xref: /openbmc/linux/kernel/printk/printk.c (revision 7fc38225363dd8f19e667ad7c77b63bc4a5c065d)
1 /*
2  *  linux/kernel/printk.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  *
6  * Modified to make sys_syslog() more flexible: added commands to
7  * return the last 4k of kernel messages, regardless of whether
8  * they've been read or not.  Added option to suppress kernel printk's
9  * to the console.  Added hook for sending the console messages
10  * elsewhere, in preparation for a serial line console (someday).
11  * Ted Ts'o, 2/11/93.
12  * Modified for sysctl support, 1/8/97, Chris Horn.
13  * Fixed SMP synchronization, 08/08/99, Manfred Spraul
14  *     manfred@colorfullife.com
15  * Rewrote bits to get rid of console_lock
16  *	01Mar01 Andrew Morton
17  */
18 
19 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
20 
21 #include <linux/kernel.h>
22 #include <linux/mm.h>
23 #include <linux/tty.h>
24 #include <linux/tty_driver.h>
25 #include <linux/console.h>
26 #include <linux/init.h>
27 #include <linux/jiffies.h>
28 #include <linux/nmi.h>
29 #include <linux/module.h>
30 #include <linux/moduleparam.h>
31 #include <linux/delay.h>
32 #include <linux/smp.h>
33 #include <linux/security.h>
34 #include <linux/memblock.h>
35 #include <linux/syscalls.h>
36 #include <linux/crash_core.h>
37 #include <linux/kdb.h>
38 #include <linux/ratelimit.h>
39 #include <linux/kmsg_dump.h>
40 #include <linux/syslog.h>
41 #include <linux/cpu.h>
42 #include <linux/rculist.h>
43 #include <linux/poll.h>
44 #include <linux/irq_work.h>
45 #include <linux/ctype.h>
46 #include <linux/uio.h>
47 #include <linux/sched/clock.h>
48 #include <linux/sched/debug.h>
49 #include <linux/sched/task_stack.h>
50 
51 #include <linux/uaccess.h>
52 #include <asm/sections.h>
53 
54 #include <trace/events/initcall.h>
55 #define CREATE_TRACE_POINTS
56 #include <trace/events/printk.h>
57 
58 #include "console_cmdline.h"
59 #include "braille.h"
60 #include "internal.h"
61 
62 int console_printk[4] = {
63 	CONSOLE_LOGLEVEL_DEFAULT,	/* console_loglevel */
64 	MESSAGE_LOGLEVEL_DEFAULT,	/* default_message_loglevel */
65 	CONSOLE_LOGLEVEL_MIN,		/* minimum_console_loglevel */
66 	CONSOLE_LOGLEVEL_DEFAULT,	/* default_console_loglevel */
67 };
68 
69 atomic_t ignore_console_lock_warning __read_mostly = ATOMIC_INIT(0);
70 EXPORT_SYMBOL(ignore_console_lock_warning);
71 
72 /*
73  * Low level drivers may need that to know if they can schedule in
74  * their unblank() callback or not. So let's export it.
75  */
76 int oops_in_progress;
77 EXPORT_SYMBOL(oops_in_progress);
78 
79 /*
80  * console_sem protects the console_drivers list, and also
81  * provides serialisation for access to the entire console
82  * driver system.
83  */
84 static DEFINE_SEMAPHORE(console_sem);
85 struct console *console_drivers;
86 EXPORT_SYMBOL_GPL(console_drivers);
87 
88 #ifdef CONFIG_LOCKDEP
89 static struct lockdep_map console_lock_dep_map = {
90 	.name = "console_lock"
91 };
92 #endif
93 
94 enum devkmsg_log_bits {
95 	__DEVKMSG_LOG_BIT_ON = 0,
96 	__DEVKMSG_LOG_BIT_OFF,
97 	__DEVKMSG_LOG_BIT_LOCK,
98 };
99 
100 enum devkmsg_log_masks {
101 	DEVKMSG_LOG_MASK_ON             = BIT(__DEVKMSG_LOG_BIT_ON),
102 	DEVKMSG_LOG_MASK_OFF            = BIT(__DEVKMSG_LOG_BIT_OFF),
103 	DEVKMSG_LOG_MASK_LOCK           = BIT(__DEVKMSG_LOG_BIT_LOCK),
104 };
105 
106 /* Keep both the 'on' and 'off' bits clear, i.e. ratelimit by default: */
107 #define DEVKMSG_LOG_MASK_DEFAULT	0
108 
109 static unsigned int __read_mostly devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT;
110 
111 static int __control_devkmsg(char *str)
112 {
113 	if (!str)
114 		return -EINVAL;
115 
116 	if (!strncmp(str, "on", 2)) {
117 		devkmsg_log = DEVKMSG_LOG_MASK_ON;
118 		return 2;
119 	} else if (!strncmp(str, "off", 3)) {
120 		devkmsg_log = DEVKMSG_LOG_MASK_OFF;
121 		return 3;
122 	} else if (!strncmp(str, "ratelimit", 9)) {
123 		devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT;
124 		return 9;
125 	}
126 	return -EINVAL;
127 }
128 
129 static int __init control_devkmsg(char *str)
130 {
131 	if (__control_devkmsg(str) < 0)
132 		return 1;
133 
134 	/*
135 	 * Set sysctl string accordingly:
136 	 */
137 	if (devkmsg_log == DEVKMSG_LOG_MASK_ON)
138 		strcpy(devkmsg_log_str, "on");
139 	else if (devkmsg_log == DEVKMSG_LOG_MASK_OFF)
140 		strcpy(devkmsg_log_str, "off");
141 	/* else "ratelimit" which is set by default. */
142 
143 	/*
144 	 * Sysctl cannot change it anymore. The kernel command line setting of
145 	 * this parameter is to force the setting to be permanent throughout the
146 	 * runtime of the system. This is a precation measure against userspace
147 	 * trying to be a smarta** and attempting to change it up on us.
148 	 */
149 	devkmsg_log |= DEVKMSG_LOG_MASK_LOCK;
150 
151 	return 0;
152 }
153 __setup("printk.devkmsg=", control_devkmsg);
154 
155 char devkmsg_log_str[DEVKMSG_STR_MAX_SIZE] = "ratelimit";
156 
157 int devkmsg_sysctl_set_loglvl(struct ctl_table *table, int write,
158 			      void __user *buffer, size_t *lenp, loff_t *ppos)
159 {
160 	char old_str[DEVKMSG_STR_MAX_SIZE];
161 	unsigned int old;
162 	int err;
163 
164 	if (write) {
165 		if (devkmsg_log & DEVKMSG_LOG_MASK_LOCK)
166 			return -EINVAL;
167 
168 		old = devkmsg_log;
169 		strncpy(old_str, devkmsg_log_str, DEVKMSG_STR_MAX_SIZE);
170 	}
171 
172 	err = proc_dostring(table, write, buffer, lenp, ppos);
173 	if (err)
174 		return err;
175 
176 	if (write) {
177 		err = __control_devkmsg(devkmsg_log_str);
178 
179 		/*
180 		 * Do not accept an unknown string OR a known string with
181 		 * trailing crap...
182 		 */
183 		if (err < 0 || (err + 1 != *lenp)) {
184 
185 			/* ... and restore old setting. */
186 			devkmsg_log = old;
187 			strncpy(devkmsg_log_str, old_str, DEVKMSG_STR_MAX_SIZE);
188 
189 			return -EINVAL;
190 		}
191 	}
192 
193 	return 0;
194 }
195 
196 /* Number of registered extended console drivers. */
197 static int nr_ext_console_drivers;
198 
199 /*
200  * Helper macros to handle lockdep when locking/unlocking console_sem. We use
201  * macros instead of functions so that _RET_IP_ contains useful information.
202  */
203 #define down_console_sem() do { \
204 	down(&console_sem);\
205 	mutex_acquire(&console_lock_dep_map, 0, 0, _RET_IP_);\
206 } while (0)
207 
208 static int __down_trylock_console_sem(unsigned long ip)
209 {
210 	int lock_failed;
211 	unsigned long flags;
212 
213 	/*
214 	 * Here and in __up_console_sem() we need to be in safe mode,
215 	 * because spindump/WARN/etc from under console ->lock will
216 	 * deadlock in printk()->down_trylock_console_sem() otherwise.
217 	 */
218 	printk_safe_enter_irqsave(flags);
219 	lock_failed = down_trylock(&console_sem);
220 	printk_safe_exit_irqrestore(flags);
221 
222 	if (lock_failed)
223 		return 1;
224 	mutex_acquire(&console_lock_dep_map, 0, 1, ip);
225 	return 0;
226 }
227 #define down_trylock_console_sem() __down_trylock_console_sem(_RET_IP_)
228 
229 static void __up_console_sem(unsigned long ip)
230 {
231 	unsigned long flags;
232 
233 	mutex_release(&console_lock_dep_map, 1, ip);
234 
235 	printk_safe_enter_irqsave(flags);
236 	up(&console_sem);
237 	printk_safe_exit_irqrestore(flags);
238 }
239 #define up_console_sem() __up_console_sem(_RET_IP_)
240 
241 /*
242  * This is used for debugging the mess that is the VT code by
243  * keeping track if we have the console semaphore held. It's
244  * definitely not the perfect debug tool (we don't know if _WE_
245  * hold it and are racing, but it helps tracking those weird code
246  * paths in the console code where we end up in places I want
247  * locked without the console sempahore held).
248  */
249 static int console_locked, console_suspended;
250 
251 /*
252  * If exclusive_console is non-NULL then only this console is to be printed to.
253  */
254 static struct console *exclusive_console;
255 
256 /*
257  *	Array of consoles built from command line options (console=)
258  */
259 
260 #define MAX_CMDLINECONSOLES 8
261 
262 static struct console_cmdline console_cmdline[MAX_CMDLINECONSOLES];
263 
264 static int preferred_console = -1;
265 int console_set_on_cmdline;
266 EXPORT_SYMBOL(console_set_on_cmdline);
267 
268 /* Flag: console code may call schedule() */
269 static int console_may_schedule;
270 
271 enum con_msg_format_flags {
272 	MSG_FORMAT_DEFAULT	= 0,
273 	MSG_FORMAT_SYSLOG	= (1 << 0),
274 };
275 
276 static int console_msg_format = MSG_FORMAT_DEFAULT;
277 
278 /*
279  * The printk log buffer consists of a chain of concatenated variable
280  * length records. Every record starts with a record header, containing
281  * the overall length of the record.
282  *
283  * The heads to the first and last entry in the buffer, as well as the
284  * sequence numbers of these entries are maintained when messages are
285  * stored.
286  *
287  * If the heads indicate available messages, the length in the header
288  * tells the start next message. A length == 0 for the next message
289  * indicates a wrap-around to the beginning of the buffer.
290  *
291  * Every record carries the monotonic timestamp in microseconds, as well as
292  * the standard userspace syslog level and syslog facility. The usual
293  * kernel messages use LOG_KERN; userspace-injected messages always carry
294  * a matching syslog facility, by default LOG_USER. The origin of every
295  * message can be reliably determined that way.
296  *
297  * The human readable log message directly follows the message header. The
298  * length of the message text is stored in the header, the stored message
299  * is not terminated.
300  *
301  * Optionally, a message can carry a dictionary of properties (key/value pairs),
302  * to provide userspace with a machine-readable message context.
303  *
304  * Examples for well-defined, commonly used property names are:
305  *   DEVICE=b12:8               device identifier
306  *                                b12:8         block dev_t
307  *                                c127:3        char dev_t
308  *                                n8            netdev ifindex
309  *                                +sound:card0  subsystem:devname
310  *   SUBSYSTEM=pci              driver-core subsystem name
311  *
312  * Valid characters in property names are [a-zA-Z0-9.-_]. The plain text value
313  * follows directly after a '=' character. Every property is terminated by
314  * a '\0' character. The last property is not terminated.
315  *
316  * Example of a message structure:
317  *   0000  ff 8f 00 00 00 00 00 00      monotonic time in nsec
318  *   0008  34 00                        record is 52 bytes long
319  *   000a        0b 00                  text is 11 bytes long
320  *   000c              1f 00            dictionary is 23 bytes long
321  *   000e                    03 00      LOG_KERN (facility) LOG_ERR (level)
322  *   0010  69 74 27 73 20 61 20 6c      "it's a l"
323  *         69 6e 65                     "ine"
324  *   001b           44 45 56 49 43      "DEVIC"
325  *         45 3d 62 38 3a 32 00 44      "E=b8:2\0D"
326  *         52 49 56 45 52 3d 62 75      "RIVER=bu"
327  *         67                           "g"
328  *   0032     00 00 00                  padding to next message header
329  *
330  * The 'struct printk_log' buffer header must never be directly exported to
331  * userspace, it is a kernel-private implementation detail that might
332  * need to be changed in the future, when the requirements change.
333  *
334  * /dev/kmsg exports the structured data in the following line format:
335  *   "<level>,<sequnum>,<timestamp>,<contflag>[,additional_values, ... ];<message text>\n"
336  *
337  * Users of the export format should ignore possible additional values
338  * separated by ',', and find the message after the ';' character.
339  *
340  * The optional key/value pairs are attached as continuation lines starting
341  * with a space character and terminated by a newline. All possible
342  * non-prinatable characters are escaped in the "\xff" notation.
343  */
344 
345 enum log_flags {
346 	LOG_NEWLINE	= 2,	/* text ended with a newline */
347 	LOG_PREFIX	= 4,	/* text started with a prefix */
348 	LOG_CONT	= 8,	/* text is a fragment of a continuation line */
349 };
350 
351 struct printk_log {
352 	u64 ts_nsec;		/* timestamp in nanoseconds */
353 	u16 len;		/* length of entire record */
354 	u16 text_len;		/* length of text buffer */
355 	u16 dict_len;		/* length of dictionary buffer */
356 	u8 facility;		/* syslog facility */
357 	u8 flags:5;		/* internal record flags */
358 	u8 level:3;		/* syslog level */
359 }
360 #ifdef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
361 __packed __aligned(4)
362 #endif
363 ;
364 
365 /*
366  * The logbuf_lock protects kmsg buffer, indices, counters.  This can be taken
367  * within the scheduler's rq lock. It must be released before calling
368  * console_unlock() or anything else that might wake up a process.
369  */
370 DEFINE_RAW_SPINLOCK(logbuf_lock);
371 
372 /*
373  * Helper macros to lock/unlock logbuf_lock and switch between
374  * printk-safe/unsafe modes.
