xref: /openbmc/linux/kernel/printk/printk.c (revision 7a829632)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/printk.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  *
7  * Modified to make sys_syslog() more flexible: added commands to
8  * return the last 4k of kernel messages, regardless of whether
9  * they've been read or not.  Added option to suppress kernel printk's
10  * to the console.  Added hook for sending the console messages
11  * elsewhere, in preparation for a serial line console (someday).
12  * Ted Ts'o, 2/11/93.
13  * Modified for sysctl support, 1/8/97, Chris Horn.
14  * Fixed SMP synchronization, 08/08/99, Manfred Spraul
15  *     manfred@colorfullife.com
16  * Rewrote bits to get rid of console_lock
17  *	01Mar01 Andrew Morton
18  */
19 
20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
21 
22 #include <linux/kernel.h>
23 #include <linux/mm.h>
24 #include <linux/tty.h>
25 #include <linux/tty_driver.h>
26 #include <linux/console.h>
27 #include <linux/init.h>
28 #include <linux/jiffies.h>
29 #include <linux/nmi.h>
30 #include <linux/module.h>
31 #include <linux/moduleparam.h>
32 #include <linux/delay.h>
33 #include <linux/smp.h>
34 #include <linux/security.h>
35 #include <linux/memblock.h>
36 #include <linux/syscalls.h>
37 #include <linux/crash_core.h>
38 #include <linux/ratelimit.h>
39 #include <linux/kmsg_dump.h>
40 #include <linux/syslog.h>
41 #include <linux/cpu.h>
42 #include <linux/rculist.h>
43 #include <linux/poll.h>
44 #include <linux/irq_work.h>
45 #include <linux/ctype.h>
46 #include <linux/uio.h>
47 #include <linux/sched/clock.h>
48 #include <linux/sched/debug.h>
49 #include <linux/sched/task_stack.h>
50 
51 #include <linux/uaccess.h>
52 #include <asm/sections.h>
53 
54 #include <trace/events/initcall.h>
55 #define CREATE_TRACE_POINTS
56 #include <trace/events/printk.h>
57 
58 #include "printk_ringbuffer.h"
59 #include "console_cmdline.h"
60 #include "braille.h"
61 #include "internal.h"
62 
63 int console_printk[4] = {
64 	CONSOLE_LOGLEVEL_DEFAULT,	/* console_loglevel */
65 	MESSAGE_LOGLEVEL_DEFAULT,	/* default_message_loglevel */
66 	CONSOLE_LOGLEVEL_MIN,		/* minimum_console_loglevel */
67 	CONSOLE_LOGLEVEL_DEFAULT,	/* default_console_loglevel */
68 };
69 EXPORT_SYMBOL_GPL(console_printk);
70 
71 atomic_t ignore_console_lock_warning __read_mostly = ATOMIC_INIT(0);
72 EXPORT_SYMBOL(ignore_console_lock_warning);
73 
74 EXPORT_TRACEPOINT_SYMBOL_GPL(console);
75 
76 /*
77  * Low level drivers may need that to know if they can schedule in
78  * their unblank() callback or not. So let's export it.
79  */
80 int oops_in_progress;
81 EXPORT_SYMBOL(oops_in_progress);
82 
83 /*
84  * console_mutex protects console_list updates and console->flags updates.
85  * The flags are synchronized only for consoles that are registered, i.e.
86  * accessible via the console list.
87  */
88 static DEFINE_MUTEX(console_mutex);
89 
90 /*
91  * console_sem protects updates to console->seq
92  * and also provides serialization for console printing.
93  */
94 static DEFINE_SEMAPHORE(console_sem, 1);
95 HLIST_HEAD(console_list);
96 EXPORT_SYMBOL_GPL(console_list);
97 DEFINE_STATIC_SRCU(console_srcu);
98 
99 /*
100  * System may need to suppress printk message under certain
101  * circumstances, like after kernel panic happens.
102  */
103 int __read_mostly suppress_printk;
104 
105 /*
106  * During panic, heavy printk by other CPUs can delay the
107  * panic and risk deadlock on console resources.
