ifdef CONFIG_CRASH_CORE
1008 /*
1009  * This appends the listed symbols to /proc/vmcore
1010  *
1011  * /proc/vmcore is used by various utilities, like crash and makedumpfile to
1012  * obtain access to symbols that are otherwise very difficult to locate.  These
1013  * symbols are specifically used so that utilities can access and extract the
1014  * dmesg log from a vmcore file after a crash.
1015  */
1016 void log_buf_vmcoreinfo_setup(void)
1017 {
1018 	VMCOREINFO_SYMBOL(log_buf);
1019 	VMCOREINFO_SYMBOL(log_buf_len);
1020 	VMCOREINFO_SYMBOL(log_first_idx);
1021 	VMCOREINFO_SYMBOL(clear_idx);
1022 	VMCOREINFO_SYMBOL(log_next_idx);
1023 	/*
1024 	 * Export struct printk_log size and field offsets. User space tools can
1025 	 * parse it and detect any changes to structure down the line.
1026 	 */
1027 	VMCOREINFO_STRUCT_SIZE(printk_log);
1028 	VMCOREINFO_OFFSET(printk_log, ts_nsec);
1029 	VMCOREINFO_OFFSET(printk_log, len);
1030 	VMCOREINFO_OFFSET(printk_log, text_len);
1031 	VMCOREINFO_OFFSET(printk_log, dict_len);
1032 }
1033 #endif
1034 
1035 /* requested log_buf_len from kernel cmdline */
1036 static unsigned long __initdata new_log_buf_len;
1037 
1038 /* we practice scaling the ring buffer by powers of 2 */
1039 static void __init log_buf_len_update(unsigned size)
1040 {
1041 	if (size)
1042 		size = roundup_pow_of_two(size);
1043 	if (size > log_buf_len)
1044 		new_log_buf_len = size;
1045 }
1046 
1047 /* save requested log_buf_len since it's too early to process it */
1048 static int __init log_buf_len_setup(char *str)
1049 {
1050 	unsigned size = memparse(str, &str);
1051 
1052 	log_buf_len_update(size);
1053 
1054 	return 0;
1055 }
1056 early_param("log_buf_len", log_buf_len_setup);
1057 
1058 #ifdef CONFIG_SMP
1059 #define __LOG_CPU_MAX_BUF_LEN (1 << CONFIG_LOG_CPU_MAX_BUF_SHIFT)
1060 
1061 static void __init log_buf_add_cpu(void)
1062 {
1063 	unsigned int cpu_extra;
1064 
1065 	/*
1066 	 * archs should set up cpu_possible_bits properly with
1067 	 * set_cpu_possible() after setup_arch() but just in
1068 	 * case lets ensure this is valid.
1069 	 */
1070 	if (num_possible_cpus() == 1)
1071 		return;
1072 
1073 	cpu_extra = (num_possible_cpus() - 1) * __LOG_CPU_MAX_BUF_LEN;
1074 
1075 	/* by default this will only continue through for large > 64 CPUs */
1076 	if (cpu_extra <= __LOG_BUF_LEN / 2)
1077 		return;
1078 
1079 	pr_info("log_buf_len individual max cpu contribution: %d bytes\n",
1080 		__LOG_CPU_MAX_BUF_LEN);
1081 	pr_info("log_buf_len total cpu_extra contributions: %d bytes\n",
1082 		cpu_extra);
1083 	pr_info("log_buf_len min size: %d bytes\n", __LOG_BUF_LEN);
1084 
1085 	log_buf_len_update(cpu_extra + __LOG_BUF_LEN);
1086 }
1087 #else /* !CONFIG_SMP */
1088 static inline void log_buf_add_cpu(void) {}
1089 #endif /* CONFIG_SMP */
1090 
1091 void __init setup_log_buf(int early)
1092 {
1093 	unsigned long flags;
1094 	char *new_log_buf;
1095 	int free;
1096 
1097 	if (log_buf != __log_buf)
1098 		return;
1099 
1100 	if (!early && !new_log_buf_len)
1101 		log_buf_add_cpu();
1102 
1103 	if (!new_log_buf_len)
1104 		return;
1105 
1106 	if (early) {
1107 		new_log_buf =
1108 			memblock_virt_alloc(new_log_buf_len, LOG_ALIGN);
1109 	} else {
1110 		new_log_buf = memblock_virt_alloc_nopanic(new_log_buf_len,
1111 							  LOG_ALIGN);
1112 	}
1113 
1114 	if (unlikely(!new_log_buf)) {
1115 		pr_err("log_buf_len: %ld bytes not available\n",
1116 			new_log_buf_len);
1117 		return;
1118 	}
1119 
1120 	logbuf_lock_irqsave(flags);
1121 	log_buf_len = new_log_buf_len;
1122 	log_buf = new_log_buf;
1123 	new_log_buf_len = 0;
1124 	free = __LOG_BUF_LEN - log_next_idx;
1125 	memcpy(log_buf, __log_buf, __LOG_BUF_LEN);
1126 	logbuf_unlock_irqrestore(flags);
1127 
1128 	pr_info("log_buf_len: %d bytes\n", log_buf_len);
1129 	pr_info("early log buf free: %d(%d%%)\n",
1130 		free, (free * 100) / __LOG_BUF_LEN);
1131 }
1132 
1133 static bool __read_mostly ignore_loglevel;
1134 
1135 static int __init ignore_loglevel_setup(char *str)
1136 {
1137 	ignore_loglevel = true;
1138 	pr_info("debug: ignoring loglevel setting.\n");
1139 
1140 	return 0;
1141 }
1142 
1143 early_param("ignore_loglevel", ignore_loglevel_setup);
1144 module_param(ignore_loglevel, bool, S_IRUGO | S_IWUSR);
1145 MODULE_PARM_DESC(ignore_loglevel,
1146 		 "ignore loglevel setting (prints all kernel messages to the console)");
1147 
1148 static bool suppress_message_printing(int level)
1149 {
1150 	return (level >= console_loglevel && !ignore_loglevel);
1151 }
1152 
1153 #ifdef CONFIG_BOOT_PRINTK_DELAY
1154 
1155 static int boot_delay; /* msecs delay after each printk during bootup */
1156 static unsigned long long loops_per_msec;	/* based on boot_delay */
1157 
1158 static int __init boot_delay_setup(char *str)
1159 {
1160 	unsigned long lpj;
1161 
1162 	lpj = preset_lpj ? preset_lpj : 1000000;	/* some guess */
1163 	loops_per_msec = (unsigned long long)lpj / 1000 * HZ;
1164 
1165 	get_option(&str, &boot_delay);
1166 	if (boot_delay > 10 * 1000)
1167 		boot_delay = 0;
1168 
1169 	pr_debug("boot_delay: %u, preset_lpj: %ld, lpj: %lu, "
1170 		"HZ: %d, loops_per_msec: %llu\n",
1171 		boot_delay, preset_lpj, lpj, HZ, loops_per_msec);
1172 	return 0;
1173 }
1174 early_param("boot_delay", boot_delay_setup);
1175 
1176 static void boot_delay_msec(int level)
1177 {
1178 	unsigned long long k;
1179 	unsigned long timeout;
1180 
1181 	if ((boot_delay == 0 || system_state >= SYSTEM_RUNNING)
1182 		|| suppress_message_printing(level)) {
1183 		return;
1184 	}
1185 
1186 	k = (unsigned long long)loops_per_msec * boot_delay;
1187 
1188 	timeout = jiffies + msecs_to_jiffies(boot_delay);
1189 	while (k) {
1190 		k--;
1191 		cpu_relax();
1192 		/*
1193 		 * use (volatile) jiffies to prevent
1194 		 * compiler reduction; loop termination via jiffies
1195 		 * is secondary and may or may not happen.
1196 		 */
1197 		if (time_after(jiffies, timeout))
1198 			break;
1199 		touch_nmi_watchdog();
1200 	}
1201 }
1202 #else
1203 static inline void boot_delay_msec(int level)
1204 {
1205 }
1206 #endif
1207 
1208 static bool printk_time = IS_ENABLED(CONFIG_PRINTK_TIME);
1209 module_param_named(time, printk_time, bool, S_IRUGO | S_IWUSR);
1210 
1211 static size_t print_time(u64 ts, char *buf)
1212 {
1213 	unsigned long rem_nsec;
1214 
1215 	if (!printk_time)
1216 		return 0;
1217 
1218 	rem_nsec = do_div(ts, 1000000000);
1219 
1220 	if (!buf)
1221 		return snprintf(NULL, 0, "[%5lu.000000] ", (unsigned long)ts);
1222 
1223 	return sprintf(buf, "[%5lu.%06lu] ",
1224 		       (unsigned long)ts, rem_nsec / 1000);
1225 }
1226 
1227 static size_t print_prefix(const struct printk_log *msg, bool syslog, char *buf)
1228 {
1229 	size_t len = 0;
1230 	unsigned int prefix = (msg->facility << 3) | msg->level;
1231 
1232 	if (syslog) {
1233 		if (buf) {
1234 			len += sprintf(buf, "<%u>", prefix);
1235 		} else {
1236 			len += 3;
1237 			if (prefix > 999)
1238 				len += 3;
1239 			else if (prefix > 99)
1240 				len += 2;
1241 			else if (prefix > 9)
1242 				len++;
1243 		}
1244 	}
1245 
1246 	len += print_time(msg->ts_nsec, buf ? buf + len : NULL);
1247 	return len;
1248 }
1249 
1250 static size_t msg_print_text(const struct printk_log *msg, bool syslog, char *buf, size_t size)
1251 {
1252 	const char *text = log_text(msg);
1253 	size_t text_size = msg->text_len;
1254 	size_t len = 0;
1255 
1256 	do {
1257 		const char *next = memchr(text, '\n', text_size);
1258 		size_t text_len;
1259 
1260 		if (next) {
1261 			text_len = next - text;
1262 			next++;
1263 			text_size -= next - text;
1264 		} else {
1265 			text_len = text_size;
1266 		}
1267 
1268 		if (buf) {
1269 			if (print_prefix(msg, syslog, NULL) +
1270 			    text_len + 1 >= size - len)
1271 				break;
1272 
1273 			len += print_prefix(msg, syslog, buf + len);
1274 			memcpy(buf + len, text, text_len);
1275 			len += text_len;
1276 			buf[len++] = '\n';
1277 		} else {
1278 			/* SYSLOG_ACTION_* buffer size only calculation */
1279 			len += print_prefix(msg, syslog, NULL);
1280 			len += text_len;
1281 			len++;
1282 		}
1283 
1284 		text = next;
1285 	} while (text);
1286 
1287 	return len;
1288 }
1289 
1290 static int syslog_print(char __user *buf, int size)
1291 {
1292 	char *text;
1293 	struct printk_log *msg;
1294 	int len = 0;
1295 
1296 	text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
1297 	if (!text)
1298 		return -ENOMEM;
1299 
1300 	while (size > 0) {
1301 		size_t n;
1302 		size_t skip;
1303 
1304 		logbuf_lock_irq();
1305 		if (syslog_seq < log_first_seq) {
1306 			/* messages are gone, move to first one */
1307 			syslog_seq = log_first_seq;
1308 			syslog_idx = log_first_idx;
1309 			syslog_partial = 0;
1310 		}
1311 		if (syslog_seq == log_next_seq) {
1312 			logbuf_unlock_irq();
1313 			break;
1314 		}
1315 
1316 		skip = syslog_partial;
1317 		msg = log_from_idx(syslog_idx);
1318 		n = msg_print_text(msg, true, text, LOG_LINE_MAX + PREFIX_MAX);
1319 		if (n - syslog_partial <= size) {
1320 			/* message fits into buffer, move forward */
1321 			syslog_idx = log_next(syslog_idx);
1322 			syslog_seq++;
1323 			n -= syslog_partial;
1324 			syslog_partial = 0;
1325 		} else if (!len){
1326 			/* partial read(), remember position */
1327 			n = size;
1328 			syslog_partial += n;
1329 		} else
1330 			n = 0;
1331 		logbuf_unlock_irq();
1332 
1333 		if (!n)
1334 			break;
1335 
1336 		if (copy_to_user(buf, text + skip, n)) {
1337 			if (!len)
1338 				len = -EFAULT;
1339 			break;
1340 		}
1341 
1342 		len += n;
1343 		size -= n;
1344 		buf += n;
1345 	}
1346 
1347 	kfree(text);
1348 	return len;
1349 }
1350 
1351 static int syslog_print_all(char __user *buf, int size, bool clear)
1352 {
1353 	char *text;
1354 	int len = 0;
1355 
1356 	text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
1357 	if (!text)
1358 		return -ENOMEM;
1359 
1360 	logbuf_lock_irq();
1361 	if (buf) {
1362 		u64 next_seq;
1363 		u64 seq;
1364 		u32 idx;
1365 
1366 		/*
1367 		 * Find first record that fits, including all following records,
1368 		 * into the user-provided buffer for this dump.
