xref: /openbmc/linux/kernel/printk/printk.c (revision 7bcae826)
1 /*
2  *  linux/kernel/printk.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  *
6  * Modified to make sys_syslog() more flexible: added commands to
7  * return the last 4k of kernel messages, regardless of whether
8  * they've been read or not.  Added option to suppress kernel printk's
9  * to the console.  Added hook for sending the console messages
10  * elsewhere, in preparation for a serial line console (someday).
11  * Ted Ts'o, 2/11/93.
12  * Modified for sysctl support, 1/8/97, Chris Horn.
13  * Fixed SMP synchronization, 08/08/99, Manfred Spraul
14  *     manfred@colorfullife.com
15  * Rewrote bits to get rid of console_lock
16  *	01Mar01 Andrew Morton
17  */
18 
19 #include <linux/kernel.h>
20 #include <linux/mm.h>
21 #include <linux/tty.h>
22 #include <linux/tty_driver.h>
23 #include <linux/console.h>
24 #include <linux/init.h>
25 #include <linux/jiffies.h>
26 #include <linux/nmi.h>
27 #include <linux/module.h>
28 #include <linux/moduleparam.h>
29 #include <linux/delay.h>
30 #include <linux/smp.h>
31 #include <linux/security.h>
32 #include <linux/bootmem.h>
33 #include <linux/memblock.h>
34 #include <linux/syscalls.h>
35 #include <linux/kexec.h>
36 #include <linux/kdb.h>
37 #include <linux/ratelimit.h>
38 #include <linux/kmsg_dump.h>
39 #include <linux/syslog.h>
40 #include <linux/cpu.h>
41 #include <linux/notifier.h>
42 #include <linux/rculist.h>
43 #include <linux/poll.h>
44 #include <linux/irq_work.h>
45 #include <linux/utsname.h>
46 #include <linux/ctype.h>
47 #include <linux/uio.h>
48 
49 #include <linux/uaccess.h>
50 #include <asm/sections.h>
51 
52 #define CREATE_TRACE_POINTS
53 #include <trace/events/printk.h>
54 
55 #include "console_cmdline.h"
56 #include "braille.h"
57 #include "internal.h"
58 
59 int console_printk[4] = {
60 	CONSOLE_LOGLEVEL_DEFAULT,	/* console_loglevel */
61 	MESSAGE_LOGLEVEL_DEFAULT,	/* default_message_loglevel */
62 	CONSOLE_LOGLEVEL_MIN,		/* minimum_console_loglevel */
63 	CONSOLE_LOGLEVEL_DEFAULT,	/* default_console_loglevel */
64 };
65 
66 /*
67  * Low level drivers may need that to know if they can schedule in
68  * their unblank() callback or not. So let's export it.
69  */
70 int oops_in_progress;
71 EXPORT_SYMBOL(oops_in_progress);
72 
73 /*
74  * console_sem protects the console_drivers list, and also
75  * provides serialisation for access to the entire console
76  * driver system.
77  */
78 static DEFINE_SEMAPHORE(console_sem);
79 struct console *console_drivers;
80 EXPORT_SYMBOL_GPL(console_drivers);
81 
82 #ifdef CONFIG_LOCKDEP
83 static struct lockdep_map console_lock_dep_map = {
84 	.name = "console_lock"
85 };
86 #endif
87 
88 enum devkmsg_log_bits {
89 	__DEVKMSG_LOG_BIT_ON = 0,
90 	__DEVKMSG_LOG_BIT_OFF,
91 	__DEVKMSG_LOG_BIT_LOCK,
92 };
93 
94 enum devkmsg_log_masks {
95 	DEVKMSG_LOG_MASK_ON             = BIT(__DEVKMSG_LOG_BIT_ON),
96 	DEVKMSG_LOG_MASK_OFF            = BIT(__DEVKMSG_LOG_BIT_OFF),
97 	DEVKMSG_LOG_MASK_LOCK           = BIT(__DEVKMSG_LOG_BIT_LOCK),
98 };
99 
100 /* Keep both the 'on' and 'off' bits clear, i.e. ratelimit by default: */
101 #define DEVKMSG_LOG_MASK_DEFAULT	0
102 
103 static unsigned int __read_mostly devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT;
104 
105 static int __control_devkmsg(char *str)
106 {
107 	if (!str)
108 		return -EINVAL;
109 
110 	if (!strncmp(str, "on", 2)) {
111 		devkmsg_log = DEVKMSG_LOG_MASK_ON;
112 		return 2;
113 	} else if (!strncmp(str, "off", 3)) {
114 		devkmsg_log = DEVKMSG_LOG_MASK_OFF;
115 		return 3;
116 	} else if (!strncmp(str, "ratelimit", 9)) {
117 		devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT;
118 		return 9;
119 	}
120 	return -EINVAL;
121 }
122 
123 static int __init control_devkmsg(char *str)
124 {
125 	if (__control_devkmsg(str) < 0)
126 		return 1;
127 
128 	/*
129 	 * Set sysctl string accordingly:
130 	 */
131 	if (devkmsg_log == DEVKMSG_LOG_MASK_ON) {
132 		memset(devkmsg_log_str, 0, DEVKMSG_STR_MAX_SIZE);
133 		strncpy(devkmsg_log_str, "on", 2);
134 	} else if (devkmsg_log == DEVKMSG_LOG_MASK_OFF) {
135 		memset(devkmsg_log_str, 0, DEVKMSG_STR_MAX_SIZE);
136 		strncpy(devkmsg_log_str, "off", 3);
137 	}
138 	/* else "ratelimit" which is set by default. */
139 
140 	/*
141 	 * Sysctl cannot change it anymore. The kernel command line setting of
142 	 * this parameter is to force the setting to be permanent throughout the
143 	 * runtime of the system. This is a precation measure against userspace
144 	 * trying to be a smarta** and attempting to change it up on us.
145 	 */
146 	devkmsg_log |= DEVKMSG_LOG_MASK_LOCK;
147 
148 	return 0;
149 }
150 __setup("printk.devkmsg=", control_devkmsg);
151 
152 char devkmsg_log_str[DEVKMSG_STR_MAX_SIZE] = "ratelimit";
153 
154 int devkmsg_sysctl_set_loglvl(struct ctl_table *table, int write,
155 			      void __user *buffer, size_t *lenp, loff_t *ppos)
156 {
157 	char old_str[DEVKMSG_STR_MAX_SIZE];
158 	unsigned int old;
159 	int err;
160 
161 	if (write) {
162 		if (devkmsg_log & DEVKMSG_LOG_MASK_LOCK)
163 			return -EINVAL;
164 
165 		old = devkmsg_log;
166 		strncpy(old_str, devkmsg_log_str, DEVKMSG_STR_MAX_SIZE);
167 	}
168 
169 	err = proc_dostring(table, write, buffer, lenp, ppos);
170 	if (err)
171 		return err;
172 
173 	if (write) {
174 		err = __control_devkmsg(devkmsg_log_str);
175 
176 		/*
177 		 * Do not accept an unknown string OR a known string with
178 		 * trailing crap...
179 		 */
180 		if (err < 0 || (err + 1 != *lenp)) {
181 
182 			/* ... and restore old setting. */
183 			devkmsg_log = old;
184 			strncpy(devkmsg_log_str, old_str, DEVKMSG_STR_MAX_SIZE);
185 
186 			return -EINVAL;
187 		}
188 	}
189 
190 	return 0;
191 }
192 
193 /*
194  * Number of registered extended console drivers.
195  *
196  * If extended consoles are present, in-kernel cont reassembly is disabled
197  * and each fragment is stored as a separate log entry with proper
198  * continuation flag so that every emitted message has full metadata.  This
199  * doesn't change the result for regular consoles or /proc/kmsg.  For
200  * /dev/kmsg, as long as the reader concatenates messages according to
201  * consecutive continuation flags, the end result should be the same too.
202  */
203 static int nr_ext_console_drivers;
204 
205 /*
206  * Helper macros to handle lockdep when locking/unlocking console_sem. We use
207  * macros instead of functions so that _RET_IP_ contains useful information.
208  */
209 #define down_console_sem() do { \
210 	down(&console_sem);\
211 	mutex_acquire(&console_lock_dep_map, 0, 0, _RET_IP_);\
212 } while (0)
213 
214 static int __down_trylock_console_sem(unsigned long ip)
215 {
216 	int lock_failed;
217 	unsigned long flags;
218 
219 	/*
220 	 * Here and in __up_console_sem() we need to be in safe mode,
221 	 * because spindump/WARN/etc from under console ->lock will
222 	 * deadlock in printk()->down_trylock_console_sem() otherwise.
223 	 */
224 	printk_safe_enter_irqsave(flags);
225 	lock_failed = down_trylock(&console_sem);
226 	printk_safe_exit_irqrestore(flags);
227 
228 	if (lock_failed)
229 		return 1;
230 	mutex_acquire(&console_lock_dep_map, 0, 1, ip);
231 	return 0;
232 }
233 #define down_trylock_console_sem() __down_trylock_console_sem(_RET_IP_)
234 
235 static void __up_console_sem(unsigned long ip)
236 {
237 	unsigned long flags;
238 
239 	mutex_release(&console_lock_dep_map, 1, ip);
240 
241 	printk_safe_enter_irqsave(flags);
242 	up(&console_sem);
243 	printk_safe_exit_irqrestore(flags);
244 }
245 #define up_console_sem() __up_console_sem(_RET_IP_)
246 
247 /*
248  * This is used for debugging the mess that is the VT code by
249  * keeping track if we have the console semaphore held. It's
250  * definitely not the perfect debug tool (we don't know if _WE_
251  * hold it and are racing, but it helps tracking those weird code
252  * paths in the console code where we end up in places I want
253  * locked without the console sempahore held).
254  */
255 static int console_locked, console_suspended;
256 
257 /*
258  * If exclusive_console is non-NULL then only this console is to be printed to.
259  */
260 static struct console *exclusive_console;
261 
262 /*
263  *	Array of consoles built from command line options (console=)
264  */
265 
266 #define MAX_CMDLINECONSOLES 8
267 
268 static struct console_cmdline console_cmdline[MAX_CMDLINECONSOLES];
269 
270 static int selected_console = -1;
271 static int preferred_console = -1;
272 int console_set_on_cmdline;
273 EXPORT_SYMBOL(console_set_on_cmdline);
274 
275 /* Flag: console code may call schedule() */
276 static int console_may_schedule;
277 
278 /*
279  * The printk log buffer consists of a chain of concatenated variable
280  * length records. Every record starts with a record header, containing
281  * the overall length of the record.
282  *
283  * The heads to the first and last entry in the buffer, as well as the
284  * sequence numbers of these entries are maintained when messages are
285  * stored.
286  *
287  * If the heads indicate available messages, the length in the header
288  * tells the start next message. A length == 0 for the next message
289  * indicates a wrap-around to the beginning of the buffer.
290  *
291  * Every record carries the monotonic timestamp in microseconds, as well as
292  * the standard userspace syslog level and syslog facility. The usual
293  * kernel messages use LOG_KERN; userspace-injected messages always carry
294  * a matching syslog facility, by default LOG_USER. The origin of every
295  * message can be reliably determined that way.
296  *
297  * The human readable log message directly follows the message header. The
298  * length of the message text is stored in the header, the stored message
299  * is not terminated.
300  *
301  * Optionally, a message can carry a dictionary of properties (key/value pairs),
302  * to provide userspace with a machine-readable message context.
303  *
304  * Examples for well-defined, commonly used property names are:
305  *   DEVICE=b12:8               device identifier
306  *                                b12:8         block dev_t
307  *                                c127:3        char dev_t
308  *                                n8            netdev ifindex
309  *                                +sound:card0  subsystem:devname
310  *   SUBSYSTEM=pci              driver-core subsystem name
311  *
312  * Valid characters in property names are [a-zA-Z0-9.-_]. The plain text value
313  * follows directly after a '=' character. Every property is terminated by
314  * a '\0' character. The last property is not terminated.
315  *
316  * Example of a message structure:
317  *   0000  ff 8f 00 00 00 00 00 00      monotonic time in nsec
318  *   0008  34 00                        record is 52 bytes long
319  *   000a        0b 00                  text is 11 bytes long
320  *   000c              1f 00            dictionary is 23 bytes long
321  *   000e                    03 00      LOG_KERN (facility) LOG_ERR (level)
322  *   0010  69 74 27 73 20 61 20 6c      "it's a l"
323  *         69 6e 65                     "ine"
324  *   001b           44 45 56 49 43      "DEVIC"
325  *         45 3d 62 38 3a 32 00 44      "E=b8:2\0D"
326  *         52 49 56 45 52 3d 62 75      "RIVER=bu"
327  *         67                           "g"
328  *   0032     00 00 00                  padding to next message header
329  *
330  * The 'struct printk_log' buffer header must never be directly exported to
331  * userspace, it is a kernel-private implementation detail that might
332  * need to be changed in the future, when the requirements change.
333  *
334  * /dev/kmsg exports the structured data in the following line format:
335  *   "<level>,<sequnum>,<timestamp>,<contflag>[,additional_values, ... ];<message text>\n"
336  *
337  * Users of the export format should ignore possible additional values
338  * separated by ',', and find the message after the ';' character.
339  *
340  * The optional key/value pairs are attached as continuation lines starting
341  * with a space character and terminated by a newline. All possible
342  * non-prinatable characters are escaped in the "\xff" notation.
343  */
344 
345 enum log_flags {
346 	LOG_NOCONS	= 1,	/* already flushed, do not print to console */
347 	LOG_NEWLINE	= 2,	/* text ended with a newline */
348 	LOG_PREFIX	= 4,	/* text started with a prefix */
349 	LOG_CONT	= 8,	/* text is a fragment of a continuation line */
350 };
351 
352 struct printk_log {
353 	u64 ts_nsec;		/* timestamp in nanoseconds */
354 	u16 len;		/* length of entire record */
355 	u16 text_len;		/* length of text buffer */
356 	u16 dict_len;		/* length of dictionary buffer */
357 	u8 facility;		/* syslog facility */
358 	u8 flags:5;		/* internal record flags */
359 	u8 level:3;		/* syslog level */
360 }
361 #ifdef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
362 __packed __aligned(4)
363 #endif
364 ;
365 
366 /*
367  * The logbuf_lock protects kmsg buffer, indices, counters.  This can be taken
368  * within the scheduler's rq lock. It must be released before calling
369  * console_unlock() or anything else that might wake up a process.