375  */
376 #define logbuf_lock_irq()				\
377 	do {						\
378 		printk_safe_enter_irq();		\
379 		raw_spin_lock(&logbuf_lock);		\
380 	} while (0)
381 
382 #define logbuf_unlock_irq()				\
383 	do {						\
384 		raw_spin_unlock(&logbuf_lock);		\
385 		printk_safe_exit_irq();			\
386 	} while (0)
387 
388 #define logbuf_lock_irqsave(flags)			\
389 	do {						\
390 		printk_safe_enter_irqsave(flags);	\
391 		raw_spin_lock(&logbuf_lock);		\
392 	} while (0)
393 
394 #define logbuf_unlock_irqrestore(flags)		\
395 	do {						\
396 		raw_spin_unlock(&logbuf_lock);		\
397 		printk_safe_exit_irqrestore(flags);	\
398 	} while (0)
399 
400 #ifdef CONFIG_PRINTK
401 DECLARE_WAIT_QUEUE_HEAD(log_wait);
402 /* the next printk record to read by syslog(READ) or /proc/kmsg */
403 static u64 syslog_seq;
404 static u32 syslog_idx;
405 static size_t syslog_partial;
406 static bool syslog_time;
407 
408 /* index and sequence number of the first record stored in the buffer */
409 static u64 log_first_seq;
410 static u32 log_first_idx;
411 
412 /* index and sequence number of the next record to store in the buffer */
413 static u64 log_next_seq;
414 static u32 log_next_idx;
415 
416 /* the next printk record to write to the console */
417 static u64 console_seq;
418 static u32 console_idx;
419 static u64 exclusive_console_stop_seq;
420 
421 /* the next printk record to read after the last 'clear' command */
422 static u64 clear_seq;
423 static u32 clear_idx;
424 
425 #define PREFIX_MAX		32
426 #define LOG_LINE_MAX		(1024 - PREFIX_MAX)
427 
428 #define LOG_LEVEL(v)		((v) & 0x07)
429 #define LOG_FACILITY(v)		((v) >> 3 & 0xff)
430 
431 /* record buffer */
432 #define LOG_ALIGN __alignof__(struct printk_log)
433 #define __LOG_BUF_LEN (1 << CONFIG_LOG_BUF_SHIFT)
434 #define LOG_BUF_LEN_MAX (u32)(1 << 31)
435 static char __log_buf[__LOG_BUF_LEN] __aligned(LOG_ALIGN);
436 static char *log_buf = __log_buf;
437 static u32 log_buf_len = __LOG_BUF_LEN;
438 
439 /* Return log buffer address */
440 char *log_buf_addr_get(void)
441 {
442 	return log_buf;
443 }
444 
445 /* Return log buffer size */
446 u32 log_buf_len_get(void)
447 {
448 	return log_buf_len;
449 }
450 
451 /* human readable text of the record */
452 static char *log_text(const struct printk_log *msg)
453 {
454 	return (char *)msg + sizeof(struct printk_log);
455 }
456 
457 /* optional key/value pair dictionary attached to the record */
458 static char *log_dict(const struct printk_log *msg)
459 {
460 	return (char *)msg + sizeof(struct printk_log) + msg->text_len;
461 }
462 
463 /* get record by index; idx must point to valid msg */
464 static struct printk_log *log_from_idx(u32 idx)
465 {
466 	struct printk_log *msg = (struct printk_log *)(log_buf + idx);
467 
468 	/*
469 	 * A length == 0 record is the end of buffer marker. Wrap around and
470 	 * read the message at the start of the buffer.
471 	 */
472 	if (!msg->len)
473 		return (struct printk_log *)log_buf;
474 	return msg;
475 }
476 
477 /* get next record; idx must point to valid msg */
478 static u32 log_next(u32 idx)
479 {
480 	struct printk_log *msg = (struct printk_log *)(log_buf + idx);
481 
482 	/* length == 0 indicates the end of the buffer; wrap */
483 	/*
484 	 * A length == 0 record is the end of buffer marker. Wrap around and
485 	 * read the message at the start of the buffer as *this* one, and
486 	 * return the one after that.
487 	 */
488 	if (!msg->len) {
489 		msg = (struct printk_log *)log_buf;
490 		return msg->len;
491 	}
492 	return idx + msg->len;
493 }
494 
495 /*
496  * Check whether there is enough free space for the given message.
497  *
498  * The same values of first_idx and next_idx mean that the buffer
499  * is either empty or full.
500  *
501  * If the buffer is empty, we must respect the position of the indexes.
502  * They cannot be reset to the beginning of the buffer.
503  */
504 static int logbuf_has_space(u32 msg_size, bool empty)
505 {
506 	u32 free;
507 
508 	if (log_next_idx > log_first_idx || empty)
509 		free = max(log_buf_len - log_next_idx, log_first_idx);
510 	else
511 		free = log_first_idx - log_next_idx;
512 
513 	/*
514 	 * We need space also for an empty header that signalizes wrapping
515 	 * of the buffer.
516 	 */
517 	return free >= msg_size + sizeof(struct printk_log);
518 }
519 
520 static int log_make_free_space(u32 msg_size)
521 {
522 	while (log_first_seq < log_next_seq &&
523 	       !logbuf_has_space(msg_size, false)) {
524 		/* drop old messages until we have enough contiguous space */
525 		log_first_idx = log_next(log_first_idx);
526 		log_first_seq++;
527 	}
528 
529 	if (clear_seq < log_first_seq) {
530 		clear_seq = log_first_seq;
531 		clear_idx = log_first_idx;
532 	}
533 
534 	/* sequence numbers are equal, so the log buffer is empty */
535 	if (logbuf_has_space(msg_size, log_first_seq == log_next_seq))
536 		return 0;
537 
538 	return -ENOMEM;
539 }
540 
541 /* compute the message size including the padding bytes */
542 static u32 msg_used_size(u16 text_len, u16 dict_len, u32 *pad_len)
543 {
544 	u32 size;
545 
546 	size = sizeof(struct printk_log) + text_len + dict_len;
547 	*pad_len = (-size) & (LOG_ALIGN - 1);
548 	size += *pad_len;
549 
550 	return size;
551 }
552 
553 /*
554  * Define how much of the log buffer we could take at maximum. The value
555  * must be greater than two. Note that only half of the buffer is available
556  * when the index points to the middle.
557  */
558 #define MAX_LOG_TAKE_PART 4
559 static const char trunc_msg[] = "<truncated>";
560 
561 static u32 truncate_msg(u16 *text_len, u16 *trunc_msg_len,
562 			u16 *dict_len, u32 *pad_len)
563 {
564 	/*
565 	 * The message should not take the whole buffer. Otherwise, it might
566 	 * get removed too soon.
567 	 */
568 	u32 max_text_len = log_buf_len / MAX_LOG_TAKE_PART;
569 	if (*text_len > max_text_len)
570 		*text_len = max_text_len;
571 	/* enable the warning message */
572 	*trunc_msg_len = strlen(trunc_msg);
573 	/* disable the "dict" completely */
574 	*dict_len = 0;
575 	/* compute the size again, count also the warning message */
576 	return msg_used_size(*text_len + *trunc_msg_len, 0, pad_len);
577 }
578 
579 /* insert record into the buffer, discard old ones, update heads */
580 static int log_store(int facility, int level,
581 		     enum log_flags flags, u64 ts_nsec,
582 		     const char *dict, u16 dict_len,
583 		     const char *text, u16 text_len)
584 {
585 	struct printk_log *msg;
586 	u32 size, pad_len;
587 	u16 trunc_msg_len = 0;
588 
589 	/* number of '\0' padding bytes to next message */
590 	size = msg_used_size(text_len, dict_len, &pad_len);
591 
592 	if (log_make_free_space(size)) {
593 		/* truncate the message if it is too long for empty buffer */
594 		size = truncate_msg(&text_len, &trunc_msg_len,
595 				    &dict_len, &pad_len);
596 		/* survive when the log buffer is too small for trunc_msg */
597 		if (log_make_free_space(size))
598 			return 0;
599 	}
600 
601 	if (log_next_idx + size + sizeof(struct printk_log) > log_buf_len) {
602 		/*
603 		 * This message + an additional empty header does not fit
604 		 * at the end of the buffer. Add an empty header with len == 0
605 		 * to signify a wrap around.
606 		 */
607 		memset(log_buf + log_next_idx, 0, sizeof(struct printk_log));
608 		log_next_idx = 0;
609 	}
610 
611 	/* fill message */
612 	msg = (struct printk_log *)(log_buf + log_next_idx);
613 	memcpy(log_text(msg), text, text_len);
614 	msg->text_len = text_len;
615 	if (trunc_msg_len) {
616 		memcpy(log_text(msg) + text_len, trunc_msg, trunc_msg_len);
617 		msg->text_len += trunc_msg_len;
618 	}
619 	memcpy(log_dict(msg), dict, dict_len);
620 	msg->dict_len = dict_len;
621 	msg->facility = facility;
622 	msg->level = level & 7;
623 	msg->flags = flags & 0x1f;
624 	if (ts_nsec > 0)
625 		msg->ts_nsec = ts_nsec;
626 	else
627 		msg->ts_nsec = local_clock();
628 	memset(log_dict(msg) + dict_len, 0, pad_len);
629 	msg->len = size;
630 
631 	/* insert message */
632 	log_next_idx += msg->len;
633 	log_next_seq++;
634 
635 	return msg->text_len;
636 }
637 
638 int dmesg_restrict = IS_ENABLED(CONFIG_SECURITY_DMESG_RESTRICT);
639 
640 static int syslog_action_restricted(int type)
641 {
642 	if (dmesg_restrict)
643 		return 1;
644 	/*
645 	 * Unless restricted, we allow "read all" and "get buffer size"
646 	 * for everybody.
647 	 */
648 	return type != SYSLOG_ACTION_READ_ALL &&
649 	       type != SYSLOG_ACTION_SIZE_BUFFER;
650 }
651 
652 static int check_syslog_permissions(int type, int source)
653 {
654 	/*
655 	 * If this is from /proc/kmsg and we've already opened it, then we've
656 	 * already done the capabilities checks at open time.
657 	 */
658 	if (source == SYSLOG_FROM_PROC && type != SYSLOG_ACTION_OPEN)
659 		goto ok;
660 
661 	if (syslog_action_restricted(type)) {
662 		if (capable(CAP_SYSLOG))
663 			goto ok;
664 		/*
665 		 * For historical reasons, accept CAP_SYS_ADMIN too, with
666 		 * a warning.
667 		 */
668 		if (capable(CAP_SYS_ADMIN)) {
669 			pr_warn_once("%s (%d): Attempt to access syslog with "
670 				     "CAP_SYS_ADMIN but no CAP_SYSLOG "
671 				     "(deprecated).\n",
672 				 current->comm, task_pid_nr(current));
673 			goto ok;
674 		}
675 		return -EPERM;
676 	}
677 ok:
678 	return security_syslog(type);
679 }
680 
681 static void append_char(char **pp, char *e, char c)
682 {
683 	if (*pp < e)
684 		*(*pp)++ = c;
685 }
686 
687 static ssize_t msg_print_ext_header(char *buf, size_t size,
688 				    struct printk_log *msg, u64 seq)
689 {
690 	u64 ts_usec = msg->ts_nsec;
691 
692 	do_div(ts_usec, 1000);
693 
694 	return scnprintf(buf, size, "%u,%llu,%llu,%c;",
695 		       (msg->facility << 3) | msg->level, seq, ts_usec,
696 		       msg->flags & LOG_CONT ? 'c' : '-');
697 }
698 
699 static ssize_t msg_print_ext_body(char *buf, size_t size,
700 				  char *dict, size_t dict_len,
701 				  char *text, size_t text_len)
702 {
703 	char *p = buf, *e = buf + size;
704 	size_t i;
705 
706 	/* escape non-printable characters */
707 	for (i = 0; i < text_len; i++) {
708 		unsigned char c = text[i];
709 
710 		if (c < ' ' || c >= 127 || c == '\\')
711 			p += scnprintf(p, e - p, "\\x%02x", c);
712 		else
713 			append_char(&p, e, c);
714 	}
715 	append_char(&p, e, '\n');
716 
717 	if (dict_len) {
718 		bool line = true;
719 
720 		for (i = 0; i < dict_len; i++) {
721 			unsigned char c = dict[i];
722 
723 			if (line) {
724 				append_char(&p, e, ' ');
725 				line = false;
726 			}
727 
728 			if (c == '\0') {
729 				append_char(&p, e, '\n');
730 				line = true;
731 				continue;
732 			}
733 
734 			if (c < ' ' || c >= 127 || c == '\\') {
735 				p += scnprintf(p, e - p, "\\x%02x", c);
736 				continue;
737 			}
738 
739 			append_char(&p, e, c);
740 		}
741 		append_char(&p, e, '\n');
742 	}
743 
744 	return p - buf;
745 }
746 
747 /* /dev/kmsg - userspace message inject/listen interface */
748 struct devkmsg_user {
749 	u64 seq;
750 	u32 idx;
751 	struct ratelimit_state rs;
752 	struct mutex lock;
753 	char buf[CONSOLE_EXT_LOG_MAX];
754 };
755 
756 static __printf(3, 4) __cold
757 int devkmsg_emit(int facility, int level, const char *fmt, ...)
758 {
759 	va_list args;
760 	int r;
761 
762 	va_start(args, fmt);
763 	r = vprintk_emit(facility, level, NULL, 0, fmt, args);
764 	va_end(args);
765 
766 	return r;
767 }
768 
769 static ssize_t devkmsg_write(struct kiocb *iocb, struct iov_iter *from)
770 {
771 	char *buf, *line;
772 	int level = default_message_loglevel;
773 	int facility = 1;	/* LOG_USER */
774 	struct file *file = iocb->ki_filp;
775 	struct devkmsg_user *user = file->private_data;
776 	size_t len = iov_iter_count(from);
777 	ssize_t ret = len;
778 
779 	if (!user || len > LOG_LINE_MAX)
780 		return -EINVAL;
781 
782 	/* Ignore when user logging is disabled. */
783 	if (devkmsg_log & DEVKMSG_LOG_MASK_OFF)
784 		return len;
785 
786 	/* Ratelimit when not explicitly enabled. */
787 	if (!(devkmsg_log & DEVKMSG_LOG_MASK_ON)) {
788 		if (!___ratelimit(&user->rs, current->comm))
789 			return ret;
790 	}
791 
792 	buf = kmalloc(len+1, GFP_KERNEL);
793 	if (buf == NULL)
794 		return -ENOMEM;
795 
796 	buf[len] = '\0';
797 	if (!copy_from_iter_full(buf, len, from)) {
798 		kfree(buf);
799 		return -EFAULT;
800 	}
801 
802 	/*
803 	 * Extract and skip the syslog prefix <[0-9]*>. Coming from userspace
804 	 * the decimal value represents 32bit, the lower 3 bit are the log
805 	 * level, the rest are the log facility.