1369 		 */
1370 		seq = clear_seq;
1371 		idx = clear_idx;
1372 		while (seq < log_next_seq) {
1373 			struct printk_log *msg = log_from_idx(idx);
1374 
1375 			len += msg_print_text(msg, true, NULL, 0);
1376 			idx = log_next(idx);
1377 			seq++;
1378 		}
1379 
1380 		/* move first record forward until length fits into the buffer */
1381 		seq = clear_seq;
1382 		idx = clear_idx;
1383 		while (len > size && seq < log_next_seq) {
1384 			struct printk_log *msg = log_from_idx(idx);
1385 
1386 			len -= msg_print_text(msg, true, NULL, 0);
1387 			idx = log_next(idx);
1388 			seq++;
1389 		}
1390 
1391 		/* last message fitting into this dump */
1392 		next_seq = log_next_seq;
1393 
1394 		len = 0;
1395 		while (len >= 0 && seq < next_seq) {
1396 			struct printk_log *msg = log_from_idx(idx);
1397 			int textlen;
1398 
1399 			textlen = msg_print_text(msg, true, text,
1400 						 LOG_LINE_MAX + PREFIX_MAX);
1401 			if (textlen < 0) {
1402 				len = textlen;
1403 				break;
1404 			}
1405 			idx = log_next(idx);
1406 			seq++;
1407 
1408 			logbuf_unlock_irq();
1409 			if (copy_to_user(buf + len, text, textlen))
1410 				len = -EFAULT;
1411 			else
1412 				len += textlen;
1413 			logbuf_lock_irq();
1414 
1415 			if (seq < log_first_seq) {
1416 				/* messages are gone, move to next one */
1417 				seq = log_first_seq;
1418 				idx = log_first_idx;
1419 			}
1420 		}
1421 	}
1422 
1423 	if (clear) {
1424 		clear_seq = log_next_seq;
1425 		clear_idx = log_next_idx;
1426 	}
1427 	logbuf_unlock_irq();
1428 
1429 	kfree(text);
1430 	return len;
1431 }
1432 
1433 int do_syslog(int type, char __user *buf, int len, int source)
1434 {
1435 	bool clear = false;
1436 	static int saved_console_loglevel = LOGLEVEL_DEFAULT;
1437 	int error;
1438 
1439 	error = check_syslog_permissions(type, source);
1440 	if (error)
1441 		return error;
1442 
1443 	switch (type) {
1444 	case SYSLOG_ACTION_CLOSE:	/* Close log */
1445 		break;
1446 	case SYSLOG_ACTION_OPEN:	/* Open log */
1447 		break;
1448 	case SYSLOG_ACTION_READ:	/* Read from log */
1449 		if (!buf || len < 0)
1450 			return -EINVAL;
1451 		if (!len)
1452 			return 0;
1453 		if (!access_ok(VERIFY_WRITE, buf, len))
1454 			return -EFAULT;
1455 		error = wait_event_interruptible(log_wait,
1456 						 syslog_seq != log_next_seq);
1457 		if (error)
1458 			return error;
1459 		error = syslog_print(buf, len);
1460 		break;
1461 	/* Read/clear last kernel messages */
1462 	case SYSLOG_ACTION_READ_CLEAR:
1463 		clear = true;
1464 		/* FALL THRU */
1465 	/* Read last kernel messages */
1466 	case SYSLOG_ACTION_READ_ALL:
1467 		if (!buf || len < 0)
1468 			return -EINVAL;
1469 		if (!len)
1470 			return 0;
1471 		if (!access_ok(VERIFY_WRITE, buf, len))
1472 			return -EFAULT;
1473 		error = syslog_print_all(buf, len, clear);
1474 		break;
1475 	/* Clear ring buffer */
1476 	case SYSLOG_ACTION_CLEAR:
1477 		syslog_print_all(NULL, 0, true);
1478 		break;
1479 	/* Disable logging to console */
1480 	case SYSLOG_ACTION_CONSOLE_OFF:
1481 		if (saved_console_loglevel == LOGLEVEL_DEFAULT)
1482 			saved_console_loglevel = console_loglevel;
1483 		console_loglevel = minimum_console_loglevel;
1484 		break;
1485 	/* Enable logging to console */
1486 	case SYSLOG_ACTION_CONSOLE_ON:
1487 		if (saved_console_loglevel != LOGLEVEL_DEFAULT) {
1488 			console_loglevel = saved_console_loglevel;
1489 			saved_console_loglevel = LOGLEVEL_DEFAULT;
1490 		}
1491 		break;
1492 	/* Set level of messages printed to console */
1493 	case SYSLOG_ACTION_CONSOLE_LEVEL:
1494 		if (len < 1 || len > 8)
1495 			return -EINVAL;
1496 		if (len < minimum_console_loglevel)
1497 			len = minimum_console_loglevel;
1498 		console_loglevel = len;
1499 		/* Implicitly re-enable logging to console */
1500 		saved_console_loglevel = LOGLEVEL_DEFAULT;
1501 		break;
1502 	/* Number of chars in the log buffer */
1503 	case SYSLOG_ACTION_SIZE_UNREAD:
1504 		logbuf_lock_irq();
1505 		if (syslog_seq < log_first_seq) {
1506 			/* messages are gone, move to first one */
1507 			syslog_seq = log_first_seq;
1508 			syslog_idx = log_first_idx;
1509 			syslog_partial = 0;
1510 		}
1511 		if (source == SYSLOG_FROM_PROC) {
1512 			/*
1513 			 * Short-cut for poll(/"proc/kmsg") which simply checks
1514 			 * for pending data, not the size; return the count of
1515 			 * records, not the length.
1516 			 */
1517 			error = log_next_seq - syslog_seq;
1518 		} else {
1519 			u64 seq = syslog_seq;
1520 			u32 idx = syslog_idx;
1521 
1522 			while (seq < log_next_seq) {
1523 				struct printk_log *msg = log_from_idx(idx);
1524 
1525 				error += msg_print_text(msg, true, NULL, 0);
1526 				idx = log_next(idx);
1527 				seq++;
1528 			}
1529 			error -= syslog_partial;
1530 		}
1531 		logbuf_unlock_irq();
1532 		break;
1533 	/* Size of the log buffer */
1534 	case SYSLOG_ACTION_SIZE_BUFFER:
1535 		error = log_buf_len;
1536 		break;
1537 	default:
1538 		error = -EINVAL;
1539 		break;
1540 	}
1541 
1542 	return error;
1543 }
1544 
1545 SYSCALL_DEFINE3(syslog, int, type, char __user *, buf, int, len)
1546 {
1547 	return do_syslog(type, buf, len, SYSLOG_FROM_READER);
1548 }
1549 
1550 /*
1551  * Special console_lock variants that help to reduce the risk of soft-lockups.
1552  * They allow to pass console_lock to another printk() call using a busy wait.
1553  */
1554 
1555 #ifdef CONFIG_LOCKDEP
1556 static struct lockdep_map console_owner_dep_map = {
1557 	.name = "console_owner"
1558 };
1559 #endif
1560 
1561 static DEFINE_RAW_SPINLOCK(console_owner_lock);
1562 static struct task_struct *console_owner;
1563 static bool console_waiter;
1564 
1565 /**
1566  * console_lock_spinning_enable - mark beginning of code where another
1567  *	thread might safely busy wait
1568  *
1569  * This basically converts console_lock into a spinlock. This marks
1570  * the section where the console_lock owner can not sleep, because
1571  * there may be a waiter spinning (like a spinlock). Also it must be
1572  * ready to hand over the lock at the end of the section.
1573  */
1574 static void console_lock_spinning_enable(void)
1575 {
1576 	raw_spin_lock(&console_owner_lock);
1577 	console_owner = current;
1578 	raw_spin_unlock(&console_owner_lock);
1579 
1580 	/* The waiter may spin on us after setting console_owner */
1581 	spin_acquire(&console_owner_dep_map, 0, 0, _THIS_IP_);
1582 }
1583 
1584 /**
1585  * console_lock_spinning_disable_and_check - mark end of code where another
1586  *	thread was able to busy wait and check if there is a waiter
1587  *
1588  * This is called at the end of the section where spinning is allowed.