370  */
371 DEFINE_RAW_SPINLOCK(logbuf_lock);
372 
373 /*
374  * Helper macros to lock/unlock logbuf_lock and switch between
375  * printk-safe/unsafe modes.
376  */
377 #define logbuf_lock_irq()				\
378 	do {						\
379 		printk_safe_enter_irq();		\
380 		raw_spin_lock(&logbuf_lock);		\
381 	} while (0)
382 
383 #define logbuf_unlock_irq()				\
384 	do {						\
385 		raw_spin_unlock(&logbuf_lock);		\
386 		printk_safe_exit_irq();			\
387 	} while (0)
388 
389 #define logbuf_lock_irqsave(flags)			\
390 	do {						\
391 		printk_safe_enter_irqsave(flags);	\
392 		raw_spin_lock(&logbuf_lock);		\
393 	} while (0)
394 
395 #define logbuf_unlock_irqrestore(flags)		\
396 	do {						\
397 		raw_spin_unlock(&logbuf_lock);		\
398 		printk_safe_exit_irqrestore(flags);	\
399 	} while (0)
400 
401 #ifdef CONFIG_PRINTK
402 DECLARE_WAIT_QUEUE_HEAD(log_wait);
403 /* the next printk record to read by syslog(READ) or /proc/kmsg */
404 static u64 syslog_seq;
405 static u32 syslog_idx;
406 static size_t syslog_partial;
407 
408 /* index and sequence number of the first record stored in the buffer */
409 static u64 log_first_seq;
410 static u32 log_first_idx;
411 
412 /* index and sequence number of the next record to store in the buffer */
413 static u64 log_next_seq;
414 static u32 log_next_idx;
415 
416 /* the next printk record to write to the console */
417 static u64 console_seq;
418 static u32 console_idx;
419 
420 /* the next printk record to read after the last 'clear' command */
421 static u64 clear_seq;
422 static u32 clear_idx;
423 
424 #define PREFIX_MAX		32
425 #define LOG_LINE_MAX		(1024 - PREFIX_MAX)
426 
427 #define LOG_LEVEL(v)		((v) & 0x07)
428 #define LOG_FACILITY(v)		((v) >> 3 & 0xff)
429 
430 /* record buffer */
431 #define LOG_ALIGN __alignof__(struct printk_log)
432 #define __LOG_BUF_LEN (1 << CONFIG_LOG_BUF_SHIFT)
433 static char __log_buf[__LOG_BUF_LEN] __aligned(LOG_ALIGN);
434 static char *log_buf = __log_buf;
435 static u32 log_buf_len = __LOG_BUF_LEN;
436 
437 /* Return log buffer address */
438 char *log_buf_addr_get(void)
439 {
440 	return log_buf;
441 }
442 
443 /* Return log buffer size */
444 u32 log_buf_len_get(void)
445 {
446 	return log_buf_len;
447 }
448 
449 /* human readable text of the record */
450 static char *log_text(const struct printk_log *msg)
451 {
452 	return (char *)msg + sizeof(struct printk_log);
453 }
454 
455 /* optional key/value pair dictionary attached to the record */
456 static char *log_dict(const struct printk_log *msg)
457 {
458 	return (char *)msg + sizeof(struct printk_log) + msg->text_len;
459 }
460 
461 /* get record by index; idx must point to valid msg */
462 static struct printk_log *log_from_idx(u32 idx)
463 {
464 	struct printk_log *msg = (struct printk_log *)(log_buf + idx);
465 
466 	/*
467 	 * A length == 0 record is the end of buffer marker. Wrap around and
468 	 * read the message at the start of the buffer.
469 	 */
470 	if (!msg->len)
471 		return (struct printk_log *)log_buf;
472 	return msg;
473 }
474 
475 /* get next record; idx must point to valid msg */
476 static u32 log_next(u32 idx)
477 {
478 	struct printk_log *msg = (struct printk_log *)(log_buf + idx);
479 
480 	/* length == 0 indicates the end of the buffer; wrap */
481 	/*
482 	 * A length == 0 record is the end of buffer marker. Wrap around and
483 	 * read the message at the start of the buffer as *this* one, and
484 	 * return the one after that.
485 	 */
486 	if (!msg->len) {
487 		msg = (struct printk_log *)log_buf;
488 		return msg->len;
489 	}
490 	return idx + msg->len;
491 }
492 
493 /*
494  * Check whether there is enough free space for the given message.
495  *
496  * The same values of first_idx and next_idx mean that the buffer
497  * is either empty or full.
498  *
499  * If the buffer is empty, we must respect the position of the indexes.
500  * They cannot be reset to the beginning of the buffer.
501  */
502 static int logbuf_has_space(u32 msg_size, bool empty)
503 {
504 	u32 free;
505 
506 	if (log_next_idx > log_first_idx || empty)
507 		free = max(log_buf_len - log_next_idx, log_first_idx);
508 	else
509 		free = log_first_idx - log_next_idx;
510 
511 	/*
512 	 * We need space also for an empty header that signalizes wrapping
513 	 * of the buffer.
514 	 */
515 	return free >= msg_size + sizeof(struct printk_log);
516 }
517 
518 static int log_make_free_space(u32 msg_size)
519 {
520 	while (log_first_seq < log_next_seq &&
521 	       !logbuf_has_space(msg_size, false)) {
522 		/* drop old messages until we have enough contiguous space */
523 		log_first_idx = log_next(log_first_idx);
524 		log_first_seq++;
525 	}
526 
527 	if (clear_seq < log_first_seq) {
528 		clear_seq = log_first_seq;
529 		clear_idx = log_first_idx;
530 	}
531 
532 	/* sequence numbers are equal, so the log buffer is empty */
533 	if (logbuf_has_space(msg_size, log_first_seq == log_next_seq))
534 		return 0;
535 
536 	return -ENOMEM;
537 }
538 
539 /* compute the message size including the padding bytes */
540 static u32 msg_used_size(u16 text_len, u16 dict_len, u32 *pad_len)
541 {
542 	u32 size;
543 
544 	size = sizeof(struct printk_log) + text_len + dict_len;
545 	*pad_len = (-size) & (LOG_ALIGN - 1);
546 	size += *pad_len;
547 
548 	return size;
549 }
550 
551 /*
552  * Define how much of the log buffer we could take at maximum. The value
553  * must be greater than two. Note that only half of the buffer is available
554  * when the index points to the middle.
555  */
556 #define MAX_LOG_TAKE_PART 4
557 static const char trunc_msg[] = "<truncated>";
558 
559 static u32 truncate_msg(u16 *text_len, u16 *trunc_msg_len,
560 			u16 *dict_len, u32 *pad_len)
561 {
562 	/*
563 	 * The message should not take the whole buffer. Otherwise, it might
564 	 * get removed too soon.
565 	 */
566 	u32 max_text_len = log_buf_len / MAX_LOG_TAKE_PART;
567 	if (*text_len > max_text_len)
568 		*text_len = max_text_len;
569 	/* enable the warning message */
570 	*trunc_msg_len = strlen(trunc_msg);
571 	/* disable the "dict" completely */
572 	*dict_len = 0;
573 	/* compute the size again, count also the warning message */
574 	return msg_used_size(*text_len + *trunc_msg_len, 0, pad_len);
575 }
576 
577 /* insert record into the buffer, discard old ones, update heads */
578 static int log_store(int facility, int level,
579 		     enum log_flags flags, u64 ts_nsec,
580 		     const char *dict, u16 dict_len,
581 		     const char *text, u16 text_len)
582 {
583 	struct printk_log *msg;
584 	u32 size, pad_len;
585 	u16 trunc_msg_len = 0;
586 
587 	/* number of '\0' padding bytes to next message */
588 	size = msg_used_size(text_len, dict_len, &pad_len);
589 
590 	if (log_make_free_space(size)) {
591 		/* truncate the message if it is too long for empty buffer */
592 		size = truncate_msg(&text_len, &trunc_msg_len,
593 				    &dict_len, &pad_len);
594 		/* survive when the log buffer is too small for trunc_msg */
595 		if (log_make_free_space(size))
596 			return 0;
597 	}
598 
599 	if (log_next_idx + size + sizeof(struct printk_log) > log_buf_len) {
600 		/*
601 		 * This message + an additional empty header does not fit
602 		 * at the end of the buffer. Add an empty header with len == 0
603 		 * to signify a wrap around.
604 		 */
605 		memset(log_buf + log_next_idx, 0, sizeof(struct printk_log));
606 		log_next_idx = 0;
607 	}
608 
609 	/* fill message */
610 	msg = (struct printk_log *)(log_buf + log_next_idx);
611 	memcpy(log_text(msg), text, text_len);
612 	msg->text_len = text_len;
613 	if (trunc_msg_len) {
614 		memcpy(log_text(msg) + text_len, trunc_msg, trunc_msg_len);
615 		msg->text_len += trunc_msg_len;
616 	}
617 	memcpy(log_dict(msg), dict, dict_len);
618 	msg->dict_len = dict_len;
619 	msg->facility = facility;
620 	msg->level = level & 7;
621 	msg->flags = flags & 0x1f;
622 	if (ts_nsec > 0)
623 		msg->ts_nsec = ts_nsec;
624 	else
625 		msg->ts_nsec = local_clock();
626 	memset(log_dict(msg) + dict_len, 0, pad_len);
627 	msg->len = size;
628 
629 	/* insert message */
630 	log_next_idx += msg->len;
631 	log_next_seq++;
632 
633 	return msg->text_len;
634 }
635 
636 int dmesg_restrict = IS_ENABLED(CONFIG_SECURITY_DMESG_RESTRICT);
637 
638 static int syslog_action_restricted(int type)
639 {
640 	if (dmesg_restrict)
641 		return 1;
642 	/*
643 	 * Unless restricted, we allow "read all" and "get buffer size"
644 	 * for everybody.
645 	 */
646 	return type != SYSLOG_ACTION_READ_ALL &&
647 	       type != SYSLOG_ACTION_SIZE_BUFFER;
648 }
649 
650 int check_syslog_permissions(int type, int source)
651 {
652 	/*
653 	 * If this is from /proc/kmsg and we've already opened it, then we've
654 	 * already done the capabilities checks at open time.
655 	 */
656 	if (source == SYSLOG_FROM_PROC && type != SYSLOG_ACTION_OPEN)
657 		goto ok;
658 
659 	if (syslog_action_restricted(type)) {
660 		if (capable(CAP_SYSLOG))
661 			goto ok;
662 		/*
663 		 * For historical reasons, accept CAP_SYS_ADMIN too, with
664 		 * a warning.
665 		 */
666 		if (capable(CAP_SYS_ADMIN)) {
667 			pr_warn_once("%s (%d): Attempt to access syslog with "
668 				     "CAP_SYS_ADMIN but no CAP_SYSLOG "
669 				     "(deprecated).\n",
670 				 current->comm, task_pid_nr(current));
671 			goto ok;
672 		}
673 		return -EPERM;
674 	}
675 ok:
676 	return security_syslog(type);
677 }
678 EXPORT_SYMBOL_GPL(check_syslog_permissions);
679 
680 static void append_char(char **pp, char *e, char c)
681 {
682 	if (*pp < e)
683 		*(*pp)++ = c;
684 }
685 
686 static ssize_t msg_print_ext_header(char *buf, size_t size,
687 				    struct printk_log *msg, u64 seq)
688 {
689 	u64 ts_usec = msg->ts_nsec;
690 
691 	do_div(ts_usec, 1000);
692 
693 	return scnprintf(buf, size, "%u,%llu,%llu,%c;",
694 		       (msg->facility << 3) | msg->level, seq, ts_usec,
695 		       msg->flags & LOG_CONT ? 'c' : '-');
696 }
697 
698 static ssize_t msg_print_ext_body(char *buf, size_t size,
699 				  char *dict, size_t dict_len,
700 				  char *text, size_t text_len)
701 {
702 	char *p = buf, *e = buf + size;
703 	size_t i;
704 
705 	/* escape non-printable characters */
706 	for (i = 0; i < text_len; i++) {
707 		unsigned char c = text[i];
708 
709 		if (c < ' ' || c >= 127 || c == '\\')
710 			p += scnprintf(p, e - p, "\\x%02x", c);
711 		else
712 			append_char(&p, e, c);
713 	}
714 	append_char(&p, e, '\n');
715 
716 	if (dict_len) {
717 		bool line = true;
718 
719 		for (i = 0; i < dict_len; i++) {
720 			unsigned char c = dict[i];
721 
722 			if (line) {
723 				append_char(&p, e, ' ');
724 				line = false;
725 			}
726 
727 			if (c == '\0') {
728 				append_char(&p, e, '\n');
729 				line = true;
730 				continue;
731 			}
732 
733 			if (c < ' ' || c >= 127 || c == '\\') {
734 				p += scnprintf(p, e - p, "\\x%02x", c);
735 				continue;
736 			}
737 
738 			append_char(&p, e, c);
739 		}
740 		append_char(&p, e, '\n');
741 	}
742 
743 	return p - buf;
744 }
745 
746 /* /dev/kmsg - userspace message inject/listen interface */
747 struct devkmsg_user {
748 	u64 seq;
749 	u32 idx;
750 	struct ratelimit_state rs;
751 	struct mutex lock;
752 	char buf[CONSOLE_EXT_LOG_MAX];
753 };
754 
755 static ssize_t devkmsg_write(struct kiocb *iocb, struct iov_iter *from)
756 {
757 	char *buf, *line;
758 	int level = default_message_loglevel;
759 	int facility = 1;	/* LOG_USER */
760 	struct file *file = iocb->ki_filp;
761 	struct devkmsg_user *user = file->private_data;
762 	size_t len = iov_iter_count(from);
763 	ssize_t ret = len;
764 
765 	if (!user || len > LOG_LINE_MAX)
766 		return -EINVAL;
767 
768 	/* Ignore when user logging is disabled. */
769 	if (devkmsg_log & DEVKMSG_LOG_MASK_OFF)
770 		return len;
771 
772 	/* Ratelimit when not explicitly enabled. */
773 	if (!(devkmsg_log & DEVKMSG_LOG_MASK_ON)) {
774 		if (!___ratelimit(&user->rs, current->comm))
775 			return ret;
776 	}
777 
778 	buf = kmalloc(len+1, GFP_KERNEL);
779 	if (buf == NULL)
780 		return -ENOMEM;
781 
782 	buf[len] = '\0';
783 	if (!copy_from_iter_full(buf, len, from)) {
784 		kfree(buf);
785 		return -EFAULT;
786 	}
787 
788 	/*
789 	 * Extract and skip the syslog prefix <[0-9]*>. Coming from userspace
790 	 * the decimal value represents 32bit, the lower 3 bit are the log
791 	 * level, the rest are the log facility.
