xref: /openbmc/linux/kernel/printk/printk.c (revision 7bd571b274fd15e0e7dc3d79d104f32928010eff)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/printk.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  *
7  * Modified to make sys_syslog() more flexible: added commands to
8  * return the last 4k of kernel messages, regardless of whether
9  * they've been read or not.  Added option to suppress kernel printk's
10  * to the console.  Added hook for sending the console messages
11  * elsewhere, in preparation for a serial line console (someday).
12  * Ted Ts'o, 2/11/93.
13  * Modified for sysctl support, 1/8/97, Chris Horn.
14  * Fixed SMP synchronization, 08/08/99, Manfred Spraul
15  *     manfred@colorfullife.com
16  * Rewrote bits to get rid of console_lock
17  *	01Mar01 Andrew Morton
18  */
19 
20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
21 
22 #include <linux/kernel.h>
23 #include <linux/mm.h>
24 #include <linux/tty.h>
25 #include <linux/tty_driver.h>
26 #include <linux/console.h>
27 #include <linux/init.h>
28 #include <linux/jiffies.h>
29 #include <linux/nmi.h>
30 #include <linux/module.h>
31 #include <linux/moduleparam.h>
32 #include <linux/delay.h>
33 #include <linux/smp.h>
34 #include <linux/security.h>
35 #include <linux/memblock.h>
36 #include <linux/syscalls.h>
37 #include <linux/crash_core.h>
38 #include <linux/ratelimit.h>
39 #include <linux/kmsg_dump.h>
40 #include <linux/syslog.h>
41 #include <linux/cpu.h>
42 #include <linux/rculist.h>
43 #include <linux/poll.h>
44 #include <linux/irq_work.h>
45 #include <linux/ctype.h>
46 #include <linux/uio.h>
47 #include <linux/sched/clock.h>
48 #include <linux/sched/debug.h>
49 #include <linux/sched/task_stack.h>
50 
51 #include <linux/uaccess.h>
52 #include <asm/sections.h>
53 
54 #include <trace/events/initcall.h>
55 #define CREATE_TRACE_POINTS
56 #include <trace/events/printk.h>
57 
58 #include "printk_ringbuffer.h"
59 #include "console_cmdline.h"
60 #include "braille.h"
61 #include "internal.h"
62 
63 int console_printk[4] = {
64 	CONSOLE_LOGLEVEL_DEFAULT,	/* console_loglevel */
65 	MESSAGE_LOGLEVEL_DEFAULT,	/* default_message_loglevel */
66 	CONSOLE_LOGLEVEL_MIN,		/* minimum_console_loglevel */
67 	CONSOLE_LOGLEVEL_DEFAULT,	/* default_console_loglevel */
68 };
69 EXPORT_SYMBOL_GPL(console_printk);
70 
71 atomic_t ignore_console_lock_warning __read_mostly = ATOMIC_INIT(0);
72 EXPORT_SYMBOL(ignore_console_lock_warning);
73 
74 /*
75  * Low level drivers may need that to know if they can schedule in
76  * their unblank() callback or not. So let's export it.
77  */
78 int oops_in_progress;
79 EXPORT_SYMBOL(oops_in_progress);
80 
81 /*
82  * console_mutex protects console_list updates and console->flags updates.
83  * The flags are synchronized only for consoles that are registered, i.e.
84  * accessible via the console list.
85  */
86 static DEFINE_MUTEX(console_mutex);
87 
88 /*
89  * console_sem protects updates to console->seq and console_suspended,
90  * and also provides serialization for console printing.
91  */
92 static DEFINE_SEMAPHORE(console_sem);
93 HLIST_HEAD(console_list);
94 EXPORT_SYMBOL_GPL(console_list);
95 DEFINE_STATIC_SRCU(console_srcu);
96 
97 /*
98  * System may need to suppress printk message under certain
99  * circumstances, like after kernel panic happens.
100  */
101 int __read_mostly suppress_printk;
102 
103 /*
104  * During panic, heavy printk by other CPUs can delay the
105  * panic and risk deadlock on console resources.
106  */
107 static int __read_mostly suppress_panic_printk;
108 
109 #ifdef CONFIG_LOCKDEP
110 static struct lockdep_map console_lock_dep_map = {
111 	.name = "console_lock"
112 };
113 
114 void lockdep_assert_console_list_lock_held(void)
115 {
116 	lockdep_assert_held(&console_mutex);
117 }
118 EXPORT_SYMBOL(lockdep_assert_console_list_lock_held);
119 #endif
120 
121 #ifdef CONFIG_DEBUG_LOCK_ALLOC
122 bool console_srcu_read_lock_is_held(void)
123 {
124 	return srcu_read_lock_held(&console_srcu);
125 }
126 EXPORT_SYMBOL(console_srcu_read_lock_is_held);
127 #endif
128 
129 enum devkmsg_log_bits {
130 	__DEVKMSG_LOG_BIT_ON = 0,
131 	__DEVKMSG_LOG_BIT_OFF,
132 	__DEVKMSG_LOG_BIT_LOCK,
133 };
134 
135 enum devkmsg_log_masks {
136 	DEVKMSG_LOG_MASK_ON             = BIT(__DEVKMSG_LOG_BIT_ON),
137 	DEVKMSG_LOG_MASK_OFF            = BIT(__DEVKMSG_LOG_BIT_OFF),
138 	DEVKMSG_LOG_MASK_LOCK           = BIT(__DEVKMSG_LOG_BIT_LOCK),
139 };
140 
141 /* Keep both the 'on' and 'off' bits clear, i.e. ratelimit by default: */
142 #define DEVKMSG_LOG_MASK_DEFAULT	0
143 
144 static unsigned int __read_mostly devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT;
145 
146 static int __control_devkmsg(char *str)
147 {
148 	size_t len;
149 
150 	if (!str)
151 		return -EINVAL;
152 
153 	len = str_has_prefix(str, "on");
154 	if (len) {
155 		devkmsg_log = DEVKMSG_LOG_MASK_ON;
156 		return len;
157 	}
158 
159 	len = str_has_prefix(str, "off");
160 	if (len) {
161 		devkmsg_log = DEVKMSG_LOG_MASK_OFF;
162 		return len;
163 	}
164 
165 	len = str_has_prefix(str, "ratelimit");
166 	if (len) {
167 		devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT;
168 		return len;
169 	}
170 
171 	return -EINVAL;
172 }
173 
174 static int __init control_devkmsg(char *str)
175 {
176 	if (__control_devkmsg(str) < 0) {
177 		pr_warn("printk.devkmsg: bad option string '%s'\n", str);
178 		return 1;
179 	}
180 
181 	/*
182 	 * Set sysctl string accordingly:
183 	 */
184 	if (devkmsg_log == DEVKMSG_LOG_MASK_ON)
185 		strcpy(devkmsg_log_str, "on");
186 	else if (devkmsg_log == DEVKMSG_LOG_MASK_OFF)
187 		strcpy(devkmsg_log_str, "off");
188 	/* else "ratelimit" which is set by default. */
189 
190 	/*
191 	 * Sysctl cannot change it anymore. The kernel command line setting of
192 	 * this parameter is to force the setting to be permanent throughout the
193 	 * runtime of the system. This is a precation measure against userspace
194 	 * trying to be a smarta** and attempting to change it up on us.
195 	 */
196 	devkmsg_log |= DEVKMSG_LOG_MASK_LOCK;
197 
198 	return 1;
199 }
200 __setup("printk.devkmsg=", control_devkmsg);
201 
202 char devkmsg_log_str[DEVKMSG_STR_MAX_SIZE] = "ratelimit";
203 #if defined(CONFIG_PRINTK) && defined(CONFIG_SYSCTL)
204 int devkmsg_sysctl_set_loglvl(struct ctl_table *table, int write,
205 			      void *buffer, size_t *lenp, loff_t *ppos)
206 {
207 	char old_str[DEVKMSG_STR_MAX_SIZE];
208 	unsigned int old;
209 	int err;
210 
211 	if (write) {
212 		if (devkmsg_log & DEVKMSG_LOG_MASK_LOCK)
213 			return -EINVAL;
214 
215 		old = devkmsg_log;
216 		strncpy(old_str, devkmsg_log_str, DEVKMSG_STR_MAX_SIZE);
217 	}
218 
219 	err = proc_dostring(table, write, buffer, lenp, ppos);
220 	if (err)
221 		return err;
222 
223 	if (write) {
224 		err = __control_devkmsg(devkmsg_log_str);
225 
226 		/*
227 		 * Do not accept an unknown string OR a known string with
228 		 * trailing crap...
229 		 */
230 		if (err < 0 || (err + 1 != *lenp)) {
231 
232 			/* ... and restore old setting. */
233 			devkmsg_log = old;
234 			strncpy(devkmsg_log_str, old_str, DEVKMSG_STR_MAX_SIZE);
235 
236 			return -EINVAL;
237 		}
238 	}
239 
240 	return 0;
241 }
242 #endif /* CONFIG_PRINTK && CONFIG_SYSCTL */
243 
244 /**
245  * console_list_lock - Lock the console list
246  *
247  * For console list or console->flags updates
248  */
249 void console_list_lock(void)
250 {
251 	/*
252 	 * In unregister_console() and console_force_preferred_locked(),
253 	 * synchronize_srcu() is called with the console_list_lock held.
254 	 * Therefore it is not allowed that the console_list_lock is taken
255 	 * with the srcu_lock held.
256 	 *
257 	 * Detecting if this context is really in the read-side critical
258 	 * section is only possible if the appropriate debug options are
259 	 * enabled.
260 	 */
261 	WARN_ON_ONCE(debug_lockdep_rcu_enabled() &&
262 		     srcu_read_lock_held(&console_srcu));
263 
264 	mutex_lock(&console_mutex);
265 }
266 EXPORT_SYMBOL(console_list_lock);
267 
268 /**
269  * console_list_unlock - Unlock the console list
270  *
271  * Counterpart to console_list_lock()
272  */
273 void console_list_unlock(void)
274 {
275 	mutex_unlock(&console_mutex);
276 }
277 EXPORT_SYMBOL(console_list_unlock);
278 
279 /**
280  * console_srcu_read_lock - Register a new reader for the
281  *	SRCU-protected console list
282  *
283  * Use for_each_console_srcu() to iterate the console list
284  *
285  * Context: Any context.
286  * Return: A cookie to pass to console_srcu_read_unlock().
287  */
288 int console_srcu_read_lock(void)
289 {
290 	return srcu_read_lock_nmisafe(&console_srcu);
291 }
292 EXPORT_SYMBOL(console_srcu_read_lock);
293 
294 /**
295  * console_srcu_read_unlock - Unregister an old reader from
296  *	the SRCU-protected console list
297  * @cookie: cookie returned from console_srcu_read_lock()
298  *
299  * Counterpart to console_srcu_read_lock()
300  */
301 void console_srcu_read_unlock(int cookie)
302 {
303 	srcu_read_unlock_nmisafe(&console_srcu, cookie);
304 }
305 EXPORT_SYMBOL(console_srcu_read_unlock);
306 
307 /*
308  * Helper macros to handle lockdep when locking/unlocking console_sem. We use
309  * macros instead of functions so that _RET_IP_ contains useful information.
310  */
311 #define down_console_sem() do { \
312 	down(&console_sem);\
313 	mutex_acquire(&console_lock_dep_map, 0, 0, _RET_IP_);\
314 } while (0)
315 
316 static int __down_trylock_console_sem(unsigned long ip)
317 {
318 	int lock_failed;
319 	unsigned long flags;
320 
321 	/*
322 	 * Here and in __up_console_sem() we need to be in safe mode,
323 	 * because spindump/WARN/etc from under console ->lock will
324 	 * deadlock in printk()->down_trylock_console_sem() otherwise.
325 	 */
326 	printk_safe_enter_irqsave(flags);
327 	lock_failed = down_trylock(&console_sem);
328 	printk_safe_exit_irqrestore(flags);
329 
330 	if (lock_failed)
331 		return 1;
332 	mutex_acquire(&console_lock_dep_map, 0, 1, ip);
333 	return 0;
334 }
335 #define down_trylock_console_sem() __down_trylock_console_sem(_RET_IP_)
336 
337 static void __up_console_sem(unsigned long ip)
338 {
339 	unsigned long flags;
340 
341 	mutex_release(&console_lock_dep_map, ip);
342 
343 	printk_safe_enter_irqsave(flags);
344 	up(&console_sem);
345 	printk_safe_exit_irqrestore(flags);
346 }
347 #define up_console_sem() __up_console_sem(_RET_IP_)
348 
349 static bool panic_in_progress(void)
350 {
351 	return unlikely(atomic_read(&panic_cpu) != PANIC_CPU_INVALID);
352 }
353 
354 /*
355  * This is used for debugging the mess that is the VT code by
356  * keeping track if we have the console semaphore held. It's
357  * definitely not the perfect debug tool (we don't know if _WE_
358  * hold it and are racing, but it helps tracking those weird code
359  * paths in the console code where we end up in places I want
360  * locked without the console semaphore held).
361  */
362 static int console_locked, console_suspended;
363 
364 /*
365  *	Array of consoles built from command line options (console=)
366  */
367 
368 #define MAX_CMDLINECONSOLES 8
369 
370 static struct console_cmdline console_cmdline[MAX_CMDLINECONSOLES];
371 
372 static int preferred_console = -1;
373 int console_set_on_cmdline;
374 EXPORT_SYMBOL(console_set_on_cmdline);
375 
376 /* Flag: console code may call schedule() */
377 static int console_may_schedule;
378 
379 enum con_msg_format_flags {
380 	MSG_FORMAT_DEFAULT	= 0,
381 	MSG_FORMAT_SYSLOG	= (1 << 0),
382 };
383 
384 static int console_msg_format = MSG_FORMAT_DEFAULT;
385 
386 /*
387  * The printk log buffer consists of a sequenced collection of records, each
388  * containing variable length message text. Every record also contains its
389  * own meta-data (@info).
390  *
391  * Every record meta-data carries the timestamp in microseconds, as well as
392  * the standard userspace syslog level and syslog facility. The usual kernel
393  * messages use LOG_KERN; userspace-injected messages always carry a matching
394  * syslog facility, by default LOG_USER. The origin of every message can be
395  * reliably determined that way.
396  *
397  * The human readable log message of a record is available in @text, the
398  * length of the message text in @text_len. The stored message is not
399  * terminated.
400  *
401  * Optionally, a record can carry a dictionary of properties (key/value
402  * pairs), to provide userspace with a machine-readable message context.
403  *
404  * Examples for well-defined, commonly used property names are:
405  *   DEVICE=b12:8               device identifier
406  *                                b12:8         block dev_t
407  *                                c127:3        char dev_t
408  *                                n8            netdev ifindex
409  *                                +sound:card0  subsystem:devname
410  *   SUBSYSTEM=pci              driver-core subsystem name
411  *
412  * Valid characters in property names are [a-zA-Z0-9.-_]. Property names
413  * and values are terminated by a '\0' character.
414  *
415  * Example of record values:
416  *   record.text_buf                = "it's a line" (unterminated)
417  *   record.info.seq                = 56
418  *   record.info.ts_nsec            = 36863
419  *   record.info.text_len           = 11
420  *   record.info.facility           = 0 (LOG_KERN)
421  *   record.info.flags              = 0
422  *   record.info.level              = 3 (LOG_ERR)
423  *   record.info.caller_id          = 299 (task 299)
424  *   record.info.dev_info.subsystem = "pci" (terminated)
425  *   record.info.dev_info.device    = "+pci:0000:00:01.0" (terminated)
426  *
427  * The 'struct printk_info' buffer must never be directly exported to
428  * userspace, it is a kernel-private implementation detail that might
429  * need to be changed in the future, when the requirements change.
430  *
431  * /dev/kmsg exports the structured data in the following line format:
432  *   "<level>,<sequnum>,<timestamp>,<contflag>[,additional_values, ... ];<message text>\n"
433  *
434  * Users of the export format should ignore possible additional values
435  * separated by ',', and find the message after the ';' character.
436  *
437  * The optional key/value pairs are attached as continuation lines starting
438  * with a space character and terminated by a newline. All possible
439  * non-prinatable characters are escaped in the "\xff" notation.
440  */
441 
442 /* syslog_lock protects syslog_* variables and write access to clear_seq. */
443 static DEFINE_MUTEX(syslog_lock);
444 
445 #ifdef CONFIG_PRINTK
446 DECLARE_WAIT_QUEUE_HEAD(log_wait);
447 /* All 3 protected by @syslog_lock. */
448 /* the next printk record to read by syslog(READ) or /proc/kmsg */
449 static u64 syslog_seq;
450 static size_t syslog_partial;
451 static bool syslog_time;
452 
453 struct latched_seq {
454 	seqcount_latch_t	latch;
455 	u64			val[2];
456 };
457 
458 /*
459  * The next printk record to read after the last 'clear' command. There are
460  * two copies (updated with seqcount_latch) so that reads can locklessly
461  * access a valid value. Writers are synchronized by @syslog_lock.
462  */
463 static struct latched_seq clear_seq = {
464 	.latch		= SEQCNT_LATCH_ZERO(clear_seq.latch),
465 	.val[0]		= 0,
466 	.val[1]		= 0,
467 };
468 
469 #ifdef CONFIG_PRINTK_CALLER
470 #define PREFIX_MAX		48
471 #else
472 #define PREFIX_MAX		32
473 #endif
474 
475 /* the maximum size of a formatted record (i.e. with prefix added per line) */
476 #define CONSOLE_LOG_MAX		1024
477 
478 /* the maximum size for a dropped text message */
479 #define DROPPED_TEXT_MAX	64
480 
481 /* the maximum size allowed to be reserved for a record */
482 #define LOG_LINE_MAX		(CONSOLE_LOG_MAX - PREFIX_MAX)
483 
484 #define LOG_LEVEL(v)		((v) & 0x07)
485 #define LOG_FACILITY(v)		((v) >> 3 & 0xff)
486 
487 /* record buffer */
488 #define LOG_ALIGN __alignof__(unsigned long)
489 #define __LOG_BUF_LEN (1 << CONFIG_LOG_BUF_SHIFT)
490 #define LOG_BUF_LEN_MAX (u32)(1 << 31)
491 static char __log_buf[__LOG_BUF_LEN] __aligned(LOG_ALIGN);
492 static char *log_buf = __log_buf;
493 static u32 log_buf_len = __LOG_BUF_LEN;
494 
495 /*
496  * Define the average message size. This only affects the number of
497  * descriptors that will be available. Underestimating is better than
498  * overestimating (too many available descriptors is better than not enough).
499  */
500 #define PRB_AVGBITS 5	/* 32 character average length */
501 
502 #if CONFIG_LOG_BUF_SHIFT <= PRB_AVGBITS
503 #error CONFIG_LOG_BUF_SHIFT value too small.
504 #endif
505 _DEFINE_PRINTKRB(printk_rb_static, CONFIG_LOG_BUF_SHIFT - PRB_AVGBITS,
506 		 PRB_AVGBITS, &__log_buf[0]);
507 
508 static struct printk_ringbuffer printk_rb_dynamic;
509 
510 static struct printk_ringbuffer *prb = &printk_rb_static;
511 
512 /*
513  * We cannot access per-CPU data (e.g. per-CPU flush irq_work) before
514  * per_cpu_areas are initialised. This variable is set to true when
515  * it's safe to access per-CPU data.