1589  * It has two functions. First, it is a signal that it is no longer
1590  * safe to start busy waiting for the lock. Second, it checks if
1591  * there is a busy waiter and passes the lock rights to her.
1592  *
1593  * Important: Callers lose the lock if there was a busy waiter.
1594  *	They must not touch items synchronized by console_lock
1595  *	in this case.
1596  *
1597  * Return: 1 if the lock rights were passed, 0 otherwise.
1598  */
1599 static int console_lock_spinning_disable_and_check(void)
1600 {
1601 	int waiter;
1602 
1603 	raw_spin_lock(&console_owner_lock);
1604 	waiter = READ_ONCE(console_waiter);
1605 	console_owner = NULL;
1606 	raw_spin_unlock(&console_owner_lock);
1607 
1608 	if (!waiter) {
1609 		spin_release(&console_owner_dep_map, 1, _THIS_IP_);
1610 		return 0;
1611 	}
1612 
1613 	/* The waiter is now free to continue */
1614 	WRITE_ONCE(console_waiter, false);
1615 
1616 	spin_release(&console_owner_dep_map, 1, _THIS_IP_);
1617 
1618 	/*
1619 	 * Hand off console_lock to waiter. The waiter will perform
1620 	 * the up(). After this, the waiter is the console_lock owner.
1621 	 */
1622 	mutex_release(&console_lock_dep_map, 1, _THIS_IP_);
1623 	return 1;
1624 }
1625 
1626 /**
1627  * console_trylock_spinning - try to get console_lock by busy waiting
1628  *
1629  * This allows to busy wait for the console_lock when the current
1630  * owner is running in specially marked sections. It means that
1631  * the current owner is running and cannot reschedule until it
1632  * is ready to lose the lock.
1633  *
1634  * Return: 1 if we got the lock, 0 othrewise
1635  */
1636 static int console_trylock_spinning(void)
1637 {
1638 	struct task_struct *owner = NULL;
1639 	bool waiter;
1640 	bool spin = false;
1641 	unsigned long flags;
1642 
1643 	if (console_trylock())
1644 		return 1;
1645 
1646 	printk_safe_enter_irqsave(flags);
1647 
1648 	raw_spin_lock(&console_owner_lock);
1649 	owner = READ_ONCE(console_owner);
1650 	waiter = READ_ONCE(console_waiter);
1651 	if (!waiter && owner && owner != current) {
1652 		WRITE_ONCE(console_waiter, true);
1653 		spin = true;
1654 	}
1655 	raw_spin_unlock(&console_owner_lock);
1656 
1657 	/*
1658 	 * If there is an active printk() writing to the
1659 	 * consoles, instead of having it write our data too,
1660 	 * see if we can offload that load from the active
1661 	 * printer, and do some printing ourselves.
1662 	 * Go into a spin only if there isn't already a waiter
1663 	 * spinning, and there is an active printer, and
1664 	 * that active printer isn't us (recursive printk?).
1665 	 */
1666 	if (!spin) {
1667 		printk_safe_exit_irqrestore(flags);
1668 		return 0;
1669 	}
1670 
1671 	/* We spin waiting for the owner to release us */
1672 	spin_acquire(&console_owner_dep_map, 0, 0, _THIS_IP_);
1673 	/* Owner will clear console_waiter on hand off */
1674 	while (READ_ONCE(console_waiter))
1675 		cpu_relax();
1676 	spin_release(&console_owner_dep_map, 1, _THIS_IP_);
1677 
1678 	printk_safe_exit_irqrestore(flags);
1679 	/*
1680 	 * The owner passed the console lock to us.
1681 	 * Since we did not spin on console lock, annotate
1682 	 * this as a trylock. Otherwise lockdep will
1683 	 * complain.
1684 	 */
1685 	mutex_acquire(&console_lock_dep_map, 0, 1, _THIS_IP_);
1686 
1687 	return 1;
1688 }
1689 
1690 /*
1691  * Call the console drivers, asking them to write out
1692  * log_buf[start] to log_buf[end - 1].
1693  * The console_lock must be held.
1694  */
1695 static void call_console_drivers(const char *ext_text, size_t ext_len,
1696 				 const char *text, size_t len)
1697 {
1698 	struct console *con;
1699 
1700 	trace_console_rcuidle(text, len);
1701 
1702 	if (!console_drivers)
1703 		return;
1704 
1705 	for_each_console(con) {
1706 		if (exclusive_console && con != exclusive_console)
1707 			continue;
1708 		if (!(con->flags & CON_ENABLED))
1709 			continue;
1710 		if (!con->write)
1711 			continue;
1712 		if (!cpu_online(smp_processor_id()) &&
1713 		    !(con->flags & CON_ANYTIME))
1714 			continue;
1715 		if (con->flags & CON_EXTENDED)
1716 			con->write(con, ext_text, ext_len);
1717 		else
1718 			con->write(con, text, len);
1719 	}
1720 }
1721 
1722 int printk_delay_msec __read_mostly;
1723 
1724 static inline void printk_delay(void)
1725 {
1726 	if (unlikely(printk_delay_msec)) {
1727 		int m = printk_delay_msec;
1728 
1729 		while (m--) {
1730 			mdelay(1);
1731 			touch_nmi_watchdog();
1732 		}
1733 	}
1734 }
1735 
1736 /*
1737  * Continuation lines are buffered, and not committed to the record buffer
1738  * until the line is complete, or a race forces it. The line fragments
1739  * though, are printed immediately to the consoles to ensure everything has
1740  * reached the console in case of a kernel crash.
1741  */
1742 static struct cont {
1743 	char buf[LOG_LINE_MAX];
1744 	size_t len;			/* length == 0 means unused buffer */
1745 	struct task_struct *owner;	/* task of first print*/
1746 	u64 ts_nsec;			/* time of first print */
1747 	u8 level;			/* log level of first message */
1748 	u8 facility;			/* log facility of first message */
1749 	enum log_flags flags;		/* prefix, newline flags */
1750 } cont;
1751 
1752 static void cont_flush(void)
1753 {
1754 	if (cont.len == 0)
1755 		return;
1756 
1757 	log_store(cont.facility, cont.level, cont.flags, cont.ts_nsec,
1758 		  NULL, 0, cont.buf, cont.len);
1759 	cont.len = 0;
1760 }
1761 
1762 static bool cont_add(int facility, int level, enum log_flags flags, const char *text, size_t len)
1763 {
1764 	/*
1765 	 * If ext consoles are present, flush and skip in-kernel
1766 	 * continuation.  See nr_ext_console_drivers definition.  Also, if
1767 	 * the line gets too long, split it up in separate records.
1768 	 */
1769 	if (nr_ext_console_drivers || cont.len + len > sizeof(cont.buf)) {
1770 		cont_flush();
1771 		return false;
1772 	}
1773 
1774 	if (!cont.len) {
1775 		cont.facility = facility;
1776 		cont.level = level;
1777 		cont.owner = current;
1778 		cont.ts_nsec = local_clock();
1779 		cont.flags = flags;
1780 	}
1781 
1782 	memcpy(cont.buf + cont.len, text, len);
1783 	cont.len += len;
1784 
1785 	// The original flags come from the first line,
1786 	// but later continuations can add a newline.
1787 	if (flags & LOG_NEWLINE) {
1788 		cont.flags |= LOG_NEWLINE;
1789 		cont_flush();
1790 	}
1791 
1792 	if (cont.len > (sizeof(cont.buf) * 80) / 100)
1793 		cont_flush();
1794 
1795 	return true;
1796 }
1797 
1798 static size_t log_output(int facility, int level, enum log_flags lflags, const char *dict, size_t dictlen, char *text, size_t text_len)
1799 {
1800 	/*
1801 	 * If an earlier line was buffered, and we're a continuation
1802 	 * write from the same process, try to add it to the buffer.
1803 	 */
1804 	if (cont.len) {
1805 		if (cont.owner == current && (lflags & LOG_CONT)) {
1806 			if (cont_add(facility, level, lflags, text, text_len))
1807 				return text_len;
1808 		}
1809 		/* Otherwise, make sure it's flushed */
1810 		cont_flush();
1811 	}
1812 
1813 	/* Skip empty continuation lines that couldn't be added - they just flush */
1814 	if (!text_len && (lflags & LOG_CONT))
1815 		return 0;
1816 
1817 	/* If it doesn't end in a newline, try to buffer the current line */
1818 	if (!(lflags & LOG_NEWLINE)) {
1819 		if (cont_add(facility, level, lflags, text, text_len))
1820 			return text_len;
1821 	}
1822 
1823 	/* Store it in the record log */
1824 	return log_store(facility, level, lflags, 0, dict, dictlen, text, text_len);
1825 }
1826 
1827 asmlinkage int vprintk_emit(int facility, int level,
1828 			    const char *dict, size_t dictlen,
1829 			    const char *fmt, va_list args)
1830 {
1831 	static char textbuf[LOG_LINE_MAX];
1832 	char *text = textbuf;
1833 	size_t text_len;
1834 	enum log_flags lflags = 0;
1835 	unsigned long flags;
1836 	int printed_len;
1837 	bool in_sched = false;
1838 
1839 	if (level == LOGLEVEL_SCHED) {
1840 		level = LOGLEVEL_DEFAULT;
1841 		in_sched = true;
1842 	}
1843 
1844 	boot_delay_msec(level);
1845 	printk_delay();
1846 
1847 	/* This stops the holder of console_sem just where we want him */
1848 	logbuf_lock_irqsave(flags);
1849 	/*
1850 	 * The printf needs to come first; we need the syslog
1851 	 * prefix which might be passed-in as a parameter.