806 	 *
807 	 * If no prefix or no userspace facility is specified, we
808 	 * enforce LOG_USER, to be able to reliably distinguish
809 	 * kernel-generated messages from userspace-injected ones.
810 	 */
811 	line = buf;
812 	if (line[0] == '<') {
813 		char *endp = NULL;
814 		unsigned int u;
815 
816 		u = simple_strtoul(line + 1, &endp, 10);
817 		if (endp && endp[0] == '>') {
818 			level = LOG_LEVEL(u);
819 			if (LOG_FACILITY(u) != 0)
820 				facility = LOG_FACILITY(u);
821 			endp++;
822 			len -= endp - line;
823 			line = endp;
824 		}
825 	}
826 
827 	devkmsg_emit(facility, level, "%s", line);
828 	kfree(buf);
829 	return ret;
830 }
831 
832 static ssize_t devkmsg_read(struct file *file, char __user *buf,
833 			    size_t count, loff_t *ppos)
834 {
835 	struct devkmsg_user *user = file->private_data;
836 	struct printk_log *msg;
837 	size_t len;
838 	ssize_t ret;
839 
840 	if (!user)
841 		return -EBADF;
842 
843 	ret = mutex_lock_interruptible(&user->lock);
844 	if (ret)
845 		return ret;
846 
847 	logbuf_lock_irq();
848 	while (user->seq == log_next_seq) {
849 		if (file->f_flags & O_NONBLOCK) {
850 			ret = -EAGAIN;
851 			logbuf_unlock_irq();
852 			goto out;
853 		}
854 
855 		logbuf_unlock_irq();
856 		ret = wait_event_interruptible(log_wait,
857 					       user->seq != log_next_seq);
858 		if (ret)
859 			goto out;
860 		logbuf_lock_irq();
861 	}
862 
863 	if (user->seq < log_first_seq) {
864 		/* our last seen message is gone, return error and reset */
865 		user->idx = log_first_idx;
866 		user->seq = log_first_seq;
867 		ret = -EPIPE;
868 		logbuf_unlock_irq();
869 		goto out;
870 	}
871 
872 	msg = log_from_idx(user->idx);
873 	len = msg_print_ext_header(user->buf, sizeof(user->buf),
874 				   msg, user->seq);
875 	len += msg_print_ext_body(user->buf + len, sizeof(user->buf) - len,
876 				  log_dict(msg), msg->dict_len,
877 				  log_text(msg), msg->text_len);
878 
879 	user->idx = log_next(user->idx);
880 	user->seq++;
881 	logbuf_unlock_irq();
882 
883 	if (len > count) {
884 		ret = -EINVAL;
885 		goto out;
886 	}
887 
888 	if (copy_to_user(buf, user->buf, len)) {
889 		ret = -EFAULT;
890 		goto out;
891 	}
892 	ret = len;
893 out:
894 	mutex_unlock(&user->lock);
895 	return ret;
896 }
897 
898 static loff_t devkmsg_llseek(struct file *file, loff_t offset, int whence)
899 {
900 	struct devkmsg_user *user = file->private_data;
901 	loff_t ret = 0;
902 
903 	if (!user)
904 		return -EBADF;
905 	if (offset)
906 		return -ESPIPE;
907 
908 	logbuf_lock_irq();
909 	switch (whence) {
910 	case SEEK_SET:
911 		/* the first record */
912 		user->idx = log_first_idx;
913 		user->seq = log_first_seq;
914 		break;
915 	case SEEK_DATA:
916 		/*
917 		 * The first record after the last SYSLOG_ACTION_CLEAR,
918 		 * like issued by 'dmesg -c'. Reading /dev/kmsg itself
919 		 * changes no global state, and does not clear anything.
920 		 */
921 		user->idx = clear_idx;
922 		user->seq = clear_seq;
923 		break;
924 	case SEEK_END:
925 		/* after the last record */
926 		user->idx = log_next_idx;
927 		user->seq = log_next_seq;
928 		break;
929 	default:
930 		ret = -EINVAL;
931 	}
932 	logbuf_unlock_irq();
933 	return ret;
934 }
935 
936 static __poll_t devkmsg_poll(struct file *file, poll_table *wait)
937 {
938 	struct devkmsg_user *user = file->private_data;
939 	__poll_t ret = 0;
940 
941 	if (!user)
942 		return EPOLLERR|EPOLLNVAL;
943 
944 	poll_wait(file, &log_wait, wait);
945 
946 	logbuf_lock_irq();
947 	if (user->seq < log_next_seq) {
948 		/* return error when data has vanished underneath us */
949 		if (user->seq < log_first_seq)
950 			ret = EPOLLIN|EPOLLRDNORM|EPOLLERR|EPOLLPRI;
951 		else
952 			ret = EPOLLIN|EPOLLRDNORM;
953 	}
954 	logbuf_unlock_irq();
955 
956 	return ret;
957 }
958 
959 static int devkmsg_open(struct inode *inode, struct file *file)
960 {
961 	struct devkmsg_user *user;
962 	int err;
963 
964 	if (devkmsg_log & DEVKMSG_LOG_MASK_OFF)
965 		return -EPERM;
966 
967 	/* write-only does not need any file context */
968 	if ((file->f_flags & O_ACCMODE) != O_WRONLY) {
969 		err = check_syslog_permissions(SYSLOG_ACTION_READ_ALL,
970 					       SYSLOG_FROM_READER);
971 		if (err)
972 			return err;
973 	}
974 
975 	user = kmalloc(sizeof(struct devkmsg_user), GFP_KERNEL);
976 	if (!user)
977 		return -ENOMEM;
978 
979 	ratelimit_default_init(&user->rs);
980 	ratelimit_set_flags(&user->rs, RATELIMIT_MSG_ON_RELEASE);
981 
982 	mutex_init(&user->lock);
983 
984 	logbuf_lock_irq();
985 	user->idx = log_first_idx;
986 	user->seq = log_first_seq;
987 	logbuf_unlock_irq();
988 
989 	file->private_data = user;
990 	return 0;
991 }
992 
993 static int devkmsg_release(struct inode *inode, struct file *file)
994 {
995 	struct devkmsg_user *user = file->private_data;
996 
997 	if (!user)
998 		return 0;
999 
1000 	ratelimit_state_exit(&user->rs);
1001 
1002 	mutex_destroy(&user->lock);
1003 	kfree(user);
1004 	return 0;
1005 }
1006 
1007 const struct file_operations kmsg_fops = {
1008 	.open = devkmsg_open,
1009 	.read = devkmsg_read,
1010 	.write_iter = devkmsg_write,
1011 	.llseek = devkmsg_llseek,
1012 	.poll = devkmsg_poll,
1013 	.release = devkmsg_release,
1014 };
1015 
1016 #ifdef CONFIG_CRASH_CORE
1017 /*
1018  * This appends the listed symbols to /proc/vmcore
1019  *
1020  * /proc/vmcore is used by various utilities, like crash and makedumpfile to
1021  * obtain access to symbols that are otherwise very difficult to locate.  These
1022  * symbols are specifically used so that utilities can access and extract the
1023  * dmesg log from a vmcore file after a crash.
1024  */
1025 void log_buf_vmcoreinfo_setup(void)
1026 {
1027 	VMCOREINFO_SYMBOL(log_buf);
1028 	VMCOREINFO_SYMBOL(log_buf_len);
1029 	VMCOREINFO_SYMBOL(log_first_idx);
1030 	VMCOREINFO_SYMBOL(clear_idx);
1031 	VMCOREINFO_SYMBOL(log_next_idx);
1032 	/*
1033 	 * Export struct printk_log size and field offsets. User space tools can
1034 	 * parse it and detect any changes to structure down the line.
1035 	 */
1036 	VMCOREINFO_STRUCT_SIZE(printk_log);
1037 	VMCOREINFO_OFFSET(printk_log, ts_nsec);
1038 	VMCOREINFO_OFFSET(printk_log, len);
1039 	VMCOREINFO_OFFSET(printk_log, text_len);
1040 	VMCOREINFO_OFFSET(printk_log, dict_len);
1041 }
1042 #endif
1043 
1044 /* requested log_buf_len from kernel cmdline */
1045 static unsigned long __initdata new_log_buf_len;
1046 
1047 /* we practice scaling the ring buffer by powers of 2 */
1048 static void __init log_buf_len_update(u64 size)
1049 {
1050 	if (size > (u64)LOG_BUF_LEN_MAX) {
1051 		size = (u64)LOG_BUF_LEN_MAX;
1052 		pr_err("log_buf over 2G is not supported.\n");
1053 	}
1054 
1055 	if (size)
1056 		size = roundup_pow_of_two(size);
1057 	if (size > log_buf_len)
1058 		new_log_buf_len = (unsigned long)size;
1059 }
1060 
1061 /* save requested log_buf_len since it's too early to process it */
1062 static int __init log_buf_len_setup(char *str)
1063 {
1064 	u64 size;
1065 
1066 	if (!str)
1067 		return -EINVAL;
1068 
1069 	size = memparse(str, &str);
1070 
1071 	log_buf_len_update(size);
1072 
1073 	return 0;
1074 }
1075 early_param("log_buf_len", log_buf_len_setup);
1076 
1077 #ifdef CONFIG_SMP
1078 #define __LOG_CPU_MAX_BUF_LEN (1 << CONFIG_LOG_CPU_MAX_BUF_SHIFT)
1079 
1080 static void __init log_buf_add_cpu(void)
1081 {
1082 	unsigned int cpu_extra;
1083 
1084 	/*
1085 	 * archs should set up cpu_possible_bits properly with
1086 	 * set_cpu_possible() after setup_arch() but just in
1087 	 * case lets ensure this is valid.
1088 	 */
1089 	if (num_possible_cpus() == 1)
1090 		return;
1091 
1092 	cpu_extra = (num_possible_cpus() - 1) * __LOG_CPU_MAX_BUF_LEN;
1093 
1094 	/* by default this will only continue through for large > 64 CPUs */
1095 	if (cpu_extra <= __LOG_BUF_LEN / 2)
1096 		return;
1097 
1098 	pr_info("log_buf_len individual max cpu contribution: %d bytes\n",
1099 		__LOG_CPU_MAX_BUF_LEN);
1100 	pr_info("log_buf_len total cpu_extra contributions: %d bytes\n",
1101 		cpu_extra);
1102 	pr_info("log_buf_len min size: %d bytes\n", __LOG_BUF_LEN);
1103 
1104 	log_buf_len_update(cpu_extra + __LOG_BUF_LEN);
1105 }
1106 #else /* !CONFIG_SMP */
1107 static inline void log_buf_add_cpu(void) {}
1108 #endif /* CONFIG_SMP */
1109 
1110 void __init setup_log_buf(int early)
1111 {
1112 	unsigned long flags;
1113 	char *new_log_buf;
1114 	unsigned int free;
1115 
1116 	if (log_buf != __log_buf)
1117 		return;
1118 
1119 	if (!early && !new_log_buf_len)
1120 		log_buf_add_cpu();
1121 
1122 	if (!new_log_buf_len)
1123 		return;
1124 
1125 	if (early) {
1126 		new_log_buf =
1127 			memblock_alloc(new_log_buf_len, LOG_ALIGN);
1128 	} else {
1129 		new_log_buf = memblock_alloc_nopanic(new_log_buf_len,
1130 							  LOG_ALIGN);
1131 	}
1132 
1133 	if (unlikely(!new_log_buf)) {
1134 		pr_err("log_buf_len: %lu bytes not available\n",
1135 			new_log_buf_len);
1136 		return;
1137 	}
1138 
1139 	logbuf_lock_irqsave(flags);
1140 	log_buf_len = new_log_buf_len;
1141 	log_buf = new_log_buf;
1142 	new_log_buf_len = 0;
1143 	free = __LOG_BUF_LEN - log_next_idx;
1144 	memcpy(log_buf, __log_buf, __LOG_BUF_LEN);
1145 	logbuf_unlock_irqrestore(flags);
1146 
1147 	pr_info("log_buf_len: %u bytes\n", log_buf_len);
1148 	pr_info("early log buf free: %u(%u%%)\n",
1149 		free, (free * 100) / __LOG_BUF_LEN);
1150 }
1151 
1152 static bool __read_mostly ignore_loglevel;
1153 
1154 static int __init ignore_loglevel_setup(char *str)
1155 {
1156 	ignore_loglevel = true;
1157 	pr_info("debug: ignoring loglevel setting.\n");
1158 
1159 	return 0;
1160 }
1161 
1162 early_param("ignore_loglevel", ignore_loglevel_setup);
1163 module_param(ignore_loglevel, bool, S_IRUGO | S_IWUSR);
1164 MODULE_PARM_DESC(ignore_loglevel,
1165 		 "ignore loglevel setting (prints all kernel messages to the console)");
1166 
1167 static bool suppress_message_printing(int level)
1168 {
1169 	return (level >= console_loglevel && !ignore_loglevel);
1170 }
1171 
1172 #ifdef CONFIG_BOOT_PRINTK_DELAY
1173 
1174 static int boot_delay; /* msecs delay after each printk during bootup */
1175 static unsigned long long loops_per_msec;	/* based on boot_delay */
1176 
1177 static int __init boot_delay_setup(char *str)
1178 {
1179 	unsigned long lpj;
1180 
1181 	lpj = preset_lpj ? preset_lpj : 1000000;	/* some guess */
1182 	loops_per_msec = (unsigned long long)lpj / 1000 * HZ;
1183 
1184 	get_option(&str, &boot_delay);
1185 	if (boot_delay > 10 * 1000)
1186 		boot_delay = 0;
1187 
1188 	pr_debug("boot_delay: %u, preset_lpj: %ld, lpj: %lu, "
1189 		"HZ: %d, loops_per_msec: %llu\n",
1190 		boot_delay, preset_lpj, lpj, HZ, loops_per_msec);
1191 	return 0;
1192 }
1193 early_param("boot_delay", boot_delay_setup);
1194 
1195 static void boot_delay_msec(int level)
1196 {
1197 	unsigned long long k;
1198 	unsigned long timeout;
1199 
1200 	if ((boot_delay == 0 || system_state >= SYSTEM_RUNNING)
1201 		|| suppress_message_printing(level)) {
1202 		return;
1203 	}
1204 
1205 	k = (unsigned long long)loops_per_msec * boot_delay;
1206 
1207 	timeout = jiffies + msecs_to_jiffies(boot_delay);
1208 	while (k) {
1209 		k--;
1210 		cpu_relax();
1211 		/*
1212 		 * use (volatile) jiffies to prevent
1213 		 * compiler reduction; loop termination via jiffies
1214 		 * is secondary and may or may not happen.
