1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/printk.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 * 7 * Modified to make sys_syslog() more flexible: added commands to 8 * return the last 4k of kernel messages, regardless of whether 9 * they've been read or not. Added option to suppress kernel printk's 10 * to the console. Added hook for sending the console messages 11 * elsewhere, in preparation for a serial line console (someday). 12 * Ted Ts'o, 2/11/93. 13 * Modified for sysctl support, 1/8/97, Chris Horn. 14 * Fixed SMP synchronization, 08/08/99, Manfred Spraul 15 * manfred@colorfullife.com 16 * Rewrote bits to get rid of console_lock 17 * 01Mar01 Andrew Morton 18 */ 19 20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 21 22 #include <linux/kernel.h> 23 #include <linux/mm.h> 24 #include <linux/tty.h> 25 #include <linux/tty_driver.h> 26 #include <linux/console.h> 27 #include <linux/init.h> 28 #include <linux/jiffies.h> 29 #include <linux/nmi.h> 30 #include <linux/module.h> 31 #include <linux/moduleparam.h> 32 #include <linux/delay.h> 33 #include <linux/smp.h> 34 #include <linux/security.h> 35 #include <linux/memblock.h> 36 #include <linux/syscalls.h> 37 #include <linux/crash_core.h> 38 #include <linux/ratelimit.h> 39 #include <linux/kmsg_dump.h> 40 #include <linux/syslog.h> 41 #include <linux/cpu.h> 42 #include <linux/rculist.h> 43 #include <linux/poll.h> 44 #include <linux/irq_work.h> 45 #include <linux/ctype.h> 46 #include <linux/uio.h> 47 #include <linux/sched/clock.h> 48 #include <linux/sched/debug.h> 49 #include <linux/sched/task_stack.h> 50 51 #include <linux/uaccess.h> 52 #include <asm/sections.h> 53 54 #include <trace/events/initcall.h> 55 #define CREATE_TRACE_POINTS 56 #include <trace/events/printk.h> 57 58 #include "printk_ringbuffer.h" 59 #include "console_cmdline.h" 60 #include "braille.h" 61 #include "internal.h" 62 63 int console_printk[4] = { 64 CONSOLE_LOGLEVEL_DEFAULT, /* console_loglevel */ 65 MESSAGE_LOGLEVEL_DEFAULT, /* default_message_loglevel */ 66 CONSOLE_LOGLEVEL_MIN, /* minimum_console_loglevel */ 67 CONSOLE_LOGLEVEL_DEFAULT, /* default_console_loglevel */ 68 }; 69 EXPORT_SYMBOL_GPL(console_printk); 70 71 atomic_t ignore_console_lock_warning __read_mostly = ATOMIC_INIT(0); 72 EXPORT_SYMBOL(ignore_console_lock_warning); 73 74 EXPORT_TRACEPOINT_SYMBOL_GPL(console); 75 76 /* 77 * Low level drivers may need that to know if they can schedule in 78 * their unblank() callback or not. So let's export it. 79 */ 80 int oops_in_progress; 81 EXPORT_SYMBOL(oops_in_progress); 82 83 /* 84 * console_mutex protects console_list updates and console->flags updates. 85 * The flags are synchronized only for consoles that are registered, i.e. 86 * accessible via the console list. 87 */ 88 static DEFINE_MUTEX(console_mutex); 89 90 /* 91 * console_sem protects updates to console->seq 92 * and also provides serialization for console printing. 93 */ 94 static DEFINE_SEMAPHORE(console_sem, 1); 95 HLIST_HEAD(console_list); 96 EXPORT_SYMBOL_GPL(console_list); 97 DEFINE_STATIC_SRCU(console_srcu); 98 99 /* 100 * System may need to suppress printk message under certain 101 * circumstances, like after kernel panic happens. 102 */ 103 int __read_mostly suppress_printk; 104 105 /* 106 * During panic, heavy printk by other CPUs can delay the 107 * panic and risk deadlock on console resources. 108 */ 109 static int __read_mostly suppress_panic_printk; 110 111 #ifdef CONFIG_LOCKDEP 112 static struct lockdep_map console_lock_dep_map = { 113 .name = "console_lock" 114 }; 115 116 void lockdep_assert_console_list_lock_held(void) 117 { 118 lockdep_assert_held(&console_mutex); 119 } 120 EXPORT_SYMBOL(lockdep_assert_console_list_lock_held); 121 #endif 122 123 #ifdef CONFIG_DEBUG_LOCK_ALLOC 124 bool console_srcu_read_lock_is_held(void) 125 { 126 return srcu_read_lock_held(&console_srcu); 127 } 128 EXPORT_SYMBOL(console_srcu_read_lock_is_held); 129 #endif 130 131 enum devkmsg_log_bits { 132 __DEVKMSG_LOG_BIT_ON = 0, 133 __DEVKMSG_LOG_BIT_OFF, 134 __DEVKMSG_LOG_BIT_LOCK, 135 }; 136 137 enum devkmsg_log_masks { 138 DEVKMSG_LOG_MASK_ON = BIT(__DEVKMSG_LOG_BIT_ON), 139 DEVKMSG_LOG_MASK_OFF = BIT(__DEVKMSG_LOG_BIT_OFF), 140 DEVKMSG_LOG_MASK_LOCK = BIT(__DEVKMSG_LOG_BIT_LOCK), 141 }; 142 143 /* Keep both the 'on' and 'off' bits clear, i.e. ratelimit by default: */ 144 #define DEVKMSG_LOG_MASK_DEFAULT 0 145 146 static unsigned int __read_mostly devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT; 147 148 static int __control_devkmsg(char *str) 149 { 150 size_t len; 151 152 if (!str) 153 return -EINVAL; 154 155 len = str_has_prefix(str, "on"); 156 if (len) { 157 devkmsg_log = DEVKMSG_LOG_MASK_ON; 158 return len; 159 } 160 161 len = str_has_prefix(str, "off"); 162 if (len) { 163 devkmsg_log = DEVKMSG_LOG_MASK_OFF; 164 return len; 165 } 166 167 len = str_has_prefix(str, "ratelimit"); 168 if (len) { 169 devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT; 170 return len; 171 } 172 173 return -EINVAL; 174 } 175 176 static int __init control_devkmsg(char *str) 177 { 178 if (__control_devkmsg(str) < 0) { 179 pr_warn("printk.devkmsg: bad option string '%s'\n", str); 180 return 1; 181 } 182 183 /* 184 * Set sysctl string accordingly: 185 */ 186 if (devkmsg_log == DEVKMSG_LOG_MASK_ON) 187 strcpy(devkmsg_log_str, "on"); 188 else if (devkmsg_log == DEVKMSG_LOG_MASK_OFF) 189 strcpy(devkmsg_log_str, "off"); 190 /* else "ratelimit" which is set by default. */ 191 192 /* 193 * Sysctl cannot change it anymore. The kernel command line setting of 194 * this parameter is to force the setting to be permanent throughout the 195 * runtime of the system. This is a precation measure against userspace 196 * trying to be a smarta** and attempting to change it up on us. 197 */ 198 devkmsg_log |= DEVKMSG_LOG_MASK_LOCK; 199 200 return 1; 201 } 202 __setup("printk.devkmsg=", control_devkmsg); 203 204 char devkmsg_log_str[DEVKMSG_STR_MAX_SIZE] = "ratelimit"; 205 #if defined(CONFIG_PRINTK) && defined(CONFIG_SYSCTL) 206 int devkmsg_sysctl_set_loglvl(struct ctl_table *table, int write, 207 void *buffer, size_t *lenp, loff_t *ppos) 208 { 209 char old_str[DEVKMSG_STR_MAX_SIZE]; 210 unsigned int old; 211 int err; 212 213 if (write) { 214 if (devkmsg_log & DEVKMSG_LOG_MASK_LOCK) 215 return -EINVAL; 216 217 old = devkmsg_log; 218 strncpy(old_str, devkmsg_log_str, DEVKMSG_STR_MAX_SIZE); 219 } 220 221 err = proc_dostring(table, write, buffer, lenp, ppos); 222 if (err) 223 return err; 224 225 if (write) { 226 err = __control_devkmsg(devkmsg_log_str); 227 228 /* 229 * Do not accept an unknown string OR a known string with 230 * trailing crap... 231 */ 232 if (err < 0 || (err + 1 != *lenp)) { 233 234 /* ... and restore old setting. */ 235 devkmsg_log = old; 236 strncpy(devkmsg_log_str, old_str, DEVKMSG_STR_MAX_SIZE); 237 238 return -EINVAL; 239 } 240 } 241 242 return 0; 243 } 244 #endif /* CONFIG_PRINTK && CONFIG_SYSCTL */ 245 246 /** 247 * console_list_lock - Lock the console list 248 * 249 * For console list or console->flags updates 250 */ 251 void console_list_lock(void) 252 { 253 /* 254 * In unregister_console() and console_force_preferred_locked(), 255 * synchronize_srcu() is called with the console_list_lock held. 256 * Therefore it is not allowed that the console_list_lock is taken 257 * with the srcu_lock held. 258 * 259 * Detecting if this context is really in the read-side critical 260 * section is only possible if the appropriate debug options are 261 * enabled. 262 */ 263 WARN_ON_ONCE(debug_lockdep_rcu_enabled() && 264 srcu_read_lock_held(&console_srcu)); 265 266 mutex_lock(&console_mutex); 267 } 268 EXPORT_SYMBOL(console_list_lock); 269 270 /** 271 * console_list_unlock - Unlock the console list 272 * 273 * Counterpart to console_list_lock() 274 */ 275 void console_list_unlock(void) 276 { 277 mutex_unlock(&console_mutex); 278 } 279 EXPORT_SYMBOL(console_list_unlock); 280 281 /** 282 * console_srcu_read_lock - Register a new reader for the 283 * SRCU-protected console list 284 * 285 * Use for_each_console_srcu() to iterate the console list 286 * 287 * Context: Any context. 288 * Return: A cookie to pass to console_srcu_read_unlock(). 289 */ 290 int console_srcu_read_lock(void) 291 { 292 return srcu_read_lock_nmisafe(&console_srcu); 293 } 294 EXPORT_SYMBOL(console_srcu_read_lock); 295 296 /** 297 * console_srcu_read_unlock - Unregister an old reader from 298 * the SRCU-protected console list 299 * @cookie: cookie returned from console_srcu_read_lock() 300 * 301 * Counterpart to console_srcu_read_lock() 302 */ 303 void console_srcu_read_unlock(int cookie) 304 { 305 srcu_read_unlock_nmisafe(&console_srcu, cookie); 306 } 307 EXPORT_SYMBOL(console_srcu_read_unlock); 308 309 /* 310 * Helper macros to handle lockdep when locking/unlocking console_sem. We use 311 * macros instead of functions so that _RET_IP_ contains useful information. 312 */ 313 #define down_console_sem() do { \ 314 down(&console_sem);\ 315 mutex_acquire(&console_lock_dep_map, 0, 0, _RET_IP_);\ 316 } while (0) 317 318 static int __down_trylock_console_sem(unsigned long ip) 319 { 320 int lock_failed; 321 unsigned long flags; 322 323 /* 324 * Here and in __up_console_sem() we need to be in safe mode, 325 * because spindump/WARN/etc from under console ->lock will 326 * deadlock in printk()->down_trylock_console_sem() otherwise. 327 */ 328 printk_safe_enter_irqsave(flags); 329 lock_failed = down_trylock(&console_sem); 330 printk_safe_exit_irqrestore(flags); 331 332 if (lock_failed) 333 return 1; 334 mutex_acquire(&console_lock_dep_map, 0, 1, ip); 335 return 0; 336 } 337 #define down_trylock_console_sem() __down_trylock_console_sem(_RET_IP_) 338 339 static void __up_console_sem(unsigned long ip) 340 { 341 unsigned long flags; 342 343 mutex_release(&console_lock_dep_map, ip); 344 345 printk_safe_enter_irqsave(flags); 346 up(&console_sem); 347 printk_safe_exit_irqrestore(flags); 348 } 349 #define up_console_sem() __up_console_sem(_RET_IP_) 350 351 static bool panic_in_progress(void) 352 { 353 return unlikely(atomic_read(&panic_cpu) != PANIC_CPU_INVALID); 354 } 355 356 /* 357 * This is used for debugging the mess that is the VT code by 358 * keeping track if we have the console semaphore held. It's 359 * definitely not the perfect debug tool (we don't know if _WE_ 360 * hold it and are racing, but it helps tracking those weird code 361 * paths in the console code where we end up in places I want 362 * locked without the console semaphore held). 363 */ 364 static int console_locked; 365 366 /* 367 * Array of consoles built from command line options (console=) 368 */ 369 370 #define MAX_CMDLINECONSOLES 8 371 372 static struct console_cmdline console_cmdline[MAX_CMDLINECONSOLES]; 373 374 static int preferred_console = -1; 375 int console_set_on_cmdline; 376 EXPORT_SYMBOL(console_set_on_cmdline); 377 378 /* Flag: console code may call schedule() */ 379 static int console_may_schedule; 380 381 enum con_msg_format_flags { 382 MSG_FORMAT_DEFAULT = 0, 383 MSG_FORMAT_SYSLOG = (1 << 0), 384 }; 385 386 static int console_msg_format = MSG_FORMAT_DEFAULT; 387 388 /* 389 * The printk log buffer consists of a sequenced collection of records, each 390 * containing variable length message text. Every record also contains its 391 * own meta-data (@info). 392 * 393 * Every record meta-data carries the timestamp in microseconds, as well as 394 * the standard userspace syslog level and syslog facility. The usual kernel 395 * messages use LOG_KERN; userspace-injected messages always carry a matching 396 * syslog facility, by default LOG_USER. The origin of every message can be 397 * reliably determined that way. 398 * 399 * The human readable log message of a record is available in @text, the 400 * length of the message text in @text_len. The stored message is not 401 * terminated. 402 * 403 * Optionally, a record can carry a dictionary of properties (key/value 404 * pairs), to provide userspace with a machine-readable message context. 405 * 406 * Examples for well-defined, commonly used property names are: 407 * DEVICE=b12:8 device identifier 408 * b12:8 block dev_t 409 * c127:3 char dev_t 410 * n8 netdev ifindex 411 * +sound:card0 subsystem:devname 412 * SUBSYSTEM=pci driver-core subsystem name 413 * 414 * Valid characters in property names are [a-zA-Z0-9.-_]. Property names 415 * and values are terminated by a '\0' character. 416 * 417 * Example of record values: 418 * record.text_buf = "it's a line" (unterminated) 419 * record.info.seq = 56 420 * record.info.ts_nsec = 36863 421 * record.info.text_len = 11 422 * record.info.facility = 0 (LOG_KERN) 423 * record.info.flags = 0 424 * record.info.level = 3 (LOG_ERR) 425 * record.info.caller_id = 299 (task 299) 426 * record.info.dev_info.subsystem = "pci" (terminated) 427 * record.info.dev_info.device = "+pci:0000:00:01.0" (terminated) 428 * 429 * The 'struct printk_info' buffer must never be directly exported to 430 * userspace, it is a kernel-private implementation detail that might 431 * need to be changed in the future, when the requirements change. 432 * 433 * /dev/kmsg exports the structured data in the following line format: 434 * "<level>,<sequnum>,<timestamp>,<contflag>[,additional_values, ... ];<message text>\n" 435 * 436 * Users of the export format should ignore possible additional values 437 * separated by ',', and find the message after the ';' character. 438 * 439 * The optional key/value pairs are attached as continuation lines starting 440 * with a space character and terminated by a newline. All possible 441 * non-prinatable characters are escaped in the "\xff" notation. 442 */ 443 444 /* syslog_lock protects syslog_* variables and write access to clear_seq. */ 445 static DEFINE_MUTEX(syslog_lock); 446 447 #ifdef CONFIG_PRINTK 448 DECLARE_WAIT_QUEUE_HEAD(log_wait); 449 /* All 3 protected by @syslog_lock. */ 450 /* the next printk record to read by syslog(READ) or /proc/kmsg */ 451 static u64 syslog_seq; 452 static size_t syslog_partial; 453 static bool syslog_time; 454 455 struct latched_seq { 456 seqcount_latch_t latch; 457 u64 val[2]; 458 }; 459 460 /* 461 * The next printk record to read after the last 'clear' command. There are 462 * two copies (updated with seqcount_latch) so that reads can locklessly 463 * access a valid value. Writers are synchronized by @syslog_lock. 464 */ 465 static struct latched_seq clear_seq = { 466 .latch = SEQCNT_LATCH_ZERO(clear_seq.latch), 467 .val[0] = 0, 468 .val[1] = 0, 469 }; 470 471 #define LOG_LEVEL(v) ((v) & 0x07) 472 #define LOG_FACILITY(v) ((v) >> 3 & 0xff) 473 474 /* record buffer */ 475 #define LOG_ALIGN __alignof__(unsigned long) 476 #define __LOG_BUF_LEN (1 << CONFIG_LOG_BUF_SHIFT) 477 #define LOG_BUF_LEN_MAX (u32)(1 << 31) 478 static char __log_buf[__LOG_BUF_LEN] __aligned(LOG_ALIGN); 479 static char *log_buf = __log_buf; 480 static u32 log_buf_len = __LOG_BUF_LEN; 481 482 /* 483 * Define the average message size. This only affects the number of 484 * descriptors that will be available. Underestimating is better than 485 * overestimating (too many available descriptors is better than not enough). 486 */ 487 #define PRB_AVGBITS 5 /* 32 character average length */ 488 489 #if CONFIG_LOG_BUF_SHIFT <= PRB_AVGBITS 490 #error CONFIG_LOG_BUF_SHIFT value too small. 491 #endif 492 _DEFINE_PRINTKRB(printk_rb_static, CONFIG_LOG_BUF_SHIFT - PRB_AVGBITS, 493 PRB_AVGBITS, &__log_buf[0]); 494 495 static struct printk_ringbuffer printk_rb_dynamic; 496 497 static struct printk_ringbuffer *prb = &printk_rb_static; 498 499 /* 500 * We cannot access per-CPU data (e.g. per-CPU flush irq_work) before 501 * per_cpu_areas are initialised. This variable is set to true when 502 * it's safe to access per-CPU data. 503 */ 504 static bool __printk_percpu_data_ready __ro_after_init; 505 506 bool printk_percpu_data_ready(void) 507 { 508 return __printk_percpu_data_ready; 509 } 510 511 /* Must be called under syslog_lock. */ 512 static void latched_seq_write(struct latched_seq *ls, u64 val) 513 { 514 raw_write_seqcount_latch(&ls->latch); 515 ls->val[0] = val; 516 raw_write_seqcount_latch(&ls->latch); 517 ls->val[1] = val; 518 } 519 520 /* Can be called from any context. */ 521 static u64 latched_seq_read_nolock(struct latched_seq *ls) 522 { 523 unsigned int seq; 524 unsigned int idx; 525 u64 val; 526 527 do { 528 seq = raw_read_seqcount_latch(&ls->latch); 529 idx = seq & 0x1; 530 val = ls->val[idx]; 531 } while (raw_read_seqcount_latch_retry(&ls->latch, seq)); 532 533 return val; 534 } 535 536 /* Return log buffer address */ 537 char *log_buf_addr_get(void) 538 { 539 return log_buf; 540 } 541 EXPORT_SYMBOL_GPL(log_buf_addr_get); 542 543 /* Return log buffer size */ 544 u32 log_buf_len_get(void) 545 { 546 return log_buf_len; 547 } 548 EXPORT_SYMBOL_GPL(log_buf_len_get); 549 550 /* 551 * Define how much of the log buffer we could take at maximum. The value 552 * must be greater than two. Note that only half of the buffer is available 553 * when the index points to the middle. 