1852 	 */
1853 	text_len = vscnprintf(text, sizeof(textbuf), fmt, args);
1854 
1855 	/* mark and strip a trailing newline */
1856 	if (text_len && text[text_len-1] == '\n') {
1857 		text_len--;
1858 		lflags |= LOG_NEWLINE;
1859 	}
1860 
1861 	/* strip kernel syslog prefix and extract log level or control flags */
1862 	if (facility == 0) {
1863 		int kern_level;
1864 
1865 		while ((kern_level = printk_get_level(text)) != 0) {
1866 			switch (kern_level) {
1867 			case '0' ... '7':
1868 				if (level == LOGLEVEL_DEFAULT)
1869 					level = kern_level - '0';
1870 				/* fallthrough */
1871 			case 'd':	/* KERN_DEFAULT */
1872 				lflags |= LOG_PREFIX;
1873 				break;
1874 			case 'c':	/* KERN_CONT */
1875 				lflags |= LOG_CONT;
1876 			}
1877 
1878 			text_len -= 2;
1879 			text += 2;
1880 		}
1881 	}
1882 
1883 	if (level == LOGLEVEL_DEFAULT)
1884 		level = default_message_loglevel;
1885 
1886 	if (dict)
1887 		lflags |= LOG_PREFIX|LOG_NEWLINE;
1888 
1889 	printed_len = log_output(facility, level, lflags, dict, dictlen, text, text_len);
1890 
1891 	logbuf_unlock_irqrestore(flags);
1892 
1893 	/* If called from the scheduler, we can not call up(). */
1894 	if (!in_sched) {
1895 		/*
1896 		 * Disable preemption to avoid being preempted while holding
1897 		 * console_sem which would prevent anyone from printing to
1898 		 * console
1899 		 */
1900 		preempt_disable();
1901 		/*
1902 		 * Try to acquire and then immediately release the console
1903 		 * semaphore.  The release will print out buffers and wake up
1904 		 * /dev/kmsg and syslog() users.
1905 		 */
1906 		if (console_trylock_spinning())
1907 			console_unlock();
1908 		preempt_enable();
1909 	}
1910 
1911 	return printed_len;
1912 }
1913 EXPORT_SYMBOL(vprintk_emit);
1914 
1915 asmlinkage int vprintk(const char *fmt, va_list args)
1916 {
1917 	return vprintk_func(fmt, args);
1918 }
1919 EXPORT_SYMBOL(vprintk);
1920 
1921 asmlinkage int printk_emit(int facility, int level,
1922 			   const char *dict, size_t dictlen,
1923 			   const char *fmt, ...)
1924 {
1925 	va_list args;
1926 	int r;
1927 
1928 	va_start(args, fmt);
1929 	r = vprintk_emit(facility, level, dict, dictlen, fmt, args);
1930 	va_end(args);
1931 
1932 	return r;
1933 }
1934 EXPORT_SYMBOL(printk_emit);
1935 
1936 int vprintk_default(const char *fmt, va_list args)
1937 {
1938 	int r;
1939 
1940 #ifdef CONFIG_KGDB_KDB
1941 	/* Allow to pass printk() to kdb but avoid a recursion. */
1942 	if (unlikely(kdb_trap_printk && kdb_printf_cpu < 0)) {
1943 		r = vkdb_printf(KDB_MSGSRC_PRINTK, fmt, args);
1944 		return r;
1945 	}
1946 #endif
1947 	r = vprintk_emit(0, LOGLEVEL_DEFAULT, NULL, 0, fmt, args);
1948 
1949 	return r;
1950 }
1951 EXPORT_SYMBOL_GPL(vprintk_default);
1952 
1953 /**
1954  * printk - print a kernel message
1955  * @fmt: format string
1956  *
1957  * This is printk(). It can be called from any context. We want it to work.
1958  *
1959  * We try to grab the console_lock. If we succeed, it's easy - we log the
1960  * output and call the console drivers.  If we fail to get the semaphore, we
1961  * place the output into the log buffer and return. The current holder of
1962  * the console_sem will notice the new output in console_unlock(); and will
1963  * send it to the consoles before releasing the lock.
1964  *
1965  * One effect of this deferred printing is that code which calls printk() and
1966  * then changes console_loglevel may break. This is because console_loglevel
1967  * is inspected when the actual printing occurs.
1968  *
1969  * See also:
1970  * printf(3)
1971  *
1972  * See the vsnprintf() documentation for format string extensions over C99.
1973  */
1974 asmlinkage __visible int printk(const char *fmt, ...)
1975 {
1976 	va_list args;
1977 	int r;
1978 
1979 	va_start(args, fmt);
1980 	r = vprintk_func(fmt, args);
1981 	va_end(args);
1982 
1983 	return r;
1984 }
1985 EXPORT_SYMBOL(printk);
1986 
1987 #else /* CONFIG_PRINTK */
1988 
1989 #define LOG_LINE_MAX		0
1990 #define PREFIX_MAX		0
1991 
1992 static u64 syslog_seq;
1993 static u32 syslog_idx;
1994 static u64 console_seq;
1995 static u32 console_idx;
1996 static u64 log_first_seq;
1997 static u32 log_first_idx;
1998 static u64 log_next_seq;
1999 static char *log_text(const struct printk_log *msg) { return NULL; }
2000 static char *log_dict(const struct printk_log *msg) { return NULL; }
2001 static struct printk_log *log_from_idx(u32 idx) { return NULL; }
2002 static u32 log_next(u32 idx) { return 0; }
2003 static ssize_t msg_print_ext_header(char *buf, size_t size,
2004 				    struct printk_log *msg,
2005 				    u64 seq) { return 0; }
2006 static ssize_t msg_print_ext_body(char *buf, size_t size,
2007 				  char *dict, size_t dict_len,
2008 				  char *text, size_t text_len) { return 0; }
2009 static void console_lock_spinning_enable(void) { }
2010 static int console_lock_spinning_disable_and_check(void) { return 0; }
2011 static void call_console_drivers(const char *ext_text, size_t ext_len,
2012 				 const char *text, size_t len) {}
2013 static size_t msg_print_text(const struct printk_log *msg,
2014 			     bool syslog, char *buf, size_t size) { return 0; }
2015 static bool suppress_message_printing(int level) { return false; }
2016 
2017 #endif /* CONFIG_PRINTK */
2018 
2019 #ifdef CONFIG_EARLY_PRINTK
2020 struct console *early_console;
2021 
2022 asmlinkage __visible void early_printk(const char *fmt, ...)
2023 {
2024 	va_list ap;
2025 	char buf[512];
2026 	int n;
2027 
2028 	if (!early_console)
2029 		return;
2030 
2031 	va_start(ap, fmt);
2032 	n = vscnprintf(buf, sizeof(buf), fmt, ap);
2033 	va_end(ap);
2034 
2035 	early_console->write(early_console, buf, n);
2036 }
2037 #endif
2038 
2039 static int __add_preferred_console(char *name, int idx, char *options,
2040 				   char *brl_options)
2041 {
2042 	struct console_cmdline *c;
2043 	int i;
2044 
2045 	/*
2046 	 *	See if this tty is not yet registered, and
2047 	 *	if we have a slot free.
2048 	 */
2049 	for (i = 0, c = console_cmdline;
2050 	     i < MAX_CMDLINECONSOLES && c->name[0];
2051 	     i++, c++) {
2052 		if (strcmp(c->name, name) == 0 && c->index == idx) {
2053 			if (!brl_options)
2054 				preferred_console = i;
2055 			return 0;
2056 		}
2057 	}
2058 	if (i == MAX_CMDLINECONSOLES)
2059 		return -E2BIG;
2060 	if (!brl_options)
2061 		preferred_console = i;
2062 	strlcpy(c->name, name, sizeof(c->name));
2063 	c->options = options;
2064 	braille_set_options(c, brl_options);
2065 
2066 	c->index = idx;
2067 	return 0;
2068 }
2069 
2070 static int __init console_msg_format_setup(char *str)
2071 {
2072 	if (!strcmp(str, "syslog"))
2073 		console_msg_format = MSG_FORMAT_SYSLOG;
2074 	if (!strcmp(str, "default"))
2075 		console_msg_format = MSG_FORMAT_DEFAULT;
2076 	return 1;
2077 }
2078 __setup("console_msg_format=", console_msg_format_setup);
2079 
2080 /*
2081  * Set up a console.  Called via do_early_param() in init/main.c
2082  * for each "console=" parameter in the boot command line.
2083  */
2084 static int __init console_setup(char *str)
2085 {
2086 	char buf[sizeof(console_cmdline[0].name) + 4]; /* 4 for "ttyS" */
2087 	char *s, *options, *brl_options = NULL;
2088 	int idx;
2089 
2090 	if (_braille_console_setup(&str, &brl_options))
2091 		return 1;
2092 
2093 	/*
2094 	 * Decode str into name, index, options.
2095 	 */
2096 	if (str[0] >= '0' && str[0] <= '9') {
2097 		strcpy(buf, "ttyS");
2098 		strncpy(buf + 4, str, sizeof(buf) - 5);
2099 	} else {
2100 		strncpy(buf, str, sizeof(buf) - 1);
2101 	}
2102 	buf[sizeof(buf) - 1] = 0;
2103 	options = strchr(str, ',');
2104 	if (options)
2105 		*(options++) = 0;
2106 #ifdef __sparc__
2107 	if (!strcmp(str, "ttya"))
2108 		strcpy(buf, "ttyS0");
2109 	if (!strcmp(str, "ttyb"))
2110 		strcpy(buf, "ttyS1");
2111 #endif
2112 	for (s = buf; *s; s++)
2113 		if (isdigit(*s) || *s == ',')
2114 			break;
2115 	idx = simple_strtoul(s, NULL, 10);
2116 	*s = 0;
2117 
2118 	__add_preferred_console(buf, idx, options, brl_options);
2119 	console_set_on_cmdline = 1;
2120 	return 1;
2121 }
2122 __setup("console=", console_setup);
2123 
2124 /**
2125  * add_preferred_console - add a device to the list of preferred consoles.
2126  * @name: device name
2127  * @idx: device index
2128  * @options: options for this console
2129  *
2130  * The last preferred console added will be used for kernel messages
2131  * and stdin/out/err for init.  Normally this is used by console_setup
2132  * above to handle user-supplied console arguments; however it can also
2133  * be used by arch-specific code either to override the user or more
2134  * commonly to provide a default console (ie from PROM variables) when
2135  * the user has not supplied one.