1215 		 */
1216 		if (time_after(jiffies, timeout))
1217 			break;
1218 		touch_nmi_watchdog();
1219 	}
1220 }
1221 #else
1222 static inline void boot_delay_msec(int level)
1223 {
1224 }
1225 #endif
1226 
1227 static bool printk_time = IS_ENABLED(CONFIG_PRINTK_TIME);
1228 module_param_named(time, printk_time, bool, S_IRUGO | S_IWUSR);
1229 
1230 static size_t print_syslog(unsigned int level, char *buf)
1231 {
1232 	return sprintf(buf, "<%u>", level);
1233 }
1234 
1235 static size_t print_time(u64 ts, char *buf)
1236 {
1237 	unsigned long rem_nsec = do_div(ts, 1000000000);
1238 
1239 	return sprintf(buf, "[%5lu.%06lu] ",
1240 		       (unsigned long)ts, rem_nsec / 1000);
1241 }
1242 
1243 static size_t print_prefix(const struct printk_log *msg, bool syslog,
1244 			   bool time, char *buf)
1245 {
1246 	size_t len = 0;
1247 
1248 	if (syslog)
1249 		len = print_syslog((msg->facility << 3) | msg->level, buf);
1250 	if (time)
1251 		len += print_time(msg->ts_nsec, buf + len);
1252 	return len;
1253 }
1254 
1255 static size_t msg_print_text(const struct printk_log *msg, bool syslog,
1256 			     bool time, char *buf, size_t size)
1257 {
1258 	const char *text = log_text(msg);
1259 	size_t text_size = msg->text_len;
1260 	size_t len = 0;
1261 	char prefix[PREFIX_MAX];
1262 	const size_t prefix_len = print_prefix(msg, syslog, time, prefix);
1263 
1264 	do {
1265 		const char *next = memchr(text, '\n', text_size);
1266 		size_t text_len;
1267 
1268 		if (next) {
1269 			text_len = next - text;
1270 			next++;
1271 			text_size -= next - text;
1272 		} else {
1273 			text_len = text_size;
1274 		}
1275 
1276 		if (buf) {
1277 			if (prefix_len + text_len + 1 >= size - len)
1278 				break;
1279 
1280 			memcpy(buf + len, prefix, prefix_len);
1281 			len += prefix_len;
1282 			memcpy(buf + len, text, text_len);
1283 			len += text_len;
1284 			buf[len++] = '\n';
1285 		} else {
1286 			/* SYSLOG_ACTION_* buffer size only calculation */
1287 			len += prefix_len + text_len + 1;
1288 		}
1289 
1290 		text = next;
1291 	} while (text);
1292 
1293 	return len;
1294 }
1295 
1296 static int syslog_print(char __user *buf, int size)
1297 {
1298 	char *text;
1299 	struct printk_log *msg;
1300 	int len = 0;
1301 
1302 	text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
1303 	if (!text)
1304 		return -ENOMEM;
1305 
1306 	while (size > 0) {
1307 		size_t n;
1308 		size_t skip;
1309 
1310 		logbuf_lock_irq();
1311 		if (syslog_seq < log_first_seq) {
1312 			/* messages are gone, move to first one */
1313 			syslog_seq = log_first_seq;
1314 			syslog_idx = log_first_idx;
1315 			syslog_partial = 0;
1316 		}
1317 		if (syslog_seq == log_next_seq) {
1318 			logbuf_unlock_irq();
1319 			break;
1320 		}
1321 
1322 		/*
1323 		 * To keep reading/counting partial line consistent,
1324 		 * use printk_time value as of the beginning of a line.
1325 		 */
1326 		if (!syslog_partial)
1327 			syslog_time = printk_time;
1328 
1329 		skip = syslog_partial;
1330 		msg = log_from_idx(syslog_idx);
1331 		n = msg_print_text(msg, true, syslog_time, text,
1332 				   LOG_LINE_MAX + PREFIX_MAX);
1333 		if (n - syslog_partial <= size) {
1334 			/* message fits into buffer, move forward */
1335 			syslog_idx = log_next(syslog_idx);
1336 			syslog_seq++;
1337 			n -= syslog_partial;
1338 			syslog_partial = 0;
1339 		} else if (!len){
1340 			/* partial read(), remember position */
1341 			n = size;
1342 			syslog_partial += n;
1343 		} else
1344 			n = 0;
1345 		logbuf_unlock_irq();
1346 
1347 		if (!n)
1348 			break;
1349 
1350 		if (copy_to_user(buf, text + skip, n)) {
1351 			if (!len)
1352 				len = -EFAULT;
1353 			break;
1354 		}
1355 
1356 		len += n;
1357 		size -= n;
1358 		buf += n;
1359 	}
1360 
1361 	kfree(text);
1362 	return len;
1363 }
1364 
1365 static int syslog_print_all(char __user *buf, int size, bool clear)
1366 {
1367 	char *text;
1368 	int len = 0;
1369 	u64 next_seq;
1370 	u64 seq;
1371 	u32 idx;
1372 	bool time;
1373 
1374 	text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
1375 	if (!text)
1376 		return -ENOMEM;
1377 
1378 	time = printk_time;
1379 	logbuf_lock_irq();
1380 	/*
1381 	 * Find first record that fits, including all following records,
1382 	 * into the user-provided buffer for this dump.
1383 	 */
1384 	seq = clear_seq;
1385 	idx = clear_idx;
1386 	while (seq < log_next_seq) {
1387 		struct printk_log *msg = log_from_idx(idx);
1388 
1389 		len += msg_print_text(msg, true, time, NULL, 0);
1390 		idx = log_next(idx);
1391 		seq++;
1392 	}
1393 
1394 	/* move first record forward until length fits into the buffer */
1395 	seq = clear_seq;
1396 	idx = clear_idx;
1397 	while (len > size && seq < log_next_seq) {
1398 		struct printk_log *msg = log_from_idx(idx);
1399 
1400 		len -= msg_print_text(msg, true, time, NULL, 0);
1401 		idx = log_next(idx);
1402 		seq++;
1403 	}
1404 
1405 	/* last message fitting into this dump */
1406 	next_seq = log_next_seq;
1407 
1408 	len = 0;
1409 	while (len >= 0 && seq < next_seq) {
1410 		struct printk_log *msg = log_from_idx(idx);
1411 		int textlen = msg_print_text(msg, true, time, text,
1412 					     LOG_LINE_MAX + PREFIX_MAX);
1413 
1414 		idx = log_next(idx);
1415 		seq++;
1416 
1417 		logbuf_unlock_irq();
1418 		if (copy_to_user(buf + len, text, textlen))
1419 			len = -EFAULT;
1420 		else
1421 			len += textlen;
1422 		logbuf_lock_irq();
1423 
1424 		if (seq < log_first_seq) {
1425 			/* messages are gone, move to next one */
1426 			seq = log_first_seq;
1427 			idx = log_first_idx;
1428 		}
1429 	}
1430 
1431 	if (clear) {
1432 		clear_seq = log_next_seq;
1433 		clear_idx = log_next_idx;
1434 	}
1435 	logbuf_unlock_irq();
1436 
1437 	kfree(text);
1438 	return len;
1439 }
1440 
1441 static void syslog_clear(void)
1442 {
1443 	logbuf_lock_irq();
1444 	clear_seq = log_next_seq;
1445 	clear_idx = log_next_idx;
1446 	logbuf_unlock_irq();
1447 }
1448 
1449 int do_syslog(int type, char __user *buf, int len, int source)
1450 {
1451 	bool clear = false;
1452 	static int saved_console_loglevel = LOGLEVEL_DEFAULT;
1453 	int error;
1454 
1455 	error = check_syslog_permissions(type, source);
1456 	if (error)
1457 		return error;
1458 
1459 	switch (type) {
1460 	case SYSLOG_ACTION_CLOSE:	/* Close log */
1461 		break;
1462 	case SYSLOG_ACTION_OPEN:	/* Open log */
1463 		break;
1464 	case SYSLOG_ACTION_READ:	/* Read from log */
1465 		if (!buf || len < 0)
1466 			return -EINVAL;
1467 		if (!len)
1468 			return 0;
1469 		if (!access_ok(buf, len))
1470 			return -EFAULT;
1471 		error = wait_event_interruptible(log_wait,
1472 						 syslog_seq != log_next_seq);
1473 		if (error)
1474 			return error;
1475 		error = syslog_print(buf, len);
1476 		break;
1477 	/* Read/clear last kernel messages */
1478 	case SYSLOG_ACTION_READ_CLEAR:
1479 		clear = true;
1480 		/* FALL THRU */
1481 	/* Read last kernel messages */
1482 	case SYSLOG_ACTION_READ_ALL:
1483 		if (!buf || len < 0)
1484 			return -EINVAL;
1485 		if (!len)
1486 			return 0;
1487 		if (!access_ok(buf, len))
1488 			return -EFAULT;
1489 		error = syslog_print_all(buf, len, clear);
1490 		break;
1491 	/* Clear ring buffer */
1492 	case SYSLOG_ACTION_CLEAR:
1493 		syslog_clear();
1494 		break;
1495 	/* Disable logging to console */
1496 	case SYSLOG_ACTION_CONSOLE_OFF:
1497 		if (saved_console_loglevel == LOGLEVEL_DEFAULT)
1498 			saved_console_loglevel = console_loglevel;
1499 		console_loglevel = minimum_console_loglevel;
1500 		break;
1501 	/* Enable logging to console */
1502 	case SYSLOG_ACTION_CONSOLE_ON:
1503 		if (saved_console_loglevel != LOGLEVEL_DEFAULT) {
1504 			console_loglevel = saved_console_loglevel;
1505 			saved_console_loglevel = LOGLEVEL_DEFAULT;
1506 		}
1507 		break;
1508 	/* Set level of messages printed to console */
1509 	case SYSLOG_ACTION_CONSOLE_LEVEL:
1510 		if (len < 1 || len > 8)
1511 			return -EINVAL;
1512 		if (len < minimum_console_loglevel)
1513 			len = minimum_console_loglevel;
1514 		console_loglevel = len;
1515 		/* Implicitly re-enable logging to console */
1516 		saved_console_loglevel = LOGLEVEL_DEFAULT;
1517 		break;
1518 	/* Number of chars in the log buffer */
1519 	case SYSLOG_ACTION_SIZE_UNREAD:
1520 		logbuf_lock_irq();
1521 		if (syslog_seq < log_first_seq) {
1522 			/* messages are gone, move to first one */
1523 			syslog_seq = log_first_seq;
1524 			syslog_idx = log_first_idx;
1525 			syslog_partial = 0;
1526 		}
1527 		if (source == SYSLOG_FROM_PROC) {
1528 			/*
1529 			 * Short-cut for poll(/"proc/kmsg") which simply checks
1530 			 * for pending data, not the size; return the count of
1531 			 * records, not the length.
1532 			 */
1533 			error = log_next_seq - syslog_seq;
1534 		} else {
1535 			u64 seq = syslog_seq;
1536 			u32 idx = syslog_idx;
1537 			bool time = syslog_partial ? syslog_time : printk_time;
1538 
1539 			while (seq < log_next_seq) {
1540 				struct printk_log *msg = log_from_idx(idx);
1541 
1542 				error += msg_print_text(msg, true, time, NULL,
1543 							0);
1544 				time = printk_time;
1545 				idx = log_next(idx);
1546 				seq++;
1547 			}
1548 			error -= syslog_partial;
1549 		}
1550 		logbuf_unlock_irq();
1551 		break;
1552 	/* Size of the log buffer */
1553 	case SYSLOG_ACTION_SIZE_BUFFER:
1554 		error = log_buf_len;
1555 		break;
1556 	default:
1557 		error = -EINVAL;
1558 		break;
1559 	}
1560 
1561 	return error;
1562 }
1563 
1564 SYSCALL_DEFINE3(syslog, int, type, char __user *, buf, int, len)
1565 {
1566 	return do_syslog(type, buf, len, SYSLOG_FROM_READER);
1567 }
1568 
1569 /*
1570  * Special console_lock variants that help to reduce the risk of soft-lockups.
1571  * They allow to pass console_lock to another printk() call using a busy wait.
1572  */
1573 
1574 #ifdef CONFIG_LOCKDEP
1575 static struct lockdep_map console_owner_dep_map = {
1576 	.name = "console_owner"
1577 };
1578 #endif
1579 
1580 static DEFINE_RAW_SPINLOCK(console_owner_lock);
1581 static struct task_struct *console_owner;
1582 static bool console_waiter;
1583 
1584 /**
1585  * console_lock_spinning_enable - mark beginning of code where another
1586  *	thread might safely busy wait
1587  *
1588  * This basically converts console_lock into a spinlock. This marks
1589  * the section where the console_lock owner can not sleep, because
1590  * there may be a waiter spinning (like a spinlock). Also it must be
1591  * ready to hand over the lock at the end of the section.
1592  */
1593 static void console_lock_spinning_enable(void)
1594 {
1595 	raw_spin_lock(&console_owner_lock);
1596 	console_owner = current;
1597 	raw_spin_unlock(&console_owner_lock);
1598 
1599 	/* The waiter may spin on us after setting console_owner */
1600 	spin_acquire(&console_owner_dep_map, 0, 0, _THIS_IP_);
1601 }
1602 
1603 /**
1604  * console_lock_spinning_disable_and_check - mark end of code where another
1605  *	thread was able to busy wait and check if there is a waiter
1606  *
1607  * This is called at the end of the section where spinning is allowed.
1608  * It has two functions. First, it is a signal that it is no longer
1609  * safe to start busy waiting for the lock. Second, it checks if
1610  * there is a busy waiter and passes the lock rights to her.
1611  *
1612  * Important: Callers lose the lock if there was a busy waiter.
1613  *	They must not touch items synchronized by console_lock
1614  *	in this case.
1615  *
1616  * Return: 1 if the lock rights were passed, 0 otherwise.
1617  */
1618 static int console_lock_spinning_disable_and_check(void)
1619 {
1620 	int waiter;
1621 
1622 	raw_spin_lock(&console_owner_lock);
1623 	waiter = READ_ONCE(console_waiter);
1624 	console_owner = NULL;
1625 	raw_spin_unlock(&console_owner_lock);
1626 
1627 	if (!waiter) {
1628 		spin_release(&console_owner_dep_map, 1, _THIS_IP_);
1629 		return 0;
1630 	}
1631 
1632 	/* The waiter is now free to continue */
1633 	WRITE_ONCE(console_waiter, false);
1634 
1635 	spin_release(&console_owner_dep_map, 1, _THIS_IP_);
1636 
1637 	/*
1638 	 * Hand off console_lock to waiter. The waiter will perform
1639 	 * the up(). After this, the waiter is the console_lock owner.
