xref: /openbmc/linux/kernel/printk/printk.c (revision 7f33105cdd59a99d068d3d147723a865d10e2260)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/printk.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  *
7  * Modified to make sys_syslog() more flexible: added commands to
8  * return the last 4k of kernel messages, regardless of whether
9  * they've been read or not.  Added option to suppress kernel printk's
10  * to the console.  Added hook for sending the console messages
11  * elsewhere, in preparation for a serial line console (someday).
12  * Ted Ts'o, 2/11/93.
13  * Modified for sysctl support, 1/8/97, Chris Horn.
14  * Fixed SMP synchronization, 08/08/99, Manfred Spraul
15  *     manfred@colorfullife.com
16  * Rewrote bits to get rid of console_lock
17  *	01Mar01 Andrew Morton
18  */
19 
20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
21 
22 #include <linux/kernel.h>
23 #include <linux/mm.h>
24 #include <linux/tty.h>
25 #include <linux/tty_driver.h>
26 #include <linux/console.h>
27 #include <linux/init.h>
28 #include <linux/jiffies.h>
29 #include <linux/nmi.h>
30 #include <linux/module.h>
31 #include <linux/moduleparam.h>
32 #include <linux/delay.h>
33 #include <linux/smp.h>
34 #include <linux/security.h>
35 #include <linux/memblock.h>
36 #include <linux/syscalls.h>
37 #include <linux/crash_core.h>
38 #include <linux/ratelimit.h>
39 #include <linux/kmsg_dump.h>
40 #include <linux/syslog.h>
41 #include <linux/cpu.h>
42 #include <linux/rculist.h>
43 #include <linux/poll.h>
44 #include <linux/irq_work.h>
45 #include <linux/ctype.h>
46 #include <linux/uio.h>
47 #include <linux/sched/clock.h>
48 #include <linux/sched/debug.h>
49 #include <linux/sched/task_stack.h>
50 
51 #include <linux/uaccess.h>
52 #include <asm/sections.h>
53 
54 #include <trace/events/initcall.h>
55 #define CREATE_TRACE_POINTS
56 #include <trace/events/printk.h>
57 
58 #include "printk_ringbuffer.h"
59 #include "console_cmdline.h"
60 #include "braille.h"
61 #include "internal.h"
62 
63 int console_printk[4] = {
64 	CONSOLE_LOGLEVEL_DEFAULT,	/* console_loglevel */
65 	MESSAGE_LOGLEVEL_DEFAULT,	/* default_message_loglevel */
66 	CONSOLE_LOGLEVEL_MIN,		/* minimum_console_loglevel */
67 	CONSOLE_LOGLEVEL_DEFAULT,	/* default_console_loglevel */
68 };
69 EXPORT_SYMBOL_GPL(console_printk);
70 
71 atomic_t ignore_console_lock_warning __read_mostly = ATOMIC_INIT(0);
72 EXPORT_SYMBOL(ignore_console_lock_warning);
73 
74 EXPORT_TRACEPOINT_SYMBOL_GPL(console);
75 
76 /*
77  * Low level drivers may need that to know if they can schedule in
78  * their unblank() callback or not. So let's export it.
79  */
80 int oops_in_progress;
81 EXPORT_SYMBOL(oops_in_progress);
82 
83 /*
84  * console_mutex protects console_list updates and console->flags updates.
85  * The flags are synchronized only for consoles that are registered, i.e.
86  * accessible via the console list.
87  */
88 static DEFINE_MUTEX(console_mutex);
89 
90 /*
91  * console_sem protects updates to console->seq
92  * and also provides serialization for console printing.
93  */
94 static DEFINE_SEMAPHORE(console_sem, 1);
95 HLIST_HEAD(console_list);
96 EXPORT_SYMBOL_GPL(console_list);
97 DEFINE_STATIC_SRCU(console_srcu);
98 
99 /*
100  * System may need to suppress printk message under certain
101  * circumstances, like after kernel panic happens.
102  */
103 int __read_mostly suppress_printk;
104 
105 /*
106  * During panic, heavy printk by other CPUs can delay the
107  * panic and risk deadlock on console resources.
108  */
109 static int __read_mostly suppress_panic_printk;
110 
111 #ifdef CONFIG_LOCKDEP
112 static struct lockdep_map console_lock_dep_map = {
113 	.name = "console_lock"
114 };
115 
116 void lockdep_assert_console_list_lock_held(void)
117 {
118 	lockdep_assert_held(&console_mutex);
119 }
120 EXPORT_SYMBOL(lockdep_assert_console_list_lock_held);
121 #endif
122 
123 #ifdef CONFIG_DEBUG_LOCK_ALLOC
124 bool console_srcu_read_lock_is_held(void)
125 {
126 	return srcu_read_lock_held(&console_srcu);
127 }
128 EXPORT_SYMBOL(console_srcu_read_lock_is_held);
129 #endif
130 
131 enum devkmsg_log_bits {
132 	__DEVKMSG_LOG_BIT_ON = 0,
133 	__DEVKMSG_LOG_BIT_OFF,
134 	__DEVKMSG_LOG_BIT_LOCK,
135 };
136 
137 enum devkmsg_log_masks {
138 	DEVKMSG_LOG_MASK_ON             = BIT(__DEVKMSG_LOG_BIT_ON),
139 	DEVKMSG_LOG_MASK_OFF            = BIT(__DEVKMSG_LOG_BIT_OFF),
140 	DEVKMSG_LOG_MASK_LOCK           = BIT(__DEVKMSG_LOG_BIT_LOCK),
141 };
142 
143 /* Keep both the 'on' and 'off' bits clear, i.e. ratelimit by default: */
144 #define DEVKMSG_LOG_MASK_DEFAULT	0
145 
146 static unsigned int __read_mostly devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT;
147 
148 static int __control_devkmsg(char *str)
149 {
150 	size_t len;
151 
152 	if (!str)
153 		return -EINVAL;
154 
155 	len = str_has_prefix(str, "on");
156 	if (len) {
157 		devkmsg_log = DEVKMSG_LOG_MASK_ON;
158 		return len;
159 	}
160 
161 	len = str_has_prefix(str, "off");
162 	if (len) {
163 		devkmsg_log = DEVKMSG_LOG_MASK_OFF;
164 		return len;
165 	}
166 
167 	len = str_has_prefix(str, "ratelimit");
168 	if (len) {
169 		devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT;
170 		return len;
171 	}
172 
173 	return -EINVAL;
174 }
175 
176 static int __init control_devkmsg(char *str)
177 {
178 	if (__control_devkmsg(str) < 0) {
179 		pr_warn("printk.devkmsg: bad option string '%s'\n", str);
180 		return 1;
181 	}
182 
183 	/*
184 	 * Set sysctl string accordingly:
185 	 */
186 	if (devkmsg_log == DEVKMSG_LOG_MASK_ON)
187 		strcpy(devkmsg_log_str, "on");
188 	else if (devkmsg_log == DEVKMSG_LOG_MASK_OFF)
189 		strcpy(devkmsg_log_str, "off");
190 	/* else "ratelimit" which is set by default. */
191 
192 	/*
193 	 * Sysctl cannot change it anymore. The kernel command line setting of
194 	 * this parameter is to force the setting to be permanent throughout the
195 	 * runtime of the system. This is a precation measure against userspace
196 	 * trying to be a smarta** and attempting to change it up on us.
197 	 */
198 	devkmsg_log |= DEVKMSG_LOG_MASK_LOCK;
199 
200 	return 1;
201 }
202 __setup("printk.devkmsg=", control_devkmsg);
203 
204 char devkmsg_log_str[DEVKMSG_STR_MAX_SIZE] = "ratelimit";
205 #if defined(CONFIG_PRINTK) && defined(CONFIG_SYSCTL)
206 int devkmsg_sysctl_set_loglvl(struct ctl_table *table, int write,
207 			      void *buffer, size_t *lenp, loff_t *ppos)
208 {
209 	char old_str[DEVKMSG_STR_MAX_SIZE];
210 	unsigned int old;
211 	int err;
212 
213 	if (write) {
214 		if (devkmsg_log & DEVKMSG_LOG_MASK_LOCK)
215 			return -EINVAL;
216 
217 		old = devkmsg_log;
218 		strncpy(old_str, devkmsg_log_str, DEVKMSG_STR_MAX_SIZE);
219 	}
220 
221 	err = proc_dostring(table, write, buffer, lenp, ppos);
222 	if (err)
223 		return err;
224 
225 	if (write) {
226 		err = __control_devkmsg(devkmsg_log_str);
227 
228 		/*
229 		 * Do not accept an unknown string OR a known string with
230 		 * trailing crap...
231 		 */
232 		if (err < 0 || (err + 1 != *lenp)) {
233 
234 			/* ... and restore old setting. */
235 			devkmsg_log = old;
236 			strncpy(devkmsg_log_str, old_str, DEVKMSG_STR_MAX_SIZE);
237 
238 			return -EINVAL;
239 		}
240 	}
241 
242 	return 0;
243 }
244 #endif /* CONFIG_PRINTK && CONFIG_SYSCTL */
245 
246 /**
247  * console_list_lock - Lock the console list
248  *
249  * For console list or console->flags updates
250  */
251 void console_list_lock(void)
252 {
253 	/*
254 	 * In unregister_console() and console_force_preferred_locked(),
255 	 * synchronize_srcu() is called with the console_list_lock held.
256 	 * Therefore it is not allowed that the console_list_lock is taken
257 	 * with the srcu_lock held.
258 	 *
259 	 * Detecting if this context is really in the read-side critical
260 	 * section is only possible if the appropriate debug options are
261 	 * enabled.
262 	 */
263 	WARN_ON_ONCE(debug_lockdep_rcu_enabled() &&
264 		     srcu_read_lock_held(&console_srcu));
265 
266 	mutex_lock(&console_mutex);
267 }
268 EXPORT_SYMBOL(console_list_lock);
269 
270 /**
271  * console_list_unlock - Unlock the console list
272  *
273  * Counterpart to console_list_lock()
274  */
275 void console_list_unlock(void)
276 {
277 	mutex_unlock(&console_mutex);
278 }
279 EXPORT_SYMBOL(console_list_unlock);
280 
281 /**
282  * console_srcu_read_lock - Register a new reader for the
283  *	SRCU-protected console list
284  *
285  * Use for_each_console_srcu() to iterate the console list
286  *
287  * Context: Any context.
288  * Return: A cookie to pass to console_srcu_read_unlock().
289  */
290 int console_srcu_read_lock(void)
291 {
292 	return srcu_read_lock_nmisafe(&console_srcu);
293 }
294 EXPORT_SYMBOL(console_srcu_read_lock);
295 
296 /**
297  * console_srcu_read_unlock - Unregister an old reader from
298  *	the SRCU-protected console list
299  * @cookie: cookie returned from console_srcu_read_lock()
300  *
301  * Counterpart to console_srcu_read_lock()
302  */
303 void console_srcu_read_unlock(int cookie)
304 {
305 	srcu_read_unlock_nmisafe(&console_srcu, cookie);
306 }
307 EXPORT_SYMBOL(console_srcu_read_unlock);
308 
309 /*
310  * Helper macros to handle lockdep when locking/unlocking console_sem. We use
311  * macros instead of functions so that _RET_IP_ contains useful information.
312  */
313 #define down_console_sem() do { \
314 	down(&console_sem);\
315 	mutex_acquire(&console_lock_dep_map, 0, 0, _RET_IP_);\
316 } while (0)
317 
318 static int __down_trylock_console_sem(unsigned long ip)
319 {
320 	int lock_failed;
321 	unsigned long flags;
322 
323 	/*
324 	 * Here and in __up_console_sem() we need to be in safe mode,
325 	 * because spindump/WARN/etc from under console ->lock will
326 	 * deadlock in printk()->down_trylock_console_sem() otherwise.
327 	 */
328 	printk_safe_enter_irqsave(flags);
329 	lock_failed = down_trylock(&console_sem);
330 	printk_safe_exit_irqrestore(flags);
331 
332 	if (lock_failed)
333 		return 1;
334 	mutex_acquire(&console_lock_dep_map, 0, 1, ip);
335 	return 0;
336 }
337 #define down_trylock_console_sem() __down_trylock_console_sem(_RET_IP_)
338 
339 static void __up_console_sem(unsigned long ip)
340 {
341 	unsigned long flags;
342 
343 	mutex_release(&console_lock_dep_map, ip);
344 
345 	printk_safe_enter_irqsave(flags);
346 	up(&console_sem);
347 	printk_safe_exit_irqrestore(flags);
348 }
349 #define up_console_sem() __up_console_sem(_RET_IP_)
350 
351 static bool panic_in_progress(void)
352 {
353 	return unlikely(atomic_read(&panic_cpu) != PANIC_CPU_INVALID);
354 }
355 
356 /*
357  * This is used for debugging the mess that is the VT code by
358  * keeping track if we have the console semaphore held. It's
359  * definitely not the perfect debug tool (we don't know if _WE_
360  * hold it and are racing, but it helps tracking those weird code
361  * paths in the console code where we end up in places I want
362  * locked without the console semaphore held).
363  */
364 static int console_locked;
365 
366 /*
367  *	Array of consoles built from command line options (console=)
368  */
369 
370 #define MAX_CMDLINECONSOLES 8
371 
372 static struct console_cmdline console_cmdline[MAX_CMDLINECONSOLES];
373 
374 static int preferred_console = -1;
375 int console_set_on_cmdline;
376 EXPORT_SYMBOL(console_set_on_cmdline);
377 
378 /* Flag: console code may call schedule() */
379 static int console_may_schedule;
380 
381 enum con_msg_format_flags {
382 	MSG_FORMAT_DEFAULT	= 0,
383 	MSG_FORMAT_SYSLOG	= (1 << 0),
384 };
385 
386 static int console_msg_format = MSG_FORMAT_DEFAULT;
387 
388 /*
389  * The printk log buffer consists of a sequenced collection of records, each
390  * containing variable length message text. Every record also contains its
391  * own meta-data (@info).
392  *
393  * Every record meta-data carries the timestamp in microseconds, as well as
394  * the standard userspace syslog level and syslog facility. The usual kernel
395  * messages use LOG_KERN; userspace-injected messages always carry a matching
396  * syslog facility, by default LOG_USER. The origin of every message can be
397  * reliably determined that way.
398  *
399  * The human readable log message of a record is available in @text, the
400  * length of the message text in @text_len. The stored message is not
401  * terminated.
402  *
403  * Optionally, a record can carry a dictionary of properties (key/value
404  * pairs), to provide userspace with a machine-readable message context.
405  *
406  * Examples for well-defined, commonly used property names are:
407  *   DEVICE=b12:8               device identifier
408  *                                b12:8         block dev_t
409  *                                c127:3        char dev_t
410  *                                n8            netdev ifindex
411  *                                +sound:card0  subsystem:devname
412  *   SUBSYSTEM=pci              driver-core subsystem name
413  *
414  * Valid characters in property names are [a-zA-Z0-9.-_]. Property names
415  * and values are terminated by a '\0' character.
416  *
417  * Example of record values:
418  *   record.text_buf                = "it's a line" (unterminated)
419  *   record.info.seq                = 56
420  *   record.info.ts_nsec            = 36863
421  *   record.info.text_len           = 11
422  *   record.info.facility           = 0 (LOG_KERN)
423  *   record.info.flags              = 0
424  *   record.info.level              = 3 (LOG_ERR)
425  *   record.info.caller_id          = 299 (task 299)
426  *   record.info.dev_info.subsystem = "pci" (terminated)
427  *   record.info.dev_info.device    = "+pci:0000:00:01.0" (terminated)
428  *
429  * The 'struct printk_info' buffer must never be directly exported to
430  * userspace, it is a kernel-private implementation detail that might
431  * need to be changed in the future, when the requirements change.
432  *
433  * /dev/kmsg exports the structured data in the following line format:
434  *   "<level>,<sequnum>,<timestamp>,<contflag>[,additional_values, ... ];<message text>\n"
435  *
436  * Users of the export format should ignore possible additional values
437  * separated by ',', and find the message after the ';' character.
438  *
439  * The optional key/value pairs are attached as continuation lines starting
440  * with a space character and terminated by a newline. All possible
441  * non-prinatable characters are escaped in the "\xff" notation.
442  */
443 
444 /* syslog_lock protects syslog_* variables and write access to clear_seq. */
445 static DEFINE_MUTEX(syslog_lock);
446 
447 #ifdef CONFIG_PRINTK
448 DECLARE_WAIT_QUEUE_HEAD(log_wait);
449 /* All 3 protected by @syslog_lock. */
450 /* the next printk record to read by syslog(READ) or /proc/kmsg */
451 static u64 syslog_seq;
452 static size_t syslog_partial;
453 static bool syslog_time;
454 
455 struct latched_seq {
456 	seqcount_latch_t	latch;
457 	u64			val[2];
458 };
459 
460 /*
461  * The next printk record to read after the last 'clear' command. There are
462  * two copies (updated with seqcount_latch) so that reads can locklessly
463  * access a valid value. Writers are synchronized by @syslog_lock.
464  */
465 static struct latched_seq clear_seq = {
466 	.latch		= SEQCNT_LATCH_ZERO(clear_seq.latch),
467 	.val[0]		= 0,
468 	.val[1]		= 0,
469 };
470 
471 #define LOG_LEVEL(v)		((v) & 0x07)
472 #define LOG_FACILITY(v)		((v) >> 3 & 0xff)
473 
474 /* record buffer */
475 #define LOG_ALIGN __alignof__(unsigned long)
476 #define __LOG_BUF_LEN (1 << CONFIG_LOG_BUF_SHIFT)
477 #define LOG_BUF_LEN_MAX (u32)(1 << 31)
478 static char __log_buf[__LOG_BUF_LEN] __aligned(LOG_ALIGN);
479 static char *log_buf = __log_buf;
480 static u32 log_buf_len = __LOG_BUF_LEN;
481 
482 /*
483  * Define the average message size. This only affects the number of
484  * descriptors that will be available. Underestimating is better than
485  * overestimating (too many available descriptors is better than not enough).
486  */
487 #define PRB_AVGBITS 5	/* 32 character average length */
488 
489 #if CONFIG_LOG_BUF_SHIFT <= PRB_AVGBITS
490 #error CONFIG_LOG_BUF_SHIFT value too small.
491 #endif
492 _DEFINE_PRINTKRB(printk_rb_static, CONFIG_LOG_BUF_SHIFT - PRB_AVGBITS,
493 		 PRB_AVGBITS, &__log_buf[0]);
494 
495 static struct printk_ringbuffer printk_rb_dynamic;
496 
497 static struct printk_ringbuffer *prb = &printk_rb_static;
498 
499 /*
500  * We cannot access per-CPU data (e.g. per-CPU flush irq_work) before
501  * per_cpu_areas are initialised. This variable is set to true when
502  * it's safe to access per-CPU data.
503  */
504 static bool __printk_percpu_data_ready __ro_after_init;
505 
506 bool printk_percpu_data_ready(void)
507 {
508 	return __printk_percpu_data_ready;
509 }
510 
511 /* Must be called under syslog_lock. */
512 static void latched_seq_write(struct latched_seq *ls, u64 val)
513 {
514 	raw_write_seqcount_latch(&ls->latch);
515 	ls->val[0] = val;
516 	raw_write_seqcount_latch(&ls->latch);
517 	ls->val[1] = val;
518 }
519 
520 /* Can be called from any context. */
521 static u64 latched_seq_read_nolock(struct latched_seq *ls)
522 {
523 	unsigned int seq;
524 	unsigned int idx;
525 	u64 val;
526 
527 	do {
528 		seq = raw_read_seqcount_latch(&ls->latch);
529 		idx = seq & 0x1;
530 		val = ls->val[idx];
531 	} while (raw_read_seqcount_latch_retry(&ls->latch, seq));
532 
533 	return val;
534 }
535 
536 /* Return log buffer address */
537 char *log_buf_addr_get(void)
538 {
539 	return log_buf;
540 }
541 EXPORT_SYMBOL_GPL(log_buf_addr_get);
542 
543 /* Return log buffer size */
544 u32 log_buf_len_get(void)
545 {
546 	return log_buf_len;
547 }
548 EXPORT_SYMBOL_GPL(log_buf_len_get);
549 
550 /*
551  * Define how much of the log buffer we could take at maximum. The value
552  * must be greater than two. Note that only half of the buffer is available
553  * when the index points to the middle.