2136  */
2137 int add_preferred_console(char *name, int idx, char *options)
2138 {
2139 	return __add_preferred_console(name, idx, options, NULL);
2140 }
2141 
2142 bool console_suspend_enabled = true;
2143 EXPORT_SYMBOL(console_suspend_enabled);
2144 
2145 static int __init console_suspend_disable(char *str)
2146 {
2147 	console_suspend_enabled = false;
2148 	return 1;
2149 }
2150 __setup("no_console_suspend", console_suspend_disable);
2151 module_param_named(console_suspend, console_suspend_enabled,
2152 		bool, S_IRUGO | S_IWUSR);
2153 MODULE_PARM_DESC(console_suspend, "suspend console during suspend"
2154 	" and hibernate operations");
2155 
2156 /**
2157  * suspend_console - suspend the console subsystem
2158  *
2159  * This disables printk() while we go into suspend states
2160  */
2161 void suspend_console(void)
2162 {
2163 	if (!console_suspend_enabled)
2164 		return;
2165 	printk("Suspending console(s) (use no_console_suspend to debug)\n");
2166 	console_lock();
2167 	console_suspended = 1;
2168 	up_console_sem();
2169 }
2170 
2171 void resume_console(void)
2172 {
2173 	if (!console_suspend_enabled)
2174 		return;
2175 	down_console_sem();
2176 	console_suspended = 0;
2177 	console_unlock();
2178 }
2179 
2180 /**
2181  * console_cpu_notify - print deferred console messages after CPU hotplug
2182  * @cpu: unused
2183  *
2184  * If printk() is called from a CPU that is not online yet, the messages
2185  * will be printed on the console only if there are CON_ANYTIME consoles.
2186  * This function is called when a new CPU comes online (or fails to come
2187  * up) or goes offline.
2188  */
2189 static int console_cpu_notify(unsigned int cpu)
2190 {
2191 	if (!cpuhp_tasks_frozen) {
2192 		/* If trylock fails, someone else is doing the printing */
2193 		if (console_trylock())
2194 			console_unlock();
2195 	}
2196 	return 0;
2197 }
2198 
2199 /**
2200  * console_lock - lock the console system for exclusive use.
2201  *
2202  * Acquires a lock which guarantees that the caller has
2203  * exclusive access to the console system and the console_drivers list.
2204  *
2205  * Can sleep, returns nothing.
2206  */
2207 void console_lock(void)
2208 {
2209 	might_sleep();
2210 
2211 	down_console_sem();
2212 	if (console_suspended)
2213 		return;
2214 	console_locked = 1;
2215 	console_may_schedule = 1;
2216 }
2217 EXPORT_SYMBOL(console_lock);
2218 
2219 /**
2220  * console_trylock - try to lock the console system for exclusive use.
2221  *
2222  * Try to acquire a lock which guarantees that the caller has exclusive
2223  * access to the console system and the console_drivers list.
2224  *
2225  * returns 1 on success, and 0 on failure to acquire the lock.
2226  */
2227 int console_trylock(void)
2228 {
2229 	if (down_trylock_console_sem())
2230 		return 0;
2231 	if (console_suspended) {
2232 		up_console_sem();
2233 		return 0;
2234 	}
2235 	console_locked = 1;
2236 	console_may_schedule = 0;
2237 	return 1;
2238 }
2239 EXPORT_SYMBOL(console_trylock);
2240 
2241 int is_console_locked(void)
2242 {
2243 	return console_locked;
2244 }
2245 
2246 /*
2247  * Check if we have any console that is capable of printing while cpu is
2248  * booting or shutting down. Requires console_sem.
2249  */
2250 static int have_callable_console(void)
2251 {
2252 	struct console *con;
2253 
2254 	for_each_console(con)
2255 		if ((con->flags & CON_ENABLED) &&
2256 				(con->flags & CON_ANYTIME))
2257 			return 1;
2258 
2259 	return 0;
2260 }
2261 
2262 /*
2263  * Can we actually use the console at this time on this cpu?
2264  *
2265  * Console drivers may assume that per-cpu resources have been allocated. So
2266  * unless they're explicitly marked as being able to cope (CON_ANYTIME) don't
2267  * call them until this CPU is officially up.
2268  */
2269 static inline int can_use_console(void)
2270 {
2271 	return cpu_online(raw_smp_processor_id()) || have_callable_console();
2272 }
2273 
2274 /**
2275  * console_unlock - unlock the console system
2276  *
2277  * Releases the console_lock which the caller holds on the console system
2278  * and the console driver list.
2279  *
2280  * While the console_lock was held, console output may have been buffered
2281  * by printk().  If this is the case, console_unlock(); emits
2282  * the output prior to releasing the lock.
2283  *
2284  * If there is output waiting, we wake /dev/kmsg and syslog() users.
2285  *
2286  * console_unlock(); may be called from any context.
2287  */
2288 void console_unlock(void)
2289 {
2290 	static char ext_text[CONSOLE_EXT_LOG_MAX];
2291 	static char text[LOG_LINE_MAX + PREFIX_MAX];
2292 	static u64 seen_seq;
2293 	unsigned long flags;
2294 	bool wake_klogd = false;
2295 	bool do_cond_resched, retry;
2296 
2297 	if (console_suspended) {
2298 		up_console_sem();
2299 		return;
2300 	}
2301 
2302 	/*
2303 	 * Console drivers are called with interrupts disabled, so
2304 	 * @console_may_schedule should be cleared before; however, we may
2305 	 * end up dumping a lot of lines, for example, if called from
2306 	 * console registration path, and should invoke cond_resched()
2307 	 * between lines if allowable.  Not doing so can cause a very long
2308 	 * scheduling stall on a slow console leading to RCU stall and
2309 	 * softlockup warnings which exacerbate the issue with more
2310 	 * messages practically incapacitating the system.
2311 	 *
2312 	 * console_trylock() is not able to detect the preemptive
2313 	 * context reliably. Therefore the value must be stored before
2314 	 * and cleared after the the "again" goto label.
2315 	 */
2316 	do_cond_resched = console_may_schedule;
2317 again:
2318 	console_may_schedule = 0;
2319 
2320 	/*
2321 	 * We released the console_sem lock, so we need to recheck if
2322 	 * cpu is online and (if not) is there at least one CON_ANYTIME
2323 	 * console.
2324 	 */
2325 	if (!can_use_console()) {
2326 		console_locked = 0;
2327 		up_console_sem();
2328 		return;
2329 	}
2330 
2331 	for (;;) {
2332 		struct printk_log *msg;
2333 		size_t ext_len = 0;
2334 		size_t len;
2335 
2336 		printk_safe_enter_irqsave(flags);
2337 		raw_spin_lock(&logbuf_lock);
2338 		if (seen_seq != log_next_seq) {
2339 			wake_klogd = true;
2340 			seen_seq = log_next_seq;
2341 		}
2342 
2343 		if (console_seq < log_first_seq) {
2344 			len = sprintf(text, "** %u printk messages dropped **\n",
2345 				      (unsigned)(log_first_seq - console_seq));
2346 
2347 			/* messages are gone, move to first one */
2348 			console_seq = log_first_seq;
2349 			console_idx = log_first_idx;
2350 		} else {
2351 			len = 0;
2352 		}
2353 skip:
2354 		if (console_seq == log_next_seq)
2355 			break;
2356 
2357 		msg = log_from_idx(console_idx);
2358 		if (suppress_message_printing(msg->level)) {
2359 			/*
2360 			 * Skip record we have buffered and already printed
2361 			 * directly to the console when we received it, and
2362 			 * record that has level above the console loglevel.
2363 			 */
2364 			console_idx = log_next(console_idx);
2365 			console_seq++;
2366 			goto skip;
2367 		}
2368 
2369 		len += msg_print_text(msg,
2370 				console_msg_format & MSG_FORMAT_SYSLOG,
2371 				text + len,
2372 				sizeof(text) - len);
2373 		if (nr_ext_console_drivers) {
2374 			ext_len = msg_print_ext_header(ext_text,
2375 						sizeof(ext_text),
2376 						msg, console_seq);
2377 			ext_len += msg_print_ext_body(ext_text + ext_len,
2378 						sizeof(ext_text) - ext_len,
2379 						log_dict(msg), msg->dict_len,
2380 						log_text(msg), msg->text_len);
2381 		}
2382 		console_idx = log_next(console_idx);
2383 		console_seq++;
2384 		raw_spin_unlock(&logbuf_lock);
2385 
2386 		/*
2387 		 * While actively printing out messages, if another printk()
2388 		 * were to occur on another CPU, it may wait for this one to
2389 		 * finish. This task can not be preempted if there is a
2390 		 * waiter waiting to take over.
2391 		 */
2392 		console_lock_spinning_enable();
2393 
2394 		stop_critical_timings();	/* don't trace print latency */
2395 		call_console_drivers(ext_text, ext_len, text, len);
2396 		start_critical_timings();
2397 
2398 		if (console_lock_spinning_disable_and_check()) {
2399 			printk_safe_exit_irqrestore(flags);
2400 			goto out;
2401 		}
2402 
2403 		printk_safe_exit_irqrestore(flags);
2404 
2405 		if (do_cond_resched)
2406 			cond_resched();
2407 	}
2408 
2409 	console_locked = 0;
2410 
2411 	/* Release the exclusive_console once it is used */
2412 	if (unlikely(exclusive_console))
2413 		exclusive_console = NULL;
2414 
2415 	raw_spin_unlock(&logbuf_lock);
2416 
2417 	up_console_sem();
2418 
2419 	/*
2420 	 * Someone could have filled up the buffer again, so re-check if there's
2421 	 * something to flush. In case we cannot trylock the console_sem again,
2422 	 * there's a new owner and the console_unlock() from them will do the
2423 	 * flush, no worries.
2424 	 */
2425 	raw_spin_lock(&logbuf_lock);
2426 	retry = console_seq != log_next_seq;
2427 	raw_spin_unlock(&logbuf_lock);
2428 	printk_safe_exit_irqrestore(flags);
2429 
2430 	if (retry && console_trylock())
2431 		goto again;
2432 
2433 out:
2434 	if (wake_klogd)
2435 		wake_up_klogd();
2436 }
2437 EXPORT_SYMBOL(console_unlock);
2438 
2439 /**
2440  * console_conditional_schedule - yield the CPU if required
2441  *
2442  * If the console code is currently allowed to sleep, and
2443  * if this CPU should yield the CPU to another task, do
2444  * so here.
2445  *
2446  * Must be called within console_lock();.
2447  */
2448 void __sched console_conditional_schedule(void)
2449 {
2450 	if (console_may_schedule)
2451 		cond_resched();
2452 }
2453 EXPORT_SYMBOL(console_conditional_schedule);
2454 
2455 void console_unblank(void)
2456 {
2457 	struct console *c;
2458 
2459 	/*
2460 	 * console_unblank can no longer be called in interrupt context unless
2461 	 * oops_in_progress is set to 1..
