1 /* 2 * linux/kernel/printk.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 * 6 * Modified to make sys_syslog() more flexible: added commands to 7 * return the last 4k of kernel messages, regardless of whether 8 * they've been read or not. Added option to suppress kernel printk's 9 * to the console. Added hook for sending the console messages 10 * elsewhere, in preparation for a serial line console (someday). 11 * Ted Ts'o, 2/11/93. 12 * Modified for sysctl support, 1/8/97, Chris Horn. 13 * Fixed SMP synchronization, 08/08/99, Manfred Spraul 14 * manfred@colorfullife.com 15 * Rewrote bits to get rid of console_lock 16 * 01Mar01 Andrew Morton 17 */ 18 19 #include <linux/kernel.h> 20 #include <linux/mm.h> 21 #include <linux/tty.h> 22 #include <linux/tty_driver.h> 23 #include <linux/console.h> 24 #include <linux/init.h> 25 #include <linux/jiffies.h> 26 #include <linux/nmi.h> 27 #include <linux/module.h> 28 #include <linux/moduleparam.h> 29 #include <linux/delay.h> 30 #include <linux/smp.h> 31 #include <linux/security.h> 32 #include <linux/bootmem.h> 33 #include <linux/memblock.h> 34 #include <linux/syscalls.h> 35 #include <linux/kexec.h> 36 #include <linux/kdb.h> 37 #include <linux/ratelimit.h> 38 #include <linux/kmsg_dump.h> 39 #include <linux/syslog.h> 40 #include <linux/cpu.h> 41 #include <linux/notifier.h> 42 #include <linux/rculist.h> 43 #include <linux/poll.h> 44 #include <linux/irq_work.h> 45 #include <linux/utsname.h> 46 #include <linux/ctype.h> 47 #include <linux/uio.h> 48 49 #include <linux/uaccess.h> 50 #include <asm/sections.h> 51 52 #define CREATE_TRACE_POINTS 53 #include <trace/events/printk.h> 54 55 #include "console_cmdline.h" 56 #include "braille.h" 57 #include "internal.h" 58 59 int console_printk[4] = { 60 CONSOLE_LOGLEVEL_DEFAULT, /* console_loglevel */ 61 MESSAGE_LOGLEVEL_DEFAULT, /* default_message_loglevel */ 62 CONSOLE_LOGLEVEL_MIN, /* minimum_console_loglevel */ 63 CONSOLE_LOGLEVEL_DEFAULT, /* default_console_loglevel */ 64 }; 65 66 /* 67 * Low level drivers may need that to know if they can schedule in 68 * their unblank() callback or not. So let's export it. 69 */ 70 int oops_in_progress; 71 EXPORT_SYMBOL(oops_in_progress); 72 73 /* 74 * console_sem protects the console_drivers list, and also 75 * provides serialisation for access to the entire console 76 * driver system. 77 */ 78 static DEFINE_SEMAPHORE(console_sem); 79 struct console *console_drivers; 80 EXPORT_SYMBOL_GPL(console_drivers); 81 82 #ifdef CONFIG_LOCKDEP 83 static struct lockdep_map console_lock_dep_map = { 84 .name = "console_lock" 85 }; 86 #endif 87 88 enum devkmsg_log_bits { 89 __DEVKMSG_LOG_BIT_ON = 0, 90 __DEVKMSG_LOG_BIT_OFF, 91 __DEVKMSG_LOG_BIT_LOCK, 92 }; 93 94 enum devkmsg_log_masks { 95 DEVKMSG_LOG_MASK_ON = BIT(__DEVKMSG_LOG_BIT_ON), 96 DEVKMSG_LOG_MASK_OFF = BIT(__DEVKMSG_LOG_BIT_OFF), 97 DEVKMSG_LOG_MASK_LOCK = BIT(__DEVKMSG_LOG_BIT_LOCK), 98 }; 99 100 /* Keep both the 'on' and 'off' bits clear, i.e. ratelimit by default: */ 101 #define DEVKMSG_LOG_MASK_DEFAULT 0 102 103 static unsigned int __read_mostly devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT; 104 105 static int __control_devkmsg(char *str) 106 { 107 if (!str) 108 return -EINVAL; 109 110 if (!strncmp(str, "on", 2)) { 111 devkmsg_log = DEVKMSG_LOG_MASK_ON; 112 return 2; 113 } else if (!strncmp(str, "off", 3)) { 114 devkmsg_log = DEVKMSG_LOG_MASK_OFF; 115 return 3; 116 } else if (!strncmp(str, "ratelimit", 9)) { 117 devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT; 118 return 9; 119 } 120 return -EINVAL; 121 } 122 123 static int __init control_devkmsg(char *str) 124 { 125 if (__control_devkmsg(str) < 0) 126 return 1; 127 128 /* 129 * Set sysctl string accordingly: 130 */ 131 if (devkmsg_log == DEVKMSG_LOG_MASK_ON) { 132 memset(devkmsg_log_str, 0, DEVKMSG_STR_MAX_SIZE); 133 strncpy(devkmsg_log_str, "on", 2); 134 } else if (devkmsg_log == DEVKMSG_LOG_MASK_OFF) { 135 memset(devkmsg_log_str, 0, DEVKMSG_STR_MAX_SIZE); 136 strncpy(devkmsg_log_str, "off", 3); 137 } 138 /* else "ratelimit" which is set by default. */ 139 140 /* 141 * Sysctl cannot change it anymore. The kernel command line setting of 142 * this parameter is to force the setting to be permanent throughout the 143 * runtime of the system. This is a precation measure against userspace 144 * trying to be a smarta** and attempting to change it up on us. 145 */ 146 devkmsg_log |= DEVKMSG_LOG_MASK_LOCK; 147 148 return 0; 149 } 150 __setup("printk.devkmsg=", control_devkmsg); 151 152 char devkmsg_log_str[DEVKMSG_STR_MAX_SIZE] = "ratelimit"; 153 154 int devkmsg_sysctl_set_loglvl(struct ctl_table *table, int write, 155 void __user *buffer, size_t *lenp, loff_t *ppos) 156 { 157 char old_str[DEVKMSG_STR_MAX_SIZE]; 158 unsigned int old; 159 int err; 160 161 if (write) { 162 if (devkmsg_log & DEVKMSG_LOG_MASK_LOCK) 163 return -EINVAL; 164 165 old = devkmsg_log; 166 strncpy(old_str, devkmsg_log_str, DEVKMSG_STR_MAX_SIZE); 167 } 168 169 err = proc_dostring(table, write, buffer, lenp, ppos); 170 if (err) 171 return err; 172 173 if (write) { 174 err = __control_devkmsg(devkmsg_log_str); 175 176 /* 177 * Do not accept an unknown string OR a known string with 178 * trailing crap... 179 */ 180 if (err < 0 || (err + 1 != *lenp)) { 181 182 /* ... and restore old setting. */ 183 devkmsg_log = old; 184 strncpy(devkmsg_log_str, old_str, DEVKMSG_STR_MAX_SIZE); 185 186 return -EINVAL; 187 } 188 } 189 190 return 0; 191 } 192 193 /* 194 * Number of registered extended console drivers. 195 * 196 * If extended consoles are present, in-kernel cont reassembly is disabled 197 * and each fragment is stored as a separate log entry with proper 198 * continuation flag so that every emitted message has full metadata. This 199 * doesn't change the result for regular consoles or /proc/kmsg. For 200 * /dev/kmsg, as long as the reader concatenates messages according to 201 * consecutive continuation flags, the end result should be the same too. 202 */ 203 static int nr_ext_console_drivers; 204 205 /* 206 * Helper macros to handle lockdep when locking/unlocking console_sem. We use 207 * macros instead of functions so that _RET_IP_ contains useful information. 208 */ 209 #define down_console_sem() do { \ 210 down(&console_sem);\ 211 mutex_acquire(&console_lock_dep_map, 0, 0, _RET_IP_);\ 212 } while (0) 213 214 static int __down_trylock_console_sem(unsigned long ip) 215 { 216 int lock_failed; 217 unsigned long flags; 218 219 /* 220 * Here and in __up_console_sem() we need to be in safe mode, 221 * because spindump/WARN/etc from under console ->lock will 222 * deadlock in printk()->down_trylock_console_sem() otherwise. 223 */ 224 printk_safe_enter_irqsave(flags); 225 lock_failed = down_trylock(&console_sem); 226 printk_safe_exit_irqrestore(flags); 227 228 if (lock_failed) 229 return 1; 230 mutex_acquire(&console_lock_dep_map, 0, 1, ip); 231 return 0; 232 } 233 #define down_trylock_console_sem() __down_trylock_console_sem(_RET_IP_) 234 235 static void __up_console_sem(unsigned long ip) 236 { 237 unsigned long flags; 238 239 mutex_release(&console_lock_dep_map, 1, ip); 240 241 printk_safe_enter_irqsave(flags); 242 up(&console_sem); 243 printk_safe_exit_irqrestore(flags); 244 } 245 #define up_console_sem() __up_console_sem(_RET_IP_) 246 247 /* 248 * This is used for debugging the mess that is the VT code by 249 * keeping track if we have the console semaphore held. It's 250 * definitely not the perfect debug tool (we don't know if _WE_ 251 * hold it and are racing, but it helps tracking those weird code 252 * paths in the console code where we end up in places I want 253 * locked without the console sempahore held). 254 */ 255 static int console_locked, console_suspended; 256 257 /* 258 * If exclusive_console is non-NULL then only this console is to be printed to. 259 */ 260 static struct console *exclusive_console; 261 262 /* 263 * Array of consoles built from command line options (console=) 264 */ 265 266 #define MAX_CMDLINECONSOLES 8 267 268 static struct console_cmdline console_cmdline[MAX_CMDLINECONSOLES]; 269 270 static int selected_console = -1; 271 static int preferred_console = -1; 272 int console_set_on_cmdline; 273 EXPORT_SYMBOL(console_set_on_cmdline); 274 275 /* Flag: console code may call schedule() */ 276 static int console_may_schedule; 277 278 /* 279 * The printk log buffer consists of a chain of concatenated variable 280 * length records. Every record starts with a record header, containing 281 * the overall length of the record. 282 * 283 * The heads to the first and last entry in the buffer, as well as the 284 * sequence numbers of these entries are maintained when messages are 285 * stored. 286 * 287 * If the heads indicate available messages, the length in the header 288 * tells the start next message. A length == 0 for the next message 289 * indicates a wrap-around to the beginning of the buffer. 290 * 291 * Every record carries the monotonic timestamp in microseconds, as well as 292 * the standard userspace syslog level and syslog facility. The usual 293 * kernel messages use LOG_KERN; userspace-injected messages always carry 294 * a matching syslog facility, by default LOG_USER. The origin of every 295 * message can be reliably determined that way. 296 * 297 * The human readable log message directly follows the message header. The 298 * length of the message text is stored in the header, the stored message 299 * is not terminated. 300 * 301 * Optionally, a message can carry a dictionary of properties (key/value pairs), 302 * to provide userspace with a machine-readable message context. 303 * 304 * Examples for well-defined, commonly used property names are: 305 * DEVICE=b12:8 device identifier 306 * b12:8 block dev_t 307 * c127:3 char dev_t 308 * n8 netdev ifindex 309 * +sound:card0 subsystem:devname 310 * SUBSYSTEM=pci driver-core subsystem name 311 * 312 * Valid characters in property names are [a-zA-Z0-9.-_]. The plain text value 313 * follows directly after a '=' character. Every property is terminated by 314 * a '\0' character. The last property is not terminated. 315 * 316 * Example of a message structure: 317 * 0000 ff 8f 00 00 00 00 00 00 monotonic time in nsec 318 * 0008 34 00 record is 52 bytes long 319 * 000a 0b 00 text is 11 bytes long 320 * 000c 1f 00 dictionary is 23 bytes long 321 * 000e 03 00 LOG_KERN (facility) LOG_ERR (level) 322 * 0010 69 74 27 73 20 61 20 6c "it's a l" 323 * 69 6e 65 "ine" 324 * 001b 44 45 56 49 43 "DEVIC" 325 * 45 3d 62 38 3a 32 00 44 "E=b8:2\0D" 326 * 52 49 56 45 52 3d 62 75 "RIVER=bu" 327 * 67 "g" 328 * 0032 00 00 00 padding to next message header 329 * 330 * The 'struct printk_log' buffer header must never be directly exported to 331 * userspace, it is a kernel-private implementation detail that might 332 * need to be changed in the future, when the requirements change. 333 * 334 * /dev/kmsg exports the structured data in the following line format: 335 * "<level>,<sequnum>,<timestamp>,<contflag>[,additional_values, ... ];<message text>\n" 336 * 337 * Users of the export format should ignore possible additional values 338 * separated by ',', and find the message after the ';' character. 