554 */ 555 #define MAX_LOG_TAKE_PART 4 556 static const char trunc_msg[] = "<truncated>"; 557 558 static void truncate_msg(u16 *text_len, u16 *trunc_msg_len) 559 { 560 /* 561 * The message should not take the whole buffer. Otherwise, it might 562 * get removed too soon. 563 */ 564 u32 max_text_len = log_buf_len / MAX_LOG_TAKE_PART; 565 566 if (*text_len > max_text_len) 567 *text_len = max_text_len; 568 569 /* enable the warning message (if there is room) */ 570 *trunc_msg_len = strlen(trunc_msg); 571 if (*text_len >= *trunc_msg_len) 572 *text_len -= *trunc_msg_len; 573 else 574 *trunc_msg_len = 0; 575 } 576 577 int dmesg_restrict = IS_ENABLED(CONFIG_SECURITY_DMESG_RESTRICT); 578 579 static int syslog_action_restricted(int type) 580 { 581 if (dmesg_restrict) 582 return 1; 583 /* 584 * Unless restricted, we allow "read all" and "get buffer size" 585 * for everybody. 586 */ 587 return type != SYSLOG_ACTION_READ_ALL && 588 type != SYSLOG_ACTION_SIZE_BUFFER; 589 } 590 591 static int check_syslog_permissions(int type, int source) 592 { 593 /* 594 * If this is from /proc/kmsg and we've already opened it, then we've 595 * already done the capabilities checks at open time. 596 */ 597 if (source == SYSLOG_FROM_PROC && type != SYSLOG_ACTION_OPEN) 598 goto ok; 599 600 if (syslog_action_restricted(type)) { 601 if (capable(CAP_SYSLOG)) 602 goto ok; 603 /* 604 * For historical reasons, accept CAP_SYS_ADMIN too, with 605 * a warning. 606 */ 607 if (capable(CAP_SYS_ADMIN)) { 608 pr_warn_once("%s (%d): Attempt to access syslog with " 609 "CAP_SYS_ADMIN but no CAP_SYSLOG " 610 "(deprecated).\n", 611 current->comm, task_pid_nr(current)); 612 goto ok; 613 } 614 return -EPERM; 615 } 616 ok: 617 return security_syslog(type); 618 } 619 620 static void append_char(char **pp, char *e, char c) 621 { 622 if (*pp < e) 623 *(*pp)++ = c; 624 } 625 626 static ssize_t info_print_ext_header(char *buf, size_t size, 627 struct printk_info *info) 628 { 629 u64 ts_usec = info->ts_nsec; 630 char caller[20]; 631 #ifdef CONFIG_PRINTK_CALLER 632 u32 id = info->caller_id; 633 634 snprintf(caller, sizeof(caller), ",caller=%c%u", 635 id & 0x80000000 ? 'C' : 'T', id & ~0x80000000); 636 #else 637 caller[0] = '\0'; 638 #endif 639 640 do_div(ts_usec, 1000); 641 642 return scnprintf(buf, size, "%u,%llu,%llu,%c%s;", 643 (info->facility << 3) | info->level, info->seq, 644 ts_usec, info->flags & LOG_CONT ? 'c' : '-', caller); 645 } 646 647 static ssize_t msg_add_ext_text(char *buf, size_t size, 648 const char *text, size_t text_len, 649 unsigned char endc) 650 { 651 char *p = buf, *e = buf + size; 652 size_t i; 653 654 /* escape non-printable characters */ 655 for (i = 0; i < text_len; i++) { 656 unsigned char c = text[i]; 657 658 if (c < ' ' || c >= 127 || c == '\\') 659 p += scnprintf(p, e - p, "\\x%02x", c); 660 else 661 append_char(&p, e, c); 662 } 663 append_char(&p, e, endc); 664 665 return p - buf; 666 } 667 668 static ssize_t msg_add_dict_text(char *buf, size_t size, 669 const char *key, const char *val) 670 { 671 size_t val_len = strlen(val); 672 ssize_t len; 673 674 if (!val_len) 675 return 0; 676 677 len = msg_add_ext_text(buf, size, "", 0, ' '); /* dict prefix */ 678 len += msg_add_ext_text(buf + len, size - len, key, strlen(key), '='); 679 len += msg_add_ext_text(buf + len, size - len, val, val_len, '\n'); 680 681 return len; 682 } 683 684 static ssize_t msg_print_ext_body(char *buf, size_t size, 685 char *text, size_t text_len, 686 struct dev_printk_info *dev_info) 687 { 688 ssize_t len; 689 690 len = msg_add_ext_text(buf, size, text, text_len, '\n'); 691 692 if (!dev_info) 693 goto out; 694 695 len += msg_add_dict_text(buf + len, size - len, "SUBSYSTEM", 696 dev_info->subsystem); 697 len += msg_add_dict_text(buf + len, size - len, "DEVICE", 698 dev_info->device); 699 out: 700 return len; 701 } 702 703 static bool printk_get_next_message(struct printk_message *pmsg, u64 seq, 704 bool is_extended, bool may_supress); 705 706 /* /dev/kmsg - userspace message inject/listen interface */ 707 struct devkmsg_user { 708 atomic64_t seq; 709 struct ratelimit_state rs; 710 struct mutex lock; 711 struct printk_buffers pbufs; 712 }; 713 714 static __printf(3, 4) __cold 715 int devkmsg_emit(int facility, int level, const char *fmt, ...) 716 { 717 va_list args; 718 int r; 719 720 va_start(args, fmt); 721 r = vprintk_emit(facility, level, NULL, fmt, args); 722 va_end(args); 723 724 return r; 725 } 726 727 static ssize_t devkmsg_write(struct kiocb *iocb, struct iov_iter *from) 728 { 729 char *buf, *line; 730 int level = default_message_loglevel; 731 int facility = 1; /* LOG_USER */ 732 struct file *file = iocb->ki_filp; 733 struct devkmsg_user *user = file->private_data; 734 size_t len = iov_iter_count(from); 735 ssize_t ret = len; 736 737 if (len > PRINTKRB_RECORD_MAX) 738 return -EINVAL; 739 740 /* Ignore when user logging is disabled. */ 741 if (devkmsg_log & DEVKMSG_LOG_MASK_OFF) 742 return len; 743 744 /* Ratelimit when not explicitly enabled. */ 745 if (!(devkmsg_log & DEVKMSG_LOG_MASK_ON)) { 746 if (!___ratelimit(&user->rs, current->comm)) 747 return ret; 748 } 749 750 buf = kmalloc(len+1, GFP_KERNEL); 751 if (buf == NULL) 752 return -ENOMEM; 753 754 buf[len] = '\0'; 755 if (!copy_from_iter_full(buf, len, from)) { 756 kfree(buf); 757 return -EFAULT; 758 } 759 760 /* 761 * Extract and skip the syslog prefix <[0-9]*>. Coming from userspace 762 * the decimal value represents 32bit, the lower 3 bit are the log 763 * level, the rest are the log facility. 764 * 765 * If no prefix or no userspace facility is specified, we 766 * enforce LOG_USER, to be able to reliably distinguish 767 * kernel-generated messages from userspace-injected ones. 768 */ 769 line = buf; 770 if (line[0] == '<') { 771 char *endp = NULL; 772 unsigned int u; 773 774 u = simple_strtoul(line + 1, &endp, 10); 775 if (endp && endp[0] == '>') { 776 level = LOG_LEVEL(u); 777 if (LOG_FACILITY(u) != 0) 778 facility = LOG_FACILITY(u); 779 endp++; 780 line = endp; 781 } 782 } 783 784 devkmsg_emit(facility, level, "%s", line); 785 kfree(buf); 786 return ret; 787 } 788 789 static ssize_t devkmsg_read(struct file *file, char __user *buf, 790 size_t count, loff_t *ppos) 791 { 792 struct devkmsg_user *user = file->private_data; 793 char *outbuf = &user->pbufs.outbuf[0]; 794 struct printk_message pmsg = { 795 .pbufs = &user->pbufs, 796 }; 797 ssize_t ret; 798 799 ret = mutex_lock_interruptible(&user->lock); 800 if (ret) 801 return ret; 802 803 if (!printk_get_next_message(&pmsg, atomic64_read(&user->seq), true, false)) { 804 if (file->f_flags & O_NONBLOCK) { 805 ret = -EAGAIN; 806 goto out; 807 } 808 809 /* 810 * Guarantee this task is visible on the waitqueue before 811 * checking the wake condition. 812 * 813 * The full memory barrier within set_current_state() of 814 * prepare_to_wait_event() pairs with the full memory barrier 815 * within wq_has_sleeper(). 816 * 817 * This pairs with __wake_up_klogd:A. 818 */ 819 ret = wait_event_interruptible(log_wait, 820 printk_get_next_message(&pmsg, atomic64_read(&user->seq), true, 821 false)); /* LMM(devkmsg_read:A) */ 822 if (ret) 823 goto out; 824 } 825 826 if (pmsg.dropped) { 827 /* our last seen message is gone, return error and reset */ 828 atomic64_set(&user->seq, pmsg.seq); 829 ret = -EPIPE; 830 goto out; 831 } 832 833 atomic64_set(&user->seq, pmsg.seq + 1); 834 835 if (pmsg.outbuf_len > count) { 836 ret = -EINVAL; 837 goto out; 838 } 839 840 if (copy_to_user(buf, outbuf, pmsg.outbuf_len)) { 841 ret = -EFAULT; 842 goto out; 843 } 844 ret = pmsg.outbuf_len; 845 out: 846 mutex_unlock(&user->lock); 847 return ret; 848 } 849 850 /* 851 * Be careful when modifying this function!!! 852 * 853 * Only few operations are supported because the device works only with the 854 * entire variable length messages (records). Non-standard values are 855 * returned in the other cases and has been this way for quite some time. 856 * User space applications might depend on this behavior. 857 */ 858 static loff_t devkmsg_llseek(struct file *file, loff_t offset, int whence) 859 { 860 struct devkmsg_user *user = file->private_data; 861 loff_t ret = 0; 862 863 if (offset) 864 return -ESPIPE; 865 866 switch (whence) { 867 case SEEK_SET: 868 /* the first record */ 869 atomic64_set(&user->seq, prb_first_valid_seq(prb)); 870 break; 871 case SEEK_DATA: 872 /* 873 * The first record after the last SYSLOG_ACTION_CLEAR, 874 * like issued by 'dmesg -c'. Reading /dev/kmsg itself 875 * changes no global state, and does not clear anything. 876 */ 877 atomic64_set(&user->seq, latched_seq_read_nolock(&clear_seq)); 878 break; 879 case SEEK_END: 880 /* after the last record */ 881 atomic64_set(&user->seq, prb_next_seq(prb)); 882 break; 883 default: 884 ret = -EINVAL; 885 } 886 return ret; 887 } 888 889 static __poll_t devkmsg_poll(struct file *file, poll_table *wait) 890 { 891 struct devkmsg_user *user = file->private_data; 892 struct printk_info info; 893 __poll_t ret = 0; 894 895 poll_wait(file, &log_wait, wait); 896 897 if (prb_read_valid_info(prb, atomic64_read(&user->seq), &info, NULL)) { 898 /* return error when data has vanished underneath us */ 899 if (info.seq != atomic64_read(&user->seq)) 900 ret = EPOLLIN|EPOLLRDNORM|EPOLLERR|EPOLLPRI; 901 else 902 ret = EPOLLIN|EPOLLRDNORM; 903 } 904 905 return ret; 906 } 907 908 static int devkmsg_open(struct inode *inode, struct file *file) 909 { 910 struct devkmsg_user *user; 911 int err; 912 913 if (devkmsg_log & DEVKMSG_LOG_MASK_OFF) 914 return -EPERM; 915 916 /* write-only does not need any file context */ 917 if ((file->f_flags & O_ACCMODE) != O_WRONLY) { 918 err = check_syslog_permissions(SYSLOG_ACTION_READ_ALL, 919 SYSLOG_FROM_READER); 920 if (err) 921 return err; 922 } 923 924 user = kvmalloc(sizeof(struct devkmsg_user), GFP_KERNEL); 925 if (!user) 926 return -ENOMEM; 927 928 ratelimit_default_init(&user->rs); 929 ratelimit_set_flags(&user->rs, RATELIMIT_MSG_ON_RELEASE); 930 931 mutex_init(&user->lock); 932 933 atomic64_set(&user->seq, prb_first_valid_seq(prb)); 934 935 file->private_data = user; 936 return 0; 937 } 938 939 static int devkmsg_release(struct inode *inode, struct file *file) 940 { 941 struct devkmsg_user *user = file->private_data; 942 943 ratelimit_state_exit(&user->rs); 944 945 mutex_destroy(&user->lock); 946 kvfree(user); 947 return 0; 948 } 949 950 const struct file_operations kmsg_fops = { 951 .open = devkmsg_open, 952 .read = devkmsg_read, 953 .write_iter = devkmsg_write, 954 .llseek = devkmsg_llseek, 955 .poll = devkmsg_poll, 956 .release = devkmsg_release, 957 }; 958 959 #ifdef CONFIG_CRASH_CORE 960 /* 961 * This appends the listed symbols to /proc/vmcore 962 * 963 * /proc/vmcore is used by various utilities, like crash and makedumpfile to 964 * obtain access to symbols that are otherwise very difficult to locate. These 965 * symbols are specifically used so that utilities can access and extract the 966 * dmesg log from a vmcore file after a crash. 967 */ 968 void log_buf_vmcoreinfo_setup(void) 969 { 970 struct dev_printk_info *dev_info = NULL; 971 972 VMCOREINFO_SYMBOL(prb); 973 VMCOREINFO_SYMBOL(printk_rb_static); 974 VMCOREINFO_SYMBOL(clear_seq); 975 976 /* 977 * Export struct size and field offsets. User space tools can 978 * parse it and detect any changes to structure down the line. 979 */ 980 981 VMCOREINFO_STRUCT_SIZE(printk_ringbuffer); 982 VMCOREINFO_OFFSET(printk_ringbuffer, desc_ring); 983 VMCOREINFO_OFFSET(printk_ringbuffer, text_data_ring); 984 VMCOREINFO_OFFSET(printk_ringbuffer, fail); 985 986 VMCOREINFO_STRUCT_SIZE(prb_desc_ring); 987 VMCOREINFO_OFFSET(prb_desc_ring, count_bits); 988 VMCOREINFO_OFFSET(prb_desc_ring, descs); 989 VMCOREINFO_OFFSET(prb_desc_ring, infos); 990 VMCOREINFO_OFFSET(prb_desc_ring, head_id); 991 VMCOREINFO_OFFSET(prb_desc_ring, tail_id); 992 993 VMCOREINFO_STRUCT_SIZE(prb_desc); 994 VMCOREINFO_OFFSET(prb_desc, state_var); 995 VMCOREINFO_OFFSET(prb_desc, text_blk_lpos); 996 997 VMCOREINFO_STRUCT_SIZE(prb_data_blk_lpos); 998 VMCOREINFO_OFFSET(prb_data_blk_lpos, begin); 999 VMCOREINFO_OFFSET(prb_data_blk_lpos, next); 1000 1001 VMCOREINFO_STRUCT_SIZE(printk_info); 1002 VMCOREINFO_OFFSET(printk_info, seq); 1003 VMCOREINFO_OFFSET(printk_info, ts_nsec); 1004 VMCOREINFO_OFFSET(printk_info, text_len); 1005 VMCOREINFO_OFFSET(printk_info, caller_id); 1006 VMCOREINFO_OFFSET(printk_info, dev_info); 1007 1008 VMCOREINFO_STRUCT_SIZE(dev_printk_info); 1009 VMCOREINFO_OFFSET(dev_printk_info, subsystem); 1010 VMCOREINFO_LENGTH(printk_info_subsystem, sizeof(dev_info->subsystem)); 1011 VMCOREINFO_OFFSET(dev_printk_info, device); 1012 VMCOREINFO_LENGTH(printk_info_device, sizeof(dev_info->device)); 1013 1014 VMCOREINFO_STRUCT_SIZE(prb_data_ring); 1015 VMCOREINFO_OFFSET(prb_data_ring, size_bits); 1016 VMCOREINFO_OFFSET(prb_data_ring, data); 1017 VMCOREINFO_OFFSET(prb_data_ring, head_lpos); 1018 VMCOREINFO_OFFSET(prb_data_ring, tail_lpos); 1019 1020 VMCOREINFO_SIZE(atomic_long_t); 1021 VMCOREINFO_TYPE_OFFSET(atomic_long_t, counter); 1022 1023 VMCOREINFO_STRUCT_SIZE(latched_seq); 1024 VMCOREINFO_OFFSET(latched_seq, val); 1025 } 1026 #endif 1027 1028 /* requested log_buf_len from kernel cmdline */ 1029 static unsigned long __initdata new_log_buf_len; 1030 1031 /* we practice scaling the ring buffer by powers of 2 */ 1032 static void __init log_buf_len_update(u64 size) 1033 { 1034 if (size > (u64)LOG_BUF_LEN_MAX) { 1035 size = (u64)LOG_BUF_LEN_MAX; 1036 pr_err("log_buf over 2G is not supported.\n"); 1037 } 1038 1039 if (size) 1040 size = roundup_pow_of_two(size); 1041 if (size > log_buf_len) 1042 new_log_buf_len = (unsigned long)size; 1043 } 1044 1045 /* save requested log_buf_len since it's too early to process it */ 1046 static int __init log_buf_len_setup(char *str) 1047 { 1048 u64 size; 1049 1050 if (!str) 1051 return -EINVAL; 1052 1053 size = memparse(str, &str); 1054 1055 log_buf_len_update(size); 1056 1057 return 0; 1058 } 1059 early_param("log_buf_len", log_buf_len_setup); 1060 1061 #ifdef CONFIG_SMP 1062 #define __LOG_CPU_MAX_BUF_LEN (1 << CONFIG_LOG_CPU_MAX_BUF_SHIFT) 1063 1064 static void __init log_buf_add_cpu(void) 1065 { 1066 unsigned int cpu_extra; 1067 1068 /* 1069 * archs should set up cpu_possible_bits properly with 1070 * set_cpu_possible() after setup_arch() but just in 1071 * case lets ensure this is valid. 