516  */
517 static bool __printk_percpu_data_ready __ro_after_init;
518 
519 bool printk_percpu_data_ready(void)
520 {
521 	return __printk_percpu_data_ready;
522 }
523 
524 /* Must be called under syslog_lock. */
525 static void latched_seq_write(struct latched_seq *ls, u64 val)
526 {
527 	raw_write_seqcount_latch(&ls->latch);
528 	ls->val[0] = val;
529 	raw_write_seqcount_latch(&ls->latch);
530 	ls->val[1] = val;
531 }
532 
533 /* Can be called from any context. */
534 static u64 latched_seq_read_nolock(struct latched_seq *ls)
535 {
536 	unsigned int seq;
537 	unsigned int idx;
538 	u64 val;
539 
540 	do {
541 		seq = raw_read_seqcount_latch(&ls->latch);
542 		idx = seq & 0x1;
543 		val = ls->val[idx];
544 	} while (read_seqcount_latch_retry(&ls->latch, seq));
545 
546 	return val;
547 }
548 
549 /* Return log buffer address */
550 char *log_buf_addr_get(void)
551 {
552 	return log_buf;
553 }
554 
555 /* Return log buffer size */
556 u32 log_buf_len_get(void)
557 {
558 	return log_buf_len;
559 }
560 
561 /*
562  * Define how much of the log buffer we could take at maximum. The value
563  * must be greater than two. Note that only half of the buffer is available
564  * when the index points to the middle.
565  */
566 #define MAX_LOG_TAKE_PART 4
567 static const char trunc_msg[] = "<truncated>";
568 
569 static void truncate_msg(u16 *text_len, u16 *trunc_msg_len)
570 {
571 	/*
572 	 * The message should not take the whole buffer. Otherwise, it might
573 	 * get removed too soon.
574 	 */
575 	u32 max_text_len = log_buf_len / MAX_LOG_TAKE_PART;
576 
577 	if (*text_len > max_text_len)
578 		*text_len = max_text_len;
579 
580 	/* enable the warning message (if there is room) */
581 	*trunc_msg_len = strlen(trunc_msg);
582 	if (*text_len >= *trunc_msg_len)
583 		*text_len -= *trunc_msg_len;
584 	else
585 		*trunc_msg_len = 0;
586 }
587 
588 int dmesg_restrict = IS_ENABLED(CONFIG_SECURITY_DMESG_RESTRICT);
589 
590 static int syslog_action_restricted(int type)
591 {
592 	if (dmesg_restrict)
593 		return 1;
594 	/*
595 	 * Unless restricted, we allow "read all" and "get buffer size"
596 	 * for everybody.
597 	 */
598 	return type != SYSLOG_ACTION_READ_ALL &&
599 	       type != SYSLOG_ACTION_SIZE_BUFFER;
600 }
601 
602 static int check_syslog_permissions(int type, int source)
603 {
604 	/*
605 	 * If this is from /proc/kmsg and we've already opened it, then we've
606 	 * already done the capabilities checks at open time.
607 	 */
608 	if (source == SYSLOG_FROM_PROC && type != SYSLOG_ACTION_OPEN)
609 		goto ok;
610 
611 	if (syslog_action_restricted(type)) {
612 		if (capable(CAP_SYSLOG))
613 			goto ok;
614 		/*
615 		 * For historical reasons, accept CAP_SYS_ADMIN too, with
616 		 * a warning.
617 		 */
618 		if (capable(CAP_SYS_ADMIN)) {
619 			pr_warn_once("%s (%d): Attempt to access syslog with "
620 				     "CAP_SYS_ADMIN but no CAP_SYSLOG "
621 				     "(deprecated).\n",
622 				 current->comm, task_pid_nr(current));
623 			goto ok;
624 		}
625 		return -EPERM;
626 	}
627 ok:
628 	return security_syslog(type);
629 }
630 
631 static void append_char(char **pp, char *e, char c)
632 {
633 	if (*pp < e)
634 		*(*pp)++ = c;
635 }
636 
637 static ssize_t info_print_ext_header(char *buf, size_t size,
638 				     struct printk_info *info)
639 {
640 	u64 ts_usec = info->ts_nsec;
641 	char caller[20];
642 #ifdef CONFIG_PRINTK_CALLER
643 	u32 id = info->caller_id;
644 
645 	snprintf(caller, sizeof(caller), ",caller=%c%u",
646 		 id & 0x80000000 ? 'C' : 'T', id & ~0x80000000);
647 #else
648 	caller[0] = '\0';
649 #endif
650 
651 	do_div(ts_usec, 1000);
652 
653 	return scnprintf(buf, size, "%u,%llu,%llu,%c%s;",
654 			 (info->facility << 3) | info->level, info->seq,
655 			 ts_usec, info->flags & LOG_CONT ? 'c' : '-', caller);
656 }
657 
658 static ssize_t msg_add_ext_text(char *buf, size_t size,
659 				const char *text, size_t text_len,
660 				unsigned char endc)
661 {
662 	char *p = buf, *e = buf + size;
663 	size_t i;
664 
665 	/* escape non-printable characters */
666 	for (i = 0; i < text_len; i++) {
667 		unsigned char c = text[i];
668 
669 		if (c < ' ' || c >= 127 || c == '\\')
670 			p += scnprintf(p, e - p, "\\x%02x", c);
671 		else
672 			append_char(&p, e, c);
673 	}
674 	append_char(&p, e, endc);
675 
676 	return p - buf;
677 }
678 
679 static ssize_t msg_add_dict_text(char *buf, size_t size,
680 				 const char *key, const char *val)
681 {
682 	size_t val_len = strlen(val);
683 	ssize_t len;
684 
685 	if (!val_len)
686 		return 0;
687 
688 	len = msg_add_ext_text(buf, size, "", 0, ' ');	/* dict prefix */
689 	len += msg_add_ext_text(buf + len, size - len, key, strlen(key), '=');
690 	len += msg_add_ext_text(buf + len, size - len, val, val_len, '\n');
691 
692 	return len;
693 }
694 
695 static ssize_t msg_print_ext_body(char *buf, size_t size,
696 				  char *text, size_t text_len,
697 				  struct dev_printk_info *dev_info)
698 {
699 	ssize_t len;
700 
701 	len = msg_add_ext_text(buf, size, text, text_len, '\n');
702 
703 	if (!dev_info)
704 		goto out;
705 
706 	len += msg_add_dict_text(buf + len, size - len, "SUBSYSTEM",
707 				 dev_info->subsystem);
708 	len += msg_add_dict_text(buf + len, size - len, "DEVICE",
709 				 dev_info->device);
710 out:
711 	return len;
712 }
713 
714 /* /dev/kmsg - userspace message inject/listen interface */
715 struct devkmsg_user {
716 	atomic64_t seq;
717 	struct ratelimit_state rs;
718 	struct mutex lock;
719 	char buf[CONSOLE_EXT_LOG_MAX];
720 
721 	struct printk_info info;
722 	char text_buf[CONSOLE_EXT_LOG_MAX];
723 	struct printk_record record;
724 };
725 
726 static __printf(3, 4) __cold
727 int devkmsg_emit(int facility, int level, const char *fmt, ...)
728 {
729 	va_list args;
730 	int r;
731 
732 	va_start(args, fmt);
733 	r = vprintk_emit(facility, level, NULL, fmt, args);
734 	va_end(args);
735 
736 	return r;
737 }
738 
739 static ssize_t devkmsg_write(struct kiocb *iocb, struct iov_iter *from)
740 {
741 	char *buf, *line;
742 	int level = default_message_loglevel;
743 	int facility = 1;	/* LOG_USER */
744 	struct file *file = iocb->ki_filp;
745 	struct devkmsg_user *user = file->private_data;
746 	size_t len = iov_iter_count(from);
747 	ssize_t ret = len;
748 
749 	if (!user || len > LOG_LINE_MAX)
750 		return -EINVAL;
751 
752 	/* Ignore when user logging is disabled. */
753 	if (devkmsg_log & DEVKMSG_LOG_MASK_OFF)
754 		return len;
755 
756 	/* Ratelimit when not explicitly enabled. */
757 	if (!(devkmsg_log & DEVKMSG_LOG_MASK_ON)) {
758 		if (!___ratelimit(&user->rs, current->comm))
759 			return ret;
760 	}
761 
762 	buf = kmalloc(len+1, GFP_KERNEL);
763 	if (buf == NULL)
764 		return -ENOMEM;
765 
766 	buf[len] = '\0';
767 	if (!copy_from_iter_full(buf, len, from)) {
768 		kfree(buf);
769 		return -EFAULT;
770 	}
771 
772 	/*
773 	 * Extract and skip the syslog prefix <[0-9]*>. Coming from userspace
774 	 * the decimal value represents 32bit, the lower 3 bit are the log
775 	 * level, the rest are the log facility.
776 	 *
777 	 * If no prefix or no userspace facility is specified, we
778 	 * enforce LOG_USER, to be able to reliably distinguish
779 	 * kernel-generated messages from userspace-injected ones.
780 	 */
781 	line = buf;
782 	if (line[0] == '<') {
783 		char *endp = NULL;
784 		unsigned int u;
785 
786 		u = simple_strtoul(line + 1, &endp, 10);
787 		if (endp && endp[0] == '>') {
788 			level = LOG_LEVEL(u);
789 			if (LOG_FACILITY(u) != 0)
790 				facility = LOG_FACILITY(u);
791 			endp++;
792 			line = endp;
793 		}
794 	}
795 
796 	devkmsg_emit(facility, level, "%s", line);
797 	kfree(buf);
798 	return ret;
799 }
800 
801 static ssize_t devkmsg_read(struct file *file, char __user *buf,
802 			    size_t count, loff_t *ppos)
803 {
804 	struct devkmsg_user *user = file->private_data;
805 	struct printk_record *r = &user->record;
806 	size_t len;
807 	ssize_t ret;
808 
809 	if (!user)
810 		return -EBADF;
811 
812 	ret = mutex_lock_interruptible(&user->lock);
813 	if (ret)
814 		return ret;
815 
816 	if (!prb_read_valid(prb, atomic64_read(&user->seq), r)) {
817 		if (file->f_flags & O_NONBLOCK) {
818 			ret = -EAGAIN;
819 			goto out;
820 		}
821 
822 		/*
823 		 * Guarantee this task is visible on the waitqueue before
824 		 * checking the wake condition.
825 		 *
826 		 * The full memory barrier within set_current_state() of
827 		 * prepare_to_wait_event() pairs with the full memory barrier
828 		 * within wq_has_sleeper().
829 		 *
830 		 * This pairs with __wake_up_klogd:A.
831 		 */
832 		ret = wait_event_interruptible(log_wait,
833 				prb_read_valid(prb,
834 					atomic64_read(&user->seq), r)); /* LMM(devkmsg_read:A) */
835 		if (ret)
836 			goto out;
837 	}
838 
839 	if (r->info->seq != atomic64_read(&user->seq)) {
840 		/* our last seen message is gone, return error and reset */
841 		atomic64_set(&user->seq, r->info->seq);
842 		ret = -EPIPE;
843 		goto out;
844 	}
845 
846 	len = info_print_ext_header(user->buf, sizeof(user->buf), r->info);
847 	len += msg_print_ext_body(user->buf + len, sizeof(user->buf) - len,
848 				  &r->text_buf[0], r->info->text_len,
849 				  &r->info->dev_info);
850 
851 	atomic64_set(&user->seq, r->info->seq + 1);
852 
853 	if (len > count) {
854 		ret = -EINVAL;
855 		goto out;
856 	}
857 
858 	if (copy_to_user(buf, user->buf, len)) {
859 		ret = -EFAULT;
860 		goto out;
861 	}
862 	ret = len;
863 out:
864 	mutex_unlock(&user->lock);
865 	return ret;
866 }
867 
868 /*
869  * Be careful when modifying this function!!!
870  *
871  * Only few operations are supported because the device works only with the
872  * entire variable length messages (records). Non-standard values are
873  * returned in the other cases and has been this way for quite some time.
874  * User space applications might depend on this behavior.
875  */
876 static loff_t devkmsg_llseek(struct file *file, loff_t offset, int whence)
877 {
878 	struct devkmsg_user *user = file->private_data;
879 	loff_t ret = 0;
880 
881 	if (!user)
882 		return -EBADF;
883 	if (offset)
884 		return -ESPIPE;
885 
886 	switch (whence) {
887 	case SEEK_SET:
888 		/* the first record */
889 		atomic64_set(&user->seq, prb_first_valid_seq(prb));
890 		break;
891 	case SEEK_DATA:
892 		/*
893 		 * The first record after the last SYSLOG_ACTION_CLEAR,
894 		 * like issued by 'dmesg -c'. Reading /dev/kmsg itself
895 		 * changes no global state, and does not clear anything.
896 		 */
897 		atomic64_set(&user->seq, latched_seq_read_nolock(&clear_seq));
898 		break;
899 	case SEEK_END:
900 		/* after the last record */
901 		atomic64_set(&user->seq, prb_next_seq(prb));
902 		break;
903 	default:
904 		ret = -EINVAL;
905 	}
906 	return ret;
907 }
908 
909 static __poll_t devkmsg_poll(struct file *file, poll_table *wait)
910 {
911 	struct devkmsg_user *user = file->private_data;
912 	struct printk_info info;
913 	__poll_t ret = 0;
914 
915 	if (!user)
916 		return EPOLLERR|EPOLLNVAL;
917 
918 	poll_wait(file, &log_wait, wait);
919 
920 	if (prb_read_valid_info(prb, atomic64_read(&user->seq), &info, NULL)) {
921 		/* return error when data has vanished underneath us */
922 		if (info.seq != atomic64_read(&user->seq))
923 			ret = EPOLLIN|EPOLLRDNORM|EPOLLERR|EPOLLPRI;
924 		else
925 			ret = EPOLLIN|EPOLLRDNORM;
926 	}
927 
928 	return ret;
929 }
930 
931 static int devkmsg_open(struct inode *inode, struct file *file)
932 {
933 	struct devkmsg_user *user;
934 	int err;
935 
936 	if (devkmsg_log & DEVKMSG_LOG_MASK_OFF)
937 		return -EPERM;
938 
939 	/* write-only does not need any file context */
940 	if ((file->f_flags & O_ACCMODE) != O_WRONLY) {
941 		err = check_syslog_permissions(SYSLOG_ACTION_READ_ALL,
942 					       SYSLOG_FROM_READER);
943 		if (err)
944 			return err;
945 	}
946 
947 	user = kvmalloc(sizeof(struct devkmsg_user), GFP_KERNEL);
948 	if (!user)
949 		return -ENOMEM;
950 
951 	ratelimit_default_init(&user->rs);
952 	ratelimit_set_flags(&user->rs, RATELIMIT_MSG_ON_RELEASE);
953 
954 	mutex_init(&user->lock);
955 
956 	prb_rec_init_rd(&user->record, &user->info,
957 			&user->text_buf[0], sizeof(user->text_buf));
958 
959 	atomic64_set(&user->seq, prb_first_valid_seq(prb));
960 
961 	file->private_data = user;
962 	return 0;
963 }
964 
965 static int devkmsg_release(struct inode *inode, struct file *file)
966 {
967 	struct devkmsg_user *user = file->private_data;
968 
969 	if (!user)
970 		return 0;
971 
972 	ratelimit_state_exit(&user->rs);
973 
974 	mutex_destroy(&user->lock);
975 	kvfree(user);
976 	return 0;
977 }
978 
979 const struct file_operations kmsg_fops = {
980 	.open = devkmsg_open,
981 	.read = devkmsg_read,
982 	.write_iter = devkmsg_write,
983 	.llseek = devkmsg_llseek,
984 	.poll = devkmsg_poll,
985 	.release = devkmsg_release,
986 };
987 
988 #ifdef CONFIG_CRASH_CORE
989 /*
990  * This appends the listed symbols to /proc/vmcore
991  *
992  * /proc/vmcore is used by various utilities, like crash and makedumpfile to
993  * obtain access to symbols that are otherwise very difficult to locate.  These
994  * symbols are specifically used so that utilities can access and extract the
995  * dmesg log from a vmcore file after a crash.
996  */
997 void log_buf_vmcoreinfo_setup(void)
998 {
999 	struct dev_printk_info *dev_info = NULL;
1000 
1001 	VMCOREINFO_SYMBOL(prb);
1002 	VMCOREINFO_SYMBOL(printk_rb_static);
1003 	VMCOREINFO_SYMBOL(clear_seq);
1004 
1005 	/*
1006 	 * Export struct size and field offsets. User space tools can
1007 	 * parse it and detect any changes to structure down the line.
1008 	 */
1009 
1010 	VMCOREINFO_STRUCT_SIZE(printk_ringbuffer);
1011 	VMCOREINFO_OFFSET(printk_ringbuffer, desc_ring);
1012 	VMCOREINFO_OFFSET(printk_ringbuffer, text_data_ring);
1013 	VMCOREINFO_OFFSET(printk_ringbuffer, fail);
1014 
1015 	VMCOREINFO_STRUCT_SIZE(prb_desc_ring);
1016 	VMCOREINFO_OFFSET(prb_desc_ring, count_bits);
1017 	VMCOREINFO_OFFSET(prb_desc_ring, descs);
1018 	VMCOREINFO_OFFSET(prb_desc_ring, infos);
1019 	VMCOREINFO_OFFSET(prb_desc_ring, head_id);
1020 	VMCOREINFO_OFFSET(prb_desc_ring, tail_id);
1021 
1022 	VMCOREINFO_STRUCT_SIZE(prb_desc);
1023 	VMCOREINFO_OFFSET(prb_desc, state_var);
1024 	VMCOREINFO_OFFSET(prb_desc, text_blk_lpos);
1025 
1026 	VMCOREINFO_STRUCT_SIZE(prb_data_blk_lpos);
1027 	VMCOREINFO_OFFSET(prb_data_blk_lpos, begin);
1028 	VMCOREINFO_OFFSET(prb_data_blk_lpos, next);
1029 
1030 	VMCOREINFO_STRUCT_SIZE(printk_info);
1031 	VMCOREINFO_OFFSET(printk_info, seq);
1032 	VMCOREINFO_OFFSET(printk_info, ts_nsec);
1033 	VMCOREINFO_OFFSET(printk_info, text_len);
1034 	VMCOREINFO_OFFSET(printk_info, caller_id);
1035 	VMCOREINFO_OFFSET(printk_info, dev_info);
1036 
1037 	VMCOREINFO_STRUCT_SIZE(dev_printk_info);
1038 	VMCOREINFO_OFFSET(dev_printk_info, subsystem);
1039 	VMCOREINFO_LENGTH(printk_info_subsystem, sizeof(dev_info->subsystem));
1040 	VMCOREINFO_OFFSET(dev_printk_info, device);
1041 	VMCOREINFO_LENGTH(printk_info_device, sizeof(dev_info->device));
1042 
1043 	VMCOREINFO_STRUCT_SIZE(prb_data_ring);
1044 	VMCOREINFO_OFFSET(prb_data_ring, size_bits);
1045 	VMCOREINFO_OFFSET(prb_data_ring, data);
1046 	VMCOREINFO_OFFSET(prb_data_ring, head_lpos);
1047 	VMCOREINFO_OFFSET(prb_data_ring, tail_lpos);
1048 
1049 	VMCOREINFO_SIZE(atomic_long_t);
1050 	VMCOREINFO_TYPE_OFFSET(atomic_long_t, counter);
1051 
1052 	VMCOREINFO_STRUCT_SIZE(latched_seq);
1053 	VMCOREINFO_OFFSET(latched_seq, val);
1054 }
1055 #endif
1056 
1057 /* requested log_buf_len from kernel cmdline */
1058 static unsigned long __initdata new_log_buf_len;
1059 
1060 /* we practice scaling the ring buffer by powers of 2 */
1061 static void __init log_buf_len_update(u64 size)
1062 {
1063 	if (size > (u64)LOG_BUF_LEN_MAX) {
1064 		size = (u64)LOG_BUF_LEN_MAX;
1065 		pr_err("log_buf over 2G is not supported.\n");
1066 	}
1067 
1068 	if (size)
1069 		size = roundup_pow_of_two(size);
1070 	if (size > log_buf_len)
1071 		new_log_buf_len = (unsigned long)size;
1072 }
1073 
1074 /* save requested log_buf_len since it's too early to process it */
1075 static int __init log_buf_len_setup(char *str)
1076 {
1077 	u64 size;
1078 
1079 	if (!str)
1080 		return -EINVAL;
1081 
1082 	size = memparse(str, &str);
1083 
1084 	log_buf_len_update(size);
1085 
1086 	return 0;
1087 }
1088 early_param("log_buf_len", log_buf_len_setup);
1089 
1090 #ifdef CONFIG_SMP
1091 #define __LOG_CPU_MAX_BUF_LEN (1 << CONFIG_LOG_CPU_MAX_BUF_SHIFT)
1092 
1093 static void __init log_buf_add_cpu(void)
1094 {
1095 	unsigned int cpu_extra;
1096 
1097 	/*
1098 	 * archs should set up cpu_possible_bits properly with
1099 	 * set_cpu_possible() after setup_arch() but just in
1100 	 * case lets ensure this is valid.