1640 	 */
1641 	mutex_release(&console_lock_dep_map, 1, _THIS_IP_);
1642 	return 1;
1643 }
1644 
1645 /**
1646  * console_trylock_spinning - try to get console_lock by busy waiting
1647  *
1648  * This allows to busy wait for the console_lock when the current
1649  * owner is running in specially marked sections. It means that
1650  * the current owner is running and cannot reschedule until it
1651  * is ready to lose the lock.
1652  *
1653  * Return: 1 if we got the lock, 0 othrewise
1654  */
1655 static int console_trylock_spinning(void)
1656 {
1657 	struct task_struct *owner = NULL;
1658 	bool waiter;
1659 	bool spin = false;
1660 	unsigned long flags;
1661 
1662 	if (console_trylock())
1663 		return 1;
1664 
1665 	printk_safe_enter_irqsave(flags);
1666 
1667 	raw_spin_lock(&console_owner_lock);
1668 	owner = READ_ONCE(console_owner);
1669 	waiter = READ_ONCE(console_waiter);
1670 	if (!waiter && owner && owner != current) {
1671 		WRITE_ONCE(console_waiter, true);
1672 		spin = true;
1673 	}
1674 	raw_spin_unlock(&console_owner_lock);
1675 
1676 	/*
1677 	 * If there is an active printk() writing to the
1678 	 * consoles, instead of having it write our data too,
1679 	 * see if we can offload that load from the active
1680 	 * printer, and do some printing ourselves.
1681 	 * Go into a spin only if there isn't already a waiter
1682 	 * spinning, and there is an active printer, and
1683 	 * that active printer isn't us (recursive printk?).
1684 	 */
1685 	if (!spin) {
1686 		printk_safe_exit_irqrestore(flags);
1687 		return 0;
1688 	}
1689 
1690 	/* We spin waiting for the owner to release us */
1691 	spin_acquire(&console_owner_dep_map, 0, 0, _THIS_IP_);
1692 	/* Owner will clear console_waiter on hand off */
1693 	while (READ_ONCE(console_waiter))
1694 		cpu_relax();
1695 	spin_release(&console_owner_dep_map, 1, _THIS_IP_);
1696 
1697 	printk_safe_exit_irqrestore(flags);
1698 	/*
1699 	 * The owner passed the console lock to us.
1700 	 * Since we did not spin on console lock, annotate
1701 	 * this as a trylock. Otherwise lockdep will
1702 	 * complain.
1703 	 */
1704 	mutex_acquire(&console_lock_dep_map, 0, 1, _THIS_IP_);
1705 
1706 	return 1;
1707 }
1708 
1709 /*
1710  * Call the console drivers, asking them to write out
1711  * log_buf[start] to log_buf[end - 1].
1712  * The console_lock must be held.
1713  */
1714 static void call_console_drivers(const char *ext_text, size_t ext_len,
1715 				 const char *text, size_t len)
1716 {
1717 	struct console *con;
1718 
1719 	trace_console_rcuidle(text, len);
1720 
1721 	if (!console_drivers)
1722 		return;
1723 
1724 	for_each_console(con) {
1725 		if (exclusive_console && con != exclusive_console)
1726 			continue;
1727 		if (!(con->flags & CON_ENABLED))
1728 			continue;
1729 		if (!con->write)
1730 			continue;
1731 		if (!cpu_online(smp_processor_id()) &&
1732 		    !(con->flags & CON_ANYTIME))
1733 			continue;
1734 		if (con->flags & CON_EXTENDED)
1735 			con->write(con, ext_text, ext_len);
1736 		else
1737 			con->write(con, text, len);
1738 	}
1739 }
1740 
1741 int printk_delay_msec __read_mostly;
1742 
1743 static inline void printk_delay(void)
1744 {
1745 	if (unlikely(printk_delay_msec)) {
1746 		int m = printk_delay_msec;
1747 
1748 		while (m--) {
1749 			mdelay(1);
1750 			touch_nmi_watchdog();
1751 		}
1752 	}
1753 }
1754 
1755 /*
1756  * Continuation lines are buffered, and not committed to the record buffer
1757  * until the line is complete, or a race forces it. The line fragments
1758  * though, are printed immediately to the consoles to ensure everything has
1759  * reached the console in case of a kernel crash.
1760  */
1761 static struct cont {
1762 	char buf[LOG_LINE_MAX];
1763 	size_t len;			/* length == 0 means unused buffer */
1764 	struct task_struct *owner;	/* task of first print*/
1765 	u64 ts_nsec;			/* time of first print */
1766 	u8 level;			/* log level of first message */
1767 	u8 facility;			/* log facility of first message */
1768 	enum log_flags flags;		/* prefix, newline flags */
1769 } cont;
1770 
1771 static void cont_flush(void)
1772 {
1773 	if (cont.len == 0)
1774 		return;
1775 
1776 	log_store(cont.facility, cont.level, cont.flags, cont.ts_nsec,
1777 		  NULL, 0, cont.buf, cont.len);
1778 	cont.len = 0;
1779 }
1780 
1781 static bool cont_add(int facility, int level, enum log_flags flags, const char *text, size_t len)
1782 {
1783 	/* If the line gets too long, split it up in separate records. */
1784 	if (cont.len + len > sizeof(cont.buf)) {
1785 		cont_flush();
1786 		return false;
1787 	}
1788 
1789 	if (!cont.len) {
1790 		cont.facility = facility;
1791 		cont.level = level;
1792 		cont.owner = current;
1793 		cont.ts_nsec = local_clock();
1794 		cont.flags = flags;
1795 	}
1796 
1797 	memcpy(cont.buf + cont.len, text, len);
1798 	cont.len += len;
1799 
1800 	// The original flags come from the first line,
1801 	// but later continuations can add a newline.
1802 	if (flags & LOG_NEWLINE) {
1803 		cont.flags |= LOG_NEWLINE;
1804 		cont_flush();
1805 	}
1806 
1807 	return true;
1808 }
1809 
1810 static size_t log_output(int facility, int level, enum log_flags lflags, const char *dict, size_t dictlen, char *text, size_t text_len)
1811 {
1812 	/*
1813 	 * If an earlier line was buffered, and we're a continuation
1814 	 * write from the same process, try to add it to the buffer.
1815 	 */
1816 	if (cont.len) {
1817 		if (cont.owner == current && (lflags & LOG_CONT)) {
1818 			if (cont_add(facility, level, lflags, text, text_len))
1819 				return text_len;
1820 		}
1821 		/* Otherwise, make sure it's flushed */
1822 		cont_flush();
1823 	}
1824 
1825 	/* Skip empty continuation lines that couldn't be added - they just flush */
1826 	if (!text_len && (lflags & LOG_CONT))
1827 		return 0;
1828 
1829 	/* If it doesn't end in a newline, try to buffer the current line */
1830 	if (!(lflags & LOG_NEWLINE)) {
1831 		if (cont_add(facility, level, lflags, text, text_len))
1832 			return text_len;
1833 	}
1834 
1835 	/* Store it in the record log */
1836 	return log_store(facility, level, lflags, 0, dict, dictlen, text, text_len);
1837 }
1838 
1839 /* Must be called under logbuf_lock. */
1840 int vprintk_store(int facility, int level,
1841 		  const char *dict, size_t dictlen,
1842 		  const char *fmt, va_list args)
1843 {
1844 	static char textbuf[LOG_LINE_MAX];
1845 	char *text = textbuf;
1846 	size_t text_len;
1847 	enum log_flags lflags = 0;
1848 
1849 	/*
1850 	 * The printf needs to come first; we need the syslog
1851 	 * prefix which might be passed-in as a parameter.
1852 	 */
1853 	text_len = vscnprintf(text, sizeof(textbuf), fmt, args);
1854 
1855 	/* mark and strip a trailing newline */
1856 	if (text_len && text[text_len-1] == '\n') {
1857 		text_len--;
1858 		lflags |= LOG_NEWLINE;
1859 	}
1860 
1861 	/* strip kernel syslog prefix and extract log level or control flags */
1862 	if (facility == 0) {
1863 		int kern_level;
1864 
1865 		while ((kern_level = printk_get_level(text)) != 0) {
1866 			switch (kern_level) {
1867 			case '0' ... '7':
1868 				if (level == LOGLEVEL_DEFAULT)
1869 					level = kern_level - '0';
1870 				/* fallthrough */
1871 			case 'd':	/* KERN_DEFAULT */
1872 				lflags |= LOG_PREFIX;
1873 				break;
1874 			case 'c':	/* KERN_CONT */
1875 				lflags |= LOG_CONT;
1876 			}
1877 
1878 			text_len -= 2;
1879 			text += 2;
1880 		}
1881 	}
1882 
1883 	if (level == LOGLEVEL_DEFAULT)
1884 		level = default_message_loglevel;
1885 
1886 	if (dict)
1887 		lflags |= LOG_PREFIX|LOG_NEWLINE;
1888 
1889 	return log_output(facility, level, lflags,
1890 			  dict, dictlen, text, text_len);
1891 }
1892 
1893 asmlinkage int vprintk_emit(int facility, int level,
1894 			    const char *dict, size_t dictlen,
1895 			    const char *fmt, va_list args)
1896 {
1897 	int printed_len;
1898 	bool in_sched = false, pending_output;
1899 	unsigned long flags;
1900 	u64 curr_log_seq;
1901 
1902 	if (level == LOGLEVEL_SCHED) {
1903 		level = LOGLEVEL_DEFAULT;
1904 		in_sched = true;
1905 	}
1906 
1907 	boot_delay_msec(level);
1908 	printk_delay();
1909 
1910 	/* This stops the holder of console_sem just where we want him */
1911 	logbuf_lock_irqsave(flags);
1912 	curr_log_seq = log_next_seq;
1913 	printed_len = vprintk_store(facility, level, dict, dictlen, fmt, args);
1914 	pending_output = (curr_log_seq != log_next_seq);
1915 	logbuf_unlock_irqrestore(flags);
1916 
1917 	/* If called from the scheduler, we can not call up(). */
1918 	if (!in_sched && pending_output) {
1919 		/*
1920 		 * Disable preemption to avoid being preempted while holding
1921 		 * console_sem which would prevent anyone from printing to
1922 		 * console
1923 		 */
1924 		preempt_disable();
1925 		/*
1926 		 * Try to acquire and then immediately release the console
1927 		 * semaphore.  The release will print out buffers and wake up
1928 		 * /dev/kmsg and syslog() users.
1929 		 */
1930 		if (console_trylock_spinning())
1931 			console_unlock();
1932 		preempt_enable();
1933 	}
1934 
1935 	if (pending_output)
1936 		wake_up_klogd();
1937 	return printed_len;
1938 }
1939 EXPORT_SYMBOL(vprintk_emit);
1940 
1941 asmlinkage int vprintk(const char *fmt, va_list args)
1942 {
1943 	return vprintk_func(fmt, args);
1944 }
1945 EXPORT_SYMBOL(vprintk);
1946 
1947 int vprintk_default(const char *fmt, va_list args)
1948 {
1949 	int r;
1950 
1951 #ifdef CONFIG_KGDB_KDB
1952 	/* Allow to pass printk() to kdb but avoid a recursion. */
1953 	if (unlikely(kdb_trap_printk && kdb_printf_cpu < 0)) {
1954 		r = vkdb_printf(KDB_MSGSRC_PRINTK, fmt, args);
1955 		return r;
1956 	}
1957 #endif
1958 	r = vprintk_emit(0, LOGLEVEL_DEFAULT, NULL, 0, fmt, args);
1959 
1960 	return r;
1961 }
1962 EXPORT_SYMBOL_GPL(vprintk_default);
1963 
1964 /**
1965  * printk - print a kernel message
1966  * @fmt: format string
1967  *
1968  * This is printk(). It can be called from any context. We want it to work.
1969  *
1970  * We try to grab the console_lock. If we succeed, it's easy - we log the
1971  * output and call the console drivers.  If we fail to get the semaphore, we
1972  * place the output into the log buffer and return. The current holder of
1973  * the console_sem will notice the new output in console_unlock(); and will
1974  * send it to the consoles before releasing the lock.
1975  *
1976  * One effect of this deferred printing is that code which calls printk() and
1977  * then changes console_loglevel may break. This is because console_loglevel
1978  * is inspected when the actual printing occurs.
1979  *
1980  * See also:
1981  * printf(3)
1982  *
1983  * See the vsnprintf() documentation for format string extensions over C99.
1984  */
1985 asmlinkage __visible int printk(const char *fmt, ...)
1986 {
1987 	va_list args;
1988 	int r;
1989 
1990 	va_start(args, fmt);
1991 	r = vprintk_func(fmt, args);
1992 	va_end(args);
1993 
1994 	return r;
1995 }
1996 EXPORT_SYMBOL(printk);
1997 
1998 #else /* CONFIG_PRINTK */
1999 
2000 #define LOG_LINE_MAX		0
2001 #define PREFIX_MAX		0
2002 #define printk_time		false
2003 
2004 static u64 syslog_seq;
2005 static u32 syslog_idx;
2006 static u64 console_seq;
2007 static u32 console_idx;
2008 static u64 exclusive_console_stop_seq;
2009 static u64 log_first_seq;
2010 static u32 log_first_idx;
2011 static u64 log_next_seq;
2012 static char *log_text(const struct printk_log *msg) { return NULL; }
2013 static char *log_dict(const struct printk_log *msg) { return NULL; }
2014 static struct printk_log *log_from_idx(u32 idx) { return NULL; }
2015 static u32 log_next(u32 idx) { return 0; }
2016 static ssize_t msg_print_ext_header(char *buf, size_t size,
2017 				    struct printk_log *msg,
2018 				    u64 seq) { return 0; }
2019 static ssize_t msg_print_ext_body(char *buf, size_t size,
2020 				  char *dict, size_t dict_len,
2021 				  char *text, size_t text_len) { return 0; }
2022 static void console_lock_spinning_enable(void) { }
2023 static int console_lock_spinning_disable_and_check(void) { return 0; }
2024 static void call_console_drivers(const char *ext_text, size_t ext_len,
2025 				 const char *text, size_t len) {}
2026 static size_t msg_print_text(const struct printk_log *msg, bool syslog,
2027 			     bool time, char *buf, size_t size) { return 0; }
2028 static bool suppress_message_printing(int level) { return false; }
2029 
2030 #endif /* CONFIG_PRINTK */
2031 
2032 #ifdef CONFIG_EARLY_PRINTK
2033 struct console *early_console;
2034 
2035 asmlinkage __visible void early_printk(const char *fmt, ...)