1072 */ 1073 if (num_possible_cpus() == 1) 1074 return; 1075 1076 cpu_extra = (num_possible_cpus() - 1) * __LOG_CPU_MAX_BUF_LEN; 1077 1078 /* by default this will only continue through for large > 64 CPUs */ 1079 if (cpu_extra <= __LOG_BUF_LEN / 2) 1080 return; 1081 1082 pr_info("log_buf_len individual max cpu contribution: %d bytes\n", 1083 __LOG_CPU_MAX_BUF_LEN); 1084 pr_info("log_buf_len total cpu_extra contributions: %d bytes\n", 1085 cpu_extra); 1086 pr_info("log_buf_len min size: %d bytes\n", __LOG_BUF_LEN); 1087 1088 log_buf_len_update(cpu_extra + __LOG_BUF_LEN); 1089 } 1090 #else /* !CONFIG_SMP */ 1091 static inline void log_buf_add_cpu(void) {} 1092 #endif /* CONFIG_SMP */ 1093 1094 static void __init set_percpu_data_ready(void) 1095 { 1096 __printk_percpu_data_ready = true; 1097 } 1098 1099 static unsigned int __init add_to_rb(struct printk_ringbuffer *rb, 1100 struct printk_record *r) 1101 { 1102 struct prb_reserved_entry e; 1103 struct printk_record dest_r; 1104 1105 prb_rec_init_wr(&dest_r, r->info->text_len); 1106 1107 if (!prb_reserve(&e, rb, &dest_r)) 1108 return 0; 1109 1110 memcpy(&dest_r.text_buf[0], &r->text_buf[0], r->info->text_len); 1111 dest_r.info->text_len = r->info->text_len; 1112 dest_r.info->facility = r->info->facility; 1113 dest_r.info->level = r->info->level; 1114 dest_r.info->flags = r->info->flags; 1115 dest_r.info->ts_nsec = r->info->ts_nsec; 1116 dest_r.info->caller_id = r->info->caller_id; 1117 memcpy(&dest_r.info->dev_info, &r->info->dev_info, sizeof(dest_r.info->dev_info)); 1118 1119 prb_final_commit(&e); 1120 1121 return prb_record_text_space(&e); 1122 } 1123 1124 static char setup_text_buf[PRINTKRB_RECORD_MAX] __initdata; 1125 1126 void __init setup_log_buf(int early) 1127 { 1128 struct printk_info *new_infos; 1129 unsigned int new_descs_count; 1130 struct prb_desc *new_descs; 1131 struct printk_info info; 1132 struct printk_record r; 1133 unsigned int text_size; 1134 size_t new_descs_size; 1135 size_t new_infos_size; 1136 unsigned long flags; 1137 char *new_log_buf; 1138 unsigned int free; 1139 u64 seq; 1140 1141 /* 1142 * Some archs call setup_log_buf() multiple times - first is very 1143 * early, e.g. from setup_arch(), and second - when percpu_areas 1144 * are initialised. 1145 */ 1146 if (!early) 1147 set_percpu_data_ready(); 1148 1149 if (log_buf != __log_buf) 1150 return; 1151 1152 if (!early && !new_log_buf_len) 1153 log_buf_add_cpu(); 1154 1155 if (!new_log_buf_len) 1156 return; 1157 1158 new_descs_count = new_log_buf_len >> PRB_AVGBITS; 1159 if (new_descs_count == 0) { 1160 pr_err("new_log_buf_len: %lu too small\n", new_log_buf_len); 1161 return; 1162 } 1163 1164 new_log_buf = memblock_alloc(new_log_buf_len, LOG_ALIGN); 1165 if (unlikely(!new_log_buf)) { 1166 pr_err("log_buf_len: %lu text bytes not available\n", 1167 new_log_buf_len); 1168 return; 1169 } 1170 1171 new_descs_size = new_descs_count * sizeof(struct prb_desc); 1172 new_descs = memblock_alloc(new_descs_size, LOG_ALIGN); 1173 if (unlikely(!new_descs)) { 1174 pr_err("log_buf_len: %zu desc bytes not available\n", 1175 new_descs_size); 1176 goto err_free_log_buf; 1177 } 1178 1179 new_infos_size = new_descs_count * sizeof(struct printk_info); 1180 new_infos = memblock_alloc(new_infos_size, LOG_ALIGN); 1181 if (unlikely(!new_infos)) { 1182 pr_err("log_buf_len: %zu info bytes not available\n", 1183 new_infos_size); 1184 goto err_free_descs; 1185 } 1186 1187 prb_rec_init_rd(&r, &info, &setup_text_buf[0], sizeof(setup_text_buf)); 1188 1189 prb_init(&printk_rb_dynamic, 1190 new_log_buf, ilog2(new_log_buf_len), 1191 new_descs, ilog2(new_descs_count), 1192 new_infos); 1193 1194 local_irq_save(flags); 1195 1196 log_buf_len = new_log_buf_len; 1197 log_buf = new_log_buf; 1198 new_log_buf_len = 0; 1199 1200 free = __LOG_BUF_LEN; 1201 prb_for_each_record(0, &printk_rb_static, seq, &r) { 1202 text_size = add_to_rb(&printk_rb_dynamic, &r); 1203 if (text_size > free) 1204 free = 0; 1205 else 1206 free -= text_size; 1207 } 1208 1209 prb = &printk_rb_dynamic; 1210 1211 local_irq_restore(flags); 1212 1213 /* 1214 * Copy any remaining messages that might have appeared from 1215 * NMI context after copying but before switching to the 1216 * dynamic buffer. 1217 */ 1218 prb_for_each_record(seq, &printk_rb_static, seq, &r) { 1219 text_size = add_to_rb(&printk_rb_dynamic, &r); 1220 if (text_size > free) 1221 free = 0; 1222 else 1223 free -= text_size; 1224 } 1225 1226 if (seq != prb_next_seq(&printk_rb_static)) { 1227 pr_err("dropped %llu messages\n", 1228 prb_next_seq(&printk_rb_static) - seq); 1229 } 1230 1231 pr_info("log_buf_len: %u bytes\n", log_buf_len); 1232 pr_info("early log buf free: %u(%u%%)\n", 1233 free, (free * 100) / __LOG_BUF_LEN); 1234 return; 1235 1236 err_free_descs: 1237 memblock_free(new_descs, new_descs_size); 1238 err_free_log_buf: 1239 memblock_free(new_log_buf, new_log_buf_len); 1240 } 1241 1242 static bool __read_mostly ignore_loglevel; 1243 1244 static int __init ignore_loglevel_setup(char *str) 1245 { 1246 ignore_loglevel = true; 1247 pr_info("debug: ignoring loglevel setting.\n"); 1248 1249 return 0; 1250 } 1251 1252 early_param("ignore_loglevel", ignore_loglevel_setup); 1253 module_param(ignore_loglevel, bool, S_IRUGO | S_IWUSR); 1254 MODULE_PARM_DESC(ignore_loglevel, 1255 "ignore loglevel setting (prints all kernel messages to the console)"); 1256 1257 static bool suppress_message_printing(int level) 1258 { 1259 return (level >= console_loglevel && !ignore_loglevel); 1260 } 1261 1262 #ifdef CONFIG_BOOT_PRINTK_DELAY 1263 1264 static int boot_delay; /* msecs delay after each printk during bootup */ 1265 static unsigned long long loops_per_msec; /* based on boot_delay */ 1266 1267 static int __init boot_delay_setup(char *str) 1268 { 1269 unsigned long lpj; 1270 1271 lpj = preset_lpj ? preset_lpj : 1000000; /* some guess */ 1272 loops_per_msec = (unsigned long long)lpj / 1000 * HZ; 1273 1274 get_option(&str, &boot_delay); 1275 if (boot_delay > 10 * 1000) 1276 boot_delay = 0; 1277 1278 pr_debug("boot_delay: %u, preset_lpj: %ld, lpj: %lu, " 1279 "HZ: %d, loops_per_msec: %llu\n", 1280 boot_delay, preset_lpj, lpj, HZ, loops_per_msec); 1281 return 0; 1282 } 1283 early_param("boot_delay", boot_delay_setup); 1284 1285 static void boot_delay_msec(int level) 1286 { 1287 unsigned long long k; 1288 unsigned long timeout; 1289 1290 if ((boot_delay == 0 || system_state >= SYSTEM_RUNNING) 1291 || suppress_message_printing(level)) { 1292 return; 1293 } 1294 1295 k = (unsigned long long)loops_per_msec * boot_delay; 1296 1297 timeout = jiffies + msecs_to_jiffies(boot_delay); 1298 while (k) { 1299 k--; 1300 cpu_relax(); 1301 /* 1302 * use (volatile) jiffies to prevent 1303 * compiler reduction; loop termination via jiffies 1304 * is secondary and may or may not happen. 1305 */ 1306 if (time_after(jiffies, timeout)) 1307 break; 1308 touch_nmi_watchdog(); 1309 } 1310 } 1311 #else 1312 static inline void boot_delay_msec(int level) 1313 { 1314 } 1315 #endif 1316 1317 static bool printk_time = IS_ENABLED(CONFIG_PRINTK_TIME); 1318 module_param_named(time, printk_time, bool, S_IRUGO | S_IWUSR); 1319 1320 static size_t print_syslog(unsigned int level, char *buf) 1321 { 1322 return sprintf(buf, "<%u>", level); 1323 } 1324 1325 static size_t print_time(u64 ts, char *buf) 1326 { 1327 unsigned long rem_nsec = do_div(ts, 1000000000); 1328 1329 return sprintf(buf, "[%5lu.%06lu]", 1330 (unsigned long)ts, rem_nsec / 1000); 1331 } 1332 1333 #ifdef CONFIG_PRINTK_CALLER 1334 static size_t print_caller(u32 id, char *buf) 1335 { 1336 char caller[12]; 1337 1338 snprintf(caller, sizeof(caller), "%c%u", 1339 id & 0x80000000 ? 'C' : 'T', id & ~0x80000000); 1340 return sprintf(buf, "[%6s]", caller); 1341 } 1342 #else 1343 #define print_caller(id, buf) 0 1344 #endif 1345 1346 static size_t info_print_prefix(const struct printk_info *info, bool syslog, 1347 bool time, char *buf) 1348 { 1349 size_t len = 0; 1350 1351 if (syslog) 1352 len = print_syslog((info->facility << 3) | info->level, buf); 1353 1354 if (time) 1355 len += print_time(info->ts_nsec, buf + len); 1356 1357 len += print_caller(info->caller_id, buf + len); 1358 1359 if (IS_ENABLED(CONFIG_PRINTK_CALLER) || time) { 1360 buf[len++] = ' '; 1361 buf[len] = '\0'; 1362 } 1363 1364 return len; 1365 } 1366 1367 /* 1368 * Prepare the record for printing. The text is shifted within the given 1369 * buffer to avoid a need for another one. The following operations are 1370 * done: 1371 * 1372 * - Add prefix for each line. 1373 * - Drop truncated lines that no longer fit into the buffer. 1374 * - Add the trailing newline that has been removed in vprintk_store(). 1375 * - Add a string terminator. 1376 * 1377 * Since the produced string is always terminated, the maximum possible 1378 * return value is @r->text_buf_size - 1; 1379 * 1380 * Return: The length of the updated/prepared text, including the added 1381 * prefixes and the newline. The terminator is not counted. The dropped 1382 * line(s) are not counted. 1383 */ 1384 static size_t record_print_text(struct printk_record *r, bool syslog, 1385 bool time) 1386 { 1387 size_t text_len = r->info->text_len; 1388 size_t buf_size = r->text_buf_size; 1389 char *text = r->text_buf; 1390 char prefix[PRINTK_PREFIX_MAX]; 1391 bool truncated = false; 1392 size_t prefix_len; 1393 size_t line_len; 1394 size_t len = 0; 1395 char *next; 1396 1397 /* 1398 * If the message was truncated because the buffer was not large 1399 * enough, treat the available text as if it were the full text. 1400 */ 1401 if (text_len > buf_size) 1402 text_len = buf_size; 1403 1404 prefix_len = info_print_prefix(r->info, syslog, time, prefix); 1405 1406 /* 1407 * @text_len: bytes of unprocessed text 1408 * @line_len: bytes of current line _without_ newline 1409 * @text: pointer to beginning of current line 1410 * @len: number of bytes prepared in r->text_buf 1411 */ 1412 for (;;) { 1413 next = memchr(text, '\n', text_len); 1414 if (next) { 1415 line_len = next - text; 1416 } else { 1417 /* Drop truncated line(s). */ 1418 if (truncated) 1419 break; 1420 line_len = text_len; 1421 } 1422 1423 /* 1424 * Truncate the text if there is not enough space to add the 1425 * prefix and a trailing newline and a terminator. 1426 */ 1427 if (len + prefix_len + text_len + 1 + 1 > buf_size) { 1428 /* Drop even the current line if no space. */ 1429 if (len + prefix_len + line_len + 1 + 1 > buf_size) 1430 break; 1431 1432 text_len = buf_size - len - prefix_len - 1 - 1; 1433 truncated = true; 1434 } 1435 1436 memmove(text + prefix_len, text, text_len); 1437 memcpy(text, prefix, prefix_len); 1438 1439 /* 1440 * Increment the prepared length to include the text and 1441 * prefix that were just moved+copied. Also increment for the 1442 * newline at the end of this line. If this is the last line, 1443 * there is no newline, but it will be added immediately below. 1444 */ 1445 len += prefix_len + line_len + 1; 1446 if (text_len == line_len) { 1447 /* 1448 * This is the last line. Add the trailing newline 1449 * removed in vprintk_store(). 1450 */ 1451 text[prefix_len + line_len] = '\n'; 1452 break; 1453 } 1454 1455 /* 1456 * Advance beyond the added prefix and the related line with 1457 * its newline. 1458 */ 1459 text += prefix_len + line_len + 1; 1460 1461 /* 1462 * The remaining text has only decreased by the line with its 1463 * newline. 1464 * 1465 * Note that @text_len can become zero. It happens when @text 1466 * ended with a newline (either due to truncation or the 1467 * original string ending with "\n\n"). The loop is correctly 1468 * repeated and (if not truncated) an empty line with a prefix 1469 * will be prepared. 1470 */ 1471 text_len -= line_len + 1; 1472 } 1473 1474 /* 1475 * If a buffer was provided, it will be terminated. Space for the 1476 * string terminator is guaranteed to be available. The terminator is 1477 * not counted in the return value. 1478 */ 1479 if (buf_size > 0) 1480 r->text_buf[len] = 0; 1481 1482 return len; 1483 } 1484 1485 static size_t get_record_print_text_size(struct printk_info *info, 1486 unsigned int line_count, 1487 bool syslog, bool time) 1488 { 1489 char prefix[PRINTK_PREFIX_MAX]; 1490 size_t prefix_len; 1491 1492 prefix_len = info_print_prefix(info, syslog, time, prefix); 1493 1494 /* 1495 * Each line will be preceded with a prefix. The intermediate 1496 * newlines are already within the text, but a final trailing 1497 * newline will be added. 1498 */ 1499 return ((prefix_len * line_count) + info->text_len + 1); 1500 } 1501 1502 /* 1503 * Beginning with @start_seq, find the first record where it and all following 1504 * records up to (but not including) @max_seq fit into @size. 1505 * 1506 * @max_seq is simply an upper bound and does not need to exist. If the caller 1507 * does not require an upper bound, -1 can be used for @max_seq. 1508 */ 1509 static u64 find_first_fitting_seq(u64 start_seq, u64 max_seq, size_t size, 1510 bool syslog, bool time) 1511 { 1512 struct printk_info info; 1513 unsigned int line_count; 1514 size_t len = 0; 1515 u64 seq; 1516 1517 /* Determine the size of the records up to @max_seq. */ 1518 prb_for_each_info(start_seq, prb, seq, &info, &line_count) { 1519 if (info.seq >= max_seq) 1520 break; 1521 len += get_record_print_text_size(&info, line_count, syslog, time); 1522 } 1523 1524 /* 1525 * Adjust the upper bound for the next loop to avoid subtracting 1526 * lengths that were never added. 1527 */ 1528 if (seq < max_seq) 1529 max_seq = seq; 1530 1531 /* 1532 * Move first record forward until length fits into the buffer. Ignore 1533 * newest messages that were not counted in the above cycle. Messages 1534 * might appear and get lost in the meantime. This is a best effort 1535 * that prevents an infinite loop that could occur with a retry. 1536 */ 1537 prb_for_each_info(start_seq, prb, seq, &info, &line_count) { 1538 if (len <= size || info.seq >= max_seq) 1539 break; 1540 len -= get_record_print_text_size(&info, line_count, syslog, time); 1541 } 1542 1543 return seq; 1544 } 1545 1546 /* The caller is responsible for making sure @size is greater than 0. */ 1547 static int syslog_print(char __user *buf, int size) 1548 { 1549 struct printk_info info; 1550 struct printk_record r; 1551 char *text; 1552 int len = 0; 1553 u64 seq; 1554 1555 text = kmalloc(PRINTK_MESSAGE_MAX, GFP_KERNEL); 1556 if (!text) 1557 return -ENOMEM; 1558 1559 prb_rec_init_rd(&r, &info, text, PRINTK_MESSAGE_MAX); 1560 1561 mutex_lock(&syslog_lock); 1562 1563 /* 1564 * Wait for the @syslog_seq record to be available. @syslog_seq may 1565 * change while waiting. 1566 */ 1567 do { 1568 seq = syslog_seq; 1569 1570 mutex_unlock(&syslog_lock); 1571 /* 1572 * Guarantee this task is visible on the waitqueue before 1573 * checking the wake condition. 1574 * 1575 * The full memory barrier within set_current_state() of 1576 * prepare_to_wait_event() pairs with the full memory barrier 1577 * within wq_has_sleeper(). 1578 * 1579 * This pairs with __wake_up_klogd:A. 1580 */ 1581 len = wait_event_interruptible(log_wait, 1582 prb_read_valid(prb, seq, NULL)); /* LMM(syslog_print:A) */ 1583 mutex_lock(&syslog_lock); 1584 1585 if (len) 1586 goto out; 1587 } while (syslog_seq != seq); 1588 1589 /* 1590 * Copy records that fit into the buffer. The above cycle makes sure 1591 * that the first record is always available. 