1101 	 */
1102 	if (num_possible_cpus() == 1)
1103 		return;
1104 
1105 	cpu_extra = (num_possible_cpus() - 1) * __LOG_CPU_MAX_BUF_LEN;
1106 
1107 	/* by default this will only continue through for large > 64 CPUs */
1108 	if (cpu_extra <= __LOG_BUF_LEN / 2)
1109 		return;
1110 
1111 	pr_info("log_buf_len individual max cpu contribution: %d bytes\n",
1112 		__LOG_CPU_MAX_BUF_LEN);
1113 	pr_info("log_buf_len total cpu_extra contributions: %d bytes\n",
1114 		cpu_extra);
1115 	pr_info("log_buf_len min size: %d bytes\n", __LOG_BUF_LEN);
1116 
1117 	log_buf_len_update(cpu_extra + __LOG_BUF_LEN);
1118 }
1119 #else /* !CONFIG_SMP */
1120 static inline void log_buf_add_cpu(void) {}
1121 #endif /* CONFIG_SMP */
1122 
1123 static void __init set_percpu_data_ready(void)
1124 {
1125 	__printk_percpu_data_ready = true;
1126 }
1127 
1128 static unsigned int __init add_to_rb(struct printk_ringbuffer *rb,
1129 				     struct printk_record *r)
1130 {
1131 	struct prb_reserved_entry e;
1132 	struct printk_record dest_r;
1133 
1134 	prb_rec_init_wr(&dest_r, r->info->text_len);
1135 
1136 	if (!prb_reserve(&e, rb, &dest_r))
1137 		return 0;
1138 
1139 	memcpy(&dest_r.text_buf[0], &r->text_buf[0], r->info->text_len);
1140 	dest_r.info->text_len = r->info->text_len;
1141 	dest_r.info->facility = r->info->facility;
1142 	dest_r.info->level = r->info->level;
1143 	dest_r.info->flags = r->info->flags;
1144 	dest_r.info->ts_nsec = r->info->ts_nsec;
1145 	dest_r.info->caller_id = r->info->caller_id;
1146 	memcpy(&dest_r.info->dev_info, &r->info->dev_info, sizeof(dest_r.info->dev_info));
1147 
1148 	prb_final_commit(&e);
1149 
1150 	return prb_record_text_space(&e);
1151 }
1152 
1153 static char setup_text_buf[LOG_LINE_MAX] __initdata;
1154 
1155 void __init setup_log_buf(int early)
1156 {
1157 	struct printk_info *new_infos;
1158 	unsigned int new_descs_count;
1159 	struct prb_desc *new_descs;
1160 	struct printk_info info;
1161 	struct printk_record r;
1162 	unsigned int text_size;
1163 	size_t new_descs_size;
1164 	size_t new_infos_size;
1165 	unsigned long flags;
1166 	char *new_log_buf;
1167 	unsigned int free;
1168 	u64 seq;
1169 
1170 	/*
1171 	 * Some archs call setup_log_buf() multiple times - first is very
1172 	 * early, e.g. from setup_arch(), and second - when percpu_areas
1173 	 * are initialised.
1174 	 */
1175 	if (!early)
1176 		set_percpu_data_ready();
1177 
1178 	if (log_buf != __log_buf)
1179 		return;
1180 
1181 	if (!early && !new_log_buf_len)
1182 		log_buf_add_cpu();
1183 
1184 	if (!new_log_buf_len)
1185 		return;
1186 
1187 	new_descs_count = new_log_buf_len >> PRB_AVGBITS;
1188 	if (new_descs_count == 0) {
1189 		pr_err("new_log_buf_len: %lu too small\n", new_log_buf_len);
1190 		return;
1191 	}
1192 
1193 	new_log_buf = memblock_alloc(new_log_buf_len, LOG_ALIGN);
1194 	if (unlikely(!new_log_buf)) {
1195 		pr_err("log_buf_len: %lu text bytes not available\n",
1196 		       new_log_buf_len);
1197 		return;
1198 	}
1199 
1200 	new_descs_size = new_descs_count * sizeof(struct prb_desc);
1201 	new_descs = memblock_alloc(new_descs_size, LOG_ALIGN);
1202 	if (unlikely(!new_descs)) {
1203 		pr_err("log_buf_len: %zu desc bytes not available\n",
1204 		       new_descs_size);
1205 		goto err_free_log_buf;
1206 	}
1207 
1208 	new_infos_size = new_descs_count * sizeof(struct printk_info);
1209 	new_infos = memblock_alloc(new_infos_size, LOG_ALIGN);
1210 	if (unlikely(!new_infos)) {
1211 		pr_err("log_buf_len: %zu info bytes not available\n",
1212 		       new_infos_size);
1213 		goto err_free_descs;
1214 	}
1215 
1216 	prb_rec_init_rd(&r, &info, &setup_text_buf[0], sizeof(setup_text_buf));
1217 
1218 	prb_init(&printk_rb_dynamic,
1219 		 new_log_buf, ilog2(new_log_buf_len),
1220 		 new_descs, ilog2(new_descs_count),
1221 		 new_infos);
1222 
1223 	local_irq_save(flags);
1224 
1225 	log_buf_len = new_log_buf_len;
1226 	log_buf = new_log_buf;
1227 	new_log_buf_len = 0;
1228 
1229 	free = __LOG_BUF_LEN;
1230 	prb_for_each_record(0, &printk_rb_static, seq, &r) {
1231 		text_size = add_to_rb(&printk_rb_dynamic, &r);
1232 		if (text_size > free)
1233 			free = 0;
1234 		else
1235 			free -= text_size;
1236 	}
1237 
1238 	prb = &printk_rb_dynamic;
1239 
1240 	local_irq_restore(flags);
1241 
1242 	/*
1243 	 * Copy any remaining messages that might have appeared from
1244 	 * NMI context after copying but before switching to the
1245 	 * dynamic buffer.
1246 	 */
1247 	prb_for_each_record(seq, &printk_rb_static, seq, &r) {
1248 		text_size = add_to_rb(&printk_rb_dynamic, &r);
1249 		if (text_size > free)
1250 			free = 0;
1251 		else
1252 			free -= text_size;
1253 	}
1254 
1255 	if (seq != prb_next_seq(&printk_rb_static)) {
1256 		pr_err("dropped %llu messages\n",
1257 		       prb_next_seq(&printk_rb_static) - seq);
1258 	}
1259 
1260 	pr_info("log_buf_len: %u bytes\n", log_buf_len);
1261 	pr_info("early log buf free: %u(%u%%)\n",
1262 		free, (free * 100) / __LOG_BUF_LEN);
1263 	return;
1264 
1265 err_free_descs:
1266 	memblock_free(new_descs, new_descs_size);
1267 err_free_log_buf:
1268 	memblock_free(new_log_buf, new_log_buf_len);
1269 }
1270 
1271 static bool __read_mostly ignore_loglevel;
1272 
1273 static int __init ignore_loglevel_setup(char *str)
1274 {
1275 	ignore_loglevel = true;
1276 	pr_info("debug: ignoring loglevel setting.\n");
1277 
1278 	return 0;
1279 }
1280 
1281 early_param("ignore_loglevel", ignore_loglevel_setup);
1282 module_param(ignore_loglevel, bool, S_IRUGO | S_IWUSR);
1283 MODULE_PARM_DESC(ignore_loglevel,
1284 		 "ignore loglevel setting (prints all kernel messages to the console)");
1285 
1286 static bool suppress_message_printing(int level)
1287 {
1288 	return (level >= console_loglevel && !ignore_loglevel);
1289 }
1290 
1291 #ifdef CONFIG_BOOT_PRINTK_DELAY
1292 
1293 static int boot_delay; /* msecs delay after each printk during bootup */
1294 static unsigned long long loops_per_msec;	/* based on boot_delay */
1295 
1296 static int __init boot_delay_setup(char *str)
1297 {
1298 	unsigned long lpj;
1299 
1300 	lpj = preset_lpj ? preset_lpj : 1000000;	/* some guess */
1301 	loops_per_msec = (unsigned long long)lpj / 1000 * HZ;
1302 
1303 	get_option(&str, &boot_delay);
1304 	if (boot_delay > 10 * 1000)
1305 		boot_delay = 0;
1306 
1307 	pr_debug("boot_delay: %u, preset_lpj: %ld, lpj: %lu, "
1308 		"HZ: %d, loops_per_msec: %llu\n",
1309 		boot_delay, preset_lpj, lpj, HZ, loops_per_msec);
1310 	return 0;
1311 }
1312 early_param("boot_delay", boot_delay_setup);
1313 
1314 static void boot_delay_msec(int level)
1315 {
1316 	unsigned long long k;
1317 	unsigned long timeout;
1318 
1319 	if ((boot_delay == 0 || system_state >= SYSTEM_RUNNING)
1320 		|| suppress_message_printing(level)) {
1321 		return;
1322 	}
1323 
1324 	k = (unsigned long long)loops_per_msec * boot_delay;
1325 
1326 	timeout = jiffies + msecs_to_jiffies(boot_delay);
1327 	while (k) {
1328 		k--;
1329 		cpu_relax();
1330 		/*
1331 		 * use (volatile) jiffies to prevent
1332 		 * compiler reduction; loop termination via jiffies
1333 		 * is secondary and may or may not happen.
1334 		 */
1335 		if (time_after(jiffies, timeout))
1336 			break;
1337 		touch_nmi_watchdog();
1338 	}
1339 }
1340 #else
1341 static inline void boot_delay_msec(int level)
1342 {
1343 }
1344 #endif
1345 
1346 static bool printk_time = IS_ENABLED(CONFIG_PRINTK_TIME);
1347 module_param_named(time, printk_time, bool, S_IRUGO | S_IWUSR);
1348 
1349 static size_t print_syslog(unsigned int level, char *buf)
1350 {
1351 	return sprintf(buf, "<%u>", level);
1352 }
1353 
1354 static size_t print_time(u64 ts, char *buf)
1355 {
1356 	unsigned long rem_nsec = do_div(ts, 1000000000);
1357 
1358 	return sprintf(buf, "[%5lu.%06lu]",
1359 		       (unsigned long)ts, rem_nsec / 1000);
1360 }
1361 
1362 #ifdef CONFIG_PRINTK_CALLER
1363 static size_t print_caller(u32 id, char *buf)
1364 {
1365 	char caller[12];
1366 
1367 	snprintf(caller, sizeof(caller), "%c%u",
1368 		 id & 0x80000000 ? 'C' : 'T', id & ~0x80000000);
1369 	return sprintf(buf, "[%6s]", caller);
1370 }
1371 #else
1372 #define print_caller(id, buf) 0
1373 #endif
1374 
1375 static size_t info_print_prefix(const struct printk_info  *info, bool syslog,
1376 				bool time, char *buf)
1377 {
1378 	size_t len = 0;
1379 
1380 	if (syslog)
1381 		len = print_syslog((info->facility << 3) | info->level, buf);
1382 
1383 	if (time)
1384 		len += print_time(info->ts_nsec, buf + len);
1385 
1386 	len += print_caller(info->caller_id, buf + len);
1387 
1388 	if (IS_ENABLED(CONFIG_PRINTK_CALLER) || time) {
1389 		buf[len++] = ' ';
1390 		buf[len] = '\0';
1391 	}
1392 
1393 	return len;
1394 }
1395 
1396 /*
1397  * Prepare the record for printing. The text is shifted within the given
1398  * buffer to avoid a need for another one. The following operations are
1399  * done:
1400  *
1401  *   - Add prefix for each line.
1402  *   - Drop truncated lines that no longer fit into the buffer.
1403  *   - Add the trailing newline that has been removed in vprintk_store().
1404  *   - Add a string terminator.
1405  *
1406  * Since the produced string is always terminated, the maximum possible
1407  * return value is @r->text_buf_size - 1;
1408  *
1409  * Return: The length of the updated/prepared text, including the added
1410  * prefixes and the newline. The terminator is not counted. The dropped
1411  * line(s) are not counted.
1412  */
1413 static size_t record_print_text(struct printk_record *r, bool syslog,
1414 				bool time)
1415 {
1416 	size_t text_len = r->info->text_len;
1417 	size_t buf_size = r->text_buf_size;
1418 	char *text = r->text_buf;
1419 	char prefix[PREFIX_MAX];
1420 	bool truncated = false;
1421 	size_t prefix_len;
1422 	size_t line_len;
1423 	size_t len = 0;
1424 	char *next;
1425 
1426 	/*
1427 	 * If the message was truncated because the buffer was not large
1428 	 * enough, treat the available text as if it were the full text.
1429 	 */
1430 	if (text_len > buf_size)
1431 		text_len = buf_size;
1432 
1433 	prefix_len = info_print_prefix(r->info, syslog, time, prefix);
1434 
1435 	/*
1436 	 * @text_len: bytes of unprocessed text
1437 	 * @line_len: bytes of current line _without_ newline
1438 	 * @text:     pointer to beginning of current line
1439 	 * @len:      number of bytes prepared in r->text_buf
1440 	 */
1441 	for (;;) {
1442 		next = memchr(text, '\n', text_len);
1443 		if (next) {
1444 			line_len = next - text;
1445 		} else {
1446 			/* Drop truncated line(s). */
1447 			if (truncated)
1448 				break;
1449 			line_len = text_len;
1450 		}
1451 
1452 		/*
1453 		 * Truncate the text if there is not enough space to add the
1454 		 * prefix and a trailing newline and a terminator.
1455 		 */
1456 		if (len + prefix_len + text_len + 1 + 1 > buf_size) {
1457 			/* Drop even the current line if no space. */
1458 			if (len + prefix_len + line_len + 1 + 1 > buf_size)
1459 				break;
1460 
1461 			text_len = buf_size - len - prefix_len - 1 - 1;
1462 			truncated = true;
1463 		}
1464 
1465 		memmove(text + prefix_len, text, text_len);
1466 		memcpy(text, prefix, prefix_len);
1467 
1468 		/*
1469 		 * Increment the prepared length to include the text and
1470 		 * prefix that were just moved+copied. Also increment for the
1471 		 * newline at the end of this line. If this is the last line,
1472 		 * there is no newline, but it will be added immediately below.
1473 		 */
1474 		len += prefix_len + line_len + 1;
1475 		if (text_len == line_len) {
1476 			/*
1477 			 * This is the last line. Add the trailing newline
1478 			 * removed in vprintk_store().
1479 			 */
1480 			text[prefix_len + line_len] = '\n';
1481 			break;
1482 		}
1483 
1484 		/*
1485 		 * Advance beyond the added prefix and the related line with
1486 		 * its newline.
1487 		 */
1488 		text += prefix_len + line_len + 1;
1489 
1490 		/*
1491 		 * The remaining text has only decreased by the line with its
1492 		 * newline.
1493 		 *
1494 		 * Note that @text_len can become zero. It happens when @text
1495 		 * ended with a newline (either due to truncation or the
1496 		 * original string ending with "\n\n"). The loop is correctly
1497 		 * repeated and (if not truncated) an empty line with a prefix
1498 		 * will be prepared.
1499 		 */
1500 		text_len -= line_len + 1;
1501 	}
1502 
1503 	/*
1504 	 * If a buffer was provided, it will be terminated. Space for the
1505 	 * string terminator is guaranteed to be available. The terminator is
1506 	 * not counted in the return value.
1507 	 */
1508 	if (buf_size > 0)
1509 		r->text_buf[len] = 0;
1510 
1511 	return len;
1512 }
1513 
1514 static size_t get_record_print_text_size(struct printk_info *info,
1515 					 unsigned int line_count,
1516 					 bool syslog, bool time)
1517 {
1518 	char prefix[PREFIX_MAX];
1519 	size_t prefix_len;
1520 
1521 	prefix_len = info_print_prefix(info, syslog, time, prefix);
1522 
1523 	/*
1524 	 * Each line will be preceded with a prefix. The intermediate
1525 	 * newlines are already within the text, but a final trailing
1526 	 * newline will be added.
1527 	 */
1528 	return ((prefix_len * line_count) + info->text_len + 1);
1529 }
1530 
1531 /*
1532  * Beginning with @start_seq, find the first record where it and all following
1533  * records up to (but not including) @max_seq fit into @size.
1534  *
1535  * @max_seq is simply an upper bound and does not need to exist. If the caller
1536  * does not require an upper bound, -1 can be used for @max_seq.
1537  */
1538 static u64 find_first_fitting_seq(u64 start_seq, u64 max_seq, size_t size,
1539 				  bool syslog, bool time)
1540 {
1541 	struct printk_info info;
1542 	unsigned int line_count;
1543 	size_t len = 0;
1544 	u64 seq;
1545 
1546 	/* Determine the size of the records up to @max_seq. */
1547 	prb_for_each_info(start_seq, prb, seq, &info, &line_count) {
1548 		if (info.seq >= max_seq)
1549 			break;
1550 		len += get_record_print_text_size(&info, line_count, syslog, time);
1551 	}
1552 
1553 	/*
1554 	 * Adjust the upper bound for the next loop to avoid subtracting
1555 	 * lengths that were never added.
1556 	 */
1557 	if (seq < max_seq)
1558 		max_seq = seq;
1559 
1560 	/*
1561 	 * Move first record forward until length fits into the buffer. Ignore
1562 	 * newest messages that were not counted in the above cycle. Messages
1563 	 * might appear and get lost in the meantime. This is a best effort
1564 	 * that prevents an infinite loop that could occur with a retry.