339 * 340 * The optional key/value pairs are attached as continuation lines starting 341 * with a space character and terminated by a newline. All possible 342 * non-prinatable characters are escaped in the "\xff" notation. 343 */ 344 345 enum log_flags { 346 LOG_NOCONS = 1, /* already flushed, do not print to console */ 347 LOG_NEWLINE = 2, /* text ended with a newline */ 348 LOG_PREFIX = 4, /* text started with a prefix */ 349 LOG_CONT = 8, /* text is a fragment of a continuation line */ 350 }; 351 352 struct printk_log { 353 u64 ts_nsec; /* timestamp in nanoseconds */ 354 u16 len; /* length of entire record */ 355 u16 text_len; /* length of text buffer */ 356 u16 dict_len; /* length of dictionary buffer */ 357 u8 facility; /* syslog facility */ 358 u8 flags:5; /* internal record flags */ 359 u8 level:3; /* syslog level */ 360 } 361 #ifdef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS 362 __packed __aligned(4) 363 #endif 364 ; 365 366 /* 367 * The logbuf_lock protects kmsg buffer, indices, counters. This can be taken 368 * within the scheduler's rq lock. It must be released before calling 369 * console_unlock() or anything else that might wake up a process. 370 */ 371 DEFINE_RAW_SPINLOCK(logbuf_lock); 372 373 /* 374 * Helper macros to lock/unlock logbuf_lock and switch between 375 * printk-safe/unsafe modes. 376 */ 377 #define logbuf_lock_irq() \ 378 do { \ 379 printk_safe_enter_irq(); \ 380 raw_spin_lock(&logbuf_lock); \ 381 } while (0) 382 383 #define logbuf_unlock_irq() \ 384 do { \ 385 raw_spin_unlock(&logbuf_lock); \ 386 printk_safe_exit_irq(); \ 387 } while (0) 388 389 #define logbuf_lock_irqsave(flags) \ 390 do { \ 391 printk_safe_enter_irqsave(flags); \ 392 raw_spin_lock(&logbuf_lock); \ 393 } while (0) 394 395 #define logbuf_unlock_irqrestore(flags) \ 396 do { \ 397 raw_spin_unlock(&logbuf_lock); \ 398 printk_safe_exit_irqrestore(flags); \ 399 } while (0) 400 401 #ifdef CONFIG_PRINTK 402 DECLARE_WAIT_QUEUE_HEAD(log_wait); 403 /* the next printk record to read by syslog(READ) or /proc/kmsg */ 404 static u64 syslog_seq; 405 static u32 syslog_idx; 406 static size_t syslog_partial; 407 408 /* index and sequence number of the first record stored in the buffer */ 409 static u64 log_first_seq; 410 static u32 log_first_idx; 411 412 /* index and sequence number of the next record to store in the buffer */ 413 static u64 log_next_seq; 414 static u32 log_next_idx; 415 416 /* the next printk record to write to the console */ 417 static u64 console_seq; 418 static u32 console_idx; 419 420 /* the next printk record to read after the last 'clear' command */ 421 static u64 clear_seq; 422 static u32 clear_idx; 423 424 #define PREFIX_MAX 32 425 #define LOG_LINE_MAX (1024 - PREFIX_MAX) 426 427 #define LOG_LEVEL(v) ((v) & 0x07) 428 #define LOG_FACILITY(v) ((v) >> 3 & 0xff) 429 430 /* record buffer */ 431 #define LOG_ALIGN __alignof__(struct printk_log) 432 #define __LOG_BUF_LEN (1 << CONFIG_LOG_BUF_SHIFT) 433 static char __log_buf[__LOG_BUF_LEN] __aligned(LOG_ALIGN); 434 static char *log_buf = __log_buf; 435 static u32 log_buf_len = __LOG_BUF_LEN; 436 437 /* Return log buffer address */ 438 char *log_buf_addr_get(void) 439 { 440 return log_buf; 441 } 442 443 /* Return log buffer size */ 444 u32 log_buf_len_get(void) 445 { 446 return log_buf_len; 447 } 448 449 /* human readable text of the record */ 450 static char *log_text(const struct printk_log *msg) 451 { 452 return (char *)msg + sizeof(struct printk_log); 453 } 454 455 /* optional key/value pair dictionary attached to the record */ 456 static char *log_dict(const struct printk_log *msg) 457 { 458 return (char *)msg + sizeof(struct printk_log) + msg->text_len; 459 } 460 461 /* get record by index; idx must point to valid msg */ 462 static struct printk_log *log_from_idx(u32 idx) 463 { 464 struct printk_log *msg = (struct printk_log *)(log_buf + idx); 465 466 /* 467 * A length == 0 record is the end of buffer marker. Wrap around and 468 * read the message at the start of the buffer. 469 */ 470 if (!msg->len) 471 return (struct printk_log *)log_buf; 472 return msg; 473 } 474 475 /* get next record; idx must point to valid msg */ 476 static u32 log_next(u32 idx) 477 { 478 struct printk_log *msg = (struct printk_log *)(log_buf + idx); 479 480 /* length == 0 indicates the end of the buffer; wrap */ 481 /* 482 * A length == 0 record is the end of buffer marker. Wrap around and 483 * read the message at the start of the buffer as *this* one, and 484 * return the one after that. 485 */ 486 if (!msg->len) { 487 msg = (struct printk_log *)log_buf; 488 return msg->len; 489 } 490 return idx + msg->len; 491 } 492 493 /* 494 * Check whether there is enough free space for the given message. 495 * 496 * The same values of first_idx and next_idx mean that the buffer 497 * is either empty or full. 498 * 499 * If the buffer is empty, we must respect the position of the indexes. 500 * They cannot be reset to the beginning of the buffer. 501 */ 502 static int logbuf_has_space(u32 msg_size, bool empty) 503 { 504 u32 free; 505 506 if (log_next_idx > log_first_idx || empty) 507 free = max(log_buf_len - log_next_idx, log_first_idx); 508 else 509 free = log_first_idx - log_next_idx; 510 511 /* 512 * We need space also for an empty header that signalizes wrapping 513 * of the buffer. 514 */ 515 return free >= msg_size + sizeof(struct printk_log); 516 } 517 518 static int log_make_free_space(u32 msg_size) 519 { 520 while (log_first_seq < log_next_seq && 521 !logbuf_has_space(msg_size, false)) { 522 /* drop old messages until we have enough contiguous space */ 523 log_first_idx = log_next(log_first_idx); 524 log_first_seq++; 525 } 526 527 if (clear_seq < log_first_seq) { 528 clear_seq = log_first_seq; 529 clear_idx = log_first_idx; 530 } 531 532 /* sequence numbers are equal, so the log buffer is empty */ 533 if (logbuf_has_space(msg_size, log_first_seq == log_next_seq)) 534 return 0; 535 536 return -ENOMEM; 537 } 538 539 /* compute the message size including the padding bytes */ 540 static u32 msg_used_size(u16 text_len, u16 dict_len, u32 *pad_len) 541 { 542 u32 size; 543 544 size = sizeof(struct printk_log) + text_len + dict_len; 545 *pad_len = (-size) & (LOG_ALIGN - 1); 546 size += *pad_len; 547 548 return size; 549 } 550 551 /* 552 * Define how much of the log buffer we could take at maximum. The value 553 * must be greater than two. Note that only half of the buffer is available 554 * when the index points to the middle. 555 */ 556 #define MAX_LOG_TAKE_PART 4 557 static const char trunc_msg[] = "<truncated>"; 558 559 static u32 truncate_msg(u16 *text_len, u16 *trunc_msg_len, 560 u16 *dict_len, u32 *pad_len) 561 { 562 /* 563 * The message should not take the whole buffer. Otherwise, it might 564 * get removed too soon. 565 */ 566 u32 max_text_len = log_buf_len / MAX_LOG_TAKE_PART; 567 if (*text_len > max_text_len) 568 *text_len = max_text_len; 569 /* enable the warning message */ 570 *trunc_msg_len = strlen(trunc_msg); 571 /* disable the "dict" completely */ 572 *dict_len = 0; 573 /* compute the size again, count also the warning message */ 574 return msg_used_size(*text_len + *trunc_msg_len, 0, pad_len); 575 } 576 577 /* insert record into the buffer, discard old ones, update heads */ 578 static int log_store(int facility, int level, 579 enum log_flags flags, u64 ts_nsec, 580 const char *dict, u16 dict_len, 581 const char *text, u16 text_len) 582 { 583 struct printk_log *msg; 584 u32 size, pad_len; 585 u16 trunc_msg_len = 0; 586 587 /* number of '\0' padding bytes to next message */ 588 size = msg_used_size(text_len, dict_len, &pad_len); 589 590 if (log_make_free_space(size)) { 591 /* truncate the message if it is too long for empty buffer */ 592 size = truncate_msg(&text_len, &trunc_msg_len, 593 &dict_len, &pad_len); 594 /* survive when the log buffer is too small for trunc_msg */ 595 if (log_make_free_space(size)) 596 return 0; 597 } 598 599 if (log_next_idx + size + sizeof(struct printk_log) > log_buf_len) { 600 /* 601 * This message + an additional empty header does not fit 602 * at the end of the buffer. Add an empty header with len == 0 603 * to signify a wrap around. 604 */ 605 memset(log_buf + log_next_idx, 0, sizeof(struct printk_log)); 606 log_next_idx = 0; 607 } 608 609 /* fill message */ 610 msg = (struct printk_log *)(log_buf + log_next_idx); 611 memcpy(log_text(msg), text, text_len); 612 msg->text_len = text_len; 613 if (trunc_msg_len) { 614 memcpy(log_text(msg) + text_len, trunc_msg, trunc_msg_len); 615 msg->text_len += trunc_msg_len; 616 } 617 memcpy(log_dict(msg), dict, dict_len); 618 msg->dict_len = dict_len; 619 msg->facility = facility; 620 msg->level = level & 7; 621 msg->flags = flags & 0x1f; 622 if (ts_nsec > 0) 623 msg->ts_nsec = ts_nsec; 624 else 625 msg->ts_nsec = local_clock(); 626 memset(log_dict(msg) + dict_len, 0, pad_len); 627 msg->len = size; 628 629 /* insert message */ 630 log_next_idx += msg->len; 631 log_next_seq++; 632 633 return msg->text_len; 634 } 635 636 int dmesg_restrict = IS_ENABLED(CONFIG_SECURITY_DMESG_RESTRICT); 637 638 static int syslog_action_restricted(int type) 639 { 640 if (dmesg_restrict) 641 return 1; 642 /* 643 * Unless restricted, we allow "read all" and "get buffer size" 644 * for everybody. 645 */ 646 return type != SYSLOG_ACTION_READ_ALL && 647 type != SYSLOG_ACTION_SIZE_BUFFER; 648 } 649 650 int check_syslog_permissions(int type, int source) 651 { 652 /* 653 * If this is from /proc/kmsg and we've already opened it, then we've 654 * already done the capabilities checks at open time. 655 */ 656 if (source == SYSLOG_FROM_PROC && type != SYSLOG_ACTION_OPEN) 657 goto ok; 658 659 if (syslog_action_restricted(type)) { 660 if (capable(CAP_SYSLOG)) 661 goto ok; 662 /* 663 * For historical reasons, accept CAP_SYS_ADMIN too, with 664 * a warning. 665 */ 666 if (capable(CAP_SYS_ADMIN)) { 667 pr_warn_once("%s (%d): Attempt to access syslog with " 668 "CAP_SYS_ADMIN but no CAP_SYSLOG " 669 "(deprecated).\n", 670 current->comm, task_pid_nr(current)); 671 goto ok; 672 } 673 return -EPERM; 674 } 675 ok: 676 return security_syslog(type); 677 } 678 EXPORT_SYMBOL_GPL(check_syslog_permissions); 679 680 static void append_char(char **pp, char *e, char c) 681 { 682 if (*pp < e) 683 *(*pp)++ = c; 684 } 685 686 static ssize_t msg_print_ext_header(char *buf, size_t size, 687 struct printk_log *msg, u64 seq) 688 { 689 u64 ts_usec = msg->ts_nsec; 690 691 do_div(ts_usec, 1000); 692 693 return scnprintf(buf, size, "%u,%llu,%llu,%c;", 694 (msg->facility << 3) | msg->level, seq, ts_usec, 695 msg->flags & LOG_CONT ? 