792 	 *
793 	 * If no prefix or no userspace facility is specified, we
794 	 * enforce LOG_USER, to be able to reliably distinguish
795 	 * kernel-generated messages from userspace-injected ones.
796 	 */
797 	line = buf;
798 	if (line[0] == '<') {
799 		char *endp = NULL;
800 		unsigned int u;
801 
802 		u = simple_strtoul(line + 1, &endp, 10);
803 		if (endp && endp[0] == '>') {
804 			level = LOG_LEVEL(u);
805 			if (LOG_FACILITY(u) != 0)
806 				facility = LOG_FACILITY(u);
807 			endp++;
808 			len -= endp - line;
809 			line = endp;
810 		}
811 	}
812 
813 	printk_emit(facility, level, NULL, 0, "%s", line);
814 	kfree(buf);
815 	return ret;
816 }
817 
818 static ssize_t devkmsg_read(struct file *file, char __user *buf,
819 			    size_t count, loff_t *ppos)
820 {
821 	struct devkmsg_user *user = file->private_data;
822 	struct printk_log *msg;
823 	size_t len;
824 	ssize_t ret;
825 
826 	if (!user)
827 		return -EBADF;
828 
829 	ret = mutex_lock_interruptible(&user->lock);
830 	if (ret)
831 		return ret;
832 
833 	logbuf_lock_irq();
834 	while (user->seq == log_next_seq) {
835 		if (file->f_flags & O_NONBLOCK) {
836 			ret = -EAGAIN;
837 			logbuf_unlock_irq();
838 			goto out;
839 		}
840 
841 		logbuf_unlock_irq();
842 		ret = wait_event_interruptible(log_wait,
843 					       user->seq != log_next_seq);
844 		if (ret)
845 			goto out;
846 		logbuf_lock_irq();
847 	}
848 
849 	if (user->seq < log_first_seq) {
850 		/* our last seen message is gone, return error and reset */
851 		user->idx = log_first_idx;
852 		user->seq = log_first_seq;
853 		ret = -EPIPE;
854 		logbuf_unlock_irq();
855 		goto out;
856 	}
857 
858 	msg = log_from_idx(user->idx);
859 	len = msg_print_ext_header(user->buf, sizeof(user->buf),
860 				   msg, user->seq);
861 	len += msg_print_ext_body(user->buf + len, sizeof(user->buf) - len,
862 				  log_dict(msg), msg->dict_len,
863 				  log_text(msg), msg->text_len);
864 
865 	user->idx = log_next(user->idx);
866 	user->seq++;
867 	logbuf_unlock_irq();
868 
869 	if (len > count) {
870 		ret = -EINVAL;
871 		goto out;
872 	}
873 
874 	if (copy_to_user(buf, user->buf, len)) {
875 		ret = -EFAULT;
876 		goto out;
877 	}
878 	ret = len;
879 out:
880 	mutex_unlock(&user->lock);
881 	return ret;
882 }
883 
884 static loff_t devkmsg_llseek(struct file *file, loff_t offset, int whence)
885 {
886 	struct devkmsg_user *user = file->private_data;
887 	loff_t ret = 0;
888 
889 	if (!user)
890 		return -EBADF;
891 	if (offset)
892 		return -ESPIPE;
893 
894 	logbuf_lock_irq();
895 	switch (whence) {
896 	case SEEK_SET:
897 		/* the first record */
898 		user->idx = log_first_idx;
899 		user->seq = log_first_seq;
900 		break;
901 	case SEEK_DATA:
902 		/*
903 		 * The first record after the last SYSLOG_ACTION_CLEAR,
904 		 * like issued by 'dmesg -c'. Reading /dev/kmsg itself
905 		 * changes no global state, and does not clear anything.
906 		 */
907 		user->idx = clear_idx;
908 		user->seq = clear_seq;
909 		break;
910 	case SEEK_END:
911 		/* after the last record */
912 		user->idx = log_next_idx;
913 		user->seq = log_next_seq;
914 		break;
915 	default:
916 		ret = -EINVAL;
917 	}
918 	logbuf_unlock_irq();
919 	return ret;
920 }
921 
922 static unsigned int devkmsg_poll(struct file *file, poll_table *wait)
923 {
924 	struct devkmsg_user *user = file->private_data;
925 	int ret = 0;
926 
927 	if (!user)
928 		return POLLERR|POLLNVAL;
929 
930 	poll_wait(file, &log_wait, wait);
931 
932 	logbuf_lock_irq();
933 	if (user->seq < log_next_seq) {
934 		/* return error when data has vanished underneath us */
935 		if (user->seq < log_first_seq)
936 			ret = POLLIN|POLLRDNORM|POLLERR|POLLPRI;
937 		else
938 			ret = POLLIN|POLLRDNORM;
939 	}
940 	logbuf_unlock_irq();
941 
942 	return ret;
943 }
944 
945 static int devkmsg_open(struct inode *inode, struct file *file)
946 {
947 	struct devkmsg_user *user;
948 	int err;
949 
950 	if (devkmsg_log & DEVKMSG_LOG_MASK_OFF)
951 		return -EPERM;
952 
953 	/* write-only does not need any file context */
954 	if ((file->f_flags & O_ACCMODE) != O_WRONLY) {
955 		err = check_syslog_permissions(SYSLOG_ACTION_READ_ALL,
956 					       SYSLOG_FROM_READER);
957 		if (err)
958 			return err;
959 	}
960 
961 	user = kmalloc(sizeof(struct devkmsg_user), GFP_KERNEL);
962 	if (!user)
963 		return -ENOMEM;
964 
965 	ratelimit_default_init(&user->rs);
966 	ratelimit_set_flags(&user->rs, RATELIMIT_MSG_ON_RELEASE);
967 
968 	mutex_init(&user->lock);
969 
970 	logbuf_lock_irq();
971 	user->idx = log_first_idx;
972 	user->seq = log_first_seq;
973 	logbuf_unlock_irq();
974 
975 	file->private_data = user;
976 	return 0;
977 }
978 
979 static int devkmsg_release(struct inode *inode, struct file *file)
980 {
981 	struct devkmsg_user *user = file->private_data;
982 
983 	if (!user)
984 		return 0;
985 
986 	ratelimit_state_exit(&user->rs);
987 
988 	mutex_destroy(&user->lock);
989 	kfree(user);
990 	return 0;
991 }
992 
993 const struct file_operations kmsg_fops = {
994 	.open = devkmsg_open,
995 	.read = devkmsg_read,
996 	.write_iter = devkmsg_write,
997 	.llseek = devkmsg_llseek,
998 	.poll = devkmsg_poll,
999 	.release = devkmsg_release,
1000 };
1001 
1002 #ifdef CONFIG_KEXEC_CORE
1003 /*
1004  * This appends the listed symbols to /proc/vmcore
1005  *
1006  * /proc/vmcore is used by various utilities, like crash and makedumpfile to
1007  * obtain access to symbols that are otherwise very difficult to locate.  These
1008  * symbols are specifically used so that utilities can access and extract the
1009  * dmesg log from a vmcore file after a crash.
1010  */
1011 void log_buf_kexec_setup(void)
1012 {
1013 	VMCOREINFO_SYMBOL(log_buf);
1014 	VMCOREINFO_SYMBOL(log_buf_len);
1015 	VMCOREINFO_SYMBOL(log_first_idx);
1016 	VMCOREINFO_SYMBOL(clear_idx);
1017 	VMCOREINFO_SYMBOL(log_next_idx);
1018 	/*
1019 	 * Export struct printk_log size and field offsets. User space tools can
1020 	 * parse it and detect any changes to structure down the line.
1021 	 */
1022 	VMCOREINFO_STRUCT_SIZE(printk_log);
1023 	VMCOREINFO_OFFSET(printk_log, ts_nsec);
1024 	VMCOREINFO_OFFSET(printk_log, len);
1025 	VMCOREINFO_OFFSET(printk_log, text_len);
1026 	VMCOREINFO_OFFSET(printk_log, dict_len);
1027 }
1028 #endif
1029 
1030 /* requested log_buf_len from kernel cmdline */
1031 static unsigned long __initdata new_log_buf_len;
1032 
1033 /* we practice scaling the ring buffer by powers of 2 */
1034 static void __init log_buf_len_update(unsigned size)
1035 {
1036 	if (size)
1037 		size = roundup_pow_of_two(size);
1038 	if (size > log_buf_len)
1039 		new_log_buf_len = size;
1040 }
1041 
1042 /* save requested log_buf_len since it's too early to process it */
1043 static int __init log_buf_len_setup(char *str)
1044 {
1045 	unsigned size = memparse(str, &str);
1046 
1047 	log_buf_len_update(size);
1048 
1049 	return 0;
1050 }
1051 early_param("log_buf_len", log_buf_len_setup);
1052 
1053 #ifdef CONFIG_SMP
1054 #define __LOG_CPU_MAX_BUF_LEN (1 << CONFIG_LOG_CPU_MAX_BUF_SHIFT)
1055 
1056 static void __init log_buf_add_cpu(void)
1057 {
1058 	unsigned int cpu_extra;
1059 
1060 	/*
1061 	 * archs should set up cpu_possible_bits properly with
1062 	 * set_cpu_possible() after setup_arch() but just in
1063 	 * case lets ensure this is valid.
1064 	 */
1065 	if (num_possible_cpus() == 1)
1066 		return;
1067 
1068 	cpu_extra = (num_possible_cpus() - 1) * __LOG_CPU_MAX_BUF_LEN;
1069 
1070 	/* by default this will only continue through for large > 64 CPUs */
1071 	if (cpu_extra <= __LOG_BUF_LEN / 2)
1072 		return;
1073 
1074 	pr_info("log_buf_len individual max cpu contribution: %d bytes\n",
1075 		__LOG_CPU_MAX_BUF_LEN);
1076 	pr_info("log_buf_len total cpu_extra contributions: %d bytes\n",
1077 		cpu_extra);
1078 	pr_info("log_buf_len min size: %d bytes\n", __LOG_BUF_LEN);
1079 
1080 	log_buf_len_update(cpu_extra + __LOG_BUF_LEN);
1081 }
1082 #else /* !CONFIG_SMP */
1083 static inline void log_buf_add_cpu(void) {}
1084 #endif /* CONFIG_SMP */
1085 
1086 void __init setup_log_buf(int early)
1087 {
1088 	unsigned long flags;
1089 	char *new_log_buf;
1090 	int free;
1091 
1092 	if (log_buf != __log_buf)
1093 		return;
1094 
1095 	if (!early && !new_log_buf_len)
1096 		log_buf_add_cpu();
1097 
1098 	if (!new_log_buf_len)
1099 		return;
1100 
1101 	if (early) {
1102 		new_log_buf =
1103 			memblock_virt_alloc(new_log_buf_len, LOG_ALIGN);
1104 	} else {
1105 		new_log_buf = memblock_virt_alloc_nopanic(new_log_buf_len,
1106 							  LOG_ALIGN);
1107 	}
1108 
1109 	if (unlikely(!new_log_buf)) {
1110 		pr_err("log_buf_len: %ld bytes not available\n",
1111 			new_log_buf_len);
1112 		return;
1113 	}
1114 
1115 	logbuf_lock_irqsave(flags);
1116 	log_buf_len = new_log_buf_len;
1117 	log_buf = new_log_buf;
1118 	new_log_buf_len = 0;
1119 	free = __LOG_BUF_LEN - log_next_idx;
1120 	memcpy(log_buf, __log_buf, __LOG_BUF_LEN);
1121 	logbuf_unlock_irqrestore(flags);
1122 
1123 	pr_info("log_buf_len: %d bytes\n", log_buf_len);
1124 	pr_info("early log buf free: %d(%d%%)\n",
1125 		free, (free * 100) / __LOG_BUF_LEN);
1126 }
1127 
1128 static bool __read_mostly ignore_loglevel;
1129 
1130 static int __init ignore_loglevel_setup(char *str)
1131 {
1132 	ignore_loglevel = true;
1133 	pr_info("debug: ignoring loglevel setting.\n");
1134 
1135 	return 0;
1136 }
1137 
1138 early_param("ignore_loglevel", ignore_loglevel_setup);
1139 module_param(ignore_loglevel, bool, S_IRUGO | S_IWUSR);
1140 MODULE_PARM_DESC(ignore_loglevel,
1141 		 "ignore loglevel setting (prints all kernel messages to the console)");
1142 
1143 static bool suppress_message_printing(int level)
1144 {
1145 	return (level >= console_loglevel && !ignore_loglevel);
1146 }
1147 
1148 #ifdef CONFIG_BOOT_PRINTK_DELAY
1149 
1150 static int boot_delay; /* msecs delay after each printk during bootup */
1151 static unsigned long long loops_per_msec;	/* based on boot_delay */
1152 
1153 static int __init boot_delay_setup(char *str)
1154 {
1155 	unsigned long lpj;
1156 
1157 	lpj = preset_lpj ? preset_lpj : 1000000;	/* some guess */
1158 	loops_per_msec = (unsigned long long)lpj / 1000 * HZ;
1159 
1160 	get_option(&str, &boot_delay);
1161 	if (boot_delay > 10 * 1000)
1162 		boot_delay = 0;
1163 
1164 	pr_debug("boot_delay: %u, preset_lpj: %ld, lpj: %lu, "
1165 		"HZ: %d, loops_per_msec: %llu\n",
1166 		boot_delay, preset_lpj, lpj, HZ, loops_per_msec);
1167 	return 0;
1168 }
1169 early_param("boot_delay", boot_delay_setup);
1170 
1171 static void boot_delay_msec(int level)
1172 {
1173 	unsigned long long k;
1174 	unsigned long timeout;
1175 
1176 	if ((boot_delay == 0 || system_state != SYSTEM_BOOTING)
1177 		|| suppress_message_printing(level)) {
1178 		return;
1179 	}
1180 
1181 	k = (unsigned long long)loops_per_msec * boot_delay;
1182 
1183 	timeout = jiffies + msecs_to_jiffies(boot_delay);
1184 	while (k) {
1185 		k--;
1186 		cpu_relax();
1187 		/*
1188 		 * use (volatile) jiffies to prevent
1189 		 * compiler reduction; loop termination via jiffies
1190 		 * is secondary and may or may not happen.