1565 	 */
1566 	prb_for_each_info(start_seq, prb, seq, &info, &line_count) {
1567 		if (len <= size || info.seq >= max_seq)
1568 			break;
1569 		len -= get_record_print_text_size(&info, line_count, syslog, time);
1570 	}
1571 
1572 	return seq;
1573 }
1574 
1575 /* The caller is responsible for making sure @size is greater than 0. */
1576 static int syslog_print(char __user *buf, int size)
1577 {
1578 	struct printk_info info;
1579 	struct printk_record r;
1580 	char *text;
1581 	int len = 0;
1582 	u64 seq;
1583 
1584 	text = kmalloc(CONSOLE_LOG_MAX, GFP_KERNEL);
1585 	if (!text)
1586 		return -ENOMEM;
1587 
1588 	prb_rec_init_rd(&r, &info, text, CONSOLE_LOG_MAX);
1589 
1590 	mutex_lock(&syslog_lock);
1591 
1592 	/*
1593 	 * Wait for the @syslog_seq record to be available. @syslog_seq may
1594 	 * change while waiting.
1595 	 */
1596 	do {
1597 		seq = syslog_seq;
1598 
1599 		mutex_unlock(&syslog_lock);
1600 		/*
1601 		 * Guarantee this task is visible on the waitqueue before
1602 		 * checking the wake condition.
1603 		 *
1604 		 * The full memory barrier within set_current_state() of
1605 		 * prepare_to_wait_event() pairs with the full memory barrier
1606 		 * within wq_has_sleeper().
1607 		 *
1608 		 * This pairs with __wake_up_klogd:A.
1609 		 */
1610 		len = wait_event_interruptible(log_wait,
1611 				prb_read_valid(prb, seq, NULL)); /* LMM(syslog_print:A) */
1612 		mutex_lock(&syslog_lock);
1613 
1614 		if (len)
1615 			goto out;
1616 	} while (syslog_seq != seq);
1617 
1618 	/*
1619 	 * Copy records that fit into the buffer. The above cycle makes sure
1620 	 * that the first record is always available.
1621 	 */
1622 	do {
1623 		size_t n;
1624 		size_t skip;
1625 		int err;
1626 
1627 		if (!prb_read_valid(prb, syslog_seq, &r))
1628 			break;
1629 
1630 		if (r.info->seq != syslog_seq) {
1631 			/* message is gone, move to next valid one */
1632 			syslog_seq = r.info->seq;
1633 			syslog_partial = 0;
1634 		}
1635 
1636 		/*
1637 		 * To keep reading/counting partial line consistent,
1638 		 * use printk_time value as of the beginning of a line.
1639 		 */
1640 		if (!syslog_partial)
1641 			syslog_time = printk_time;
1642 
1643 		skip = syslog_partial;
1644 		n = record_print_text(&r, true, syslog_time);
1645 		if (n - syslog_partial <= size) {
1646 			/* message fits into buffer, move forward */
1647 			syslog_seq = r.info->seq + 1;
1648 			n -= syslog_partial;
1649 			syslog_partial = 0;
1650 		} else if (!len){
1651 			/* partial read(), remember position */
1652 			n = size;
1653 			syslog_partial += n;
1654 		} else
1655 			n = 0;
1656 
1657 		if (!n)
1658 			break;
1659 
1660 		mutex_unlock(&syslog_lock);
1661 		err = copy_to_user(buf, text + skip, n);
1662 		mutex_lock(&syslog_lock);
1663 
1664 		if (err) {
1665 			if (!len)
1666 				len = -EFAULT;
1667 			break;
1668 		}
1669 
1670 		len += n;
1671 		size -= n;
1672 		buf += n;
1673 	} while (size);
1674 out:
1675 	mutex_unlock(&syslog_lock);
1676 	kfree(text);
1677 	return len;
1678 }
1679 
1680 static int syslog_print_all(char __user *buf, int size, bool clear)
1681 {
1682 	struct printk_info info;
1683 	struct printk_record r;
1684 	char *text;
1685 	int len = 0;
1686 	u64 seq;
1687 	bool time;
1688 
1689 	text = kmalloc(CONSOLE_LOG_MAX, GFP_KERNEL);
1690 	if (!text)
1691 		return -ENOMEM;
1692 
1693 	time = printk_time;
1694 	/*
1695 	 * Find first record that fits, including all following records,
1696 	 * into the user-provided buffer for this dump.
1697 	 */
1698 	seq = find_first_fitting_seq(latched_seq_read_nolock(&clear_seq), -1,
1699 				     size, true, time);
1700 
1701 	prb_rec_init_rd(&r, &info, text, CONSOLE_LOG_MAX);
1702 
1703 	len = 0;
1704 	prb_for_each_record(seq, prb, seq, &r) {
1705 		int textlen;
1706 
1707 		textlen = record_print_text(&r, true, time);
1708 
1709 		if (len + textlen > size) {
1710 			seq--;
1711 			break;
1712 		}
1713 
1714 		if (copy_to_user(buf + len, text, textlen))
1715 			len = -EFAULT;
1716 		else
1717 			len += textlen;
1718 
1719 		if (len < 0)
1720 			break;
1721 	}
1722 
1723 	if (clear) {
1724 		mutex_lock(&syslog_lock);
1725 		latched_seq_write(&clear_seq, seq);
1726 		mutex_unlock(&syslog_lock);
1727 	}
1728 
1729 	kfree(text);
1730 	return len;
1731 }
1732 
1733 static void syslog_clear(void)
1734 {
1735 	mutex_lock(&syslog_lock);
1736 	latched_seq_write(&clear_seq, prb_next_seq(prb));
1737 	mutex_unlock(&syslog_lock);
1738 }
1739 
1740 int do_syslog(int type, char __user *buf, int len, int source)
1741 {
1742 	struct printk_info info;
1743 	bool clear = false;
1744 	static int saved_console_loglevel = LOGLEVEL_DEFAULT;
1745 	int error;
1746 
1747 	error = check_syslog_permissions(type, source);
1748 	if (error)
1749 		return error;
1750 
1751 	switch (type) {
1752 	case SYSLOG_ACTION_CLOSE:	/* Close log */
1753 		break;
1754 	case SYSLOG_ACTION_OPEN:	/* Open log */
1755 		break;
1756 	case SYSLOG_ACTION_READ:	/* Read from log */
1757 		if (!buf || len < 0)
1758 			return -EINVAL;
1759 		if (!len)
1760 			return 0;
1761 		if (!access_ok(buf, len))
1762 			return -EFAULT;
1763 		error = syslog_print(buf, len);
1764 		break;
1765 	/* Read/clear last kernel messages */
1766 	case SYSLOG_ACTION_READ_CLEAR:
1767 		clear = true;
1768 		fallthrough;
1769 	/* Read last kernel messages */
1770 	case SYSLOG_ACTION_READ_ALL:
1771 		if (!buf || len < 0)
1772 			return -EINVAL;
1773 		if (!len)
1774 			return 0;
1775 		if (!access_ok(buf, len))
1776 			return -EFAULT;
1777 		error = syslog_print_all(buf, len, clear);
1778 		break;
1779 	/* Clear ring buffer */
1780 	case SYSLOG_ACTION_CLEAR:
1781 		syslog_clear();
1782 		break;
1783 	/* Disable logging to console */
1784 	case SYSLOG_ACTION_CONSOLE_OFF:
1785 		if (saved_console_loglevel == LOGLEVEL_DEFAULT)
1786 			saved_console_loglevel = console_loglevel;
1787 		console_loglevel = minimum_console_loglevel;
1788 		break;
1789 	/* Enable logging to console */
1790 	case SYSLOG_ACTION_CONSOLE_ON:
1791 		if (saved_console_loglevel != LOGLEVEL_DEFAULT) {
1792 			console_loglevel = saved_console_loglevel;
1793 			saved_console_loglevel = LOGLEVEL_DEFAULT;
1794 		}
1795 		break;
1796 	/* Set level of messages printed to console */
1797 	case SYSLOG_ACTION_CONSOLE_LEVEL:
1798 		if (len < 1 || len > 8)
1799 			return -EINVAL;
1800 		if (len < minimum_console_loglevel)
1801 			len = minimum_console_loglevel;
1802 		console_loglevel = len;
1803 		/* Implicitly re-enable logging to console */
1804 		saved_console_loglevel = LOGLEVEL_DEFAULT;
1805 		break;
1806 	/* Number of chars in the log buffer */
1807 	case SYSLOG_ACTION_SIZE_UNREAD:
1808 		mutex_lock(&syslog_lock);
1809 		if (!prb_read_valid_info(prb, syslog_seq, &info, NULL)) {
1810 			/* No unread messages. */
1811 			mutex_unlock(&syslog_lock);
1812 			return 0;
1813 		}
1814 		if (info.seq != syslog_seq) {
1815 			/* messages are gone, move to first one */
1816 			syslog_seq = info.seq;
1817 			syslog_partial = 0;
1818 		}
1819 		if (source == SYSLOG_FROM_PROC) {
1820 			/*
1821 			 * Short-cut for poll(/"proc/kmsg") which simply checks
1822 			 * for pending data, not the size; return the count of
1823 			 * records, not the length.
1824 			 */
1825 			error = prb_next_seq(prb) - syslog_seq;
1826 		} else {
1827 			bool time = syslog_partial ? syslog_time : printk_time;
1828 			unsigned int line_count;
1829 			u64 seq;
1830 
1831 			prb_for_each_info(syslog_seq, prb, seq, &info,
1832 					  &line_count) {
1833 				error += get_record_print_text_size(&info, line_count,
1834 								    true, time);
1835 				time = printk_time;
1836 			}
1837 			error -= syslog_partial;
1838 		}
1839 		mutex_unlock(&syslog_lock);
1840 		break;
1841 	/* Size of the log buffer */
1842 	case SYSLOG_ACTION_SIZE_BUFFER:
1843 		error = log_buf_len;
1844 		break;
1845 	default:
1846 		error = -EINVAL;
1847 		break;
1848 	}
1849 
1850 	return error;
1851 }
1852 
1853 SYSCALL_DEFINE3(syslog, int, type, char __user *, buf, int, len)
1854 {
1855 	return do_syslog(type, buf, len, SYSLOG_FROM_READER);
1856 }
1857 
1858 /*
1859  * Special console_lock variants that help to reduce the risk of soft-lockups.
1860  * They allow to pass console_lock to another printk() call using a busy wait.
1861  */
1862 
1863 #ifdef CONFIG_LOCKDEP
1864 static struct lockdep_map console_owner_dep_map = {
1865 	.name = "console_owner"
1866 };
1867 #endif
1868 
1869 static DEFINE_RAW_SPINLOCK(console_owner_lock);
1870 static struct task_struct *console_owner;
1871 static bool console_waiter;
1872 
1873 /**
1874  * console_lock_spinning_enable - mark beginning of code where another
1875  *	thread might safely busy wait
1876  *
1877  * This basically converts console_lock into a spinlock. This marks
1878  * the section where the console_lock owner can not sleep, because
1879  * there may be a waiter spinning (like a spinlock). Also it must be
1880  * ready to hand over the lock at the end of the section.
1881  */
1882 static void console_lock_spinning_enable(void)
1883 {
1884 	raw_spin_lock(&console_owner_lock);
1885 	console_owner = current;
1886 	raw_spin_unlock(&console_owner_lock);
1887 
1888 	/* The waiter may spin on us after setting console_owner */
1889 	spin_acquire(&console_owner_dep_map, 0, 0, _THIS_IP_);
1890 }
1891 
1892 /**
1893  * console_lock_spinning_disable_and_check - mark end of code where another
1894  *	thread was able to busy wait and check if there is a waiter
1895  * @cookie: cookie returned from console_srcu_read_lock()
1896  *
1897  * This is called at the end of the section where spinning is allowed.
1898  * It has two functions. First, it is a signal that it is no longer
1899  * safe to start busy waiting for the lock. Second, it checks if
1900  * there is a busy waiter and passes the lock rights to her.
1901  *
1902  * Important: Callers lose both the console_lock and the SRCU read lock if
1903  *	there was a busy waiter. They must not touch items synchronized by
1904  *	console_lock or SRCU read lock in this case.
1905  *
1906  * Return: 1 if the lock rights were passed, 0 otherwise.
1907  */
1908 static int console_lock_spinning_disable_and_check(int cookie)
1909 {
1910 	int waiter;
1911 
1912 	raw_spin_lock(&console_owner_lock);
1913 	waiter = READ_ONCE(console_waiter);
1914 	console_owner = NULL;
1915 	raw_spin_unlock(&console_owner_lock);
1916 
1917 	if (!waiter) {
1918 		spin_release(&console_owner_dep_map, _THIS_IP_);
1919 		return 0;
1920 	}
1921 
1922 	/* The waiter is now free to continue */
1923 	WRITE_ONCE(console_waiter, false);
1924 
1925 	spin_release(&console_owner_dep_map, _THIS_IP_);
1926 
1927 	/*
1928 	 * Preserve lockdep lock ordering. Release the SRCU read lock before
1929 	 * releasing the console_lock.
1930 	 */
1931 	console_srcu_read_unlock(cookie);
1932 
1933 	/*
1934 	 * Hand off console_lock to waiter. The waiter will perform
1935 	 * the up(). After this, the waiter is the console_lock owner.
1936 	 */
1937 	mutex_release(&console_lock_dep_map, _THIS_IP_);
1938 	return 1;
1939 }
1940 
1941 /**
1942  * console_trylock_spinning - try to get console_lock by busy waiting
1943  *
1944  * This allows to busy wait for the console_lock when the current
1945  * owner is running in specially marked sections. It means that
1946  * the current owner is running and cannot reschedule until it
1947  * is ready to lose the lock.
1948  *
1949  * Return: 1 if we got the lock, 0 othrewise
1950  */
1951 static int console_trylock_spinning(void)
1952 {
1953 	struct task_struct *owner = NULL;
1954 	bool waiter;
1955 	bool spin = false;
1956 	unsigned long flags;
1957 
1958 	if (console_trylock())
1959 		return 1;
1960 
1961 	/*
1962 	 * It's unsafe to spin once a panic has begun. If we are the
1963 	 * panic CPU, we may have already halted the owner of the
1964 	 * console_sem. If we are not the panic CPU, then we should
1965 	 * avoid taking console_sem, so the panic CPU has a better
1966 	 * chance of cleanly acquiring it later.
1967 	 */
1968 	if (panic_in_progress())
1969 		return 0;
1970 
1971 	printk_safe_enter_irqsave(flags);
1972 
1973 	raw_spin_lock(&console_owner_lock);
1974 	owner = READ_ONCE(console_owner);
1975 	waiter = READ_ONCE(console_waiter);
1976 	if (!waiter && owner && owner != current) {
1977 		WRITE_ONCE(console_waiter, true);
1978 		spin = true;
1979 	}
1980 	raw_spin_unlock(&console_owner_lock);
1981 
1982 	/*
1983 	 * If there is an active printk() writing to the
1984 	 * consoles, instead of having it write our data too,
1985 	 * see if we can offload that load from the active
1986 	 * printer, and do some printing ourselves.
1987 	 * Go into a spin only if there isn't already a waiter
1988 	 * spinning, and there is an active printer, and
1989 	 * that active printer isn't us (recursive printk?).
1990 	 */
1991 	if (!spin) {
1992 		printk_safe_exit_irqrestore(flags);
1993 		return 0;
1994 	}
1995 
1996 	/* We spin waiting for the owner to release us */
1997 	spin_acquire(&console_owner_dep_map, 0, 0, _THIS_IP_);
1998 	/* Owner will clear console_waiter on hand off */
1999 	while (READ_ONCE(console_waiter))
2000 		cpu_relax();
2001 	spin_release(&console_owner_dep_map, _THIS_IP_);
2002 
2003 	printk_safe_exit_irqrestore(flags);
2004 	/*
2005 	 * The owner passed the console lock to us.
2006 	 * Since we did not spin on console lock, annotate
2007 	 * this as a trylock. Otherwise lockdep will
2008 	 * complain.
2009 	 */
2010 	mutex_acquire(&console_lock_dep_map, 0, 1, _THIS_IP_);
2011 
2012 	return 1;
2013 }
2014 
2015 /*
2016  * Call the specified console driver, asking it to write out the specified
2017  * text and length. If @dropped_text is non-NULL and any records have been
2018  * dropped, a dropped message will be written out first.
2019  */
2020 static void call_console_driver(struct console *con, const char *text, size_t len,
2021 				char *dropped_text)
2022 {
2023 	size_t dropped_len;
2024 
2025 	if (con->dropped && dropped_text) {
2026 		dropped_len = snprintf(dropped_text, DROPPED_TEXT_MAX,
2027 				       "** %lu printk messages dropped **\n",
2028 				       con->dropped);
2029 		con->dropped = 0;
2030 		con->write(con, dropped_text, dropped_len);
2031 	}
2032 
2033 	con->write(con, text, len);
2034 }
2035 
2036 /*
2037  * Recursion is tracked separately on each CPU. If NMIs are supported, an
2038  * additional NMI context per CPU is also separately tracked. Until per-CPU
2039  * is available, a separate "early tracking" is performed.
2040  */
2041 static DEFINE_PER_CPU(u8, printk_count);
2042 static u8 printk_count_early;
2043 #ifdef CONFIG_HAVE_NMI
2044 static DEFINE_PER_CPU(u8, printk_count_nmi);
2045 static u8 printk_count_nmi_early;
2046 #endif
2047 
2048 /*
2049  * Recursion is limited to keep the output sane. printk() should not require
2050  * more than 1 level of recursion (allowing, for example, printk() to trigger
2051  * a WARN), but a higher value is used in case some printk-internal errors
2052  * exist, such as the ringbuffer validation checks failing.
2053  */
2054 #define PRINTK_MAX_RECURSION 3
2055 
2056 /*
2057  * Return a pointer to the dedicated counter for the CPU+context of the
2058  * caller.
2059  */
2060 static u8 *__printk_recursion_counter(void)
2061 {
2062 #ifdef CONFIG_HAVE_NMI
2063 	if (in_nmi()) {
2064 		if (printk_percpu_data_ready())
2065 			return this_cpu_ptr(&printk_count_nmi);
2066 		return &printk_count_nmi_early;
2067 	}
2068 #endif
2069 	if (printk_percpu_data_ready())
2070 		return this_cpu_ptr(&printk_count);
2071 	return &printk_count_early;
2072 }
2073 
2074 /*
2075  * Enter recursion tracking. Interrupts are disabled to simplify tracking.
2076  * The caller must check the boolean return value to see if the recursion is
2077  * allowed. On failure, interrupts are not disabled.
2078  *
2079  * @recursion_ptr must be a variable of type (u8 *) and is the same variable
2080  * that is passed to printk_exit_irqrestore().