1592 */ 1593 do { 1594 size_t n; 1595 size_t skip; 1596 int err; 1597 1598 if (!prb_read_valid(prb, syslog_seq, &r)) 1599 break; 1600 1601 if (r.info->seq != syslog_seq) { 1602 /* message is gone, move to next valid one */ 1603 syslog_seq = r.info->seq; 1604 syslog_partial = 0; 1605 } 1606 1607 /* 1608 * To keep reading/counting partial line consistent, 1609 * use printk_time value as of the beginning of a line. 1610 */ 1611 if (!syslog_partial) 1612 syslog_time = printk_time; 1613 1614 skip = syslog_partial; 1615 n = record_print_text(&r, true, syslog_time); 1616 if (n - syslog_partial <= size) { 1617 /* message fits into buffer, move forward */ 1618 syslog_seq = r.info->seq + 1; 1619 n -= syslog_partial; 1620 syslog_partial = 0; 1621 } else if (!len){ 1622 /* partial read(), remember position */ 1623 n = size; 1624 syslog_partial += n; 1625 } else 1626 n = 0; 1627 1628 if (!n) 1629 break; 1630 1631 mutex_unlock(&syslog_lock); 1632 err = copy_to_user(buf, text + skip, n); 1633 mutex_lock(&syslog_lock); 1634 1635 if (err) { 1636 if (!len) 1637 len = -EFAULT; 1638 break; 1639 } 1640 1641 len += n; 1642 size -= n; 1643 buf += n; 1644 } while (size); 1645 out: 1646 mutex_unlock(&syslog_lock); 1647 kfree(text); 1648 return len; 1649 } 1650 1651 static int syslog_print_all(char __user *buf, int size, bool clear) 1652 { 1653 struct printk_info info; 1654 struct printk_record r; 1655 char *text; 1656 int len = 0; 1657 u64 seq; 1658 bool time; 1659 1660 text = kmalloc(PRINTK_MESSAGE_MAX, GFP_KERNEL); 1661 if (!text) 1662 return -ENOMEM; 1663 1664 time = printk_time; 1665 /* 1666 * Find first record that fits, including all following records, 1667 * into the user-provided buffer for this dump. 1668 */ 1669 seq = find_first_fitting_seq(latched_seq_read_nolock(&clear_seq), -1, 1670 size, true, time); 1671 1672 prb_rec_init_rd(&r, &info, text, PRINTK_MESSAGE_MAX); 1673 1674 len = 0; 1675 prb_for_each_record(seq, prb, seq, &r) { 1676 int textlen; 1677 1678 textlen = record_print_text(&r, true, time); 1679 1680 if (len + textlen > size) { 1681 seq--; 1682 break; 1683 } 1684 1685 if (copy_to_user(buf + len, text, textlen)) 1686 len = -EFAULT; 1687 else 1688 len += textlen; 1689 1690 if (len < 0) 1691 break; 1692 } 1693 1694 if (clear) { 1695 mutex_lock(&syslog_lock); 1696 latched_seq_write(&clear_seq, seq); 1697 mutex_unlock(&syslog_lock); 1698 } 1699 1700 kfree(text); 1701 return len; 1702 } 1703 1704 static void syslog_clear(void) 1705 { 1706 mutex_lock(&syslog_lock); 1707 latched_seq_write(&clear_seq, prb_next_seq(prb)); 1708 mutex_unlock(&syslog_lock); 1709 } 1710 1711 int do_syslog(int type, char __user *buf, int len, int source) 1712 { 1713 struct printk_info info; 1714 bool clear = false; 1715 static int saved_console_loglevel = LOGLEVEL_DEFAULT; 1716 int error; 1717 1718 error = check_syslog_permissions(type, source); 1719 if (error) 1720 return error; 1721 1722 switch (type) { 1723 case SYSLOG_ACTION_CLOSE: /* Close log */ 1724 break; 1725 case SYSLOG_ACTION_OPEN: /* Open log */ 1726 break; 1727 case SYSLOG_ACTION_READ: /* Read from log */ 1728 if (!buf || len < 0) 1729 return -EINVAL; 1730 if (!len) 1731 return 0; 1732 if (!access_ok(buf, len)) 1733 return -EFAULT; 1734 error = syslog_print(buf, len); 1735 break; 1736 /* Read/clear last kernel messages */ 1737 case SYSLOG_ACTION_READ_CLEAR: 1738 clear = true; 1739 fallthrough; 1740 /* Read last kernel messages */ 1741 case SYSLOG_ACTION_READ_ALL: 1742 if (!buf || len < 0) 1743 return -EINVAL; 1744 if (!len) 1745 return 0; 1746 if (!access_ok(buf, len)) 1747 return -EFAULT; 1748 error = syslog_print_all(buf, len, clear); 1749 break; 1750 /* Clear ring buffer */ 1751 case SYSLOG_ACTION_CLEAR: 1752 syslog_clear(); 1753 break; 1754 /* Disable logging to console */ 1755 case SYSLOG_ACTION_CONSOLE_OFF: 1756 if (saved_console_loglevel == LOGLEVEL_DEFAULT) 1757 saved_console_loglevel = console_loglevel; 1758 console_loglevel = minimum_console_loglevel; 1759 break; 1760 /* Enable logging to console */ 1761 case SYSLOG_ACTION_CONSOLE_ON: 1762 if (saved_console_loglevel != LOGLEVEL_DEFAULT) { 1763 console_loglevel = saved_console_loglevel; 1764 saved_console_loglevel = LOGLEVEL_DEFAULT; 1765 } 1766 break; 1767 /* Set level of messages printed to console */ 1768 case SYSLOG_ACTION_CONSOLE_LEVEL: 1769 if (len < 1 || len > 8) 1770 return -EINVAL; 1771 if (len < minimum_console_loglevel) 1772 len = minimum_console_loglevel; 1773 console_loglevel = len; 1774 /* Implicitly re-enable logging to console */ 1775 saved_console_loglevel = LOGLEVEL_DEFAULT; 1776 break; 1777 /* Number of chars in the log buffer */ 1778 case SYSLOG_ACTION_SIZE_UNREAD: 1779 mutex_lock(&syslog_lock); 1780 if (!prb_read_valid_info(prb, syslog_seq, &info, NULL)) { 1781 /* No unread messages. */ 1782 mutex_unlock(&syslog_lock); 1783 return 0; 1784 } 1785 if (info.seq != syslog_seq) { 1786 /* messages are gone, move to first one */ 1787 syslog_seq = info.seq; 1788 syslog_partial = 0; 1789 } 1790 if (source == SYSLOG_FROM_PROC) { 1791 /* 1792 * Short-cut for poll(/"proc/kmsg") which simply checks 1793 * for pending data, not the size; return the count of 1794 * records, not the length. 1795 */ 1796 error = prb_next_seq(prb) - syslog_seq; 1797 } else { 1798 bool time = syslog_partial ? syslog_time : printk_time; 1799 unsigned int line_count; 1800 u64 seq; 1801 1802 prb_for_each_info(syslog_seq, prb, seq, &info, 1803 &line_count) { 1804 error += get_record_print_text_size(&info, line_count, 1805 true, time); 1806 time = printk_time; 1807 } 1808 error -= syslog_partial; 1809 } 1810 mutex_unlock(&syslog_lock); 1811 break; 1812 /* Size of the log buffer */ 1813 case SYSLOG_ACTION_SIZE_BUFFER: 1814 error = log_buf_len; 1815 break; 1816 default: 1817 error = -EINVAL; 1818 break; 1819 } 1820 1821 return error; 1822 } 1823 1824 SYSCALL_DEFINE3(syslog, int, type, char __user *, buf, int, len) 1825 { 1826 return do_syslog(type, buf, len, SYSLOG_FROM_READER); 1827 } 1828 1829 /* 1830 * Special console_lock variants that help to reduce the risk of soft-lockups. 1831 * They allow to pass console_lock to another printk() call using a busy wait. 1832 */ 1833 1834 #ifdef CONFIG_LOCKDEP 1835 static struct lockdep_map console_owner_dep_map = { 1836 .name = "console_owner" 1837 }; 1838 #endif 1839 1840 static DEFINE_RAW_SPINLOCK(console_owner_lock); 1841 static struct task_struct *console_owner; 1842 static bool console_waiter; 1843 1844 /** 1845 * console_lock_spinning_enable - mark beginning of code where another 1846 * thread might safely busy wait 1847 * 1848 * This basically converts console_lock into a spinlock. This marks 1849 * the section where the console_lock owner can not sleep, because 1850 * there may be a waiter spinning (like a spinlock). Also it must be 1851 * ready to hand over the lock at the end of the section. 1852 */ 1853 static void console_lock_spinning_enable(void) 1854 { 1855 raw_spin_lock(&console_owner_lock); 1856 console_owner = current; 1857 raw_spin_unlock(&console_owner_lock); 1858 1859 /* The waiter may spin on us after setting console_owner */ 1860 spin_acquire(&console_owner_dep_map, 0, 0, _THIS_IP_); 1861 } 1862 1863 /** 1864 * console_lock_spinning_disable_and_check - mark end of code where another 1865 * thread was able to busy wait and check if there is a waiter 1866 * @cookie: cookie returned from console_srcu_read_lock() 1867 * 1868 * This is called at the end of the section where spinning is allowed. 1869 * It has two functions. First, it is a signal that it is no longer 1870 * safe to start busy waiting for the lock. Second, it checks if 1871 * there is a busy waiter and passes the lock rights to her. 1872 * 1873 * Important: Callers lose both the console_lock and the SRCU read lock if 1874 * there was a busy waiter. They must not touch items synchronized by 1875 * console_lock or SRCU read lock in this case. 1876 * 1877 * Return: 1 if the lock rights were passed, 0 otherwise. 1878 */ 1879 static int console_lock_spinning_disable_and_check(int cookie) 1880 { 1881 int waiter; 1882 1883 raw_spin_lock(&console_owner_lock); 1884 waiter = READ_ONCE(console_waiter); 1885 console_owner = NULL; 1886 raw_spin_unlock(&console_owner_lock); 1887 1888 if (!waiter) { 1889 spin_release(&console_owner_dep_map, _THIS_IP_); 1890 return 0; 1891 } 1892 1893 /* The waiter is now free to continue */ 1894 WRITE_ONCE(console_waiter, false); 1895 1896 spin_release(&console_owner_dep_map, _THIS_IP_); 1897 1898 /* 1899 * Preserve lockdep lock ordering. Release the SRCU read lock before 1900 * releasing the console_lock. 1901 */ 1902 console_srcu_read_unlock(cookie); 1903 1904 /* 1905 * Hand off console_lock to waiter. The waiter will perform 1906 * the up(). After this, the waiter is the console_lock owner. 1907 */ 1908 mutex_release(&console_lock_dep_map, _THIS_IP_); 1909 return 1; 1910 } 1911 1912 /** 1913 * console_trylock_spinning - try to get console_lock by busy waiting 1914 * 1915 * This allows to busy wait for the console_lock when the current 1916 * owner is running in specially marked sections. It means that 1917 * the current owner is running and cannot reschedule until it 1918 * is ready to lose the lock. 1919 * 1920 * Return: 1 if we got the lock, 0 othrewise 1921 */ 1922 static int console_trylock_spinning(void) 1923 { 1924 struct task_struct *owner = NULL; 1925 bool waiter; 1926 bool spin = false; 1927 unsigned long flags; 1928 1929 if (console_trylock()) 1930 return 1; 1931 1932 /* 1933 * It's unsafe to spin once a panic has begun. If we are the 1934 * panic CPU, we may have already halted the owner of the 1935 * console_sem. If we are not the panic CPU, then we should 1936 * avoid taking console_sem, so the panic CPU has a better 1937 * chance of cleanly acquiring it later. 1938 */ 1939 if (panic_in_progress()) 1940 return 0; 1941 1942 printk_safe_enter_irqsave(flags); 1943 1944 raw_spin_lock(&console_owner_lock); 1945 owner = READ_ONCE(console_owner); 1946 waiter = READ_ONCE(console_waiter); 1947 if (!waiter && owner && owner != current) { 1948 WRITE_ONCE(console_waiter, true); 1949 spin = true; 1950 } 1951 raw_spin_unlock(&console_owner_lock); 1952 1953 /* 1954 * If there is an active printk() writing to the 1955 * consoles, instead of having it write our data too, 1956 * see if we can offload that load from the active 1957 * printer, and do some printing ourselves. 1958 * Go into a spin only if there isn't already a waiter 1959 * spinning, and there is an active printer, and 1960 * that active printer isn't us (recursive printk?). 1961 */ 1962 if (!spin) { 1963 printk_safe_exit_irqrestore(flags); 1964 return 0; 1965 } 1966 1967 /* We spin waiting for the owner to release us */ 1968 spin_acquire(&console_owner_dep_map, 0, 0, _THIS_IP_); 1969 /* Owner will clear console_waiter on hand off */ 1970 while (READ_ONCE(console_waiter)) 1971 cpu_relax(); 1972 spin_release(&console_owner_dep_map, _THIS_IP_); 1973 1974 printk_safe_exit_irqrestore(flags); 1975 /* 1976 * The owner passed the console lock to us. 1977 * Since we did not spin on console lock, annotate 1978 * this as a trylock. Otherwise lockdep will 1979 * complain. 1980 */ 1981 mutex_acquire(&console_lock_dep_map, 0, 1, _THIS_IP_); 1982 1983 return 1; 1984 } 1985 1986 /* 1987 * Recursion is tracked separately on each CPU. If NMIs are supported, an 1988 * additional NMI context per CPU is also separately tracked. Until per-CPU 1989 * is available, a separate "early tracking" is performed. 1990 */ 1991 static DEFINE_PER_CPU(u8, printk_count); 1992 static u8 printk_count_early; 1993 #ifdef CONFIG_HAVE_NMI 1994 static DEFINE_PER_CPU(u8, printk_count_nmi); 1995 static u8 printk_count_nmi_early; 1996 #endif 1997 1998 /* 1999 * Recursion is limited to keep the output sane. printk() should not require 2000 * more than 1 level of recursion (allowing, for example, printk() to trigger 2001 * a WARN), but a higher value is used in case some printk-internal errors 2002 * exist, such as the ringbuffer validation checks failing. 2003 */ 2004 #define PRINTK_MAX_RECURSION 3 2005 2006 /* 2007 * Return a pointer to the dedicated counter for the CPU+context of the 2008 * caller. 2009 */ 2010 static u8 *__printk_recursion_counter(void) 2011 { 2012 #ifdef CONFIG_HAVE_NMI 2013 if (in_nmi()) { 2014 if (printk_percpu_data_ready()) 2015 return this_cpu_ptr(&printk_count_nmi); 2016 return &printk_count_nmi_early; 2017 } 2018 #endif 2019 if (printk_percpu_data_ready()) 2020 return this_cpu_ptr(&printk_count); 2021 return &printk_count_early; 2022 } 2023 2024 /* 2025 * Enter recursion tracking. Interrupts are disabled to simplify tracking. 2026 * The caller must check the boolean return value to see if the recursion is 2027 * allowed. On failure, interrupts are not disabled. 2028 * 2029 * @recursion_ptr must be a variable of type (u8 *) and is the same variable 2030 * that is passed to printk_exit_irqrestore(). 2031 */ 2032 #define printk_enter_irqsave(recursion_ptr, flags) \ 2033 ({ \ 2034 bool success = true; \ 2035 \ 2036 typecheck(u8 *, recursion_ptr); \ 2037 local_irq_save(flags); \ 2038 (recursion_ptr) = __printk_recursion_counter(); \ 2039 if (*(recursion_ptr) > PRINTK_MAX_RECURSION) { \ 2040 local_irq_restore(flags); \ 2041 success = false; \ 2042 } else { \ 2043 (*(recursion_ptr))++; \ 2044 } \ 2045 success; \ 2046 }) 2047 2048 /* Exit recursion tracking, restoring interrupts. */ 2049 #define printk_exit_irqrestore(recursion_ptr, flags) \ 2050 do { \ 2051 typecheck(u8 *, recursion_ptr); \ 2052 (*(recursion_ptr))--; \ 2053 local_irq_restore(flags); \ 2054 } while (0) 2055 2056 int printk_delay_msec __read_mostly; 2057 2058 static inline void printk_delay(int level) 2059 { 2060 boot_delay_msec(level); 2061 2062 if (unlikely(printk_delay_msec)) { 2063 int m = printk_delay_msec; 2064 2065 while (m--) { 2066 mdelay(1); 2067 touch_nmi_watchdog(); 2068 } 2069 } 2070 } 2071 2072 static inline u32 printk_caller_id(void) 2073 { 2074 return in_task() ? task_pid_nr(current) : 2075 0x80000000 + smp_processor_id(); 2076 } 2077 2078 /** 2079 * printk_parse_prefix - Parse level and control flags. 2080 * 2081 * @text: The terminated text message. 2082 * @level: A pointer to the current level value, will be updated. 2083 * @flags: A pointer to the current printk_info flags, will be updated. 2084 * 2085 * @level may be NULL if the caller is not interested in the parsed value. 2086 * Otherwise the variable pointed to by @level must be set to 2087 * LOGLEVEL_DEFAULT in order to be updated with the parsed value. 2088 * 2089 * @flags may be NULL if the caller is not interested in the parsed value. 2090 * Otherwise the variable pointed to by @flags will be OR'd with the parsed 2091 * value. 2092 * 2093 * Return: The length of the parsed level and control flags. 2094 */ 2095 u16 printk_parse_prefix(const char *text, int *level, 2096 enum printk_info_flags *flags) 2097 { 2098 u16 prefix_len = 0; 2099 int kern_level; 2100 2101 while (*text) { 2102 kern_level = printk_get_level(text); 2103 if (!kern_level) 2104 break; 2105 2106 switch (kern_level) { 2107 case '0' ... '7': 2108 if (level && *level == LOGLEVEL_DEFAULT) 2109 *level = kern_level - '0'; 2110 break; 2111 case 'c': /* KERN_CONT */ 2112 if (flags) 2113 *flags |= LOG_CONT; 2114 } 2115 2116 prefix_len += 2; 2117 text += 2; 2118 } 2119 2120 return prefix_len; 2121 } 2122 2123 __printf(5, 0) 2124 static u16 printk_sprint(char *text, u16 size, int facility, 2125 enum printk_info_flags *flags, const char *fmt, 2126 va_list args) 2127 { 2128 u16 text_len; 2129 2130 text_len = vscnprintf(text, size, fmt, args); 2131 2132 /* Mark and strip a trailing newline. */ 2133 if (text_len && text[text_len - 1] == '\n') { 2134 text_len--; 2135 *flags |= LOG_NEWLINE; 2136 } 2137 2138 /* Strip log level and control flags. */ 2139 if (facility == 0) { 2140 u16 prefix_len; 2141 2142 prefix_len = printk_parse_prefix(text, NULL, NULL); 2143 if (prefix_len) { 2144 text_len -= prefix_len; 2145 memmove(text, text + prefix_len, text_len); 2146 } 2147 } 2148 2149 trace_console(text, text_len); 2150 2151 return text_len; 2152 } 2153 2154 __printf(4, 0) 2155 int vprintk_store(int facility, int level, 2156 const struct dev_printk_info *dev_info, 2157 const char *fmt, va_list args) 2158 { 2159 struct prb_reserved_entry e; 2160 enum printk_info_flags flags = 0; 2161 struct printk_record r; 2162 unsigned long irqflags; 2163 u16 trunc_msg_len = 0; 2164 char prefix_buf[8]; 2165 u8 *recursion_ptr; 2166 u16 reserve_size; 2167 va_list args2; 2168 u32 caller_id; 2169 u16 text_len; 2170 int ret = 0; 2171 u64 ts_nsec; 2172 2173 if (!printk_enter_irqsave(recursion_ptr, irqflags)) 2174 return 0; 2175 2176 /* 2177 * Since the duration of printk() can vary depending on the message 2178 * and state of the ringbuffer, grab the timestamp now so that it is 2179 * close to the call of printk(). This provides a more deterministic 2180 * timestamp with respect to the caller. 2181 */ 2182 ts_nsec = local_clock(); 2183 2184 caller_id = printk_caller_id(); 2185 2186 /* 2187 * The sprintf needs to come first since the syslog prefix might be 2188 * passed in as a parameter. An extra byte must be reserved so that 2189 * later the vscnprintf() into the reserved buffer has room for the 2190 * terminating '\0', which is not counted by vsnprintf(). 