'c' : '-'); 696 } 697 698 static ssize_t msg_print_ext_body(char *buf, size_t size, 699 char *dict, size_t dict_len, 700 char *text, size_t text_len) 701 { 702 char *p = buf, *e = buf + size; 703 size_t i; 704 705 /* escape non-printable characters */ 706 for (i = 0; i < text_len; i++) { 707 unsigned char c = text[i]; 708 709 if (c < ' ' || c >= 127 || c == '\\') 710 p += scnprintf(p, e - p, "\\x%02x", c); 711 else 712 append_char(&p, e, c); 713 } 714 append_char(&p, e, '\n'); 715 716 if (dict_len) { 717 bool line = true; 718 719 for (i = 0; i < dict_len; i++) { 720 unsigned char c = dict[i]; 721 722 if (line) { 723 append_char(&p, e, ' '); 724 line = false; 725 } 726 727 if (c == '\0') { 728 append_char(&p, e, '\n'); 729 line = true; 730 continue; 731 } 732 733 if (c < ' ' || c >= 127 || c == '\\') { 734 p += scnprintf(p, e - p, "\\x%02x", c); 735 continue; 736 } 737 738 append_char(&p, e, c); 739 } 740 append_char(&p, e, '\n'); 741 } 742 743 return p - buf; 744 } 745 746 /* /dev/kmsg - userspace message inject/listen interface */ 747 struct devkmsg_user { 748 u64 seq; 749 u32 idx; 750 struct ratelimit_state rs; 751 struct mutex lock; 752 char buf[CONSOLE_EXT_LOG_MAX]; 753 }; 754 755 static ssize_t devkmsg_write(struct kiocb *iocb, struct iov_iter *from) 756 { 757 char *buf, *line; 758 int level = default_message_loglevel; 759 int facility = 1; /* LOG_USER */ 760 struct file *file = iocb->ki_filp; 761 struct devkmsg_user *user = file->private_data; 762 size_t len = iov_iter_count(from); 763 ssize_t ret = len; 764 765 if (!user || len > LOG_LINE_MAX) 766 return -EINVAL; 767 768 /* Ignore when user logging is disabled. */ 769 if (devkmsg_log & DEVKMSG_LOG_MASK_OFF) 770 return len; 771 772 /* Ratelimit when not explicitly enabled. */ 773 if (!(devkmsg_log & DEVKMSG_LOG_MASK_ON)) { 774 if (!___ratelimit(&user->rs, current->comm)) 775 return ret; 776 } 777 778 buf = kmalloc(len+1, GFP_KERNEL); 779 if (buf == NULL) 780 return -ENOMEM; 781 782 buf[len] = '\0'; 783 if (!copy_from_iter_full(buf, len, from)) { 784 kfree(buf); 785 return -EFAULT; 786 } 787 788 /* 789 * Extract and skip the syslog prefix <[0-9]*>. Coming from userspace 790 * the decimal value represents 32bit, the lower 3 bit are the log 791 * level, the rest are the log facility. 792 * 793 * If no prefix or no userspace facility is specified, we 794 * enforce LOG_USER, to be able to reliably distinguish 795 * kernel-generated messages from userspace-injected ones. 796 */ 797 line = buf; 798 if (line[0] == '<') { 799 char *endp = NULL; 800 unsigned int u; 801 802 u = simple_strtoul(line + 1, &endp, 10); 803 if (endp && endp[0] == '>') { 804 level = LOG_LEVEL(u); 805 if (LOG_FACILITY(u) != 0) 806 facility = LOG_FACILITY(u); 807 endp++; 808 len -= endp - line; 809 line = endp; 810 } 811 } 812 813 printk_emit(facility, level, NULL, 0, "%s", line); 814 kfree(buf); 815 return ret; 816 } 817 818 static ssize_t devkmsg_read(struct file *file, char __user *buf, 819 size_t count, loff_t *ppos) 820 { 821 struct devkmsg_user *user = file->private_data; 822 struct printk_log *msg; 823 size_t len; 824 ssize_t ret; 825 826 if (!user) 827 return -EBADF; 828 829 ret = mutex_lock_interruptible(&user->lock); 830 if (ret) 831 return ret; 832 833 logbuf_lock_irq(); 834 while (user->seq == log_next_seq) { 835 if (file->f_flags & O_NONBLOCK) { 836 ret = -EAGAIN; 837 logbuf_unlock_irq(); 838 goto out; 839 } 840 841 logbuf_unlock_irq(); 842 ret = wait_event_interruptible(log_wait, 843 user->seq != log_next_seq); 844 if (ret) 845 goto out; 846 logbuf_lock_irq(); 847 } 848 849 if (user->seq < log_first_seq) { 850 /* our last seen message is gone, return error and reset */ 851 user->idx = log_first_idx; 852 user->seq = log_first_seq; 853 ret = -EPIPE; 854 logbuf_unlock_irq(); 855 goto out; 856 } 857 858 msg = log_from_idx(user->idx); 859 len = msg_print_ext_header(user->buf, sizeof(user->buf), 860 msg, user->seq); 861 len += msg_print_ext_body(user->buf + len, sizeof(user->buf) - len, 862 log_dict(msg), msg->dict_len, 863 log_text(msg), msg->text_len); 864 865 user->idx = log_next(user->idx); 866 user->seq++; 867 logbuf_unlock_irq(); 868 869 if (len > count) { 870 ret = -EINVAL; 871 goto out; 872 } 873 874 if (copy_to_user(buf, user->buf, len)) { 875 ret = -EFAULT; 876 goto out; 877 } 878 ret = len; 879 out: 880 mutex_unlock(&user->lock); 881 return ret; 882 } 883 884 static loff_t devkmsg_llseek(struct file *file, loff_t offset, int whence) 885 { 886 struct devkmsg_user *user = file->private_data; 887 loff_t ret = 0; 888 889 if (!user) 890 return -EBADF; 891 if (offset) 892 return -ESPIPE; 893 894 logbuf_lock_irq(); 895 switch (whence) { 896 case SEEK_SET: 897 /* the first record */ 898 user->idx = log_first_idx; 899 user->seq = log_first_seq; 900 break; 901 case SEEK_DATA: 902 /* 903 * The first record after the last SYSLOG_ACTION_CLEAR, 904 * like issued by 'dmesg -c'. Reading /dev/kmsg itself 905 * changes no global state, and does not clear anything. 906 */ 907 user->idx = clear_idx; 908 user->seq = clear_seq; 909 break; 910 case SEEK_END: 911 /* after the last record */ 912 user->idx = log_next_idx; 913 user->seq = log_next_seq; 914 break; 915 default: 916 ret = -EINVAL; 917 } 918 logbuf_unlock_irq(); 919 return ret; 920 } 921 922 static unsigned int devkmsg_poll(struct file *file, poll_table *wait) 923 { 924 struct devkmsg_user *user = file->private_data; 925 int ret = 0; 926 927 if (!user) 928 return POLLERR|POLLNVAL; 929 930 poll_wait(file, &log_wait, wait); 931 932 logbuf_lock_irq(); 933 if (user->seq < log_next_seq) { 934 /* return error when data has vanished underneath us */ 935 if (user->seq < log_first_seq) 936 ret = POLLIN|POLLRDNORM|POLLERR|POLLPRI; 937 else 938 ret = POLLIN|POLLRDNORM; 939 } 940 logbuf_unlock_irq(); 941 942 return ret; 943 } 944 945 static int devkmsg_open(struct inode *inode, struct file *file) 946 { 947 struct devkmsg_user *user; 948 int err; 949 950 if (devkmsg_log & DEVKMSG_LOG_MASK_OFF) 951 return -EPERM; 952 953 /* write-only does not need any file context */ 954 if ((file->f_flags & O_ACCMODE) != O_WRONLY) { 955 err = check_syslog_permissions(SYSLOG_ACTION_READ_ALL, 956 SYSLOG_FROM_READER); 957 if (err) 958 return err; 959 } 960 961 user = kmalloc(sizeof(struct devkmsg_user), GFP_KERNEL); 962 if (!user) 963 return -ENOMEM; 964 965 ratelimit_default_init(&user->rs); 966 ratelimit_set_flags(&user->rs, RATELIMIT_MSG_ON_RELEASE); 967 968 mutex_init(&user->lock); 969 970 logbuf_lock_irq(); 971 user->idx = log_first_idx; 972 user->seq = log_first_seq; 973 logbuf_unlock_irq(); 974 975 file->private_data = user; 976 return 0; 977 } 978 979 static int devkmsg_release(struct inode *inode, struct file *file) 980 { 981 struct devkmsg_user *user = file->private_data; 982 983 if (!user) 984 return 0; 985 986 ratelimit_state_exit(&user->rs); 987 988 mutex_destroy(&user->lock); 989 kfree(user); 990 return 0; 991 } 992 993 const struct file_operations kmsg_fops = { 994 .open = devkmsg_open, 995 .read = devkmsg_read, 996 .write_iter = devkmsg_write, 997 .llseek = devkmsg_llseek, 998 .poll = devkmsg_poll, 999 .release = devkmsg_release, 1000 }; 1001 1002 #ifdef CONFIG_KEXEC_CORE 1003 /* 1004 * This appends the listed symbols to /proc/vmcore 1005 * 1006 * /proc/vmcore is used by various utilities, like crash and makedumpfile to 1007 * obtain access to symbols that are otherwise very difficult to locate. These 1008 * symbols are specifically used so that utilities can access and extract the 1009 * dmesg log from a vmcore file after a crash. 1010 */ 1011 void log_buf_kexec_setup(void) 1012 { 1013 VMCOREINFO_SYMBOL(log_buf); 1014 VMCOREINFO_SYMBOL(log_buf_len); 1015 VMCOREINFO_SYMBOL(log_first_idx); 1016 VMCOREINFO_SYMBOL(clear_idx); 1017 VMCOREINFO_SYMBOL(log_next_idx); 1018 /* 1019 * Export struct printk_log size and field offsets. User space tools can 1020 * parse it and detect any changes to structure down the line. 1021 */ 1022 VMCOREINFO_STRUCT_SIZE(printk_log); 1023 VMCOREINFO_OFFSET(printk_log, ts_nsec); 1024 VMCOREINFO_OFFSET(printk_log, len); 1025 VMCOREINFO_OFFSET(printk_log, text_len); 1026 VMCOREINFO_OFFSET(printk_log, dict_len); 1027 } 1028 #endif 1029 1030 /* requested log_buf_len from kernel cmdline */ 1031 static unsigned long __initdata new_log_buf_len; 1032 1033 /* we practice scaling the ring buffer by powers of 2 */ 1034 static void __init log_buf_len_update(unsigned size) 1035 { 1036 if (size) 1037 size = roundup_pow_of_two(size); 1038 if (size > log_buf_len) 1039 new_log_buf_len = size; 1040 } 1041 1042 /* save requested log_buf_len since it's too early to process it */ 1043 static int __init log_buf_len_setup(char *str) 1044 { 1045 unsigned size = memparse(str, &str); 1046 1047 log_buf_len_update(size); 1048 1049 return 0; 1050 } 1051 early_param("log_buf_len", log_buf_len_setup); 1052 1053 #ifdef CONFIG_SMP 1054 #define __LOG_CPU_MAX_BUF_LEN (1 << CONFIG_LOG_CPU_MAX_BUF_SHIFT) 1055 1056 static void __init log_buf_add_cpu(void) 1057 { 1058 unsigned int cpu_extra; 1059 1060 /* 1061 * archs should set up cpu_possible_bits properly with 1062 * set_cpu_possible() after setup_arch() but just in 1063 * case lets ensure this is valid. 1064 */ 1065 if (num_possible_cpus() == 1) 1066 return; 1067 1068 cpu_extra = (num_possible_cpus() - 1) * __LOG_CPU_MAX_BUF_LEN; 1069 1070 /* by default this will only continue through for large > 64 CPUs */ 1071 if (cpu_extra <= __LOG_BUF_LEN / 2) 1072 return; 1073 1074 pr_info("log_buf_len individual max cpu contribution: %d bytes\n", 1075 __LOG_CPU_MAX_BUF_LEN); 1076 pr_info("log_buf_len total cpu_extra contributions: %d bytes\n", 1077 cpu_extra); 1078 pr_info("log_buf_len min size: %d bytes\n", __LOG_BUF_LEN); 1079 1080 log_buf_len_update(cpu_extra + __LOG_BUF_LEN); 1081 } 1082 #else /* !CONFIG_SMP */ 1083 static inline void log_buf_add_cpu(void) {} 1084 #endif /* CONFIG_SMP */ 1085 1086 void __init setup_log_buf(int early) 1087 { 1088 unsigned long flags; 1089 char *new_log_buf; 1090 int free; 1091 1092 if (log_buf != __log_buf) 1093 return; 1094 1095 if (!early && !new_log_buf_len) 1096 log_buf_add_cpu(); 1097 1098 if (!new_log_buf_len) 1099 return; 1100 1101 if (early) { 1102 new_log_buf = 1103 memblock_virt_alloc(new_log_buf_len, LOG_ALIGN); 1104 } else { 1105 new_log_buf = memblock_virt_alloc_nopanic(new_log_buf_len, 1106 LOG_ALIGN); 1107 } 1108 1109 if (unlikely(!new_log_buf)) { 1110 pr_err("log_buf_len: %ld bytes not available\n", 1111 new_log_buf_len); 1112 return; 1113 } 1114 1115 logbuf_lock_irqsave(flags); 1116 log_buf_len = new_log_buf_len; 1117 log_buf = new_log_buf; 1118 new_log_buf_len = 0; 1119 free = __LOG_BUF_LEN - log_next_idx; 1120 memcpy(log_buf, __log_buf, __LOG_BUF_LEN); 1121 logbuf_unlock_irqrestore(flags); 1122 1123 pr_info("log_buf_len: %d bytes\n", log_buf_len); 1124 pr_info("early log buf free: %d(%d%%)\n", 1125 free, (free * 100) / __LOG_BUF_LEN); 1126 } 1127 1128 static bool __read_mostly ignore_loglevel; 1129 1130 static int __init ignore_loglevel_setup(char *str) 1131 { 1132 ignore_loglevel = true; 1133 pr_info("debug: ignoring loglevel setting.\n"); 1134 1135 return 0; 1136 } 1137 1138 early_param("ignore_loglevel", ignore_loglevel_setup); 1139 module_param(ignore_loglevel, bool, S_IRUGO | S_IWUSR); 1140 MODULE_PARM_DESC(ignore_loglevel, 1141 "ignore loglevel setting (prints all kernel messages to the console)"); 1142 1143 static bool suppress_message_printing(int level) 1144 { 1145 return (level >= console_loglevel && !ignore_loglevel); 1146 } 1147 1148 #ifdef CONFIG_BOOT_PRINTK_DELAY 1149 1150 static int boot_delay; /* msecs delay after each printk during bootup */ 1151 static unsigned long long loops_per_msec; /* based on boot_delay */ 1152 1153 static int __init boot_delay_setup(char *str) 1154 { 1155 unsigned long lpj; 1156 1157 lpj = preset_lpj ? preset_lpj : 1000000; /* some guess */ 1158 loops_per_msec = (unsigned long long)lpj / 1000 * HZ; 1159 1160 get_option(&str, &boot_delay); 1161 if (boot_delay > 10 * 1000) 1162 boot_delay = 0; 1163 1164 pr_debug("boot_delay: %u, preset_lpj: %ld, lpj: %lu, " 1165 "HZ: %d, loops_per_msec: %llu\n", 1166 boot_delay, preset_lpj, lpj, HZ, loops_per_msec); 1167 return 0; 1168 } 1169 early_param("boot_delay", boot_delay_setup); 1170 1171 static void boot_delay_msec(int level) 1172 { 1173 unsigned long long k; 1174 unsigned long timeout; 1175 1176 if ((boot_delay == 0 || system_state != SYSTEM_BOOTING) 1177 || suppress_message_printing(level)) { 1178 return; 1179 } 1180 1181 k = (unsigned long long)loops_per_msec * boot_delay; 1182 1183 timeout = jiffies + msecs_to_jiffies(boot_delay); 1184 while (k) { 1185 k--; 1186 cpu_relax(); 1187 /* 1188 * use (volatile) jiffies to prevent 1189 * compiler reduction; loop termination via jiffies 1190 * is secondary and may or may not happen. 