2081  */
2082 #define printk_enter_irqsave(recursion_ptr, flags)	\
2083 ({							\
2084 	bool success = true;				\
2085 							\
2086 	typecheck(u8 *, recursion_ptr);			\
2087 	local_irq_save(flags);				\
2088 	(recursion_ptr) = __printk_recursion_counter();	\
2089 	if (*(recursion_ptr) > PRINTK_MAX_RECURSION) {	\
2090 		local_irq_restore(flags);		\
2091 		success = false;			\
2092 	} else {					\
2093 		(*(recursion_ptr))++;			\
2094 	}						\
2095 	success;					\
2096 })
2097 
2098 /* Exit recursion tracking, restoring interrupts. */
2099 #define printk_exit_irqrestore(recursion_ptr, flags)	\
2100 	do {						\
2101 		typecheck(u8 *, recursion_ptr);		\
2102 		(*(recursion_ptr))--;			\
2103 		local_irq_restore(flags);		\
2104 	} while (0)
2105 
2106 int printk_delay_msec __read_mostly;
2107 
2108 static inline void printk_delay(int level)
2109 {
2110 	boot_delay_msec(level);
2111 
2112 	if (unlikely(printk_delay_msec)) {
2113 		int m = printk_delay_msec;
2114 
2115 		while (m--) {
2116 			mdelay(1);
2117 			touch_nmi_watchdog();
2118 		}
2119 	}
2120 }
2121 
2122 static inline u32 printk_caller_id(void)
2123 {
2124 	return in_task() ? task_pid_nr(current) :
2125 		0x80000000 + smp_processor_id();
2126 }
2127 
2128 /**
2129  * printk_parse_prefix - Parse level and control flags.
2130  *
2131  * @text:     The terminated text message.
2132  * @level:    A pointer to the current level value, will be updated.
2133  * @flags:    A pointer to the current printk_info flags, will be updated.
2134  *
2135  * @level may be NULL if the caller is not interested in the parsed value.
2136  * Otherwise the variable pointed to by @level must be set to
2137  * LOGLEVEL_DEFAULT in order to be updated with the parsed value.
2138  *
2139  * @flags may be NULL if the caller is not interested in the parsed value.
2140  * Otherwise the variable pointed to by @flags will be OR'd with the parsed
2141  * value.
2142  *
2143  * Return: The length of the parsed level and control flags.
2144  */
2145 u16 printk_parse_prefix(const char *text, int *level,
2146 			enum printk_info_flags *flags)
2147 {
2148 	u16 prefix_len = 0;
2149 	int kern_level;
2150 
2151 	while (*text) {
2152 		kern_level = printk_get_level(text);
2153 		if (!kern_level)
2154 			break;
2155 
2156 		switch (kern_level) {
2157 		case '0' ... '7':
2158 			if (level && *level == LOGLEVEL_DEFAULT)
2159 				*level = kern_level - '0';
2160 			break;
2161 		case 'c':	/* KERN_CONT */
2162 			if (flags)
2163 				*flags |= LOG_CONT;
2164 		}
2165 
2166 		prefix_len += 2;
2167 		text += 2;
2168 	}
2169 
2170 	return prefix_len;
2171 }
2172 
2173 __printf(5, 0)
2174 static u16 printk_sprint(char *text, u16 size, int facility,
2175 			 enum printk_info_flags *flags, const char *fmt,
2176 			 va_list args)
2177 {
2178 	u16 text_len;
2179 
2180 	text_len = vscnprintf(text, size, fmt, args);
2181 
2182 	/* Mark and strip a trailing newline. */
2183 	if (text_len && text[text_len - 1] == '\n') {
2184 		text_len--;
2185 		*flags |= LOG_NEWLINE;
2186 	}
2187 
2188 	/* Strip log level and control flags. */
2189 	if (facility == 0) {
2190 		u16 prefix_len;
2191 
2192 		prefix_len = printk_parse_prefix(text, NULL, NULL);
2193 		if (prefix_len) {
2194 			text_len -= prefix_len;
2195 			memmove(text, text + prefix_len, text_len);
2196 		}
2197 	}
2198 
2199 	trace_console_rcuidle(text, text_len);
2200 
2201 	return text_len;
2202 }
2203 
2204 __printf(4, 0)
2205 int vprintk_store(int facility, int level,
2206 		  const struct dev_printk_info *dev_info,
2207 		  const char *fmt, va_list args)
2208 {
2209 	struct prb_reserved_entry e;
2210 	enum printk_info_flags flags = 0;
2211 	struct printk_record r;
2212 	unsigned long irqflags;
2213 	u16 trunc_msg_len = 0;
2214 	char prefix_buf[8];
2215 	u8 *recursion_ptr;
2216 	u16 reserve_size;
2217 	va_list args2;
2218 	u32 caller_id;
2219 	u16 text_len;
2220 	int ret = 0;
2221 	u64 ts_nsec;
2222 
2223 	if (!printk_enter_irqsave(recursion_ptr, irqflags))
2224 		return 0;
2225 
2226 	/*
2227 	 * Since the duration of printk() can vary depending on the message
2228 	 * and state of the ringbuffer, grab the timestamp now so that it is
2229 	 * close to the call of printk(). This provides a more deterministic
2230 	 * timestamp with respect to the caller.
2231 	 */
2232 	ts_nsec = local_clock();
2233 
2234 	caller_id = printk_caller_id();
2235 
2236 	/*
2237 	 * The sprintf needs to come first since the syslog prefix might be
2238 	 * passed in as a parameter. An extra byte must be reserved so that
2239 	 * later the vscnprintf() into the reserved buffer has room for the
2240 	 * terminating '\0', which is not counted by vsnprintf().
2241 	 */
2242 	va_copy(args2, args);
2243 	reserve_size = vsnprintf(&prefix_buf[0], sizeof(prefix_buf), fmt, args2) + 1;
2244 	va_end(args2);
2245 
2246 	if (reserve_size > LOG_LINE_MAX)
2247 		reserve_size = LOG_LINE_MAX;
2248 
2249 	/* Extract log level or control flags. */
2250 	if (facility == 0)
2251 		printk_parse_prefix(&prefix_buf[0], &level, &flags);
2252 
2253 	if (level == LOGLEVEL_DEFAULT)
2254 		level = default_message_loglevel;
2255 
2256 	if (dev_info)
2257 		flags |= LOG_NEWLINE;
2258 
2259 	if (flags & LOG_CONT) {
2260 		prb_rec_init_wr(&r, reserve_size);
2261 		if (prb_reserve_in_last(&e, prb, &r, caller_id, LOG_LINE_MAX)) {
2262 			text_len = printk_sprint(&r.text_buf[r.info->text_len], reserve_size,
2263 						 facility, &flags, fmt, args);
2264 			r.info->text_len += text_len;
2265 
2266 			if (flags & LOG_NEWLINE) {
2267 				r.info->flags |= LOG_NEWLINE;
2268 				prb_final_commit(&e);
2269 			} else {
2270 				prb_commit(&e);
2271 			}
2272 
2273 			ret = text_len;
2274 			goto out;
2275 		}
2276 	}
2277 
2278 	/*
2279 	 * Explicitly initialize the record before every prb_reserve() call.
2280 	 * prb_reserve_in_last() and prb_reserve() purposely invalidate the
2281 	 * structure when they fail.
2282 	 */
2283 	prb_rec_init_wr(&r, reserve_size);
2284 	if (!prb_reserve(&e, prb, &r)) {
2285 		/* truncate the message if it is too long for empty buffer */
2286 		truncate_msg(&reserve_size, &trunc_msg_len);
2287 
2288 		prb_rec_init_wr(&r, reserve_size + trunc_msg_len);
2289 		if (!prb_reserve(&e, prb, &r))
2290 			goto out;
2291 	}
2292 
2293 	/* fill message */
2294 	text_len = printk_sprint(&r.text_buf[0], reserve_size, facility, &flags, fmt, args);
2295 	if (trunc_msg_len)
2296 		memcpy(&r.text_buf[text_len], trunc_msg, trunc_msg_len);
2297 	r.info->text_len = text_len + trunc_msg_len;
2298 	r.info->facility = facility;
2299 	r.info->level = level & 7;
2300 	r.info->flags = flags & 0x1f;
2301 	r.info->ts_nsec = ts_nsec;
2302 	r.info->caller_id = caller_id;
2303 	if (dev_info)
2304 		memcpy(&r.info->dev_info, dev_info, sizeof(r.info->dev_info));
2305 
2306 	/* A message without a trailing newline can be continued. */
2307 	if (!(flags & LOG_NEWLINE))
2308 		prb_commit(&e);
2309 	else
2310 		prb_final_commit(&e);
2311 
2312 	ret = text_len + trunc_msg_len;
2313 out:
2314 	printk_exit_irqrestore(recursion_ptr, irqflags);
2315 	return ret;
2316 }
2317 
2318 asmlinkage int vprintk_emit(int facility, int level,
2319 			    const struct dev_printk_info *dev_info,
2320 			    const char *fmt, va_list args)
2321 {
2322 	int printed_len;
2323 	bool in_sched = false;
2324 
2325 	/* Suppress unimportant messages after panic happens */
2326 	if (unlikely(suppress_printk))
2327 		return 0;
2328 
2329 	if (unlikely(suppress_panic_printk) &&
2330 	    atomic_read(&panic_cpu) != raw_smp_processor_id())
2331 		return 0;
2332 
2333 	if (level == LOGLEVEL_SCHED) {
2334 		level = LOGLEVEL_DEFAULT;
2335 		in_sched = true;
2336 	}
2337 
2338 	printk_delay(level);
2339 
2340 	printed_len = vprintk_store(facility, level, dev_info, fmt, args);
2341 
2342 	/* If called from the scheduler, we can not call up(). */
2343 	if (!in_sched) {
2344 		/*
2345 		 * The caller may be holding system-critical or
2346 		 * timing-sensitive locks. Disable preemption during
2347 		 * printing of all remaining records to all consoles so that
2348 		 * this context can return as soon as possible. Hopefully
2349 		 * another printk() caller will take over the printing.
2350 		 */
2351 		preempt_disable();
2352 		/*
2353 		 * Try to acquire and then immediately release the console
2354 		 * semaphore. The release will print out buffers. With the
2355 		 * spinning variant, this context tries to take over the
2356 		 * printing from another printing context.
2357 		 */
2358 		if (console_trylock_spinning())
2359 			console_unlock();
2360 		preempt_enable();
2361 	}
2362 
2363 	wake_up_klogd();
2364 	return printed_len;
2365 }
2366 EXPORT_SYMBOL(vprintk_emit);
2367 
2368 int vprintk_default(const char *fmt, va_list args)
2369 {
2370 	return vprintk_emit(0, LOGLEVEL_DEFAULT, NULL, fmt, args);
2371 }
2372 EXPORT_SYMBOL_GPL(vprintk_default);
2373 
2374 asmlinkage __visible int _printk(const char *fmt, ...)
2375 {
2376 	va_list args;
2377 	int r;
2378 
2379 	va_start(args, fmt);
2380 	r = vprintk(fmt, args);
2381 	va_end(args);
2382 
2383 	return r;
2384 }
2385 EXPORT_SYMBOL(_printk);
2386 
2387 static bool pr_flush(int timeout_ms, bool reset_on_progress);
2388 static bool __pr_flush(struct console *con, int timeout_ms, bool reset_on_progress);
2389 
2390 #else /* CONFIG_PRINTK */
2391 
2392 #define CONSOLE_LOG_MAX		0
2393 #define DROPPED_TEXT_MAX	0
2394 #define printk_time		false
2395 
2396 #define prb_read_valid(rb, seq, r)	false
2397 #define prb_first_valid_seq(rb)		0
2398 #define prb_next_seq(rb)		0
2399 
2400 static u64 syslog_seq;
2401 
2402 static size_t record_print_text(const struct printk_record *r,
2403 				bool syslog, bool time)
2404 {
2405 	return 0;
2406 }
2407 static ssize_t info_print_ext_header(char *buf, size_t size,
2408 				     struct printk_info *info)
2409 {
2410 	return 0;
2411 }
2412 static ssize_t msg_print_ext_body(char *buf, size_t size,
2413 				  char *text, size_t text_len,
2414 				  struct dev_printk_info *dev_info) { return 0; }
2415 static void console_lock_spinning_enable(void) { }
2416 static int console_lock_spinning_disable_and_check(int cookie) { return 0; }
2417 static void call_console_driver(struct console *con, const char *text, size_t len,
2418 				char *dropped_text)
2419 {
2420 }
2421 static bool suppress_message_printing(int level) { return false; }
2422 static bool pr_flush(int timeout_ms, bool reset_on_progress) { return true; }
2423 static bool __pr_flush(struct console *con, int timeout_ms, bool reset_on_progress) { return true; }
2424 
2425 #endif /* CONFIG_PRINTK */
2426 
2427 #ifdef CONFIG_EARLY_PRINTK
2428 struct console *early_console;
2429 
2430 asmlinkage __visible void early_printk(const char *fmt, ...)
2431 {
2432 	va_list ap;
2433 	char buf[512];
2434 	int n;
2435 
2436 	if (!early_console)
2437 		return;
2438 
2439 	va_start(ap, fmt);
2440 	n = vscnprintf(buf, sizeof(buf), fmt, ap);
2441 	va_end(ap);
2442 
2443 	early_console->write(early_console, buf, n);
2444 }
2445 #endif
2446 
2447 static void set_user_specified(struct console_cmdline *c, bool user_specified)
2448 {
2449 	if (!user_specified)
2450 		return;
2451 
2452 	/*
2453 	 * @c console was defined by the user on the command line.
2454 	 * Do not clear when added twice also by SPCR or the device tree.
2455 	 */
2456 	c->user_specified = true;
2457 	/* At least one console defined by the user on the command line. */
2458 	console_set_on_cmdline = 1;
2459 }
2460 
2461 static int __add_preferred_console(char *name, int idx, char *options,
2462 				   char *brl_options, bool user_specified)
2463 {
2464 	struct console_cmdline *c;
2465 	int i;
2466 
2467 	/*
2468 	 *	See if this tty is not yet registered, and
2469 	 *	if we have a slot free.
2470 	 */
2471 	for (i = 0, c = console_cmdline;
2472 	     i < MAX_CMDLINECONSOLES && c->name[0];
2473 	     i++, c++) {
2474 		if (strcmp(c->name, name) == 0 && c->index == idx) {
2475 			if (!brl_options)
2476 				preferred_console = i;
2477 			set_user_specified(c, user_specified);
2478 			return 0;
2479 		}
2480 	}
2481 	if (i == MAX_CMDLINECONSOLES)
2482 		return -E2BIG;
2483 	if (!brl_options)
2484 		preferred_console = i;
2485 	strscpy(c->name, name, sizeof(c->name));
2486 	c->options = options;
2487 	set_user_specified(c, user_specified);
2488 	braille_set_options(c, brl_options);
2489 
2490 	c->index = idx;
2491 	return 0;
2492 }
2493 
2494 static int __init console_msg_format_setup(char *str)
2495 {
2496 	if (!strcmp(str, "syslog"))
2497 		console_msg_format = MSG_FORMAT_SYSLOG;
2498 	if (!strcmp(str, "default"))
2499 		console_msg_format = MSG_FORMAT_DEFAULT;
2500 	return 1;
2501 }
2502 __setup("console_msg_format=", console_msg_format_setup);
2503 
2504 /*
2505  * Set up a console.  Called via do_early_param() in init/main.c
2506  * for each "console=" parameter in the boot command line.
2507  */
2508 static int __init console_setup(char *str)
2509 {
2510 	char buf[sizeof(console_cmdline[0].name) + 4]; /* 4 for "ttyS" */
2511 	char *s, *options, *brl_options = NULL;
2512 	int idx;
2513 
2514 	/*
2515 	 * console="" or console=null have been suggested as a way to
2516 	 * disable console output. Use ttynull that has been created
2517 	 * for exactly this purpose.
2518 	 */
2519 	if (str[0] == 0 || strcmp(str, "null") == 0) {
2520 		__add_preferred_console("ttynull", 0, NULL, NULL, true);
2521 		return 1;
2522 	}
2523 
2524 	if (_braille_console_setup(&str, &brl_options))
2525 		return 1;
2526 
2527 	/*
2528 	 * Decode str into name, index, options.
2529 	 */
2530 	if (str[0] >= '0' && str[0] <= '9') {
2531 		strcpy(buf, "ttyS");
2532 		strncpy(buf + 4, str, sizeof(buf) - 5);
2533 	} else {
2534 		strncpy(buf, str, sizeof(buf) - 1);
2535 	}
2536 	buf[sizeof(buf) - 1] = 0;
2537 	options = strchr(str, ',');
2538 	if (options)
2539 		*(options++) = 0;
2540 #ifdef __sparc__
2541 	if (!strcmp(str, "ttya"))
2542 		strcpy(buf, "ttyS0");
2543 	if (!strcmp(str, "ttyb"))
2544 		strcpy(buf, "ttyS1");
2545 #endif
2546 	for (s = buf; *s; s++)
2547 		if (isdigit(*s) || *s == ',')
2548 			break;
2549 	idx = simple_strtoul(s, NULL, 10);
2550 	*s = 0;
2551 
2552 	__add_preferred_console(buf, idx, options, brl_options, true);
2553 	return 1;
2554 }
2555 __setup("console=", console_setup);
2556 
2557 /**
2558  * add_preferred_console - add a device to the list of preferred consoles.
2559  * @name: device name
2560  * @idx: device index
2561  * @options: options for this console
2562  *
2563  * The last preferred console added will be used for kernel messages
2564  * and stdin/out/err for init.  Normally this is used by console_setup
2565  * above to handle user-supplied console arguments; however it can also
2566  * be used by arch-specific code either to override the user or more
2567  * commonly to provide a default console (ie from PROM variables) when
2568  * the user has not supplied one.
2569  */
2570 int add_preferred_console(char *name, int idx, char *options)
2571 {
2572 	return __add_preferred_console(name, idx, options, NULL, false);
2573 }
2574 
2575 bool console_suspend_enabled = true;
2576 EXPORT_SYMBOL(console_suspend_enabled);
2577 
2578 static int __init console_suspend_disable(char *str)
2579 {
2580 	console_suspend_enabled = false;
2581 	return 1;
2582 }
2583 __setup("no_console_suspend", console_suspend_disable);
2584 module_param_named(console_suspend, console_suspend_enabled,
2585 		bool, S_IRUGO | S_IWUSR);
2586 MODULE_PARM_DESC(console_suspend, "suspend console during suspend"
2587 	" and hibernate operations");
2588 
2589 static bool printk_console_no_auto_verbose;
2590 
2591 void console_verbose(void)
2592 {
2593 	if (console_loglevel && !printk_console_no_auto_verbose)
2594 		console_loglevel = CONSOLE_LOGLEVEL_MOTORMOUTH;
2595 }
2596 EXPORT_SYMBOL_GPL(console_verbose);
2597 
2598 module_param_named(console_no_auto_verbose, printk_console_no_auto_verbose, bool, 0644);
2599 MODULE_PARM_DESC(console_no_auto_verbose, "Disable console loglevel raise to highest on oops/panic/etc");
2600 
2601 /**
2602  * suspend_console - suspend the console subsystem
2603  *
2604  * This disables printk() while we go into suspend states
2605  */
2606 void suspend_console(void)
2607 {
2608 	if (!console_suspend_enabled)
2609 		return;
2610 	pr_info("Suspending console(s) (use no_console_suspend to debug)\n");
2611 	pr_flush(1000, true);
2612 	console_lock();
2613 	console_suspended = 1;
2614 	up_console_sem();
2615 }
2616 
2617 void resume_console(void)
2618 {
2619 	if (!console_suspend_enabled)
2620 		return;
2621 	down_console_sem();
2622 	console_suspended = 0;
2623 	console_unlock();
2624 	pr_flush(1000, true);
2625 }
2626 
2627 /**
2628  * console_cpu_notify - print deferred console messages after CPU hotplug
2629  * @cpu: unused
2630  *
2631  * If printk() is called from a CPU that is not online yet, the messages
2632  * will be printed on the console only if there are CON_ANYTIME consoles.