2191 */ 2192 va_copy(args2, args); 2193 reserve_size = vsnprintf(&prefix_buf[0], sizeof(prefix_buf), fmt, args2) + 1; 2194 va_end(args2); 2195 2196 if (reserve_size > PRINTKRB_RECORD_MAX) 2197 reserve_size = PRINTKRB_RECORD_MAX; 2198 2199 /* Extract log level or control flags. */ 2200 if (facility == 0) 2201 printk_parse_prefix(&prefix_buf[0], &level, &flags); 2202 2203 if (level == LOGLEVEL_DEFAULT) 2204 level = default_message_loglevel; 2205 2206 if (dev_info) 2207 flags |= LOG_NEWLINE; 2208 2209 if (flags & LOG_CONT) { 2210 prb_rec_init_wr(&r, reserve_size); 2211 if (prb_reserve_in_last(&e, prb, &r, caller_id, PRINTKRB_RECORD_MAX)) { 2212 text_len = printk_sprint(&r.text_buf[r.info->text_len], reserve_size, 2213 facility, &flags, fmt, args); 2214 r.info->text_len += text_len; 2215 2216 if (flags & LOG_NEWLINE) { 2217 r.info->flags |= LOG_NEWLINE; 2218 prb_final_commit(&e); 2219 } else { 2220 prb_commit(&e); 2221 } 2222 2223 ret = text_len; 2224 goto out; 2225 } 2226 } 2227 2228 /* 2229 * Explicitly initialize the record before every prb_reserve() call. 2230 * prb_reserve_in_last() and prb_reserve() purposely invalidate the 2231 * structure when they fail. 2232 */ 2233 prb_rec_init_wr(&r, reserve_size); 2234 if (!prb_reserve(&e, prb, &r)) { 2235 /* truncate the message if it is too long for empty buffer */ 2236 truncate_msg(&reserve_size, &trunc_msg_len); 2237 2238 prb_rec_init_wr(&r, reserve_size + trunc_msg_len); 2239 if (!prb_reserve(&e, prb, &r)) 2240 goto out; 2241 } 2242 2243 /* fill message */ 2244 text_len = printk_sprint(&r.text_buf[0], reserve_size, facility, &flags, fmt, args); 2245 if (trunc_msg_len) 2246 memcpy(&r.text_buf[text_len], trunc_msg, trunc_msg_len); 2247 r.info->text_len = text_len + trunc_msg_len; 2248 r.info->facility = facility; 2249 r.info->level = level & 7; 2250 r.info->flags = flags & 0x1f; 2251 r.info->ts_nsec = ts_nsec; 2252 r.info->caller_id = caller_id; 2253 if (dev_info) 2254 memcpy(&r.info->dev_info, dev_info, sizeof(r.info->dev_info)); 2255 2256 /* A message without a trailing newline can be continued. */ 2257 if (!(flags & LOG_NEWLINE)) 2258 prb_commit(&e); 2259 else 2260 prb_final_commit(&e); 2261 2262 ret = text_len + trunc_msg_len; 2263 out: 2264 printk_exit_irqrestore(recursion_ptr, irqflags); 2265 return ret; 2266 } 2267 2268 asmlinkage int vprintk_emit(int facility, int level, 2269 const struct dev_printk_info *dev_info, 2270 const char *fmt, va_list args) 2271 { 2272 int printed_len; 2273 bool in_sched = false; 2274 2275 /* Suppress unimportant messages after panic happens */ 2276 if (unlikely(suppress_printk)) 2277 return 0; 2278 2279 if (unlikely(suppress_panic_printk) && 2280 atomic_read(&panic_cpu) != raw_smp_processor_id()) 2281 return 0; 2282 2283 if (level == LOGLEVEL_SCHED) { 2284 level = LOGLEVEL_DEFAULT; 2285 in_sched = true; 2286 } 2287 2288 printk_delay(level); 2289 2290 printed_len = vprintk_store(facility, level, dev_info, fmt, args); 2291 2292 /* If called from the scheduler, we can not call up(). */ 2293 if (!in_sched) { 2294 /* 2295 * The caller may be holding system-critical or 2296 * timing-sensitive locks. Disable preemption during 2297 * printing of all remaining records to all consoles so that 2298 * this context can return as soon as possible. Hopefully 2299 * another printk() caller will take over the printing. 2300 */ 2301 preempt_disable(); 2302 /* 2303 * Try to acquire and then immediately release the console 2304 * semaphore. The release will print out buffers. With the 2305 * spinning variant, this context tries to take over the 2306 * printing from another printing context. 2307 */ 2308 if (console_trylock_spinning()) 2309 console_unlock(); 2310 preempt_enable(); 2311 } 2312 2313 if (in_sched) 2314 defer_console_output(); 2315 else 2316 wake_up_klogd(); 2317 2318 return printed_len; 2319 } 2320 EXPORT_SYMBOL(vprintk_emit); 2321 2322 int vprintk_default(const char *fmt, va_list args) 2323 { 2324 return vprintk_emit(0, LOGLEVEL_DEFAULT, NULL, fmt, args); 2325 } 2326 EXPORT_SYMBOL_GPL(vprintk_default); 2327 2328 asmlinkage __visible int _printk(const char *fmt, ...) 2329 { 2330 va_list args; 2331 int r; 2332 2333 va_start(args, fmt); 2334 r = vprintk(fmt, args); 2335 va_end(args); 2336 2337 return r; 2338 } 2339 EXPORT_SYMBOL(_printk); 2340 2341 static bool pr_flush(int timeout_ms, bool reset_on_progress); 2342 static bool __pr_flush(struct console *con, int timeout_ms, bool reset_on_progress); 2343 2344 #else /* CONFIG_PRINTK */ 2345 2346 #define printk_time false 2347 2348 #define prb_read_valid(rb, seq, r) false 2349 #define prb_first_valid_seq(rb) 0 2350 #define prb_next_seq(rb) 0 2351 2352 static u64 syslog_seq; 2353 2354 static size_t record_print_text(const struct printk_record *r, 2355 bool syslog, bool time) 2356 { 2357 return 0; 2358 } 2359 static ssize_t info_print_ext_header(char *buf, size_t size, 2360 struct printk_info *info) 2361 { 2362 return 0; 2363 } 2364 static ssize_t msg_print_ext_body(char *buf, size_t size, 2365 char *text, size_t text_len, 2366 struct dev_printk_info *dev_info) { return 0; } 2367 static void console_lock_spinning_enable(void) { } 2368 static int console_lock_spinning_disable_and_check(int cookie) { return 0; } 2369 static bool suppress_message_printing(int level) { return false; } 2370 static bool pr_flush(int timeout_ms, bool reset_on_progress) { return true; } 2371 static bool __pr_flush(struct console *con, int timeout_ms, bool reset_on_progress) { return true; } 2372 2373 #endif /* CONFIG_PRINTK */ 2374 2375 #ifdef CONFIG_EARLY_PRINTK 2376 struct console *early_console; 2377 2378 asmlinkage __visible void early_printk(const char *fmt, ...) 2379 { 2380 va_list ap; 2381 char buf[512]; 2382 int n; 2383 2384 if (!early_console) 2385 return; 2386 2387 va_start(ap, fmt); 2388 n = vscnprintf(buf, sizeof(buf), fmt, ap); 2389 va_end(ap); 2390 2391 early_console->write(early_console, buf, n); 2392 } 2393 #endif 2394 2395 static void set_user_specified(struct console_cmdline *c, bool user_specified) 2396 { 2397 if (!user_specified) 2398 return; 2399 2400 /* 2401 * @c console was defined by the user on the command line. 2402 * Do not clear when added twice also by SPCR or the device tree. 2403 */ 2404 c->user_specified = true; 2405 /* At least one console defined by the user on the command line. */ 2406 console_set_on_cmdline = 1; 2407 } 2408 2409 static int __add_preferred_console(char *name, int idx, char *options, 2410 char *brl_options, bool user_specified) 2411 { 2412 struct console_cmdline *c; 2413 int i; 2414 2415 /* 2416 * See if this tty is not yet registered, and 2417 * if we have a slot free. 2418 */ 2419 for (i = 0, c = console_cmdline; 2420 i < MAX_CMDLINECONSOLES && c->name[0]; 2421 i++, c++) { 2422 if (strcmp(c->name, name) == 0 && c->index == idx) { 2423 if (!brl_options) 2424 preferred_console = i; 2425 set_user_specified(c, user_specified); 2426 return 0; 2427 } 2428 } 2429 if (i == MAX_CMDLINECONSOLES) 2430 return -E2BIG; 2431 if (!brl_options) 2432 preferred_console = i; 2433 strscpy(c->name, name, sizeof(c->name)); 2434 c->options = options; 2435 set_user_specified(c, user_specified); 2436 braille_set_options(c, brl_options); 2437 2438 c->index = idx; 2439 return 0; 2440 } 2441 2442 static int __init console_msg_format_setup(char *str) 2443 { 2444 if (!strcmp(str, "syslog")) 2445 console_msg_format = MSG_FORMAT_SYSLOG; 2446 if (!strcmp(str, "default")) 2447 console_msg_format = MSG_FORMAT_DEFAULT; 2448 return 1; 2449 } 2450 __setup("console_msg_format=", console_msg_format_setup); 2451 2452 /* 2453 * Set up a console. Called via do_early_param() in init/main.c 2454 * for each "console=" parameter in the boot command line. 2455 */ 2456 static int __init console_setup(char *str) 2457 { 2458 char buf[sizeof(console_cmdline[0].name) + 4]; /* 4 for "ttyS" */ 2459 char *s, *options, *brl_options = NULL; 2460 int idx; 2461 2462 /* 2463 * console="" or console=null have been suggested as a way to 2464 * disable console output. Use ttynull that has been created 2465 * for exactly this purpose. 2466 */ 2467 if (str[0] == 0 || strcmp(str, "null") == 0) { 2468 __add_preferred_console("ttynull", 0, NULL, NULL, true); 2469 return 1; 2470 } 2471 2472 if (_braille_console_setup(&str, &brl_options)) 2473 return 1; 2474 2475 /* 2476 * Decode str into name, index, options. 2477 */ 2478 if (str[0] >= '0' && str[0] <= '9') { 2479 strcpy(buf, "ttyS"); 2480 strncpy(buf + 4, str, sizeof(buf) - 5); 2481 } else { 2482 strncpy(buf, str, sizeof(buf) - 1); 2483 } 2484 buf[sizeof(buf) - 1] = 0; 2485 options = strchr(str, ','); 2486 if (options) 2487 *(options++) = 0; 2488 #ifdef __sparc__ 2489 if (!strcmp(str, "ttya")) 2490 strcpy(buf, "ttyS0"); 2491 if (!strcmp(str, "ttyb")) 2492 strcpy(buf, "ttyS1"); 2493 #endif 2494 for (s = buf; *s; s++) 2495 if (isdigit(*s) || *s == ',') 2496 break; 2497 idx = simple_strtoul(s, NULL, 10); 2498 *s = 0; 2499 2500 __add_preferred_console(buf, idx, options, brl_options, true); 2501 return 1; 2502 } 2503 __setup("console=", console_setup); 2504 2505 /** 2506 * add_preferred_console - add a device to the list of preferred consoles. 2507 * @name: device name 2508 * @idx: device index 2509 * @options: options for this console 2510 * 2511 * The last preferred console added will be used for kernel messages 2512 * and stdin/out/err for init. Normally this is used by console_setup 2513 * above to handle user-supplied console arguments; however it can also 2514 * be used by arch-specific code either to override the user or more 2515 * commonly to provide a default console (ie from PROM variables) when 2516 * the user has not supplied one. 2517 */ 2518 int add_preferred_console(char *name, int idx, char *options) 2519 { 2520 return __add_preferred_console(name, idx, options, NULL, false); 2521 } 2522 2523 bool console_suspend_enabled = true; 2524 EXPORT_SYMBOL(console_suspend_enabled); 2525 2526 static int __init console_suspend_disable(char *str) 2527 { 2528 console_suspend_enabled = false; 2529 return 1; 2530 } 2531 __setup("no_console_suspend", console_suspend_disable); 2532 module_param_named(console_suspend, console_suspend_enabled, 2533 bool, S_IRUGO | S_IWUSR); 2534 MODULE_PARM_DESC(console_suspend, "suspend console during suspend" 2535 " and hibernate operations"); 2536 2537 static bool printk_console_no_auto_verbose; 2538 2539 void console_verbose(void) 2540 { 2541 if (console_loglevel && !printk_console_no_auto_verbose) 2542 console_loglevel = CONSOLE_LOGLEVEL_MOTORMOUTH; 2543 } 2544 EXPORT_SYMBOL_GPL(console_verbose); 2545 2546 module_param_named(console_no_auto_verbose, printk_console_no_auto_verbose, bool, 0644); 2547 MODULE_PARM_DESC(console_no_auto_verbose, "Disable console loglevel raise to highest on oops/panic/etc"); 2548 2549 /** 2550 * suspend_console - suspend the console subsystem 2551 * 2552 * This disables printk() while we go into suspend states 2553 */ 2554 void suspend_console(void) 2555 { 2556 struct console *con; 2557 2558 if (!console_suspend_enabled) 2559 return; 2560 pr_info("Suspending console(s) (use no_console_suspend to debug)\n"); 2561 pr_flush(1000, true); 2562 2563 console_list_lock(); 2564 for_each_console(con) 2565 console_srcu_write_flags(con, con->flags | CON_SUSPENDED); 2566 console_list_unlock(); 2567 2568 /* 2569 * Ensure that all SRCU list walks have completed. All printing 2570 * contexts must be able to see that they are suspended so that it 2571 * is guaranteed that all printing has stopped when this function 2572 * completes. 2573 */ 2574 synchronize_srcu(&console_srcu); 2575 } 2576 2577 void resume_console(void) 2578 { 2579 struct console *con; 2580 2581 if (!console_suspend_enabled) 2582 return; 2583 2584 console_list_lock(); 2585 for_each_console(con) 2586 console_srcu_write_flags(con, con->flags & ~CON_SUSPENDED); 2587 console_list_unlock(); 2588 2589 /* 2590 * Ensure that all SRCU list walks have completed. All printing 2591 * contexts must be able to see they are no longer suspended so 2592 * that they are guaranteed to wake up and resume printing. 2593 */ 2594 synchronize_srcu(&console_srcu); 2595 2596 pr_flush(1000, true); 2597 } 2598 2599 /** 2600 * console_cpu_notify - print deferred console messages after CPU hotplug 2601 * @cpu: unused 2602 * 2603 * If printk() is called from a CPU that is not online yet, the messages 2604 * will be printed on the console only if there are CON_ANYTIME consoles. 2605 * This function is called when a new CPU comes online (or fails to come 2606 * up) or goes offline. 2607 */ 2608 static int console_cpu_notify(unsigned int cpu) 2609 { 2610 if (!cpuhp_tasks_frozen) { 2611 /* If trylock fails, someone else is doing the printing */ 2612 if (console_trylock()) 2613 console_unlock(); 2614 } 2615 return 0; 2616 } 2617 2618 /* 2619 * Return true if a panic is in progress on a remote CPU. 2620 * 2621 * On true, the local CPU should immediately release any printing resources 2622 * that may be needed by the panic CPU. 2623 */ 2624 bool other_cpu_in_panic(void) 2625 { 2626 if (!panic_in_progress()) 2627 return false; 2628 2629 /* 2630 * We can use raw_smp_processor_id() here because it is impossible for 2631 * the task to be migrated to the panic_cpu, or away from it. If 2632 * panic_cpu has already been set, and we're not currently executing on 2633 * that CPU, then we never will be. 2634 */ 2635 return atomic_read(&panic_cpu) != raw_smp_processor_id(); 2636 } 2637 2638 /** 2639 * console_lock - block the console subsystem from printing 2640 * 2641 * Acquires a lock which guarantees that no consoles will 2642 * be in or enter their write() callback. 2643 * 2644 * Can sleep, returns nothing. 2645 */ 2646 void console_lock(void) 2647 { 2648 might_sleep(); 2649 2650 /* On panic, the console_lock must be left to the panic cpu. */ 2651 while (other_cpu_in_panic()) 2652 msleep(1000); 2653 2654 down_console_sem(); 2655 console_locked = 1; 2656 console_may_schedule = 1; 2657 } 2658 EXPORT_SYMBOL(console_lock); 2659 2660 /** 2661 * console_trylock - try to block the console subsystem from printing 2662 * 2663 * Try to acquire a lock which guarantees that no consoles will 2664 * be in or enter their write() callback. 2665 * 2666 * returns 1 on success, and 0 on failure to acquire the lock. 2667 */ 2668 int console_trylock(void) 2669 { 2670 /* On panic, the console_lock must be left to the panic cpu. */ 2671 if (other_cpu_in_panic()) 2672 return 0; 2673 if (down_trylock_console_sem()) 2674 return 0; 2675 console_locked = 1; 2676 console_may_schedule = 0; 2677 return 1; 2678 } 2679 EXPORT_SYMBOL(console_trylock); 2680 2681 int is_console_locked(void) 2682 { 2683 return console_locked; 2684 } 2685 EXPORT_SYMBOL(is_console_locked); 2686 2687 /* 2688 * Check if the given console is currently capable and allowed to print 2689 * records. 2690 * 2691 * Requires the console_srcu_read_lock. 2692 */ 2693 static inline bool console_is_usable(struct console *con) 2694 { 2695 short flags = console_srcu_read_flags(con); 2696 2697 if (!(flags & CON_ENABLED)) 2698 return false; 2699 2700 if ((flags & CON_SUSPENDED)) 2701 return false; 2702 2703 if (!con->write) 2704 return false; 2705 2706 /* 2707 * Console drivers may assume that per-cpu resources have been 2708 * allocated. So unless they're explicitly marked as being able to 2709 * cope (CON_ANYTIME) don't call them until this CPU is officially up. 2710 */ 2711 if (!cpu_online(raw_smp_processor_id()) && !(flags & CON_ANYTIME)) 2712 return false; 2713 2714 return true; 2715 } 2716 2717 static void __console_unlock(void) 2718 { 2719 console_locked = 0; 2720 up_console_sem(); 2721 } 2722 2723 /* 2724 * Prepend the message in @pmsg->pbufs->outbuf with a "dropped message". This 2725 * is achieved by shifting the existing message over and inserting the dropped 2726 * message. 2727 * 2728 * @pmsg is the printk message to prepend. 2729 * 2730 * @dropped is the dropped count to report in the dropped message. 2731 * 2732 * If the message text in @pmsg->pbufs->outbuf does not have enough space for 2733 * the dropped message, the message text will be sufficiently truncated. 2734 * 2735 * If @pmsg->pbufs->outbuf is modified, @pmsg->outbuf_len is updated. 2736 */ 2737 #ifdef CONFIG_PRINTK 2738 static void console_prepend_dropped(struct printk_message *pmsg, unsigned long dropped) 2739 { 2740 struct printk_buffers *pbufs = pmsg->pbufs; 2741 const size_t scratchbuf_sz = sizeof(pbufs->scratchbuf); 2742 const size_t outbuf_sz = sizeof(pbufs->outbuf); 2743 char *scratchbuf = &pbufs->scratchbuf[0]; 2744 char *outbuf = &pbufs->outbuf[0]; 2745 size_t len; 2746 2747 len = scnprintf(scratchbuf, scratchbuf_sz, 2748 "** %lu printk messages dropped **\n", dropped); 2749 2750 /* 2751 * Make sure outbuf is sufficiently large before prepending. 2752 * Keep at least the prefix when the message must be truncated. 2753 * It is a rather theoretical problem when someone tries to 2754 * use a minimalist buffer. 