1191 */ 1192 if (time_after(jiffies, timeout)) 1193 break; 1194 touch_nmi_watchdog(); 1195 } 1196 } 1197 #else 1198 static inline void boot_delay_msec(int level) 1199 { 1200 } 1201 #endif 1202 1203 static bool printk_time = IS_ENABLED(CONFIG_PRINTK_TIME); 1204 module_param_named(time, printk_time, bool, S_IRUGO | S_IWUSR); 1205 1206 static size_t print_time(u64 ts, char *buf) 1207 { 1208 unsigned long rem_nsec; 1209 1210 if (!printk_time) 1211 return 0; 1212 1213 rem_nsec = do_div(ts, 1000000000); 1214 1215 if (!buf) 1216 return snprintf(NULL, 0, "[%5lu.000000] ", (unsigned long)ts); 1217 1218 return sprintf(buf, "[%5lu.%06lu] ", 1219 (unsigned long)ts, rem_nsec / 1000); 1220 } 1221 1222 static size_t print_prefix(const struct printk_log *msg, bool syslog, char *buf) 1223 { 1224 size_t len = 0; 1225 unsigned int prefix = (msg->facility << 3) | msg->level; 1226 1227 if (syslog) { 1228 if (buf) { 1229 len += sprintf(buf, "<%u>", prefix); 1230 } else { 1231 len += 3; 1232 if (prefix > 999) 1233 len += 3; 1234 else if (prefix > 99) 1235 len += 2; 1236 else if (prefix > 9) 1237 len++; 1238 } 1239 } 1240 1241 len += print_time(msg->ts_nsec, buf ? buf + len : NULL); 1242 return len; 1243 } 1244 1245 static size_t msg_print_text(const struct printk_log *msg, bool syslog, char *buf, size_t size) 1246 { 1247 const char *text = log_text(msg); 1248 size_t text_size = msg->text_len; 1249 size_t len = 0; 1250 1251 do { 1252 const char *next = memchr(text, '\n', text_size); 1253 size_t text_len; 1254 1255 if (next) { 1256 text_len = next - text; 1257 next++; 1258 text_size -= next - text; 1259 } else { 1260 text_len = text_size; 1261 } 1262 1263 if (buf) { 1264 if (print_prefix(msg, syslog, NULL) + 1265 text_len + 1 >= size - len) 1266 break; 1267 1268 len += print_prefix(msg, syslog, buf + len); 1269 memcpy(buf + len, text, text_len); 1270 len += text_len; 1271 buf[len++] = '\n'; 1272 } else { 1273 /* SYSLOG_ACTION_* buffer size only calculation */ 1274 len += print_prefix(msg, syslog, NULL); 1275 len += text_len; 1276 len++; 1277 } 1278 1279 text = next; 1280 } while (text); 1281 1282 return len; 1283 } 1284 1285 static int syslog_print(char __user *buf, int size) 1286 { 1287 char *text; 1288 struct printk_log *msg; 1289 int len = 0; 1290 1291 text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL); 1292 if (!text) 1293 return -ENOMEM; 1294 1295 while (size > 0) { 1296 size_t n; 1297 size_t skip; 1298 1299 logbuf_lock_irq(); 1300 if (syslog_seq < log_first_seq) { 1301 /* messages are gone, move to first one */ 1302 syslog_seq = log_first_seq; 1303 syslog_idx = log_first_idx; 1304 syslog_partial = 0; 1305 } 1306 if (syslog_seq == log_next_seq) { 1307 logbuf_unlock_irq(); 1308 break; 1309 } 1310 1311 skip = syslog_partial; 1312 msg = log_from_idx(syslog_idx); 1313 n = msg_print_text(msg, true, text, LOG_LINE_MAX + PREFIX_MAX); 1314 if (n - syslog_partial <= size) { 1315 /* message fits into buffer, move forward */ 1316 syslog_idx = log_next(syslog_idx); 1317 syslog_seq++; 1318 n -= syslog_partial; 1319 syslog_partial = 0; 1320 } else if (!len){ 1321 /* partial read(), remember position */ 1322 n = size; 1323 syslog_partial += n; 1324 } else 1325 n = 0; 1326 logbuf_unlock_irq(); 1327 1328 if (!n) 1329 break; 1330 1331 if (copy_to_user(buf, text + skip, n)) { 1332 if (!len) 1333 len = -EFAULT; 1334 break; 1335 } 1336 1337 len += n; 1338 size -= n; 1339 buf += n; 1340 } 1341 1342 kfree(text); 1343 return len; 1344 } 1345 1346 static int syslog_print_all(char __user *buf, int size, bool clear) 1347 { 1348 char *text; 1349 int len = 0; 1350 1351 text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL); 1352 if (!text) 1353 return -ENOMEM; 1354 1355 logbuf_lock_irq(); 1356 if (buf) { 1357 u64 next_seq; 1358 u64 seq; 1359 u32 idx; 1360 1361 /* 1362 * Find first record that fits, including all following records, 1363 * into the user-provided buffer for this dump. 1364 */ 1365 seq = clear_seq; 1366 idx = clear_idx; 1367 while (seq < log_next_seq) { 1368 struct printk_log *msg = log_from_idx(idx); 1369 1370 len += msg_print_text(msg, true, NULL, 0); 1371 idx = log_next(idx); 1372 seq++; 1373 } 1374 1375 /* move first record forward until length fits into the buffer */ 1376 seq = clear_seq; 1377 idx = clear_idx; 1378 while (len > size && seq < log_next_seq) { 1379 struct printk_log *msg = log_from_idx(idx); 1380 1381 len -= msg_print_text(msg, true, NULL, 0); 1382 idx = log_next(idx); 1383 seq++; 1384 } 1385 1386 /* last message fitting into this dump */ 1387 next_seq = log_next_seq; 1388 1389 len = 0; 1390 while (len >= 0 && seq < next_seq) { 1391 struct printk_log *msg = log_from_idx(idx); 1392 int textlen; 1393 1394 textlen = msg_print_text(msg, true, text, 1395 LOG_LINE_MAX + PREFIX_MAX); 1396 if (textlen < 0) { 1397 len = textlen; 1398 break; 1399 } 1400 idx = log_next(idx); 1401 seq++; 1402 1403 logbuf_unlock_irq(); 1404 if (copy_to_user(buf + len, text, textlen)) 1405 len = -EFAULT; 1406 else 1407 len += textlen; 1408 logbuf_lock_irq(); 1409 1410 if (seq < log_first_seq) { 1411 /* messages are gone, move to next one */ 1412 seq = log_first_seq; 1413 idx = log_first_idx; 1414 } 1415 } 1416 } 1417 1418 if (clear) { 1419 clear_seq = log_next_seq; 1420 clear_idx = log_next_idx; 1421 } 1422 logbuf_unlock_irq(); 1423 1424 kfree(text); 1425 return len; 1426 } 1427 1428 int do_syslog(int type, char __user *buf, int len, int source) 1429 { 1430 bool clear = false; 1431 static int saved_console_loglevel = LOGLEVEL_DEFAULT; 1432 int error; 1433 1434 error = check_syslog_permissions(type, source); 1435 if (error) 1436 goto out; 1437 1438 switch (type) { 1439 case SYSLOG_ACTION_CLOSE: /* Close log */ 1440 break; 1441 case SYSLOG_ACTION_OPEN: /* Open log */ 1442 break; 1443 case SYSLOG_ACTION_READ: /* Read from log */ 1444 error = -EINVAL; 1445 if (!buf || len < 0) 1446 goto out; 1447 error = 0; 1448 if (!len) 1449 goto out; 1450 if (!access_ok(VERIFY_WRITE, buf, len)) { 1451 error = -EFAULT; 1452 goto out; 1453 } 1454 error = wait_event_interruptible(log_wait, 1455 syslog_seq != log_next_seq); 1456 if (error) 1457 goto out; 1458 error = syslog_print(buf, len); 1459 break; 1460 /* Read/clear last kernel messages */ 1461 case SYSLOG_ACTION_READ_CLEAR: 1462 clear = true; 1463 /* FALL THRU */ 1464 /* Read last kernel messages */ 1465 case SYSLOG_ACTION_READ_ALL: 1466 error = -EINVAL; 1467 if (!buf || len < 0) 1468 goto out; 1469 error = 0; 1470 if (!len) 1471 goto out; 1472 if (!access_ok(VERIFY_WRITE, buf, len)) { 1473 error = -EFAULT; 1474 goto out; 1475 } 1476 error = syslog_print_all(buf, len, clear); 1477 break; 1478 /* Clear ring buffer */ 1479 case SYSLOG_ACTION_CLEAR: 1480 syslog_print_all(NULL, 0, true); 1481 break; 1482 /* Disable logging to console */ 1483 case SYSLOG_ACTION_CONSOLE_OFF: 1484 if (saved_console_loglevel == LOGLEVEL_DEFAULT) 1485 saved_console_loglevel = console_loglevel; 1486 console_loglevel = minimum_console_loglevel; 1487 break; 1488 /* Enable logging to console */ 1489 case SYSLOG_ACTION_CONSOLE_ON: 1490 if (saved_console_loglevel != LOGLEVEL_DEFAULT) { 1491 console_loglevel = saved_console_loglevel; 1492 saved_console_loglevel = LOGLEVEL_DEFAULT; 1493 } 1494 break; 1495 /* Set level of messages printed to console */ 1496 case SYSLOG_ACTION_CONSOLE_LEVEL: 1497 error = -EINVAL; 1498 if (len < 1 || len > 8) 1499 goto out; 1500 if (len < minimum_console_loglevel) 1501 len = minimum_console_loglevel; 1502 console_loglevel = len; 1503 /* Implicitly re-enable logging to console */ 1504 saved_console_loglevel = LOGLEVEL_DEFAULT; 1505 error = 0; 1506 break; 1507 /* Number of chars in the log buffer */ 1508 case SYSLOG_ACTION_SIZE_UNREAD: 1509 logbuf_lock_irq(); 1510 if (syslog_seq < log_first_seq) { 1511 /* messages are gone, move to first one */ 1512 syslog_seq = log_first_seq; 1513 syslog_idx = log_first_idx; 1514 syslog_partial = 0; 1515 } 1516 if (source == SYSLOG_FROM_PROC) { 1517 /* 1518 * Short-cut for poll(/"proc/kmsg") which simply checks 1519 * for pending data, not the size; return the count of 1520 * records, not the length. 1521 */ 1522 error = log_next_seq - syslog_seq; 1523 } else { 1524 u64 seq = syslog_seq; 1525 u32 idx = syslog_idx; 1526 1527 error = 0; 1528 while (seq < log_next_seq) { 1529 struct printk_log *msg = log_from_idx(idx); 1530 1531 error += msg_print_text(msg, true, NULL, 0); 1532 idx = log_next(idx); 1533 seq++; 1534 } 1535 error -= syslog_partial; 1536 } 1537 logbuf_unlock_irq(); 1538 break; 1539 /* Size of the log buffer */ 1540 case SYSLOG_ACTION_SIZE_BUFFER: 1541 error = log_buf_len; 1542 break; 1543 default: 1544 error = -EINVAL; 1545 break; 1546 } 1547 out: 1548 return error; 1549 } 1550 1551 SYSCALL_DEFINE3(syslog, int, type, char __user *, buf, int, len) 1552 { 1553 return do_syslog(type, buf, len, SYSLOG_FROM_READER); 1554 } 1555 1556 /* 1557 * Call the console drivers, asking them to write out 1558 * log_buf[start] to log_buf[end - 1]. 1559 * The console_lock must be held. 1560 */ 1561 static void call_console_drivers(const char *ext_text, size_t ext_len, 1562 const char *text, size_t len) 1563 { 1564 struct console *con; 1565 1566 trace_console_rcuidle(text, len); 1567 1568 if (!console_drivers) 1569 return; 1570 1571 for_each_console(con) { 1572 if (exclusive_console && con != exclusive_console) 1573 continue; 1574 if (!(con->flags & CON_ENABLED)) 1575 continue; 1576 if (!con->write) 1577 continue; 1578 if (!cpu_online(smp_processor_id()) && 1579 !(con->flags & CON_ANYTIME)) 1580 continue; 1581 if (con->flags & CON_EXTENDED) 1582 con->write(con, ext_text, ext_len); 1583 else 1584 con->write(con, text, len); 1585 } 1586 } 1587 1588 int printk_delay_msec __read_mostly; 1589 1590 static inline void printk_delay(void) 1591 { 1592 if (unlikely(printk_delay_msec)) { 1593 int m = printk_delay_msec; 1594 1595 while (m--) { 1596 mdelay(1); 1597 touch_nmi_watchdog(); 1598 } 1599 } 1600 } 1601 1602 /* 1603 * Continuation lines are buffered, and not committed to the record buffer 1604 * until the line is complete, or a race forces it. The line fragments 1605 * though, are printed immediately to the consoles to ensure everything has 1606 * reached the console in case of a kernel crash. 