2462 	 */
2463 	if (oops_in_progress) {
2464 		if (down_trylock_console_sem() != 0)
2465 			return;
2466 	} else
2467 		console_lock();
2468 
2469 	console_locked = 1;
2470 	console_may_schedule = 0;
2471 	for_each_console(c)
2472 		if ((c->flags & CON_ENABLED) && c->unblank)
2473 			c->unblank();
2474 	console_unlock();
2475 }
2476 
2477 /**
2478  * console_flush_on_panic - flush console content on panic
2479  *
2480  * Immediately output all pending messages no matter what.
2481  */
2482 void console_flush_on_panic(void)
2483 {
2484 	/*
2485 	 * If someone else is holding the console lock, trylock will fail
2486 	 * and may_schedule may be set.  Ignore and proceed to unlock so
2487 	 * that messages are flushed out.  As this can be called from any
2488 	 * context and we don't want to get preempted while flushing,
2489 	 * ensure may_schedule is cleared.
2490 	 */
2491 	console_trylock();
2492 	console_may_schedule = 0;
2493 	console_unlock();
2494 }
2495 
2496 /*
2497  * Return the console tty driver structure and its associated index
2498  */
2499 struct tty_driver *console_device(int *index)
2500 {
2501 	struct console *c;
2502 	struct tty_driver *driver = NULL;
2503 
2504 	console_lock();
2505 	for_each_console(c) {
2506 		if (!c->device)
2507 			continue;
2508 		driver = c->device(c, index);
2509 		if (driver)
2510 			break;
2511 	}
2512 	console_unlock();
2513 	return driver;
2514 }
2515 
2516 /*
2517  * Prevent further output on the passed console device so that (for example)
2518  * serial drivers can disable console output before suspending a port, and can
2519  * re-enable output afterwards.
2520  */
2521 void console_stop(struct console *console)
2522 {
2523 	console_lock();
2524 	console->flags &= ~CON_ENABLED;
2525 	console_unlock();
2526 }
2527 EXPORT_SYMBOL(console_stop);
2528 
2529 void console_start(struct console *console)
2530 {
2531 	console_lock();
2532 	console->flags |= CON_ENABLED;
2533 	console_unlock();
2534 }
2535 EXPORT_SYMBOL(console_start);
2536 
2537 static int __read_mostly keep_bootcon;
2538 
2539 static int __init keep_bootcon_setup(char *str)
2540 {
2541 	keep_bootcon = 1;
2542 	pr_info("debug: skip boot console de-registration.\n");
2543 
2544 	return 0;
2545 }
2546 
2547 early_param("keep_bootcon", keep_bootcon_setup);
2548 
2549 /*
2550  * The console driver calls this routine during kernel initialization
2551  * to register the console printing procedure with printk() and to
2552  * print any messages that were printed by the kernel before the
2553  * console driver was initialized.
2554  *
2555  * This can happen pretty early during the boot process (because of
2556  * early_printk) - sometimes before setup_arch() completes - be careful
2557  * of what kernel features are used - they may not be initialised yet.
2558  *
2559  * There are two types of consoles - bootconsoles (early_printk) and
2560  * "real" consoles (everything which is not a bootconsole) which are
2561  * handled differently.
2562  *  - Any number of bootconsoles can be registered at any time.
2563  *  - As soon as a "real" console is registered, all bootconsoles
2564  *    will be unregistered automatically.
2565  *  - Once a "real" console is registered, any attempt to register a
2566  *    bootconsoles will be rejected
2567  */
2568 void register_console(struct console *newcon)
2569 {
2570 	int i;
2571 	unsigned long flags;
2572 	struct console *bcon = NULL;
2573 	struct console_cmdline *c;
2574 	static bool has_preferred;
2575 
2576 	if (console_drivers)
2577 		for_each_console(bcon)
2578 			if (WARN(bcon == newcon,
2579 					"console '%s%d' already registered\n",
2580 					bcon->name, bcon->index))
2581 				return;
2582 
2583 	/*
2584 	 * before we register a new CON_BOOT console, make sure we don't
2585 	 * already have a valid console
2586 	 */
2587 	if (console_drivers && newcon->flags & CON_BOOT) {
2588 		/* find the last or real console */
2589 		for_each_console(bcon) {
2590 			if (!(bcon->flags & CON_BOOT)) {
2591 				pr_info("Too late to register bootconsole %s%d\n",
2592 					newcon->name, newcon->index);
2593 				return;
2594 			}
2595 		}
2596 	}
2597 
2598 	if (console_drivers && console_drivers->flags & CON_BOOT)
2599 		bcon = console_drivers;
2600 
2601 	if (!has_preferred || bcon || !console_drivers)
2602 		has_preferred = preferred_console >= 0;
2603 
2604 	/*
2605 	 *	See if we want to use this console driver. If we
2606 	 *	didn't select a console we take the first one
2607 	 *	that registers here.
2608 	 */
2609 	if (!has_preferred) {
2610 		if (newcon->index < 0)
2611 			newcon->index = 0;
2612 		if (newcon->setup == NULL ||
2613 		    newcon->setup(newcon, NULL) == 0) {
2614 			newcon->flags |= CON_ENABLED;
2615 			if (newcon->device) {
2616 				newcon->flags |= CON_CONSDEV;
2617 				has_preferred = true;
2618 			}
2619 		}
2620 	}
2621 
2622 	/*
2623 	 *	See if this console matches one we selected on
2624 	 *	the command line.
2625 	 */
2626 	for (i = 0, c = console_cmdline;
2627 	     i < MAX_CMDLINECONSOLES && c->name[0];
2628 	     i++, c++) {
2629 		if (!newcon->match ||
2630 		    newcon->match(newcon, c->name, c->index, c->options) != 0) {
2631 			/* default matching */
2632 			BUILD_BUG_ON(sizeof(c->name) != sizeof(newcon->name));
2633 			if (strcmp(c->name, newcon->name) != 0)
2634 				continue;
2635 			if (newcon->index >= 0 &&
2636 			    newcon->index != c->index)
2637 				continue;
2638 			if (newcon->index < 0)
2639 				newcon->index = c->index;
2640 
2641 			if (_braille_register_console(newcon, c))
2642 				return;
2643 
2644 			if (newcon->setup &&
2645 			    newcon->setup(newcon, c->options) != 0)
2646 				break;
2647 		}
2648 
2649 		newcon->flags |= CON_ENABLED;
2650 		if (i == preferred_console) {
2651 			newcon->flags |= CON_CONSDEV;
2652 			has_preferred = true;
2653 		}
2654 		break;
2655 	}
2656 
2657 	if (!(newcon->flags & CON_ENABLED))
2658 		return;
2659 
2660 	/*
2661 	 * If we have a bootconsole, and are switching to a real console,
2662 	 * don't print everything out again, since when the boot console, and
2663 	 * the real console are the same physical device, it's annoying to
2664 	 * see the beginning boot messages twice
2665 	 */
2666 	if (bcon && ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV))
2667 		newcon->flags &= ~CON_PRINTBUFFER;
2668 
2669 	/*
2670 	 *	Put this console in the list - keep the
2671 	 *	preferred driver at the head of the list.
2672 	 */
2673 	console_lock();
2674 	if ((newcon->flags & CON_CONSDEV) || console_drivers == NULL) {
2675 		newcon->next = console_drivers;
2676 		console_drivers = newcon;
2677 		if (newcon->next)
2678 			newcon->next->flags &= ~CON_CONSDEV;
2679 	} else {
2680 		newcon->next = console_drivers->next;
2681 		console_drivers->next = newcon;
2682 	}
2683 
2684 	if (newcon->flags & CON_EXTENDED)
2685 		if (!nr_ext_console_drivers++)
2686 			pr_info("printk: continuation disabled due to ext consoles, expect more fragments in /dev/kmsg\n");
2687 
2688 	if (newcon->flags & CON_PRINTBUFFER) {
2689 		/*
2690 		 * console_unlock(); will print out the buffered messages
2691 		 * for us.
2692 		 */
2693 		logbuf_lock_irqsave(flags);
2694 		console_seq = syslog_seq;
2695 		console_idx = syslog_idx;
2696 		logbuf_unlock_irqrestore(flags);
2697 		/*
2698 		 * We're about to replay the log buffer.  Only do this to the
2699 		 * just-registered console to avoid excessive message spam to
2700 		 * the already-registered consoles.
2701 		 */
2702 		exclusive_console = newcon;
2703 	}
2704 	console_unlock();
2705 	console_sysfs_notify();
2706 
2707 	/*
2708 	 * By unregistering the bootconsoles after we enable the real console
2709 	 * we get the "console xxx enabled" message on all the consoles -
2710 	 * boot consoles, real consoles, etc - this is to ensure that end
2711 	 * users know there might be something in the kernel's log buffer that
2712 	 * went to the bootconsole (that they do not see on the real console)
2713 	 */
2714 	pr_info("%sconsole [%s%d] enabled\n",
2715 		(newcon->flags & CON_BOOT) ? "boot" : "" ,
2716 		newcon->name, newcon->index);
2717 	if (bcon &&
2718 	    ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV) &&
2719 	    !keep_bootcon) {
2720 		/* We need to iterate through all boot consoles, to make
2721 		 * sure we print everything out, before we unregister them.
2722 		 */
2723 		for_each_console(bcon)
2724 			if (bcon->flags & CON_BOOT)
2725 				unregister_console(bcon);
2726 	}
2727 }
2728 EXPORT_SYMBOL(register_console);
2729 
2730 int unregister_console(struct console *console)
2731 {
2732         struct console *a, *b;
2733 	int res;
2734 
2735 	pr_info("%sconsole [%s%d] disabled\n",
2736 		(console->flags & CON_BOOT) ? "boot" : "" ,
2737 		console->name, console->index);
2738 
2739 	res = _braille_unregister_console(console);
2740 	if (res)
2741 		return res;
2742 
2743 	res = 1;
2744 	console_lock();
2745 	if (console_drivers == console) {
2746 		console_drivers=console->next;
2747 		res = 0;
2748 	} else if (console_drivers) {
2749 		for (a=console_drivers->next, b=console_drivers ;
2750 		     a; b=a, a=b->next) {
2751 			if (a == console) {
2752 				b->next = a->next;
2753 				res = 0;
2754 				break;
2755 			}
2756 		}
2757 	}
2758 
2759 	if (!res && (console->flags & CON_EXTENDED))
2760 		nr_ext_console_drivers--;
2761 
2762 	/*
2763 	 * If this isn't the last console and it has CON_CONSDEV set, we
2764 	 * need to set it on the next preferred console.