2755 */ 2756 if (WARN_ON_ONCE(len + PRINTK_PREFIX_MAX >= outbuf_sz)) 2757 return; 2758 2759 if (pmsg->outbuf_len + len >= outbuf_sz) { 2760 /* Truncate the message, but keep it terminated. */ 2761 pmsg->outbuf_len = outbuf_sz - (len + 1); 2762 outbuf[pmsg->outbuf_len] = 0; 2763 } 2764 2765 memmove(outbuf + len, outbuf, pmsg->outbuf_len + 1); 2766 memcpy(outbuf, scratchbuf, len); 2767 pmsg->outbuf_len += len; 2768 } 2769 #else 2770 #define console_prepend_dropped(pmsg, dropped) 2771 #endif /* CONFIG_PRINTK */ 2772 2773 /* 2774 * Read and format the specified record (or a later record if the specified 2775 * record is not available). 2776 * 2777 * @pmsg will contain the formatted result. @pmsg->pbufs must point to a 2778 * struct printk_buffers. 2779 * 2780 * @seq is the record to read and format. If it is not available, the next 2781 * valid record is read. 2782 * 2783 * @is_extended specifies if the message should be formatted for extended 2784 * console output. 2785 * 2786 * @may_supress specifies if records may be skipped based on loglevel. 2787 * 2788 * Returns false if no record is available. Otherwise true and all fields 2789 * of @pmsg are valid. (See the documentation of struct printk_message 2790 * for information about the @pmsg fields.) 2791 */ 2792 static bool printk_get_next_message(struct printk_message *pmsg, u64 seq, 2793 bool is_extended, bool may_suppress) 2794 { 2795 static int panic_console_dropped; 2796 2797 struct printk_buffers *pbufs = pmsg->pbufs; 2798 const size_t scratchbuf_sz = sizeof(pbufs->scratchbuf); 2799 const size_t outbuf_sz = sizeof(pbufs->outbuf); 2800 char *scratchbuf = &pbufs->scratchbuf[0]; 2801 char *outbuf = &pbufs->outbuf[0]; 2802 struct printk_info info; 2803 struct printk_record r; 2804 size_t len = 0; 2805 2806 /* 2807 * Formatting extended messages requires a separate buffer, so use the 2808 * scratch buffer to read in the ringbuffer text. 2809 * 2810 * Formatting normal messages is done in-place, so read the ringbuffer 2811 * text directly into the output buffer. 2812 */ 2813 if (is_extended) 2814 prb_rec_init_rd(&r, &info, scratchbuf, scratchbuf_sz); 2815 else 2816 prb_rec_init_rd(&r, &info, outbuf, outbuf_sz); 2817 2818 if (!prb_read_valid(prb, seq, &r)) 2819 return false; 2820 2821 pmsg->seq = r.info->seq; 2822 pmsg->dropped = r.info->seq - seq; 2823 2824 /* 2825 * Check for dropped messages in panic here so that printk 2826 * suppression can occur as early as possible if necessary. 2827 */ 2828 if (pmsg->dropped && 2829 panic_in_progress() && 2830 panic_console_dropped++ > 10) { 2831 suppress_panic_printk = 1; 2832 pr_warn_once("Too many dropped messages. Suppress messages on non-panic CPUs to prevent livelock.\n"); 2833 } 2834 2835 /* Skip record that has level above the console loglevel. */ 2836 if (may_suppress && suppress_message_printing(r.info->level)) 2837 goto out; 2838 2839 if (is_extended) { 2840 len = info_print_ext_header(outbuf, outbuf_sz, r.info); 2841 len += msg_print_ext_body(outbuf + len, outbuf_sz - len, 2842 &r.text_buf[0], r.info->text_len, &r.info->dev_info); 2843 } else { 2844 len = record_print_text(&r, console_msg_format & MSG_FORMAT_SYSLOG, printk_time); 2845 } 2846 out: 2847 pmsg->outbuf_len = len; 2848 return true; 2849 } 2850 2851 /* 2852 * Print one record for the given console. The record printed is whatever 2853 * record is the next available record for the given console. 2854 * 2855 * @handover will be set to true if a printk waiter has taken over the 2856 * console_lock, in which case the caller is no longer holding both the 2857 * console_lock and the SRCU read lock. Otherwise it is set to false. 2858 * 2859 * @cookie is the cookie from the SRCU read lock. 2860 * 2861 * Returns false if the given console has no next record to print, otherwise 2862 * true. 2863 * 2864 * Requires the console_lock and the SRCU read lock. 2865 */ 2866 static bool console_emit_next_record(struct console *con, bool *handover, int cookie) 2867 { 2868 static struct printk_buffers pbufs; 2869 2870 bool is_extended = console_srcu_read_flags(con) & CON_EXTENDED; 2871 char *outbuf = &pbufs.outbuf[0]; 2872 struct printk_message pmsg = { 2873 .pbufs = &pbufs, 2874 }; 2875 unsigned long flags; 2876 2877 *handover = false; 2878 2879 if (!printk_get_next_message(&pmsg, con->seq, is_extended, true)) 2880 return false; 2881 2882 con->dropped += pmsg.dropped; 2883 2884 /* Skip messages of formatted length 0. */ 2885 if (pmsg.outbuf_len == 0) { 2886 con->seq = pmsg.seq + 1; 2887 goto skip; 2888 } 2889 2890 if (con->dropped && !is_extended) { 2891 console_prepend_dropped(&pmsg, con->dropped); 2892 con->dropped = 0; 2893 } 2894 2895 /* 2896 * While actively printing out messages, if another printk() 2897 * were to occur on another CPU, it may wait for this one to 2898 * finish. This task can not be preempted if there is a 2899 * waiter waiting to take over. 2900 * 2901 * Interrupts are disabled because the hand over to a waiter 2902 * must not be interrupted until the hand over is completed 2903 * (@console_waiter is cleared). 2904 */ 2905 printk_safe_enter_irqsave(flags); 2906 console_lock_spinning_enable(); 2907 2908 /* Do not trace print latency. */ 2909 stop_critical_timings(); 2910 2911 /* Write everything out to the hardware. */ 2912 con->write(con, outbuf, pmsg.outbuf_len); 2913 2914 start_critical_timings(); 2915 2916 con->seq = pmsg.seq + 1; 2917 2918 *handover = console_lock_spinning_disable_and_check(cookie); 2919 printk_safe_exit_irqrestore(flags); 2920 skip: 2921 return true; 2922 } 2923 2924 /* 2925 * Print out all remaining records to all consoles. 2926 * 2927 * @do_cond_resched is set by the caller. It can be true only in schedulable 2928 * context. 2929 * 2930 * @next_seq is set to the sequence number after the last available record. 2931 * The value is valid only when this function returns true. It means that all 2932 * usable consoles are completely flushed. 2933 * 2934 * @handover will be set to true if a printk waiter has taken over the 2935 * console_lock, in which case the caller is no longer holding the 2936 * console_lock. Otherwise it is set to false. 2937 * 2938 * Returns true when there was at least one usable console and all messages 2939 * were flushed to all usable consoles. A returned false informs the caller 2940 * that everything was not flushed (either there were no usable consoles or 2941 * another context has taken over printing or it is a panic situation and this 2942 * is not the panic CPU). Regardless the reason, the caller should assume it 2943 * is not useful to immediately try again. 2944 * 2945 * Requires the console_lock. 2946 */ 2947 static bool console_flush_all(bool do_cond_resched, u64 *next_seq, bool *handover) 2948 { 2949 bool any_usable = false; 2950 struct console *con; 2951 bool any_progress; 2952 int cookie; 2953 2954 *next_seq = 0; 2955 *handover = false; 2956 2957 do { 2958 any_progress = false; 2959 2960 cookie = console_srcu_read_lock(); 2961 for_each_console_srcu(con) { 2962 bool progress; 2963 2964 if (!console_is_usable(con)) 2965 continue; 2966 any_usable = true; 2967 2968 progress = console_emit_next_record(con, handover, cookie); 2969 2970 /* 2971 * If a handover has occurred, the SRCU read lock 2972 * is already released. 2973 */ 2974 if (*handover) 2975 return false; 2976 2977 /* Track the next of the highest seq flushed. */ 2978 if (con->seq > *next_seq) 2979 *next_seq = con->seq; 2980 2981 if (!progress) 2982 continue; 2983 any_progress = true; 2984 2985 /* Allow panic_cpu to take over the consoles safely. */ 2986 if (other_cpu_in_panic()) 2987 goto abandon; 2988 2989 if (do_cond_resched) 2990 cond_resched(); 2991 } 2992 console_srcu_read_unlock(cookie); 2993 } while (any_progress); 2994 2995 return any_usable; 2996 2997 abandon: 2998 console_srcu_read_unlock(cookie); 2999 return false; 3000 } 3001 3002 /** 3003 * console_unlock - unblock the console subsystem from printing 3004 * 3005 * Releases the console_lock which the caller holds to block printing of 3006 * the console subsystem. 3007 * 3008 * While the console_lock was held, console output may have been buffered 3009 * by printk(). If this is the case, console_unlock(); emits 3010 * the output prior to releasing the lock. 3011 * 3012 * console_unlock(); may be called from any context. 3013 */ 3014 void console_unlock(void) 3015 { 3016 bool do_cond_resched; 3017 bool handover; 3018 bool flushed; 3019 u64 next_seq; 3020 3021 /* 3022 * Console drivers are called with interrupts disabled, so 3023 * @console_may_schedule should be cleared before; however, we may 3024 * end up dumping a lot of lines, for example, if called from 3025 * console registration path, and should invoke cond_resched() 3026 * between lines if allowable. Not doing so can cause a very long 3027 * scheduling stall on a slow console leading to RCU stall and 3028 * softlockup warnings which exacerbate the issue with more 3029 * messages practically incapacitating the system. Therefore, create 3030 * a local to use for the printing loop. 3031 */ 3032 do_cond_resched = console_may_schedule; 3033 3034 do { 3035 console_may_schedule = 0; 3036 3037 flushed = console_flush_all(do_cond_resched, &next_seq, &handover); 3038 if (!handover) 3039 __console_unlock(); 3040 3041 /* 3042 * Abort if there was a failure to flush all messages to all 3043 * usable consoles. Either it is not possible to flush (in 3044 * which case it would be an infinite loop of retrying) or 3045 * another context has taken over printing. 3046 */ 3047 if (!flushed) 3048 break; 3049 3050 /* 3051 * Some context may have added new records after 3052 * console_flush_all() but before unlocking the console. 3053 * Re-check if there is a new record to flush. If the trylock 3054 * fails, another context is already handling the printing. 3055 */ 3056 } while (prb_read_valid(prb, next_seq, NULL) && console_trylock()); 3057 } 3058 EXPORT_SYMBOL(console_unlock); 3059 3060 /** 3061 * console_conditional_schedule - yield the CPU if required 3062 * 3063 * If the console code is currently allowed to sleep, and 3064 * if this CPU should yield the CPU to another task, do 3065 * so here. 3066 * 3067 * Must be called within console_lock();. 3068 */ 3069 void __sched console_conditional_schedule(void) 3070 { 3071 if (console_may_schedule) 3072 cond_resched(); 3073 } 3074 EXPORT_SYMBOL(console_conditional_schedule); 3075 3076 void console_unblank(void) 3077 { 3078 bool found_unblank = false; 3079 struct console *c; 3080 int cookie; 3081 3082 /* 3083 * First check if there are any consoles implementing the unblank() 3084 * callback. If not, there is no reason to continue and take the 3085 * console lock, which in particular can be dangerous if 3086 * @oops_in_progress is set. 3087 */ 3088 cookie = console_srcu_read_lock(); 3089 for_each_console_srcu(c) { 3090 if ((console_srcu_read_flags(c) & CON_ENABLED) && c->unblank) { 3091 found_unblank = true; 3092 break; 3093 } 3094 } 3095 console_srcu_read_unlock(cookie); 3096 if (!found_unblank) 3097 return; 3098 3099 /* 3100 * Stop console printing because the unblank() callback may 3101 * assume the console is not within its write() callback. 3102 * 3103 * If @oops_in_progress is set, this may be an atomic context. 3104 * In that case, attempt a trylock as best-effort. 3105 */ 3106 if (oops_in_progress) { 3107 /* Semaphores are not NMI-safe. */ 3108 if (in_nmi()) 3109 return; 3110 3111 /* 3112 * Attempting to trylock the console lock can deadlock 3113 * if another CPU was stopped while modifying the 3114 * semaphore. "Hope and pray" that this is not the 3115 * current situation. 3116 */ 3117 if (down_trylock_console_sem() != 0) 3118 return; 3119 } else 3120 console_lock(); 3121 3122 console_locked = 1; 3123 console_may_schedule = 0; 3124 3125 cookie = console_srcu_read_lock(); 3126 for_each_console_srcu(c) { 3127 if ((console_srcu_read_flags(c) & CON_ENABLED) && c->unblank) 3128 c->unblank(); 3129 } 3130 console_srcu_read_unlock(cookie); 3131 3132 console_unlock(); 3133 3134 if (!oops_in_progress) 3135 pr_flush(1000, true); 3136 } 3137 3138 /** 3139 * console_flush_on_panic - flush console content on panic 3140 * @mode: flush all messages in buffer or just the pending ones 3141 * 3142 * Immediately output all pending messages no matter what. 3143 */ 3144 void console_flush_on_panic(enum con_flush_mode mode) 3145 { 3146 bool handover; 3147 u64 next_seq; 3148 3149 /* 3150 * Ignore the console lock and flush out the messages. Attempting a 3151 * trylock would not be useful because: 3152 * 3153 * - if it is contended, it must be ignored anyway 3154 * - console_lock() and console_trylock() block and fail 3155 * respectively in panic for non-panic CPUs 3156 * - semaphores are not NMI-safe 3157 */ 3158 3159 /* 3160 * If another context is holding the console lock, 3161 * @console_may_schedule might be set. Clear it so that 3162 * this context does not call cond_resched() while flushing. 3163 */ 3164 console_may_schedule = 0; 3165 3166 if (mode == CONSOLE_REPLAY_ALL) { 3167 struct console *c; 3168 int cookie; 3169 u64 seq; 3170 3171 seq = prb_first_valid_seq(prb); 3172 3173 cookie = console_srcu_read_lock(); 3174 for_each_console_srcu(c) { 3175 /* 3176 * This is an unsynchronized assignment, but the 3177 * kernel is in "hope and pray" mode anyway. 3178 */ 3179 c->seq = seq; 3180 } 3181 console_srcu_read_unlock(cookie); 3182 } 3183 3184 console_flush_all(false, &next_seq, &handover); 3185 } 3186 3187 /* 3188 * Return the console tty driver structure and its associated index 3189 */ 3190 struct tty_driver *console_device(int *index) 3191 { 3192 struct console *c; 3193 struct tty_driver *driver = NULL; 3194 int cookie; 3195 3196 /* 3197 * Take console_lock to serialize device() callback with 3198 * other console operations. For example, fg_console is 3199 * modified under console_lock when switching vt. 3200 */ 3201 console_lock(); 3202 3203 cookie = console_srcu_read_lock(); 3204 for_each_console_srcu(c) { 3205 if (!c->device) 3206 continue; 3207 driver = c->device(c, index); 3208 if (driver) 3209 break; 3210 } 3211 console_srcu_read_unlock(cookie); 3212 3213 console_unlock(); 3214 return driver; 3215 } 3216 3217 /* 3218 * Prevent further output on the passed console device so that (for example) 3219 * serial drivers can disable console output before suspending a port, and can 3220 * re-enable output afterwards. 3221 */ 3222 void console_stop(struct console *console) 3223 { 3224 __pr_flush(console, 1000, true); 3225 console_list_lock(); 3226 console_srcu_write_flags(console, console->flags & ~CON_ENABLED); 3227 console_list_unlock(); 3228 3229 /* 3230 * Ensure that all SRCU list walks have completed. All contexts must 3231 * be able to see that this console is disabled so that (for example) 3232 * the caller can suspend the port without risk of another context 3233 * using the port. 3234 */ 3235 synchronize_srcu(&console_srcu); 3236 } 3237 EXPORT_SYMBOL(console_stop); 3238 3239 void console_start(struct console *console) 3240 { 3241 console_list_lock(); 3242 console_srcu_write_flags(console, console->flags | CON_ENABLED); 3243 console_list_unlock(); 3244 __pr_flush(console, 1000, true); 3245 } 3246 EXPORT_SYMBOL(console_start); 3247 3248 static int __read_mostly keep_bootcon; 3249 3250 static int __init keep_bootcon_setup(char *str) 3251 { 3252 keep_bootcon = 1; 3253 pr_info("debug: skip boot console de-registration.\n"); 3254 3255 return 0; 3256 } 3257 3258 early_param("keep_bootcon", keep_bootcon_setup); 3259 3260 /* 3261 * This is called by register_console() to try to match 3262 * the newly registered console with any of the ones selected 3263 * by either the command line or add_preferred_console() and 3264 * setup/enable it. 3265 * 3266 * Care need to be taken with consoles that are statically 3267 * enabled such as netconsole 3268 */ 3269 static int try_enable_preferred_console(struct console *newcon, 3270 bool user_specified) 3271 { 3272 struct console_cmdline *c; 3273 int i, err; 3274 3275 for (i = 0, c = console_cmdline; 3276 i < MAX_CMDLINECONSOLES && c->name[0]; 3277 i++, c++) { 3278 if (c->user_specified != user_specified) 3279 continue; 3280 if (!newcon->match || 3281 newcon->match(newcon, c->name, c->index, c->options) != 0) { 3282 /* default matching */ 3283 BUILD_BUG_ON(sizeof(c->name) != sizeof(newcon->name)); 3284 if (strcmp(c->name, newcon->name) != 0) 3285 continue; 3286 if (newcon->index >= 0 && 3287 newcon->index != c->index) 3288 continue; 3289 if (newcon->index < 0) 3290 newcon->index = c->index; 3291 3292 if (_braille_register_console(newcon, c)) 3293 return 0; 3294 3295 if (newcon->setup && 3296 (err = newcon->setup(newcon, c->options)) != 0) 3297 return err; 3298 } 3299 newcon->flags |= CON_ENABLED; 3300 if (i == preferred_console) 3301 newcon->flags |= CON_CONSDEV; 3302 return 0; 3303 } 3304 3305 /* 3306 * Some consoles, such as pstore and netconsole, can be enabled even 3307 * without matching. Accept the pre-enabled consoles only when match() 3308 * and setup() had a chance to be called. 