554  */
555 #define MAX_LOG_TAKE_PART 4
556 static const char trunc_msg[] = "<truncated>";
557 
558 static void truncate_msg(u16 *text_len, u16 *trunc_msg_len)
559 {
560 	/*
561 	 * The message should not take the whole buffer. Otherwise, it might
562 	 * get removed too soon.
563 	 */
564 	u32 max_text_len = log_buf_len / MAX_LOG_TAKE_PART;
565 
566 	if (*text_len > max_text_len)
567 		*text_len = max_text_len;
568 
569 	/* enable the warning message (if there is room) */
570 	*trunc_msg_len = strlen(trunc_msg);
571 	if (*text_len >= *trunc_msg_len)
572 		*text_len -= *trunc_msg_len;
573 	else
574 		*trunc_msg_len = 0;
575 }
576 
577 int dmesg_restrict = IS_ENABLED(CONFIG_SECURITY_DMESG_RESTRICT);
578 
579 static int syslog_action_restricted(int type)
580 {
581 	if (dmesg_restrict)
582 		return 1;
583 	/*
584 	 * Unless restricted, we allow "read all" and "get buffer size"
585 	 * for everybody.
586 	 */
587 	return type != SYSLOG_ACTION_READ_ALL &&
588 	       type != SYSLOG_ACTION_SIZE_BUFFER;
589 }
590 
591 static int check_syslog_permissions(int type, int source)
592 {
593 	/*
594 	 * If this is from /proc/kmsg and we've already opened it, then we've
595 	 * already done the capabilities checks at open time.
596 	 */
597 	if (source == SYSLOG_FROM_PROC && type != SYSLOG_ACTION_OPEN)
598 		goto ok;
599 
600 	if (syslog_action_restricted(type)) {
601 		if (capable(CAP_SYSLOG))
602 			goto ok;
603 		/*
604 		 * For historical reasons, accept CAP_SYS_ADMIN too, with
605 		 * a warning.
606 		 */
607 		if (capable(CAP_SYS_ADMIN)) {
608 			pr_warn_once("%s (%d): Attempt to access syslog with "
609 				     "CAP_SYS_ADMIN but no CAP_SYSLOG "
610 				     "(deprecated).\n",
611 				 current->comm, task_pid_nr(current));
612 			goto ok;
613 		}
614 		return -EPERM;
615 	}
616 ok:
617 	return security_syslog(type);
618 }
619 
620 static void append_char(char **pp, char *e, char c)
621 {
622 	if (*pp < e)
623 		*(*pp)++ = c;
624 }
625 
626 static ssize_t info_print_ext_header(char *buf, size_t size,
627 				     struct printk_info *info)
628 {
629 	u64 ts_usec = info->ts_nsec;
630 	char caller[20];
631 #ifdef CONFIG_PRINTK_CALLER
632 	u32 id = info->caller_id;
633 
634 	snprintf(caller, sizeof(caller), ",caller=%c%u",
635 		 id & 0x80000000 ? 'C' : 'T', id & ~0x80000000);
636 #else
637 	caller[0] = '\0';
638 #endif
639 
640 	do_div(ts_usec, 1000);
641 
642 	return scnprintf(buf, size, "%u,%llu,%llu,%c%s;",
643 			 (info->facility << 3) | info->level, info->seq,
644 			 ts_usec, info->flags & LOG_CONT ? 'c' : '-', caller);
645 }
646 
647 static ssize_t msg_add_ext_text(char *buf, size_t size,
648 				const char *text, size_t text_len,
649 				unsigned char endc)
650 {
651 	char *p = buf, *e = buf + size;
652 	size_t i;
653 
654 	/* escape non-printable characters */
655 	for (i = 0; i < text_len; i++) {
656 		unsigned char c = text[i];
657 
658 		if (c < ' ' || c >= 127 || c == '\\')
659 			p += scnprintf(p, e - p, "\\x%02x", c);
660 		else
661 			append_char(&p, e, c);
662 	}
663 	append_char(&p, e, endc);
664 
665 	return p - buf;
666 }
667 
668 static ssize_t msg_add_dict_text(char *buf, size_t size,
669 				 const char *key, const char *val)
670 {
671 	size_t val_len = strlen(val);
672 	ssize_t len;
673 
674 	if (!val_len)
675 		return 0;
676 
677 	len = msg_add_ext_text(buf, size, "", 0, ' ');	/* dict prefix */
678 	len += msg_add_ext_text(buf + len, size - len, key, strlen(key), '=');
679 	len += msg_add_ext_text(buf + len, size - len, val, val_len, '\n');
680 
681 	return len;
682 }
683 
684 static ssize_t msg_print_ext_body(char *buf, size_t size,
685 				  char *text, size_t text_len,
686 				  struct dev_printk_info *dev_info)
687 {
688 	ssize_t len;
689 
690 	len = msg_add_ext_text(buf, size, text, text_len, '\n');
691 
692 	if (!dev_info)
693 		goto out;
694 
695 	len += msg_add_dict_text(buf + len, size - len, "SUBSYSTEM",
696 				 dev_info->subsystem);
697 	len += msg_add_dict_text(buf + len, size - len, "DEVICE",
698 				 dev_info->device);
699 out:
700 	return len;
701 }
702 
703 static bool printk_get_next_message(struct printk_message *pmsg, u64 seq,
704 				    bool is_extended, bool may_supress);
705 
706 /* /dev/kmsg - userspace message inject/listen interface */
707 struct devkmsg_user {
708 	atomic64_t seq;
709 	struct ratelimit_state rs;
710 	struct mutex lock;
711 	struct printk_buffers pbufs;
712 };
713 
714 static __printf(3, 4) __cold
715 int devkmsg_emit(int facility, int level, const char *fmt, ...)
716 {
717 	va_list args;
718 	int r;
719 
720 	va_start(args, fmt);
721 	r = vprintk_emit(facility, level, NULL, fmt, args);
722 	va_end(args);
723 
724 	return r;
725 }
726 
727 static ssize_t devkmsg_write(struct kiocb *iocb, struct iov_iter *from)
728 {
729 	char *buf, *line;
730 	int level = default_message_loglevel;
731 	int facility = 1;	/* LOG_USER */
732 	struct file *file = iocb->ki_filp;
733 	struct devkmsg_user *user = file->private_data;
734 	size_t len = iov_iter_count(from);
735 	ssize_t ret = len;
736 
737 	if (len > PRINTKRB_RECORD_MAX)
738 		return -EINVAL;
739 
740 	/* Ignore when user logging is disabled. */
741 	if (devkmsg_log & DEVKMSG_LOG_MASK_OFF)
742 		return len;
743 
744 	/* Ratelimit when not explicitly enabled. */
745 	if (!(devkmsg_log & DEVKMSG_LOG_MASK_ON)) {
746 		if (!___ratelimit(&user->rs, current->comm))
747 			return ret;
748 	}
749 
750 	buf = kmalloc(len+1, GFP_KERNEL);
751 	if (buf == NULL)
752 		return -ENOMEM;
753 
754 	buf[len] = '\0';
755 	if (!copy_from_iter_full(buf, len, from)) {
756 		kfree(buf);
757 		return -EFAULT;
758 	}
759 
760 	/*
761 	 * Extract and skip the syslog prefix <[0-9]*>. Coming from userspace
762 	 * the decimal value represents 32bit, the lower 3 bit are the log
763 	 * level, the rest are the log facility.
764 	 *
765 	 * If no prefix or no userspace facility is specified, we
766 	 * enforce LOG_USER, to be able to reliably distinguish
767 	 * kernel-generated messages from userspace-injected ones.
768 	 */
769 	line = buf;
770 	if (line[0] == '<') {
771 		char *endp = NULL;
772 		unsigned int u;
773 
774 		u = simple_strtoul(line + 1, &endp, 10);
775 		if (endp && endp[0] == '>') {
776 			level = LOG_LEVEL(u);
777 			if (LOG_FACILITY(u) != 0)
778 				facility = LOG_FACILITY(u);
779 			endp++;
780 			line = endp;
781 		}
782 	}
783 
784 	devkmsg_emit(facility, level, "%s", line);
785 	kfree(buf);
786 	return ret;
787 }
788 
789 static ssize_t devkmsg_read(struct file *file, char __user *buf,
790 			    size_t count, loff_t *ppos)
791 {
792 	struct devkmsg_user *user = file->private_data;
793 	char *outbuf = &user->pbufs.outbuf[0];
794 	struct printk_message pmsg = {
795 		.pbufs = &user->pbufs,
796 	};
797 	ssize_t ret;
798 
799 	ret = mutex_lock_interruptible(&user->lock);
800 	if (ret)
801 		return ret;
802 
803 	if (!printk_get_next_message(&pmsg, atomic64_read(&user->seq), true, false)) {
804 		if (file->f_flags & O_NONBLOCK) {
805 			ret = -EAGAIN;
806 			goto out;
807 		}
808 
809 		/*
810 		 * Guarantee this task is visible on the waitqueue before
811 		 * checking the wake condition.
812 		 *
813 		 * The full memory barrier within set_current_state() of
814 		 * prepare_to_wait_event() pairs with the full memory barrier
815 		 * within wq_has_sleeper().
816 		 *
817 		 * This pairs with __wake_up_klogd:A.
818 		 */
819 		ret = wait_event_interruptible(log_wait,
820 				printk_get_next_message(&pmsg, atomic64_read(&user->seq), true,
821 							false)); /* LMM(devkmsg_read:A) */
822 		if (ret)
823 			goto out;
824 	}
825 
826 	if (pmsg.dropped) {
827 		/* our last seen message is gone, return error and reset */
828 		atomic64_set(&user->seq, pmsg.seq);
829 		ret = -EPIPE;
830 		goto out;
831 	}
832 
833 	atomic64_set(&user->seq, pmsg.seq + 1);
834 
835 	if (pmsg.outbuf_len > count) {
836 		ret = -EINVAL;
837 		goto out;
838 	}
839 
840 	if (copy_to_user(buf, outbuf, pmsg.outbuf_len)) {
841 		ret = -EFAULT;
842 		goto out;
843 	}
844 	ret = pmsg.outbuf_len;
845 out:
846 	mutex_unlock(&user->lock);
847 	return ret;
848 }
849 
850 /*
851  * Be careful when modifying this function!!!
852  *
853  * Only few operations are supported because the device works only with the
854  * entire variable length messages (records). Non-standard values are
855  * returned in the other cases and has been this way for quite some time.
856  * User space applications might depend on this behavior.
857  */
858 static loff_t devkmsg_llseek(struct file *file, loff_t offset, int whence)
859 {
860 	struct devkmsg_user *user = file->private_data;
861 	loff_t ret = 0;
862 
863 	if (offset)
864 		return -ESPIPE;
865 
866 	switch (whence) {
867 	case SEEK_SET:
868 		/* the first record */
869 		atomic64_set(&user->seq, prb_first_valid_seq(prb));
870 		break;
871 	case SEEK_DATA:
872 		/*
873 		 * The first record after the last SYSLOG_ACTION_CLEAR,
874 		 * like issued by 'dmesg -c'. Reading /dev/kmsg itself
875 		 * changes no global state, and does not clear anything.
876 		 */
877 		atomic64_set(&user->seq, latched_seq_read_nolock(&clear_seq));
878 		break;
879 	case SEEK_END:
880 		/* after the last record */
881 		atomic64_set(&user->seq, prb_next_seq(prb));
882 		break;
883 	default:
884 		ret = -EINVAL;
885 	}
886 	return ret;
887 }
888 
889 static __poll_t devkmsg_poll(struct file *file, poll_table *wait)
890 {
891 	struct devkmsg_user *user = file->private_data;
892 	struct printk_info info;
893 	__poll_t ret = 0;
894 
895 	poll_wait(file, &log_wait, wait);
896 
897 	if (prb_read_valid_info(prb, atomic64_read(&user->seq), &info, NULL)) {
898 		/* return error when data has vanished underneath us */
899 		if (info.seq != atomic64_read(&user->seq))
900 			ret = EPOLLIN|EPOLLRDNORM|EPOLLERR|EPOLLPRI;
901 		else
902 			ret = EPOLLIN|EPOLLRDNORM;
903 	}
904 
905 	return ret;
906 }
907 
908 static int devkmsg_open(struct inode *inode, struct file *file)
909 {
910 	struct devkmsg_user *user;
911 	int err;
912 
913 	if (devkmsg_log & DEVKMSG_LOG_MASK_OFF)
914 		return -EPERM;
915 
916 	/* write-only does not need any file context */
917 	if ((file->f_flags & O_ACCMODE) != O_WRONLY) {
918 		err = check_syslog_permissions(SYSLOG_ACTION_READ_ALL,
919 					       SYSLOG_FROM_READER);
920 		if (err)
921 			return err;
922 	}
923 
924 	user = kvmalloc(sizeof(struct devkmsg_user), GFP_KERNEL);
925 	if (!user)
926 		return -ENOMEM;
927 
928 	ratelimit_default_init(&user->rs);
929 	ratelimit_set_flags(&user->rs, RATELIMIT_MSG_ON_RELEASE);
930 
931 	mutex_init(&user->lock);
932 
933 	atomic64_set(&user->seq, prb_first_valid_seq(prb));
934 
935 	file->private_data = user;
936 	return 0;
937 }
938 
939 static int devkmsg_release(struct inode *inode, struct file *file)
940 {
941 	struct devkmsg_user *user = file->private_data;
942 
943 	ratelimit_state_exit(&user->rs);
944 
945 	mutex_destroy(&user->lock);
946 	kvfree(user);
947 	return 0;
948 }
949 
950 const struct file_operations kmsg_fops = {
951 	.open = devkmsg_open,
952 	.read = devkmsg_read,
953 	.write_iter = devkmsg_write,
954 	.llseek = devkmsg_llseek,
955 	.poll = devkmsg_poll,
956 	.release = devkmsg_release,
957 };
958 
959 #ifdef CONFIG_CRASH_CORE
960 /*
961  * This appends the listed symbols to /proc/vmcore
962  *
963  * /proc/vmcore is used by various utilities, like crash and makedumpfile to
964  * obtain access to symbols that are otherwise very difficult to locate.  These
965  * symbols are specifically used so that utilities can access and extract the
966  * dmesg log from a vmcore file after a crash.
967  */
968 void log_buf_vmcoreinfo_setup(void)
969 {
970 	struct dev_printk_info *dev_info = NULL;
971 
972 	VMCOREINFO_SYMBOL(prb);
973 	VMCOREINFO_SYMBOL(printk_rb_static);
974 	VMCOREINFO_SYMBOL(clear_seq);
975 
976 	/*
977 	 * Export struct size and field offsets. User space tools can
978 	 * parse it and detect any changes to structure down the line.
979 	 */
980 
981 	VMCOREINFO_STRUCT_SIZE(printk_ringbuffer);
982 	VMCOREINFO_OFFSET(printk_ringbuffer, desc_ring);
983 	VMCOREINFO_OFFSET(printk_ringbuffer, text_data_ring);
984 	VMCOREINFO_OFFSET(printk_ringbuffer, fail);
985 
986 	VMCOREINFO_STRUCT_SIZE(prb_desc_ring);
987 	VMCOREINFO_OFFSET(prb_desc_ring, count_bits);
988 	VMCOREINFO_OFFSET(prb_desc_ring, descs);
989 	VMCOREINFO_OFFSET(prb_desc_ring, infos);
990 	VMCOREINFO_OFFSET(prb_desc_ring, head_id);
991 	VMCOREINFO_OFFSET(prb_desc_ring, tail_id);
992 
993 	VMCOREINFO_STRUCT_SIZE(prb_desc);
994 	VMCOREINFO_OFFSET(prb_desc, state_var);
995 	VMCOREINFO_OFFSET(prb_desc, text_blk_lpos);
996 
997 	VMCOREINFO_STRUCT_SIZE(prb_data_blk_lpos);
998 	VMCOREINFO_OFFSET(prb_data_blk_lpos, begin);
999 	VMCOREINFO_OFFSET(prb_data_blk_lpos, next);
1000 
1001 	VMCOREINFO_STRUCT_SIZE(printk_info);
1002 	VMCOREINFO_OFFSET(printk_info, seq);
1003 	VMCOREINFO_OFFSET(printk_info, ts_nsec);
1004 	VMCOREINFO_OFFSET(printk_info, text_len);
1005 	VMCOREINFO_OFFSET(printk_info, caller_id);
1006 	VMCOREINFO_OFFSET(printk_info, dev_info);
1007 
1008 	VMCOREINFO_STRUCT_SIZE(dev_printk_info);
1009 	VMCOREINFO_OFFSET(dev_printk_info, subsystem);
1010 	VMCOREINFO_LENGTH(printk_info_subsystem, sizeof(dev_info->subsystem));
1011 	VMCOREINFO_OFFSET(dev_printk_info, device);
1012 	VMCOREINFO_LENGTH(printk_info_device, sizeof(dev_info->device));
1013 
1014 	VMCOREINFO_STRUCT_SIZE(prb_data_ring);
1015 	VMCOREINFO_OFFSET(prb_data_ring, size_bits);
1016 	VMCOREINFO_OFFSET(prb_data_ring, data);
1017 	VMCOREINFO_OFFSET(prb_data_ring, head_lpos);
1018 	VMCOREINFO_OFFSET(prb_data_ring, tail_lpos);
1019 
1020 	VMCOREINFO_SIZE(atomic_long_t);
1021 	VMCOREINFO_TYPE_OFFSET(atomic_long_t, counter);
1022 
1023 	VMCOREINFO_STRUCT_SIZE(latched_seq);
1024 	VMCOREINFO_OFFSET(latched_seq, val);
1025 }
1026 #endif
1027 
1028 /* requested log_buf_len from kernel cmdline */
1029 static unsigned long __initdata new_log_buf_len;
1030 
1031 /* we practice scaling the ring buffer by powers of 2 */
1032 static void __init log_buf_len_update(u64 size)
1033 {
1034 	if (size > (u64)LOG_BUF_LEN_MAX) {
1035 		size = (u64)LOG_BUF_LEN_MAX;
1036 		pr_err("log_buf over 2G is not supported.\n");
1037 	}
1038 
1039 	if (size)
1040 		size = roundup_pow_of_two(size);
1041 	if (size > log_buf_len)
1042 		new_log_buf_len = (unsigned long)size;
1043 }
1044 
1045 /* save requested log_buf_len since it's too early to process it */
1046 static int __init log_buf_len_setup(char *str)
1047 {
1048 	u64 size;
1049 
1050 	if (!str)
1051 		return -EINVAL;
1052 
1053 	size = memparse(str, &str);
1054 
1055 	log_buf_len_update(size);
1056 
1057 	return 0;
1058 }
1059 early_param("log_buf_len", log_buf_len_setup);
1060 
1061 #ifdef CONFIG_SMP
1062 #define __LOG_CPU_MAX_BUF_LEN (1 << CONFIG_LOG_CPU_MAX_BUF_SHIFT)
1063 
1064 static void __init log_buf_add_cpu(void)
1065 {
1066 	unsigned int cpu_extra;
1067 
1068 	/*
1069 	 * archs should set up cpu_possible_bits properly with
1070 	 * set_cpu_possible() after setup_arch() but just in
1071 	 * case lets ensure this is valid.