2633  * This function is called when a new CPU comes online (or fails to come
2634  * up) or goes offline.
2635  */
2636 static int console_cpu_notify(unsigned int cpu)
2637 {
2638 	if (!cpuhp_tasks_frozen) {
2639 		/* If trylock fails, someone else is doing the printing */
2640 		if (console_trylock())
2641 			console_unlock();
2642 	}
2643 	return 0;
2644 }
2645 
2646 /**
2647  * console_lock - block the console subsystem from printing
2648  *
2649  * Acquires a lock which guarantees that no consoles will
2650  * be in or enter their write() callback.
2651  *
2652  * Can sleep, returns nothing.
2653  */
2654 void console_lock(void)
2655 {
2656 	might_sleep();
2657 
2658 	down_console_sem();
2659 	if (console_suspended)
2660 		return;
2661 	console_locked = 1;
2662 	console_may_schedule = 1;
2663 }
2664 EXPORT_SYMBOL(console_lock);
2665 
2666 /**
2667  * console_trylock - try to block the console subsystem from printing
2668  *
2669  * Try to acquire a lock which guarantees that no consoles will
2670  * be in or enter their write() callback.
2671  *
2672  * returns 1 on success, and 0 on failure to acquire the lock.
2673  */
2674 int console_trylock(void)
2675 {
2676 	if (down_trylock_console_sem())
2677 		return 0;
2678 	if (console_suspended) {
2679 		up_console_sem();
2680 		return 0;
2681 	}
2682 	console_locked = 1;
2683 	console_may_schedule = 0;
2684 	return 1;
2685 }
2686 EXPORT_SYMBOL(console_trylock);
2687 
2688 int is_console_locked(void)
2689 {
2690 	return console_locked;
2691 }
2692 EXPORT_SYMBOL(is_console_locked);
2693 
2694 /*
2695  * Return true when this CPU should unlock console_sem without pushing all
2696  * messages to the console. This reduces the chance that the console is
2697  * locked when the panic CPU tries to use it.
2698  */
2699 static bool abandon_console_lock_in_panic(void)
2700 {
2701 	if (!panic_in_progress())
2702 		return false;
2703 
2704 	/*
2705 	 * We can use raw_smp_processor_id() here because it is impossible for
2706 	 * the task to be migrated to the panic_cpu, or away from it. If
2707 	 * panic_cpu has already been set, and we're not currently executing on
2708 	 * that CPU, then we never will be.
2709 	 */
2710 	return atomic_read(&panic_cpu) != raw_smp_processor_id();
2711 }
2712 
2713 /*
2714  * Check if the given console is currently capable and allowed to print
2715  * records.
2716  *
2717  * Requires the console_srcu_read_lock.
2718  */
2719 static inline bool console_is_usable(struct console *con)
2720 {
2721 	short flags = console_srcu_read_flags(con);
2722 
2723 	if (!(flags & CON_ENABLED))
2724 		return false;
2725 
2726 	if (!con->write)
2727 		return false;
2728 
2729 	/*
2730 	 * Console drivers may assume that per-cpu resources have been
2731 	 * allocated. So unless they're explicitly marked as being able to
2732 	 * cope (CON_ANYTIME) don't call them until this CPU is officially up.
2733 	 */
2734 	if (!cpu_online(raw_smp_processor_id()) && !(flags & CON_ANYTIME))
2735 		return false;
2736 
2737 	return true;
2738 }
2739 
2740 static void __console_unlock(void)
2741 {
2742 	console_locked = 0;
2743 	up_console_sem();
2744 }
2745 
2746 /*
2747  * Print one record for the given console. The record printed is whatever
2748  * record is the next available record for the given console.
2749  *
2750  * @text is a buffer of size CONSOLE_LOG_MAX.
2751  *
2752  * If extended messages should be printed, @ext_text is a buffer of size
2753  * CONSOLE_EXT_LOG_MAX. Otherwise @ext_text must be NULL.
2754  *
2755  * If dropped messages should be printed, @dropped_text is a buffer of size
2756  * DROPPED_TEXT_MAX. Otherwise @dropped_text must be NULL.
2757  *
2758  * @handover will be set to true if a printk waiter has taken over the
2759  * console_lock, in which case the caller is no longer holding both the
2760  * console_lock and the SRCU read lock. Otherwise it is set to false.
2761  *
2762  * @cookie is the cookie from the SRCU read lock.
2763  *
2764  * Returns false if the given console has no next record to print, otherwise
2765  * true.
2766  *
2767  * Requires the console_lock and the SRCU read lock.
2768  */
2769 static bool console_emit_next_record(struct console *con, char *text, char *ext_text,
2770 				     char *dropped_text, bool *handover, int cookie)
2771 {
2772 	static int panic_console_dropped;
2773 	struct printk_info info;
2774 	struct printk_record r;
2775 	unsigned long flags;
2776 	char *write_text;
2777 	size_t len;
2778 
2779 	prb_rec_init_rd(&r, &info, text, CONSOLE_LOG_MAX);
2780 
2781 	*handover = false;
2782 
2783 	if (!prb_read_valid(prb, con->seq, &r))
2784 		return false;
2785 
2786 	if (con->seq != r.info->seq) {
2787 		con->dropped += r.info->seq - con->seq;
2788 		con->seq = r.info->seq;
2789 		if (panic_in_progress() && panic_console_dropped++ > 10) {
2790 			suppress_panic_printk = 1;
2791 			pr_warn_once("Too many dropped messages. Suppress messages on non-panic CPUs to prevent livelock.\n");
2792 		}
2793 	}
2794 
2795 	/* Skip record that has level above the console loglevel. */
2796 	if (suppress_message_printing(r.info->level)) {
2797 		con->seq++;
2798 		goto skip;
2799 	}
2800 
2801 	if (ext_text) {
2802 		write_text = ext_text;
2803 		len = info_print_ext_header(ext_text, CONSOLE_EXT_LOG_MAX, r.info);
2804 		len += msg_print_ext_body(ext_text + len, CONSOLE_EXT_LOG_MAX - len,
2805 					  &r.text_buf[0], r.info->text_len, &r.info->dev_info);
2806 	} else {
2807 		write_text = text;
2808 		len = record_print_text(&r, console_msg_format & MSG_FORMAT_SYSLOG, printk_time);
2809 	}
2810 
2811 	/*
2812 	 * While actively printing out messages, if another printk()
2813 	 * were to occur on another CPU, it may wait for this one to
2814 	 * finish. This task can not be preempted if there is a
2815 	 * waiter waiting to take over.
2816 	 *
2817 	 * Interrupts are disabled because the hand over to a waiter
2818 	 * must not be interrupted until the hand over is completed
2819 	 * (@console_waiter is cleared).
2820 	 */
2821 	printk_safe_enter_irqsave(flags);
2822 	console_lock_spinning_enable();
2823 
2824 	stop_critical_timings();	/* don't trace print latency */
2825 	call_console_driver(con, write_text, len, dropped_text);
2826 	start_critical_timings();
2827 
2828 	con->seq++;
2829 
2830 	*handover = console_lock_spinning_disable_and_check(cookie);
2831 	printk_safe_exit_irqrestore(flags);
2832 skip:
2833 	return true;
2834 }
2835 
2836 /*
2837  * Print out all remaining records to all consoles.
2838  *
2839  * @do_cond_resched is set by the caller. It can be true only in schedulable
2840  * context.
2841  *
2842  * @next_seq is set to the sequence number after the last available record.
2843  * The value is valid only when this function returns true. It means that all
2844  * usable consoles are completely flushed.
2845  *
2846  * @handover will be set to true if a printk waiter has taken over the
2847  * console_lock, in which case the caller is no longer holding the
2848  * console_lock. Otherwise it is set to false.
2849  *
2850  * Returns true when there was at least one usable console and all messages
2851  * were flushed to all usable consoles. A returned false informs the caller
2852  * that everything was not flushed (either there were no usable consoles or
2853  * another context has taken over printing or it is a panic situation and this
2854  * is not the panic CPU). Regardless the reason, the caller should assume it
2855  * is not useful to immediately try again.
2856  *
2857  * Requires the console_lock.
2858  */
2859 static bool console_flush_all(bool do_cond_resched, u64 *next_seq, bool *handover)
2860 {
2861 	static char dropped_text[DROPPED_TEXT_MAX];
2862 	static char ext_text[CONSOLE_EXT_LOG_MAX];
2863 	static char text[CONSOLE_LOG_MAX];
2864 	bool any_usable = false;
2865 	struct console *con;
2866 	bool any_progress;
2867 	int cookie;
2868 
2869 	*next_seq = 0;
2870 	*handover = false;
2871 
2872 	do {
2873 		any_progress = false;
2874 
2875 		cookie = console_srcu_read_lock();
2876 		for_each_console_srcu(con) {
2877 			bool progress;
2878 
2879 			if (!console_is_usable(con))
2880 				continue;
2881 			any_usable = true;
2882 
2883 			if (console_srcu_read_flags(con) & CON_EXTENDED) {
2884 				/* Extended consoles do not print "dropped messages". */
2885 				progress = console_emit_next_record(con, &text[0],
2886 								    &ext_text[0], NULL,
2887 								    handover, cookie);
2888 			} else {
2889 				progress = console_emit_next_record(con, &text[0],
2890 								    NULL, &dropped_text[0],
2891 								    handover, cookie);
2892 			}
2893 
2894 			/*
2895 			 * If a handover has occurred, the SRCU read lock
2896 			 * is already released.
2897 			 */
2898 			if (*handover)
2899 				return false;
2900 
2901 			/* Track the next of the highest seq flushed. */
2902 			if (con->seq > *next_seq)
2903 				*next_seq = con->seq;
2904 
2905 			if (!progress)
2906 				continue;
2907 			any_progress = true;
2908 
2909 			/* Allow panic_cpu to take over the consoles safely. */
2910 			if (abandon_console_lock_in_panic())
2911 				goto abandon;
2912 
2913 			if (do_cond_resched)
2914 				cond_resched();
2915 		}
2916 		console_srcu_read_unlock(cookie);
2917 	} while (any_progress);
2918 
2919 	return any_usable;
2920 
2921 abandon:
2922 	console_srcu_read_unlock(cookie);
2923 	return false;
2924 }
2925 
2926 /**
2927  * console_unlock - unblock the console subsystem from printing
2928  *
2929  * Releases the console_lock which the caller holds to block printing of
2930  * the console subsystem.
2931  *
2932  * While the console_lock was held, console output may have been buffered
2933  * by printk().  If this is the case, console_unlock(); emits
2934  * the output prior to releasing the lock.
2935  *
2936  * console_unlock(); may be called from any context.
2937  */
2938 void console_unlock(void)
2939 {
2940 	bool do_cond_resched;
2941 	bool handover;
2942 	bool flushed;
2943 	u64 next_seq;
2944 
2945 	if (console_suspended) {
2946 		up_console_sem();
2947 		return;
2948 	}
2949 
2950 	/*
2951 	 * Console drivers are called with interrupts disabled, so
2952 	 * @console_may_schedule should be cleared before; however, we may
2953 	 * end up dumping a lot of lines, for example, if called from
2954 	 * console registration path, and should invoke cond_resched()
2955 	 * between lines if allowable.  Not doing so can cause a very long
2956 	 * scheduling stall on a slow console leading to RCU stall and
2957 	 * softlockup warnings which exacerbate the issue with more
2958 	 * messages practically incapacitating the system. Therefore, create
2959 	 * a local to use for the printing loop.
2960 	 */
2961 	do_cond_resched = console_may_schedule;
2962 
2963 	do {
2964 		console_may_schedule = 0;
2965 
2966 		flushed = console_flush_all(do_cond_resched, &next_seq, &handover);
2967 		if (!handover)
2968 			__console_unlock();
2969 
2970 		/*
2971 		 * Abort if there was a failure to flush all messages to all
2972 		 * usable consoles. Either it is not possible to flush (in
2973 		 * which case it would be an infinite loop of retrying) or
2974 		 * another context has taken over printing.
2975 		 */
2976 		if (!flushed)
2977 			break;
2978 
2979 		/*
2980 		 * Some context may have added new records after
2981 		 * console_flush_all() but before unlocking the console.
2982 		 * Re-check if there is a new record to flush. If the trylock
2983 		 * fails, another context is already handling the printing.
2984 		 */
2985 	} while (prb_read_valid(prb, next_seq, NULL) && console_trylock());
2986 }
2987 EXPORT_SYMBOL(console_unlock);
2988 
2989 /**
2990  * console_conditional_schedule - yield the CPU if required
2991  *
2992  * If the console code is currently allowed to sleep, and
2993  * if this CPU should yield the CPU to another task, do
2994  * so here.
2995  *
2996  * Must be called within console_lock();.
2997  */
2998 void __sched console_conditional_schedule(void)
2999 {
3000 	if (console_may_schedule)
3001 		cond_resched();
3002 }
3003 EXPORT_SYMBOL(console_conditional_schedule);
3004 
3005 void console_unblank(void)
3006 {
3007 	struct console *c;
3008 	int cookie;
3009 
3010 	/*
3011 	 * Stop console printing because the unblank() callback may
3012 	 * assume the console is not within its write() callback.
3013 	 *
3014 	 * If @oops_in_progress is set, this may be an atomic context.
3015 	 * In that case, attempt a trylock as best-effort.
3016 	 */
3017 	if (oops_in_progress) {
3018 		if (down_trylock_console_sem() != 0)
3019 			return;
3020 	} else
3021 		console_lock();
3022 
3023 	console_locked = 1;
3024 	console_may_schedule = 0;
3025 
3026 	cookie = console_srcu_read_lock();
3027 	for_each_console_srcu(c) {
3028 		if ((console_srcu_read_flags(c) & CON_ENABLED) && c->unblank)
3029 			c->unblank();
3030 	}
3031 	console_srcu_read_unlock(cookie);
3032 
3033 	console_unlock();
3034 
3035 	if (!oops_in_progress)
3036 		pr_flush(1000, true);
3037 }
3038 
3039 /**
3040  * console_flush_on_panic - flush console content on panic
3041  * @mode: flush all messages in buffer or just the pending ones
3042  *
3043  * Immediately output all pending messages no matter what.
3044  */
3045 void console_flush_on_panic(enum con_flush_mode mode)
3046 {
3047 	/*
3048 	 * If someone else is holding the console lock, trylock will fail
3049 	 * and may_schedule may be set.  Ignore and proceed to unlock so
3050 	 * that messages are flushed out.  As this can be called from any
3051 	 * context and we don't want to get preempted while flushing,
3052 	 * ensure may_schedule is cleared.
3053 	 */
3054 	console_trylock();
3055 	console_may_schedule = 0;
3056 
3057 	if (mode == CONSOLE_REPLAY_ALL) {
3058 		struct console *c;
3059 		int cookie;
3060 		u64 seq;
3061 
3062 		seq = prb_first_valid_seq(prb);
3063 
3064 		cookie = console_srcu_read_lock();
3065 		for_each_console_srcu(c) {
3066 			/*
3067 			 * If the above console_trylock() failed, this is an
3068 			 * unsynchronized assignment. But in that case, the
3069 			 * kernel is in "hope and pray" mode anyway.
3070 			 */
3071 			c->seq = seq;
3072 		}
3073 		console_srcu_read_unlock(cookie);
3074 	}
3075 	console_unlock();
3076 }
3077 
3078 /*
3079  * Return the console tty driver structure and its associated index
3080  */
3081 struct tty_driver *console_device(int *index)
3082 {
3083 	struct console *c;
3084 	struct tty_driver *driver = NULL;
3085 	int cookie;
3086 
3087 	/*
3088 	 * Take console_lock to serialize device() callback with
3089 	 * other console operations. For example, fg_console is
3090 	 * modified under console_lock when switching vt.
3091 	 */
3092 	console_lock();
3093 
3094 	cookie = console_srcu_read_lock();
3095 	for_each_console_srcu(c) {
3096 		if (!c->device)
3097 			continue;
3098 		driver = c->device(c, index);
3099 		if (driver)
3100 			break;
3101 	}
3102 	console_srcu_read_unlock(cookie);
3103 
3104 	console_unlock();
3105 	return driver;
3106 }
3107 
3108 /*
3109  * Prevent further output on the passed console device so that (for example)
3110  * serial drivers can disable console output before suspending a port, and can
3111  * re-enable output afterwards.
3112  */
3113 void console_stop(struct console *console)
3114 {
3115 	__pr_flush(console, 1000, true);
3116 	console_list_lock();
3117 	console_srcu_write_flags(console, console->flags & ~CON_ENABLED);
3118 	console_list_unlock();
3119 
3120 	/*
3121 	 * Ensure that all SRCU list walks have completed. All contexts must
3122 	 * be able to see that this console is disabled so that (for example)
3123 	 * the caller can suspend the port without risk of another context
3124 	 * using the port.
3125 	 */
3126 	synchronize_srcu(&console_srcu);
3127 }
3128 EXPORT_SYMBOL(console_stop);
3129 
3130 void console_start(struct console *console)
3131 {
3132 	console_list_lock();
3133 	console_srcu_write_flags(console, console->flags | CON_ENABLED);
3134 	console_list_unlock();
3135 	__pr_flush(console, 1000, true);
3136 }
3137 EXPORT_SYMBOL(console_start);
3138 
3139 static int __read_mostly keep_bootcon;
3140 
3141 static int __init keep_bootcon_setup(char *str)
3142 {
3143 	keep_bootcon = 1;
3144 	pr_info("debug: skip boot console de-registration.\n");
3145 
3146 	return 0;
3147 }
3148 
3149 early_param("keep_bootcon", keep_bootcon_setup);
3150 
3151 /*
3152  * This is called by register_console() to try to match
3153  * the newly registered console with any of the ones selected
3154  * by either the command line or add_preferred_console() and
3155  * setup/enable it.
3156  *
3157  * Care need to be taken with consoles that are statically
3158  * enabled such as netconsole
3159  */
3160 static int try_enable_preferred_console(struct console *newcon,
3161 					bool user_specified)
3162 {
3163 	struct console_cmdline *c;
3164 	int i, err;
3165 
3166 	for (i = 0, c = console_cmdline;
3167 	     i < MAX_CMDLINECONSOLES && c->name[0];
3168 	     i++, c++) {
3169 		if (c->user_specified != user_specified)
3170 			continue;
3171 		if (!newcon->match ||
3172 		    newcon->match(newcon, c->name, c->index, c->options) != 0) {
3173 			/* default matching */
3174 			BUILD_BUG_ON(sizeof(c->name) != sizeof(newcon->name));
3175 			if (strcmp(c->name, newcon->name) != 0)
3176 				continue;
3177 			if (newcon->index >= 0 &&
3178 			    newcon->index != c->index)
3179 				continue;
3180 			if (newcon->index < 0)
3181 				newcon->index = c->index;
3182 
3183 			if (_braille_register_console(newcon, c))
3184 				return 0;
3185 
3186 			if (newcon->setup &&
3187 			    (err = newcon->setup(newcon, c->options)) != 0)
3188 				return err;
3189 		}
3190 		newcon->flags |= CON_ENABLED;
3191 		if (i == preferred_console)
3192 			newcon->flags |= CON_CONSDEV;
3193 		return 0;
3194 	}
3195 
3196 	/*
3197 	 * Some consoles, such as pstore and netconsole, can be enabled even
3198 	 * without matching. Accept the pre-enabled consoles only when match()
3199 	 * and setup() had a chance to be called.