3309 */ 3310 if (newcon->flags & CON_ENABLED && c->user_specified == user_specified) 3311 return 0; 3312 3313 return -ENOENT; 3314 } 3315 3316 /* Try to enable the console unconditionally */ 3317 static void try_enable_default_console(struct console *newcon) 3318 { 3319 if (newcon->index < 0) 3320 newcon->index = 0; 3321 3322 if (newcon->setup && newcon->setup(newcon, NULL) != 0) 3323 return; 3324 3325 newcon->flags |= CON_ENABLED; 3326 3327 if (newcon->device) 3328 newcon->flags |= CON_CONSDEV; 3329 } 3330 3331 #define con_printk(lvl, con, fmt, ...) \ 3332 printk(lvl pr_fmt("%sconsole [%s%d] " fmt), \ 3333 (con->flags & CON_BOOT) ? "boot" : "", \ 3334 con->name, con->index, ##__VA_ARGS__) 3335 3336 static void console_init_seq(struct console *newcon, bool bootcon_registered) 3337 { 3338 struct console *con; 3339 bool handover; 3340 3341 if (newcon->flags & (CON_PRINTBUFFER | CON_BOOT)) { 3342 /* Get a consistent copy of @syslog_seq. */ 3343 mutex_lock(&syslog_lock); 3344 newcon->seq = syslog_seq; 3345 mutex_unlock(&syslog_lock); 3346 } else { 3347 /* Begin with next message added to ringbuffer. */ 3348 newcon->seq = prb_next_seq(prb); 3349 3350 /* 3351 * If any enabled boot consoles are due to be unregistered 3352 * shortly, some may not be caught up and may be the same 3353 * device as @newcon. Since it is not known which boot console 3354 * is the same device, flush all consoles and, if necessary, 3355 * start with the message of the enabled boot console that is 3356 * the furthest behind. 3357 */ 3358 if (bootcon_registered && !keep_bootcon) { 3359 /* 3360 * Hold the console_lock to stop console printing and 3361 * guarantee safe access to console->seq. 3362 */ 3363 console_lock(); 3364 3365 /* 3366 * Flush all consoles and set the console to start at 3367 * the next unprinted sequence number. 3368 */ 3369 if (!console_flush_all(true, &newcon->seq, &handover)) { 3370 /* 3371 * Flushing failed. Just choose the lowest 3372 * sequence of the enabled boot consoles. 3373 */ 3374 3375 /* 3376 * If there was a handover, this context no 3377 * longer holds the console_lock. 3378 */ 3379 if (handover) 3380 console_lock(); 3381 3382 newcon->seq = prb_next_seq(prb); 3383 for_each_console(con) { 3384 if ((con->flags & CON_BOOT) && 3385 (con->flags & CON_ENABLED) && 3386 con->seq < newcon->seq) { 3387 newcon->seq = con->seq; 3388 } 3389 } 3390 } 3391 3392 console_unlock(); 3393 } 3394 } 3395 } 3396 3397 #define console_first() \ 3398 hlist_entry(console_list.first, struct console, node) 3399 3400 static int unregister_console_locked(struct console *console); 3401 3402 /* 3403 * The console driver calls this routine during kernel initialization 3404 * to register the console printing procedure with printk() and to 3405 * print any messages that were printed by the kernel before the 3406 * console driver was initialized. 3407 * 3408 * This can happen pretty early during the boot process (because of 3409 * early_printk) - sometimes before setup_arch() completes - be careful 3410 * of what kernel features are used - they may not be initialised yet. 3411 * 3412 * There are two types of consoles - bootconsoles (early_printk) and 3413 * "real" consoles (everything which is not a bootconsole) which are 3414 * handled differently. 3415 * - Any number of bootconsoles can be registered at any time. 3416 * - As soon as a "real" console is registered, all bootconsoles 3417 * will be unregistered automatically. 3418 * - Once a "real" console is registered, any attempt to register a 3419 * bootconsoles will be rejected 3420 */ 3421 void register_console(struct console *newcon) 3422 { 3423 struct console *con; 3424 bool bootcon_registered = false; 3425 bool realcon_registered = false; 3426 int err; 3427 3428 console_list_lock(); 3429 3430 for_each_console(con) { 3431 if (WARN(con == newcon, "console '%s%d' already registered\n", 3432 con->name, con->index)) { 3433 goto unlock; 3434 } 3435 3436 if (con->flags & CON_BOOT) 3437 bootcon_registered = true; 3438 else 3439 realcon_registered = true; 3440 } 3441 3442 /* Do not register boot consoles when there already is a real one. */ 3443 if ((newcon->flags & CON_BOOT) && realcon_registered) { 3444 pr_info("Too late to register bootconsole %s%d\n", 3445 newcon->name, newcon->index); 3446 goto unlock; 3447 } 3448 3449 /* 3450 * See if we want to enable this console driver by default. 3451 * 3452 * Nope when a console is preferred by the command line, device 3453 * tree, or SPCR. 3454 * 3455 * The first real console with tty binding (driver) wins. More 3456 * consoles might get enabled before the right one is found. 3457 * 3458 * Note that a console with tty binding will have CON_CONSDEV 3459 * flag set and will be first in the list. 3460 */ 3461 if (preferred_console < 0) { 3462 if (hlist_empty(&console_list) || !console_first()->device || 3463 console_first()->flags & CON_BOOT) { 3464 try_enable_default_console(newcon); 3465 } 3466 } 3467 3468 /* See if this console matches one we selected on the command line */ 3469 err = try_enable_preferred_console(newcon, true); 3470 3471 /* If not, try to match against the platform default(s) */ 3472 if (err == -ENOENT) 3473 err = try_enable_preferred_console(newcon, false); 3474 3475 /* printk() messages are not printed to the Braille console. */ 3476 if (err || newcon->flags & CON_BRL) 3477 goto unlock; 3478 3479 /* 3480 * If we have a bootconsole, and are switching to a real console, 3481 * don't print everything out again, since when the boot console, and 3482 * the real console are the same physical device, it's annoying to 3483 * see the beginning boot messages twice 3484 */ 3485 if (bootcon_registered && 3486 ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV)) { 3487 newcon->flags &= ~CON_PRINTBUFFER; 3488 } 3489 3490 newcon->dropped = 0; 3491 console_init_seq(newcon, bootcon_registered); 3492 3493 /* 3494 * Put this console in the list - keep the 3495 * preferred driver at the head of the list. 3496 */ 3497 if (hlist_empty(&console_list)) { 3498 /* Ensure CON_CONSDEV is always set for the head. */ 3499 newcon->flags |= CON_CONSDEV; 3500 hlist_add_head_rcu(&newcon->node, &console_list); 3501 3502 } else if (newcon->flags & CON_CONSDEV) { 3503 /* Only the new head can have CON_CONSDEV set. */ 3504 console_srcu_write_flags(console_first(), console_first()->flags & ~CON_CONSDEV); 3505 hlist_add_head_rcu(&newcon->node, &console_list); 3506 3507 } else { 3508 hlist_add_behind_rcu(&newcon->node, console_list.first); 3509 } 3510 3511 /* 3512 * No need to synchronize SRCU here! The caller does not rely 3513 * on all contexts being able to see the new console before 3514 * register_console() completes. 3515 */ 3516 3517 console_sysfs_notify(); 3518 3519 /* 3520 * By unregistering the bootconsoles after we enable the real console 3521 * we get the "console xxx enabled" message on all the consoles - 3522 * boot consoles, real consoles, etc - this is to ensure that end 3523 * users know there might be something in the kernel's log buffer that 3524 * went to the bootconsole (that they do not see on the real console) 3525 */ 3526 con_printk(KERN_INFO, newcon, "enabled\n"); 3527 if (bootcon_registered && 3528 ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV) && 3529 !keep_bootcon) { 3530 struct hlist_node *tmp; 3531 3532 hlist_for_each_entry_safe(con, tmp, &console_list, node) { 3533 if (con->flags & CON_BOOT) 3534 unregister_console_locked(con); 3535 } 3536 } 3537 unlock: 3538 console_list_unlock(); 3539 } 3540 EXPORT_SYMBOL(register_console); 3541 3542 /* Must be called under console_list_lock(). */ 3543 static int unregister_console_locked(struct console *console) 3544 { 3545 int res; 3546 3547 lockdep_assert_console_list_lock_held(); 3548 3549 con_printk(KERN_INFO, console, "disabled\n"); 3550 3551 res = _braille_unregister_console(console); 3552 if (res < 0) 3553 return res; 3554 if (res > 0) 3555 return 0; 3556 3557 /* Disable it unconditionally */ 3558 console_srcu_write_flags(console, console->flags & ~CON_ENABLED); 3559 3560 if (!console_is_registered_locked(console)) 3561 return -ENODEV; 3562 3563 hlist_del_init_rcu(&console->node); 3564 3565 /* 3566 * <HISTORICAL> 3567 * If this isn't the last console and it has CON_CONSDEV set, we 3568 * need to set it on the next preferred console. 3569 * </HISTORICAL> 3570 * 3571 * The above makes no sense as there is no guarantee that the next 3572 * console has any device attached. Oh well.... 3573 */ 3574 if (!hlist_empty(&console_list) && console->flags & CON_CONSDEV) 3575 console_srcu_write_flags(console_first(), console_first()->flags | CON_CONSDEV); 3576 3577 /* 3578 * Ensure that all SRCU list walks have completed. All contexts 3579 * must not be able to see this console in the list so that any 3580 * exit/cleanup routines can be performed safely. 3581 */ 3582 synchronize_srcu(&console_srcu); 3583 3584 console_sysfs_notify(); 3585 3586 if (console->exit) 3587 res = console->exit(console); 3588 3589 return res; 3590 } 3591 3592 int unregister_console(struct console *console) 3593 { 3594 int res; 3595 3596 console_list_lock(); 3597 res = unregister_console_locked(console); 3598 console_list_unlock(); 3599 return res; 3600 } 3601 EXPORT_SYMBOL(unregister_console); 3602 3603 /** 3604 * console_force_preferred_locked - force a registered console preferred 3605 * @con: The registered console to force preferred. 3606 * 3607 * Must be called under console_list_lock(). 3608 */ 3609 void console_force_preferred_locked(struct console *con) 3610 { 3611 struct console *cur_pref_con; 3612 3613 if (!console_is_registered_locked(con)) 3614 return; 3615 3616 cur_pref_con = console_first(); 3617 3618 /* Already preferred? */ 3619 if (cur_pref_con == con) 3620 return; 3621 3622 /* 3623 * Delete, but do not re-initialize the entry. This allows the console 3624 * to continue to appear registered (via any hlist_unhashed_lockless() 3625 * checks), even though it was briefly removed from the console list. 3626 */ 3627 hlist_del_rcu(&con->node); 3628 3629 /* 3630 * Ensure that all SRCU list walks have completed so that the console 3631 * can be added to the beginning of the console list and its forward 3632 * list pointer can be re-initialized. 3633 */ 3634 synchronize_srcu(&console_srcu); 3635 3636 con->flags |= CON_CONSDEV; 3637 WARN_ON(!con->device); 3638 3639 /* Only the new head can have CON_CONSDEV set. */ 3640 console_srcu_write_flags(cur_pref_con, cur_pref_con->flags & ~CON_CONSDEV); 3641 hlist_add_head_rcu(&con->node, &console_list); 3642 } 3643 EXPORT_SYMBOL(console_force_preferred_locked); 3644 3645 /* 3646 * Initialize the console device. This is called *early*, so 3647 * we can't necessarily depend on lots of kernel help here. 3648 * Just do some early initializations, and do the complex setup 3649 * later. 3650 */ 3651 void __init console_init(void) 3652 { 3653 int ret; 3654 initcall_t call; 3655 initcall_entry_t *ce; 3656 3657 /* Setup the default TTY line discipline. */ 3658 n_tty_init(); 3659 3660 /* 3661 * set up the console device so that later boot sequences can 3662 * inform about problems etc.. 3663 */ 3664 ce = __con_initcall_start; 3665 trace_initcall_level("console"); 3666 while (ce < __con_initcall_end) { 3667 call = initcall_from_entry(ce); 3668 trace_initcall_start(call); 3669 ret = call(); 3670 trace_initcall_finish(call, ret); 3671 ce++; 3672 } 3673 } 3674 3675 /* 3676 * Some boot consoles access data that is in the init section and which will 3677 * be discarded after the initcalls have been run. To make sure that no code 3678 * will access this data, unregister the boot consoles in a late initcall. 3679 * 3680 * If for some reason, such as deferred probe or the driver being a loadable 3681 * module, the real console hasn't registered yet at this point, there will 3682 * be a brief interval in which no messages are logged to the console, which 3683 * makes it difficult to diagnose problems that occur during this time. 3684 * 3685 * To mitigate this problem somewhat, only unregister consoles whose memory 3686 * intersects with the init section. Note that all other boot consoles will 3687 * get unregistered when the real preferred console is registered. 3688 */ 3689 static int __init printk_late_init(void) 3690 { 3691 struct hlist_node *tmp; 3692 struct console *con; 3693 int ret; 3694 3695 console_list_lock(); 3696 hlist_for_each_entry_safe(con, tmp, &console_list, node) { 3697 if (!(con->flags & CON_BOOT)) 3698 continue; 3699 3700 /* Check addresses that might be used for enabled consoles. */ 3701 if (init_section_intersects(con, sizeof(*con)) || 3702 init_section_contains(con->write, 0) || 3703 init_section_contains(con->read, 0) || 3704 init_section_contains(con->device, 0) || 3705 init_section_contains(con->unblank, 0) || 3706 init_section_contains(con->data, 0)) { 3707 /* 3708 * Please, consider moving the reported consoles out 3709 * of the init section. 3710 */ 3711 pr_warn("bootconsole [%s%d] uses init memory and must be disabled even before the real one is ready\n", 3712 con->name, con->index); 3713 unregister_console_locked(con); 3714 } 3715 } 3716 console_list_unlock(); 3717 3718 ret = cpuhp_setup_state_nocalls(CPUHP_PRINTK_DEAD, "printk:dead", NULL, 3719 console_cpu_notify); 3720 WARN_ON(ret < 0); 3721 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "printk:online", 3722 console_cpu_notify, NULL); 3723 WARN_ON(ret < 0); 3724 printk_sysctl_init(); 3725 return 0; 3726 } 3727 late_initcall(printk_late_init); 3728 3729 #if defined CONFIG_PRINTK 3730 /* If @con is specified, only wait for that console. Otherwise wait for all. */ 3731 static bool __pr_flush(struct console *con, int timeout_ms, bool reset_on_progress) 3732 { 3733 int remaining = timeout_ms; 3734 struct console *c; 3735 u64 last_diff = 0; 3736 u64 printk_seq; 3737 int cookie; 3738 u64 diff; 3739 u64 seq; 3740 3741 might_sleep(); 3742 3743 seq = prb_next_seq(prb); 3744 3745 for (;;) { 3746 diff = 0; 3747 3748 /* 3749 * Hold the console_lock to guarantee safe access to 3750 * console->seq. 3751 */ 3752 console_lock(); 3753 3754 cookie = console_srcu_read_lock(); 3755 for_each_console_srcu(c) { 3756 if (con && con != c) 3757 continue; 3758 /* 3759 * If consoles are not usable, it cannot be expected 3760 * that they make forward progress, so only increment 3761 * @diff for usable consoles. 3762 */ 3763 if (!console_is_usable(c)) 3764 continue; 3765 printk_seq = c->seq; 3766 if (printk_seq < seq) 3767 diff += seq - printk_seq; 3768 } 3769 console_srcu_read_unlock(cookie); 3770 3771 if (diff != last_diff && reset_on_progress) 3772 remaining = timeout_ms; 3773 3774 console_unlock(); 3775 3776 /* Note: @diff is 0 if there are no usable consoles. */ 3777 if (diff == 0 || remaining == 0) 3778 break; 3779 3780 if (remaining < 0) { 3781 /* no timeout limit */ 3782 msleep(100); 3783 } else if (remaining < 100) { 3784 msleep(remaining); 3785 remaining = 0; 3786 } else { 3787 msleep(100); 3788 remaining -= 100; 3789 } 3790 3791 last_diff = diff; 3792 } 3793 3794 return (diff == 0); 3795 } 3796 3797 /** 3798 * pr_flush() - Wait for printing threads to catch up. 3799 * 3800 * @timeout_ms: The maximum time (in ms) to wait. 3801 * @reset_on_progress: Reset the timeout if forward progress is seen. 3802 * 3803 * A value of 0 for @timeout_ms means no waiting will occur. A value of -1 3804 * represents infinite waiting. 3805 * 3806 * If @reset_on_progress is true, the timeout will be reset whenever any 3807 * printer has been seen to make some forward progress. 