1072 	 */
1073 	if (num_possible_cpus() == 1)
1074 		return;
1075 
1076 	cpu_extra = (num_possible_cpus() - 1) * __LOG_CPU_MAX_BUF_LEN;
1077 
1078 	/* by default this will only continue through for large > 64 CPUs */
1079 	if (cpu_extra <= __LOG_BUF_LEN / 2)
1080 		return;
1081 
1082 	pr_info("log_buf_len individual max cpu contribution: %d bytes\n",
1083 		__LOG_CPU_MAX_BUF_LEN);
1084 	pr_info("log_buf_len total cpu_extra contributions: %d bytes\n",
1085 		cpu_extra);
1086 	pr_info("log_buf_len min size: %d bytes\n", __LOG_BUF_LEN);
1087 
1088 	log_buf_len_update(cpu_extra + __LOG_BUF_LEN);
1089 }
1090 #else /* !CONFIG_SMP */
1091 static inline void log_buf_add_cpu(void) {}
1092 #endif /* CONFIG_SMP */
1093 
1094 static void __init set_percpu_data_ready(void)
1095 {
1096 	__printk_percpu_data_ready = true;
1097 }
1098 
1099 static unsigned int __init add_to_rb(struct printk_ringbuffer *rb,
1100 				     struct printk_record *r)
1101 {
1102 	struct prb_reserved_entry e;
1103 	struct printk_record dest_r;
1104 
1105 	prb_rec_init_wr(&dest_r, r->info->text_len);
1106 
1107 	if (!prb_reserve(&e, rb, &dest_r))
1108 		return 0;
1109 
1110 	memcpy(&dest_r.text_buf[0], &r->text_buf[0], r->info->text_len);
1111 	dest_r.info->text_len = r->info->text_len;
1112 	dest_r.info->facility = r->info->facility;
1113 	dest_r.info->level = r->info->level;
1114 	dest_r.info->flags = r->info->flags;
1115 	dest_r.info->ts_nsec = r->info->ts_nsec;
1116 	dest_r.info->caller_id = r->info->caller_id;
1117 	memcpy(&dest_r.info->dev_info, &r->info->dev_info, sizeof(dest_r.info->dev_info));
1118 
1119 	prb_final_commit(&e);
1120 
1121 	return prb_record_text_space(&e);
1122 }
1123 
1124 static char setup_text_buf[PRINTKRB_RECORD_MAX] __initdata;
1125 
1126 void __init setup_log_buf(int early)
1127 {
1128 	struct printk_info *new_infos;
1129 	unsigned int new_descs_count;
1130 	struct prb_desc *new_descs;
1131 	struct printk_info info;
1132 	struct printk_record r;
1133 	unsigned int text_size;
1134 	size_t new_descs_size;
1135 	size_t new_infos_size;
1136 	unsigned long flags;
1137 	char *new_log_buf;
1138 	unsigned int free;
1139 	u64 seq;
1140 
1141 	/*
1142 	 * Some archs call setup_log_buf() multiple times - first is very
1143 	 * early, e.g. from setup_arch(), and second - when percpu_areas
1144 	 * are initialised.
1145 	 */
1146 	if (!early)
1147 		set_percpu_data_ready();
1148 
1149 	if (log_buf != __log_buf)
1150 		return;
1151 
1152 	if (!early && !new_log_buf_len)
1153 		log_buf_add_cpu();
1154 
1155 	if (!new_log_buf_len)
1156 		return;
1157 
1158 	new_descs_count = new_log_buf_len >> PRB_AVGBITS;
1159 	if (new_descs_count == 0) {
1160 		pr_err("new_log_buf_len: %lu too small\n", new_log_buf_len);
1161 		return;
1162 	}
1163 
1164 	new_log_buf = memblock_alloc(new_log_buf_len, LOG_ALIGN);
1165 	if (unlikely(!new_log_buf)) {
1166 		pr_err("log_buf_len: %lu text bytes not available\n",
1167 		       new_log_buf_len);
1168 		return;
1169 	}
1170 
1171 	new_descs_size = new_descs_count * sizeof(struct prb_desc);
1172 	new_descs = memblock_alloc(new_descs_size, LOG_ALIGN);
1173 	if (unlikely(!new_descs)) {
1174 		pr_err("log_buf_len: %zu desc bytes not available\n",
1175 		       new_descs_size);
1176 		goto err_free_log_buf;
1177 	}
1178 
1179 	new_infos_size = new_descs_count * sizeof(struct printk_info);
1180 	new_infos = memblock_alloc(new_infos_size, LOG_ALIGN);
1181 	if (unlikely(!new_infos)) {
1182 		pr_err("log_buf_len: %zu info bytes not available\n",
1183 		       new_infos_size);
1184 		goto err_free_descs;
1185 	}
1186 
1187 	prb_rec_init_rd(&r, &info, &setup_text_buf[0], sizeof(setup_text_buf));
1188 
1189 	prb_init(&printk_rb_dynamic,
1190 		 new_log_buf, ilog2(new_log_buf_len),
1191 		 new_descs, ilog2(new_descs_count),
1192 		 new_infos);
1193 
1194 	local_irq_save(flags);
1195 
1196 	log_buf_len = new_log_buf_len;
1197 	log_buf = new_log_buf;
1198 	new_log_buf_len = 0;
1199 
1200 	free = __LOG_BUF_LEN;
1201 	prb_for_each_record(0, &printk_rb_static, seq, &r) {
1202 		text_size = add_to_rb(&printk_rb_dynamic, &r);
1203 		if (text_size > free)
1204 			free = 0;
1205 		else
1206 			free -= text_size;
1207 	}
1208 
1209 	prb = &printk_rb_dynamic;
1210 
1211 	local_irq_restore(flags);
1212 
1213 	/*
1214 	 * Copy any remaining messages that might have appeared from
1215 	 * NMI context after copying but before switching to the
1216 	 * dynamic buffer.
1217 	 */
1218 	prb_for_each_record(seq, &printk_rb_static, seq, &r) {
1219 		text_size = add_to_rb(&printk_rb_dynamic, &r);
1220 		if (text_size > free)
1221 			free = 0;
1222 		else
1223 			free -= text_size;
1224 	}
1225 
1226 	if (seq != prb_next_seq(&printk_rb_static)) {
1227 		pr_err("dropped %llu messages\n",
1228 		       prb_next_seq(&printk_rb_static) - seq);
1229 	}
1230 
1231 	pr_info("log_buf_len: %u bytes\n", log_buf_len);
1232 	pr_info("early log buf free: %u(%u%%)\n",
1233 		free, (free * 100) / __LOG_BUF_LEN);
1234 	return;
1235 
1236 err_free_descs:
1237 	memblock_free(new_descs, new_descs_size);
1238 err_free_log_buf:
1239 	memblock_free(new_log_buf, new_log_buf_len);
1240 }
1241 
1242 static bool __read_mostly ignore_loglevel;
1243 
1244 static int __init ignore_loglevel_setup(char *str)
1245 {
1246 	ignore_loglevel = true;
1247 	pr_info("debug: ignoring loglevel setting.\n");
1248 
1249 	return 0;
1250 }
1251 
1252 early_param("ignore_loglevel", ignore_loglevel_setup);
1253 module_param(ignore_loglevel, bool, S_IRUGO | S_IWUSR);
1254 MODULE_PARM_DESC(ignore_loglevel,
1255 		 "ignore loglevel setting (prints all kernel messages to the console)");
1256 
1257 static bool suppress_message_printing(int level)
1258 {
1259 	return (level >= console_loglevel && !ignore_loglevel);
1260 }
1261 
1262 #ifdef CONFIG_BOOT_PRINTK_DELAY
1263 
1264 static int boot_delay; /* msecs delay after each printk during bootup */
1265 static unsigned long long loops_per_msec;	/* based on boot_delay */
1266 
1267 static int __init boot_delay_setup(char *str)
1268 {
1269 	unsigned long lpj;
1270 
1271 	lpj = preset_lpj ? preset_lpj : 1000000;	/* some guess */
1272 	loops_per_msec = (unsigned long long)lpj / 1000 * HZ;
1273 
1274 	get_option(&str, &boot_delay);
1275 	if (boot_delay > 10 * 1000)
1276 		boot_delay = 0;
1277 
1278 	pr_debug("boot_delay: %u, preset_lpj: %ld, lpj: %lu, "
1279 		"HZ: %d, loops_per_msec: %llu\n",
1280 		boot_delay, preset_lpj, lpj, HZ, loops_per_msec);
1281 	return 0;
1282 }
1283 early_param("boot_delay", boot_delay_setup);
1284 
1285 static void boot_delay_msec(int level)
1286 {
1287 	unsigned long long k;
1288 	unsigned long timeout;
1289 
1290 	if ((boot_delay == 0 || system_state >= SYSTEM_RUNNING)
1291 		|| suppress_message_printing(level)) {
1292 		return;
1293 	}
1294 
1295 	k = (unsigned long long)loops_per_msec * boot_delay;
1296 
1297 	timeout = jiffies + msecs_to_jiffies(boot_delay);
1298 	while (k) {
1299 		k--;
1300 		cpu_relax();
1301 		/*
1302 		 * use (volatile) jiffies to prevent
1303 		 * compiler reduction; loop termination via jiffies
1304 		 * is secondary and may or may not happen.
1305 		 */
1306 		if (time_after(jiffies, timeout))
1307 			break;
1308 		touch_nmi_watchdog();
1309 	}
1310 }
1311 #else
1312 static inline void boot_delay_msec(int level)
1313 {
1314 }
1315 #endif
1316 
1317 static bool printk_time = IS_ENABLED(CONFIG_PRINTK_TIME);
1318 module_param_named(time, printk_time, bool, S_IRUGO | S_IWUSR);
1319 
1320 static size_t print_syslog(unsigned int level, char *buf)
1321 {
1322 	return sprintf(buf, "<%u>", level);
1323 }
1324 
1325 static size_t print_time(u64 ts, char *buf)
1326 {
1327 	unsigned long rem_nsec = do_div(ts, 1000000000);
1328 
1329 	return sprintf(buf, "[%5lu.%06lu]",
1330 		       (unsigned long)ts, rem_nsec / 1000);
1331 }
1332 
1333 #ifdef CONFIG_PRINTK_CALLER
1334 static size_t print_caller(u32 id, char *buf)
1335 {
1336 	char caller[12];
1337 
1338 	snprintf(caller, sizeof(caller), "%c%u",
1339 		 id & 0x80000000 ? 'C' : 'T', id & ~0x80000000);
1340 	return sprintf(buf, "[%6s]", caller);
1341 }
1342 #else
1343 #define print_caller(id, buf) 0
1344 #endif
1345 
1346 static size_t info_print_prefix(const struct printk_info  *info, bool syslog,
1347 				bool time, char *buf)
1348 {
1349 	size_t len = 0;
1350 
1351 	if (syslog)
1352 		len = print_syslog((info->facility << 3) | info->level, buf);
1353 
1354 	if (time)
1355 		len += print_time(info->ts_nsec, buf + len);
1356 
1357 	len += print_caller(info->caller_id, buf + len);
1358 
1359 	if (IS_ENABLED(CONFIG_PRINTK_CALLER) || time) {
1360 		buf[len++] = ' ';
1361 		buf[len] = '\0';
1362 	}
1363 
1364 	return len;
1365 }
1366 
1367 /*
1368  * Prepare the record for printing. The text is shifted within the given
1369  * buffer to avoid a need for another one. The following operations are
1370  * done:
1371  *
1372  *   - Add prefix for each line.
1373  *   - Drop truncated lines that no longer fit into the buffer.
1374  *   - Add the trailing newline that has been removed in vprintk_store().
1375  *   - Add a string terminator.
1376  *
1377  * Since the produced string is always terminated, the maximum possible
1378  * return value is @r->text_buf_size - 1;
1379  *
1380  * Return: The length of the updated/prepared text, including the added
1381  * prefixes and the newline. The terminator is not counted. The dropped
1382  * line(s) are not counted.
1383  */
1384 static size_t record_print_text(struct printk_record *r, bool syslog,
1385 				bool time)
1386 {
1387 	size_t text_len = r->info->text_len;
1388 	size_t buf_size = r->text_buf_size;
1389 	char *text = r->text_buf;
1390 	char prefix[PRINTK_PREFIX_MAX];
1391 	bool truncated = false;
1392 	size_t prefix_len;
1393 	size_t line_len;
1394 	size_t len = 0;
1395 	char *next;
1396 
1397 	/*
1398 	 * If the message was truncated because the buffer was not large
1399 	 * enough, treat the available text as if it were the full text.
1400 	 */
1401 	if (text_len > buf_size)
1402 		text_len = buf_size;
1403 
1404 	prefix_len = info_print_prefix(r->info, syslog, time, prefix);
1405 
1406 	/*
1407 	 * @text_len: bytes of unprocessed text
1408 	 * @line_len: bytes of current line _without_ newline
1409 	 * @text:     pointer to beginning of current line
1410 	 * @len:      number of bytes prepared in r->text_buf
1411 	 */
1412 	for (;;) {
1413 		next = memchr(text, '\n', text_len);
1414 		if (next) {
1415 			line_len = next - text;
1416 		} else {
1417 			/* Drop truncated line(s). */
1418 			if (truncated)
1419 				break;
1420 			line_len = text_len;
1421 		}
1422 
1423 		/*
1424 		 * Truncate the text if there is not enough space to add the
1425 		 * prefix and a trailing newline and a terminator.
1426 		 */
1427 		if (len + prefix_len + text_len + 1 + 1 > buf_size) {
1428 			/* Drop even the current line if no space. */
1429 			if (len + prefix_len + line_len + 1 + 1 > buf_size)
1430 				break;
1431 
1432 			text_len = buf_size - len - prefix_len - 1 - 1;
1433 			truncated = true;
1434 		}
1435 
1436 		memmove(text + prefix_len, text, text_len);
1437 		memcpy(text, prefix, prefix_len);
1438 
1439 		/*
1440 		 * Increment the prepared length to include the text and
1441 		 * prefix that were just moved+copied. Also increment for the
1442 		 * newline at the end of this line. If this is the last line,
1443 		 * there is no newline, but it will be added immediately below.
1444 		 */
1445 		len += prefix_len + line_len + 1;
1446 		if (text_len == line_len) {
1447 			/*
1448 			 * This is the last line. Add the trailing newline
1449 			 * removed in vprintk_store().
1450 			 */
1451 			text[prefix_len + line_len] = '\n';
1452 			break;
1453 		}
1454 
1455 		/*
1456 		 * Advance beyond the added prefix and the related line with
1457 		 * its newline.
1458 		 */
1459 		text += prefix_len + line_len + 1;
1460 
1461 		/*
1462 		 * The remaining text has only decreased by the line with its
1463 		 * newline.
1464 		 *
1465 		 * Note that @text_len can become zero. It happens when @text
1466 		 * ended with a newline (either due to truncation or the
1467 		 * original string ending with "\n\n"). The loop is correctly
1468 		 * repeated and (if not truncated) an empty line with a prefix
1469 		 * will be prepared.
1470 		 */
1471 		text_len -= line_len + 1;
1472 	}
1473 
1474 	/*
1475 	 * If a buffer was provided, it will be terminated. Space for the
1476 	 * string terminator is guaranteed to be available. The terminator is
1477 	 * not counted in the return value.
1478 	 */
1479 	if (buf_size > 0)
1480 		r->text_buf[len] = 0;
1481 
1482 	return len;
1483 }
1484 
1485 static size_t get_record_print_text_size(struct printk_info *info,
1486 					 unsigned int line_count,
1487 					 bool syslog, bool time)
1488 {
1489 	char prefix[PRINTK_PREFIX_MAX];
1490 	size_t prefix_len;
1491 
1492 	prefix_len = info_print_prefix(info, syslog, time, prefix);
1493 
1494 	/*
1495 	 * Each line will be preceded with a prefix. The intermediate
1496 	 * newlines are already within the text, but a final trailing
1497 	 * newline will be added.
1498 	 */
1499 	return ((prefix_len * line_count) + info->text_len + 1);
1500 }
1501 
1502 /*
1503  * Beginning with @start_seq, find the first record where it and all following
1504  * records up to (but not including) @max_seq fit into @size.
1505  *
1506  * @max_seq is simply an upper bound and does not need to exist. If the caller
1507  * does not require an upper bound, -1 can be used for @max_seq.
1508  */
1509 static u64 find_first_fitting_seq(u64 start_seq, u64 max_seq, size_t size,
1510 				  bool syslog, bool time)
1511 {
1512 	struct printk_info info;
1513 	unsigned int line_count;
1514 	size_t len = 0;
1515 	u64 seq;
1516 
1517 	/* Determine the size of the records up to @max_seq. */
1518 	prb_for_each_info(start_seq, prb, seq, &info, &line_count) {
1519 		if (info.seq >= max_seq)
1520 			break;
1521 		len += get_record_print_text_size(&info, line_count, syslog, time);
1522 	}
1523 
1524 	/*
1525 	 * Adjust the upper bound for the next loop to avoid subtracting
1526 	 * lengths that were never added.
1527 	 */
1528 	if (seq < max_seq)
1529 		max_seq = seq;
1530 
1531 	/*
1532 	 * Move first record forward until length fits into the buffer. Ignore
1533 	 * newest messages that were not counted in the above cycle. Messages
1534 	 * might appear and get lost in the meantime. This is a best effort
1535 	 * that prevents an infinite loop that could occur with a retry.
1536 	 */
1537 	prb_for_each_info(start_seq, prb, seq, &info, &line_count) {
1538 		if (len <= size || info.seq >= max_seq)
1539 			break;
1540 		len -= get_record_print_text_size(&info, line_count, syslog, time);
1541 	}
1542 
1543 	return seq;
1544 }
1545 
1546 /* The caller is responsible for making sure @size is greater than 0. */
1547 static int syslog_print(char __user *buf, int size)
1548 {
1549 	struct printk_info info;
1550 	struct printk_record r;
1551 	char *text;
1552 	int len = 0;
1553 	u64 seq;
1554 
1555 	text = kmalloc(PRINTK_MESSAGE_MAX, GFP_KERNEL);
1556 	if (!text)
1557 		return -ENOMEM;
1558 
1559 	prb_rec_init_rd(&r, &info, text, PRINTK_MESSAGE_MAX);
1560 
1561 	mutex_lock(&syslog_lock);
1562 
1563 	/*
1564 	 * Wait for the @syslog_seq record to be available. @syslog_seq may
1565 	 * change while waiting.
1566 	 */
1567 	do {
1568 		seq = syslog_seq;
1569 
1570 		mutex_unlock(&syslog_lock);
1571 		/*
1572 		 * Guarantee this task is visible on the waitqueue before
1573 		 * checking the wake condition.
1574 		 *
1575 		 * The full memory barrier within set_current_state() of
1576 		 * prepare_to_wait_event() pairs with the full memory barrier
1577 		 * within wq_has_sleeper().
1578 		 *
1579 		 * This pairs with __wake_up_klogd:A.
1580 		 */
1581 		len = wait_event_interruptible(log_wait,
1582 				prb_read_valid(prb, seq, NULL)); /* LMM(syslog_print:A) */
1583 		mutex_lock(&syslog_lock);
1584 
1585 		if (len)
1586 			goto out;
1587 	} while (syslog_seq != seq);
1588 
1589 	/*
1590 	 * Copy records that fit into the buffer. The above cycle makes sure
1591 	 * that the first record is always available.
1592 	 */
1593 	do {
1594 		size_t n;
1595 		size_t skip;
1596 		int err;
1597 
1598 		if (!prb_read_valid(prb, syslog_seq, &r))
1599 			break;
1600 
1601 		if (r.info->seq != syslog_seq) {
1602 			/* message is gone, move to next valid one */
1603 			syslog_seq = r.info->seq;
1604 			syslog_partial = 0;
1605 		}
1606 
1607 		/*
1608 		 * To keep reading/counting partial line consistent,
1609 		 * use printk_time value as of the beginning of a line.