2036 {
2037 	va_list ap;
2038 	char buf[512];
2039 	int n;
2040 
2041 	if (!early_console)
2042 		return;
2043 
2044 	va_start(ap, fmt);
2045 	n = vscnprintf(buf, sizeof(buf), fmt, ap);
2046 	va_end(ap);
2047 
2048 	early_console->write(early_console, buf, n);
2049 }
2050 #endif
2051 
2052 static int __add_preferred_console(char *name, int idx, char *options,
2053 				   char *brl_options)
2054 {
2055 	struct console_cmdline *c;
2056 	int i;
2057 
2058 	/*
2059 	 *	See if this tty is not yet registered, and
2060 	 *	if we have a slot free.
2061 	 */
2062 	for (i = 0, c = console_cmdline;
2063 	     i < MAX_CMDLINECONSOLES && c->name[0];
2064 	     i++, c++) {
2065 		if (strcmp(c->name, name) == 0 && c->index == idx) {
2066 			if (!brl_options)
2067 				preferred_console = i;
2068 			return 0;
2069 		}
2070 	}
2071 	if (i == MAX_CMDLINECONSOLES)
2072 		return -E2BIG;
2073 	if (!brl_options)
2074 		preferred_console = i;
2075 	strlcpy(c->name, name, sizeof(c->name));
2076 	c->options = options;
2077 	braille_set_options(c, brl_options);
2078 
2079 	c->index = idx;
2080 	return 0;
2081 }
2082 
2083 static int __init console_msg_format_setup(char *str)
2084 {
2085 	if (!strcmp(str, "syslog"))
2086 		console_msg_format = MSG_FORMAT_SYSLOG;
2087 	if (!strcmp(str, "default"))
2088 		console_msg_format = MSG_FORMAT_DEFAULT;
2089 	return 1;
2090 }
2091 __setup("console_msg_format=", console_msg_format_setup);
2092 
2093 /*
2094  * Set up a console.  Called via do_early_param() in init/main.c
2095  * for each "console=" parameter in the boot command line.
2096  */
2097 static int __init console_setup(char *str)
2098 {
2099 	char buf[sizeof(console_cmdline[0].name) + 4]; /* 4 for "ttyS" */
2100 	char *s, *options, *brl_options = NULL;
2101 	int idx;
2102 
2103 	if (_braille_console_setup(&str, &brl_options))
2104 		return 1;
2105 
2106 	/*
2107 	 * Decode str into name, index, options.
2108 	 */
2109 	if (str[0] >= '0' && str[0] <= '9') {
2110 		strcpy(buf, "ttyS");
2111 		strncpy(buf + 4, str, sizeof(buf) - 5);
2112 	} else {
2113 		strncpy(buf, str, sizeof(buf) - 1);
2114 	}
2115 	buf[sizeof(buf) - 1] = 0;
2116 	options = strchr(str, ',');
2117 	if (options)
2118 		*(options++) = 0;
2119 #ifdef __sparc__
2120 	if (!strcmp(str, "ttya"))
2121 		strcpy(buf, "ttyS0");
2122 	if (!strcmp(str, "ttyb"))
2123 		strcpy(buf, "ttyS1");
2124 #endif
2125 	for (s = buf; *s; s++)
2126 		if (isdigit(*s) || *s == ',')
2127 			break;
2128 	idx = simple_strtoul(s, NULL, 10);
2129 	*s = 0;
2130 
2131 	__add_preferred_console(buf, idx, options, brl_options);
2132 	console_set_on_cmdline = 1;
2133 	return 1;
2134 }
2135 __setup("console=", console_setup);
2136 
2137 /**
2138  * add_preferred_console - add a device to the list of preferred consoles.
2139  * @name: device name
2140  * @idx: device index
2141  * @options: options for this console
2142  *
2143  * The last preferred console added will be used for kernel messages
2144  * and stdin/out/err for init.  Normally this is used by console_setup
2145  * above to handle user-supplied console arguments; however it can also
2146  * be used by arch-specific code either to override the user or more
2147  * commonly to provide a default console (ie from PROM variables) when
2148  * the user has not supplied one.
2149  */
2150 int add_preferred_console(char *name, int idx, char *options)
2151 {
2152 	return __add_preferred_console(name, idx, options, NULL);
2153 }
2154 
2155 bool console_suspend_enabled = true;
2156 EXPORT_SYMBOL(console_suspend_enabled);
2157 
2158 static int __init console_suspend_disable(char *str)
2159 {
2160 	console_suspend_enabled = false;
2161 	return 1;
2162 }
2163 __setup("no_console_suspend", console_suspend_disable);
2164 module_param_named(console_suspend, console_suspend_enabled,
2165 		bool, S_IRUGO | S_IWUSR);
2166 MODULE_PARM_DESC(console_suspend, "suspend console during suspend"
2167 	" and hibernate operations");
2168 
2169 /**
2170  * suspend_console - suspend the console subsystem
2171  *
2172  * This disables printk() while we go into suspend states
2173  */
2174 void suspend_console(void)
2175 {
2176 	if (!console_suspend_enabled)
2177 		return;
2178 	pr_info("Suspending console(s) (use no_console_suspend to debug)\n");
2179 	console_lock();
2180 	console_suspended = 1;
2181 	up_console_sem();
2182 }
2183 
2184 void resume_console(void)
2185 {
2186 	if (!console_suspend_enabled)
2187 		return;
2188 	down_console_sem();
2189 	console_suspended = 0;
2190 	console_unlock();
2191 }
2192 
2193 /**
2194  * console_cpu_notify - print deferred console messages after CPU hotplug
2195  * @cpu: unused
2196  *
2197  * If printk() is called from a CPU that is not online yet, the messages
2198  * will be printed on the console only if there are CON_ANYTIME consoles.
2199  * This function is called when a new CPU comes online (or fails to come
2200  * up) or goes offline.
2201  */
2202 static int console_cpu_notify(unsigned int cpu)
2203 {
2204 	if (!cpuhp_tasks_frozen) {
2205 		/* If trylock fails, someone else is doing the printing */
2206 		if (console_trylock())
2207 			console_unlock();
2208 	}
2209 	return 0;
2210 }
2211 
2212 /**
2213  * console_lock - lock the console system for exclusive use.
2214  *
2215  * Acquires a lock which guarantees that the caller has
2216  * exclusive access to the console system and the console_drivers list.
2217  *
2218  * Can sleep, returns nothing.
2219  */
2220 void console_lock(void)
2221 {
2222 	might_sleep();
2223 
2224 	down_console_sem();
2225 	if (console_suspended)
2226 		return;
2227 	console_locked = 1;
2228 	console_may_schedule = 1;
2229 }
2230 EXPORT_SYMBOL(console_lock);
2231 
2232 /**
2233  * console_trylock - try to lock the console system for exclusive use.
2234  *
2235  * Try to acquire a lock which guarantees that the caller has exclusive
2236  * access to the console system and the console_drivers list.
2237  *
2238  * returns 1 on success, and 0 on failure to acquire the lock.
2239  */
2240 int console_trylock(void)
2241 {
2242 	if (down_trylock_console_sem())
2243 		return 0;
2244 	if (console_suspended) {
2245 		up_console_sem();
2246 		return 0;
2247 	}
2248 	console_locked = 1;
2249 	console_may_schedule = 0;
2250 	return 1;
2251 }
2252 EXPORT_SYMBOL(console_trylock);
2253 
2254 int is_console_locked(void)
2255 {
2256 	return console_locked;
2257 }
2258 EXPORT_SYMBOL(is_console_locked);
2259 
2260 /*
2261  * Check if we have any console that is capable of printing while cpu is
2262  * booting or shutting down. Requires console_sem.
2263  */
2264 static int have_callable_console(void)
2265 {
2266 	struct console *con;
2267 
2268 	for_each_console(con)
2269 		if ((con->flags & CON_ENABLED) &&
2270 				(con->flags & CON_ANYTIME))
2271 			return 1;
2272 
2273 	return 0;
2274 }
2275 
2276 /*
2277  * Can we actually use the console at this time on this cpu?
2278  *
2279  * Console drivers may assume that per-cpu resources have been allocated. So
2280  * unless they're explicitly marked as being able to cope (CON_ANYTIME) don't
2281  * call them until this CPU is officially up.
2282  */
2283 static inline int can_use_console(void)
2284 {
2285 	return cpu_online(raw_smp_processor_id()) || have_callable_console();
2286 }
2287 
2288 /**
2289  * console_unlock - unlock the console system
2290  *
2291  * Releases the console_lock which the caller holds on the console system
2292  * and the console driver list.
2293  *
2294  * While the console_lock was held, console output may have been buffered
2295  * by printk().  If this is the case, console_unlock(); emits
2296  * the output prior to releasing the lock.
2297  *
2298  * If there is output waiting, we wake /dev/kmsg and syslog() users.
2299  *
2300  * console_unlock(); may be called from any context.
2301  */
2302 void console_unlock(void)
2303 {
2304 	static char ext_text[CONSOLE_EXT_LOG_MAX];
2305 	static char text[LOG_LINE_MAX + PREFIX_MAX];
2306 	unsigned long flags;
2307 	bool do_cond_resched, retry;
2308 
2309 	if (console_suspended) {
2310 		up_console_sem();
2311 		return;
2312 	}
2313 
2314 	/*
2315 	 * Console drivers are called with interrupts disabled, so
2316 	 * @console_may_schedule should be cleared before; however, we may
2317 	 * end up dumping a lot of lines, for example, if called from
2318 	 * console registration path, and should invoke cond_resched()
2319 	 * between lines if allowable.  Not doing so can cause a very long
2320 	 * scheduling stall on a slow console leading to RCU stall and
2321 	 * softlockup warnings which exacerbate the issue with more
2322 	 * messages practically incapacitating the system.
2323 	 *
2324 	 * console_trylock() is not able to detect the preemptive
2325 	 * context reliably. Therefore the value must be stored before
2326 	 * and cleared after the the "again" goto label.
2327 	 */
2328 	do_cond_resched = console_may_schedule;
2329 again:
2330 	console_may_schedule = 0;
2331 
2332 	/*
2333 	 * We released the console_sem lock, so we need to recheck if
2334 	 * cpu is online and (if not) is there at least one CON_ANYTIME
2335 	 * console.
2336 	 */
2337 	if (!can_use_console()) {
2338 		console_locked = 0;
2339 		up_console_sem();
2340 		return;
2341 	}
2342 
2343 	for (;;) {
2344 		struct printk_log *msg;
2345 		size_t ext_len = 0;
2346 		size_t len;
2347 
2348 		printk_safe_enter_irqsave(flags);
2349 		raw_spin_lock(&logbuf_lock);
2350 		if (console_seq < log_first_seq) {
2351 			len = sprintf(text,
2352 				      "** %llu printk messages dropped **\n",
2353 				      log_first_seq - console_seq);
2354 
2355 			/* messages are gone, move to first one */
2356 			console_seq = log_first_seq;
2357 			console_idx = log_first_idx;
2358 		} else {
2359 			len = 0;
2360 		}
2361 skip:
2362 		if (console_seq == log_next_seq)
2363 			break;
2364 
2365 		msg = log_from_idx(console_idx);
2366 		if (suppress_message_printing(msg->level)) {
2367 			/*
2368 			 * Skip record we have buffered and already printed
2369 			 * directly to the console when we received it, and
2370 			 * record that has level above the console loglevel.
2371 			 */
2372 			console_idx = log_next(console_idx);
2373 			console_seq++;
2374 			goto skip;
2375 		}
2376 
2377 		/* Output to all consoles once old messages replayed. */
2378 		if (unlikely(exclusive_console &&
2379 			     console_seq >= exclusive_console_stop_seq)) {
2380 			exclusive_console = NULL;
2381 		}
2382 
2383 		len += msg_print_text(msg,
2384 				console_msg_format & MSG_FORMAT_SYSLOG,
2385 				printk_time, text + len, sizeof(text) - len);
2386 		if (nr_ext_console_drivers) {
2387 			ext_len = msg_print_ext_header(ext_text,
2388 						sizeof(ext_text),
2389 						msg, console_seq);
2390 			ext_len += msg_print_ext_body(ext_text + ext_len,
2391 						sizeof(ext_text) - ext_len,
2392 						log_dict(msg), msg->dict_len,
2393 						log_text(msg), msg->text_len);
2394 		}
2395 		console_idx = log_next(console_idx);
2396 		console_seq++;
2397 		raw_spin_unlock(&logbuf_lock);
2398 
2399 		/*
2400 		 * While actively printing out messages, if another printk()
2401 		 * were to occur on another CPU, it may wait for this one to
2402 		 * finish. This task can not be preempted if there is a
2403 		 * waiter waiting to take over.
2404 		 */
2405 		console_lock_spinning_enable();
2406 
2407 		stop_critical_timings();	/* don't trace print latency */
2408 		call_console_drivers(ext_text, ext_len, text, len);
2409 		start_critical_timings();
2410 
2411 		if (console_lock_spinning_disable_and_check()) {
2412 			printk_safe_exit_irqrestore(flags);
2413 			return;
2414 		}
2415 
2416 		printk_safe_exit_irqrestore(flags);
2417 
2418 		if (do_cond_resched)
2419 			cond_resched();
2420 	}
2421 
2422 	console_locked = 0;
2423 
2424 	raw_spin_unlock(&logbuf_lock);
2425 
2426 	up_console_sem();
2427 
2428 	/*
2429 	 * Someone could have filled up the buffer again, so re-check if there's
2430 	 * something to flush. In case we cannot trylock the console_sem again,
2431 	 * there's a new owner and the console_unlock() from them will do the
2432 	 * flush, no worries.
2433 	 */
2434 	raw_spin_lock(&logbuf_lock);
2435 	retry = console_seq != log_next_seq;
2436 	raw_spin_unlock(&logbuf_lock);
2437 	printk_safe_exit_irqrestore(flags);
2438 
2439 	if (retry && console_trylock())
2440 		goto again;
2441 }
2442 EXPORT_SYMBOL(console_unlock);
2443 
2444 /**
2445  * console_conditional_schedule - yield the CPU if required
2446  *
2447  * If the console code is currently allowed to sleep, and
2448  * if this CPU should yield the CPU to another task, do
2449  * so here.
2450  *
2451  * Must be called within console_lock();.
2452  */
2453 void __sched console_conditional_schedule(void)
2454 {
2455 	if (console_may_schedule)
2456 		cond_resched();
2457 }
2458 EXPORT_SYMBOL(console_conditional_schedule);
2459 
2460 void console_unblank(void)
2461 {
2462 	struct console *c;
2463 
2464 	/*
2465 	 * console_unblank can no longer be called in interrupt context unless
2466 	 * oops_in_progress is set to 1..