1191 		 */
1192 		if (time_after(jiffies, timeout))
1193 			break;
1194 		touch_nmi_watchdog();
1195 	}
1196 }
1197 #else
1198 static inline void boot_delay_msec(int level)
1199 {
1200 }
1201 #endif
1202 
1203 static bool printk_time = IS_ENABLED(CONFIG_PRINTK_TIME);
1204 module_param_named(time, printk_time, bool, S_IRUGO | S_IWUSR);
1205 
1206 static size_t print_time(u64 ts, char *buf)
1207 {
1208 	unsigned long rem_nsec;
1209 
1210 	if (!printk_time)
1211 		return 0;
1212 
1213 	rem_nsec = do_div(ts, 1000000000);
1214 
1215 	if (!buf)
1216 		return snprintf(NULL, 0, "[%5lu.000000] ", (unsigned long)ts);
1217 
1218 	return sprintf(buf, "[%5lu.%06lu] ",
1219 		       (unsigned long)ts, rem_nsec / 1000);
1220 }
1221 
1222 static size_t print_prefix(const struct printk_log *msg, bool syslog, char *buf)
1223 {
1224 	size_t len = 0;
1225 	unsigned int prefix = (msg->facility << 3) | msg->level;
1226 
1227 	if (syslog) {
1228 		if (buf) {
1229 			len += sprintf(buf, "<%u>", prefix);
1230 		} else {
1231 			len += 3;
1232 			if (prefix > 999)
1233 				len += 3;
1234 			else if (prefix > 99)
1235 				len += 2;
1236 			else if (prefix > 9)
1237 				len++;
1238 		}
1239 	}
1240 
1241 	len += print_time(msg->ts_nsec, buf ? buf + len : NULL);
1242 	return len;
1243 }
1244 
1245 static size_t msg_print_text(const struct printk_log *msg, bool syslog, char *buf, size_t size)
1246 {
1247 	const char *text = log_text(msg);
1248 	size_t text_size = msg->text_len;
1249 	size_t len = 0;
1250 
1251 	do {
1252 		const char *next = memchr(text, '\n', text_size);
1253 		size_t text_len;
1254 
1255 		if (next) {
1256 			text_len = next - text;
1257 			next++;
1258 			text_size -= next - text;
1259 		} else {
1260 			text_len = text_size;
1261 		}
1262 
1263 		if (buf) {
1264 			if (print_prefix(msg, syslog, NULL) +
1265 			    text_len + 1 >= size - len)
1266 				break;
1267 
1268 			len += print_prefix(msg, syslog, buf + len);
1269 			memcpy(buf + len, text, text_len);
1270 			len += text_len;
1271 			buf[len++] = '\n';
1272 		} else {
1273 			/* SYSLOG_ACTION_* buffer size only calculation */
1274 			len += print_prefix(msg, syslog, NULL);
1275 			len += text_len;
1276 			len++;
1277 		}
1278 
1279 		text = next;
1280 	} while (text);
1281 
1282 	return len;
1283 }
1284 
1285 static int syslog_print(char __user *buf, int size)
1286 {
1287 	char *text;
1288 	struct printk_log *msg;
1289 	int len = 0;
1290 
1291 	text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
1292 	if (!text)
1293 		return -ENOMEM;
1294 
1295 	while (size > 0) {
1296 		size_t n;
1297 		size_t skip;
1298 
1299 		logbuf_lock_irq();
1300 		if (syslog_seq < log_first_seq) {
1301 			/* messages are gone, move to first one */
1302 			syslog_seq = log_first_seq;
1303 			syslog_idx = log_first_idx;
1304 			syslog_partial = 0;
1305 		}
1306 		if (syslog_seq == log_next_seq) {
1307 			logbuf_unlock_irq();
1308 			break;
1309 		}
1310 
1311 		skip = syslog_partial;
1312 		msg = log_from_idx(syslog_idx);
1313 		n = msg_print_text(msg, true, text, LOG_LINE_MAX + PREFIX_MAX);
1314 		if (n - syslog_partial <= size) {
1315 			/* message fits into buffer, move forward */
1316 			syslog_idx = log_next(syslog_idx);
1317 			syslog_seq++;
1318 			n -= syslog_partial;
1319 			syslog_partial = 0;
1320 		} else if (!len){
1321 			/* partial read(), remember position */
1322 			n = size;
1323 			syslog_partial += n;
1324 		} else
1325 			n = 0;
1326 		logbuf_unlock_irq();
1327 
1328 		if (!n)
1329 			break;
1330 
1331 		if (copy_to_user(buf, text + skip, n)) {
1332 			if (!len)
1333 				len = -EFAULT;
1334 			break;
1335 		}
1336 
1337 		len += n;
1338 		size -= n;
1339 		buf += n;
1340 	}
1341 
1342 	kfree(text);
1343 	return len;
1344 }
1345 
1346 static int syslog_print_all(char __user *buf, int size, bool clear)
1347 {
1348 	char *text;
1349 	int len = 0;
1350 
1351 	text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
1352 	if (!text)
1353 		return -ENOMEM;
1354 
1355 	logbuf_lock_irq();
1356 	if (buf) {
1357 		u64 next_seq;
1358 		u64 seq;
1359 		u32 idx;
1360 
1361 		/*
1362 		 * Find first record that fits, including all following records,
1363 		 * into the user-provided buffer for this dump.
1364 		 */
1365 		seq = clear_seq;
1366 		idx = clear_idx;
1367 		while (seq < log_next_seq) {
1368 			struct printk_log *msg = log_from_idx(idx);
1369 
1370 			len += msg_print_text(msg, true, NULL, 0);
1371 			idx = log_next(idx);
1372 			seq++;
1373 		}
1374 
1375 		/* move first record forward until length fits into the buffer */
1376 		seq = clear_seq;
1377 		idx = clear_idx;
1378 		while (len > size && seq < log_next_seq) {
1379 			struct printk_log *msg = log_from_idx(idx);
1380 
1381 			len -= msg_print_text(msg, true, NULL, 0);
1382 			idx = log_next(idx);
1383 			seq++;
1384 		}
1385 
1386 		/* last message fitting into this dump */
1387 		next_seq = log_next_seq;
1388 
1389 		len = 0;
1390 		while (len >= 0 && seq < next_seq) {
1391 			struct printk_log *msg = log_from_idx(idx);
1392 			int textlen;
1393 
1394 			textlen = msg_print_text(msg, true, text,
1395 						 LOG_LINE_MAX + PREFIX_MAX);
1396 			if (textlen < 0) {
1397 				len = textlen;
1398 				break;
1399 			}
1400 			idx = log_next(idx);
1401 			seq++;
1402 
1403 			logbuf_unlock_irq();
1404 			if (copy_to_user(buf + len, text, textlen))
1405 				len = -EFAULT;
1406 			else
1407 				len += textlen;
1408 			logbuf_lock_irq();
1409 
1410 			if (seq < log_first_seq) {
1411 				/* messages are gone, move to next one */
1412 				seq = log_first_seq;
1413 				idx = log_first_idx;
1414 			}
1415 		}
1416 	}
1417 
1418 	if (clear) {
1419 		clear_seq = log_next_seq;
1420 		clear_idx = log_next_idx;
1421 	}
1422 	logbuf_unlock_irq();
1423 
1424 	kfree(text);
1425 	return len;
1426 }
1427 
1428 int do_syslog(int type, char __user *buf, int len, int source)
1429 {
1430 	bool clear = false;
1431 	static int saved_console_loglevel = LOGLEVEL_DEFAULT;
1432 	int error;
1433 
1434 	error = check_syslog_permissions(type, source);
1435 	if (error)
1436 		goto out;
1437 
1438 	switch (type) {
1439 	case SYSLOG_ACTION_CLOSE:	/* Close log */
1440 		break;
1441 	case SYSLOG_ACTION_OPEN:	/* Open log */
1442 		break;
1443 	case SYSLOG_ACTION_READ:	/* Read from log */
1444 		error = -EINVAL;
1445 		if (!buf || len < 0)
1446 			goto out;
1447 		error = 0;
1448 		if (!len)
1449 			goto out;
1450 		if (!access_ok(VERIFY_WRITE, buf, len)) {
1451 			error = -EFAULT;
1452 			goto out;
1453 		}
1454 		error = wait_event_interruptible(log_wait,
1455 						 syslog_seq != log_next_seq);
1456 		if (error)
1457 			goto out;
1458 		error = syslog_print(buf, len);
1459 		break;
1460 	/* Read/clear last kernel messages */
1461 	case SYSLOG_ACTION_READ_CLEAR:
1462 		clear = true;
1463 		/* FALL THRU */
1464 	/* Read last kernel messages */
1465 	case SYSLOG_ACTION_READ_ALL:
1466 		error = -EINVAL;
1467 		if (!buf || len < 0)
1468 			goto out;
1469 		error = 0;
1470 		if (!len)
1471 			goto out;
1472 		if (!access_ok(VERIFY_WRITE, buf, len)) {
1473 			error = -EFAULT;
1474 			goto out;
1475 		}
1476 		error = syslog_print_all(buf, len, clear);
1477 		break;
1478 	/* Clear ring buffer */
1479 	case SYSLOG_ACTION_CLEAR:
1480 		syslog_print_all(NULL, 0, true);
1481 		break;
1482 	/* Disable logging to console */
1483 	case SYSLOG_ACTION_CONSOLE_OFF:
1484 		if (saved_console_loglevel == LOGLEVEL_DEFAULT)
1485 			saved_console_loglevel = console_loglevel;
1486 		console_loglevel = minimum_console_loglevel;
1487 		break;
1488 	/* Enable logging to console */
1489 	case SYSLOG_ACTION_CONSOLE_ON:
1490 		if (saved_console_loglevel != LOGLEVEL_DEFAULT) {
1491 			console_loglevel = saved_console_loglevel;
1492 			saved_console_loglevel = LOGLEVEL_DEFAULT;
1493 		}
1494 		break;
1495 	/* Set level of messages printed to console */
1496 	case SYSLOG_ACTION_CONSOLE_LEVEL:
1497 		error = -EINVAL;
1498 		if (len < 1 || len > 8)
1499 			goto out;
1500 		if (len < minimum_console_loglevel)
1501 			len = minimum_console_loglevel;
1502 		console_loglevel = len;
1503 		/* Implicitly re-enable logging to console */
1504 		saved_console_loglevel = LOGLEVEL_DEFAULT;
1505 		error = 0;
1506 		break;
1507 	/* Number of chars in the log buffer */
1508 	case SYSLOG_ACTION_SIZE_UNREAD:
1509 		logbuf_lock_irq();
1510 		if (syslog_seq < log_first_seq) {
1511 			/* messages are gone, move to first one */
1512 			syslog_seq = log_first_seq;
1513 			syslog_idx = log_first_idx;
1514 			syslog_partial = 0;
1515 		}
1516 		if (source == SYSLOG_FROM_PROC) {
1517 			/*
1518 			 * Short-cut for poll(/"proc/kmsg") which simply checks
1519 			 * for pending data, not the size; return the count of
1520 			 * records, not the length.
1521 			 */
1522 			error = log_next_seq - syslog_seq;
1523 		} else {
1524 			u64 seq = syslog_seq;
1525 			u32 idx = syslog_idx;
1526 
1527 			error = 0;
1528 			while (seq < log_next_seq) {
1529 				struct printk_log *msg = log_from_idx(idx);
1530 
1531 				error += msg_print_text(msg, true, NULL, 0);
1532 				idx = log_next(idx);
1533 				seq++;
1534 			}
1535 			error -= syslog_partial;
1536 		}
1537 		logbuf_unlock_irq();
1538 		break;
1539 	/* Size of the log buffer */
1540 	case SYSLOG_ACTION_SIZE_BUFFER:
1541 		error = log_buf_len;
1542 		break;
1543 	default:
1544 		error = -EINVAL;
1545 		break;
1546 	}
1547 out:
1548 	return error;
1549 }
1550 
1551 SYSCALL_DEFINE3(syslog, int, type, char __user *, buf, int, len)
1552 {
1553 	return do_syslog(type, buf, len, SYSLOG_FROM_READER);
1554 }
1555 
1556 /*
1557  * Call the console drivers, asking them to write out
1558  * log_buf[start] to log_buf[end - 1].
1559  * The console_lock must be held.