1610 		 */
1611 		if (!syslog_partial)
1612 			syslog_time = printk_time;
1613 
1614 		skip = syslog_partial;
1615 		n = record_print_text(&r, true, syslog_time);
1616 		if (n - syslog_partial <= size) {
1617 			/* message fits into buffer, move forward */
1618 			syslog_seq = r.info->seq + 1;
1619 			n -= syslog_partial;
1620 			syslog_partial = 0;
1621 		} else if (!len){
1622 			/* partial read(), remember position */
1623 			n = size;
1624 			syslog_partial += n;
1625 		} else
1626 			n = 0;
1627 
1628 		if (!n)
1629 			break;
1630 
1631 		mutex_unlock(&syslog_lock);
1632 		err = copy_to_user(buf, text + skip, n);
1633 		mutex_lock(&syslog_lock);
1634 
1635 		if (err) {
1636 			if (!len)
1637 				len = -EFAULT;
1638 			break;
1639 		}
1640 
1641 		len += n;
1642 		size -= n;
1643 		buf += n;
1644 	} while (size);
1645 out:
1646 	mutex_unlock(&syslog_lock);
1647 	kfree(text);
1648 	return len;
1649 }
1650 
1651 static int syslog_print_all(char __user *buf, int size, bool clear)
1652 {
1653 	struct printk_info info;
1654 	struct printk_record r;
1655 	char *text;
1656 	int len = 0;
1657 	u64 seq;
1658 	bool time;
1659 
1660 	text = kmalloc(PRINTK_MESSAGE_MAX, GFP_KERNEL);
1661 	if (!text)
1662 		return -ENOMEM;
1663 
1664 	time = printk_time;
1665 	/*
1666 	 * Find first record that fits, including all following records,
1667 	 * into the user-provided buffer for this dump.
1668 	 */
1669 	seq = find_first_fitting_seq(latched_seq_read_nolock(&clear_seq), -1,
1670 				     size, true, time);
1671 
1672 	prb_rec_init_rd(&r, &info, text, PRINTK_MESSAGE_MAX);
1673 
1674 	len = 0;
1675 	prb_for_each_record(seq, prb, seq, &r) {
1676 		int textlen;
1677 
1678 		textlen = record_print_text(&r, true, time);
1679 
1680 		if (len + textlen > size) {
1681 			seq--;
1682 			break;
1683 		}
1684 
1685 		if (copy_to_user(buf + len, text, textlen))
1686 			len = -EFAULT;
1687 		else
1688 			len += textlen;
1689 
1690 		if (len < 0)
1691 			break;
1692 	}
1693 
1694 	if (clear) {
1695 		mutex_lock(&syslog_lock);
1696 		latched_seq_write(&clear_seq, seq);
1697 		mutex_unlock(&syslog_lock);
1698 	}
1699 
1700 	kfree(text);
1701 	return len;
1702 }
1703 
1704 static void syslog_clear(void)
1705 {
1706 	mutex_lock(&syslog_lock);
1707 	latched_seq_write(&clear_seq, prb_next_seq(prb));
1708 	mutex_unlock(&syslog_lock);
1709 }
1710 
1711 int do_syslog(int type, char __user *buf, int len, int source)
1712 {
1713 	struct printk_info info;
1714 	bool clear = false;
1715 	static int saved_console_loglevel = LOGLEVEL_DEFAULT;
1716 	int error;
1717 
1718 	error = check_syslog_permissions(type, source);
1719 	if (error)
1720 		return error;
1721 
1722 	switch (type) {
1723 	case SYSLOG_ACTION_CLOSE:	/* Close log */
1724 		break;
1725 	case SYSLOG_ACTION_OPEN:	/* Open log */
1726 		break;
1727 	case SYSLOG_ACTION_READ:	/* Read from log */
1728 		if (!buf || len < 0)
1729 			return -EINVAL;
1730 		if (!len)
1731 			return 0;
1732 		if (!access_ok(buf, len))
1733 			return -EFAULT;
1734 		error = syslog_print(buf, len);
1735 		break;
1736 	/* Read/clear last kernel messages */
1737 	case SYSLOG_ACTION_READ_CLEAR:
1738 		clear = true;
1739 		fallthrough;
1740 	/* Read last kernel messages */
1741 	case SYSLOG_ACTION_READ_ALL:
1742 		if (!buf || len < 0)
1743 			return -EINVAL;
1744 		if (!len)
1745 			return 0;
1746 		if (!access_ok(buf, len))
1747 			return -EFAULT;
1748 		error = syslog_print_all(buf, len, clear);
1749 		break;
1750 	/* Clear ring buffer */
1751 	case SYSLOG_ACTION_CLEAR:
1752 		syslog_clear();
1753 		break;
1754 	/* Disable logging to console */
1755 	case SYSLOG_ACTION_CONSOLE_OFF:
1756 		if (saved_console_loglevel == LOGLEVEL_DEFAULT)
1757 			saved_console_loglevel = console_loglevel;
1758 		console_loglevel = minimum_console_loglevel;
1759 		break;
1760 	/* Enable logging to console */
1761 	case SYSLOG_ACTION_CONSOLE_ON:
1762 		if (saved_console_loglevel != LOGLEVEL_DEFAULT) {
1763 			console_loglevel = saved_console_loglevel;
1764 			saved_console_loglevel = LOGLEVEL_DEFAULT;
1765 		}
1766 		break;
1767 	/* Set level of messages printed to console */
1768 	case SYSLOG_ACTION_CONSOLE_LEVEL:
1769 		if (len < 1 || len > 8)
1770 			return -EINVAL;
1771 		if (len < minimum_console_loglevel)
1772 			len = minimum_console_loglevel;
1773 		console_loglevel = len;
1774 		/* Implicitly re-enable logging to console */
1775 		saved_console_loglevel = LOGLEVEL_DEFAULT;
1776 		break;
1777 	/* Number of chars in the log buffer */
1778 	case SYSLOG_ACTION_SIZE_UNREAD:
1779 		mutex_lock(&syslog_lock);
1780 		if (!prb_read_valid_info(prb, syslog_seq, &info, NULL)) {
1781 			/* No unread messages. */
1782 			mutex_unlock(&syslog_lock);
1783 			return 0;
1784 		}
1785 		if (info.seq != syslog_seq) {
1786 			/* messages are gone, move to first one */
1787 			syslog_seq = info.seq;
1788 			syslog_partial = 0;
1789 		}
1790 		if (source == SYSLOG_FROM_PROC) {
1791 			/*
1792 			 * Short-cut for poll(/"proc/kmsg") which simply checks
1793 			 * for pending data, not the size; return the count of
1794 			 * records, not the length.
1795 			 */
1796 			error = prb_next_seq(prb) - syslog_seq;
1797 		} else {
1798 			bool time = syslog_partial ? syslog_time : printk_time;
1799 			unsigned int line_count;
1800 			u64 seq;
1801 
1802 			prb_for_each_info(syslog_seq, prb, seq, &info,
1803 					  &line_count) {
1804 				error += get_record_print_text_size(&info, line_count,
1805 								    true, time);
1806 				time = printk_time;
1807 			}
1808 			error -= syslog_partial;
1809 		}
1810 		mutex_unlock(&syslog_lock);
1811 		break;
1812 	/* Size of the log buffer */
1813 	case SYSLOG_ACTION_SIZE_BUFFER:
1814 		error = log_buf_len;
1815 		break;
1816 	default:
1817 		error = -EINVAL;
1818 		break;
1819 	}
1820 
1821 	return error;
1822 }
1823 
1824 SYSCALL_DEFINE3(syslog, int, type, char __user *, buf, int, len)
1825 {
1826 	return do_syslog(type, buf, len, SYSLOG_FROM_READER);
1827 }
1828 
1829 /*
1830  * Special console_lock variants that help to reduce the risk of soft-lockups.
1831  * They allow to pass console_lock to another printk() call using a busy wait.
1832  */
1833 
1834 #ifdef CONFIG_LOCKDEP
1835 static struct lockdep_map console_owner_dep_map = {
1836 	.name = "console_owner"
1837 };
1838 #endif
1839 
1840 static DEFINE_RAW_SPINLOCK(console_owner_lock);
1841 static struct task_struct *console_owner;
1842 static bool console_waiter;
1843 
1844 /**
1845  * console_lock_spinning_enable - mark beginning of code where another
1846  *	thread might safely busy wait
1847  *
1848  * This basically converts console_lock into a spinlock. This marks
1849  * the section where the console_lock owner can not sleep, because
1850  * there may be a waiter spinning (like a spinlock). Also it must be
1851  * ready to hand over the lock at the end of the section.
1852  */
1853 static void console_lock_spinning_enable(void)
1854 {
1855 	raw_spin_lock(&console_owner_lock);
1856 	console_owner = current;
1857 	raw_spin_unlock(&console_owner_lock);
1858 
1859 	/* The waiter may spin on us after setting console_owner */
1860 	spin_acquire(&console_owner_dep_map, 0, 0, _THIS_IP_);
1861 }
1862 
1863 /**
1864  * console_lock_spinning_disable_and_check - mark end of code where another
1865  *	thread was able to busy wait and check if there is a waiter
1866  * @cookie: cookie returned from console_srcu_read_lock()
1867  *
1868  * This is called at the end of the section where spinning is allowed.
1869  * It has two functions. First, it is a signal that it is no longer
1870  * safe to start busy waiting for the lock. Second, it checks if
1871  * there is a busy waiter and passes the lock rights to her.
1872  *
1873  * Important: Callers lose both the console_lock and the SRCU read lock if
1874  *	there was a busy waiter. They must not touch items synchronized by
1875  *	console_lock or SRCU read lock in this case.
1876  *
1877  * Return: 1 if the lock rights were passed, 0 otherwise.
1878  */
1879 static int console_lock_spinning_disable_and_check(int cookie)
1880 {
1881 	int waiter;
1882 
1883 	raw_spin_lock(&console_owner_lock);
1884 	waiter = READ_ONCE(console_waiter);
1885 	console_owner = NULL;
1886 	raw_spin_unlock(&console_owner_lock);
1887 
1888 	if (!waiter) {
1889 		spin_release(&console_owner_dep_map, _THIS_IP_);
1890 		return 0;
1891 	}
1892 
1893 	/* The waiter is now free to continue */
1894 	WRITE_ONCE(console_waiter, false);
1895 
1896 	spin_release(&console_owner_dep_map, _THIS_IP_);
1897 
1898 	/*
1899 	 * Preserve lockdep lock ordering. Release the SRCU read lock before
1900 	 * releasing the console_lock.
1901 	 */
1902 	console_srcu_read_unlock(cookie);
1903 
1904 	/*
1905 	 * Hand off console_lock to waiter. The waiter will perform
1906 	 * the up(). After this, the waiter is the console_lock owner.
1907 	 */
1908 	mutex_release(&console_lock_dep_map, _THIS_IP_);
1909 	return 1;
1910 }
1911 
1912 /**
1913  * console_trylock_spinning - try to get console_lock by busy waiting
1914  *
1915  * This allows to busy wait for the console_lock when the current
1916  * owner is running in specially marked sections. It means that
1917  * the current owner is running and cannot reschedule until it
1918  * is ready to lose the lock.
1919  *
1920  * Return: 1 if we got the lock, 0 othrewise
1921  */
1922 static int console_trylock_spinning(void)
1923 {
1924 	struct task_struct *owner = NULL;
1925 	bool waiter;
1926 	bool spin = false;
1927 	unsigned long flags;
1928 
1929 	if (console_trylock())
1930 		return 1;
1931 
1932 	/*
1933 	 * It's unsafe to spin once a panic has begun. If we are the
1934 	 * panic CPU, we may have already halted the owner of the
1935 	 * console_sem. If we are not the panic CPU, then we should
1936 	 * avoid taking console_sem, so the panic CPU has a better
1937 	 * chance of cleanly acquiring it later.
1938 	 */
1939 	if (panic_in_progress())
1940 		return 0;
1941 
1942 	printk_safe_enter_irqsave(flags);
1943 
1944 	raw_spin_lock(&console_owner_lock);
1945 	owner = READ_ONCE(console_owner);
1946 	waiter = READ_ONCE(console_waiter);
1947 	if (!waiter && owner && owner != current) {
1948 		WRITE_ONCE(console_waiter, true);
1949 		spin = true;
1950 	}
1951 	raw_spin_unlock(&console_owner_lock);
1952 
1953 	/*
1954 	 * If there is an active printk() writing to the
1955 	 * consoles, instead of having it write our data too,
1956 	 * see if we can offload that load from the active
1957 	 * printer, and do some printing ourselves.
1958 	 * Go into a spin only if there isn't already a waiter
1959 	 * spinning, and there is an active printer, and
1960 	 * that active printer isn't us (recursive printk?).
1961 	 */
1962 	if (!spin) {
1963 		printk_safe_exit_irqrestore(flags);
1964 		return 0;
1965 	}
1966 
1967 	/* We spin waiting for the owner to release us */
1968 	spin_acquire(&console_owner_dep_map, 0, 0, _THIS_IP_);
1969 	/* Owner will clear console_waiter on hand off */
1970 	while (READ_ONCE(console_waiter))
1971 		cpu_relax();
1972 	spin_release(&console_owner_dep_map, _THIS_IP_);
1973 
1974 	printk_safe_exit_irqrestore(flags);
1975 	/*
1976 	 * The owner passed the console lock to us.
1977 	 * Since we did not spin on console lock, annotate
1978 	 * this as a trylock. Otherwise lockdep will
1979 	 * complain.
1980 	 */
1981 	mutex_acquire(&console_lock_dep_map, 0, 1, _THIS_IP_);
1982 
1983 	return 1;
1984 }
1985 
1986 /*
1987  * Recursion is tracked separately on each CPU. If NMIs are supported, an
1988  * additional NMI context per CPU is also separately tracked. Until per-CPU
1989  * is available, a separate "early tracking" is performed.
1990  */
1991 static DEFINE_PER_CPU(u8, printk_count);
1992 static u8 printk_count_early;
1993 #ifdef CONFIG_HAVE_NMI
1994 static DEFINE_PER_CPU(u8, printk_count_nmi);
1995 static u8 printk_count_nmi_early;
1996 #endif
1997 
1998 /*
1999  * Recursion is limited to keep the output sane. printk() should not require
2000  * more than 1 level of recursion (allowing, for example, printk() to trigger
2001  * a WARN), but a higher value is used in case some printk-internal errors
2002  * exist, such as the ringbuffer validation checks failing.
2003  */
2004 #define PRINTK_MAX_RECURSION 3
2005 
2006 /*
2007  * Return a pointer to the dedicated counter for the CPU+context of the
2008  * caller.
2009  */
2010 static u8 *__printk_recursion_counter(void)
2011 {
2012 #ifdef CONFIG_HAVE_NMI
2013 	if (in_nmi()) {
2014 		if (printk_percpu_data_ready())
2015 			return this_cpu_ptr(&printk_count_nmi);
2016 		return &printk_count_nmi_early;
2017 	}
2018 #endif
2019 	if (printk_percpu_data_ready())
2020 		return this_cpu_ptr(&printk_count);
2021 	return &printk_count_early;
2022 }
2023 
2024 /*
2025  * Enter recursion tracking. Interrupts are disabled to simplify tracking.
2026  * The caller must check the boolean return value to see if the recursion is
2027  * allowed. On failure, interrupts are not disabled.
2028  *
2029  * @recursion_ptr must be a variable of type (u8 *) and is the same variable
2030  * that is passed to printk_exit_irqrestore().
2031  */
2032 #define printk_enter_irqsave(recursion_ptr, flags)	\
2033 ({							\
2034 	bool success = true;				\
2035 							\
2036 	typecheck(u8 *, recursion_ptr);			\
2037 	local_irq_save(flags);				\
2038 	(recursion_ptr) = __printk_recursion_counter();	\
2039 	if (*(recursion_ptr) > PRINTK_MAX_RECURSION) {	\
2040 		local_irq_restore(flags);		\
2041 		success = false;			\
2042 	} else {					\
2043 		(*(recursion_ptr))++;			\
2044 	}						\
2045 	success;					\
2046 })
2047 
2048 /* Exit recursion tracking, restoring interrupts. */
2049 #define printk_exit_irqrestore(recursion_ptr, flags)	\
2050 	do {						\
2051 		typecheck(u8 *, recursion_ptr);		\
2052 		(*(recursion_ptr))--;			\
2053 		local_irq_restore(flags);		\
2054 	} while (0)
2055 
2056 int printk_delay_msec __read_mostly;
2057 
2058 static inline void printk_delay(int level)
2059 {
2060 	boot_delay_msec(level);
2061 
2062 	if (unlikely(printk_delay_msec)) {
2063 		int m = printk_delay_msec;
2064 
2065 		while (m--) {
2066 			mdelay(1);
2067 			touch_nmi_watchdog();
2068 		}
2069 	}
2070 }
2071 
2072 static inline u32 printk_caller_id(void)
2073 {
2074 	return in_task() ? task_pid_nr(current) :
2075 		0x80000000 + smp_processor_id();
2076 }
2077 
2078 /**
2079  * printk_parse_prefix - Parse level and control flags.
2080  *
2081  * @text:     The terminated text message.
2082  * @level:    A pointer to the current level value, will be updated.
2083  * @flags:    A pointer to the current printk_info flags, will be updated.
2084  *
2085  * @level may be NULL if the caller is not interested in the parsed value.
2086  * Otherwise the variable pointed to by @level must be set to
2087  * LOGLEVEL_DEFAULT in order to be updated with the parsed value.
2088  *
2089  * @flags may be NULL if the caller is not interested in the parsed value.
2090  * Otherwise the variable pointed to by @flags will be OR'd with the parsed
2091  * value.
2092  *
2093  * Return: The length of the parsed level and control flags.
2094  */
2095 u16 printk_parse_prefix(const char *text, int *level,
2096 			enum printk_info_flags *flags)
2097 {
2098 	u16 prefix_len = 0;
2099 	int kern_level;
2100 
2101 	while (*text) {
2102 		kern_level = printk_get_level(text);
2103 		if (!kern_level)
2104 			break;
2105 
2106 		switch (kern_level) {
2107 		case '0' ... '7':
2108 			if (level && *level == LOGLEVEL_DEFAULT)
2109 				*level = kern_level - '0';
2110 			break;
2111 		case 'c':	/* KERN_CONT */
2112 			if (flags)
2113 				*flags |= LOG_CONT;
2114 		}
2115 
2116 		prefix_len += 2;
2117 		text += 2;
2118 	}
2119 
2120 	return prefix_len;
2121 }
2122 
2123 __printf(5, 0)
2124 static u16 printk_sprint(char *text, u16 size, int facility,
2125 			 enum printk_info_flags *flags, const char *fmt,
2126 			 va_list args)
2127 {
2128 	u16 text_len;
2129 
2130 	text_len = vscnprintf(text, size, fmt, args);
2131 
2132 	/* Mark and strip a trailing newline. */
2133 	if (text_len && text[text_len - 1] == '\n') {
2134 		text_len--;
2135 		*flags |= LOG_NEWLINE;
2136 	}
2137 
2138 	/* Strip log level and control flags. */
2139 	if (facility == 0) {
2140 		u16 prefix_len;
2141 
2142 		prefix_len = printk_parse_prefix(text, NULL, NULL);
2143 		if (prefix_len) {
2144 			text_len -= prefix_len;
2145 			memmove(text, text + prefix_len, text_len);
2146 		}
2147 	}
2148 
2149 	trace_console(text, text_len);
2150 
2151 	return text_len;
2152 }
2153 
2154 __printf(4, 0)
2155 int vprintk_store(int facility, int level,
2156 		  const struct dev_printk_info *dev_info,
2157 		  const char *fmt, va_list args)
2158 {
2159 	struct prb_reserved_entry e;
2160 	enum printk_info_flags flags = 0;
2161 	struct printk_record r;
2162 	unsigned long irqflags;
2163 	u16 trunc_msg_len = 0;
2164 	char prefix_buf[8];
2165 	u8 *recursion_ptr;
2166 	u16 reserve_size;
2167 	va_list args2;
2168 	u32 caller_id;
2169 	u16 text_len;
2170 	int ret = 0;
2171 	u64 ts_nsec;
2172 
2173 	if (!printk_enter_irqsave(recursion_ptr, irqflags))
2174 		return 0;
2175 
2176 	/*
2177 	 * Since the duration of printk() can vary depending on the message
2178 	 * and state of the ringbuffer, grab the timestamp now so that it is
2179 	 * close to the call of printk(). This provides a more deterministic
2180 	 * timestamp with respect to the caller.