2765 	 */
2766 	if (console_drivers != NULL && console->flags & CON_CONSDEV)
2767 		console_drivers->flags |= CON_CONSDEV;
2768 
2769 	console->flags &= ~CON_ENABLED;
2770 	console_unlock();
2771 	console_sysfs_notify();
2772 	return res;
2773 }
2774 EXPORT_SYMBOL(unregister_console);
2775 
2776 /*
2777  * Initialize the console device. This is called *early*, so
2778  * we can't necessarily depend on lots of kernel help here.
2779  * Just do some early initializations, and do the complex setup
2780  * later.
2781  */
2782 void __init console_init(void)
2783 {
2784 	initcall_t *call;
2785 
2786 	/* Setup the default TTY line discipline. */
2787 	n_tty_init();
2788 
2789 	/*
2790 	 * set up the console device so that later boot sequences can
2791 	 * inform about problems etc..
2792 	 */
2793 	call = __con_initcall_start;
2794 	while (call < __con_initcall_end) {
2795 		(*call)();
2796 		call++;
2797 	}
2798 }
2799 
2800 /*
2801  * Some boot consoles access data that is in the init section and which will
2802  * be discarded after the initcalls have been run. To make sure that no code
2803  * will access this data, unregister the boot consoles in a late initcall.
2804  *
2805  * If for some reason, such as deferred probe or the driver being a loadable
2806  * module, the real console hasn't registered yet at this point, there will
2807  * be a brief interval in which no messages are logged to the console, which
2808  * makes it difficult to diagnose problems that occur during this time.
2809  *
2810  * To mitigate this problem somewhat, only unregister consoles whose memory
2811  * intersects with the init section. Note that all other boot consoles will
2812  * get unregistred when the real preferred console is registered.
2813  */
2814 static int __init printk_late_init(void)
2815 {
2816 	struct console *con;
2817 	int ret;
2818 
2819 	for_each_console(con) {
2820 		if (!(con->flags & CON_BOOT))
2821 			continue;
2822 
2823 		/* Check addresses that might be used for enabled consoles. */
2824 		if (init_section_intersects(con, sizeof(*con)) ||
2825 		    init_section_contains(con->write, 0) ||
2826 		    init_section_contains(con->read, 0) ||
2827 		    init_section_contains(con->device, 0) ||
2828 		    init_section_contains(con->unblank, 0) ||
2829 		    init_section_contains(con->data, 0)) {
2830 			/*
2831 			 * Please, consider moving the reported consoles out
2832 			 * of the init section.
2833 			 */
2834 			pr_warn("bootconsole [%s%d] uses init memory and must be disabled even before the real one is ready\n",
2835 				con->name, con->index);
2836 			unregister_console(con);
2837 		}
2838 	}
2839 	ret = cpuhp_setup_state_nocalls(CPUHP_PRINTK_DEAD, "printk:dead", NULL,
2840 					console_cpu_notify);
2841 	WARN_ON(ret < 0);
2842 	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "printk:online",
2843 					console_cpu_notify, NULL);
2844 	WARN_ON(ret < 0);
2845 	return 0;
2846 }
2847 late_initcall(printk_late_init);
2848 
2849 #if defined CONFIG_PRINTK
2850 /*
2851  * Delayed printk version, for scheduler-internal messages:
2852  */
2853 #define PRINTK_PENDING_WAKEUP	0x01
2854 #define PRINTK_PENDING_OUTPUT	0x02
2855 
2856 static DEFINE_PER_CPU(int, printk_pending);
2857 
2858 static void wake_up_klogd_work_func(struct irq_work *irq_work)
2859 {
2860 	int pending = __this_cpu_xchg(printk_pending, 0);
2861 
2862 	if (pending & PRINTK_PENDING_OUTPUT) {
2863 		/* If trylock fails, someone else is doing the printing */
2864 		if (console_trylock())
2865 			console_unlock();
2866 	}
2867 
2868 	if (pending & PRINTK_PENDING_WAKEUP)
2869 		wake_up_interruptible(&log_wait);
2870 }
2871 
2872 static DEFINE_PER_CPU(struct irq_work, wake_up_klogd_work) = {
2873 	.func = wake_up_klogd_work_func,
2874 	.flags = IRQ_WORK_LAZY,
2875 };
2876 
2877 void wake_up_klogd(void)
2878 {
2879 	preempt_disable();
2880 	if (waitqueue_active(&log_wait)) {
2881 		this_cpu_or(printk_pending, PRINTK_PENDING_WAKEUP);
2882 		irq_work_queue(this_cpu_ptr(&wake_up_klogd_work));
2883 	}
2884 	preempt_enable();
2885 }
2886 
2887 int vprintk_deferred(const char *fmt, va_list args)
2888 {
2889 	int r;
2890 
2891 	r = vprintk_emit(0, LOGLEVEL_SCHED, NULL, 0, fmt, args);
2892 
2893 	preempt_disable();
2894 	__this_cpu_or(printk_pending, PRINTK_PENDING_OUTPUT);
2895 	irq_work_queue(this_cpu_ptr(&wake_up_klogd_work));
2896 	preempt_enable();
2897 
2898 	return r;
2899 }
2900 
2901 int printk_deferred(const char *fmt, ...)
2902 {
2903 	va_list args;
2904 	int r;
2905 
2906 	va_start(args, fmt);
2907 	r = vprintk_deferred(fmt, args);
2908 	va_end(args);
2909 
2910 	return r;
2911 }
2912 
2913 /*
2914  * printk rate limiting, lifted from the networking subsystem.
2915  *
2916  * This enforces a rate limit: not more than 10 kernel messages
2917  * every 5s to make a denial-of-service attack impossible.
2918  */
2919 DEFINE_RATELIMIT_STATE(printk_ratelimit_state, 5 * HZ, 10);
2920 
2921 int __printk_ratelimit(const char *func)
2922 {
2923 	return ___ratelimit(&printk_ratelimit_state, func);
2924 }
2925 EXPORT_SYMBOL(__printk_ratelimit);
2926 
2927 /**
2928  * printk_timed_ratelimit - caller-controlled printk ratelimiting
2929  * @caller_jiffies: pointer to caller's state
2930  * @interval_msecs: minimum interval between prints
2931  *
2932  * printk_timed_ratelimit() returns true if more than @interval_msecs
2933  * milliseconds have elapsed since the last time printk_timed_ratelimit()
2934  * returned true.
2935  */
2936 bool printk_timed_ratelimit(unsigned long *caller_jiffies,
2937 			unsigned int interval_msecs)
2938 {
2939 	unsigned long elapsed = jiffies - *caller_jiffies;
2940 
2941 	if (*caller_jiffies && elapsed <= msecs_to_jiffies(interval_msecs))
2942 		return false;
2943 
2944 	*caller_jiffies = jiffies;
2945 	return true;
2946 }
2947 EXPORT_SYMBOL(printk_timed_ratelimit);
2948 
2949 static DEFINE_SPINLOCK(dump_list_lock);
2950 static LIST_HEAD(dump_list);
2951 
2952 /**
2953  * kmsg_dump_register - register a kernel log dumper.
2954  * @dumper: pointer to the kmsg_dumper structure
2955  *
2956  * Adds a kernel log dumper to the system. The dump callback in the
2957  * structure will be called when the kernel oopses or panics and must be
2958  * set. Returns zero on success and %-EINVAL or %-EBUSY otherwise.
2959  */
2960 int kmsg_dump_register(struct kmsg_dumper *dumper)
2961 {
2962 	unsigned long flags;
2963 	int err = -EBUSY;
2964 
2965 	/* The dump callback needs to be set */
2966 	if (!dumper->dump)
2967 		return -EINVAL;
2968 
2969 	spin_lock_irqsave(&dump_list_lock, flags);
2970 	/* Don't allow registering multiple times */
2971 	if (!dumper->registered) {
2972 		dumper->registered = 1;
2973 		list_add_tail_rcu(&dumper->list, &dump_list);
2974 		err = 0;
2975 	}
2976 	spin_unlock_irqrestore(&dump_list_lock, flags);
2977 
2978 	return err;
2979 }
2980 EXPORT_SYMBOL_GPL(kmsg_dump_register);
2981 
2982 /**
2983  * kmsg_dump_unregister - unregister a kmsg dumper.
2984  * @dumper: pointer to the kmsg_dumper structure
2985  *
2986  * Removes a dump device from the system. Returns zero on success and
2987  * %-EINVAL otherwise.
2988  */
2989 int kmsg_dump_unregister(struct kmsg_dumper *dumper)
2990 {
2991 	unsigned long flags;
2992 	int err = -EINVAL;
2993 
2994 	spin_lock_irqsave(&dump_list_lock, flags);
2995 	if (dumper->registered) {
2996 		dumper->registered = 0;
2997 		list_del_rcu(&dumper->list);
2998 		err = 0;
2999 	}
3000 	spin_unlock_irqrestore(&dump_list_lock, flags);
3001 	synchronize_rcu();
3002 
3003 	return err;
3004 }
3005 EXPORT_SYMBOL_GPL(kmsg_dump_unregister);
3006 
3007 static bool always_kmsg_dump;
3008 module_param_named(always_kmsg_dump, always_kmsg_dump, bool, S_IRUGO | S_IWUSR);
3009 
3010 /**
3011  * kmsg_dump - dump kernel log to kernel message dumpers.
3012  * @reason: the reason (oops, panic etc) for dumping
3013  *
3014  * Call each of the registered dumper's dump() callback, which can
3015  * retrieve the kmsg records with kmsg_dump_get_line() or
3016  * kmsg_dump_get_buffer().
3017  */
3018 void kmsg_dump(enum kmsg_dump_reason reason)
3019 {
3020 	struct kmsg_dumper *dumper;
3021 	unsigned long flags;
3022 
3023 	if ((reason > KMSG_DUMP_OOPS) && !always_kmsg_dump)
3024 		return;
3025 
3026 	rcu_read_lock();
3027 	list_for_each_entry_rcu(dumper, &dump_list, list) {
3028 		if (dumper->max_reason && reason > dumper->max_reason)
3029 			continue;
3030 
3031 		/* initialize iterator with data about the stored records */
3032 		dumper->active = true;
3033 
3034 		logbuf_lock_irqsave(flags);
3035 		dumper->cur_seq = clear_seq;
3036 		dumper->cur_idx = clear_idx;
3037 		dumper->next_seq = log_next_seq;
3038 		dumper->next_idx = log_next_idx;
3039 		logbuf_unlock_irqrestore(flags);
3040 
3041 		/* invoke dumper which will iterate over records */
3042 		dumper->dump(dumper, reason);
3043 
3044 		/* reset iterator */
3045 		dumper->active = false;
3046 	}
3047 	rcu_read_unlock();
3048 }
3049 
3050 /**
3051  * kmsg_dump_get_line_nolock - retrieve one kmsg log line (unlocked version)
3052  * @dumper: registered kmsg dumper
3053  * @syslog: include the "<4>" prefixes
3054  * @line: buffer to copy the line to
3055  * @size: maximum size of the buffer
3056  * @len: length of line placed into buffer
3057  *
3058  * Start at the beginning of the kmsg buffer, with the oldest kmsg
3059  * record, and copy one record into the provided buffer.