1560  */
1561 static void call_console_drivers(const char *ext_text, size_t ext_len,
1562 				 const char *text, size_t len)
1563 {
1564 	struct console *con;
1565 
1566 	trace_console_rcuidle(text, len);
1567 
1568 	if (!console_drivers)
1569 		return;
1570 
1571 	for_each_console(con) {
1572 		if (exclusive_console && con != exclusive_console)
1573 			continue;
1574 		if (!(con->flags & CON_ENABLED))
1575 			continue;
1576 		if (!con->write)
1577 			continue;
1578 		if (!cpu_online(smp_processor_id()) &&
1579 		    !(con->flags & CON_ANYTIME))
1580 			continue;
1581 		if (con->flags & CON_EXTENDED)
1582 			con->write(con, ext_text, ext_len);
1583 		else
1584 			con->write(con, text, len);
1585 	}
1586 }
1587 
1588 int printk_delay_msec __read_mostly;
1589 
1590 static inline void printk_delay(void)
1591 {
1592 	if (unlikely(printk_delay_msec)) {
1593 		int m = printk_delay_msec;
1594 
1595 		while (m--) {
1596 			mdelay(1);
1597 			touch_nmi_watchdog();
1598 		}
1599 	}
1600 }
1601 
1602 /*
1603  * Continuation lines are buffered, and not committed to the record buffer
1604  * until the line is complete, or a race forces it. The line fragments
1605  * though, are printed immediately to the consoles to ensure everything has
1606  * reached the console in case of a kernel crash.
1607  */
1608 static struct cont {
1609 	char buf[LOG_LINE_MAX];
1610 	size_t len;			/* length == 0 means unused buffer */
1611 	struct task_struct *owner;	/* task of first print*/
1612 	u64 ts_nsec;			/* time of first print */
1613 	u8 level;			/* log level of first message */
1614 	u8 facility;			/* log facility of first message */
1615 	enum log_flags flags;		/* prefix, newline flags */
1616 } cont;
1617 
1618 static void cont_flush(void)
1619 {
1620 	if (cont.len == 0)
1621 		return;
1622 
1623 	log_store(cont.facility, cont.level, cont.flags, cont.ts_nsec,
1624 		  NULL, 0, cont.buf, cont.len);
1625 	cont.len = 0;
1626 }
1627 
1628 static bool cont_add(int facility, int level, enum log_flags flags, const char *text, size_t len)
1629 {
1630 	/*
1631 	 * If ext consoles are present, flush and skip in-kernel
1632 	 * continuation.  See nr_ext_console_drivers definition.  Also, if
1633 	 * the line gets too long, split it up in separate records.
1634 	 */
1635 	if (nr_ext_console_drivers || cont.len + len > sizeof(cont.buf)) {
1636 		cont_flush();
1637 		return false;
1638 	}
1639 
1640 	if (!cont.len) {
1641 		cont.facility = facility;
1642 		cont.level = level;
1643 		cont.owner = current;
1644 		cont.ts_nsec = local_clock();
1645 		cont.flags = flags;
1646 	}
1647 
1648 	memcpy(cont.buf + cont.len, text, len);
1649 	cont.len += len;
1650 
1651 	// The original flags come from the first line,
1652 	// but later continuations can add a newline.
1653 	if (flags & LOG_NEWLINE) {
1654 		cont.flags |= LOG_NEWLINE;
1655 		cont_flush();
1656 	}
1657 
1658 	if (cont.len > (sizeof(cont.buf) * 80) / 100)
1659 		cont_flush();
1660 
1661 	return true;
1662 }
1663 
1664 static size_t log_output(int facility, int level, enum log_flags lflags, const char *dict, size_t dictlen, char *text, size_t text_len)
1665 {
1666 	/*
1667 	 * If an earlier line was buffered, and we're a continuation
1668 	 * write from the same process, try to add it to the buffer.
1669 	 */
1670 	if (cont.len) {
1671 		if (cont.owner == current && (lflags & LOG_CONT)) {
1672 			if (cont_add(facility, level, lflags, text, text_len))
1673 				return text_len;
1674 		}
1675 		/* Otherwise, make sure it's flushed */
1676 		cont_flush();
1677 	}
1678 
1679 	/* Skip empty continuation lines that couldn't be added - they just flush */
1680 	if (!text_len && (lflags & LOG_CONT))
1681 		return 0;
1682 
1683 	/* If it doesn't end in a newline, try to buffer the current line */
1684 	if (!(lflags & LOG_NEWLINE)) {
1685 		if (cont_add(facility, level, lflags, text, text_len))
1686 			return text_len;
1687 	}
1688 
1689 	/* Store it in the record log */
1690 	return log_store(facility, level, lflags, 0, dict, dictlen, text, text_len);
1691 }
1692 
1693 asmlinkage int vprintk_emit(int facility, int level,
1694 			    const char *dict, size_t dictlen,
1695 			    const char *fmt, va_list args)
1696 {
1697 	static char textbuf[LOG_LINE_MAX];
1698 	char *text = textbuf;
1699 	size_t text_len = 0;
1700 	enum log_flags lflags = 0;
1701 	unsigned long flags;
1702 	int printed_len = 0;
1703 	bool in_sched = false;
1704 
1705 	if (level == LOGLEVEL_SCHED) {
1706 		level = LOGLEVEL_DEFAULT;
1707 		in_sched = true;
1708 	}
1709 
1710 	boot_delay_msec(level);
1711 	printk_delay();
1712 
1713 	/* This stops the holder of console_sem just where we want him */
1714 	logbuf_lock_irqsave(flags);
1715 	/*
1716 	 * The printf needs to come first; we need the syslog
1717 	 * prefix which might be passed-in as a parameter.
1718 	 */
1719 	text_len = vscnprintf(text, sizeof(textbuf), fmt, args);
1720 
1721 	/* mark and strip a trailing newline */
1722 	if (text_len && text[text_len-1] == '\n') {
1723 		text_len--;
1724 		lflags |= LOG_NEWLINE;
1725 	}
1726 
1727 	/* strip kernel syslog prefix and extract log level or control flags */
1728 	if (facility == 0) {
1729 		int kern_level;
1730 
1731 		while ((kern_level = printk_get_level(text)) != 0) {
1732 			switch (kern_level) {
1733 			case '0' ... '7':
1734 				if (level == LOGLEVEL_DEFAULT)
1735 					level = kern_level - '0';
1736 				/* fallthrough */
1737 			case 'd':	/* KERN_DEFAULT */
1738 				lflags |= LOG_PREFIX;
1739 				break;
1740 			case 'c':	/* KERN_CONT */
1741 				lflags |= LOG_CONT;
1742 			}
1743 
1744 			text_len -= 2;
1745 			text += 2;
1746 		}
1747 	}
1748 
1749 	if (level == LOGLEVEL_DEFAULT)
1750 		level = default_message_loglevel;
1751 
1752 	if (dict)
1753 		lflags |= LOG_PREFIX|LOG_NEWLINE;
1754 
1755 	printed_len += log_output(facility, level, lflags, dict, dictlen, text, text_len);
1756 
1757 	logbuf_unlock_irqrestore(flags);
1758 
1759 	/* If called from the scheduler, we can not call up(). */
1760 	if (!in_sched) {
1761 		/*
1762 		 * Try to acquire and then immediately release the console
1763 		 * semaphore.  The release will print out buffers and wake up
1764 		 * /dev/kmsg and syslog() users.
1765 		 */
1766 		if (console_trylock())
1767 			console_unlock();
1768 	}
1769 
1770 	return printed_len;
1771 }
1772 EXPORT_SYMBOL(vprintk_emit);
1773 
1774 asmlinkage int vprintk(const char *fmt, va_list args)
1775 {
1776 	return vprintk_func(fmt, args);
1777 }
1778 EXPORT_SYMBOL(vprintk);
1779 
1780 asmlinkage int printk_emit(int facility, int level,
1781 			   const char *dict, size_t dictlen,
1782 			   const char *fmt, ...)
1783 {
1784 	va_list args;
1785 	int r;
1786 
1787 	va_start(args, fmt);
1788 	r = vprintk_emit(facility, level, dict, dictlen, fmt, args);
1789 	va_end(args);
1790 
1791 	return r;
1792 }
1793 EXPORT_SYMBOL(printk_emit);
1794 
1795 int vprintk_default(const char *fmt, va_list args)
1796 {
1797 	int r;
1798 
1799 #ifdef CONFIG_KGDB_KDB
1800 	/* Allow to pass printk() to kdb but avoid a recursion. */
1801 	if (unlikely(kdb_trap_printk && kdb_printf_cpu < 0)) {
1802 		r = vkdb_printf(KDB_MSGSRC_PRINTK, fmt, args);
1803 		return r;
1804 	}
1805 #endif
1806 	r = vprintk_emit(0, LOGLEVEL_DEFAULT, NULL, 0, fmt, args);
1807 
1808 	return r;
1809 }
1810 EXPORT_SYMBOL_GPL(vprintk_default);
1811 
1812 /**
1813  * printk - print a kernel message
1814  * @fmt: format string
1815  *
1816  * This is printk(). It can be called from any context. We want it to work.
1817  *
1818  * We try to grab the console_lock. If we succeed, it's easy - we log the
1819  * output and call the console drivers.  If we fail to get the semaphore, we
1820  * place the output into the log buffer and return. The current holder of
1821  * the console_sem will notice the new output in console_unlock(); and will
1822  * send it to the consoles before releasing the lock.
1823  *
1824  * One effect of this deferred printing is that code which calls printk() and
1825  * then changes console_loglevel may break. This is because console_loglevel
1826  * is inspected when the actual printing occurs.
1827  *
1828  * See also:
1829  * printf(3)
1830  *
1831  * See the vsnprintf() documentation for format string extensions over C99.
1832  */
1833 asmlinkage __visible int printk(const char *fmt, ...)
1834 {
1835 	va_list args;
1836 	int r;
1837 
1838 	va_start(args, fmt);
1839 	r = vprintk_func(fmt, args);
1840 	va_end(args);
1841 
1842 	return r;
1843 }
1844 EXPORT_SYMBOL(printk);
1845 
1846 #else /* CONFIG_PRINTK */
1847 
1848 #define LOG_LINE_MAX		0
1849 #define PREFIX_MAX		0
1850 
1851 static u64 syslog_seq;
1852 static u32 syslog_idx;
1853 static u64 console_seq;
1854 static u32 console_idx;
1855 static u64 log_first_seq;
1856 static u32 log_first_idx;
1857 static u64 log_next_seq;
1858 static char *log_text(const struct printk_log *msg) { return NULL; }
1859 static char *log_dict(const struct printk_log *msg) { return NULL; }
1860 static struct printk_log *log_from_idx(u32 idx) { return NULL; }
1861 static u32 log_next(u32 idx) { return 0; }
1862 static ssize_t msg_print_ext_header(char *buf, size_t size,
1863 				    struct printk_log *msg,
1864 				    u64 seq) { return 0; }
1865 static ssize_t msg_print_ext_body(char *buf, size_t size,
1866 				  char *dict, size_t dict_len,
1867 				  char *text, size_t text_len) { return 0; }
1868 static void call_console_drivers(const char *ext_text, size_t ext_len,
1869 				 const char *text, size_t len) {}
1870 static size_t msg_print_text(const struct printk_log *msg,
1871 			     bool syslog, char *buf, size_t size) { return 0; }
1872 static bool suppress_message_printing(int level) { return false; }
1873 
1874 #endif /* CONFIG_PRINTK */
1875 
1876 #ifdef CONFIG_EARLY_PRINTK
1877 struct console *early_console;
1878 
1879 asmlinkage __visible void early_printk(const char *fmt, ...)
1880 {
1881 	va_list ap;
1882 	char buf[512];
1883 	int n;
1884 
1885 	if (!early_console)
1886 		return;
1887 
1888 	va_start(ap, fmt);
1889 	n = vscnprintf(buf, sizeof(buf), fmt, ap);
1890 	va_end(ap);
1891 
1892 	early_console->write(early_console, buf, n);
1893 }
1894 #endif
1895 
1896 static int __add_preferred_console(char *name, int idx, char *options,
1897 				   char *brl_options)
1898 {
1899 	struct console_cmdline *c;
1900 	int i;
1901 
1902 	/*
1903 	 *	See if this tty is not yet registered, and
1904 	 *	if we have a slot free.
1905 	 */
1906 	for (i = 0, c = console_cmdline;
1907 	     i < MAX_CMDLINECONSOLES && c->name[0];
1908 	     i++, c++) {
1909 		if (strcmp(c->name, name) == 0 && c->index == idx) {
1910 			if (!brl_options)
1911 				selected_console = i;
1912 			return 0;
1913 		}
1914 	}
1915 	if (i == MAX_CMDLINECONSOLES)
1916 		return -E2BIG;
1917 	if (!brl_options)
1918 		selected_console = i;
1919 	strlcpy(c->name, name, sizeof(c->name));
1920 	c->options = options;
1921 	braille_set_options(c, brl_options);
1922 
1923 	c->index = idx;
1924 	return 0;
1925 }
1926 /*
1927  * Set up a console.  Called via do_early_param() in init/main.c
1928  * for each "console=" parameter in the boot command line.
1929  */
1930 static int __init console_setup(char *str)
1931 {
1932 	char buf[sizeof(console_cmdline[0].name) + 4]; /* 4 for "ttyS" */
1933 	char *s, *options, *brl_options = NULL;
1934 	int idx;
1935 
1936 	if (_braille_console_setup(&str, &brl_options))
1937 		return 1;
1938 
1939 	/*
1940 	 * Decode str into name, index, options.