2181 	 */
2182 	ts_nsec = local_clock();
2183 
2184 	caller_id = printk_caller_id();
2185 
2186 	/*
2187 	 * The sprintf needs to come first since the syslog prefix might be
2188 	 * passed in as a parameter. An extra byte must be reserved so that
2189 	 * later the vscnprintf() into the reserved buffer has room for the
2190 	 * terminating '\0', which is not counted by vsnprintf().
2191 	 */
2192 	va_copy(args2, args);
2193 	reserve_size = vsnprintf(&prefix_buf[0], sizeof(prefix_buf), fmt, args2) + 1;
2194 	va_end(args2);
2195 
2196 	if (reserve_size > PRINTKRB_RECORD_MAX)
2197 		reserve_size = PRINTKRB_RECORD_MAX;
2198 
2199 	/* Extract log level or control flags. */
2200 	if (facility == 0)
2201 		printk_parse_prefix(&prefix_buf[0], &level, &flags);
2202 
2203 	if (level == LOGLEVEL_DEFAULT)
2204 		level = default_message_loglevel;
2205 
2206 	if (dev_info)
2207 		flags |= LOG_NEWLINE;
2208 
2209 	if (flags & LOG_CONT) {
2210 		prb_rec_init_wr(&r, reserve_size);
2211 		if (prb_reserve_in_last(&e, prb, &r, caller_id, PRINTKRB_RECORD_MAX)) {
2212 			text_len = printk_sprint(&r.text_buf[r.info->text_len], reserve_size,
2213 						 facility, &flags, fmt, args);
2214 			r.info->text_len += text_len;
2215 
2216 			if (flags & LOG_NEWLINE) {
2217 				r.info->flags |= LOG_NEWLINE;
2218 				prb_final_commit(&e);
2219 			} else {
2220 				prb_commit(&e);
2221 			}
2222 
2223 			ret = text_len;
2224 			goto out;
2225 		}
2226 	}
2227 
2228 	/*
2229 	 * Explicitly initialize the record before every prb_reserve() call.
2230 	 * prb_reserve_in_last() and prb_reserve() purposely invalidate the
2231 	 * structure when they fail.
2232 	 */
2233 	prb_rec_init_wr(&r, reserve_size);
2234 	if (!prb_reserve(&e, prb, &r)) {
2235 		/* truncate the message if it is too long for empty buffer */
2236 		truncate_msg(&reserve_size, &trunc_msg_len);
2237 
2238 		prb_rec_init_wr(&r, reserve_size + trunc_msg_len);
2239 		if (!prb_reserve(&e, prb, &r))
2240 			goto out;
2241 	}
2242 
2243 	/* fill message */
2244 	text_len = printk_sprint(&r.text_buf[0], reserve_size, facility, &flags, fmt, args);
2245 	if (trunc_msg_len)
2246 		memcpy(&r.text_buf[text_len], trunc_msg, trunc_msg_len);
2247 	r.info->text_len = text_len + trunc_msg_len;
2248 	r.info->facility = facility;
2249 	r.info->level = level & 7;
2250 	r.info->flags = flags & 0x1f;
2251 	r.info->ts_nsec = ts_nsec;
2252 	r.info->caller_id = caller_id;
2253 	if (dev_info)
2254 		memcpy(&r.info->dev_info, dev_info, sizeof(r.info->dev_info));
2255 
2256 	/* A message without a trailing newline can be continued. */
2257 	if (!(flags & LOG_NEWLINE))
2258 		prb_commit(&e);
2259 	else
2260 		prb_final_commit(&e);
2261 
2262 	ret = text_len + trunc_msg_len;
2263 out:
2264 	printk_exit_irqrestore(recursion_ptr, irqflags);
2265 	return ret;
2266 }
2267 
2268 asmlinkage int vprintk_emit(int facility, int level,
2269 			    const struct dev_printk_info *dev_info,
2270 			    const char *fmt, va_list args)
2271 {
2272 	int printed_len;
2273 	bool in_sched = false;
2274 
2275 	/* Suppress unimportant messages after panic happens */
2276 	if (unlikely(suppress_printk))
2277 		return 0;
2278 
2279 	if (unlikely(suppress_panic_printk) &&
2280 	    atomic_read(&panic_cpu) != raw_smp_processor_id())
2281 		return 0;
2282 
2283 	if (level == LOGLEVEL_SCHED) {
2284 		level = LOGLEVEL_DEFAULT;
2285 		in_sched = true;
2286 	}
2287 
2288 	printk_delay(level);
2289 
2290 	printed_len = vprintk_store(facility, level, dev_info, fmt, args);
2291 
2292 	/* If called from the scheduler, we can not call up(). */
2293 	if (!in_sched) {
2294 		/*
2295 		 * The caller may be holding system-critical or
2296 		 * timing-sensitive locks. Disable preemption during
2297 		 * printing of all remaining records to all consoles so that
2298 		 * this context can return as soon as possible. Hopefully
2299 		 * another printk() caller will take over the printing.
2300 		 */
2301 		preempt_disable();
2302 		/*
2303 		 * Try to acquire and then immediately release the console
2304 		 * semaphore. The release will print out buffers. With the
2305 		 * spinning variant, this context tries to take over the
2306 		 * printing from another printing context.
2307 		 */
2308 		if (console_trylock_spinning())
2309 			console_unlock();
2310 		preempt_enable();
2311 	}
2312 
2313 	if (in_sched)
2314 		defer_console_output();
2315 	else
2316 		wake_up_klogd();
2317 
2318 	return printed_len;
2319 }
2320 EXPORT_SYMBOL(vprintk_emit);
2321 
2322 int vprintk_default(const char *fmt, va_list args)
2323 {
2324 	return vprintk_emit(0, LOGLEVEL_DEFAULT, NULL, fmt, args);
2325 }
2326 EXPORT_SYMBOL_GPL(vprintk_default);
2327 
2328 asmlinkage __visible int _printk(const char *fmt, ...)
2329 {
2330 	va_list args;
2331 	int r;
2332 
2333 	va_start(args, fmt);
2334 	r = vprintk(fmt, args);
2335 	va_end(args);
2336 
2337 	return r;
2338 }
2339 EXPORT_SYMBOL(_printk);
2340 
2341 static bool pr_flush(int timeout_ms, bool reset_on_progress);
2342 static bool __pr_flush(struct console *con, int timeout_ms, bool reset_on_progress);
2343 
2344 #else /* CONFIG_PRINTK */
2345 
2346 #define printk_time		false
2347 
2348 #define prb_read_valid(rb, seq, r)	false
2349 #define prb_first_valid_seq(rb)		0
2350 #define prb_next_seq(rb)		0
2351 
2352 static u64 syslog_seq;
2353 
2354 static size_t record_print_text(const struct printk_record *r,
2355 				bool syslog, bool time)
2356 {
2357 	return 0;
2358 }
2359 static ssize_t info_print_ext_header(char *buf, size_t size,
2360 				     struct printk_info *info)
2361 {
2362 	return 0;
2363 }
2364 static ssize_t msg_print_ext_body(char *buf, size_t size,
2365 				  char *text, size_t text_len,
2366 				  struct dev_printk_info *dev_info) { return 0; }
2367 static void console_lock_spinning_enable(void) { }
2368 static int console_lock_spinning_disable_and_check(int cookie) { return 0; }
2369 static bool suppress_message_printing(int level) { return false; }
2370 static bool pr_flush(int timeout_ms, bool reset_on_progress) { return true; }
2371 static bool __pr_flush(struct console *con, int timeout_ms, bool reset_on_progress) { return true; }
2372 
2373 #endif /* CONFIG_PRINTK */
2374 
2375 #ifdef CONFIG_EARLY_PRINTK
2376 struct console *early_console;
2377 
2378 asmlinkage __visible void early_printk(const char *fmt, ...)
2379 {
2380 	va_list ap;
2381 	char buf[512];
2382 	int n;
2383 
2384 	if (!early_console)
2385 		return;
2386 
2387 	va_start(ap, fmt);
2388 	n = vscnprintf(buf, sizeof(buf), fmt, ap);
2389 	va_end(ap);
2390 
2391 	early_console->write(early_console, buf, n);
2392 }
2393 #endif
2394 
2395 static void set_user_specified(struct console_cmdline *c, bool user_specified)
2396 {
2397 	if (!user_specified)
2398 		return;
2399 
2400 	/*
2401 	 * @c console was defined by the user on the command line.
2402 	 * Do not clear when added twice also by SPCR or the device tree.
2403 	 */
2404 	c->user_specified = true;
2405 	/* At least one console defined by the user on the command line. */
2406 	console_set_on_cmdline = 1;
2407 }
2408 
2409 static int __add_preferred_console(char *name, int idx, char *options,
2410 				   char *brl_options, bool user_specified)
2411 {
2412 	struct console_cmdline *c;
2413 	int i;
2414 
2415 	/*
2416 	 *	See if this tty is not yet registered, and
2417 	 *	if we have a slot free.
2418 	 */
2419 	for (i = 0, c = console_cmdline;
2420 	     i < MAX_CMDLINECONSOLES && c->name[0];
2421 	     i++, c++) {
2422 		if (strcmp(c->name, name) == 0 && c->index == idx) {
2423 			if (!brl_options)
2424 				preferred_console = i;
2425 			set_user_specified(c, user_specified);
2426 			return 0;
2427 		}
2428 	}
2429 	if (i == MAX_CMDLINECONSOLES)
2430 		return -E2BIG;
2431 	if (!brl_options)
2432 		preferred_console = i;
2433 	strscpy(c->name, name, sizeof(c->name));
2434 	c->options = options;
2435 	set_user_specified(c, user_specified);
2436 	braille_set_options(c, brl_options);
2437 
2438 	c->index = idx;
2439 	return 0;
2440 }
2441 
2442 static int __init console_msg_format_setup(char *str)
2443 {
2444 	if (!strcmp(str, "syslog"))
2445 		console_msg_format = MSG_FORMAT_SYSLOG;
2446 	if (!strcmp(str, "default"))
2447 		console_msg_format = MSG_FORMAT_DEFAULT;
2448 	return 1;
2449 }
2450 __setup("console_msg_format=", console_msg_format_setup);
2451 
2452 /*
2453  * Set up a console.  Called via do_early_param() in init/main.c
2454  * for each "console=" parameter in the boot command line.
2455  */
2456 static int __init console_setup(char *str)
2457 {
2458 	char buf[sizeof(console_cmdline[0].name) + 4]; /* 4 for "ttyS" */
2459 	char *s, *options, *brl_options = NULL;
2460 	int idx;
2461 
2462 	/*
2463 	 * console="" or console=null have been suggested as a way to
2464 	 * disable console output. Use ttynull that has been created
2465 	 * for exactly this purpose.
2466 	 */
2467 	if (str[0] == 0 || strcmp(str, "null") == 0) {
2468 		__add_preferred_console("ttynull", 0, NULL, NULL, true);
2469 		return 1;
2470 	}
2471 
2472 	if (_braille_console_setup(&str, &brl_options))
2473 		return 1;
2474 
2475 	/*
2476 	 * Decode str into name, index, options.
2477 	 */
2478 	if (str[0] >= '0' && str[0] <= '9') {
2479 		strcpy(buf, "ttyS");
2480 		strncpy(buf + 4, str, sizeof(buf) - 5);
2481 	} else {
2482 		strncpy(buf, str, sizeof(buf) - 1);
2483 	}
2484 	buf[sizeof(buf) - 1] = 0;
2485 	options = strchr(str, ',');
2486 	if (options)
2487 		*(options++) = 0;
2488 #ifdef __sparc__
2489 	if (!strcmp(str, "ttya"))
2490 		strcpy(buf, "ttyS0");
2491 	if (!strcmp(str, "ttyb"))
2492 		strcpy(buf, "ttyS1");
2493 #endif
2494 	for (s = buf; *s; s++)
2495 		if (isdigit(*s) || *s == ',')
2496 			break;
2497 	idx = simple_strtoul(s, NULL, 10);
2498 	*s = 0;
2499 
2500 	__add_preferred_console(buf, idx, options, brl_options, true);
2501 	return 1;
2502 }
2503 __setup("console=", console_setup);
2504 
2505 /**
2506  * add_preferred_console - add a device to the list of preferred consoles.
2507  * @name: device name
2508  * @idx: device index
2509  * @options: options for this console
2510  *
2511  * The last preferred console added will be used for kernel messages
2512  * and stdin/out/err for init.  Normally this is used by console_setup
2513  * above to handle user-supplied console arguments; however it can also
2514  * be used by arch-specific code either to override the user or more
2515  * commonly to provide a default console (ie from PROM variables) when
2516  * the user has not supplied one.
2517  */
2518 int add_preferred_console(char *name, int idx, char *options)
2519 {
2520 	return __add_preferred_console(name, idx, options, NULL, false);
2521 }
2522 
2523 bool console_suspend_enabled = true;
2524 EXPORT_SYMBOL(console_suspend_enabled);
2525 
2526 static int __init console_suspend_disable(char *str)
2527 {
2528 	console_suspend_enabled = false;
2529 	return 1;
2530 }
2531 __setup("no_console_suspend", console_suspend_disable);
2532 module_param_named(console_suspend, console_suspend_enabled,
2533 		bool, S_IRUGO | S_IWUSR);
2534 MODULE_PARM_DESC(console_suspend, "suspend console during suspend"
2535 	" and hibernate operations");
2536 
2537 static bool printk_console_no_auto_verbose;
2538 
2539 void console_verbose(void)
2540 {
2541 	if (console_loglevel && !printk_console_no_auto_verbose)
2542 		console_loglevel = CONSOLE_LOGLEVEL_MOTORMOUTH;
2543 }
2544 EXPORT_SYMBOL_GPL(console_verbose);
2545 
2546 module_param_named(console_no_auto_verbose, printk_console_no_auto_verbose, bool, 0644);
2547 MODULE_PARM_DESC(console_no_auto_verbose, "Disable console loglevel raise to highest on oops/panic/etc");
2548 
2549 /**
2550  * suspend_console - suspend the console subsystem
2551  *
2552  * This disables printk() while we go into suspend states
2553  */
2554 void suspend_console(void)
2555 {
2556 	struct console *con;
2557 
2558 	if (!console_suspend_enabled)
2559 		return;
2560 	pr_info("Suspending console(s) (use no_console_suspend to debug)\n");
2561 	pr_flush(1000, true);
2562 
2563 	console_list_lock();
2564 	for_each_console(con)
2565 		console_srcu_write_flags(con, con->flags | CON_SUSPENDED);
2566 	console_list_unlock();
2567 
2568 	/*
2569 	 * Ensure that all SRCU list walks have completed. All printing
2570 	 * contexts must be able to see that they are suspended so that it
2571 	 * is guaranteed that all printing has stopped when this function
2572 	 * completes.
2573 	 */
2574 	synchronize_srcu(&console_srcu);
2575 }
2576 
2577 void resume_console(void)
2578 {
2579 	struct console *con;
2580 
2581 	if (!console_suspend_enabled)
2582 		return;
2583 
2584 	console_list_lock();
2585 	for_each_console(con)
2586 		console_srcu_write_flags(con, con->flags & ~CON_SUSPENDED);
2587 	console_list_unlock();
2588 
2589 	/*
2590 	 * Ensure that all SRCU list walks have completed. All printing
2591 	 * contexts must be able to see they are no longer suspended so
2592 	 * that they are guaranteed to wake up and resume printing.
2593 	 */
2594 	synchronize_srcu(&console_srcu);
2595 
2596 	pr_flush(1000, true);
2597 }
2598 
2599 /**
2600  * console_cpu_notify - print deferred console messages after CPU hotplug
2601  * @cpu: unused
2602  *
2603  * If printk() is called from a CPU that is not online yet, the messages
2604  * will be printed on the console only if there are CON_ANYTIME consoles.
2605  * This function is called when a new CPU comes online (or fails to come
2606  * up) or goes offline.
2607  */
2608 static int console_cpu_notify(unsigned int cpu)
2609 {
2610 	if (!cpuhp_tasks_frozen) {
2611 		/* If trylock fails, someone else is doing the printing */
2612 		if (console_trylock())
2613 			console_unlock();
2614 	}
2615 	return 0;
2616 }
2617 
2618 /*
2619  * Return true if a panic is in progress on a remote CPU.
2620  *
2621  * On true, the local CPU should immediately release any printing resources
2622  * that may be needed by the panic CPU.
2623  */
2624 bool other_cpu_in_panic(void)
2625 {
2626 	if (!panic_in_progress())
2627 		return false;
2628 
2629 	/*
2630 	 * We can use raw_smp_processor_id() here because it is impossible for
2631 	 * the task to be migrated to the panic_cpu, or away from it. If
2632 	 * panic_cpu has already been set, and we're not currently executing on
2633 	 * that CPU, then we never will be.
2634 	 */
2635 	return atomic_read(&panic_cpu) != raw_smp_processor_id();
2636 }
2637 
2638 /**
2639  * console_lock - block the console subsystem from printing
2640  *
2641  * Acquires a lock which guarantees that no consoles will
2642  * be in or enter their write() callback.
2643  *
2644  * Can sleep, returns nothing.
2645  */
2646 void console_lock(void)
2647 {
2648 	might_sleep();
2649 
2650 	/* On panic, the console_lock must be left to the panic cpu. */
2651 	while (other_cpu_in_panic())
2652 		msleep(1000);
2653 
2654 	down_console_sem();
2655 	console_locked = 1;
2656 	console_may_schedule = 1;
2657 }
2658 EXPORT_SYMBOL(console_lock);
2659 
2660 /**
2661  * console_trylock - try to block the console subsystem from printing
2662  *
2663  * Try to acquire a lock which guarantees that no consoles will
2664  * be in or enter their write() callback.
2665  *
2666  * returns 1 on success, and 0 on failure to acquire the lock.
2667  */
2668 int console_trylock(void)
2669 {
2670 	/* On panic, the console_lock must be left to the panic cpu. */
2671 	if (other_cpu_in_panic())
2672 		return 0;
2673 	if (down_trylock_console_sem())
2674 		return 0;
2675 	console_locked = 1;
2676 	console_may_schedule = 0;
2677 	return 1;
2678 }
2679 EXPORT_SYMBOL(console_trylock);
2680 
2681 int is_console_locked(void)
2682 {
2683 	return console_locked;
2684 }
2685 EXPORT_SYMBOL(is_console_locked);
2686 
2687 /*
2688  * Check if the given console is currently capable and allowed to print
2689  * records.
2690  *
2691  * Requires the console_srcu_read_lock.
2692  */
2693 static inline bool console_is_usable(struct console *con)
2694 {
2695 	short flags = console_srcu_read_flags(con);
2696 
2697 	if (!(flags & CON_ENABLED))
2698 		return false;
2699 
2700 	if ((flags & CON_SUSPENDED))
2701 		return false;
2702 
2703 	if (!con->write)
2704 		return false;
2705 
2706 	/*
2707 	 * Console drivers may assume that per-cpu resources have been
2708 	 * allocated. So unless they're explicitly marked as being able to
2709 	 * cope (CON_ANYTIME) don't call them until this CPU is officially up.