2467 	 */
2468 	if (oops_in_progress) {
2469 		if (down_trylock_console_sem() != 0)
2470 			return;
2471 	} else
2472 		console_lock();
2473 
2474 	console_locked = 1;
2475 	console_may_schedule = 0;
2476 	for_each_console(c)
2477 		if ((c->flags & CON_ENABLED) && c->unblank)
2478 			c->unblank();
2479 	console_unlock();
2480 }
2481 
2482 /**
2483  * console_flush_on_panic - flush console content on panic
2484  *
2485  * Immediately output all pending messages no matter what.
2486  */
2487 void console_flush_on_panic(void)
2488 {
2489 	/*
2490 	 * If someone else is holding the console lock, trylock will fail
2491 	 * and may_schedule may be set.  Ignore and proceed to unlock so
2492 	 * that messages are flushed out.  As this can be called from any
2493 	 * context and we don't want to get preempted while flushing,
2494 	 * ensure may_schedule is cleared.
2495 	 */
2496 	console_trylock();
2497 	console_may_schedule = 0;
2498 	console_unlock();
2499 }
2500 
2501 /*
2502  * Return the console tty driver structure and its associated index
2503  */
2504 struct tty_driver *console_device(int *index)
2505 {
2506 	struct console *c;
2507 	struct tty_driver *driver = NULL;
2508 
2509 	console_lock();
2510 	for_each_console(c) {
2511 		if (!c->device)
2512 			continue;
2513 		driver = c->device(c, index);
2514 		if (driver)
2515 			break;
2516 	}
2517 	console_unlock();
2518 	return driver;
2519 }
2520 
2521 /*
2522  * Prevent further output on the passed console device so that (for example)
2523  * serial drivers can disable console output before suspending a port, and can
2524  * re-enable output afterwards.
2525  */
2526 void console_stop(struct console *console)
2527 {
2528 	console_lock();
2529 	console->flags &= ~CON_ENABLED;
2530 	console_unlock();
2531 }
2532 EXPORT_SYMBOL(console_stop);
2533 
2534 void console_start(struct console *console)
2535 {
2536 	console_lock();
2537 	console->flags |= CON_ENABLED;
2538 	console_unlock();
2539 }
2540 EXPORT_SYMBOL(console_start);
2541 
2542 static int __read_mostly keep_bootcon;
2543 
2544 static int __init keep_bootcon_setup(char *str)
2545 {
2546 	keep_bootcon = 1;
2547 	pr_info("debug: skip boot console de-registration.\n");
2548 
2549 	return 0;
2550 }
2551 
2552 early_param("keep_bootcon", keep_bootcon_setup);
2553 
2554 /*
2555  * The console driver calls this routine during kernel initialization
2556  * to register the console printing procedure with printk() and to
2557  * print any messages that were printed by the kernel before the
2558  * console driver was initialized.
2559  *
2560  * This can happen pretty early during the boot process (because of
2561  * early_printk) - sometimes before setup_arch() completes - be careful
2562  * of what kernel features are used - they may not be initialised yet.
2563  *
2564  * There are two types of consoles - bootconsoles (early_printk) and
2565  * "real" consoles (everything which is not a bootconsole) which are
2566  * handled differently.
2567  *  - Any number of bootconsoles can be registered at any time.
2568  *  - As soon as a "real" console is registered, all bootconsoles
2569  *    will be unregistered automatically.
2570  *  - Once a "real" console is registered, any attempt to register a
2571  *    bootconsoles will be rejected
2572  */
2573 void register_console(struct console *newcon)
2574 {
2575 	int i;
2576 	unsigned long flags;
2577 	struct console *bcon = NULL;
2578 	struct console_cmdline *c;
2579 	static bool has_preferred;
2580 
2581 	if (console_drivers)
2582 		for_each_console(bcon)
2583 			if (WARN(bcon == newcon,
2584 					"console '%s%d' already registered\n",
2585 					bcon->name, bcon->index))
2586 				return;
2587 
2588 	/*
2589 	 * before we register a new CON_BOOT console, make sure we don't
2590 	 * already have a valid console
2591 	 */
2592 	if (console_drivers && newcon->flags & CON_BOOT) {
2593 		/* find the last or real console */
2594 		for_each_console(bcon) {
2595 			if (!(bcon->flags & CON_BOOT)) {
2596 				pr_info("Too late to register bootconsole %s%d\n",
2597 					newcon->name, newcon->index);
2598 				return;
2599 			}
2600 		}
2601 	}
2602 
2603 	if (console_drivers && console_drivers->flags & CON_BOOT)
2604 		bcon = console_drivers;
2605 
2606 	if (!has_preferred || bcon || !console_drivers)
2607 		has_preferred = preferred_console >= 0;
2608 
2609 	/*
2610 	 *	See if we want to use this console driver. If we
2611 	 *	didn't select a console we take the first one
2612 	 *	that registers here.
2613 	 */
2614 	if (!has_preferred) {
2615 		if (newcon->index < 0)
2616 			newcon->index = 0;
2617 		if (newcon->setup == NULL ||
2618 		    newcon->setup(newcon, NULL) == 0) {
2619 			newcon->flags |= CON_ENABLED;
2620 			if (newcon->device) {
2621 				newcon->flags |= CON_CONSDEV;
2622 				has_preferred = true;
2623 			}
2624 		}
2625 	}
2626 
2627 	/*
2628 	 *	See if this console matches one we selected on
2629 	 *	the command line.
2630 	 */
2631 	for (i = 0, c = console_cmdline;
2632 	     i < MAX_CMDLINECONSOLES && c->name[0];
2633 	     i++, c++) {
2634 		if (!newcon->match ||
2635 		    newcon->match(newcon, c->name, c->index, c->options) != 0) {
2636 			/* default matching */
2637 			BUILD_BUG_ON(sizeof(c->name) != sizeof(newcon->name));
2638 			if (strcmp(c->name, newcon->name) != 0)
2639 				continue;
2640 			if (newcon->index >= 0 &&
2641 			    newcon->index != c->index)
2642 				continue;
2643 			if (newcon->index < 0)
2644 				newcon->index = c->index;
2645 
2646 			if (_braille_register_console(newcon, c))
2647 				return;
2648 
2649 			if (newcon->setup &&
2650 			    newcon->setup(newcon, c->options) != 0)
2651 				break;
2652 		}
2653 
2654 		newcon->flags |= CON_ENABLED;
2655 		if (i == preferred_console) {
2656 			newcon->flags |= CON_CONSDEV;
2657 			has_preferred = true;
2658 		}
2659 		break;
2660 	}
2661 
2662 	if (!(newcon->flags & CON_ENABLED))
2663 		return;
2664 
2665 	/*
2666 	 * If we have a bootconsole, and are switching to a real console,
2667 	 * don't print everything out again, since when the boot console, and
2668 	 * the real console are the same physical device, it's annoying to
2669 	 * see the beginning boot messages twice
2670 	 */
2671 	if (bcon && ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV))
2672 		newcon->flags &= ~CON_PRINTBUFFER;
2673 
2674 	/*
2675 	 *	Put this console in the list - keep the
2676 	 *	preferred driver at the head of the list.
2677 	 */
2678 	console_lock();
2679 	if ((newcon->flags & CON_CONSDEV) || console_drivers == NULL) {
2680 		newcon->next = console_drivers;
2681 		console_drivers = newcon;
2682 		if (newcon->next)
2683 			newcon->next->flags &= ~CON_CONSDEV;
2684 	} else {
2685 		newcon->next = console_drivers->next;
2686 		console_drivers->next = newcon;
2687 	}
2688 
2689 	if (newcon->flags & CON_EXTENDED)
2690 		nr_ext_console_drivers++;
2691 
2692 	if (newcon->flags & CON_PRINTBUFFER) {
2693 		/*
2694 		 * console_unlock(); will print out the buffered messages
2695 		 * for us.
2696 		 */
2697 		logbuf_lock_irqsave(flags);
2698 		console_seq = syslog_seq;
2699 		console_idx = syslog_idx;
2700 		/*
2701 		 * We're about to replay the log buffer.  Only do this to the
2702 		 * just-registered console to avoid excessive message spam to
2703 		 * the already-registered consoles.
2704 		 *
2705 		 * Set exclusive_console with disabled interrupts to reduce
2706 		 * race window with eventual console_flush_on_panic() that
2707 		 * ignores console_lock.
2708 		 */
2709 		exclusive_console = newcon;
2710 		exclusive_console_stop_seq = console_seq;
2711 		logbuf_unlock_irqrestore(flags);
2712 	}
2713 	console_unlock();
2714 	console_sysfs_notify();
2715 
2716 	/*
2717 	 * By unregistering the bootconsoles after we enable the real console
2718 	 * we get the "console xxx enabled" message on all the consoles -
2719 	 * boot consoles, real consoles, etc - this is to ensure that end
2720 	 * users know there might be something in the kernel's log buffer that
2721 	 * went to the bootconsole (that they do not see on the real console)
2722 	 */
2723 	pr_info("%sconsole [%s%d] enabled\n",
2724 		(newcon->flags & CON_BOOT) ? "boot" : "" ,
2725 		newcon->name, newcon->index);
2726 	if (bcon &&
2727 	    ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV) &&
2728 	    !keep_bootcon) {
2729 		/* We need to iterate through all boot consoles, to make
2730 		 * sure we print everything out, before we unregister them.
2731 		 */
2732 		for_each_console(bcon)
2733 			if (bcon->flags & CON_BOOT)
2734 				unregister_console(bcon);
2735 	}
2736 }
2737 EXPORT_SYMBOL(register_console);
2738 
2739 int unregister_console(struct console *console)
2740 {
2741         struct console *a, *b;
2742 	int res;
2743 
2744 	pr_info("%sconsole [%s%d] disabled\n",
2745 		(console->flags & CON_BOOT) ? "boot" : "" ,
2746 		console->name, console->index);
2747 
2748 	res = _braille_unregister_console(console);
2749 	if (res)
2750 		return res;
2751 
2752 	res = 1;
2753 	console_lock();
2754 	if (console_drivers == console) {
2755 		console_drivers=console->next;
2756 		res = 0;
2757 	} else if (console_drivers) {
2758 		for (a=console_drivers->next, b=console_drivers ;
2759 		     a; b=a, a=b->next) {
2760 			if (a == console) {
2761 				b->next = a->next;
2762 				res = 0;
2763 				break;
2764 			}
2765 		}
2766 	}
2767 
2768 	if (!res && (console->flags & CON_EXTENDED))
2769 		nr_ext_console_drivers--;
2770 
2771 	/*
2772 	 * If this isn't the last console and it has CON_CONSDEV set, we
2773 	 * need to set it on the next preferred console.
2774 	 */
2775 	if (console_drivers != NULL && console->flags & CON_CONSDEV)
2776 		console_drivers->flags |= CON_CONSDEV;
2777 
2778 	console->flags &= ~CON_ENABLED;
2779 	console_unlock();
2780 	console_sysfs_notify();
2781 	return res;
2782 }
2783 EXPORT_SYMBOL(unregister_console);
2784 
2785 /*
2786  * Initialize the console device. This is called *early*, so
2787  * we can't necessarily depend on lots of kernel help here.
2788  * Just do some early initializations, and do the complex setup
2789  * later.
2790  */
2791 void __init console_init(void)
2792 {
2793 	int ret;
2794 	initcall_t call;
2795 	initcall_entry_t *ce;
2796 
2797 	/* Setup the default TTY line discipline. */
2798 	n_tty_init();
2799 
2800 	/*
2801 	 * set up the console device so that later boot sequences can
2802 	 * inform about problems etc..
2803 	 */
2804 	ce = __con_initcall_start;
2805 	trace_initcall_level("console");
2806 	while (ce < __con_initcall_end) {
2807 		call = initcall_from_entry(ce);
2808 		trace_initcall_start(call);
2809 		ret = call();
2810 		trace_initcall_finish(call, ret);
2811 		ce++;
2812 	}
2813 }
2814 
2815 /*
2816  * Some boot consoles access data that is in the init section and which will
2817  * be discarded after the initcalls have been run. To make sure that no code
2818  * will access this data, unregister the boot consoles in a late initcall.
2819  *
2820  * If for some reason, such as deferred probe or the driver being a loadable
2821  * module, the real console hasn't registered yet at this point, there will
2822  * be a brief interval in which no messages are logged to the console, which
2823  * makes it difficult to diagnose problems that occur during this time.
2824  *
2825  * To mitigate this problem somewhat, only unregister consoles whose memory
2826  * intersects with the init section. Note that all other boot consoles will
2827  * get unregistred when the real preferred console is registered.
2828  */
2829 static int __init printk_late_init(void)
2830 {
2831 	struct console *con;
2832 	int ret;
2833 
2834 	for_each_console(con) {
2835 		if (!(con->flags & CON_BOOT))
2836 			continue;
2837 
2838 		/* Check addresses that might be used for enabled consoles. */
2839 		if (init_section_intersects(con, sizeof(*con)) ||
2840 		    init_section_contains(con->write, 0) ||
2841 		    init_section_contains(con->read, 0) ||
2842 		    init_section_contains(con->device, 0) ||
2843 		    init_section_contains(con->unblank, 0) ||
2844 		    init_section_contains(con->data, 0)) {
2845 			/*
2846 			 * Please, consider moving the reported consoles out
2847 			 * of the init section.
2848 			 */
2849 			pr_warn("bootconsole [%s%d] uses init memory and must be disabled even before the real one is ready\n",
2850 				con->name, con->index);
2851 			unregister_console(con);
2852 		}
2853 	}
2854 	ret = cpuhp_setup_state_nocalls(CPUHP_PRINTK_DEAD, "printk:dead", NULL,
2855 					console_cpu_notify);
2856 	WARN_ON(ret < 0);
2857 	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "printk:online",
2858 					console_cpu_notify, NULL);
2859 	WARN_ON(ret < 0);
2860 	return 0;
2861 }
2862 late_initcall(printk_late_init);
2863 
2864 #if defined CONFIG_PRINTK
2865 /*
2866  * Delayed printk version, for scheduler-internal messages:
2867  */
2868 #define PRINTK_PENDING_WAKEUP	0x01
2869 #define PRINTK_PENDING_OUTPUT	0x02
2870 
2871 static DEFINE_PER_CPU(int, printk_pending);
2872 
2873 static void wake_up_klogd_work_func(struct irq_work *irq_work)
2874 {
2875 	int pending = __this_cpu_xchg(printk_pending, 0);
2876 
2877 	if (pending & PRINTK_PENDING_OUTPUT) {
2878 		/* If trylock fails, someone else is doing the printing */
2879 		if (console_trylock())
2880 			console_unlock();
2881 	}
2882 
2883 	if (pending & PRINTK_PENDING_WAKEUP)
2884 		wake_up_interruptible(&log_wait);
2885 }
2886 
2887 static DEFINE_PER_CPU(struct irq_work, wake_up_klogd_work) = {
2888 	.func = wake_up_klogd_work_func,
2889 	.flags = IRQ_WORK_LAZY,
2890 };
2891 
2892 void wake_up_klogd(void)
2893 {
2894 	preempt_disable();
2895 	if (waitqueue_active(&log_wait)) {
2896 		this_cpu_or(printk_pending, PRINTK_PENDING_WAKEUP);
2897 		irq_work_queue(this_cpu_ptr(&wake_up_klogd_work));
2898 	}
2899 	preempt_enable();
2900 }
2901 
2902 void defer_console_output(void)
2903 {
2904 	preempt_disable();
2905 	__this_cpu_or(printk_pending, PRINTK_PENDING_OUTPUT);
2906 	irq_work_queue(this_cpu_ptr(&wake_up_klogd_work));
2907 	preempt_enable();
2908 }
2909 
2910 int vprintk_deferred(const char *fmt, va_list args)
2911 {
2912 	int r;
2913 
2914 	r = vprintk_emit(0, LOGLEVEL_SCHED, NULL, 0, fmt, args);
2915 	defer_console_output();
2916 
2917 	return r;
2918 }
2919 
2920 int printk_deferred(const char *fmt, ...)