3200 	 */
3201 	if (newcon->flags & CON_ENABLED && c->user_specified ==	user_specified)
3202 		return 0;
3203 
3204 	return -ENOENT;
3205 }
3206 
3207 /* Try to enable the console unconditionally */
3208 static void try_enable_default_console(struct console *newcon)
3209 {
3210 	if (newcon->index < 0)
3211 		newcon->index = 0;
3212 
3213 	if (newcon->setup && newcon->setup(newcon, NULL) != 0)
3214 		return;
3215 
3216 	newcon->flags |= CON_ENABLED;
3217 
3218 	if (newcon->device)
3219 		newcon->flags |= CON_CONSDEV;
3220 }
3221 
3222 #define con_printk(lvl, con, fmt, ...)			\
3223 	printk(lvl pr_fmt("%sconsole [%s%d] " fmt),	\
3224 	       (con->flags & CON_BOOT) ? "boot" : "",	\
3225 	       con->name, con->index, ##__VA_ARGS__)
3226 
3227 static void console_init_seq(struct console *newcon, bool bootcon_registered)
3228 {
3229 	struct console *con;
3230 	bool handover;
3231 
3232 	if (newcon->flags & (CON_PRINTBUFFER | CON_BOOT)) {
3233 		/* Get a consistent copy of @syslog_seq. */
3234 		mutex_lock(&syslog_lock);
3235 		newcon->seq = syslog_seq;
3236 		mutex_unlock(&syslog_lock);
3237 	} else {
3238 		/* Begin with next message added to ringbuffer. */
3239 		newcon->seq = prb_next_seq(prb);
3240 
3241 		/*
3242 		 * If any enabled boot consoles are due to be unregistered
3243 		 * shortly, some may not be caught up and may be the same
3244 		 * device as @newcon. Since it is not known which boot console
3245 		 * is the same device, flush all consoles and, if necessary,
3246 		 * start with the message of the enabled boot console that is
3247 		 * the furthest behind.
3248 		 */
3249 		if (bootcon_registered && !keep_bootcon) {
3250 			/*
3251 			 * Hold the console_lock to stop console printing and
3252 			 * guarantee safe access to console->seq.
3253 			 */
3254 			console_lock();
3255 
3256 			/*
3257 			 * Flush all consoles and set the console to start at
3258 			 * the next unprinted sequence number.
3259 			 */
3260 			if (!console_flush_all(true, &newcon->seq, &handover)) {
3261 				/*
3262 				 * Flushing failed. Just choose the lowest
3263 				 * sequence of the enabled boot consoles.
3264 				 */
3265 
3266 				/*
3267 				 * If there was a handover, this context no
3268 				 * longer holds the console_lock.
3269 				 */
3270 				if (handover)
3271 					console_lock();
3272 
3273 				newcon->seq = prb_next_seq(prb);
3274 				for_each_console(con) {
3275 					if ((con->flags & CON_BOOT) &&
3276 					    (con->flags & CON_ENABLED) &&
3277 					    con->seq < newcon->seq) {
3278 						newcon->seq = con->seq;
3279 					}
3280 				}
3281 			}
3282 
3283 			console_unlock();
3284 		}
3285 	}
3286 }
3287 
3288 #define console_first()				\
3289 	hlist_entry(console_list.first, struct console, node)
3290 
3291 static int unregister_console_locked(struct console *console);
3292 
3293 /*
3294  * The console driver calls this routine during kernel initialization
3295  * to register the console printing procedure with printk() and to
3296  * print any messages that were printed by the kernel before the
3297  * console driver was initialized.
3298  *
3299  * This can happen pretty early during the boot process (because of
3300  * early_printk) - sometimes before setup_arch() completes - be careful
3301  * of what kernel features are used - they may not be initialised yet.
3302  *
3303  * There are two types of consoles - bootconsoles (early_printk) and
3304  * "real" consoles (everything which is not a bootconsole) which are
3305  * handled differently.
3306  *  - Any number of bootconsoles can be registered at any time.
3307  *  - As soon as a "real" console is registered, all bootconsoles
3308  *    will be unregistered automatically.
3309  *  - Once a "real" console is registered, any attempt to register a
3310  *    bootconsoles will be rejected
3311  */
3312 void register_console(struct console *newcon)
3313 {
3314 	struct console *con;
3315 	bool bootcon_registered = false;
3316 	bool realcon_registered = false;
3317 	int err;
3318 
3319 	console_list_lock();
3320 
3321 	for_each_console(con) {
3322 		if (WARN(con == newcon, "console '%s%d' already registered\n",
3323 					 con->name, con->index)) {
3324 			goto unlock;
3325 		}
3326 
3327 		if (con->flags & CON_BOOT)
3328 			bootcon_registered = true;
3329 		else
3330 			realcon_registered = true;
3331 	}
3332 
3333 	/* Do not register boot consoles when there already is a real one. */
3334 	if ((newcon->flags & CON_BOOT) && realcon_registered) {
3335 		pr_info("Too late to register bootconsole %s%d\n",
3336 			newcon->name, newcon->index);
3337 		goto unlock;
3338 	}
3339 
3340 	/*
3341 	 * See if we want to enable this console driver by default.
3342 	 *
3343 	 * Nope when a console is preferred by the command line, device
3344 	 * tree, or SPCR.
3345 	 *
3346 	 * The first real console with tty binding (driver) wins. More
3347 	 * consoles might get enabled before the right one is found.
3348 	 *
3349 	 * Note that a console with tty binding will have CON_CONSDEV
3350 	 * flag set and will be first in the list.
3351 	 */
3352 	if (preferred_console < 0) {
3353 		if (hlist_empty(&console_list) || !console_first()->device ||
3354 		    console_first()->flags & CON_BOOT) {
3355 			try_enable_default_console(newcon);
3356 		}
3357 	}
3358 
3359 	/* See if this console matches one we selected on the command line */
3360 	err = try_enable_preferred_console(newcon, true);
3361 
3362 	/* If not, try to match against the platform default(s) */
3363 	if (err == -ENOENT)
3364 		err = try_enable_preferred_console(newcon, false);
3365 
3366 	/* printk() messages are not printed to the Braille console. */
3367 	if (err || newcon->flags & CON_BRL)
3368 		goto unlock;
3369 
3370 	/*
3371 	 * If we have a bootconsole, and are switching to a real console,
3372 	 * don't print everything out again, since when the boot console, and
3373 	 * the real console are the same physical device, it's annoying to
3374 	 * see the beginning boot messages twice
3375 	 */
3376 	if (bootcon_registered &&
3377 	    ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV)) {
3378 		newcon->flags &= ~CON_PRINTBUFFER;
3379 	}
3380 
3381 	newcon->dropped = 0;
3382 	console_init_seq(newcon, bootcon_registered);
3383 
3384 	/*
3385 	 * Put this console in the list - keep the
3386 	 * preferred driver at the head of the list.
3387 	 */
3388 	if (hlist_empty(&console_list)) {
3389 		/* Ensure CON_CONSDEV is always set for the head. */
3390 		newcon->flags |= CON_CONSDEV;
3391 		hlist_add_head_rcu(&newcon->node, &console_list);
3392 
3393 	} else if (newcon->flags & CON_CONSDEV) {
3394 		/* Only the new head can have CON_CONSDEV set. */
3395 		console_srcu_write_flags(console_first(), console_first()->flags & ~CON_CONSDEV);
3396 		hlist_add_head_rcu(&newcon->node, &console_list);
3397 
3398 	} else {
3399 		hlist_add_behind_rcu(&newcon->node, console_list.first);
3400 	}
3401 
3402 	/*
3403 	 * No need to synchronize SRCU here! The caller does not rely
3404 	 * on all contexts being able to see the new console before
3405 	 * register_console() completes.
3406 	 */
3407 
3408 	console_sysfs_notify();
3409 
3410 	/*
3411 	 * By unregistering the bootconsoles after we enable the real console
3412 	 * we get the "console xxx enabled" message on all the consoles -
3413 	 * boot consoles, real consoles, etc - this is to ensure that end
3414 	 * users know there might be something in the kernel's log buffer that
3415 	 * went to the bootconsole (that they do not see on the real console)
3416 	 */
3417 	con_printk(KERN_INFO, newcon, "enabled\n");
3418 	if (bootcon_registered &&
3419 	    ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV) &&
3420 	    !keep_bootcon) {
3421 		struct hlist_node *tmp;
3422 
3423 		hlist_for_each_entry_safe(con, tmp, &console_list, node) {
3424 			if (con->flags & CON_BOOT)
3425 				unregister_console_locked(con);
3426 		}
3427 	}
3428 unlock:
3429 	console_list_unlock();
3430 }
3431 EXPORT_SYMBOL(register_console);
3432 
3433 /* Must be called under console_list_lock(). */
3434 static int unregister_console_locked(struct console *console)
3435 {
3436 	int res;
3437 
3438 	lockdep_assert_console_list_lock_held();
3439 
3440 	con_printk(KERN_INFO, console, "disabled\n");
3441 
3442 	res = _braille_unregister_console(console);
3443 	if (res < 0)
3444 		return res;
3445 	if (res > 0)
3446 		return 0;
3447 
3448 	/* Disable it unconditionally */
3449 	console_srcu_write_flags(console, console->flags & ~CON_ENABLED);
3450 
3451 	if (!console_is_registered_locked(console))
3452 		return -ENODEV;
3453 
3454 	hlist_del_init_rcu(&console->node);
3455 
3456 	/*
3457 	 * <HISTORICAL>
3458 	 * If this isn't the last console and it has CON_CONSDEV set, we
3459 	 * need to set it on the next preferred console.
3460 	 * </HISTORICAL>
3461 	 *
3462 	 * The above makes no sense as there is no guarantee that the next
3463 	 * console has any device attached. Oh well....
3464 	 */
3465 	if (!hlist_empty(&console_list) && console->flags & CON_CONSDEV)
3466 		console_srcu_write_flags(console_first(), console_first()->flags | CON_CONSDEV);
3467 
3468 	/*
3469 	 * Ensure that all SRCU list walks have completed. All contexts
3470 	 * must not be able to see this console in the list so that any
3471 	 * exit/cleanup routines can be performed safely.
3472 	 */
3473 	synchronize_srcu(&console_srcu);
3474 
3475 	console_sysfs_notify();
3476 
3477 	if (console->exit)
3478 		res = console->exit(console);
3479 
3480 	return res;
3481 }
3482 
3483 int unregister_console(struct console *console)
3484 {
3485 	int res;
3486 
3487 	console_list_lock();
3488 	res = unregister_console_locked(console);
3489 	console_list_unlock();
3490 	return res;
3491 }
3492 EXPORT_SYMBOL(unregister_console);
3493 
3494 /**
3495  * console_force_preferred_locked - force a registered console preferred
3496  * @con: The registered console to force preferred.
3497  *
3498  * Must be called under console_list_lock().
3499  */
3500 void console_force_preferred_locked(struct console *con)
3501 {
3502 	struct console *cur_pref_con;
3503 
3504 	if (!console_is_registered_locked(con))
3505 		return;
3506 
3507 	cur_pref_con = console_first();
3508 
3509 	/* Already preferred? */
3510 	if (cur_pref_con == con)
3511 		return;
3512 
3513 	/*
3514 	 * Delete, but do not re-initialize the entry. This allows the console
3515 	 * to continue to appear registered (via any hlist_unhashed_lockless()
3516 	 * checks), even though it was briefly removed from the console list.
3517 	 */
3518 	hlist_del_rcu(&con->node);
3519 
3520 	/*
3521 	 * Ensure that all SRCU list walks have completed so that the console
3522 	 * can be added to the beginning of the console list and its forward
3523 	 * list pointer can be re-initialized.
3524 	 */
3525 	synchronize_srcu(&console_srcu);
3526 
3527 	con->flags |= CON_CONSDEV;
3528 	WARN_ON(!con->device);
3529 
3530 	/* Only the new head can have CON_CONSDEV set. */
3531 	console_srcu_write_flags(cur_pref_con, cur_pref_con->flags & ~CON_CONSDEV);
3532 	hlist_add_head_rcu(&con->node, &console_list);
3533 }
3534 EXPORT_SYMBOL(console_force_preferred_locked);
3535 
3536 /*
3537  * Initialize the console device. This is called *early*, so
3538  * we can't necessarily depend on lots of kernel help here.
3539  * Just do some early initializations, and do the complex setup
3540  * later.
3541  */
3542 void __init console_init(void)
3543 {
3544 	int ret;
3545 	initcall_t call;
3546 	initcall_entry_t *ce;
3547 
3548 	/* Setup the default TTY line discipline. */
3549 	n_tty_init();
3550 
3551 	/*
3552 	 * set up the console device so that later boot sequences can
3553 	 * inform about problems etc..
3554 	 */
3555 	ce = __con_initcall_start;
3556 	trace_initcall_level("console");
3557 	while (ce < __con_initcall_end) {
3558 		call = initcall_from_entry(ce);
3559 		trace_initcall_start(call);
3560 		ret = call();
3561 		trace_initcall_finish(call, ret);
3562 		ce++;
3563 	}
3564 }
3565 
3566 /*
3567  * Some boot consoles access data that is in the init section and which will
3568  * be discarded after the initcalls have been run. To make sure that no code
3569  * will access this data, unregister the boot consoles in a late initcall.
3570  *
3571  * If for some reason, such as deferred probe or the driver being a loadable
3572  * module, the real console hasn't registered yet at this point, there will
3573  * be a brief interval in which no messages are logged to the console, which
3574  * makes it difficult to diagnose problems that occur during this time.
3575  *
3576  * To mitigate this problem somewhat, only unregister consoles whose memory
3577  * intersects with the init section. Note that all other boot consoles will
3578  * get unregistered when the real preferred console is registered.
3579  */
3580 static int __init printk_late_init(void)
3581 {
3582 	struct hlist_node *tmp;
3583 	struct console *con;
3584 	int ret;
3585 
3586 	console_list_lock();
3587 	hlist_for_each_entry_safe(con, tmp, &console_list, node) {
3588 		if (!(con->flags & CON_BOOT))
3589 			continue;
3590 
3591 		/* Check addresses that might be used for enabled consoles. */
3592 		if (init_section_intersects(con, sizeof(*con)) ||
3593 		    init_section_contains(con->write, 0) ||
3594 		    init_section_contains(con->read, 0) ||
3595 		    init_section_contains(con->device, 0) ||
3596 		    init_section_contains(con->unblank, 0) ||
3597 		    init_section_contains(con->data, 0)) {
3598 			/*
3599 			 * Please, consider moving the reported consoles out
3600 			 * of the init section.
3601 			 */
3602 			pr_warn("bootconsole [%s%d] uses init memory and must be disabled even before the real one is ready\n",
3603 				con->name, con->index);
3604 			unregister_console_locked(con);
3605 		}
3606 	}
3607 	console_list_unlock();
3608 
3609 	ret = cpuhp_setup_state_nocalls(CPUHP_PRINTK_DEAD, "printk:dead", NULL,
3610 					console_cpu_notify);
3611 	WARN_ON(ret < 0);
3612 	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "printk:online",
3613 					console_cpu_notify, NULL);
3614 	WARN_ON(ret < 0);
3615 	printk_sysctl_init();
3616 	return 0;
3617 }
3618 late_initcall(printk_late_init);
3619 
3620 #if defined CONFIG_PRINTK
3621 /* If @con is specified, only wait for that console. Otherwise wait for all. */
3622 static bool __pr_flush(struct console *con, int timeout_ms, bool reset_on_progress)
3623 {
3624 	int remaining = timeout_ms;
3625 	struct console *c;
3626 	u64 last_diff = 0;
3627 	u64 printk_seq;
3628 	int cookie;
3629 	u64 diff;
3630 	u64 seq;
3631 
3632 	might_sleep();
3633 
3634 	seq = prb_next_seq(prb);
3635 
3636 	for (;;) {
3637 		diff = 0;
3638 
3639 		/*
3640 		 * Hold the console_lock to guarantee safe access to
3641 		 * console->seq and to prevent changes to @console_suspended
3642 		 * until all consoles have been processed.
3643 		 */
3644 		console_lock();
3645 
3646 		cookie = console_srcu_read_lock();
3647 		for_each_console_srcu(c) {
3648 			if (con && con != c)
3649 				continue;
3650 			if (!console_is_usable(c))
3651 				continue;
3652 			printk_seq = c->seq;
3653 			if (printk_seq < seq)
3654 				diff += seq - printk_seq;
3655 		}
3656 		console_srcu_read_unlock(cookie);
3657 
3658 		/*
3659 		 * If consoles are suspended, it cannot be expected that they
3660 		 * make forward progress, so timeout immediately. @diff is
3661 		 * still used to return a valid flush status.
3662 		 */
3663 		if (console_suspended)
3664 			remaining = 0;
3665 		else if (diff != last_diff && reset_on_progress)
3666 			remaining = timeout_ms;
3667 
3668 		console_unlock();
3669 
3670 		if (diff == 0 || remaining == 0)
3671 			break;
3672 
3673 		if (remaining < 0) {
3674 			/* no timeout limit */
3675 			msleep(100);
3676 		} else if (remaining < 100) {
3677 			msleep(remaining);
3678 			remaining = 0;
3679 		} else {
3680 			msleep(100);
3681 			remaining -= 100;
3682 		}
3683 
3684 		last_diff = diff;
3685 	}
3686 
3687 	return (diff == 0);
3688 }
3689 
3690 /**
3691  * pr_flush() - Wait for printing threads to catch up.
3692  *
3693  * @timeout_ms:        The maximum time (in ms) to wait.
3694  * @reset_on_progress: Reset the timeout if forward progress is seen.
3695  *
3696  * A value of 0 for @timeout_ms means no waiting will occur. A value of -1
3697  * represents infinite waiting.
3698  *
3699  * If @reset_on_progress is true, the timeout will be reset whenever any
3700  * printer has been seen to make some forward progress.
3701  *
3702  * Context: Process context. May sleep while acquiring console lock.
3703  * Return: true if all enabled printers are caught up.