2710 	 */
2711 	if (!cpu_online(raw_smp_processor_id()) && !(flags & CON_ANYTIME))
2712 		return false;
2713 
2714 	return true;
2715 }
2716 
2717 static void __console_unlock(void)
2718 {
2719 	console_locked = 0;
2720 	up_console_sem();
2721 }
2722 
2723 /*
2724  * Prepend the message in @pmsg->pbufs->outbuf with a "dropped message". This
2725  * is achieved by shifting the existing message over and inserting the dropped
2726  * message.
2727  *
2728  * @pmsg is the printk message to prepend.
2729  *
2730  * @dropped is the dropped count to report in the dropped message.
2731  *
2732  * If the message text in @pmsg->pbufs->outbuf does not have enough space for
2733  * the dropped message, the message text will be sufficiently truncated.
2734  *
2735  * If @pmsg->pbufs->outbuf is modified, @pmsg->outbuf_len is updated.
2736  */
2737 #ifdef CONFIG_PRINTK
2738 static void console_prepend_dropped(struct printk_message *pmsg, unsigned long dropped)
2739 {
2740 	struct printk_buffers *pbufs = pmsg->pbufs;
2741 	const size_t scratchbuf_sz = sizeof(pbufs->scratchbuf);
2742 	const size_t outbuf_sz = sizeof(pbufs->outbuf);
2743 	char *scratchbuf = &pbufs->scratchbuf[0];
2744 	char *outbuf = &pbufs->outbuf[0];
2745 	size_t len;
2746 
2747 	len = scnprintf(scratchbuf, scratchbuf_sz,
2748 		       "** %lu printk messages dropped **\n", dropped);
2749 
2750 	/*
2751 	 * Make sure outbuf is sufficiently large before prepending.
2752 	 * Keep at least the prefix when the message must be truncated.
2753 	 * It is a rather theoretical problem when someone tries to
2754 	 * use a minimalist buffer.
2755 	 */
2756 	if (WARN_ON_ONCE(len + PRINTK_PREFIX_MAX >= outbuf_sz))
2757 		return;
2758 
2759 	if (pmsg->outbuf_len + len >= outbuf_sz) {
2760 		/* Truncate the message, but keep it terminated. */
2761 		pmsg->outbuf_len = outbuf_sz - (len + 1);
2762 		outbuf[pmsg->outbuf_len] = 0;
2763 	}
2764 
2765 	memmove(outbuf + len, outbuf, pmsg->outbuf_len + 1);
2766 	memcpy(outbuf, scratchbuf, len);
2767 	pmsg->outbuf_len += len;
2768 }
2769 #else
2770 #define console_prepend_dropped(pmsg, dropped)
2771 #endif /* CONFIG_PRINTK */
2772 
2773 /*
2774  * Read and format the specified record (or a later record if the specified
2775  * record is not available).
2776  *
2777  * @pmsg will contain the formatted result. @pmsg->pbufs must point to a
2778  * struct printk_buffers.
2779  *
2780  * @seq is the record to read and format. If it is not available, the next
2781  * valid record is read.
2782  *
2783  * @is_extended specifies if the message should be formatted for extended
2784  * console output.
2785  *
2786  * @may_supress specifies if records may be skipped based on loglevel.
2787  *
2788  * Returns false if no record is available. Otherwise true and all fields
2789  * of @pmsg are valid. (See the documentation of struct printk_message
2790  * for information about the @pmsg fields.)
2791  */
2792 static bool printk_get_next_message(struct printk_message *pmsg, u64 seq,
2793 				    bool is_extended, bool may_suppress)
2794 {
2795 	static int panic_console_dropped;
2796 
2797 	struct printk_buffers *pbufs = pmsg->pbufs;
2798 	const size_t scratchbuf_sz = sizeof(pbufs->scratchbuf);
2799 	const size_t outbuf_sz = sizeof(pbufs->outbuf);
2800 	char *scratchbuf = &pbufs->scratchbuf[0];
2801 	char *outbuf = &pbufs->outbuf[0];
2802 	struct printk_info info;
2803 	struct printk_record r;
2804 	size_t len = 0;
2805 
2806 	/*
2807 	 * Formatting extended messages requires a separate buffer, so use the
2808 	 * scratch buffer to read in the ringbuffer text.
2809 	 *
2810 	 * Formatting normal messages is done in-place, so read the ringbuffer
2811 	 * text directly into the output buffer.
2812 	 */
2813 	if (is_extended)
2814 		prb_rec_init_rd(&r, &info, scratchbuf, scratchbuf_sz);
2815 	else
2816 		prb_rec_init_rd(&r, &info, outbuf, outbuf_sz);
2817 
2818 	if (!prb_read_valid(prb, seq, &r))
2819 		return false;
2820 
2821 	pmsg->seq = r.info->seq;
2822 	pmsg->dropped = r.info->seq - seq;
2823 
2824 	/*
2825 	 * Check for dropped messages in panic here so that printk
2826 	 * suppression can occur as early as possible if necessary.
2827 	 */
2828 	if (pmsg->dropped &&
2829 	    panic_in_progress() &&
2830 	    panic_console_dropped++ > 10) {
2831 		suppress_panic_printk = 1;
2832 		pr_warn_once("Too many dropped messages. Suppress messages on non-panic CPUs to prevent livelock.\n");
2833 	}
2834 
2835 	/* Skip record that has level above the console loglevel. */
2836 	if (may_suppress && suppress_message_printing(r.info->level))
2837 		goto out;
2838 
2839 	if (is_extended) {
2840 		len = info_print_ext_header(outbuf, outbuf_sz, r.info);
2841 		len += msg_print_ext_body(outbuf + len, outbuf_sz - len,
2842 					  &r.text_buf[0], r.info->text_len, &r.info->dev_info);
2843 	} else {
2844 		len = record_print_text(&r, console_msg_format & MSG_FORMAT_SYSLOG, printk_time);
2845 	}
2846 out:
2847 	pmsg->outbuf_len = len;
2848 	return true;
2849 }
2850 
2851 /*
2852  * Print one record for the given console. The record printed is whatever
2853  * record is the next available record for the given console.
2854  *
2855  * @handover will be set to true if a printk waiter has taken over the
2856  * console_lock, in which case the caller is no longer holding both the
2857  * console_lock and the SRCU read lock. Otherwise it is set to false.
2858  *
2859  * @cookie is the cookie from the SRCU read lock.
2860  *
2861  * Returns false if the given console has no next record to print, otherwise
2862  * true.
2863  *
2864  * Requires the console_lock and the SRCU read lock.
2865  */
2866 static bool console_emit_next_record(struct console *con, bool *handover, int cookie)
2867 {
2868 	static struct printk_buffers pbufs;
2869 
2870 	bool is_extended = console_srcu_read_flags(con) & CON_EXTENDED;
2871 	char *outbuf = &pbufs.outbuf[0];
2872 	struct printk_message pmsg = {
2873 		.pbufs = &pbufs,
2874 	};
2875 	unsigned long flags;
2876 
2877 	*handover = false;
2878 
2879 	if (!printk_get_next_message(&pmsg, con->seq, is_extended, true))
2880 		return false;
2881 
2882 	con->dropped += pmsg.dropped;
2883 
2884 	/* Skip messages of formatted length 0. */
2885 	if (pmsg.outbuf_len == 0) {
2886 		con->seq = pmsg.seq + 1;
2887 		goto skip;
2888 	}
2889 
2890 	if (con->dropped && !is_extended) {
2891 		console_prepend_dropped(&pmsg, con->dropped);
2892 		con->dropped = 0;
2893 	}
2894 
2895 	/*
2896 	 * While actively printing out messages, if another printk()
2897 	 * were to occur on another CPU, it may wait for this one to
2898 	 * finish. This task can not be preempted if there is a
2899 	 * waiter waiting to take over.
2900 	 *
2901 	 * Interrupts are disabled because the hand over to a waiter
2902 	 * must not be interrupted until the hand over is completed
2903 	 * (@console_waiter is cleared).
2904 	 */
2905 	printk_safe_enter_irqsave(flags);
2906 	console_lock_spinning_enable();
2907 
2908 	/* Do not trace print latency. */
2909 	stop_critical_timings();
2910 
2911 	/* Write everything out to the hardware. */
2912 	con->write(con, outbuf, pmsg.outbuf_len);
2913 
2914 	start_critical_timings();
2915 
2916 	con->seq = pmsg.seq + 1;
2917 
2918 	*handover = console_lock_spinning_disable_and_check(cookie);
2919 	printk_safe_exit_irqrestore(flags);
2920 skip:
2921 	return true;
2922 }
2923 
2924 /*
2925  * Print out all remaining records to all consoles.
2926  *
2927  * @do_cond_resched is set by the caller. It can be true only in schedulable
2928  * context.
2929  *
2930  * @next_seq is set to the sequence number after the last available record.
2931  * The value is valid only when this function returns true. It means that all
2932  * usable consoles are completely flushed.
2933  *
2934  * @handover will be set to true if a printk waiter has taken over the
2935  * console_lock, in which case the caller is no longer holding the
2936  * console_lock. Otherwise it is set to false.
2937  *
2938  * Returns true when there was at least one usable console and all messages
2939  * were flushed to all usable consoles. A returned false informs the caller
2940  * that everything was not flushed (either there were no usable consoles or
2941  * another context has taken over printing or it is a panic situation and this
2942  * is not the panic CPU). Regardless the reason, the caller should assume it
2943  * is not useful to immediately try again.
2944  *
2945  * Requires the console_lock.
2946  */
2947 static bool console_flush_all(bool do_cond_resched, u64 *next_seq, bool *handover)
2948 {
2949 	bool any_usable = false;
2950 	struct console *con;
2951 	bool any_progress;
2952 	int cookie;
2953 
2954 	*next_seq = 0;
2955 	*handover = false;
2956 
2957 	do {
2958 		any_progress = false;
2959 
2960 		cookie = console_srcu_read_lock();
2961 		for_each_console_srcu(con) {
2962 			bool progress;
2963 
2964 			if (!console_is_usable(con))
2965 				continue;
2966 			any_usable = true;
2967 
2968 			progress = console_emit_next_record(con, handover, cookie);
2969 
2970 			/*
2971 			 * If a handover has occurred, the SRCU read lock
2972 			 * is already released.
2973 			 */
2974 			if (*handover)
2975 				return false;
2976 
2977 			/* Track the next of the highest seq flushed. */
2978 			if (con->seq > *next_seq)
2979 				*next_seq = con->seq;
2980 
2981 			if (!progress)
2982 				continue;
2983 			any_progress = true;
2984 
2985 			/* Allow panic_cpu to take over the consoles safely. */
2986 			if (other_cpu_in_panic())
2987 				goto abandon;
2988 
2989 			if (do_cond_resched)
2990 				cond_resched();
2991 		}
2992 		console_srcu_read_unlock(cookie);
2993 	} while (any_progress);
2994 
2995 	return any_usable;
2996 
2997 abandon:
2998 	console_srcu_read_unlock(cookie);
2999 	return false;
3000 }
3001 
3002 /**
3003  * console_unlock - unblock the console subsystem from printing
3004  *
3005  * Releases the console_lock which the caller holds to block printing of
3006  * the console subsystem.
3007  *
3008  * While the console_lock was held, console output may have been buffered
3009  * by printk().  If this is the case, console_unlock(); emits
3010  * the output prior to releasing the lock.
3011  *
3012  * console_unlock(); may be called from any context.
3013  */
3014 void console_unlock(void)
3015 {
3016 	bool do_cond_resched;
3017 	bool handover;
3018 	bool flushed;
3019 	u64 next_seq;
3020 
3021 	/*
3022 	 * Console drivers are called with interrupts disabled, so
3023 	 * @console_may_schedule should be cleared before; however, we may
3024 	 * end up dumping a lot of lines, for example, if called from
3025 	 * console registration path, and should invoke cond_resched()
3026 	 * between lines if allowable.  Not doing so can cause a very long
3027 	 * scheduling stall on a slow console leading to RCU stall and
3028 	 * softlockup warnings which exacerbate the issue with more
3029 	 * messages practically incapacitating the system. Therefore, create
3030 	 * a local to use for the printing loop.
3031 	 */
3032 	do_cond_resched = console_may_schedule;
3033 
3034 	do {
3035 		console_may_schedule = 0;
3036 
3037 		flushed = console_flush_all(do_cond_resched, &next_seq, &handover);
3038 		if (!handover)
3039 			__console_unlock();
3040 
3041 		/*
3042 		 * Abort if there was a failure to flush all messages to all
3043 		 * usable consoles. Either it is not possible to flush (in
3044 		 * which case it would be an infinite loop of retrying) or
3045 		 * another context has taken over printing.
3046 		 */
3047 		if (!flushed)
3048 			break;
3049 
3050 		/*
3051 		 * Some context may have added new records after
3052 		 * console_flush_all() but before unlocking the console.
3053 		 * Re-check if there is a new record to flush. If the trylock
3054 		 * fails, another context is already handling the printing.
3055 		 */
3056 	} while (prb_read_valid(prb, next_seq, NULL) && console_trylock());
3057 }
3058 EXPORT_SYMBOL(console_unlock);
3059 
3060 /**
3061  * console_conditional_schedule - yield the CPU if required
3062  *
3063  * If the console code is currently allowed to sleep, and
3064  * if this CPU should yield the CPU to another task, do
3065  * so here.
3066  *
3067  * Must be called within console_lock();.
3068  */
3069 void __sched console_conditional_schedule(void)
3070 {
3071 	if (console_may_schedule)
3072 		cond_resched();
3073 }
3074 EXPORT_SYMBOL(console_conditional_schedule);
3075 
3076 void console_unblank(void)
3077 {
3078 	bool found_unblank = false;
3079 	struct console *c;
3080 	int cookie;
3081 
3082 	/*
3083 	 * First check if there are any consoles implementing the unblank()
3084 	 * callback. If not, there is no reason to continue and take the
3085 	 * console lock, which in particular can be dangerous if
3086 	 * @oops_in_progress is set.
3087 	 */
3088 	cookie = console_srcu_read_lock();
3089 	for_each_console_srcu(c) {
3090 		if ((console_srcu_read_flags(c) & CON_ENABLED) && c->unblank) {
3091 			found_unblank = true;
3092 			break;
3093 		}
3094 	}
3095 	console_srcu_read_unlock(cookie);
3096 	if (!found_unblank)
3097 		return;
3098 
3099 	/*
3100 	 * Stop console printing because the unblank() callback may
3101 	 * assume the console is not within its write() callback.
3102 	 *
3103 	 * If @oops_in_progress is set, this may be an atomic context.
3104 	 * In that case, attempt a trylock as best-effort.
3105 	 */
3106 	if (oops_in_progress) {
3107 		/* Semaphores are not NMI-safe. */
3108 		if (in_nmi())
3109 			return;
3110 
3111 		/*
3112 		 * Attempting to trylock the console lock can deadlock
3113 		 * if another CPU was stopped while modifying the
3114 		 * semaphore. "Hope and pray" that this is not the
3115 		 * current situation.
3116 		 */
3117 		if (down_trylock_console_sem() != 0)
3118 			return;
3119 	} else
3120 		console_lock();
3121 
3122 	console_locked = 1;
3123 	console_may_schedule = 0;
3124 
3125 	cookie = console_srcu_read_lock();
3126 	for_each_console_srcu(c) {
3127 		if ((console_srcu_read_flags(c) & CON_ENABLED) && c->unblank)
3128 			c->unblank();
3129 	}
3130 	console_srcu_read_unlock(cookie);
3131 
3132 	console_unlock();
3133 
3134 	if (!oops_in_progress)
3135 		pr_flush(1000, true);
3136 }
3137 
3138 /**
3139  * console_flush_on_panic - flush console content on panic
3140  * @mode: flush all messages in buffer or just the pending ones
3141  *
3142  * Immediately output all pending messages no matter what.
3143  */
3144 void console_flush_on_panic(enum con_flush_mode mode)
3145 {
3146 	bool handover;
3147 	u64 next_seq;
3148 
3149 	/*
3150 	 * Ignore the console lock and flush out the messages. Attempting a
3151 	 * trylock would not be useful because:
3152 	 *
3153 	 *   - if it is contended, it must be ignored anyway
3154 	 *   - console_lock() and console_trylock() block and fail
3155 	 *     respectively in panic for non-panic CPUs
3156 	 *   - semaphores are not NMI-safe
3157 	 */
3158 
3159 	/*
3160 	 * If another context is holding the console lock,
3161 	 * @console_may_schedule might be set. Clear it so that
3162 	 * this context does not call cond_resched() while flushing.
3163 	 */
3164 	console_may_schedule = 0;
3165 
3166 	if (mode == CONSOLE_REPLAY_ALL) {
3167 		struct console *c;
3168 		int cookie;
3169 		u64 seq;
3170 
3171 		seq = prb_first_valid_seq(prb);
3172 
3173 		cookie = console_srcu_read_lock();
3174 		for_each_console_srcu(c) {
3175 			/*
3176 			 * This is an unsynchronized assignment, but the
3177 			 * kernel is in "hope and pray" mode anyway.
3178 			 */
3179 			c->seq = seq;
3180 		}
3181 		console_srcu_read_unlock(cookie);
3182 	}
3183 
3184 	console_flush_all(false, &next_seq, &handover);
3185 }
3186 
3187 /*
3188  * Return the console tty driver structure and its associated index
3189  */
3190 struct tty_driver *console_device(int *index)
3191 {
3192 	struct console *c;
3193 	struct tty_driver *driver = NULL;
3194 	int cookie;
3195 
3196 	/*
3197 	 * Take console_lock to serialize device() callback with
3198 	 * other console operations. For example, fg_console is
3199 	 * modified under console_lock when switching vt.
3200 	 */
3201 	console_lock();
3202 
3203 	cookie = console_srcu_read_lock();
3204 	for_each_console_srcu(c) {
3205 		if (!c->device)
3206 			continue;
3207 		driver = c->device(c, index);
3208 		if (driver)
3209 			break;
3210 	}
3211 	console_srcu_read_unlock(cookie);
3212 
3213 	console_unlock();
3214 	return driver;
3215 }
3216 
3217 /*
3218  * Prevent further output on the passed console device so that (for example)
3219  * serial drivers can disable console output before suspending a port, and can
3220  * re-enable output afterwards.
3221  */
3222 void console_stop(struct console *console)
3223 {
3224 	__pr_flush(console, 1000, true);
3225 	console_list_lock();
3226 	console_srcu_write_flags(console, console->flags & ~CON_ENABLED);
3227 	console_list_unlock();
3228 
3229 	/*
3230 	 * Ensure that all SRCU list walks have completed. All contexts must
3231 	 * be able to see that this console is disabled so that (for example)
3232 	 * the caller can suspend the port without risk of another context
3233 	 * using the port.
3234 	 */
3235 	synchronize_srcu(&console_srcu);
3236 }
3237 EXPORT_SYMBOL(console_stop);
3238 
3239 void console_start(struct console *console)
3240 {
3241 	console_list_lock();
3242 	console_srcu_write_flags(console, console->flags | CON_ENABLED);
3243 	console_list_unlock();
3244 	__pr_flush(console, 1000, true);
3245 }
3246 EXPORT_SYMBOL(console_start);
3247 
3248 static int __read_mostly keep_bootcon;
3249 
3250 static int __init keep_bootcon_setup(char *str)
3251 {
3252 	keep_bootcon = 1;
3253 	pr_info("debug: skip boot console de-registration.\n");
3254 
3255 	return 0;
3256 }
3257 
3258 early_param("keep_bootcon", keep_bootcon_setup);
3259 
3260 /*
3261  * This is called by register_console() to try to match
3262  * the newly registered console with any of the ones selected
3263  * by either the command line or add_preferred_console() and
3264  * setup/enable it.