3808 * 3809 * Context: Process context. May sleep while acquiring console lock. 3810 * Return: true if all usable printers are caught up. 3811 */ 3812 static bool pr_flush(int timeout_ms, bool reset_on_progress) 3813 { 3814 return __pr_flush(NULL, timeout_ms, reset_on_progress); 3815 } 3816 3817 /* 3818 * Delayed printk version, for scheduler-internal messages: 3819 */ 3820 #define PRINTK_PENDING_WAKEUP 0x01 3821 #define PRINTK_PENDING_OUTPUT 0x02 3822 3823 static DEFINE_PER_CPU(int, printk_pending); 3824 3825 static void wake_up_klogd_work_func(struct irq_work *irq_work) 3826 { 3827 int pending = this_cpu_xchg(printk_pending, 0); 3828 3829 if (pending & PRINTK_PENDING_OUTPUT) { 3830 /* If trylock fails, someone else is doing the printing */ 3831 if (console_trylock()) 3832 console_unlock(); 3833 } 3834 3835 if (pending & PRINTK_PENDING_WAKEUP) 3836 wake_up_interruptible(&log_wait); 3837 } 3838 3839 static DEFINE_PER_CPU(struct irq_work, wake_up_klogd_work) = 3840 IRQ_WORK_INIT_LAZY(wake_up_klogd_work_func); 3841 3842 static void __wake_up_klogd(int val) 3843 { 3844 if (!printk_percpu_data_ready()) 3845 return; 3846 3847 preempt_disable(); 3848 /* 3849 * Guarantee any new records can be seen by tasks preparing to wait 3850 * before this context checks if the wait queue is empty. 3851 * 3852 * The full memory barrier within wq_has_sleeper() pairs with the full 3853 * memory barrier within set_current_state() of 3854 * prepare_to_wait_event(), which is called after ___wait_event() adds 3855 * the waiter but before it has checked the wait condition. 3856 * 3857 * This pairs with devkmsg_read:A and syslog_print:A. 3858 */ 3859 if (wq_has_sleeper(&log_wait) || /* LMM(__wake_up_klogd:A) */ 3860 (val & PRINTK_PENDING_OUTPUT)) { 3861 this_cpu_or(printk_pending, val); 3862 irq_work_queue(this_cpu_ptr(&wake_up_klogd_work)); 3863 } 3864 preempt_enable(); 3865 } 3866 3867 /** 3868 * wake_up_klogd - Wake kernel logging daemon 3869 * 3870 * Use this function when new records have been added to the ringbuffer 3871 * and the console printing of those records has already occurred or is 3872 * known to be handled by some other context. This function will only 3873 * wake the logging daemon. 3874 * 3875 * Context: Any context. 3876 */ 3877 void wake_up_klogd(void) 3878 { 3879 __wake_up_klogd(PRINTK_PENDING_WAKEUP); 3880 } 3881 3882 /** 3883 * defer_console_output - Wake kernel logging daemon and trigger 3884 * console printing in a deferred context 3885 * 3886 * Use this function when new records have been added to the ringbuffer, 3887 * this context is responsible for console printing those records, but 3888 * the current context is not allowed to perform the console printing. 3889 * Trigger an irq_work context to perform the console printing. This 3890 * function also wakes the logging daemon. 3891 * 3892 * Context: Any context. 3893 */ 3894 void defer_console_output(void) 3895 { 3896 /* 3897 * New messages may have been added directly to the ringbuffer 3898 * using vprintk_store(), so wake any waiters as well. 3899 */ 3900 __wake_up_klogd(PRINTK_PENDING_WAKEUP | PRINTK_PENDING_OUTPUT); 3901 } 3902 3903 void printk_trigger_flush(void) 3904 { 3905 defer_console_output(); 3906 } 3907 3908 int vprintk_deferred(const char *fmt, va_list args) 3909 { 3910 return vprintk_emit(0, LOGLEVEL_SCHED, NULL, fmt, args); 3911 } 3912 3913 int _printk_deferred(const char *fmt, ...) 3914 { 3915 va_list args; 3916 int r; 3917 3918 va_start(args, fmt); 3919 r = vprintk_deferred(fmt, args); 3920 va_end(args); 3921 3922 return r; 3923 } 3924 3925 /* 3926 * printk rate limiting, lifted from the networking subsystem. 3927 * 3928 * This enforces a rate limit: not more than 10 kernel messages 3929 * every 5s to make a denial-of-service attack impossible. 3930 */ 3931 DEFINE_RATELIMIT_STATE(printk_ratelimit_state, 5 * HZ, 10); 3932 3933 int __printk_ratelimit(const char *func) 3934 { 3935 return ___ratelimit(&printk_ratelimit_state, func); 3936 } 3937 EXPORT_SYMBOL(__printk_ratelimit); 3938 3939 /** 3940 * printk_timed_ratelimit - caller-controlled printk ratelimiting 3941 * @caller_jiffies: pointer to caller's state 3942 * @interval_msecs: minimum interval between prints 3943 * 3944 * printk_timed_ratelimit() returns true if more than @interval_msecs 3945 * milliseconds have elapsed since the last time printk_timed_ratelimit() 3946 * returned true. 3947 */ 3948 bool printk_timed_ratelimit(unsigned long *caller_jiffies, 3949 unsigned int interval_msecs) 3950 { 3951 unsigned long elapsed = jiffies - *caller_jiffies; 3952 3953 if (*caller_jiffies && elapsed <= msecs_to_jiffies(interval_msecs)) 3954 return false; 3955 3956 *caller_jiffies = jiffies; 3957 return true; 3958 } 3959 EXPORT_SYMBOL(printk_timed_ratelimit); 3960 3961 static DEFINE_SPINLOCK(dump_list_lock); 3962 static LIST_HEAD(dump_list); 3963 3964 /** 3965 * kmsg_dump_register - register a kernel log dumper. 3966 * @dumper: pointer to the kmsg_dumper structure 3967 * 3968 * Adds a kernel log dumper to the system. The dump callback in the 3969 * structure will be called when the kernel oopses or panics and must be 3970 * set. Returns zero on success and %-EINVAL or %-EBUSY otherwise. 3971 */ 3972 int kmsg_dump_register(struct kmsg_dumper *dumper) 3973 { 3974 unsigned long flags; 3975 int err = -EBUSY; 3976 3977 /* The dump callback needs to be set */ 3978 if (!dumper->dump) 3979 return -EINVAL; 3980 3981 spin_lock_irqsave(&dump_list_lock, flags); 3982 /* Don't allow registering multiple times */ 3983 if (!dumper->registered) { 3984 dumper->registered = 1; 3985 list_add_tail_rcu(&dumper->list, &dump_list); 3986 err = 0; 3987 } 3988 spin_unlock_irqrestore(&dump_list_lock, flags); 3989 3990 return err; 3991 } 3992 EXPORT_SYMBOL_GPL(kmsg_dump_register); 3993 3994 /** 3995 * kmsg_dump_unregister - unregister a kmsg dumper. 3996 * @dumper: pointer to the kmsg_dumper structure 3997 * 3998 * Removes a dump device from the system. Returns zero on success and 3999 * %-EINVAL otherwise. 4000 */ 4001 int kmsg_dump_unregister(struct kmsg_dumper *dumper) 4002 { 4003 unsigned long flags; 4004 int err = -EINVAL; 4005 4006 spin_lock_irqsave(&dump_list_lock, flags); 4007 if (dumper->registered) { 4008 dumper->registered = 0; 4009 list_del_rcu(&dumper->list); 4010 err = 0; 4011 } 4012 spin_unlock_irqrestore(&dump_list_lock, flags); 4013 synchronize_rcu(); 4014 4015 return err; 4016 } 4017 EXPORT_SYMBOL_GPL(kmsg_dump_unregister); 4018 4019 static bool always_kmsg_dump; 4020 module_param_named(always_kmsg_dump, always_kmsg_dump, bool, S_IRUGO | S_IWUSR); 4021 4022 const char *kmsg_dump_reason_str(enum kmsg_dump_reason reason) 4023 { 4024 switch (reason) { 4025 case KMSG_DUMP_PANIC: 4026 return "Panic"; 4027 case KMSG_DUMP_OOPS: 4028 return "Oops"; 4029 case KMSG_DUMP_EMERG: 4030 return "Emergency"; 4031 case KMSG_DUMP_SHUTDOWN: 4032 return "Shutdown"; 4033 default: 4034 return "Unknown"; 4035 } 4036 } 4037 EXPORT_SYMBOL_GPL(kmsg_dump_reason_str); 4038 4039 /** 4040 * kmsg_dump - dump kernel log to kernel message dumpers. 4041 * @reason: the reason (oops, panic etc) for dumping 4042 * 4043 * Call each of the registered dumper's dump() callback, which can 4044 * retrieve the kmsg records with kmsg_dump_get_line() or 4045 * kmsg_dump_get_buffer(). 4046 */ 4047 void kmsg_dump(enum kmsg_dump_reason reason) 4048 { 4049 struct kmsg_dumper *dumper; 4050 4051 rcu_read_lock(); 4052 list_for_each_entry_rcu(dumper, &dump_list, list) { 4053 enum kmsg_dump_reason max_reason = dumper->max_reason; 4054 4055 /* 4056 * If client has not provided a specific max_reason, default 4057 * to KMSG_DUMP_OOPS, unless always_kmsg_dump was set. 4058 */ 4059 if (max_reason == KMSG_DUMP_UNDEF) { 4060 max_reason = always_kmsg_dump ? KMSG_DUMP_MAX : 4061 KMSG_DUMP_OOPS; 4062 } 4063 if (reason > max_reason) 4064 continue; 4065 4066 /* invoke dumper which will iterate over records */ 4067 dumper->dump(dumper, reason); 4068 } 4069 rcu_read_unlock(); 4070 } 4071 4072 /** 4073 * kmsg_dump_get_line - retrieve one kmsg log line 4074 * @iter: kmsg dump iterator 4075 * @syslog: include the "<4>" prefixes 4076 * @line: buffer to copy the line to 4077 * @size: maximum size of the buffer 4078 * @len: length of line placed into buffer 4079 * 4080 * Start at the beginning of the kmsg buffer, with the oldest kmsg 4081 * record, and copy one record into the provided buffer. 4082 * 4083 * Consecutive calls will return the next available record moving 4084 * towards the end of the buffer with the youngest messages. 4085 * 4086 * A return value of FALSE indicates that there are no more records to 4087 * read. 4088 */ 4089 bool kmsg_dump_get_line(struct kmsg_dump_iter *iter, bool syslog, 4090 char *line, size_t size, size_t *len) 4091 { 4092 u64 min_seq = latched_seq_read_nolock(&clear_seq); 4093 struct printk_info info; 4094 unsigned int line_count; 4095 struct printk_record r; 4096 size_t l = 0; 4097 bool ret = false; 4098 4099 if (iter->cur_seq < min_seq) 4100 iter->cur_seq = min_seq; 4101 4102 prb_rec_init_rd(&r, &info, line, size); 4103 4104 /* Read text or count text lines? */ 4105 if (line) { 4106 if (!prb_read_valid(prb, iter->cur_seq, &r)) 4107 goto out; 4108 l = record_print_text(&r, syslog, printk_time); 4109 } else { 4110 if (!prb_read_valid_info(prb, iter->cur_seq, 4111 &info, &line_count)) { 4112 goto out; 4113 } 4114 l = get_record_print_text_size(&info, line_count, syslog, 4115 printk_time); 4116 4117 } 4118 4119 iter->cur_seq = r.info->seq + 1; 4120 ret = true; 4121 out: 4122 if (len) 4123 *len = l; 4124 return ret; 4125 } 4126 EXPORT_SYMBOL_GPL(kmsg_dump_get_line); 4127 4128 /** 4129 * kmsg_dump_get_buffer - copy kmsg log lines 4130 * @iter: kmsg dump iterator 4131 * @syslog: include the "<4>" prefixes 4132 * @buf: buffer to copy the line to 4133 * @size: maximum size of the buffer 4134 * @len_out: length of line placed into buffer 4135 * 4136 * Start at the end of the kmsg buffer and fill the provided buffer 4137 * with as many of the *youngest* kmsg records that fit into it. 4138 * If the buffer is large enough, all available kmsg records will be 4139 * copied with a single call. 4140 * 4141 * Consecutive calls will fill the buffer with the next block of 4142 * available older records, not including the earlier retrieved ones. 4143 * 4144 * A return value of FALSE indicates that there are no more records to 4145 * read. 4146 */ 4147 bool kmsg_dump_get_buffer(struct kmsg_dump_iter *iter, bool syslog, 4148 char *buf, size_t size, size_t *len_out) 4149 { 4150 u64 min_seq = latched_seq_read_nolock(&clear_seq); 4151 struct printk_info info; 4152 struct printk_record r; 4153 u64 seq; 4154 u64 next_seq; 4155 size_t len = 0; 4156 bool ret = false; 4157 bool time = printk_time; 4158 4159 if (!buf || !size) 4160 goto out; 4161 4162 if (iter->cur_seq < min_seq) 4163 iter->cur_seq = min_seq; 4164 4165 if (prb_read_valid_info(prb, iter->cur_seq, &info, NULL)) { 4166 if (info.seq != iter->cur_seq) { 4167 /* messages are gone, move to first available one */ 4168 iter->cur_seq = info.seq; 4169 } 4170 } 4171 4172 /* last entry */ 4173 if (iter->cur_seq >= iter->next_seq) 4174 goto out; 4175 4176 /* 4177 * Find first record that fits, including all following records, 4178 * into the user-provided buffer for this dump. Pass in size-1 4179 * because this function (by way of record_print_text()) will 4180 * not write more than size-1 bytes of text into @buf. 4181 */ 4182 seq = find_first_fitting_seq(iter->cur_seq, iter->next_seq, 4183 size - 1, syslog, time); 4184 4185 /* 4186 * Next kmsg_dump_get_buffer() invocation will dump block of 4187 * older records stored right before this one. 4188 */ 4189 next_seq = seq; 4190 4191 prb_rec_init_rd(&r, &info, buf, size); 4192 4193 len = 0; 4194 prb_for_each_record(seq, prb, seq, &r) { 4195 if (r.info->seq >= iter->next_seq) 4196 break; 4197 4198 len += record_print_text(&r, syslog, time); 4199 4200 /* Adjust record to store to remaining buffer space. */ 4201 prb_rec_init_rd(&r, &info, buf + len, size - len); 4202 } 4203 4204 iter->next_seq = next_seq; 4205 ret = true; 4206 out: 4207 if (len_out) 4208 *len_out = len; 4209 return ret; 4210 } 4211 EXPORT_SYMBOL_GPL(kmsg_dump_get_buffer); 4212 4213 /** 4214 * kmsg_dump_rewind - reset the iterator 4215 * @iter: kmsg dump iterator 4216 * 4217 * Reset the dumper's iterator so that kmsg_dump_get_line() and 4218 * kmsg_dump_get_buffer() can be called again and used multiple 4219 * times within the same dumper.dump() callback. 4220 */ 4221 void kmsg_dump_rewind(struct kmsg_dump_iter *iter) 4222 { 4223 iter->cur_seq = latched_seq_read_nolock(&clear_seq); 4224 iter->next_seq = prb_next_seq(prb); 4225 } 4226 EXPORT_SYMBOL_GPL(kmsg_dump_rewind); 4227 4228 #endif 4229 4230 #ifdef CONFIG_SMP 4231 static atomic_t printk_cpu_sync_owner = ATOMIC_INIT(-1); 4232 static atomic_t printk_cpu_sync_nested = ATOMIC_INIT(0); 4233 4234 /** 4235 * __printk_cpu_sync_wait() - Busy wait until the printk cpu-reentrant 4236 * spinning lock is not owned by any CPU. 4237 * 4238 * Context: Any context. 4239 */ 4240 void __printk_cpu_sync_wait(void) 4241 { 4242 do { 4243 cpu_relax(); 4244 } while (atomic_read(&printk_cpu_sync_owner) != -1); 4245 } 4246 EXPORT_SYMBOL(__printk_cpu_sync_wait); 4247 4248 /** 4249 * __printk_cpu_sync_try_get() - Try to acquire the printk cpu-reentrant 4250 * spinning lock. 4251 * 4252 * If no processor has the lock, the calling processor takes the lock and 4253 * becomes the owner. If the calling processor is already the owner of the 4254 * lock, this function succeeds immediately. 4255 * 4256 * Context: Any context. Expects interrupts to be disabled. 4257 * Return: 1 on success, otherwise 0. 4258 */ 4259 int __printk_cpu_sync_try_get(void) 4260 { 4261 int cpu; 4262 int old; 4263 4264 cpu = smp_processor_id(); 4265 4266 /* 4267 * Guarantee loads and stores from this CPU when it is the lock owner 4268 * are _not_ visible to the previous lock owner. This pairs with 4269 * __printk_cpu_sync_put:B. 4270 * 4271 * Memory barrier involvement: 4272 * 4273 * If __printk_cpu_sync_try_get:A reads from __printk_cpu_sync_put:B, 4274 * then __printk_cpu_sync_put:A can never read from 4275 * __printk_cpu_sync_try_get:B. 4276 * 4277 * Relies on: 4278 * 4279 * RELEASE from __printk_cpu_sync_put:A to __printk_cpu_sync_put:B 4280 * of the previous CPU 4281 * matching 4282 * ACQUIRE from __printk_cpu_sync_try_get:A to 4283 * __printk_cpu_sync_try_get:B of this CPU 4284 */ 4285 old = atomic_cmpxchg_acquire(&printk_cpu_sync_owner, -1, 4286 cpu); /* LMM(__printk_cpu_sync_try_get:A) */ 4287 if (old == -1) { 4288 /* 4289 * This CPU is now the owner and begins loading/storing 4290 * data: LMM(__printk_cpu_sync_try_get:B) 4291 */ 4292 return 1; 4293 4294 } else if (old == cpu) { 4295 /* This CPU is already the owner. */ 4296 atomic_inc(&printk_cpu_sync_nested); 4297 return 1; 4298 } 4299 4300 return 0; 4301 } 4302 EXPORT_SYMBOL(__printk_cpu_sync_try_get); 4303 4304 /** 4305 * __printk_cpu_sync_put() - Release the printk cpu-reentrant spinning lock. 4306 * 4307 * The calling processor must be the owner of the lock. 4308 * 4309 * Context: Any context. Expects interrupts to be disabled. 4310 */ 4311 void __printk_cpu_sync_put(void) 4312 { 4313 if (atomic_read(&printk_cpu_sync_nested)) { 4314 atomic_dec(&printk_cpu_sync_nested); 4315 return; 4316 } 4317 4318 /* 4319 * This CPU is finished loading/storing data: 4320 * LMM(__printk_cpu_sync_put:A) 4321 */ 4322 4323 /* 4324 * Guarantee loads and stores from this CPU when it was the 4325 * lock owner are visible to the next lock owner. This pairs 4326 * with __printk_cpu_sync_try_get:A. 4327 * 4328 * Memory barrier involvement: 4329 * 4330 * If __printk_cpu_sync_try_get:A reads from __printk_cpu_sync_put:B, 4331 * then __printk_cpu_sync_try_get:B reads from __printk_cpu_sync_put:A. 4332 * 4333 * Relies on: 4334 * 4335 * RELEASE from __printk_cpu_sync_put:A to __printk_cpu_sync_put:B 4336 * of this CPU 4337 * matching 4338 * ACQUIRE from __printk_cpu_sync_try_get:A to 4339 * __printk_cpu_sync_try_get:B of the next CPU 4340 */ 4341 atomic_set_release(&printk_cpu_sync_owner, 4342 -1); /* LMM(__printk_cpu_sync_put:B) */ 4343 } 4344 EXPORT_SYMBOL(__printk_cpu_sync_put); 4345 #endif /* CONFIG_SMP */ 4346