1941 	 */
1942 	if (str[0] >= '0' && str[0] <= '9') {
1943 		strcpy(buf, "ttyS");
1944 		strncpy(buf + 4, str, sizeof(buf) - 5);
1945 	} else {
1946 		strncpy(buf, str, sizeof(buf) - 1);
1947 	}
1948 	buf[sizeof(buf) - 1] = 0;
1949 	options = strchr(str, ',');
1950 	if (options)
1951 		*(options++) = 0;
1952 #ifdef __sparc__
1953 	if (!strcmp(str, "ttya"))
1954 		strcpy(buf, "ttyS0");
1955 	if (!strcmp(str, "ttyb"))
1956 		strcpy(buf, "ttyS1");
1957 #endif
1958 	for (s = buf; *s; s++)
1959 		if (isdigit(*s) || *s == ',')
1960 			break;
1961 	idx = simple_strtoul(s, NULL, 10);
1962 	*s = 0;
1963 
1964 	__add_preferred_console(buf, idx, options, brl_options);
1965 	console_set_on_cmdline = 1;
1966 	return 1;
1967 }
1968 __setup("console=", console_setup);
1969 
1970 /**
1971  * add_preferred_console - add a device to the list of preferred consoles.
1972  * @name: device name
1973  * @idx: device index
1974  * @options: options for this console
1975  *
1976  * The last preferred console added will be used for kernel messages
1977  * and stdin/out/err for init.  Normally this is used by console_setup
1978  * above to handle user-supplied console arguments; however it can also
1979  * be used by arch-specific code either to override the user or more
1980  * commonly to provide a default console (ie from PROM variables) when
1981  * the user has not supplied one.
1982  */
1983 int add_preferred_console(char *name, int idx, char *options)
1984 {
1985 	return __add_preferred_console(name, idx, options, NULL);
1986 }
1987 
1988 bool console_suspend_enabled = true;
1989 EXPORT_SYMBOL(console_suspend_enabled);
1990 
1991 static int __init console_suspend_disable(char *str)
1992 {
1993 	console_suspend_enabled = false;
1994 	return 1;
1995 }
1996 __setup("no_console_suspend", console_suspend_disable);
1997 module_param_named(console_suspend, console_suspend_enabled,
1998 		bool, S_IRUGO | S_IWUSR);
1999 MODULE_PARM_DESC(console_suspend, "suspend console during suspend"
2000 	" and hibernate operations");
2001 
2002 /**
2003  * suspend_console - suspend the console subsystem
2004  *
2005  * This disables printk() while we go into suspend states
2006  */
2007 void suspend_console(void)
2008 {
2009 	if (!console_suspend_enabled)
2010 		return;
2011 	printk("Suspending console(s) (use no_console_suspend to debug)\n");
2012 	console_lock();
2013 	console_suspended = 1;
2014 	up_console_sem();
2015 }
2016 
2017 void resume_console(void)
2018 {
2019 	if (!console_suspend_enabled)
2020 		return;
2021 	down_console_sem();
2022 	console_suspended = 0;
2023 	console_unlock();
2024 }
2025 
2026 /**
2027  * console_cpu_notify - print deferred console messages after CPU hotplug
2028  * @cpu: unused
2029  *
2030  * If printk() is called from a CPU that is not online yet, the messages
2031  * will be spooled but will not show up on the console.  This function is
2032  * called when a new CPU comes online (or fails to come up), and ensures
2033  * that any such output gets printed.
2034  */
2035 static int console_cpu_notify(unsigned int cpu)
2036 {
2037 	if (!cpuhp_tasks_frozen) {
2038 		console_lock();
2039 		console_unlock();
2040 	}
2041 	return 0;
2042 }
2043 
2044 /**
2045  * console_lock - lock the console system for exclusive use.
2046  *
2047  * Acquires a lock which guarantees that the caller has
2048  * exclusive access to the console system and the console_drivers list.
2049  *
2050  * Can sleep, returns nothing.
2051  */
2052 void console_lock(void)
2053 {
2054 	might_sleep();
2055 
2056 	down_console_sem();
2057 	if (console_suspended)
2058 		return;
2059 	console_locked = 1;
2060 	console_may_schedule = 1;
2061 }
2062 EXPORT_SYMBOL(console_lock);
2063 
2064 /**
2065  * console_trylock - try to lock the console system for exclusive use.
2066  *
2067  * Try to acquire a lock which guarantees that the caller has exclusive
2068  * access to the console system and the console_drivers list.
2069  *
2070  * returns 1 on success, and 0 on failure to acquire the lock.
2071  */
2072 int console_trylock(void)
2073 {
2074 	if (down_trylock_console_sem())
2075 		return 0;
2076 	if (console_suspended) {
2077 		up_console_sem();
2078 		return 0;
2079 	}
2080 	console_locked = 1;
2081 	/*
2082 	 * When PREEMPT_COUNT disabled we can't reliably detect if it's
2083 	 * safe to schedule (e.g. calling printk while holding a spin_lock),
2084 	 * because preempt_disable()/preempt_enable() are just barriers there
2085 	 * and preempt_count() is always 0.
2086 	 *
2087 	 * RCU read sections have a separate preemption counter when
2088 	 * PREEMPT_RCU enabled thus we must take extra care and check
2089 	 * rcu_preempt_depth(), otherwise RCU read sections modify
2090 	 * preempt_count().
2091 	 */
2092 	console_may_schedule = !oops_in_progress &&
2093 			preemptible() &&
2094 			!rcu_preempt_depth();
2095 	return 1;
2096 }
2097 EXPORT_SYMBOL(console_trylock);
2098 
2099 int is_console_locked(void)
2100 {
2101 	return console_locked;
2102 }
2103 
2104 /*
2105  * Check if we have any console that is capable of printing while cpu is
2106  * booting or shutting down. Requires console_sem.
2107  */
2108 static int have_callable_console(void)
2109 {
2110 	struct console *con;
2111 
2112 	for_each_console(con)
2113 		if ((con->flags & CON_ENABLED) &&
2114 				(con->flags & CON_ANYTIME))
2115 			return 1;
2116 
2117 	return 0;
2118 }
2119 
2120 /*
2121  * Can we actually use the console at this time on this cpu?
2122  *
2123  * Console drivers may assume that per-cpu resources have been allocated. So
2124  * unless they're explicitly marked as being able to cope (CON_ANYTIME) don't
2125  * call them until this CPU is officially up.
2126  */
2127 static inline int can_use_console(void)
2128 {
2129 	return cpu_online(raw_smp_processor_id()) || have_callable_console();
2130 }
2131 
2132 /**
2133  * console_unlock - unlock the console system
2134  *
2135  * Releases the console_lock which the caller holds on the console system
2136  * and the console driver list.
2137  *
2138  * While the console_lock was held, console output may have been buffered
2139  * by printk().  If this is the case, console_unlock(); emits
2140  * the output prior to releasing the lock.
2141  *
2142  * If there is output waiting, we wake /dev/kmsg and syslog() users.
2143  *
2144  * console_unlock(); may be called from any context.
2145  */
2146 void console_unlock(void)
2147 {
2148 	static char ext_text[CONSOLE_EXT_LOG_MAX];
2149 	static char text[LOG_LINE_MAX + PREFIX_MAX];
2150 	static u64 seen_seq;
2151 	unsigned long flags;
2152 	bool wake_klogd = false;
2153 	bool do_cond_resched, retry;
2154 
2155 	if (console_suspended) {
2156 		up_console_sem();
2157 		return;
2158 	}
2159 
2160 	/*
2161 	 * Console drivers are called under logbuf_lock, so
2162 	 * @console_may_schedule should be cleared before; however, we may
2163 	 * end up dumping a lot of lines, for example, if called from
2164 	 * console registration path, and should invoke cond_resched()
2165 	 * between lines if allowable.  Not doing so can cause a very long
2166 	 * scheduling stall on a slow console leading to RCU stall and
2167 	 * softlockup warnings which exacerbate the issue with more
2168 	 * messages practically incapacitating the system.
2169 	 */
2170 	do_cond_resched = console_may_schedule;
2171 	console_may_schedule = 0;
2172 
2173 again:
2174 	/*
2175 	 * We released the console_sem lock, so we need to recheck if
2176 	 * cpu is online and (if not) is there at least one CON_ANYTIME
2177 	 * console.
2178 	 */
2179 	if (!can_use_console()) {
2180 		console_locked = 0;
2181 		up_console_sem();
2182 		return;
2183 	}
2184 
2185 	for (;;) {
2186 		struct printk_log *msg;
2187 		size_t ext_len = 0;
2188 		size_t len;
2189 
2190 		printk_safe_enter_irqsave(flags);
2191 		raw_spin_lock(&logbuf_lock);
2192 		if (seen_seq != log_next_seq) {
2193 			wake_klogd = true;
2194 			seen_seq = log_next_seq;
2195 		}
2196 
2197 		if (console_seq < log_first_seq) {
2198 			len = sprintf(text, "** %u printk messages dropped ** ",
2199 				      (unsigned)(log_first_seq - console_seq));
2200 
2201 			/* messages are gone, move to first one */
2202 			console_seq = log_first_seq;
2203 			console_idx = log_first_idx;
2204 		} else {
2205 			len = 0;
2206 		}
2207 skip:
2208 		if (console_seq == log_next_seq)
2209 			break;
2210 
2211 		msg = log_from_idx(console_idx);
2212 		if (suppress_message_printing(msg->level)) {
2213 			/*
2214 			 * Skip record we have buffered and already printed
2215 			 * directly to the console when we received it, and
2216 			 * record that has level above the console loglevel.
2217 			 */
2218 			console_idx = log_next(console_idx);
2219 			console_seq++;
2220 			goto skip;
2221 		}
2222 
2223 		len += msg_print_text(msg, false, text + len, sizeof(text) - len);
2224 		if (nr_ext_console_drivers) {
2225 			ext_len = msg_print_ext_header(ext_text,
2226 						sizeof(ext_text),
2227 						msg, console_seq);
2228 			ext_len += msg_print_ext_body(ext_text + ext_len,
2229 						sizeof(ext_text) - ext_len,
2230 						log_dict(msg), msg->dict_len,
2231 						log_text(msg), msg->text_len);
2232 		}
2233 		console_idx = log_next(console_idx);
2234 		console_seq++;
2235 		raw_spin_unlock(&logbuf_lock);
2236 
2237 		stop_critical_timings();	/* don't trace print latency */
2238 		call_console_drivers(ext_text, ext_len, text, len);
2239 		start_critical_timings();
2240 		printk_safe_exit_irqrestore(flags);
2241 
2242 		if (do_cond_resched)
2243 			cond_resched();
2244 	}
2245 	console_locked = 0;
2246 
2247 	/* Release the exclusive_console once it is used */
2248 	if (unlikely(exclusive_console))
2249 		exclusive_console = NULL;
2250 
2251 	raw_spin_unlock(&logbuf_lock);
2252 
2253 	up_console_sem();
2254 
2255 	/*
2256 	 * Someone could have filled up the buffer again, so re-check if there's
2257 	 * something to flush. In case we cannot trylock the console_sem again,
2258 	 * there's a new owner and the console_unlock() from them will do the
2259 	 * flush, no worries.
2260 	 */
2261 	raw_spin_lock(&logbuf_lock);
2262 	retry = console_seq != log_next_seq;
2263 	raw_spin_unlock(&logbuf_lock);
2264 	printk_safe_exit_irqrestore(flags);
2265 
2266 	if (retry && console_trylock())
2267 		goto again;
2268 
2269 	if (wake_klogd)
2270 		wake_up_klogd();
2271 }
2272 EXPORT_SYMBOL(console_unlock);
2273 
2274 /**
2275  * console_conditional_schedule - yield the CPU if required
2276  *
2277  * If the console code is currently allowed to sleep, and
2278  * if this CPU should yield the CPU to another task, do
2279  * so here.
2280  *
2281  * Must be called within console_lock();.
2282  */
2283 void __sched console_conditional_schedule(void)
2284 {
2285 	if (console_may_schedule)
2286 		cond_resched();
2287 }
2288 EXPORT_SYMBOL(console_conditional_schedule);
2289 
2290 void console_unblank(void)
2291 {
2292 	struct console *c;
2293 
2294 	/*
2295 	 * console_unblank can no longer be called in interrupt context unless
2296 	 * oops_in_progress is set to 1..
2297 	 */
2298 	if (oops_in_progress) {
2299 		if (down_trylock_console_sem() != 0)
2300 			return;
2301 	} else
2302 		console_lock();
2303 
2304 	console_locked = 1;
2305 	console_may_schedule = 0;
2306 	for_each_console(c)
2307 		if ((c->flags & CON_ENABLED) && c->unblank)
2308 			c->unblank();
2309 	console_unlock();
2310 }
2311 
2312 /**
2313  * console_flush_on_panic - flush console content on panic
2314  *
2315  * Immediately output all pending messages no matter what.
2316  */
2317 void console_flush_on_panic(void)
2318 {
2319 	/*
2320 	 * If someone else is holding the console lock, trylock will fail
2321 	 * and may_schedule may be set.  Ignore and proceed to unlock so
2322 	 * that messages are flushed out.  As this can be called from any
2323 	 * context and we don't want to get preempted while flushing,
2324 	 * ensure may_schedule is cleared.
2325 	 */
2326 	console_trylock();
2327 	console_may_schedule = 0;
2328 	console_unlock();
2329 }
2330 
2331 /*
2332  * Return the console tty driver structure and its associated index
2333  */
2334 struct tty_driver *console_device(int *index)
2335 {
2336 	struct console *c;
2337 	struct tty_driver *driver = NULL;
2338 
2339 	console_lock();
2340 	for_each_console(c) {
2341 		if (!c->device)
2342 			continue;
2343 		driver = c->device(c, index);
2344 		if (driver)
2345 			break;
2346 	}
2347 	console_unlock();
2348 	return driver;
2349 }
2350 
2351 /*
2352  * Prevent further output on the passed console device so that (for example)
2353  * serial drivers can disable console output before suspending a port, and can
2354  * re-enable output afterwards.