3265  *
3266  * Care need to be taken with consoles that are statically
3267  * enabled such as netconsole
3268  */
3269 static int try_enable_preferred_console(struct console *newcon,
3270 					bool user_specified)
3271 {
3272 	struct console_cmdline *c;
3273 	int i, err;
3274 
3275 	for (i = 0, c = console_cmdline;
3276 	     i < MAX_CMDLINECONSOLES && c->name[0];
3277 	     i++, c++) {
3278 		if (c->user_specified != user_specified)
3279 			continue;
3280 		if (!newcon->match ||
3281 		    newcon->match(newcon, c->name, c->index, c->options) != 0) {
3282 			/* default matching */
3283 			BUILD_BUG_ON(sizeof(c->name) != sizeof(newcon->name));
3284 			if (strcmp(c->name, newcon->name) != 0)
3285 				continue;
3286 			if (newcon->index >= 0 &&
3287 			    newcon->index != c->index)
3288 				continue;
3289 			if (newcon->index < 0)
3290 				newcon->index = c->index;
3291 
3292 			if (_braille_register_console(newcon, c))
3293 				return 0;
3294 
3295 			if (newcon->setup &&
3296 			    (err = newcon->setup(newcon, c->options)) != 0)
3297 				return err;
3298 		}
3299 		newcon->flags |= CON_ENABLED;
3300 		if (i == preferred_console)
3301 			newcon->flags |= CON_CONSDEV;
3302 		return 0;
3303 	}
3304 
3305 	/*
3306 	 * Some consoles, such as pstore and netconsole, can be enabled even
3307 	 * without matching. Accept the pre-enabled consoles only when match()
3308 	 * and setup() had a chance to be called.
3309 	 */
3310 	if (newcon->flags & CON_ENABLED && c->user_specified ==	user_specified)
3311 		return 0;
3312 
3313 	return -ENOENT;
3314 }
3315 
3316 /* Try to enable the console unconditionally */
3317 static void try_enable_default_console(struct console *newcon)
3318 {
3319 	if (newcon->index < 0)
3320 		newcon->index = 0;
3321 
3322 	if (newcon->setup && newcon->setup(newcon, NULL) != 0)
3323 		return;
3324 
3325 	newcon->flags |= CON_ENABLED;
3326 
3327 	if (newcon->device)
3328 		newcon->flags |= CON_CONSDEV;
3329 }
3330 
3331 #define con_printk(lvl, con, fmt, ...)			\
3332 	printk(lvl pr_fmt("%sconsole [%s%d] " fmt),	\
3333 	       (con->flags & CON_BOOT) ? "boot" : "",	\
3334 	       con->name, con->index, ##__VA_ARGS__)
3335 
3336 static void console_init_seq(struct console *newcon, bool bootcon_registered)
3337 {
3338 	struct console *con;
3339 	bool handover;
3340 
3341 	if (newcon->flags & (CON_PRINTBUFFER | CON_BOOT)) {
3342 		/* Get a consistent copy of @syslog_seq. */
3343 		mutex_lock(&syslog_lock);
3344 		newcon->seq = syslog_seq;
3345 		mutex_unlock(&syslog_lock);
3346 	} else {
3347 		/* Begin with next message added to ringbuffer. */
3348 		newcon->seq = prb_next_seq(prb);
3349 
3350 		/*
3351 		 * If any enabled boot consoles are due to be unregistered
3352 		 * shortly, some may not be caught up and may be the same
3353 		 * device as @newcon. Since it is not known which boot console
3354 		 * is the same device, flush all consoles and, if necessary,
3355 		 * start with the message of the enabled boot console that is
3356 		 * the furthest behind.
3357 		 */
3358 		if (bootcon_registered && !keep_bootcon) {
3359 			/*
3360 			 * Hold the console_lock to stop console printing and
3361 			 * guarantee safe access to console->seq.
3362 			 */
3363 			console_lock();
3364 
3365 			/*
3366 			 * Flush all consoles and set the console to start at
3367 			 * the next unprinted sequence number.
3368 			 */
3369 			if (!console_flush_all(true, &newcon->seq, &handover)) {
3370 				/*
3371 				 * Flushing failed. Just choose the lowest
3372 				 * sequence of the enabled boot consoles.
3373 				 */
3374 
3375 				/*
3376 				 * If there was a handover, this context no
3377 				 * longer holds the console_lock.
3378 				 */
3379 				if (handover)
3380 					console_lock();
3381 
3382 				newcon->seq = prb_next_seq(prb);
3383 				for_each_console(con) {
3384 					if ((con->flags & CON_BOOT) &&
3385 					    (con->flags & CON_ENABLED) &&
3386 					    con->seq < newcon->seq) {
3387 						newcon->seq = con->seq;
3388 					}
3389 				}
3390 			}
3391 
3392 			console_unlock();
3393 		}
3394 	}
3395 }
3396 
3397 #define console_first()				\
3398 	hlist_entry(console_list.first, struct console, node)
3399 
3400 static int unregister_console_locked(struct console *console);
3401 
3402 /*
3403  * The console driver calls this routine during kernel initialization
3404  * to register the console printing procedure with printk() and to
3405  * print any messages that were printed by the kernel before the
3406  * console driver was initialized.
3407  *
3408  * This can happen pretty early during the boot process (because of
3409  * early_printk) - sometimes before setup_arch() completes - be careful
3410  * of what kernel features are used - they may not be initialised yet.
3411  *
3412  * There are two types of consoles - bootconsoles (early_printk) and
3413  * "real" consoles (everything which is not a bootconsole) which are
3414  * handled differently.
3415  *  - Any number of bootconsoles can be registered at any time.
3416  *  - As soon as a "real" console is registered, all bootconsoles
3417  *    will be unregistered automatically.
3418  *  - Once a "real" console is registered, any attempt to register a
3419  *    bootconsoles will be rejected
3420  */
3421 void register_console(struct console *newcon)
3422 {
3423 	struct console *con;
3424 	bool bootcon_registered = false;
3425 	bool realcon_registered = false;
3426 	int err;
3427 
3428 	console_list_lock();
3429 
3430 	for_each_console(con) {
3431 		if (WARN(con == newcon, "console '%s%d' already registered\n",
3432 					 con->name, con->index)) {
3433 			goto unlock;
3434 		}
3435 
3436 		if (con->flags & CON_BOOT)
3437 			bootcon_registered = true;
3438 		else
3439 			realcon_registered = true;
3440 	}
3441 
3442 	/* Do not register boot consoles when there already is a real one. */
3443 	if ((newcon->flags & CON_BOOT) && realcon_registered) {
3444 		pr_info("Too late to register bootconsole %s%d\n",
3445 			newcon->name, newcon->index);
3446 		goto unlock;
3447 	}
3448 
3449 	/*
3450 	 * See if we want to enable this console driver by default.
3451 	 *
3452 	 * Nope when a console is preferred by the command line, device
3453 	 * tree, or SPCR.
3454 	 *
3455 	 * The first real console with tty binding (driver) wins. More
3456 	 * consoles might get enabled before the right one is found.
3457 	 *
3458 	 * Note that a console with tty binding will have CON_CONSDEV
3459 	 * flag set and will be first in the list.
3460 	 */
3461 	if (preferred_console < 0) {
3462 		if (hlist_empty(&console_list) || !console_first()->device ||
3463 		    console_first()->flags & CON_BOOT) {
3464 			try_enable_default_console(newcon);
3465 		}
3466 	}
3467 
3468 	/* See if this console matches one we selected on the command line */
3469 	err = try_enable_preferred_console(newcon, true);
3470 
3471 	/* If not, try to match against the platform default(s) */
3472 	if (err == -ENOENT)
3473 		err = try_enable_preferred_console(newcon, false);
3474 
3475 	/* printk() messages are not printed to the Braille console. */
3476 	if (err || newcon->flags & CON_BRL)
3477 		goto unlock;
3478 
3479 	/*
3480 	 * If we have a bootconsole, and are switching to a real console,
3481 	 * don't print everything out again, since when the boot console, and
3482 	 * the real console are the same physical device, it's annoying to
3483 	 * see the beginning boot messages twice
3484 	 */
3485 	if (bootcon_registered &&
3486 	    ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV)) {
3487 		newcon->flags &= ~CON_PRINTBUFFER;
3488 	}
3489 
3490 	newcon->dropped = 0;
3491 	console_init_seq(newcon, bootcon_registered);
3492 
3493 	/*
3494 	 * Put this console in the list - keep the
3495 	 * preferred driver at the head of the list.
3496 	 */
3497 	if (hlist_empty(&console_list)) {
3498 		/* Ensure CON_CONSDEV is always set for the head. */
3499 		newcon->flags |= CON_CONSDEV;
3500 		hlist_add_head_rcu(&newcon->node, &console_list);
3501 
3502 	} else if (newcon->flags & CON_CONSDEV) {
3503 		/* Only the new head can have CON_CONSDEV set. */
3504 		console_srcu_write_flags(console_first(), console_first()->flags & ~CON_CONSDEV);
3505 		hlist_add_head_rcu(&newcon->node, &console_list);
3506 
3507 	} else {
3508 		hlist_add_behind_rcu(&newcon->node, console_list.first);
3509 	}
3510 
3511 	/*
3512 	 * No need to synchronize SRCU here! The caller does not rely
3513 	 * on all contexts being able to see the new console before
3514 	 * register_console() completes.
3515 	 */
3516 
3517 	console_sysfs_notify();
3518 
3519 	/*
3520 	 * By unregistering the bootconsoles after we enable the real console
3521 	 * we get the "console xxx enabled" message on all the consoles -
3522 	 * boot consoles, real consoles, etc - this is to ensure that end
3523 	 * users know there might be something in the kernel's log buffer that
3524 	 * went to the bootconsole (that they do not see on the real console)
3525 	 */
3526 	con_printk(KERN_INFO, newcon, "enabled\n");
3527 	if (bootcon_registered &&
3528 	    ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV) &&
3529 	    !keep_bootcon) {
3530 		struct hlist_node *tmp;
3531 
3532 		hlist_for_each_entry_safe(con, tmp, &console_list, node) {
3533 			if (con->flags & CON_BOOT)
3534 				unregister_console_locked(con);
3535 		}
3536 	}
3537 unlock:
3538 	console_list_unlock();
3539 }
3540 EXPORT_SYMBOL(register_console);
3541 
3542 /* Must be called under console_list_lock(). */
3543 static int unregister_console_locked(struct console *console)
3544 {
3545 	int res;
3546 
3547 	lockdep_assert_console_list_lock_held();
3548 
3549 	con_printk(KERN_INFO, console, "disabled\n");
3550 
3551 	res = _braille_unregister_console(console);
3552 	if (res < 0)
3553 		return res;
3554 	if (res > 0)
3555 		return 0;
3556 
3557 	/* Disable it unconditionally */
3558 	console_srcu_write_flags(console, console->flags & ~CON_ENABLED);
3559 
3560 	if (!console_is_registered_locked(console))
3561 		return -ENODEV;
3562 
3563 	hlist_del_init_rcu(&console->node);
3564 
3565 	/*
3566 	 * <HISTORICAL>
3567 	 * If this isn't the last console and it has CON_CONSDEV set, we
3568 	 * need to set it on the next preferred console.
3569 	 * </HISTORICAL>
3570 	 *
3571 	 * The above makes no sense as there is no guarantee that the next
3572 	 * console has any device attached. Oh well....
3573 	 */
3574 	if (!hlist_empty(&console_list) && console->flags & CON_CONSDEV)
3575 		console_srcu_write_flags(console_first(), console_first()->flags | CON_CONSDEV);
3576 
3577 	/*
3578 	 * Ensure that all SRCU list walks have completed. All contexts
3579 	 * must not be able to see this console in the list so that any
3580 	 * exit/cleanup routines can be performed safely.
3581 	 */
3582 	synchronize_srcu(&console_srcu);
3583 
3584 	console_sysfs_notify();
3585 
3586 	if (console->exit)
3587 		res = console->exit(console);
3588 
3589 	return res;
3590 }
3591 
3592 int unregister_console(struct console *console)
3593 {
3594 	int res;
3595 
3596 	console_list_lock();
3597 	res = unregister_console_locked(console);
3598 	console_list_unlock();
3599 	return res;
3600 }
3601 EXPORT_SYMBOL(unregister_console);
3602 
3603 /**
3604  * console_force_preferred_locked - force a registered console preferred
3605  * @con: The registered console to force preferred.
3606  *
3607  * Must be called under console_list_lock().
3608  */
3609 void console_force_preferred_locked(struct console *con)
3610 {
3611 	struct console *cur_pref_con;
3612 
3613 	if (!console_is_registered_locked(con))
3614 		return;
3615 
3616 	cur_pref_con = console_first();
3617 
3618 	/* Already preferred? */
3619 	if (cur_pref_con == con)
3620 		return;
3621 
3622 	/*
3623 	 * Delete, but do not re-initialize the entry. This allows the console
3624 	 * to continue to appear registered (via any hlist_unhashed_lockless()
3625 	 * checks), even though it was briefly removed from the console list.
3626 	 */
3627 	hlist_del_rcu(&con->node);
3628 
3629 	/*
3630 	 * Ensure that all SRCU list walks have completed so that the console
3631 	 * can be added to the beginning of the console list and its forward
3632 	 * list pointer can be re-initialized.
3633 	 */
3634 	synchronize_srcu(&console_srcu);
3635 
3636 	con->flags |= CON_CONSDEV;
3637 	WARN_ON(!con->device);
3638 
3639 	/* Only the new head can have CON_CONSDEV set. */
3640 	console_srcu_write_flags(cur_pref_con, cur_pref_con->flags & ~CON_CONSDEV);
3641 	hlist_add_head_rcu(&con->node, &console_list);
3642 }
3643 EXPORT_SYMBOL(console_force_preferred_locked);
3644 
3645 /*
3646  * Initialize the console device. This is called *early*, so
3647  * we can't necessarily depend on lots of kernel help here.
3648  * Just do some early initializations, and do the complex setup
3649  * later.
3650  */
3651 void __init console_init(void)
3652 {
3653 	int ret;
3654 	initcall_t call;
3655 	initcall_entry_t *ce;
3656 
3657 	/* Setup the default TTY line discipline. */
3658 	n_tty_init();
3659 
3660 	/*
3661 	 * set up the console device so that later boot sequences can
3662 	 * inform about problems etc..
3663 	 */
3664 	ce = __con_initcall_start;
3665 	trace_initcall_level("console");
3666 	while (ce < __con_initcall_end) {
3667 		call = initcall_from_entry(ce);
3668 		trace_initcall_start(call);
3669 		ret = call();
3670 		trace_initcall_finish(call, ret);
3671 		ce++;
3672 	}
3673 }
3674 
3675 /*
3676  * Some boot consoles access data that is in the init section and which will
3677  * be discarded after the initcalls have been run. To make sure that no code
3678  * will access this data, unregister the boot consoles in a late initcall.
3679  *
3680  * If for some reason, such as deferred probe or the driver being a loadable
3681  * module, the real console hasn't registered yet at this point, there will
3682  * be a brief interval in which no messages are logged to the console, which
3683  * makes it difficult to diagnose problems that occur during this time.
3684  *
3685  * To mitigate this problem somewhat, only unregister consoles whose memory
3686  * intersects with the init section. Note that all other boot consoles will
3687  * get unregistered when the real preferred console is registered.
3688  */
3689 static int __init printk_late_init(void)
3690 {
3691 	struct hlist_node *tmp;
3692 	struct console *con;
3693 	int ret;
3694 
3695 	console_list_lock();
3696 	hlist_for_each_entry_safe(con, tmp, &console_list, node) {
3697 		if (!(con->flags & CON_BOOT))
3698 			continue;
3699 
3700 		/* Check addresses that might be used for enabled consoles. */
3701 		if (init_section_intersects(con, sizeof(*con)) ||
3702 		    init_section_contains(con->write, 0) ||
3703 		    init_section_contains(con->read, 0) ||
3704 		    init_section_contains(con->device, 0) ||
3705 		    init_section_contains(con->unblank, 0) ||
3706 		    init_section_contains(con->data, 0)) {
3707 			/*
3708 			 * Please, consider moving the reported consoles out
3709 			 * of the init section.
3710 			 */
3711 			pr_warn("bootconsole [%s%d] uses init memory and must be disabled even before the real one is ready\n",
3712 				con->name, con->index);
3713 			unregister_console_locked(con);
3714 		}
3715 	}
3716 	console_list_unlock();
3717 
3718 	ret = cpuhp_setup_state_nocalls(CPUHP_PRINTK_DEAD, "printk:dead", NULL,
3719 					console_cpu_notify);
3720 	WARN_ON(ret < 0);
3721 	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "printk:online",
3722 					console_cpu_notify, NULL);
3723 	WARN_ON(ret < 0);
3724 	printk_sysctl_init();
3725 	return 0;
3726 }
3727 late_initcall(printk_late_init);
3728 
3729 #if defined CONFIG_PRINTK
3730 /* If @con is specified, only wait for that console. Otherwise wait for all. */
3731 static bool __pr_flush(struct console *con, int timeout_ms, bool reset_on_progress)
3732 {
3733 	int remaining = timeout_ms;
3734 	struct console *c;
3735 	u64 last_diff = 0;
3736 	u64 printk_seq;
3737 	int cookie;
3738 	u64 diff;
3739 	u64 seq;
3740 
3741 	might_sleep();
3742 
3743 	seq = prb_next_seq(prb);
3744 
3745 	for (;;) {
3746 		diff = 0;
3747 
3748 		/*
3749 		 * Hold the console_lock to guarantee safe access to
3750 		 * console->seq.
3751 		 */
3752 		console_lock();
3753 
3754 		cookie = console_srcu_read_lock();
3755 		for_each_console_srcu(c) {
3756 			if (con && con != c)
3757 				continue;
3758 			/*
3759 			 * If consoles are not usable, it cannot be expected
3760 			 * that they make forward progress, so only increment
3761 			 * @diff for usable consoles.
3762 			 */
3763 			if (!console_is_usable(c))
3764 				continue;
3765 			printk_seq = c->seq;
3766 			if (printk_seq < seq)
3767 				diff += seq - printk_seq;
3768 		}
3769 		console_srcu_read_unlock(cookie);
3770 
3771 		if (diff != last_diff && reset_on_progress)
3772 			remaining = timeout_ms;
3773 
3774 		console_unlock();
3775 
3776 		/* Note: @diff is 0 if there are no usable consoles. */
3777 		if (diff == 0 || remaining == 0)
3778 			break;
3779 
3780 		if (remaining < 0) {
3781 			/* no timeout limit */
3782 			msleep(100);
3783 		} else if (remaining < 100) {
3784 			msleep(remaining);
3785 			remaining = 0;
3786 		} else {
3787 			msleep(100);
3788 			remaining -= 100;
3789 		}
3790 
3791 		last_diff = diff;
3792 	}
3793 
3794 	return (diff == 0);
3795 }
3796 
3797 /**
3798  * pr_flush() - Wait for printing threads to catch up.
3799  *
3800  * @timeout_ms:        The maximum time (in ms) to wait.
3801  * @reset_on_progress: Reset the timeout if forward progress is seen.
3802  *
3803  * A value of 0 for @timeout_ms means no waiting will occur. A value of -1
3804  * represents infinite waiting.
3805  *
3806  * If @reset_on_progress is true, the timeout will be reset whenever any
3807  * printer has been seen to make some forward progress.
3808  *
3809  * Context: Process context. May sleep while acquiring console lock.
3810  * Return: true if all usable printers are caught up.