1607 */ 1608 static struct cont { 1609 char buf[LOG_LINE_MAX]; 1610 size_t len; /* length == 0 means unused buffer */ 1611 struct task_struct *owner; /* task of first print*/ 1612 u64 ts_nsec; /* time of first print */ 1613 u8 level; /* log level of first message */ 1614 u8 facility; /* log facility of first message */ 1615 enum log_flags flags; /* prefix, newline flags */ 1616 } cont; 1617 1618 static void cont_flush(void) 1619 { 1620 if (cont.len == 0) 1621 return; 1622 1623 log_store(cont.facility, cont.level, cont.flags, cont.ts_nsec, 1624 NULL, 0, cont.buf, cont.len); 1625 cont.len = 0; 1626 } 1627 1628 static bool cont_add(int facility, int level, enum log_flags flags, const char *text, size_t len) 1629 { 1630 /* 1631 * If ext consoles are present, flush and skip in-kernel 1632 * continuation. See nr_ext_console_drivers definition. Also, if 1633 * the line gets too long, split it up in separate records. 1634 */ 1635 if (nr_ext_console_drivers || cont.len + len > sizeof(cont.buf)) { 1636 cont_flush(); 1637 return false; 1638 } 1639 1640 if (!cont.len) { 1641 cont.facility = facility; 1642 cont.level = level; 1643 cont.owner = current; 1644 cont.ts_nsec = local_clock(); 1645 cont.flags = flags; 1646 } 1647 1648 memcpy(cont.buf + cont.len, text, len); 1649 cont.len += len; 1650 1651 // The original flags come from the first line, 1652 // but later continuations can add a newline. 1653 if (flags & LOG_NEWLINE) { 1654 cont.flags |= LOG_NEWLINE; 1655 cont_flush(); 1656 } 1657 1658 if (cont.len > (sizeof(cont.buf) * 80) / 100) 1659 cont_flush(); 1660 1661 return true; 1662 } 1663 1664 static size_t log_output(int facility, int level, enum log_flags lflags, const char *dict, size_t dictlen, char *text, size_t text_len) 1665 { 1666 /* 1667 * If an earlier line was buffered, and we're a continuation 1668 * write from the same process, try to add it to the buffer. 1669 */ 1670 if (cont.len) { 1671 if (cont.owner == current && (lflags & LOG_CONT)) { 1672 if (cont_add(facility, level, lflags, text, text_len)) 1673 return text_len; 1674 } 1675 /* Otherwise, make sure it's flushed */ 1676 cont_flush(); 1677 } 1678 1679 /* Skip empty continuation lines that couldn't be added - they just flush */ 1680 if (!text_len && (lflags & LOG_CONT)) 1681 return 0; 1682 1683 /* If it doesn't end in a newline, try to buffer the current line */ 1684 if (!(lflags & LOG_NEWLINE)) { 1685 if (cont_add(facility, level, lflags, text, text_len)) 1686 return text_len; 1687 } 1688 1689 /* Store it in the record log */ 1690 return log_store(facility, level, lflags, 0, dict, dictlen, text, text_len); 1691 } 1692 1693 asmlinkage int vprintk_emit(int facility, int level, 1694 const char *dict, size_t dictlen, 1695 const char *fmt, va_list args) 1696 { 1697 static char textbuf[LOG_LINE_MAX]; 1698 char *text = textbuf; 1699 size_t text_len = 0; 1700 enum log_flags lflags = 0; 1701 unsigned long flags; 1702 int printed_len = 0; 1703 bool in_sched = false; 1704 1705 if (level == LOGLEVEL_SCHED) { 1706 level = LOGLEVEL_DEFAULT; 1707 in_sched = true; 1708 } 1709 1710 boot_delay_msec(level); 1711 printk_delay(); 1712 1713 /* This stops the holder of console_sem just where we want him */ 1714 logbuf_lock_irqsave(flags); 1715 /* 1716 * The printf needs to come first; we need the syslog 1717 * prefix which might be passed-in as a parameter. 1718 */ 1719 text_len = vscnprintf(text, sizeof(textbuf), fmt, args); 1720 1721 /* mark and strip a trailing newline */ 1722 if (text_len && text[text_len-1] == '\n') { 1723 text_len--; 1724 lflags |= LOG_NEWLINE; 1725 } 1726 1727 /* strip kernel syslog prefix and extract log level or control flags */ 1728 if (facility == 0) { 1729 int kern_level; 1730 1731 while ((kern_level = printk_get_level(text)) != 0) { 1732 switch (kern_level) { 1733 case '0' ... '7': 1734 if (level == LOGLEVEL_DEFAULT) 1735 level = kern_level - '0'; 1736 /* fallthrough */ 1737 case 'd': /* KERN_DEFAULT */ 1738 lflags |= LOG_PREFIX; 1739 break; 1740 case 'c': /* KERN_CONT */ 1741 lflags |= LOG_CONT; 1742 } 1743 1744 text_len -= 2; 1745 text += 2; 1746 } 1747 } 1748 1749 if (level == LOGLEVEL_DEFAULT) 1750 level = default_message_loglevel; 1751 1752 if (dict) 1753 lflags |= LOG_PREFIX|LOG_NEWLINE; 1754 1755 printed_len += log_output(facility, level, lflags, dict, dictlen, text, text_len); 1756 1757 logbuf_unlock_irqrestore(flags); 1758 1759 /* If called from the scheduler, we can not call up(). */ 1760 if (!in_sched) { 1761 /* 1762 * Try to acquire and then immediately release the console 1763 * semaphore. The release will print out buffers and wake up 1764 * /dev/kmsg and syslog() users. 1765 */ 1766 if (console_trylock()) 1767 console_unlock(); 1768 } 1769 1770 return printed_len; 1771 } 1772 EXPORT_SYMBOL(vprintk_emit); 1773 1774 asmlinkage int vprintk(const char *fmt, va_list args) 1775 { 1776 return vprintk_func(fmt, args); 1777 } 1778 EXPORT_SYMBOL(vprintk); 1779 1780 asmlinkage int printk_emit(int facility, int level, 1781 const char *dict, size_t dictlen, 1782 const char *fmt, ...) 1783 { 1784 va_list args; 1785 int r; 1786 1787 va_start(args, fmt); 1788 r = vprintk_emit(facility, level, dict, dictlen, fmt, args); 1789 va_end(args); 1790 1791 return r; 1792 } 1793 EXPORT_SYMBOL(printk_emit); 1794 1795 int vprintk_default(const char *fmt, va_list args) 1796 { 1797 int r; 1798 1799 #ifdef CONFIG_KGDB_KDB 1800 /* Allow to pass printk() to kdb but avoid a recursion. */ 1801 if (unlikely(kdb_trap_printk && kdb_printf_cpu < 0)) { 1802 r = vkdb_printf(KDB_MSGSRC_PRINTK, fmt, args); 1803 return r; 1804 } 1805 #endif 1806 r = vprintk_emit(0, LOGLEVEL_DEFAULT, NULL, 0, fmt, args); 1807 1808 return r; 1809 } 1810 EXPORT_SYMBOL_GPL(vprintk_default); 1811 1812 /** 1813 * printk - print a kernel message 1814 * @fmt: format string 1815 * 1816 * This is printk(). It can be called from any context. We want it to work. 1817 * 1818 * We try to grab the console_lock. If we succeed, it's easy - we log the 1819 * output and call the console drivers. If we fail to get the semaphore, we 1820 * place the output into the log buffer and return. The current holder of 1821 * the console_sem will notice the new output in console_unlock(); and will 1822 * send it to the consoles before releasing the lock. 1823 * 1824 * One effect of this deferred printing is that code which calls printk() and 1825 * then changes console_loglevel may break. This is because console_loglevel 1826 * is inspected when the actual printing occurs. 1827 * 1828 * See also: 1829 * printf(3) 1830 * 1831 * See the vsnprintf() documentation for format string extensions over C99. 1832 */ 1833 asmlinkage __visible int printk(const char *fmt, ...) 1834 { 1835 va_list args; 1836 int r; 1837 1838 va_start(args, fmt); 1839 r = vprintk_func(fmt, args); 1840 va_end(args); 1841 1842 return r; 1843 } 1844 EXPORT_SYMBOL(printk); 1845 1846 #else /* CONFIG_PRINTK */ 1847 1848 #define LOG_LINE_MAX 0 1849 #define PREFIX_MAX 0 1850 1851 static u64 syslog_seq; 1852 static u32 syslog_idx; 1853 static u64 console_seq; 1854 static u32 console_idx; 1855 static u64 log_first_seq; 1856 static u32 log_first_idx; 1857 static u64 log_next_seq; 1858 static char *log_text(const struct printk_log *msg) { return NULL; } 1859 static char *log_dict(const struct printk_log *msg) { return NULL; } 1860 static struct printk_log *log_from_idx(u32 idx) { return NULL; } 1861 static u32 log_next(u32 idx) { return 0; } 1862 static ssize_t msg_print_ext_header(char *buf, size_t size, 1863 struct printk_log *msg, 1864 u64 seq) { return 0; } 1865 static ssize_t msg_print_ext_body(char *buf, size_t size, 1866 char *dict, size_t dict_len, 1867 char *text, size_t text_len) { return 0; } 1868 static void call_console_drivers(const char *ext_text, size_t ext_len, 1869 const char *text, size_t len) {} 1870 static size_t msg_print_text(const struct printk_log *msg, 1871 bool syslog, char *buf, size_t size) { return 0; } 1872 static bool suppress_message_printing(int level) { return false; } 1873 1874 #endif /* CONFIG_PRINTK */ 1875 1876 #ifdef CONFIG_EARLY_PRINTK 1877 struct console *early_console; 1878 1879 asmlinkage __visible void early_printk(const char *fmt, ...) 1880 { 1881 va_list ap; 1882 char buf[512]; 1883 int n; 1884 1885 if (!early_console) 1886 return; 1887 1888 va_start(ap, fmt); 1889 n = vscnprintf(buf, sizeof(buf), fmt, ap); 1890 va_end(ap); 1891 1892 early_console->write(early_console, buf, n); 1893 } 1894 #endif 1895 1896 static int __add_preferred_console(char *name, int idx, char *options, 1897 char *brl_options) 1898 { 1899 struct console_cmdline *c; 1900 int i; 1901 1902 /* 1903 * See if this tty is not yet registered, and 1904 * if we have a slot free. 1905 */ 1906 for (i = 0, c = console_cmdline; 1907 i < MAX_CMDLINECONSOLES && c->name[0]; 1908 i++, c++) { 1909 if (strcmp(c->name, name) == 0 && c->index == idx) { 1910 if (!brl_options) 1911 selected_console = i; 1912 return 0; 1913 } 1914 } 1915 if (i == MAX_CMDLINECONSOLES) 1916 return -E2BIG; 1917 if (!brl_options) 1918 selected_console = i; 1919 strlcpy(c->name, name, sizeof(c->name)); 1920 c->options = options; 1921 braille_set_options(c, brl_options); 1922 1923 c->index = idx; 1924 return 0; 1925 } 1926 /* 1927 * Set up a console. Called via do_early_param() in init/main.c 1928 * for each "console=" parameter in the boot command line. 1929 */ 1930 static int __init console_setup(char *str) 1931 { 1932 char buf[sizeof(console_cmdline[0].name) + 4]; /* 4 for "ttyS" */ 1933 char *s, *options, *brl_options = NULL; 1934 int idx; 1935 1936 if (_braille_console_setup(&str, &brl_options)) 1937 return 1; 1938 1939 /* 1940 * Decode str into name, index, options. 1941 */ 1942 if (str[0] >= '0' && str[0] <= '9') { 1943 strcpy(buf, "ttyS"); 1944 strncpy(buf + 4, str, sizeof(buf) - 5); 1945 } else { 1946 strncpy(buf, str, sizeof(buf) - 1); 1947 } 1948 buf[sizeof(buf) - 1] = 0; 1949 options = strchr(str, ','); 1950 if (options) 1951 *(options++) = 0; 1952 #ifdef __sparc__ 1953 if (!strcmp(str, "ttya")) 1954 strcpy(buf, "ttyS0"); 1955 if (!strcmp(str, "ttyb")) 1956 strcpy(buf, "ttyS1"); 1957 #endif 1958 for (s = buf; *s; s++) 1959 if (isdigit(*s) || *s == ',') 1960 break; 1961 idx = simple_strtoul(s, NULL, 10); 1962 *s = 0; 1963 1964 __add_preferred_console(buf, idx, options, brl_options); 1965 console_set_on_cmdline = 1; 1966 return 1; 1967 } 1968 __setup("console=", console_setup); 1969 1970 /** 1971 * add_preferred_console - add a device to the list of preferred consoles. 