2355  */
2356 void console_stop(struct console *console)
2357 {
2358 	console_lock();
2359 	console->flags &= ~CON_ENABLED;
2360 	console_unlock();
2361 }
2362 EXPORT_SYMBOL(console_stop);
2363 
2364 void console_start(struct console *console)
2365 {
2366 	console_lock();
2367 	console->flags |= CON_ENABLED;
2368 	console_unlock();
2369 }
2370 EXPORT_SYMBOL(console_start);
2371 
2372 static int __read_mostly keep_bootcon;
2373 
2374 static int __init keep_bootcon_setup(char *str)
2375 {
2376 	keep_bootcon = 1;
2377 	pr_info("debug: skip boot console de-registration.\n");
2378 
2379 	return 0;
2380 }
2381 
2382 early_param("keep_bootcon", keep_bootcon_setup);
2383 
2384 /*
2385  * The console driver calls this routine during kernel initialization
2386  * to register the console printing procedure with printk() and to
2387  * print any messages that were printed by the kernel before the
2388  * console driver was initialized.
2389  *
2390  * This can happen pretty early during the boot process (because of
2391  * early_printk) - sometimes before setup_arch() completes - be careful
2392  * of what kernel features are used - they may not be initialised yet.
2393  *
2394  * There are two types of consoles - bootconsoles (early_printk) and
2395  * "real" consoles (everything which is not a bootconsole) which are
2396  * handled differently.
2397  *  - Any number of bootconsoles can be registered at any time.
2398  *  - As soon as a "real" console is registered, all bootconsoles
2399  *    will be unregistered automatically.
2400  *  - Once a "real" console is registered, any attempt to register a
2401  *    bootconsoles will be rejected
2402  */
2403 void register_console(struct console *newcon)
2404 {
2405 	int i;
2406 	unsigned long flags;
2407 	struct console *bcon = NULL;
2408 	struct console_cmdline *c;
2409 
2410 	if (console_drivers)
2411 		for_each_console(bcon)
2412 			if (WARN(bcon == newcon,
2413 					"console '%s%d' already registered\n",
2414 					bcon->name, bcon->index))
2415 				return;
2416 
2417 	/*
2418 	 * before we register a new CON_BOOT console, make sure we don't
2419 	 * already have a valid console
2420 	 */
2421 	if (console_drivers && newcon->flags & CON_BOOT) {
2422 		/* find the last or real console */
2423 		for_each_console(bcon) {
2424 			if (!(bcon->flags & CON_BOOT)) {
2425 				pr_info("Too late to register bootconsole %s%d\n",
2426 					newcon->name, newcon->index);
2427 				return;
2428 			}
2429 		}
2430 	}
2431 
2432 	if (console_drivers && console_drivers->flags & CON_BOOT)
2433 		bcon = console_drivers;
2434 
2435 	if (preferred_console < 0 || bcon || !console_drivers)
2436 		preferred_console = selected_console;
2437 
2438 	/*
2439 	 *	See if we want to use this console driver. If we
2440 	 *	didn't select a console we take the first one
2441 	 *	that registers here.
2442 	 */
2443 	if (preferred_console < 0) {
2444 		if (newcon->index < 0)
2445 			newcon->index = 0;
2446 		if (newcon->setup == NULL ||
2447 		    newcon->setup(newcon, NULL) == 0) {
2448 			newcon->flags |= CON_ENABLED;
2449 			if (newcon->device) {
2450 				newcon->flags |= CON_CONSDEV;
2451 				preferred_console = 0;
2452 			}
2453 		}
2454 	}
2455 
2456 	/*
2457 	 *	See if this console matches one we selected on
2458 	 *	the command line.
2459 	 */
2460 	for (i = 0, c = console_cmdline;
2461 	     i < MAX_CMDLINECONSOLES && c->name[0];
2462 	     i++, c++) {
2463 		if (!newcon->match ||
2464 		    newcon->match(newcon, c->name, c->index, c->options) != 0) {
2465 			/* default matching */
2466 			BUILD_BUG_ON(sizeof(c->name) != sizeof(newcon->name));
2467 			if (strcmp(c->name, newcon->name) != 0)
2468 				continue;
2469 			if (newcon->index >= 0 &&
2470 			    newcon->index != c->index)
2471 				continue;
2472 			if (newcon->index < 0)
2473 				newcon->index = c->index;
2474 
2475 			if (_braille_register_console(newcon, c))
2476 				return;
2477 
2478 			if (newcon->setup &&
2479 			    newcon->setup(newcon, c->options) != 0)
2480 				break;
2481 		}
2482 
2483 		newcon->flags |= CON_ENABLED;
2484 		if (i == selected_console) {
2485 			newcon->flags |= CON_CONSDEV;
2486 			preferred_console = selected_console;
2487 		}
2488 		break;
2489 	}
2490 
2491 	if (!(newcon->flags & CON_ENABLED))
2492 		return;
2493 
2494 	/*
2495 	 * If we have a bootconsole, and are switching to a real console,
2496 	 * don't print everything out again, since when the boot console, and
2497 	 * the real console are the same physical device, it's annoying to
2498 	 * see the beginning boot messages twice
2499 	 */
2500 	if (bcon && ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV))
2501 		newcon->flags &= ~CON_PRINTBUFFER;
2502 
2503 	/*
2504 	 *	Put this console in the list - keep the
2505 	 *	preferred driver at the head of the list.
2506 	 */
2507 	console_lock();
2508 	if ((newcon->flags & CON_CONSDEV) || console_drivers == NULL) {
2509 		newcon->next = console_drivers;
2510 		console_drivers = newcon;
2511 		if (newcon->next)
2512 			newcon->next->flags &= ~CON_CONSDEV;
2513 	} else {
2514 		newcon->next = console_drivers->next;
2515 		console_drivers->next = newcon;
2516 	}
2517 
2518 	if (newcon->flags & CON_EXTENDED)
2519 		if (!nr_ext_console_drivers++)
2520 			pr_info("printk: continuation disabled due to ext consoles, expect more fragments in /dev/kmsg\n");
2521 
2522 	if (newcon->flags & CON_PRINTBUFFER) {
2523 		/*
2524 		 * console_unlock(); will print out the buffered messages
2525 		 * for us.
2526 		 */
2527 		logbuf_lock_irqsave(flags);
2528 		console_seq = syslog_seq;
2529 		console_idx = syslog_idx;
2530 		logbuf_unlock_irqrestore(flags);
2531 		/*
2532 		 * We're about to replay the log buffer.  Only do this to the
2533 		 * just-registered console to avoid excessive message spam to
2534 		 * the already-registered consoles.
2535 		 */
2536 		exclusive_console = newcon;
2537 	}
2538 	console_unlock();
2539 	console_sysfs_notify();
2540 
2541 	/*
2542 	 * By unregistering the bootconsoles after we enable the real console
2543 	 * we get the "console xxx enabled" message on all the consoles -
2544 	 * boot consoles, real consoles, etc - this is to ensure that end
2545 	 * users know there might be something in the kernel's log buffer that
2546 	 * went to the bootconsole (that they do not see on the real console)
2547 	 */
2548 	pr_info("%sconsole [%s%d] enabled\n",
2549 		(newcon->flags & CON_BOOT) ? "boot" : "" ,
2550 		newcon->name, newcon->index);
2551 	if (bcon &&
2552 	    ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV) &&
2553 	    !keep_bootcon) {
2554 		/* We need to iterate through all boot consoles, to make
2555 		 * sure we print everything out, before we unregister them.
2556 		 */
2557 		for_each_console(bcon)
2558 			if (bcon->flags & CON_BOOT)
2559 				unregister_console(bcon);
2560 	}
2561 }
2562 EXPORT_SYMBOL(register_console);
2563 
2564 int unregister_console(struct console *console)
2565 {
2566         struct console *a, *b;
2567 	int res;
2568 
2569 	pr_info("%sconsole [%s%d] disabled\n",
2570 		(console->flags & CON_BOOT) ? "boot" : "" ,
2571 		console->name, console->index);
2572 
2573 	res = _braille_unregister_console(console);
2574 	if (res)
2575 		return res;
2576 
2577 	res = 1;
2578 	console_lock();
2579 	if (console_drivers == console) {
2580 		console_drivers=console->next;
2581 		res = 0;
2582 	} else if (console_drivers) {
2583 		for (a=console_drivers->next, b=console_drivers ;
2584 		     a; b=a, a=b->next) {
2585 			if (a == console) {
2586 				b->next = a->next;
2587 				res = 0;
2588 				break;
2589 			}
2590 		}
2591 	}
2592 
2593 	if (!res && (console->flags & CON_EXTENDED))
2594 		nr_ext_console_drivers--;
2595 
2596 	/*
2597 	 * If this isn't the last console and it has CON_CONSDEV set, we
2598 	 * need to set it on the next preferred console.
2599 	 */
2600 	if (console_drivers != NULL && console->flags & CON_CONSDEV)
2601 		console_drivers->flags |= CON_CONSDEV;
2602 
2603 	console->flags &= ~CON_ENABLED;
2604 	console_unlock();
2605 	console_sysfs_notify();
2606 	return res;
2607 }
2608 EXPORT_SYMBOL(unregister_console);
2609 
2610 /*
2611  * Some boot consoles access data that is in the init section and which will
2612  * be discarded after the initcalls have been run. To make sure that no code
2613  * will access this data, unregister the boot consoles in a late initcall.
2614  *
2615  * If for some reason, such as deferred probe or the driver being a loadable
2616  * module, the real console hasn't registered yet at this point, there will
2617  * be a brief interval in which no messages are logged to the console, which
2618  * makes it difficult to diagnose problems that occur during this time.
2619  *
2620  * To mitigate this problem somewhat, only unregister consoles whose memory
2621  * intersects with the init section. Note that code exists elsewhere to get
2622  * rid of the boot console as soon as the proper console shows up, so there
2623  * won't be side-effects from postponing the removal.
2624  */
2625 static int __init printk_late_init(void)
2626 {
2627 	struct console *con;
2628 	int ret;
2629 
2630 	for_each_console(con) {
2631 		if (!keep_bootcon && con->flags & CON_BOOT) {
2632 			/*
2633 			 * Make sure to unregister boot consoles whose data
2634 			 * resides in the init section before the init section
2635 			 * is discarded. Boot consoles whose data will stick
2636 			 * around will automatically be unregistered when the
2637 			 * proper console replaces them.
2638 			 */
2639 			if (init_section_intersects(con, sizeof(*con)))
2640 				unregister_console(con);
2641 		}
2642 	}
2643 	ret = cpuhp_setup_state_nocalls(CPUHP_PRINTK_DEAD, "printk:dead", NULL,
2644 					console_cpu_notify);
2645 	WARN_ON(ret < 0);
2646 	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "printk:online",
2647 					console_cpu_notify, NULL);
2648 	WARN_ON(ret < 0);
2649 	return 0;
2650 }
2651 late_initcall(printk_late_init);
2652 
2653 #if defined CONFIG_PRINTK
2654 /*
2655  * Delayed printk version, for scheduler-internal messages:
2656  */
2657 #define PRINTK_PENDING_WAKEUP	0x01
2658 #define PRINTK_PENDING_OUTPUT	0x02
2659 
2660 static DEFINE_PER_CPU(int, printk_pending);
2661 
2662 static void wake_up_klogd_work_func(struct irq_work *irq_work)
2663 {
2664 	int pending = __this_cpu_xchg(printk_pending, 0);
2665 
2666 	if (pending & PRINTK_PENDING_OUTPUT) {
2667 		/* If trylock fails, someone else is doing the printing */
2668 		if (console_trylock())
2669 			console_unlock();
2670 	}
2671 
2672 	if (pending & PRINTK_PENDING_WAKEUP)
2673 		wake_up_interruptible(&log_wait);
2674 }
2675 
2676 static DEFINE_PER_CPU(struct irq_work, wake_up_klogd_work) = {
2677 	.func = wake_up_klogd_work_func,
2678 	.flags = IRQ_WORK_LAZY,
2679 };
2680 
2681 void wake_up_klogd(void)
2682 {
2683 	preempt_disable();
2684 	if (waitqueue_active(&log_wait)) {
2685 		this_cpu_or(printk_pending, PRINTK_PENDING_WAKEUP);
2686 		irq_work_queue(this_cpu_ptr(&wake_up_klogd_work));
2687 	}
2688 	preempt_enable();
2689 }
2690 
2691 int printk_deferred(const char *fmt, ...)
2692 {
2693 	va_list args;
2694 	int r;
2695 
2696 	preempt_disable();
2697 	va_start(args, fmt);
2698 	r = vprintk_emit(0, LOGLEVEL_SCHED, NULL, 0, fmt, args);
2699 	va_end(args);
2700 
2701 	__this_cpu_or(printk_pending, PRINTK_PENDING_OUTPUT);
2702 	irq_work_queue(this_cpu_ptr(&wake_up_klogd_work));
2703 	preempt_enable();
2704 
2705 	return r;
2706 }
2707 
2708 /*
2709  * printk rate limiting, lifted from the networking subsystem.
2710  *
2711  * This enforces a rate limit: not more than 10 kernel messages
2712  * every 5s to make a denial-of-service attack impossible.
2713  */
2714 DEFINE_RATELIMIT_STATE(printk_ratelimit_state, 5 * HZ, 10);
2715 
2716 int __printk_ratelimit(const char *func)
2717 {
2718 	return ___ratelimit(&printk_ratelimit_state, func);
2719 }
2720 EXPORT_SYMBOL(__printk_ratelimit);
2721 
2722 /**
2723  * printk_timed_ratelimit - caller-controlled printk ratelimiting
2724  * @caller_jiffies: pointer to caller's state
2725  * @interval_msecs: minimum interval between prints
2726  *
2727  * printk_timed_ratelimit() returns true if more than @interval_msecs
2728  * milliseconds have elapsed since the last time printk_timed_ratelimit()
2729  * returned true.
2730  */
2731 bool printk_timed_ratelimit(unsigned long *caller_jiffies,
2732 			unsigned int interval_msecs)
2733 {
2734 	unsigned long elapsed = jiffies - *caller_jiffies;
2735 
2736 	if (*caller_jiffies && elapsed <= msecs_to_jiffies(interval_msecs))
2737 		return false;
2738 
2739 	*caller_jiffies = jiffies;
2740 	return true;
2741 }
2742 EXPORT_SYMBOL(printk_timed_ratelimit);
2743 
2744 static DEFINE_SPINLOCK(dump_list_lock);
2745 static LIST_HEAD(dump_list);
2746 
2747 /**
2748  * kmsg_dump_register - register a kernel log dumper.