3060  *
3061  * Consecutive calls will return the next available record moving
3062  * towards the end of the buffer with the youngest messages.
3063  *
3064  * A return value of FALSE indicates that there are no more records to
3065  * read.
3066  *
3067  * The function is similar to kmsg_dump_get_line(), but grabs no locks.
3068  */
3069 bool kmsg_dump_get_line_nolock(struct kmsg_dumper *dumper, bool syslog,
3070 			       char *line, size_t size, size_t *len)
3071 {
3072 	struct printk_log *msg;
3073 	size_t l = 0;
3074 	bool ret = false;
3075 
3076 	if (!dumper->active)
3077 		goto out;
3078 
3079 	if (dumper->cur_seq < log_first_seq) {
3080 		/* messages are gone, move to first available one */
3081 		dumper->cur_seq = log_first_seq;
3082 		dumper->cur_idx = log_first_idx;
3083 	}
3084 
3085 	/* last entry */
3086 	if (dumper->cur_seq >= log_next_seq)
3087 		goto out;
3088 
3089 	msg = log_from_idx(dumper->cur_idx);
3090 	l = msg_print_text(msg, syslog, line, size);
3091 
3092 	dumper->cur_idx = log_next(dumper->cur_idx);
3093 	dumper->cur_seq++;
3094 	ret = true;
3095 out:
3096 	if (len)
3097 		*len = l;
3098 	return ret;
3099 }
3100 
3101 /**
3102  * kmsg_dump_get_line - retrieve one kmsg log line
3103  * @dumper: registered kmsg dumper
3104  * @syslog: include the "<4>" prefixes
3105  * @line: buffer to copy the line to
3106  * @size: maximum size of the buffer
3107  * @len: length of line placed into buffer
3108  *
3109  * Start at the beginning of the kmsg buffer, with the oldest kmsg
3110  * record, and copy one record into the provided buffer.
3111  *
3112  * Consecutive calls will return the next available record moving
3113  * towards the end of the buffer with the youngest messages.
3114  *
3115  * A return value of FALSE indicates that there are no more records to
3116  * read.
3117  */
3118 bool kmsg_dump_get_line(struct kmsg_dumper *dumper, bool syslog,
3119 			char *line, size_t size, size_t *len)
3120 {
3121 	unsigned long flags;
3122 	bool ret;
3123 
3124 	logbuf_lock_irqsave(flags);
3125 	ret = kmsg_dump_get_line_nolock(dumper, syslog, line, size, len);
3126 	logbuf_unlock_irqrestore(flags);
3127 
3128 	return ret;
3129 }
3130 EXPORT_SYMBOL_GPL(kmsg_dump_get_line);
3131 
3132 /**
3133  * kmsg_dump_get_buffer - copy kmsg log lines
3134  * @dumper: registered kmsg dumper
3135  * @syslog: include the "<4>" prefixes
3136  * @buf: buffer to copy the line to
3137  * @size: maximum size of the buffer
3138  * @len: length of line placed into buffer
3139  *
3140  * Start at the end of the kmsg buffer and fill the provided buffer
3141  * with as many of the the *youngest* kmsg records that fit into it.
3142  * If the buffer is large enough, all available kmsg records will be
3143  * copied with a single call.
3144  *
3145  * Consecutive calls will fill the buffer with the next block of
3146  * available older records, not including the earlier retrieved ones.
3147  *
3148  * A return value of FALSE indicates that there are no more records to
3149  * read.
3150  */
3151 bool kmsg_dump_get_buffer(struct kmsg_dumper *dumper, bool syslog,
3152 			  char *buf, size_t size, size_t *len)
3153 {
3154 	unsigned long flags;
3155 	u64 seq;
3156 	u32 idx;
3157 	u64 next_seq;
3158 	u32 next_idx;
3159 	size_t l = 0;
3160 	bool ret = false;
3161 
3162 	if (!dumper->active)
3163 		goto out;
3164 
3165 	logbuf_lock_irqsave(flags);
3166 	if (dumper->cur_seq < log_first_seq) {
3167 		/* messages are gone, move to first available one */
3168 		dumper->cur_seq = log_first_seq;
3169 		dumper->cur_idx = log_first_idx;
3170 	}
3171 
3172 	/* last entry */
3173 	if (dumper->cur_seq >= dumper->next_seq) {
3174 		logbuf_unlock_irqrestore(flags);
3175 		goto out;
3176 	}
3177 
3178 	/* calculate length of entire buffer */
3179 	seq = dumper->cur_seq;
3180 	idx = dumper->cur_idx;
3181 	while (seq < dumper->next_seq) {
3182 		struct printk_log *msg = log_from_idx(idx);
3183 
3184 		l += msg_print_text(msg, true, NULL, 0);
3185 		idx = log_next(idx);
3186 		seq++;
3187 	}
3188 
3189 	/* move first record forward until length fits into the buffer */
3190 	seq = dumper->cur_seq;
3191 	idx = dumper->cur_idx;
3192 	while (l > size && seq < dumper->next_seq) {
3193 		struct printk_log *msg = log_from_idx(idx);
3194 
3195 		l -= msg_print_text(msg, true, NULL, 0);
3196 		idx = log_next(idx);
3197 		seq++;
3198 	}
3199 
3200 	/* last message in next interation */
3201 	next_seq = seq;
3202 	next_idx = idx;
3203 
3204 	l = 0;
3205 	while (seq < dumper->next_seq) {
3206 		struct printk_log *msg = log_from_idx(idx);
3207 
3208 		l += msg_print_text(msg, syslog, buf + l, size - l);
3209 		idx = log_next(idx);
3210 		seq++;
3211 	}
3212 
3213 	dumper->next_seq = next_seq;
3214 	dumper->next_idx = next_idx;
3215 	ret = true;
3216 	logbuf_unlock_irqrestore(flags);
3217 out:
3218 	if (len)
3219 		*len = l;
3220 	return ret;
3221 }
3222 EXPORT_SYMBOL_GPL(kmsg_dump_get_buffer);
3223 
3224 /**
3225  * kmsg_dump_rewind_nolock - reset the interator (unlocked version)
3226  * @dumper: registered kmsg dumper
3227  *
3228  * Reset the dumper's iterator so that kmsg_dump_get_line() and
3229  * kmsg_dump_get_buffer() can be called again and used multiple
3230  * times within the same dumper.dump() callback.
3231  *
3232  * The function is similar to kmsg_dump_rewind(), but grabs no locks.
3233  */
3234 void kmsg_dump_rewind_nolock(struct kmsg_dumper *dumper)
3235 {
3236 	dumper->cur_seq = clear_seq;
3237 	dumper->cur_idx = clear_idx;
3238 	dumper->next_seq = log_next_seq;
3239 	dumper->next_idx = log_next_idx;
3240 }
3241 
3242 /**
3243  * kmsg_dump_rewind - reset the interator
3244  * @dumper: registered kmsg dumper
3245  *
3246  * Reset the dumper's iterator so that kmsg_dump_get_line() and
3247  * kmsg_dump_get_buffer() can be called again and used multiple
3248  * times within the same dumper.dump() callback.
3249  */
3250 void kmsg_dump_rewind(struct kmsg_dumper *dumper)
3251 {
3252 	unsigned long flags;
3253 
3254 	logbuf_lock_irqsave(flags);
3255 	kmsg_dump_rewind_nolock(dumper);
3256 	logbuf_unlock_irqrestore(flags);
3257 }
3258 EXPORT_SYMBOL_GPL(kmsg_dump_rewind);
3259 
3260 static char dump_stack_arch_desc_str[128];
3261 
3262 /**
3263  * dump_stack_set_arch_desc - set arch-specific str to show with task dumps
3264  * @fmt: printf-style format string
3265  * @...: arguments for the format string
3266  *
3267  * The configured string will be printed right after utsname during task
3268  * dumps.  Usually used to add arch-specific system identifiers.  If an
3269  * arch wants to make use of such an ID string, it should initialize this
3270  * as soon as possible during boot.
3271  */
3272 void __init dump_stack_set_arch_desc(const char *fmt, ...)
3273 {
3274 	va_list args;
3275 
3276 	va_start(args, fmt);
3277 	vsnprintf(dump_stack_arch_desc_str, sizeof(dump_stack_arch_desc_str),
3278 		  fmt, args);
3279 	va_end(args);
3280 }
3281 
3282 /**
3283  * dump_stack_print_info - print generic debug info for dump_stack()
3284  * @log_lvl: log level
3285  *
3286  * Arch-specific dump_stack() implementations can use this function to
3287  * print out the same debug information as the generic dump_stack().
3288  */
3289 void dump_stack_print_info(const char *log_lvl)
3290 {
3291 	printk("%sCPU: %d PID: %d Comm: %.20s %s %s %.*s\n",
3292 	       log_lvl, raw_smp_processor_id(), current->pid, current->comm,
3293 	       print_tainted(), init_utsname()->release,
3294 	       (int)strcspn(init_utsname()->version, " "),
3295 	       init_utsname()->version);
3296 
3297 	if (dump_stack_arch_desc_str[0] != '\0')
3298 		printk("%sHardware name: %s\n",
3299 		       log_lvl, dump_stack_arch_desc_str);
3300 
3301 	print_worker_info(log_lvl, current);
3302 }
3303 
3304 /**
3305  * show_regs_print_info - print generic debug info for show_regs()
3306  * @log_lvl: log level
3307  *
3308  * show_regs() implementations can use this function to print out generic
3309  * debug information.
3310  */
3311 void show_regs_print_info(const char *log_lvl)
3312 {
3313 	dump_stack_print_info(log_lvl);
3314 }
3315 
3316 #endif
3317