1972 * @name: device name 1973 * @idx: device index 1974 * @options: options for this console 1975 * 1976 * The last preferred console added will be used for kernel messages 1977 * and stdin/out/err for init. Normally this is used by console_setup 1978 * above to handle user-supplied console arguments; however it can also 1979 * be used by arch-specific code either to override the user or more 1980 * commonly to provide a default console (ie from PROM variables) when 1981 * the user has not supplied one. 1982 */ 1983 int add_preferred_console(char *name, int idx, char *options) 1984 { 1985 return __add_preferred_console(name, idx, options, NULL); 1986 } 1987 1988 bool console_suspend_enabled = true; 1989 EXPORT_SYMBOL(console_suspend_enabled); 1990 1991 static int __init console_suspend_disable(char *str) 1992 { 1993 console_suspend_enabled = false; 1994 return 1; 1995 } 1996 __setup("no_console_suspend", console_suspend_disable); 1997 module_param_named(console_suspend, console_suspend_enabled, 1998 bool, S_IRUGO | S_IWUSR); 1999 MODULE_PARM_DESC(console_suspend, "suspend console during suspend" 2000 " and hibernate operations"); 2001 2002 /** 2003 * suspend_console - suspend the console subsystem 2004 * 2005 * This disables printk() while we go into suspend states 2006 */ 2007 void suspend_console(void) 2008 { 2009 if (!console_suspend_enabled) 2010 return; 2011 printk("Suspending console(s) (use no_console_suspend to debug)\n"); 2012 console_lock(); 2013 console_suspended = 1; 2014 up_console_sem(); 2015 } 2016 2017 void resume_console(void) 2018 { 2019 if (!console_suspend_enabled) 2020 return; 2021 down_console_sem(); 2022 console_suspended = 0; 2023 console_unlock(); 2024 } 2025 2026 /** 2027 * console_cpu_notify - print deferred console messages after CPU hotplug 2028 * @cpu: unused 2029 * 2030 * If printk() is called from a CPU that is not online yet, the messages 2031 * will be spooled but will not show up on the console. This function is 2032 * called when a new CPU comes online (or fails to come up), and ensures 2033 * that any such output gets printed. 2034 */ 2035 static int console_cpu_notify(unsigned int cpu) 2036 { 2037 if (!cpuhp_tasks_frozen) { 2038 console_lock(); 2039 console_unlock(); 2040 } 2041 return 0; 2042 } 2043 2044 /** 2045 * console_lock - lock the console system for exclusive use. 2046 * 2047 * Acquires a lock which guarantees that the caller has 2048 * exclusive access to the console system and the console_drivers list. 2049 * 2050 * Can sleep, returns nothing. 2051 */ 2052 void console_lock(void) 2053 { 2054 might_sleep(); 2055 2056 down_console_sem(); 2057 if (console_suspended) 2058 return; 2059 console_locked = 1; 2060 console_may_schedule = 1; 2061 } 2062 EXPORT_SYMBOL(console_lock); 2063 2064 /** 2065 * console_trylock - try to lock the console system for exclusive use. 2066 * 2067 * Try to acquire a lock which guarantees that the caller has exclusive 2068 * access to the console system and the console_drivers list. 2069 * 2070 * returns 1 on success, and 0 on failure to acquire the lock. 2071 */ 2072 int console_trylock(void) 2073 { 2074 if (down_trylock_console_sem()) 2075 return 0; 2076 if (console_suspended) { 2077 up_console_sem(); 2078 return 0; 2079 } 2080 console_locked = 1; 2081 /* 2082 * When PREEMPT_COUNT disabled we can't reliably detect if it's 2083 * safe to schedule (e.g. calling printk while holding a spin_lock), 2084 * because preempt_disable()/preempt_enable() are just barriers there 2085 * and preempt_count() is always 0. 2086 * 2087 * RCU read sections have a separate preemption counter when 2088 * PREEMPT_RCU enabled thus we must take extra care and check 2089 * rcu_preempt_depth(), otherwise RCU read sections modify 2090 * preempt_count(). 2091 */ 2092 console_may_schedule = !oops_in_progress && 2093 preemptible() && 2094 !rcu_preempt_depth(); 2095 return 1; 2096 } 2097 EXPORT_SYMBOL(console_trylock); 2098 2099 int is_console_locked(void) 2100 { 2101 return console_locked; 2102 } 2103 2104 /* 2105 * Check if we have any console that is capable of printing while cpu is 2106 * booting or shutting down. Requires console_sem. 2107 */ 2108 static int have_callable_console(void) 2109 { 2110 struct console *con; 2111 2112 for_each_console(con) 2113 if ((con->flags & CON_ENABLED) && 2114 (con->flags & CON_ANYTIME)) 2115 return 1; 2116 2117 return 0; 2118 } 2119 2120 /* 2121 * Can we actually use the console at this time on this cpu? 2122 * 2123 * Console drivers may assume that per-cpu resources have been allocated. So 2124 * unless they're explicitly marked as being able to cope (CON_ANYTIME) don't 2125 * call them until this CPU is officially up. 2126 */ 2127 static inline int can_use_console(void) 2128 { 2129 return cpu_online(raw_smp_processor_id()) || have_callable_console(); 2130 } 2131 2132 /** 2133 * console_unlock - unlock the console system 2134 * 2135 * Releases the console_lock which the caller holds on the console system 2136 * and the console driver list. 2137 * 2138 * While the console_lock was held, console output may have been buffered 2139 * by printk(). If this is the case, console_unlock(); emits 2140 * the output prior to releasing the lock. 2141 * 2142 * If there is output waiting, we wake /dev/kmsg and syslog() users. 2143 * 2144 * console_unlock(); may be called from any context. 2145 */ 2146 void console_unlock(void) 2147 { 2148 static char ext_text[CONSOLE_EXT_LOG_MAX]; 2149 static char text[LOG_LINE_MAX + PREFIX_MAX]; 2150 static u64 seen_seq; 2151 unsigned long flags; 2152 bool wake_klogd = false; 2153 bool do_cond_resched, retry; 2154 2155 if (console_suspended) { 2156 up_console_sem(); 2157 return; 2158 } 2159 2160 /* 2161 * Console drivers are called under logbuf_lock, so 2162 * @console_may_schedule should be cleared before; however, we may 2163 * end up dumping a lot of lines, for example, if called from 2164 * console registration path, and should invoke cond_resched() 2165 * between lines if allowable. Not doing so can cause a very long 2166 * scheduling stall on a slow console leading to RCU stall and 2167 * softlockup warnings which exacerbate the issue with more 2168 * messages practically incapacitating the system. 2169 */ 2170 do_cond_resched = console_may_schedule; 2171 console_may_schedule = 0; 2172 2173 again: 2174 /* 2175 * We released the console_sem lock, so we need to recheck if 2176 * cpu is online and (if not) is there at least one CON_ANYTIME 2177 * console. 2178 */ 2179 if (!can_use_console()) { 2180 console_locked = 0; 2181 up_console_sem(); 2182 return; 2183 } 2184 2185 for (;;) { 2186 struct printk_log *msg; 2187 size_t ext_len = 0; 2188 size_t len; 2189 2190 printk_safe_enter_irqsave(flags); 2191 raw_spin_lock(&logbuf_lock); 2192 if (seen_seq != log_next_seq) { 2193 wake_klogd = true; 2194 seen_seq = log_next_seq; 2195 } 2196 2197 if (console_seq < log_first_seq) { 2198 len = sprintf(text, "** %u printk messages dropped ** ", 2199 (unsigned)(log_first_seq - console_seq)); 2200 2201 /* messages are gone, move to first one */ 2202 console_seq = log_first_seq; 2203 console_idx = log_first_idx; 2204 } else { 2205 len = 0; 2206 } 2207 skip: 2208 if (console_seq == log_next_seq) 2209 break; 2210 2211 msg = log_from_idx(console_idx); 2212 if (suppress_message_printing(msg->level)) { 2213 /* 2214 * Skip record we have buffered and already printed 2215 * directly to the console when we received it, and 2216 * record that has level above the console loglevel. 2217 */ 2218 console_idx = log_next(console_idx); 2219 console_seq++; 2220 goto skip; 2221 } 2222 2223 len += msg_print_text(msg, false, text + len, sizeof(text) - len); 2224 if (nr_ext_console_drivers) { 2225 ext_len = msg_print_ext_header(ext_text, 2226 sizeof(ext_text), 2227 msg, console_seq); 2228 ext_len += msg_print_ext_body(ext_text + ext_len, 2229 sizeof(ext_text) - ext_len, 2230 log_dict(msg), msg->dict_len, 2231 log_text(msg), msg->text_len); 2232 } 2233 console_idx = log_next(console_idx); 2234 console_seq++; 2235 raw_spin_unlock(&logbuf_lock); 2236 2237 stop_critical_timings(); /* don't trace print latency */ 2238 call_console_drivers(ext_text, ext_len, text, len); 2239 start_critical_timings(); 2240 printk_safe_exit_irqrestore(flags); 2241 2242 if (do_cond_resched) 2243 cond_resched(); 2244 } 2245 console_locked = 0; 2246 2247 /* Release the exclusive_console once it is used */ 2248 if (unlikely(exclusive_console)) 2249 exclusive_console = NULL; 2250 2251 raw_spin_unlock(&logbuf_lock); 2252 2253 up_console_sem(); 2254 2255 /* 2256 * Someone could have filled up the buffer again, so re-check if there's 2257 * something to flush. In case we cannot trylock the console_sem again, 2258 * there's a new owner and the console_unlock() from them will do the 2259 * flush, no worries. 2260 */ 2261 raw_spin_lock(&logbuf_lock); 2262 retry = console_seq != log_next_seq; 2263 raw_spin_unlock(&logbuf_lock); 2264 printk_safe_exit_irqrestore(flags); 2265 2266 if (retry && console_trylock()) 2267 goto again; 2268 2269 if (wake_klogd) 2270 wake_up_klogd(); 2271 } 2272 EXPORT_SYMBOL(console_unlock); 2273 2274 /** 2275 * console_conditional_schedule - yield the CPU if required 2276 * 2277 * If the console code is currently allowed to sleep, and 2278 * if this CPU should yield the CPU to another task, do 2279 * so here. 2280 * 2281 * Must be called within console_lock();. 2282 */ 2283 void __sched console_conditional_schedule(void) 2284 { 2285 if (console_may_schedule) 2286 cond_resched(); 2287 } 2288 EXPORT_SYMBOL(console_conditional_schedule); 2289 2290 void console_unblank(void) 2291 { 2292 struct console *c; 2293 2294 /* 2295 * console_unblank can no longer be called in interrupt context unless 2296 * oops_in_progress is set to 1.. 2297 */ 2298 if (oops_in_progress) { 2299 if (down_trylock_console_sem() != 0) 2300 return; 2301 } else 2302 console_lock(); 2303 2304 console_locked = 1; 2305 console_may_schedule = 0; 2306 for_each_console(c) 2307 if ((c->flags & CON_ENABLED) && c->unblank) 2308 c->unblank(); 2309 console_unlock(); 2310 } 2311 2312 /** 2313 * console_flush_on_panic - flush console content on panic 2314 * 2315 * Immediately output all pending messages no matter what. 2316 */ 2317 void console_flush_on_panic(void) 2318 { 2319 /* 2320 * If someone else is holding the console lock, trylock will fail 2321 * and may_schedule may be set. Ignore and proceed to unlock so 2322 * that messages are flushed out. As this can be called from any 2323 * context and we don't want to get preempted while flushing, 2324 * ensure may_schedule is cleared. 2325 */ 2326 console_trylock(); 2327 console_may_schedule = 0; 2328 console_unlock(); 2329 } 2330 2331 /* 2332 * Return the console tty driver structure and its associated index 2333 */ 2334 struct tty_driver *console_device(int *index) 2335 { 2336 struct console *c; 2337 struct tty_driver *driver = NULL; 2338 2339 console_lock(); 2340 for_each_console(c) { 2341 if (!c->device) 2342 continue; 2343 driver = c->device(c, index); 2344 if (driver) 2345 break; 2346 } 2347 console_unlock(); 2348 return driver; 2349 } 2350 2351 /* 2352 * Prevent further output on the passed console device so that (for example) 2353 * serial drivers can disable console output before suspending a port, and can 2354 * re-enable output afterwards. 2355 */ 2356 void console_stop(struct console *console) 2357 { 2358 console_lock(); 2359 console->flags &= ~CON_ENABLED; 2360 console_unlock(); 2361 } 2362 EXPORT_SYMBOL(console_stop); 2363 2364 void console_start(struct console *console) 2365 { 2366 console_lock(); 2367 console->flags |= CON_ENABLED; 2368 console_unlock(); 2369 } 2370 EXPORT_SYMBOL(console_start); 2371 2372 static int __read_mostly keep_bootcon; 2373 2374 static int __init keep_bootcon_setup(char *str) 2375 { 2376 keep_bootcon = 1; 2377 pr_info("debug: skip boot console de-registration.\n"); 2378 2379 return 0; 2380 } 2381 2382 early_param("keep_bootcon", keep_bootcon_setup); 2383 2384 /* 2385 * The console driver calls this routine during kernel initialization 2386 * to register the console printing procedure with printk() and to 2387 * print any messages that were printed by the kernel before the 2388 * console driver was initialized. 