3704  */
3705 static bool pr_flush(int timeout_ms, bool reset_on_progress)
3706 {
3707 	return __pr_flush(NULL, timeout_ms, reset_on_progress);
3708 }
3709 
3710 /*
3711  * Delayed printk version, for scheduler-internal messages:
3712  */
3713 #define PRINTK_PENDING_WAKEUP	0x01
3714 #define PRINTK_PENDING_OUTPUT	0x02
3715 
3716 static DEFINE_PER_CPU(int, printk_pending);
3717 
3718 static void wake_up_klogd_work_func(struct irq_work *irq_work)
3719 {
3720 	int pending = this_cpu_xchg(printk_pending, 0);
3721 
3722 	if (pending & PRINTK_PENDING_OUTPUT) {
3723 		/* If trylock fails, someone else is doing the printing */
3724 		if (console_trylock())
3725 			console_unlock();
3726 	}
3727 
3728 	if (pending & PRINTK_PENDING_WAKEUP)
3729 		wake_up_interruptible(&log_wait);
3730 }
3731 
3732 static DEFINE_PER_CPU(struct irq_work, wake_up_klogd_work) =
3733 	IRQ_WORK_INIT_LAZY(wake_up_klogd_work_func);
3734 
3735 static void __wake_up_klogd(int val)
3736 {
3737 	if (!printk_percpu_data_ready())
3738 		return;
3739 
3740 	preempt_disable();
3741 	/*
3742 	 * Guarantee any new records can be seen by tasks preparing to wait
3743 	 * before this context checks if the wait queue is empty.
3744 	 *
3745 	 * The full memory barrier within wq_has_sleeper() pairs with the full
3746 	 * memory barrier within set_current_state() of
3747 	 * prepare_to_wait_event(), which is called after ___wait_event() adds
3748 	 * the waiter but before it has checked the wait condition.
3749 	 *
3750 	 * This pairs with devkmsg_read:A and syslog_print:A.
3751 	 */
3752 	if (wq_has_sleeper(&log_wait) || /* LMM(__wake_up_klogd:A) */
3753 	    (val & PRINTK_PENDING_OUTPUT)) {
3754 		this_cpu_or(printk_pending, val);
3755 		irq_work_queue(this_cpu_ptr(&wake_up_klogd_work));
3756 	}
3757 	preempt_enable();
3758 }
3759 
3760 void wake_up_klogd(void)
3761 {
3762 	__wake_up_klogd(PRINTK_PENDING_WAKEUP);
3763 }
3764 
3765 void defer_console_output(void)
3766 {
3767 	/*
3768 	 * New messages may have been added directly to the ringbuffer
3769 	 * using vprintk_store(), so wake any waiters as well.
3770 	 */
3771 	__wake_up_klogd(PRINTK_PENDING_WAKEUP | PRINTK_PENDING_OUTPUT);
3772 }
3773 
3774 void printk_trigger_flush(void)
3775 {
3776 	defer_console_output();
3777 }
3778 
3779 int vprintk_deferred(const char *fmt, va_list args)
3780 {
3781 	int r;
3782 
3783 	r = vprintk_emit(0, LOGLEVEL_SCHED, NULL, fmt, args);
3784 	defer_console_output();
3785 
3786 	return r;
3787 }
3788 
3789 int _printk_deferred(const char *fmt, ...)
3790 {
3791 	va_list args;
3792 	int r;
3793 
3794 	va_start(args, fmt);
3795 	r = vprintk_deferred(fmt, args);
3796 	va_end(args);
3797 
3798 	return r;
3799 }
3800 
3801 /*
3802  * printk rate limiting, lifted from the networking subsystem.
3803  *
3804  * This enforces a rate limit: not more than 10 kernel messages
3805  * every 5s to make a denial-of-service attack impossible.
3806  */
3807 DEFINE_RATELIMIT_STATE(printk_ratelimit_state, 5 * HZ, 10);
3808 
3809 int __printk_ratelimit(const char *func)
3810 {
3811 	return ___ratelimit(&printk_ratelimit_state, func);
3812 }
3813 EXPORT_SYMBOL(__printk_ratelimit);
3814 
3815 /**
3816  * printk_timed_ratelimit - caller-controlled printk ratelimiting
3817  * @caller_jiffies: pointer to caller's state
3818  * @interval_msecs: minimum interval between prints
3819  *
3820  * printk_timed_ratelimit() returns true if more than @interval_msecs
3821  * milliseconds have elapsed since the last time printk_timed_ratelimit()
3822  * returned true.
3823  */
3824 bool printk_timed_ratelimit(unsigned long *caller_jiffies,
3825 			unsigned int interval_msecs)
3826 {
3827 	unsigned long elapsed = jiffies - *caller_jiffies;
3828 
3829 	if (*caller_jiffies && elapsed <= msecs_to_jiffies(interval_msecs))
3830 		return false;
3831 
3832 	*caller_jiffies = jiffies;
3833 	return true;
3834 }
3835 EXPORT_SYMBOL(printk_timed_ratelimit);
3836 
3837 static DEFINE_SPINLOCK(dump_list_lock);
3838 static LIST_HEAD(dump_list);
3839 
3840 /**
3841  * kmsg_dump_register - register a kernel log dumper.
3842  * @dumper: pointer to the kmsg_dumper structure
3843  *
3844  * Adds a kernel log dumper to the system. The dump callback in the
3845  * structure will be called when the kernel oopses or panics and must be
3846  * set. Returns zero on success and %-EINVAL or %-EBUSY otherwise.
3847  */
3848 int kmsg_dump_register(struct kmsg_dumper *dumper)
3849 {
3850 	unsigned long flags;
3851 	int err = -EBUSY;
3852 
3853 	/* The dump callback needs to be set */
3854 	if (!dumper->dump)
3855 		return -EINVAL;
3856 
3857 	spin_lock_irqsave(&dump_list_lock, flags);
3858 	/* Don't allow registering multiple times */
3859 	if (!dumper->registered) {
3860 		dumper->registered = 1;
3861 		list_add_tail_rcu(&dumper->list, &dump_list);
3862 		err = 0;
3863 	}
3864 	spin_unlock_irqrestore(&dump_list_lock, flags);
3865 
3866 	return err;
3867 }
3868 EXPORT_SYMBOL_GPL(kmsg_dump_register);
3869 
3870 /**
3871  * kmsg_dump_unregister - unregister a kmsg dumper.
3872  * @dumper: pointer to the kmsg_dumper structure
3873  *
3874  * Removes a dump device from the system. Returns zero on success and
3875  * %-EINVAL otherwise.
3876  */
3877 int kmsg_dump_unregister(struct kmsg_dumper *dumper)
3878 {
3879 	unsigned long flags;
3880 	int err = -EINVAL;
3881 
3882 	spin_lock_irqsave(&dump_list_lock, flags);
3883 	if (dumper->registered) {
3884 		dumper->registered = 0;
3885 		list_del_rcu(&dumper->list);
3886 		err = 0;
3887 	}
3888 	spin_unlock_irqrestore(&dump_list_lock, flags);
3889 	synchronize_rcu();
3890 
3891 	return err;
3892 }
3893 EXPORT_SYMBOL_GPL(kmsg_dump_unregister);
3894 
3895 static bool always_kmsg_dump;
3896 module_param_named(always_kmsg_dump, always_kmsg_dump, bool, S_IRUGO | S_IWUSR);
3897 
3898 const char *kmsg_dump_reason_str(enum kmsg_dump_reason reason)
3899 {
3900 	switch (reason) {
3901 	case KMSG_DUMP_PANIC:
3902 		return "Panic";
3903 	case KMSG_DUMP_OOPS:
3904 		return "Oops";
3905 	case KMSG_DUMP_EMERG:
3906 		return "Emergency";
3907 	case KMSG_DUMP_SHUTDOWN:
3908 		return "Shutdown";
3909 	default:
3910 		return "Unknown";
3911 	}
3912 }
3913 EXPORT_SYMBOL_GPL(kmsg_dump_reason_str);
3914 
3915 /**
3916  * kmsg_dump - dump kernel log to kernel message dumpers.
3917  * @reason: the reason (oops, panic etc) for dumping
3918  *
3919  * Call each of the registered dumper's dump() callback, which can
3920  * retrieve the kmsg records with kmsg_dump_get_line() or
3921  * kmsg_dump_get_buffer().
3922  */
3923 void kmsg_dump(enum kmsg_dump_reason reason)
3924 {
3925 	struct kmsg_dumper *dumper;
3926 
3927 	rcu_read_lock();
3928 	list_for_each_entry_rcu(dumper, &dump_list, list) {
3929 		enum kmsg_dump_reason max_reason = dumper->max_reason;
3930 
3931 		/*
3932 		 * If client has not provided a specific max_reason, default
3933 		 * to KMSG_DUMP_OOPS, unless always_kmsg_dump was set.
3934 		 */
3935 		if (max_reason == KMSG_DUMP_UNDEF) {
3936 			max_reason = always_kmsg_dump ? KMSG_DUMP_MAX :
3937 							KMSG_DUMP_OOPS;
3938 		}
3939 		if (reason > max_reason)
3940 			continue;
3941 
3942 		/* invoke dumper which will iterate over records */
3943 		dumper->dump(dumper, reason);
3944 	}
3945 	rcu_read_unlock();
3946 }
3947 
3948 /**
3949  * kmsg_dump_get_line - retrieve one kmsg log line
3950  * @iter: kmsg dump iterator
3951  * @syslog: include the "<4>" prefixes
3952  * @line: buffer to copy the line to
3953  * @size: maximum size of the buffer
3954  * @len: length of line placed into buffer
3955  *
3956  * Start at the beginning of the kmsg buffer, with the oldest kmsg
3957  * record, and copy one record into the provided buffer.
3958  *
3959  * Consecutive calls will return the next available record moving
3960  * towards the end of the buffer with the youngest messages.
3961  *
3962  * A return value of FALSE indicates that there are no more records to
3963  * read.
3964  */
3965 bool kmsg_dump_get_line(struct kmsg_dump_iter *iter, bool syslog,
3966 			char *line, size_t size, size_t *len)
3967 {
3968 	u64 min_seq = latched_seq_read_nolock(&clear_seq);
3969 	struct printk_info info;
3970 	unsigned int line_count;
3971 	struct printk_record r;
3972 	size_t l = 0;
3973 	bool ret = false;
3974 
3975 	if (iter->cur_seq < min_seq)
3976 		iter->cur_seq = min_seq;
3977 
3978 	prb_rec_init_rd(&r, &info, line, size);
3979 
3980 	/* Read text or count text lines? */
3981 	if (line) {
3982 		if (!prb_read_valid(prb, iter->cur_seq, &r))
3983 			goto out;
3984 		l = record_print_text(&r, syslog, printk_time);
3985 	} else {
3986 		if (!prb_read_valid_info(prb, iter->cur_seq,
3987 					 &info, &line_count)) {
3988 			goto out;
3989 		}
3990 		l = get_record_print_text_size(&info, line_count, syslog,
3991 					       printk_time);
3992 
3993 	}
3994 
3995 	iter->cur_seq = r.info->seq + 1;
3996 	ret = true;
3997 out:
3998 	if (len)
3999 		*len = l;
4000 	return ret;
4001 }
4002 EXPORT_SYMBOL_GPL(kmsg_dump_get_line);
4003 
4004 /**
4005  * kmsg_dump_get_buffer - copy kmsg log lines
4006  * @iter: kmsg dump iterator
4007  * @syslog: include the "<4>" prefixes
4008  * @buf: buffer to copy the line to
4009  * @size: maximum size of the buffer
4010  * @len_out: length of line placed into buffer
4011  *
4012  * Start at the end of the kmsg buffer and fill the provided buffer
4013  * with as many of the *youngest* kmsg records that fit into it.
4014  * If the buffer is large enough, all available kmsg records will be
4015  * copied with a single call.
4016  *
4017  * Consecutive calls will fill the buffer with the next block of
4018  * available older records, not including the earlier retrieved ones.
4019  *
4020  * A return value of FALSE indicates that there are no more records to
4021  * read.
4022  */
4023 bool kmsg_dump_get_buffer(struct kmsg_dump_iter *iter, bool syslog,
4024 			  char *buf, size_t size, size_t *len_out)
4025 {
4026 	u64 min_seq = latched_seq_read_nolock(&clear_seq);
4027 	struct printk_info info;
4028 	struct printk_record r;
4029 	u64 seq;
4030 	u64 next_seq;
4031 	size_t len = 0;
4032 	bool ret = false;
4033 	bool time = printk_time;
4034 
4035 	if (!buf || !size)
4036 		goto out;
4037 
4038 	if (iter->cur_seq < min_seq)
4039 		iter->cur_seq = min_seq;
4040 
4041 	if (prb_read_valid_info(prb, iter->cur_seq, &info, NULL)) {
4042 		if (info.seq != iter->cur_seq) {
4043 			/* messages are gone, move to first available one */
4044 			iter->cur_seq = info.seq;
4045 		}
4046 	}
4047 
4048 	/* last entry */
4049 	if (iter->cur_seq >= iter->next_seq)
4050 		goto out;
4051 
4052 	/*
4053 	 * Find first record that fits, including all following records,
4054 	 * into the user-provided buffer for this dump. Pass in size-1
4055 	 * because this function (by way of record_print_text()) will
4056 	 * not write more than size-1 bytes of text into @buf.
4057 	 */
4058 	seq = find_first_fitting_seq(iter->cur_seq, iter->next_seq,
4059 				     size - 1, syslog, time);
4060 
4061 	/*
4062 	 * Next kmsg_dump_get_buffer() invocation will dump block of
4063 	 * older records stored right before this one.
4064 	 */
4065 	next_seq = seq;
4066 
4067 	prb_rec_init_rd(&r, &info, buf, size);
4068 
4069 	len = 0;
4070 	prb_for_each_record(seq, prb, seq, &r) {
4071 		if (r.info->seq >= iter->next_seq)
4072 			break;
4073 
4074 		len += record_print_text(&r, syslog, time);
4075 
4076 		/* Adjust record to store to remaining buffer space. */
4077 		prb_rec_init_rd(&r, &info, buf + len, size - len);
4078 	}
4079 
4080 	iter->next_seq = next_seq;
4081 	ret = true;
4082 out:
4083 	if (len_out)
4084 		*len_out = len;
4085 	return ret;
4086 }
4087 EXPORT_SYMBOL_GPL(kmsg_dump_get_buffer);
4088 
4089 /**
4090  * kmsg_dump_rewind - reset the iterator
4091  * @iter: kmsg dump iterator
4092  *
4093  * Reset the dumper's iterator so that kmsg_dump_get_line() and
4094  * kmsg_dump_get_buffer() can be called again and used multiple
4095  * times within the same dumper.dump() callback.
4096  */
4097 void kmsg_dump_rewind(struct kmsg_dump_iter *iter)
4098 {
4099 	iter->cur_seq = latched_seq_read_nolock(&clear_seq);
4100 	iter->next_seq = prb_next_seq(prb);
4101 }
4102 EXPORT_SYMBOL_GPL(kmsg_dump_rewind);
4103 
4104 #endif
4105 
4106 #ifdef CONFIG_SMP
4107 static atomic_t printk_cpu_sync_owner = ATOMIC_INIT(-1);
4108 static atomic_t printk_cpu_sync_nested = ATOMIC_INIT(0);
4109 
4110 /**
4111  * __printk_cpu_sync_wait() - Busy wait until the printk cpu-reentrant
4112  *                            spinning lock is not owned by any CPU.
4113  *
4114  * Context: Any context.
4115  */
4116 void __printk_cpu_sync_wait(void)
4117 {
4118 	do {
4119 		cpu_relax();
4120 	} while (atomic_read(&printk_cpu_sync_owner) != -1);
4121 }
4122 EXPORT_SYMBOL(__printk_cpu_sync_wait);
4123 
4124 /**
4125  * __printk_cpu_sync_try_get() - Try to acquire the printk cpu-reentrant
4126  *                               spinning lock.
4127  *
4128  * If no processor has the lock, the calling processor takes the lock and
4129  * becomes the owner. If the calling processor is already the owner of the
4130  * lock, this function succeeds immediately.
4131  *
4132  * Context: Any context. Expects interrupts to be disabled.
4133  * Return: 1 on success, otherwise 0.
4134  */
4135 int __printk_cpu_sync_try_get(void)
4136 {
4137 	int cpu;
4138 	int old;
4139 
4140 	cpu = smp_processor_id();
4141 
4142 	/*
4143 	 * Guarantee loads and stores from this CPU when it is the lock owner
4144 	 * are _not_ visible to the previous lock owner. This pairs with
4145 	 * __printk_cpu_sync_put:B.
4146 	 *
4147 	 * Memory barrier involvement:
4148 	 *
4149 	 * If __printk_cpu_sync_try_get:A reads from __printk_cpu_sync_put:B,
4150 	 * then __printk_cpu_sync_put:A can never read from
4151 	 * __printk_cpu_sync_try_get:B.
4152 	 *
4153 	 * Relies on:
4154 	 *
4155 	 * RELEASE from __printk_cpu_sync_put:A to __printk_cpu_sync_put:B
4156 	 * of the previous CPU
4157 	 *    matching
4158 	 * ACQUIRE from __printk_cpu_sync_try_get:A to
4159 	 * __printk_cpu_sync_try_get:B of this CPU
4160 	 */
4161 	old = atomic_cmpxchg_acquire(&printk_cpu_sync_owner, -1,
4162 				     cpu); /* LMM(__printk_cpu_sync_try_get:A) */
4163 	if (old == -1) {
4164 		/*
4165 		 * This CPU is now the owner and begins loading/storing
4166 		 * data: LMM(__printk_cpu_sync_try_get:B)
4167 		 */
4168 		return 1;
4169 
4170 	} else if (old == cpu) {
4171 		/* This CPU is already the owner. */
4172 		atomic_inc(&printk_cpu_sync_nested);
4173 		return 1;
4174 	}
4175 
4176 	return 0;
4177 }
4178 EXPORT_SYMBOL(__printk_cpu_sync_try_get);
4179 
4180 /**
4181  * __printk_cpu_sync_put() - Release the printk cpu-reentrant spinning lock.
4182  *
4183  * The calling processor must be the owner of the lock.
4184  *
4185  * Context: Any context. Expects interrupts to be disabled.
4186  */
4187 void __printk_cpu_sync_put(void)
4188 {
4189 	if (atomic_read(&printk_cpu_sync_nested)) {
4190 		atomic_dec(&printk_cpu_sync_nested);
4191 		return;
4192 	}
4193 
4194 	/*
4195 	 * This CPU is finished loading/storing data:
4196 	 * LMM(__printk_cpu_sync_put:A)
4197 	 */
4198 
4199 	/*
4200 	 * Guarantee loads and stores from this CPU when it was the
4201 	 * lock owner are visible to the next lock owner. This pairs
4202 	 * with __printk_cpu_sync_try_get:A.
4203 	 *
4204 	 * Memory barrier involvement:
4205 	 *
4206 	 * If __printk_cpu_sync_try_get:A reads from __printk_cpu_sync_put:B,
4207 	 * then __printk_cpu_sync_try_get:B reads from __printk_cpu_sync_put:A.
4208 	 *
4209 	 * Relies on:
4210 	 *
4211 	 * RELEASE from __printk_cpu_sync_put:A to __printk_cpu_sync_put:B
4212 	 * of this CPU
4213 	 *    matching
4214 	 * ACQUIRE from __printk_cpu_sync_try_get:A to
4215 	 * __printk_cpu_sync_try_get:B of the next CPU
4216 	 */
4217 	atomic_set_release(&printk_cpu_sync_owner,
4218 			   -1); /* LMM(__printk_cpu_sync_put:B) */
4219 }
4220 EXPORT_SYMBOL(__printk_cpu_sync_put);
4221 #endif /* CONFIG_SMP */
4222