2749  * @dumper: pointer to the kmsg_dumper structure
2750  *
2751  * Adds a kernel log dumper to the system. The dump callback in the
2752  * structure will be called when the kernel oopses or panics and must be
2753  * set. Returns zero on success and %-EINVAL or %-EBUSY otherwise.
2754  */
2755 int kmsg_dump_register(struct kmsg_dumper *dumper)
2756 {
2757 	unsigned long flags;
2758 	int err = -EBUSY;
2759 
2760 	/* The dump callback needs to be set */
2761 	if (!dumper->dump)
2762 		return -EINVAL;
2763 
2764 	spin_lock_irqsave(&dump_list_lock, flags);
2765 	/* Don't allow registering multiple times */
2766 	if (!dumper->registered) {
2767 		dumper->registered = 1;
2768 		list_add_tail_rcu(&dumper->list, &dump_list);
2769 		err = 0;
2770 	}
2771 	spin_unlock_irqrestore(&dump_list_lock, flags);
2772 
2773 	return err;
2774 }
2775 EXPORT_SYMBOL_GPL(kmsg_dump_register);
2776 
2777 /**
2778  * kmsg_dump_unregister - unregister a kmsg dumper.
2779  * @dumper: pointer to the kmsg_dumper structure
2780  *
2781  * Removes a dump device from the system. Returns zero on success and
2782  * %-EINVAL otherwise.
2783  */
2784 int kmsg_dump_unregister(struct kmsg_dumper *dumper)
2785 {
2786 	unsigned long flags;
2787 	int err = -EINVAL;
2788 
2789 	spin_lock_irqsave(&dump_list_lock, flags);
2790 	if (dumper->registered) {
2791 		dumper->registered = 0;
2792 		list_del_rcu(&dumper->list);
2793 		err = 0;
2794 	}
2795 	spin_unlock_irqrestore(&dump_list_lock, flags);
2796 	synchronize_rcu();
2797 
2798 	return err;
2799 }
2800 EXPORT_SYMBOL_GPL(kmsg_dump_unregister);
2801 
2802 static bool always_kmsg_dump;
2803 module_param_named(always_kmsg_dump, always_kmsg_dump, bool, S_IRUGO | S_IWUSR);
2804 
2805 /**
2806  * kmsg_dump - dump kernel log to kernel message dumpers.
2807  * @reason: the reason (oops, panic etc) for dumping
2808  *
2809  * Call each of the registered dumper's dump() callback, which can
2810  * retrieve the kmsg records with kmsg_dump_get_line() or
2811  * kmsg_dump_get_buffer().
2812  */
2813 void kmsg_dump(enum kmsg_dump_reason reason)
2814 {
2815 	struct kmsg_dumper *dumper;
2816 	unsigned long flags;
2817 
2818 	if ((reason > KMSG_DUMP_OOPS) && !always_kmsg_dump)
2819 		return;
2820 
2821 	rcu_read_lock();
2822 	list_for_each_entry_rcu(dumper, &dump_list, list) {
2823 		if (dumper->max_reason && reason > dumper->max_reason)
2824 			continue;
2825 
2826 		/* initialize iterator with data about the stored records */
2827 		dumper->active = true;
2828 
2829 		logbuf_lock_irqsave(flags);
2830 		dumper->cur_seq = clear_seq;
2831 		dumper->cur_idx = clear_idx;
2832 		dumper->next_seq = log_next_seq;
2833 		dumper->next_idx = log_next_idx;
2834 		logbuf_unlock_irqrestore(flags);
2835 
2836 		/* invoke dumper which will iterate over records */
2837 		dumper->dump(dumper, reason);
2838 
2839 		/* reset iterator */
2840 		dumper->active = false;
2841 	}
2842 	rcu_read_unlock();
2843 }
2844 
2845 /**
2846  * kmsg_dump_get_line_nolock - retrieve one kmsg log line (unlocked version)
2847  * @dumper: registered kmsg dumper
2848  * @syslog: include the "<4>" prefixes
2849  * @line: buffer to copy the line to
2850  * @size: maximum size of the buffer
2851  * @len: length of line placed into buffer
2852  *
2853  * Start at the beginning of the kmsg buffer, with the oldest kmsg
2854  * record, and copy one record into the provided buffer.
2855  *
2856  * Consecutive calls will return the next available record moving
2857  * towards the end of the buffer with the youngest messages.
2858  *
2859  * A return value of FALSE indicates that there are no more records to
2860  * read.
2861  *
2862  * The function is similar to kmsg_dump_get_line(), but grabs no locks.
2863  */
2864 bool kmsg_dump_get_line_nolock(struct kmsg_dumper *dumper, bool syslog,
2865 			       char *line, size_t size, size_t *len)
2866 {
2867 	struct printk_log *msg;
2868 	size_t l = 0;
2869 	bool ret = false;
2870 
2871 	if (!dumper->active)
2872 		goto out;
2873 
2874 	if (dumper->cur_seq < log_first_seq) {
2875 		/* messages are gone, move to first available one */
2876 		dumper->cur_seq = log_first_seq;
2877 		dumper->cur_idx = log_first_idx;
2878 	}
2879 
2880 	/* last entry */
2881 	if (dumper->cur_seq >= log_next_seq)
2882 		goto out;
2883 
2884 	msg = log_from_idx(dumper->cur_idx);
2885 	l = msg_print_text(msg, syslog, line, size);
2886 
2887 	dumper->cur_idx = log_next(dumper->cur_idx);
2888 	dumper->cur_seq++;
2889 	ret = true;
2890 out:
2891 	if (len)
2892 		*len = l;
2893 	return ret;
2894 }
2895 
2896 /**
2897  * kmsg_dump_get_line - retrieve one kmsg log line
2898  * @dumper: registered kmsg dumper
2899  * @syslog: include the "<4>" prefixes
2900  * @line: buffer to copy the line to
2901  * @size: maximum size of the buffer
2902  * @len: length of line placed into buffer
2903  *
2904  * Start at the beginning of the kmsg buffer, with the oldest kmsg
2905  * record, and copy one record into the provided buffer.
2906  *
2907  * Consecutive calls will return the next available record moving
2908  * towards the end of the buffer with the youngest messages.
2909  *
2910  * A return value of FALSE indicates that there are no more records to
2911  * read.
2912  */
2913 bool kmsg_dump_get_line(struct kmsg_dumper *dumper, bool syslog,
2914 			char *line, size_t size, size_t *len)
2915 {
2916 	unsigned long flags;
2917 	bool ret;
2918 
2919 	logbuf_lock_irqsave(flags);
2920 	ret = kmsg_dump_get_line_nolock(dumper, syslog, line, size, len);
2921 	logbuf_unlock_irqrestore(flags);
2922 
2923 	return ret;
2924 }
2925 EXPORT_SYMBOL_GPL(kmsg_dump_get_line);
2926 
2927 /**
2928  * kmsg_dump_get_buffer - copy kmsg log lines
2929  * @dumper: registered kmsg dumper
2930  * @syslog: include the "<4>" prefixes
2931  * @buf: buffer to copy the line to
2932  * @size: maximum size of the buffer
2933  * @len: length of line placed into buffer
2934  *
2935  * Start at the end of the kmsg buffer and fill the provided buffer
2936  * with as many of the the *youngest* kmsg records that fit into it.
2937  * If the buffer is large enough, all available kmsg records will be
2938  * copied with a single call.
2939  *
2940  * Consecutive calls will fill the buffer with the next block of
2941  * available older records, not including the earlier retrieved ones.
2942  *
2943  * A return value of FALSE indicates that there are no more records to
2944  * read.
2945  */
2946 bool kmsg_dump_get_buffer(struct kmsg_dumper *dumper, bool syslog,
2947 			  char *buf, size_t size, size_t *len)
2948 {
2949 	unsigned long flags;
2950 	u64 seq;
2951 	u32 idx;
2952 	u64 next_seq;
2953 	u32 next_idx;
2954 	size_t l = 0;
2955 	bool ret = false;
2956 
2957 	if (!dumper->active)
2958 		goto out;
2959 
2960 	logbuf_lock_irqsave(flags);
2961 	if (dumper->cur_seq < log_first_seq) {
2962 		/* messages are gone, move to first available one */
2963 		dumper->cur_seq = log_first_seq;
2964 		dumper->cur_idx = log_first_idx;
2965 	}
2966 
2967 	/* last entry */
2968 	if (dumper->cur_seq >= dumper->next_seq) {
2969 		logbuf_unlock_irqrestore(flags);
2970 		goto out;
2971 	}
2972 
2973 	/* calculate length of entire buffer */
2974 	seq = dumper->cur_seq;
2975 	idx = dumper->cur_idx;
2976 	while (seq < dumper->next_seq) {
2977 		struct printk_log *msg = log_from_idx(idx);
2978 
2979 		l += msg_print_text(msg, true, NULL, 0);
2980 		idx = log_next(idx);
2981 		seq++;
2982 	}
2983 
2984 	/* move first record forward until length fits into the buffer */
2985 	seq = dumper->cur_seq;
2986 	idx = dumper->cur_idx;
2987 	while (l > size && seq < dumper->next_seq) {
2988 		struct printk_log *msg = log_from_idx(idx);
2989 
2990 		l -= msg_print_text(msg, true, NULL, 0);
2991 		idx = log_next(idx);
2992 		seq++;
2993 	}
2994 
2995 	/* last message in next interation */
2996 	next_seq = seq;
2997 	next_idx = idx;
2998 
2999 	l = 0;
3000 	while (seq < dumper->next_seq) {
3001 		struct printk_log *msg = log_from_idx(idx);
3002 
3003 		l += msg_print_text(msg, syslog, buf + l, size - l);
3004 		idx = log_next(idx);
3005 		seq++;
3006 	}
3007 
3008 	dumper->next_seq = next_seq;
3009 	dumper->next_idx = next_idx;
3010 	ret = true;
3011 	logbuf_unlock_irqrestore(flags);
3012 out:
3013 	if (len)
3014 		*len = l;
3015 	return ret;
3016 }
3017 EXPORT_SYMBOL_GPL(kmsg_dump_get_buffer);
3018 
3019 /**
3020  * kmsg_dump_rewind_nolock - reset the interator (unlocked version)
3021  * @dumper: registered kmsg dumper
3022  *
3023  * Reset the dumper's iterator so that kmsg_dump_get_line() and
3024  * kmsg_dump_get_buffer() can be called again and used multiple
3025  * times within the same dumper.dump() callback.
3026  *
3027  * The function is similar to kmsg_dump_rewind(), but grabs no locks.
3028  */
3029 void kmsg_dump_rewind_nolock(struct kmsg_dumper *dumper)
3030 {
3031 	dumper->cur_seq = clear_seq;
3032 	dumper->cur_idx = clear_idx;
3033 	dumper->next_seq = log_next_seq;
3034 	dumper->next_idx = log_next_idx;
3035 }
3036 
3037 /**
3038  * kmsg_dump_rewind - reset the interator
3039  * @dumper: registered kmsg dumper
3040  *
3041  * Reset the dumper's iterator so that kmsg_dump_get_line() and
3042  * kmsg_dump_get_buffer() can be called again and used multiple
3043  * times within the same dumper.dump() callback.
3044  */
3045 void kmsg_dump_rewind(struct kmsg_dumper *dumper)
3046 {
3047 	unsigned long flags;
3048 
3049 	logbuf_lock_irqsave(flags);
3050 	kmsg_dump_rewind_nolock(dumper);
3051 	logbuf_unlock_irqrestore(flags);
3052 }
3053 EXPORT_SYMBOL_GPL(kmsg_dump_rewind);
3054 
3055 static char dump_stack_arch_desc_str[128];
3056 
3057 /**
3058  * dump_stack_set_arch_desc - set arch-specific str to show with task dumps
3059  * @fmt: printf-style format string
3060  * @...: arguments for the format string
3061  *
3062  * The configured string will be printed right after utsname during task
3063  * dumps.  Usually used to add arch-specific system identifiers.  If an
3064  * arch wants to make use of such an ID string, it should initialize this
3065  * as soon as possible during boot.
3066  */
3067 void __init dump_stack_set_arch_desc(const char *fmt, ...)
3068 {
3069 	va_list args;
3070 
3071 	va_start(args, fmt);
3072 	vsnprintf(dump_stack_arch_desc_str, sizeof(dump_stack_arch_desc_str),
3073 		  fmt, args);
3074 	va_end(args);
3075 }
3076 
3077 /**
3078  * dump_stack_print_info - print generic debug info for dump_stack()
3079  * @log_lvl: log level
3080  *
3081  * Arch-specific dump_stack() implementations can use this function to
3082  * print out the same debug information as the generic dump_stack().
3083  */
3084 void dump_stack_print_info(const char *log_lvl)
3085 {
3086 	printk("%sCPU: %d PID: %d Comm: %.20s %s %s %.*s\n",
3087 	       log_lvl, raw_smp_processor_id(), current->pid, current->comm,
3088 	       print_tainted(), init_utsname()->release,
3089 	       (int)strcspn(init_utsname()->version, " "),
3090 	       init_utsname()->version);
3091 
3092 	if (dump_stack_arch_desc_str[0] != '\0')
3093 		printk("%sHardware name: %s\n",
3094 		       log_lvl, dump_stack_arch_desc_str);
3095 
3096 	print_worker_info(log_lvl, current);
3097 }
3098 
3099 /**
3100  * show_regs_print_info - print generic debug info for show_regs()
3101  * @log_lvl: log level
3102  *
3103  * show_regs() implementations can use this function to print out generic
3104  * debug information.
3105  */
3106 void show_regs_print_info(const char *log_lvl)
3107 {
3108 	dump_stack_print_info(log_lvl);
3109 
3110 	printk("%stask: %p task.stack: %p\n",
3111 	       log_lvl, current, task_stack_page(current));
3112 }
3113 
3114 #endif
3115