2389 * 2390 * This can happen pretty early during the boot process (because of 2391 * early_printk) - sometimes before setup_arch() completes - be careful 2392 * of what kernel features are used - they may not be initialised yet. 2393 * 2394 * There are two types of consoles - bootconsoles (early_printk) and 2395 * "real" consoles (everything which is not a bootconsole) which are 2396 * handled differently. 2397 * - Any number of bootconsoles can be registered at any time. 2398 * - As soon as a "real" console is registered, all bootconsoles 2399 * will be unregistered automatically. 2400 * - Once a "real" console is registered, any attempt to register a 2401 * bootconsoles will be rejected 2402 */ 2403 void register_console(struct console *newcon) 2404 { 2405 int i; 2406 unsigned long flags; 2407 struct console *bcon = NULL; 2408 struct console_cmdline *c; 2409 2410 if (console_drivers) 2411 for_each_console(bcon) 2412 if (WARN(bcon == newcon, 2413 "console '%s%d' already registered\n", 2414 bcon->name, bcon->index)) 2415 return; 2416 2417 /* 2418 * before we register a new CON_BOOT console, make sure we don't 2419 * already have a valid console 2420 */ 2421 if (console_drivers && newcon->flags & CON_BOOT) { 2422 /* find the last or real console */ 2423 for_each_console(bcon) { 2424 if (!(bcon->flags & CON_BOOT)) { 2425 pr_info("Too late to register bootconsole %s%d\n", 2426 newcon->name, newcon->index); 2427 return; 2428 } 2429 } 2430 } 2431 2432 if (console_drivers && console_drivers->flags & CON_BOOT) 2433 bcon = console_drivers; 2434 2435 if (preferred_console < 0 || bcon || !console_drivers) 2436 preferred_console = selected_console; 2437 2438 /* 2439 * See if we want to use this console driver. If we 2440 * didn't select a console we take the first one 2441 * that registers here. 2442 */ 2443 if (preferred_console < 0) { 2444 if (newcon->index < 0) 2445 newcon->index = 0; 2446 if (newcon->setup == NULL || 2447 newcon->setup(newcon, NULL) == 0) { 2448 newcon->flags |= CON_ENABLED; 2449 if (newcon->device) { 2450 newcon->flags |= CON_CONSDEV; 2451 preferred_console = 0; 2452 } 2453 } 2454 } 2455 2456 /* 2457 * See if this console matches one we selected on 2458 * the command line. 2459 */ 2460 for (i = 0, c = console_cmdline; 2461 i < MAX_CMDLINECONSOLES && c->name[0]; 2462 i++, c++) { 2463 if (!newcon->match || 2464 newcon->match(newcon, c->name, c->index, c->options) != 0) { 2465 /* default matching */ 2466 BUILD_BUG_ON(sizeof(c->name) != sizeof(newcon->name)); 2467 if (strcmp(c->name, newcon->name) != 0) 2468 continue; 2469 if (newcon->index >= 0 && 2470 newcon->index != c->index) 2471 continue; 2472 if (newcon->index < 0) 2473 newcon->index = c->index; 2474 2475 if (_braille_register_console(newcon, c)) 2476 return; 2477 2478 if (newcon->setup && 2479 newcon->setup(newcon, c->options) != 0) 2480 break; 2481 } 2482 2483 newcon->flags |= CON_ENABLED; 2484 if (i == selected_console) { 2485 newcon->flags |= CON_CONSDEV; 2486 preferred_console = selected_console; 2487 } 2488 break; 2489 } 2490 2491 if (!(newcon->flags & CON_ENABLED)) 2492 return; 2493 2494 /* 2495 * If we have a bootconsole, and are switching to a real console, 2496 * don't print everything out again, since when the boot console, and 2497 * the real console are the same physical device, it's annoying to 2498 * see the beginning boot messages twice 2499 */ 2500 if (bcon && ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV)) 2501 newcon->flags &= ~CON_PRINTBUFFER; 2502 2503 /* 2504 * Put this console in the list - keep the 2505 * preferred driver at the head of the list. 2506 */ 2507 console_lock(); 2508 if ((newcon->flags & CON_CONSDEV) || console_drivers == NULL) { 2509 newcon->next = console_drivers; 2510 console_drivers = newcon; 2511 if (newcon->next) 2512 newcon->next->flags &= ~CON_CONSDEV; 2513 } else { 2514 newcon->next = console_drivers->next; 2515 console_drivers->next = newcon; 2516 } 2517 2518 if (newcon->flags & CON_EXTENDED) 2519 if (!nr_ext_console_drivers++) 2520 pr_info("printk: continuation disabled due to ext consoles, expect more fragments in /dev/kmsg\n"); 2521 2522 if (newcon->flags & CON_PRINTBUFFER) { 2523 /* 2524 * console_unlock(); will print out the buffered messages 2525 * for us. 2526 */ 2527 logbuf_lock_irqsave(flags); 2528 console_seq = syslog_seq; 2529 console_idx = syslog_idx; 2530 logbuf_unlock_irqrestore(flags); 2531 /* 2532 * We're about to replay the log buffer. Only do this to the 2533 * just-registered console to avoid excessive message spam to 2534 * the already-registered consoles. 2535 */ 2536 exclusive_console = newcon; 2537 } 2538 console_unlock(); 2539 console_sysfs_notify(); 2540 2541 /* 2542 * By unregistering the bootconsoles after we enable the real console 2543 * we get the "console xxx enabled" message on all the consoles - 2544 * boot consoles, real consoles, etc - this is to ensure that end 2545 * users know there might be something in the kernel's log buffer that 2546 * went to the bootconsole (that they do not see on the real console) 2547 */ 2548 pr_info("%sconsole [%s%d] enabled\n", 2549 (newcon->flags & CON_BOOT) ? "boot" : "" , 2550 newcon->name, newcon->index); 2551 if (bcon && 2552 ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV) && 2553 !keep_bootcon) { 2554 /* We need to iterate through all boot consoles, to make 2555 * sure we print everything out, before we unregister them. 2556 */ 2557 for_each_console(bcon) 2558 if (bcon->flags & CON_BOOT) 2559 unregister_console(bcon); 2560 } 2561 } 2562 EXPORT_SYMBOL(register_console); 2563 2564 int unregister_console(struct console *console) 2565 { 2566 struct console *a, *b; 2567 int res; 2568 2569 pr_info("%sconsole [%s%d] disabled\n", 2570 (console->flags & CON_BOOT) ? "boot" : "" , 2571 console->name, console->index); 2572 2573 res = _braille_unregister_console(console); 2574 if (res) 2575 return res; 2576 2577 res = 1; 2578 console_lock(); 2579 if (console_drivers == console) { 2580 console_drivers=console->next; 2581 res = 0; 2582 } else if (console_drivers) { 2583 for (a=console_drivers->next, b=console_drivers ; 2584 a; b=a, a=b->next) { 2585 if (a == console) { 2586 b->next = a->next; 2587 res = 0; 2588 break; 2589 } 2590 } 2591 } 2592 2593 if (!res && (console->flags & CON_EXTENDED)) 2594 nr_ext_console_drivers--; 2595 2596 /* 2597 * If this isn't the last console and it has CON_CONSDEV set, we 2598 * need to set it on the next preferred console. 2599 */ 2600 if (console_drivers != NULL && console->flags & CON_CONSDEV) 2601 console_drivers->flags |= CON_CONSDEV; 2602 2603 console->flags &= ~CON_ENABLED; 2604 console_unlock(); 2605 console_sysfs_notify(); 2606 return res; 2607 } 2608 EXPORT_SYMBOL(unregister_console); 2609 2610 /* 2611 * Some boot consoles access data that is in the init section and which will 2612 * be discarded after the initcalls have been run. To make sure that no code 2613 * will access this data, unregister the boot consoles in a late initcall. 2614 * 2615 * If for some reason, such as deferred probe or the driver being a loadable 2616 * module, the real console hasn't registered yet at this point, there will 2617 * be a brief interval in which no messages are logged to the console, which 2618 * makes it difficult to diagnose problems that occur during this time. 2619 * 2620 * To mitigate this problem somewhat, only unregister consoles whose memory 2621 * intersects with the init section. Note that code exists elsewhere to get 2622 * rid of the boot console as soon as the proper console shows up, so there 2623 * won't be side-effects from postponing the removal. 2624 */ 2625 static int __init printk_late_init(void) 2626 { 2627 struct console *con; 2628 int ret; 2629 2630 for_each_console(con) { 2631 if (!keep_bootcon && con->flags & CON_BOOT) { 2632 /* 2633 * Make sure to unregister boot consoles whose data 2634 * resides in the init section before the init section 2635 * is discarded. Boot consoles whose data will stick 2636 * around will automatically be unregistered when the 2637 * proper console replaces them. 2638 */ 2639 if (init_section_intersects(con, sizeof(*con))) 2640 unregister_console(con); 2641 } 2642 } 2643 ret = cpuhp_setup_state_nocalls(CPUHP_PRINTK_DEAD, "printk:dead", NULL, 2644 console_cpu_notify); 2645 WARN_ON(ret < 0); 2646 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "printk:online", 2647 console_cpu_notify, NULL); 2648 WARN_ON(ret < 0); 2649 return 0; 2650 } 2651 late_initcall(printk_late_init); 2652 2653 #if defined CONFIG_PRINTK 2654 /* 2655 * Delayed printk version, for scheduler-internal messages: 2656 */ 2657 #define PRINTK_PENDING_WAKEUP 0x01 2658 #define PRINTK_PENDING_OUTPUT 0x02 2659 2660 static DEFINE_PER_CPU(int, printk_pending); 2661 2662 static void wake_up_klogd_work_func(struct irq_work *irq_work) 2663 { 2664 int pending = __this_cpu_xchg(printk_pending, 0); 2665 2666 if (pending & PRINTK_PENDING_OUTPUT) { 2667 /* If trylock fails, someone else is doing the printing */ 2668 if (console_trylock()) 2669 console_unlock(); 2670 } 2671 2672 if (pending & PRINTK_PENDING_WAKEUP) 2673 wake_up_interruptible(&log_wait); 2674 } 2675 2676 static DEFINE_PER_CPU(struct irq_work, wake_up_klogd_work) = { 2677 .func = wake_up_klogd_work_func, 2678 .flags = IRQ_WORK_LAZY, 2679 }; 2680 2681 void wake_up_klogd(void) 2682 { 2683 preempt_disable(); 2684 if (waitqueue_active(&log_wait)) { 2685 this_cpu_or(printk_pending, PRINTK_PENDING_WAKEUP); 2686 irq_work_queue(this_cpu_ptr(&wake_up_klogd_work)); 2687 } 2688 preempt_enable(); 2689 } 2690 2691 int printk_deferred(const char *fmt, ...) 2692 { 2693 va_list args; 2694 int r; 2695 2696 preempt_disable(); 2697 va_start(args, fmt); 2698 r = vprintk_emit(0, LOGLEVEL_SCHED, NULL, 0, fmt, args); 2699 va_end(args); 2700 2701 __this_cpu_or(printk_pending, PRINTK_PENDING_OUTPUT); 2702 irq_work_queue(this_cpu_ptr(&wake_up_klogd_work)); 2703 preempt_enable(); 2704 2705 return r; 2706 } 2707 2708 /* 2709 * printk rate limiting, lifted from the networking subsystem. 2710 * 2711 * This enforces a rate limit: not more than 10 kernel messages 2712 * every 5s to make a denial-of-service attack impossible. 2713 */ 2714 DEFINE_RATELIMIT_STATE(printk_ratelimit_state, 5 * HZ, 10); 2715 2716 int __printk_ratelimit(const char *func) 2717 { 2718 return ___ratelimit(&printk_ratelimit_state, func); 2719 } 2720 EXPORT_SYMBOL(__printk_ratelimit); 2721 2722 /** 2723 * printk_timed_ratelimit - caller-controlled printk ratelimiting 2724 * @caller_jiffies: pointer to caller's state 2725 * @interval_msecs: minimum interval between prints 2726 * 2727 * printk_timed_ratelimit() returns true if more than @interval_msecs 2728 * milliseconds have elapsed since the last time printk_timed_ratelimit() 2729 * returned true. 2730 */ 2731 bool printk_timed_ratelimit(unsigned long *caller_jiffies, 2732 unsigned int interval_msecs) 2733 { 2734 unsigned long elapsed = jiffies - *caller_jiffies; 2735 2736 if (*caller_jiffies && elapsed <= msecs_to_jiffies(interval_msecs)) 2737 return false; 2738 2739 *caller_jiffies = jiffies; 2740 return true; 2741 } 2742 EXPORT_SYMBOL(printk_timed_ratelimit); 2743 2744 static DEFINE_SPINLOCK(dump_list_lock); 2745 static LIST_HEAD(dump_list); 2746 2747 /** 2748 * kmsg_dump_register - register a kernel log dumper. 