3811  */
3812 static bool pr_flush(int timeout_ms, bool reset_on_progress)
3813 {
3814 	return __pr_flush(NULL, timeout_ms, reset_on_progress);
3815 }
3816 
3817 /*
3818  * Delayed printk version, for scheduler-internal messages:
3819  */
3820 #define PRINTK_PENDING_WAKEUP	0x01
3821 #define PRINTK_PENDING_OUTPUT	0x02
3822 
3823 static DEFINE_PER_CPU(int, printk_pending);
3824 
3825 static void wake_up_klogd_work_func(struct irq_work *irq_work)
3826 {
3827 	int pending = this_cpu_xchg(printk_pending, 0);
3828 
3829 	if (pending & PRINTK_PENDING_OUTPUT) {
3830 		/* If trylock fails, someone else is doing the printing */
3831 		if (console_trylock())
3832 			console_unlock();
3833 	}
3834 
3835 	if (pending & PRINTK_PENDING_WAKEUP)
3836 		wake_up_interruptible(&log_wait);
3837 }
3838 
3839 static DEFINE_PER_CPU(struct irq_work, wake_up_klogd_work) =
3840 	IRQ_WORK_INIT_LAZY(wake_up_klogd_work_func);
3841 
3842 static void __wake_up_klogd(int val)
3843 {
3844 	if (!printk_percpu_data_ready())
3845 		return;
3846 
3847 	preempt_disable();
3848 	/*
3849 	 * Guarantee any new records can be seen by tasks preparing to wait
3850 	 * before this context checks if the wait queue is empty.
3851 	 *
3852 	 * The full memory barrier within wq_has_sleeper() pairs with the full
3853 	 * memory barrier within set_current_state() of
3854 	 * prepare_to_wait_event(), which is called after ___wait_event() adds
3855 	 * the waiter but before it has checked the wait condition.
3856 	 *
3857 	 * This pairs with devkmsg_read:A and syslog_print:A.
3858 	 */
3859 	if (wq_has_sleeper(&log_wait) || /* LMM(__wake_up_klogd:A) */
3860 	    (val & PRINTK_PENDING_OUTPUT)) {
3861 		this_cpu_or(printk_pending, val);
3862 		irq_work_queue(this_cpu_ptr(&wake_up_klogd_work));
3863 	}
3864 	preempt_enable();
3865 }
3866 
3867 /**
3868  * wake_up_klogd - Wake kernel logging daemon
3869  *
3870  * Use this function when new records have been added to the ringbuffer
3871  * and the console printing of those records has already occurred or is
3872  * known to be handled by some other context. This function will only
3873  * wake the logging daemon.
3874  *
3875  * Context: Any context.
3876  */
3877 void wake_up_klogd(void)
3878 {
3879 	__wake_up_klogd(PRINTK_PENDING_WAKEUP);
3880 }
3881 
3882 /**
3883  * defer_console_output - Wake kernel logging daemon and trigger
3884  *	console printing in a deferred context
3885  *
3886  * Use this function when new records have been added to the ringbuffer,
3887  * this context is responsible for console printing those records, but
3888  * the current context is not allowed to perform the console printing.
3889  * Trigger an irq_work context to perform the console printing. This
3890  * function also wakes the logging daemon.
3891  *
3892  * Context: Any context.
3893  */
3894 void defer_console_output(void)
3895 {
3896 	/*
3897 	 * New messages may have been added directly to the ringbuffer
3898 	 * using vprintk_store(), so wake any waiters as well.
3899 	 */
3900 	__wake_up_klogd(PRINTK_PENDING_WAKEUP | PRINTK_PENDING_OUTPUT);
3901 }
3902 
3903 void printk_trigger_flush(void)
3904 {
3905 	defer_console_output();
3906 }
3907 
3908 int vprintk_deferred(const char *fmt, va_list args)
3909 {
3910 	return vprintk_emit(0, LOGLEVEL_SCHED, NULL, fmt, args);
3911 }
3912 
3913 int _printk_deferred(const char *fmt, ...)
3914 {
3915 	va_list args;
3916 	int r;
3917 
3918 	va_start(args, fmt);
3919 	r = vprintk_deferred(fmt, args);
3920 	va_end(args);
3921 
3922 	return r;
3923 }
3924 
3925 /*
3926  * printk rate limiting, lifted from the networking subsystem.
3927  *
3928  * This enforces a rate limit: not more than 10 kernel messages
3929  * every 5s to make a denial-of-service attack impossible.
3930  */
3931 DEFINE_RATELIMIT_STATE(printk_ratelimit_state, 5 * HZ, 10);
3932 
3933 int __printk_ratelimit(const char *func)
3934 {
3935 	return ___ratelimit(&printk_ratelimit_state, func);
3936 }
3937 EXPORT_SYMBOL(__printk_ratelimit);
3938 
3939 /**
3940  * printk_timed_ratelimit - caller-controlled printk ratelimiting
3941  * @caller_jiffies: pointer to caller's state
3942  * @interval_msecs: minimum interval between prints
3943  *
3944  * printk_timed_ratelimit() returns true if more than @interval_msecs
3945  * milliseconds have elapsed since the last time printk_timed_ratelimit()
3946  * returned true.
3947  */
3948 bool printk_timed_ratelimit(unsigned long *caller_jiffies,
3949 			unsigned int interval_msecs)
3950 {
3951 	unsigned long elapsed = jiffies - *caller_jiffies;
3952 
3953 	if (*caller_jiffies && elapsed <= msecs_to_jiffies(interval_msecs))
3954 		return false;
3955 
3956 	*caller_jiffies = jiffies;
3957 	return true;
3958 }
3959 EXPORT_SYMBOL(printk_timed_ratelimit);
3960 
3961 static DEFINE_SPINLOCK(dump_list_lock);
3962 static LIST_HEAD(dump_list);
3963 
3964 /**
3965  * kmsg_dump_register - register a kernel log dumper.
3966  * @dumper: pointer to the kmsg_dumper structure
3967  *
3968  * Adds a kernel log dumper to the system. The dump callback in the
3969  * structure will be called when the kernel oopses or panics and must be
3970  * set. Returns zero on success and %-EINVAL or %-EBUSY otherwise.
3971  */
3972 int kmsg_dump_register(struct kmsg_dumper *dumper)
3973 {
3974 	unsigned long flags;
3975 	int err = -EBUSY;
3976 
3977 	/* The dump callback needs to be set */
3978 	if (!dumper->dump)
3979 		return -EINVAL;
3980 
3981 	spin_lock_irqsave(&dump_list_lock, flags);
3982 	/* Don't allow registering multiple times */
3983 	if (!dumper->registered) {
3984 		dumper->registered = 1;
3985 		list_add_tail_rcu(&dumper->list, &dump_list);
3986 		err = 0;
3987 	}
3988 	spin_unlock_irqrestore(&dump_list_lock, flags);
3989 
3990 	return err;
3991 }
3992 EXPORT_SYMBOL_GPL(kmsg_dump_register);
3993 
3994 /**
3995  * kmsg_dump_unregister - unregister a kmsg dumper.
3996  * @dumper: pointer to the kmsg_dumper structure
3997  *
3998  * Removes a dump device from the system. Returns zero on success and
3999  * %-EINVAL otherwise.
4000  */
4001 int kmsg_dump_unregister(struct kmsg_dumper *dumper)
4002 {
4003 	unsigned long flags;
4004 	int err = -EINVAL;
4005 
4006 	spin_lock_irqsave(&dump_list_lock, flags);
4007 	if (dumper->registered) {
4008 		dumper->registered = 0;
4009 		list_del_rcu(&dumper->list);
4010 		err = 0;
4011 	}
4012 	spin_unlock_irqrestore(&dump_list_lock, flags);
4013 	synchronize_rcu();
4014 
4015 	return err;
4016 }
4017 EXPORT_SYMBOL_GPL(kmsg_dump_unregister);
4018 
4019 static bool always_kmsg_dump;
4020 module_param_named(always_kmsg_dump, always_kmsg_dump, bool, S_IRUGO | S_IWUSR);
4021 
4022 const char *kmsg_dump_reason_str(enum kmsg_dump_reason reason)
4023 {
4024 	switch (reason) {
4025 	case KMSG_DUMP_PANIC:
4026 		return "Panic";
4027 	case KMSG_DUMP_OOPS:
4028 		return "Oops";
4029 	case KMSG_DUMP_EMERG:
4030 		return "Emergency";
4031 	case KMSG_DUMP_SHUTDOWN:
4032 		return "Shutdown";
4033 	default:
4034 		return "Unknown";
4035 	}
4036 }
4037 EXPORT_SYMBOL_GPL(kmsg_dump_reason_str);
4038 
4039 /**
4040  * kmsg_dump - dump kernel log to kernel message dumpers.
4041  * @reason: the reason (oops, panic etc) for dumping
4042  *
4043  * Call each of the registered dumper's dump() callback, which can
4044  * retrieve the kmsg records with kmsg_dump_get_line() or
4045  * kmsg_dump_get_buffer().
4046  */
4047 void kmsg_dump(enum kmsg_dump_reason reason)
4048 {
4049 	struct kmsg_dumper *dumper;
4050 
4051 	rcu_read_lock();
4052 	list_for_each_entry_rcu(dumper, &dump_list, list) {
4053 		enum kmsg_dump_reason max_reason = dumper->max_reason;
4054 
4055 		/*
4056 		 * If client has not provided a specific max_reason, default
4057 		 * to KMSG_DUMP_OOPS, unless always_kmsg_dump was set.
4058 		 */
4059 		if (max_reason == KMSG_DUMP_UNDEF) {
4060 			max_reason = always_kmsg_dump ? KMSG_DUMP_MAX :
4061 							KMSG_DUMP_OOPS;
4062 		}
4063 		if (reason > max_reason)
4064 			continue;
4065 
4066 		/* invoke dumper which will iterate over records */
4067 		dumper->dump(dumper, reason);
4068 	}
4069 	rcu_read_unlock();
4070 }
4071 
4072 /**
4073  * kmsg_dump_get_line - retrieve one kmsg log line
4074  * @iter: kmsg dump iterator
4075  * @syslog: include the "<4>" prefixes
4076  * @line: buffer to copy the line to
4077  * @size: maximum size of the buffer
4078  * @len: length of line placed into buffer
4079  *
4080  * Start at the beginning of the kmsg buffer, with the oldest kmsg
4081  * record, and copy one record into the provided buffer.
4082  *
4083  * Consecutive calls will return the next available record moving
4084  * towards the end of the buffer with the youngest messages.
4085  *
4086  * A return value of FALSE indicates that there are no more records to
4087  * read.
4088  */
4089 bool kmsg_dump_get_line(struct kmsg_dump_iter *iter, bool syslog,
4090 			char *line, size_t size, size_t *len)
4091 {
4092 	u64 min_seq = latched_seq_read_nolock(&clear_seq);
4093 	struct printk_info info;
4094 	unsigned int line_count;
4095 	struct printk_record r;
4096 	size_t l = 0;
4097 	bool ret = false;
4098 
4099 	if (iter->cur_seq < min_seq)
4100 		iter->cur_seq = min_seq;
4101 
4102 	prb_rec_init_rd(&r, &info, line, size);
4103 
4104 	/* Read text or count text lines? */
4105 	if (line) {
4106 		if (!prb_read_valid(prb, iter->cur_seq, &r))
4107 			goto out;
4108 		l = record_print_text(&r, syslog, printk_time);
4109 	} else {
4110 		if (!prb_read_valid_info(prb, iter->cur_seq,
4111 					 &info, &line_count)) {
4112 			goto out;
4113 		}
4114 		l = get_record_print_text_size(&info, line_count, syslog,
4115 					       printk_time);
4116 
4117 	}
4118 
4119 	iter->cur_seq = r.info->seq + 1;
4120 	ret = true;
4121 out:
4122 	if (len)
4123 		*len = l;
4124 	return ret;
4125 }
4126 EXPORT_SYMBOL_GPL(kmsg_dump_get_line);
4127 
4128 /**
4129  * kmsg_dump_get_buffer - copy kmsg log lines
4130  * @iter: kmsg dump iterator
4131  * @syslog: include the "<4>" prefixes
4132  * @buf: buffer to copy the line to
4133  * @size: maximum size of the buffer
4134  * @len_out: length of line placed into buffer
4135  *
4136  * Start at the end of the kmsg buffer and fill the provided buffer
4137  * with as many of the *youngest* kmsg records that fit into it.
4138  * If the buffer is large enough, all available kmsg records will be
4139  * copied with a single call.
4140  *
4141  * Consecutive calls will fill the buffer with the next block of
4142  * available older records, not including the earlier retrieved ones.
4143  *
4144  * A return value of FALSE indicates that there are no more records to
4145  * read.
4146  */
4147 bool kmsg_dump_get_buffer(struct kmsg_dump_iter *iter, bool syslog,
4148 			  char *buf, size_t size, size_t *len_out)
4149 {
4150 	u64 min_seq = latched_seq_read_nolock(&clear_seq);
4151 	struct printk_info info;
4152 	struct printk_record r;
4153 	u64 seq;
4154 	u64 next_seq;
4155 	size_t len = 0;
4156 	bool ret = false;
4157 	bool time = printk_time;
4158 
4159 	if (!buf || !size)
4160 		goto out;
4161 
4162 	if (iter->cur_seq < min_seq)
4163 		iter->cur_seq = min_seq;
4164 
4165 	if (prb_read_valid_info(prb, iter->cur_seq, &info, NULL)) {
4166 		if (info.seq != iter->cur_seq) {
4167 			/* messages are gone, move to first available one */
4168 			iter->cur_seq = info.seq;
4169 		}
4170 	}
4171 
4172 	/* last entry */
4173 	if (iter->cur_seq >= iter->next_seq)
4174 		goto out;
4175 
4176 	/*
4177 	 * Find first record that fits, including all following records,
4178 	 * into the user-provided buffer for this dump. Pass in size-1
4179 	 * because this function (by way of record_print_text()) will
4180 	 * not write more than size-1 bytes of text into @buf.
4181 	 */
4182 	seq = find_first_fitting_seq(iter->cur_seq, iter->next_seq,
4183 				     size - 1, syslog, time);
4184 
4185 	/*
4186 	 * Next kmsg_dump_get_buffer() invocation will dump block of
4187 	 * older records stored right before this one.
4188 	 */
4189 	next_seq = seq;
4190 
4191 	prb_rec_init_rd(&r, &info, buf, size);
4192 
4193 	len = 0;
4194 	prb_for_each_record(seq, prb, seq, &r) {
4195 		if (r.info->seq >= iter->next_seq)
4196 			break;
4197 
4198 		len += record_print_text(&r, syslog, time);
4199 
4200 		/* Adjust record to store to remaining buffer space. */
4201 		prb_rec_init_rd(&r, &info, buf + len, size - len);
4202 	}
4203 
4204 	iter->next_seq = next_seq;
4205 	ret = true;
4206 out:
4207 	if (len_out)
4208 		*len_out = len;
4209 	return ret;
4210 }
4211 EXPORT_SYMBOL_GPL(kmsg_dump_get_buffer);
4212 
4213 /**
4214  * kmsg_dump_rewind - reset the iterator
4215  * @iter: kmsg dump iterator
4216  *
4217  * Reset the dumper's iterator so that kmsg_dump_get_line() and
4218  * kmsg_dump_get_buffer() can be called again and used multiple
4219  * times within the same dumper.dump() callback.
4220  */
4221 void kmsg_dump_rewind(struct kmsg_dump_iter *iter)
4222 {
4223 	iter->cur_seq = latched_seq_read_nolock(&clear_seq);
4224 	iter->next_seq = prb_next_seq(prb);
4225 }
4226 EXPORT_SYMBOL_GPL(kmsg_dump_rewind);
4227 
4228 #endif
4229 
4230 #ifdef CONFIG_SMP
4231 static atomic_t printk_cpu_sync_owner = ATOMIC_INIT(-1);
4232 static atomic_t printk_cpu_sync_nested = ATOMIC_INIT(0);
4233 
4234 /**
4235  * __printk_cpu_sync_wait() - Busy wait until the printk cpu-reentrant
4236  *                            spinning lock is not owned by any CPU.
4237  *
4238  * Context: Any context.
4239  */
4240 void __printk_cpu_sync_wait(void)
4241 {
4242 	do {
4243 		cpu_relax();
4244 	} while (atomic_read(&printk_cpu_sync_owner) != -1);
4245 }
4246 EXPORT_SYMBOL(__printk_cpu_sync_wait);
4247 
4248 /**
4249  * __printk_cpu_sync_try_get() - Try to acquire the printk cpu-reentrant
4250  *                               spinning lock.
4251  *
4252  * If no processor has the lock, the calling processor takes the lock and
4253  * becomes the owner. If the calling processor is already the owner of the
4254  * lock, this function succeeds immediately.
4255  *
4256  * Context: Any context. Expects interrupts to be disabled.
4257  * Return: 1 on success, otherwise 0.
4258  */
4259 int __printk_cpu_sync_try_get(void)
4260 {
4261 	int cpu;
4262 	int old;
4263 
4264 	cpu = smp_processor_id();
4265 
4266 	/*
4267 	 * Guarantee loads and stores from this CPU when it is the lock owner
4268 	 * are _not_ visible to the previous lock owner. This pairs with
4269 	 * __printk_cpu_sync_put:B.
4270 	 *
4271 	 * Memory barrier involvement:
4272 	 *
4273 	 * If __printk_cpu_sync_try_get:A reads from __printk_cpu_sync_put:B,
4274 	 * then __printk_cpu_sync_put:A can never read from
4275 	 * __printk_cpu_sync_try_get:B.
4276 	 *
4277 	 * Relies on:
4278 	 *
4279 	 * RELEASE from __printk_cpu_sync_put:A to __printk_cpu_sync_put:B
4280 	 * of the previous CPU
4281 	 *    matching
4282 	 * ACQUIRE from __printk_cpu_sync_try_get:A to
4283 	 * __printk_cpu_sync_try_get:B of this CPU
4284 	 */
4285 	old = atomic_cmpxchg_acquire(&printk_cpu_sync_owner, -1,
4286 				     cpu); /* LMM(__printk_cpu_sync_try_get:A) */
4287 	if (old == -1) {
4288 		/*
4289 		 * This CPU is now the owner and begins loading/storing
4290 		 * data: LMM(__printk_cpu_sync_try_get:B)
4291 		 */
4292 		return 1;
4293 
4294 	} else if (old == cpu) {
4295 		/* This CPU is already the owner. */
4296 		atomic_inc(&printk_cpu_sync_nested);
4297 		return 1;
4298 	}
4299 
4300 	return 0;
4301 }
4302 EXPORT_SYMBOL(__printk_cpu_sync_try_get);
4303 
4304 /**
4305  * __printk_cpu_sync_put() - Release the printk cpu-reentrant spinning lock.
4306  *
4307  * The calling processor must be the owner of the lock.
4308  *
4309  * Context: Any context. Expects interrupts to be disabled.
4310  */
4311 void __printk_cpu_sync_put(void)
4312 {
4313 	if (atomic_read(&printk_cpu_sync_nested)) {
4314 		atomic_dec(&printk_cpu_sync_nested);
4315 		return;
4316 	}
4317 
4318 	/*
4319 	 * This CPU is finished loading/storing data:
4320 	 * LMM(__printk_cpu_sync_put:A)
4321 	 */
4322 
4323 	/*
4324 	 * Guarantee loads and stores from this CPU when it was the
4325 	 * lock owner are visible to the next lock owner. This pairs
4326 	 * with __printk_cpu_sync_try_get:A.
4327 	 *
4328 	 * Memory barrier involvement:
4329 	 *
4330 	 * If __printk_cpu_sync_try_get:A reads from __printk_cpu_sync_put:B,
4331 	 * then __printk_cpu_sync_try_get:B reads from __printk_cpu_sync_put:A.
4332 	 *
4333 	 * Relies on:
4334 	 *
4335 	 * RELEASE from __printk_cpu_sync_put:A to __printk_cpu_sync_put:B
4336 	 * of this CPU
4337 	 *    matching
4338 	 * ACQUIRE from __printk_cpu_sync_try_get:A to
4339 	 * __printk_cpu_sync_try_get:B of the next CPU
4340 	 */
4341 	atomic_set_release(&printk_cpu_sync_owner,
4342 			   -1); /* LMM(__printk_cpu_sync_put:B) */
4343 }
4344 EXPORT_SYMBOL(__printk_cpu_sync_put);
4345 #endif /* CONFIG_SMP */
4346