2921 {
2922 	va_list args;
2923 	int r;
2924 
2925 	va_start(args, fmt);
2926 	r = vprintk_deferred(fmt, args);
2927 	va_end(args);
2928 
2929 	return r;
2930 }
2931 
2932 /*
2933  * printk rate limiting, lifted from the networking subsystem.
2934  *
2935  * This enforces a rate limit: not more than 10 kernel messages
2936  * every 5s to make a denial-of-service attack impossible.
2937  */
2938 DEFINE_RATELIMIT_STATE(printk_ratelimit_state, 5 * HZ, 10);
2939 
2940 int __printk_ratelimit(const char *func)
2941 {
2942 	return ___ratelimit(&printk_ratelimit_state, func);
2943 }
2944 EXPORT_SYMBOL(__printk_ratelimit);
2945 
2946 /**
2947  * printk_timed_ratelimit - caller-controlled printk ratelimiting
2948  * @caller_jiffies: pointer to caller's state
2949  * @interval_msecs: minimum interval between prints
2950  *
2951  * printk_timed_ratelimit() returns true if more than @interval_msecs
2952  * milliseconds have elapsed since the last time printk_timed_ratelimit()
2953  * returned true.
2954  */
2955 bool printk_timed_ratelimit(unsigned long *caller_jiffies,
2956 			unsigned int interval_msecs)
2957 {
2958 	unsigned long elapsed = jiffies - *caller_jiffies;
2959 
2960 	if (*caller_jiffies && elapsed <= msecs_to_jiffies(interval_msecs))
2961 		return false;
2962 
2963 	*caller_jiffies = jiffies;
2964 	return true;
2965 }
2966 EXPORT_SYMBOL(printk_timed_ratelimit);
2967 
2968 static DEFINE_SPINLOCK(dump_list_lock);
2969 static LIST_HEAD(dump_list);
2970 
2971 /**
2972  * kmsg_dump_register - register a kernel log dumper.
2973  * @dumper: pointer to the kmsg_dumper structure
2974  *
2975  * Adds a kernel log dumper to the system. The dump callback in the
2976  * structure will be called when the kernel oopses or panics and must be
2977  * set. Returns zero on success and %-EINVAL or %-EBUSY otherwise.
2978  */
2979 int kmsg_dump_register(struct kmsg_dumper *dumper)
2980 {
2981 	unsigned long flags;
2982 	int err = -EBUSY;
2983 
2984 	/* The dump callback needs to be set */
2985 	if (!dumper->dump)
2986 		return -EINVAL;
2987 
2988 	spin_lock_irqsave(&dump_list_lock, flags);
2989 	/* Don't allow registering multiple times */
2990 	if (!dumper->registered) {
2991 		dumper->registered = 1;
2992 		list_add_tail_rcu(&dumper->list, &dump_list);
2993 		err = 0;
2994 	}
2995 	spin_unlock_irqrestore(&dump_list_lock, flags);
2996 
2997 	return err;
2998 }
2999 EXPORT_SYMBOL_GPL(kmsg_dump_register);
3000 
3001 /**
3002  * kmsg_dump_unregister - unregister a kmsg dumper.
3003  * @dumper: pointer to the kmsg_dumper structure
3004  *
3005  * Removes a dump device from the system. Returns zero on success and
3006  * %-EINVAL otherwise.
3007  */
3008 int kmsg_dump_unregister(struct kmsg_dumper *dumper)
3009 {
3010 	unsigned long flags;
3011 	int err = -EINVAL;
3012 
3013 	spin_lock_irqsave(&dump_list_lock, flags);
3014 	if (dumper->registered) {
3015 		dumper->registered = 0;
3016 		list_del_rcu(&dumper->list);
3017 		err = 0;
3018 	}
3019 	spin_unlock_irqrestore(&dump_list_lock, flags);
3020 	synchronize_rcu();
3021 
3022 	return err;
3023 }
3024 EXPORT_SYMBOL_GPL(kmsg_dump_unregister);
3025 
3026 static bool always_kmsg_dump;
3027 module_param_named(always_kmsg_dump, always_kmsg_dump, bool, S_IRUGO | S_IWUSR);
3028 
3029 /**
3030  * kmsg_dump - dump kernel log to kernel message dumpers.
3031  * @reason: the reason (oops, panic etc) for dumping
3032  *
3033  * Call each of the registered dumper's dump() callback, which can
3034  * retrieve the kmsg records with kmsg_dump_get_line() or
3035  * kmsg_dump_get_buffer().
3036  */
3037 void kmsg_dump(enum kmsg_dump_reason reason)
3038 {
3039 	struct kmsg_dumper *dumper;
3040 	unsigned long flags;
3041 
3042 	if ((reason > KMSG_DUMP_OOPS) && !always_kmsg_dump)
3043 		return;
3044 
3045 	rcu_read_lock();
3046 	list_for_each_entry_rcu(dumper, &dump_list, list) {
3047 		if (dumper->max_reason && reason > dumper->max_reason)
3048 			continue;
3049 
3050 		/* initialize iterator with data about the stored records */
3051 		dumper->active = true;
3052 
3053 		logbuf_lock_irqsave(flags);
3054 		dumper->cur_seq = clear_seq;
3055 		dumper->cur_idx = clear_idx;
3056 		dumper->next_seq = log_next_seq;
3057 		dumper->next_idx = log_next_idx;
3058 		logbuf_unlock_irqrestore(flags);
3059 
3060 		/* invoke dumper which will iterate over records */
3061 		dumper->dump(dumper, reason);
3062 
3063 		/* reset iterator */
3064 		dumper->active = false;
3065 	}
3066 	rcu_read_unlock();
3067 }
3068 
3069 /**
3070  * kmsg_dump_get_line_nolock - retrieve one kmsg log line (unlocked version)
3071  * @dumper: registered kmsg dumper
3072  * @syslog: include the "<4>" prefixes
3073  * @line: buffer to copy the line to
3074  * @size: maximum size of the buffer
3075  * @len: length of line placed into buffer
3076  *
3077  * Start at the beginning of the kmsg buffer, with the oldest kmsg
3078  * record, and copy one record into the provided buffer.
3079  *
3080  * Consecutive calls will return the next available record moving
3081  * towards the end of the buffer with the youngest messages.
3082  *
3083  * A return value of FALSE indicates that there are no more records to
3084  * read.
3085  *
3086  * The function is similar to kmsg_dump_get_line(), but grabs no locks.
3087  */
3088 bool kmsg_dump_get_line_nolock(struct kmsg_dumper *dumper, bool syslog,
3089 			       char *line, size_t size, size_t *len)
3090 {
3091 	struct printk_log *msg;
3092 	size_t l = 0;
3093 	bool ret = false;
3094 
3095 	if (!dumper->active)
3096 		goto out;
3097 
3098 	if (dumper->cur_seq < log_first_seq) {
3099 		/* messages are gone, move to first available one */
3100 		dumper->cur_seq = log_first_seq;
3101 		dumper->cur_idx = log_first_idx;
3102 	}
3103 
3104 	/* last entry */
3105 	if (dumper->cur_seq >= log_next_seq)
3106 		goto out;
3107 
3108 	msg = log_from_idx(dumper->cur_idx);
3109 	l = msg_print_text(msg, syslog, printk_time, line, size);
3110 
3111 	dumper->cur_idx = log_next(dumper->cur_idx);
3112 	dumper->cur_seq++;
3113 	ret = true;
3114 out:
3115 	if (len)
3116 		*len = l;
3117 	return ret;
3118 }
3119 
3120 /**
3121  * kmsg_dump_get_line - retrieve one kmsg log line
3122  * @dumper: registered kmsg dumper
3123  * @syslog: include the "<4>" prefixes
3124  * @line: buffer to copy the line to
3125  * @size: maximum size of the buffer
3126  * @len: length of line placed into buffer
3127  *
3128  * Start at the beginning of the kmsg buffer, with the oldest kmsg
3129  * record, and copy one record into the provided buffer.
3130  *
3131  * Consecutive calls will return the next available record moving
3132  * towards the end of the buffer with the youngest messages.
3133  *
3134  * A return value of FALSE indicates that there are no more records to
3135  * read.
3136  */
3137 bool kmsg_dump_get_line(struct kmsg_dumper *dumper, bool syslog,
3138 			char *line, size_t size, size_t *len)
3139 {
3140 	unsigned long flags;
3141 	bool ret;
3142 
3143 	logbuf_lock_irqsave(flags);
3144 	ret = kmsg_dump_get_line_nolock(dumper, syslog, line, size, len);
3145 	logbuf_unlock_irqrestore(flags);
3146 
3147 	return ret;
3148 }
3149 EXPORT_SYMBOL_GPL(kmsg_dump_get_line);
3150 
3151 /**
3152  * kmsg_dump_get_buffer - copy kmsg log lines
3153  * @dumper: registered kmsg dumper
3154  * @syslog: include the "<4>" prefixes
3155  * @buf: buffer to copy the line to
3156  * @size: maximum size of the buffer
3157  * @len: length of line placed into buffer
3158  *
3159  * Start at the end of the kmsg buffer and fill the provided buffer
3160  * with as many of the the *youngest* kmsg records that fit into it.
3161  * If the buffer is large enough, all available kmsg records will be
3162  * copied with a single call.
3163  *
3164  * Consecutive calls will fill the buffer with the next block of
3165  * available older records, not including the earlier retrieved ones.
3166  *
3167  * A return value of FALSE indicates that there are no more records to
3168  * read.
3169  */
3170 bool kmsg_dump_get_buffer(struct kmsg_dumper *dumper, bool syslog,
3171 			  char *buf, size_t size, size_t *len)
3172 {
3173 	unsigned long flags;
3174 	u64 seq;
3175 	u32 idx;
3176 	u64 next_seq;
3177 	u32 next_idx;
3178 	size_t l = 0;
3179 	bool ret = false;
3180 	bool time = printk_time;
3181 
3182 	if (!dumper->active)
3183 		goto out;
3184 
3185 	logbuf_lock_irqsave(flags);
3186 	if (dumper->cur_seq < log_first_seq) {
3187 		/* messages are gone, move to first available one */
3188 		dumper->cur_seq = log_first_seq;
3189 		dumper->cur_idx = log_first_idx;
3190 	}
3191 
3192 	/* last entry */
3193 	if (dumper->cur_seq >= dumper->next_seq) {
3194 		logbuf_unlock_irqrestore(flags);
3195 		goto out;
3196 	}
3197 
3198 	/* calculate length of entire buffer */
3199 	seq = dumper->cur_seq;
3200 	idx = dumper->cur_idx;
3201 	while (seq < dumper->next_seq) {
3202 		struct printk_log *msg = log_from_idx(idx);
3203 
3204 		l += msg_print_text(msg, true, time, NULL, 0);
3205 		idx = log_next(idx);
3206 		seq++;
3207 	}
3208 
3209 	/* move first record forward until length fits into the buffer */
3210 	seq = dumper->cur_seq;
3211 	idx = dumper->cur_idx;
3212 	while (l > size && seq < dumper->next_seq) {
3213 		struct printk_log *msg = log_from_idx(idx);
3214 
3215 		l -= msg_print_text(msg, true, time, NULL, 0);
3216 		idx = log_next(idx);
3217 		seq++;
3218 	}
3219 
3220 	/* last message in next interation */
3221 	next_seq = seq;
3222 	next_idx = idx;
3223 
3224 	l = 0;
3225 	while (seq < dumper->next_seq) {
3226 		struct printk_log *msg = log_from_idx(idx);
3227 
3228 		l += msg_print_text(msg, syslog, time, buf + l, size - l);
3229 		idx = log_next(idx);
3230 		seq++;
3231 	}
3232 
3233 	dumper->next_seq = next_seq;
3234 	dumper->next_idx = next_idx;
3235 	ret = true;
3236 	logbuf_unlock_irqrestore(flags);
3237 out:
3238 	if (len)
3239 		*len = l;
3240 	return ret;
3241 }
3242 EXPORT_SYMBOL_GPL(kmsg_dump_get_buffer);
3243 
3244 /**
3245  * kmsg_dump_rewind_nolock - reset the interator (unlocked version)
3246  * @dumper: registered kmsg dumper
3247  *
3248  * Reset the dumper's iterator so that kmsg_dump_get_line() and
3249  * kmsg_dump_get_buffer() can be called again and used multiple
3250  * times within the same dumper.dump() callback.
3251  *
3252  * The function is similar to kmsg_dump_rewind(), but grabs no locks.
3253  */
3254 void kmsg_dump_rewind_nolock(struct kmsg_dumper *dumper)
3255 {
3256 	dumper->cur_seq = clear_seq;
3257 	dumper->cur_idx = clear_idx;
3258 	dumper->next_seq = log_next_seq;
3259 	dumper->next_idx = log_next_idx;
3260 }
3261 
3262 /**
3263  * kmsg_dump_rewind - reset the interator
3264  * @dumper: registered kmsg dumper
3265  *
3266  * Reset the dumper's iterator so that kmsg_dump_get_line() and
3267  * kmsg_dump_get_buffer() can be called again and used multiple
3268  * times within the same dumper.dump() callback.
3269  */
3270 void kmsg_dump_rewind(struct kmsg_dumper *dumper)
3271 {
3272 	unsigned long flags;
3273 
3274 	logbuf_lock_irqsave(flags);
3275 	kmsg_dump_rewind_nolock(dumper);
3276 	logbuf_unlock_irqrestore(flags);
3277 }
3278 EXPORT_SYMBOL_GPL(kmsg_dump_rewind);
3279 
3280 #endif
3281