2749 * @dumper: pointer to the kmsg_dumper structure 2750 * 2751 * Adds a kernel log dumper to the system. The dump callback in the 2752 * structure will be called when the kernel oopses or panics and must be 2753 * set. Returns zero on success and %-EINVAL or %-EBUSY otherwise. 2754 */ 2755 int kmsg_dump_register(struct kmsg_dumper *dumper) 2756 { 2757 unsigned long flags; 2758 int err = -EBUSY; 2759 2760 /* The dump callback needs to be set */ 2761 if (!dumper->dump) 2762 return -EINVAL; 2763 2764 spin_lock_irqsave(&dump_list_lock, flags); 2765 /* Don't allow registering multiple times */ 2766 if (!dumper->registered) { 2767 dumper->registered = 1; 2768 list_add_tail_rcu(&dumper->list, &dump_list); 2769 err = 0; 2770 } 2771 spin_unlock_irqrestore(&dump_list_lock, flags); 2772 2773 return err; 2774 } 2775 EXPORT_SYMBOL_GPL(kmsg_dump_register); 2776 2777 /** 2778 * kmsg_dump_unregister - unregister a kmsg dumper. 2779 * @dumper: pointer to the kmsg_dumper structure 2780 * 2781 * Removes a dump device from the system. Returns zero on success and 2782 * %-EINVAL otherwise. 2783 */ 2784 int kmsg_dump_unregister(struct kmsg_dumper *dumper) 2785 { 2786 unsigned long flags; 2787 int err = -EINVAL; 2788 2789 spin_lock_irqsave(&dump_list_lock, flags); 2790 if (dumper->registered) { 2791 dumper->registered = 0; 2792 list_del_rcu(&dumper->list); 2793 err = 0; 2794 } 2795 spin_unlock_irqrestore(&dump_list_lock, flags); 2796 synchronize_rcu(); 2797 2798 return err; 2799 } 2800 EXPORT_SYMBOL_GPL(kmsg_dump_unregister); 2801 2802 static bool always_kmsg_dump; 2803 module_param_named(always_kmsg_dump, always_kmsg_dump, bool, S_IRUGO | S_IWUSR); 2804 2805 /** 2806 * kmsg_dump - dump kernel log to kernel message dumpers. 2807 * @reason: the reason (oops, panic etc) for dumping 2808 * 2809 * Call each of the registered dumper's dump() callback, which can 2810 * retrieve the kmsg records with kmsg_dump_get_line() or 2811 * kmsg_dump_get_buffer(). 2812 */ 2813 void kmsg_dump(enum kmsg_dump_reason reason) 2814 { 2815 struct kmsg_dumper *dumper; 2816 unsigned long flags; 2817 2818 if ((reason > KMSG_DUMP_OOPS) && !always_kmsg_dump) 2819 return; 2820 2821 rcu_read_lock(); 2822 list_for_each_entry_rcu(dumper, &dump_list, list) { 2823 if (dumper->max_reason && reason > dumper->max_reason) 2824 continue; 2825 2826 /* initialize iterator with data about the stored records */ 2827 dumper->active = true; 2828 2829 logbuf_lock_irqsave(flags); 2830 dumper->cur_seq = clear_seq; 2831 dumper->cur_idx = clear_idx; 2832 dumper->next_seq = log_next_seq; 2833 dumper->next_idx = log_next_idx; 2834 logbuf_unlock_irqrestore(flags); 2835 2836 /* invoke dumper which will iterate over records */ 2837 dumper->dump(dumper, reason); 2838 2839 /* reset iterator */ 2840 dumper->active = false; 2841 } 2842 rcu_read_unlock(); 2843 } 2844 2845 /** 2846 * kmsg_dump_get_line_nolock - retrieve one kmsg log line (unlocked version) 2847 * @dumper: registered kmsg dumper 2848 * @syslog: include the "<4>" prefixes 2849 * @line: buffer to copy the line to 2850 * @size: maximum size of the buffer 2851 * @len: length of line placed into buffer 2852 * 2853 * Start at the beginning of the kmsg buffer, with the oldest kmsg 2854 * record, and copy one record into the provided buffer. 2855 * 2856 * Consecutive calls will return the next available record moving 2857 * towards the end of the buffer with the youngest messages. 2858 * 2859 * A return value of FALSE indicates that there are no more records to 2860 * read. 2861 * 2862 * The function is similar to kmsg_dump_get_line(), but grabs no locks. 2863 */ 2864 bool kmsg_dump_get_line_nolock(struct kmsg_dumper *dumper, bool syslog, 2865 char *line, size_t size, size_t *len) 2866 { 2867 struct printk_log *msg; 2868 size_t l = 0; 2869 bool ret = false; 2870 2871 if (!dumper->active) 2872 goto out; 2873 2874 if (dumper->cur_seq < log_first_seq) { 2875 /* messages are gone, move to first available one */ 2876 dumper->cur_seq = log_first_seq; 2877 dumper->cur_idx = log_first_idx; 2878 } 2879 2880 /* last entry */ 2881 if (dumper->cur_seq >= log_next_seq) 2882 goto out; 2883 2884 msg = log_from_idx(dumper->cur_idx); 2885 l = msg_print_text(msg, syslog, line, size); 2886 2887 dumper->cur_idx = log_next(dumper->cur_idx); 2888 dumper->cur_seq++; 2889 ret = true; 2890 out: 2891 if (len) 2892 *len = l; 2893 return ret; 2894 } 2895 2896 /** 2897 * kmsg_dump_get_line - retrieve one kmsg log line 2898 * @dumper: registered kmsg dumper 2899 * @syslog: include the "<4>" prefixes 2900 * @line: buffer to copy the line to 2901 * @size: maximum size of the buffer 2902 * @len: length of line placed into buffer 2903 * 2904 * Start at the beginning of the kmsg buffer, with the oldest kmsg 2905 * record, and copy one record into the provided buffer. 2906 * 2907 * Consecutive calls will return the next available record moving 2908 * towards the end of the buffer with the youngest messages. 2909 * 2910 * A return value of FALSE indicates that there are no more records to 2911 * read. 2912 */ 2913 bool kmsg_dump_get_line(struct kmsg_dumper *dumper, bool syslog, 2914 char *line, size_t size, size_t *len) 2915 { 2916 unsigned long flags; 2917 bool ret; 2918 2919 logbuf_lock_irqsave(flags); 2920 ret = kmsg_dump_get_line_nolock(dumper, syslog, line, size, len); 2921 logbuf_unlock_irqrestore(flags); 2922 2923 return ret; 2924 } 2925 EXPORT_SYMBOL_GPL(kmsg_dump_get_line); 2926 2927 /** 2928 * kmsg_dump_get_buffer - copy kmsg log lines 2929 * @dumper: registered kmsg dumper 2930 * @syslog: include the "<4>" prefixes 2931 * @buf: buffer to copy the line to 2932 * @size: maximum size of the buffer 2933 * @len: length of line placed into buffer 2934 * 2935 * Start at the end of the kmsg buffer and fill the provided buffer 2936 * with as many of the the *youngest* kmsg records that fit into it. 2937 * If the buffer is large enough, all available kmsg records will be 2938 * copied with a single call. 2939 * 2940 * Consecutive calls will fill the buffer with the next block of 2941 * available older records, not including the earlier retrieved ones. 2942 * 2943 * A return value of FALSE indicates that there are no more records to 2944 * read. 2945 */ 2946 bool kmsg_dump_get_buffer(struct kmsg_dumper *dumper, bool syslog, 2947 char *buf, size_t size, size_t *len) 2948 { 2949 unsigned long flags; 2950 u64 seq; 2951 u32 idx; 2952 u64 next_seq; 2953 u32 next_idx; 2954 size_t l = 0; 2955 bool ret = false; 2956 2957 if (!dumper->active) 2958 goto out; 2959 2960 logbuf_lock_irqsave(flags); 2961 if (dumper->cur_seq < log_first_seq) { 2962 /* messages are gone, move to first available one */ 2963 dumper->cur_seq = log_first_seq; 2964 dumper->cur_idx = log_first_idx; 2965 } 2966 2967 /* last entry */ 2968 if (dumper->cur_seq >= dumper->next_seq) { 2969 logbuf_unlock_irqrestore(flags); 2970 goto out; 2971 } 2972 2973 /* calculate length of entire buffer */ 2974 seq = dumper->cur_seq; 2975 idx = dumper->cur_idx; 2976 while (seq < dumper->next_seq) { 2977 struct printk_log *msg = log_from_idx(idx); 2978 2979 l += msg_print_text(msg, true, NULL, 0); 2980 idx = log_next(idx); 2981 seq++; 2982 } 2983 2984 /* move first record forward until length fits into the buffer */ 2985 seq = dumper->cur_seq; 2986 idx = dumper->cur_idx; 2987 while (l > size && seq < dumper->next_seq) { 2988 struct printk_log *msg = log_from_idx(idx); 2989 2990 l -= msg_print_text(msg, true, NULL, 0); 2991 idx = log_next(idx); 2992 seq++; 2993 } 2994 2995 /* last message in next interation */ 2996 next_seq = seq; 2997 next_idx = idx; 2998 2999 l = 0; 3000 while (seq < dumper->next_seq) { 3001 struct printk_log *msg = log_from_idx(idx); 3002 3003 l += msg_print_text(msg, syslog, buf + l, size - l); 3004 idx = log_next(idx); 3005 seq++; 3006 } 3007 3008 dumper->next_seq = next_seq; 3009 dumper->next_idx = next_idx; 3010 ret = true; 3011 logbuf_unlock_irqrestore(flags); 3012 out: 3013 if (len) 3014 *len = l; 3015 return ret; 3016 } 3017 EXPORT_SYMBOL_GPL(kmsg_dump_get_buffer); 3018 3019 /** 3020 * kmsg_dump_rewind_nolock - reset the interator (unlocked version) 3021 * @dumper: registered kmsg dumper 3022 * 3023 * Reset the dumper's iterator so that kmsg_dump_get_line() and 3024 * kmsg_dump_get_buffer() can be called again and used multiple 3025 * times within the same dumper.dump() callback. 3026 * 3027 * The function is similar to kmsg_dump_rewind(), but grabs no locks. 3028 */ 3029 void kmsg_dump_rewind_nolock(struct kmsg_dumper *dumper) 3030 { 3031 dumper->cur_seq = clear_seq; 3032 dumper->cur_idx = clear_idx; 3033 dumper->next_seq = log_next_seq; 3034 dumper->next_idx = log_next_idx; 3035 } 3036 3037 /** 3038 * kmsg_dump_rewind - reset the interator 3039 * @dumper: registered kmsg dumper 3040 * 3041 * Reset the dumper's iterator so that kmsg_dump_get_line() and 3042 * kmsg_dump_get_buffer() can be called again and used multiple 3043 * times within the same dumper.dump() callback. 3044 */ 3045 void kmsg_dump_rewind(struct kmsg_dumper *dumper) 3046 { 3047 unsigned long flags; 3048 3049 logbuf_lock_irqsave(flags); 3050 kmsg_dump_rewind_nolock(dumper); 3051 logbuf_unlock_irqrestore(flags); 3052 } 3053 EXPORT_SYMBOL_GPL(kmsg_dump_rewind); 3054 3055 static char dump_stack_arch_desc_str[128]; 3056 3057 /** 3058 * dump_stack_set_arch_desc - set arch-specific str to show with task dumps 3059 * @fmt: printf-style format string 3060 * @...: arguments for the format string 3061 * 3062 * The configured string will be printed right after utsname during task 3063 * dumps. Usually used to add arch-specific system identifiers. If an 3064 * arch wants to make use of such an ID string, it should initialize this 3065 * as soon as possible during boot. 3066 */ 3067 void __init dump_stack_set_arch_desc(const char *fmt, ...) 3068 { 3069 va_list args; 3070 3071 va_start(args, fmt); 3072 vsnprintf(dump_stack_arch_desc_str, sizeof(dump_stack_arch_desc_str), 3073 fmt, args); 3074 va_end(args); 3075 } 3076 3077 /** 3078 * dump_stack_print_info - print generic debug info for dump_stack() 3079 * @log_lvl: log level 3080 * 3081 * Arch-specific dump_stack() implementations can use this function to 3082 * print out the same debug information as the generic dump_stack(). 3083 */ 3084 void dump_stack_print_info(const char *log_lvl) 3085 { 3086 printk("%sCPU: %d PID: %d Comm: %.20s %s %s %.*s\n", 3087 log_lvl, raw_smp_processor_id(), current->pid, current->comm, 3088 print_tainted(), init_utsname()->release, 3089 (int)strcspn(init_utsname()->version, " "), 3090 init_utsname()->version); 3091 3092 if (dump_stack_arch_desc_str[0] != '\0') 3093 printk("%sHardware name: %s\n", 3094 log_lvl, dump_stack_arch_desc_str); 3095 3096 print_worker_info(log_lvl, current); 3097 } 3098 3099 /** 3100 * show_regs_print_info - print generic debug info for show_regs() 3101 * @log_lvl: log level 3102 * 3103 * show_regs() implementations can use this function to print out generic 3104 * debug information. 3105 */ 3106 void show_regs_print_info(const char *log_lvl) 3107 { 3108 dump_stack_print_info(log_lvl); 3109 3110 printk("%stask: %p task.stack: %p\n", 3111 log_lvl, current, task_stack_page(current)); 3112 } 3113 3114 #endif 3115