108  */
109 static int __read_mostly suppress_panic_printk;
110 
111 #ifdef CONFIG_LOCKDEP
112 static struct lockdep_map console_lock_dep_map = {
113 	.name = "console_lock"
114 };
115 
116 void lockdep_assert_console_list_lock_held(void)
117 {
118 	lockdep_assert_held(&console_mutex);
119 }
120 EXPORT_SYMBOL(lockdep_assert_console_list_lock_held);
121 #endif
122 
123 #ifdef CONFIG_DEBUG_LOCK_ALLOC
124 bool console_srcu_read_lock_is_held(void)
125 {
126 	return srcu_read_lock_held(&console_srcu);
127 }
128 EXPORT_SYMBOL(console_srcu_read_lock_is_held);
129 #endif
130 
131 enum devkmsg_log_bits {
132 	__DEVKMSG_LOG_BIT_ON = 0,
133 	__DEVKMSG_LOG_BIT_OFF,
134 	__DEVKMSG_LOG_BIT_LOCK,
135 };
136 
137 enum devkmsg_log_masks {
138 	DEVKMSG_LOG_MASK_ON             = BIT(__DEVKMSG_LOG_BIT_ON),
139 	DEVKMSG_LOG_MASK_OFF            = BIT(__DEVKMSG_LOG_BIT_OFF),
140 	DEVKMSG_LOG_MASK_LOCK           = BIT(__DEVKMSG_LOG_BIT_LOCK),
141 };
142 
143 /* Keep both the 'on' and 'off' bits clear, i.e. ratelimit by default: */
144 #define DEVKMSG_LOG_MASK_DEFAULT	0
145 
146 static unsigned int __read_mostly devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT;
147 
148 static int __control_devkmsg(char *str)
149 {
150 	size_t len;
151 
152 	if (!str)
153 		return -EINVAL;
154 
155 	len = str_has_prefix(str, "on");
156 	if (len) {
157 		devkmsg_log = DEVKMSG_LOG_MASK_ON;
158 		return len;
159 	}
160 
161 	len = str_has_prefix(str, "off");
162 	if (len) {
163 		devkmsg_log = DEVKMSG_LOG_MASK_OFF;
164 		return len;
165 	}
166 
167 	len = str_has_prefix(str, "ratelimit");
168 	if (len) {
169 		devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT;
170 		return len;
171 	}
172 
173 	return -EINVAL;
174 }
175 
176 static int __init control_devkmsg(char *str)
177 {
178 	if (__control_devkmsg(str) < 0) {
179 		pr_warn("printk.devkmsg: bad option string '%s'\n", str);
180 		return 1;
181 	}
182 
183 	/*
184 	 * Set sysctl string accordingly:
185 	 */
186 	if (devkmsg_log == DEVKMSG_LOG_MASK_ON)
187 		strcpy(devkmsg_log_str, "on");
188 	else if (devkmsg_log == DEVKMSG_LOG_MASK_OFF)
189 		strcpy(devkmsg_log_str, "off");
190 	/* else "ratelimit" which is set by default. */
191 
192 	/*
193 	 * Sysctl cannot change it anymore. The kernel command line setting of
194 	 * this parameter is to force the setting to be permanent throughout the
195 	 * runtime of the system. This is a precation measure against userspace
196 	 * trying to be a smarta** and attempting to change it up on us.
197 	 */
198 	devkmsg_log |= DEVKMSG_LOG_MASK_LOCK;
199 
200 	return 1;
201 }
202 __setup("printk.devkmsg=", control_devkmsg);
203 
204 char devkmsg_log_str[DEVKMSG_STR_MAX_SIZE] = "ratelimit";
205 #if defined(CONFIG_PRINTK) && defined(CONFIG_SYSCTL)
206 int devkmsg_sysctl_set_loglvl(struct ctl_table *table, int write,
207 			      void *buffer, size_t *lenp, loff_t *ppos)
208 {
209 	char old_str[DEVKMSG_STR_MAX_SIZE];
210 	unsigned int old;
211 	int err;
212 
213 	if (write) {
214 		if (devkmsg_log & DEVKMSG_LOG_MASK_LOCK)
215 			return -EINVAL;
216 
217 		old = devkmsg_log;
218 		strncpy(old_str, devkmsg_log_str, DEVKMSG_STR_MAX_SIZE);
219 	}
220 
221 	err = proc_dostring(table, write, buffer, lenp, ppos);
222 	if (err)
223 		return err;
224 
225 	if (write) {
226 		err = __control_devkmsg(devkmsg_log_str);
227 
228 		/*
229 		 * Do not accept an unknown string OR a known string with
230 		 * trailing crap...
231 		 */
232 		if (err < 0 || (err + 1 != *lenp)) {
233 
234 			/* ... and restore old setting. */
235 			devkmsg_log = old;
236 			strncpy(devkmsg_log_str, old_str, DEVKMSG_STR_MAX_SIZE);
237 
238 			return -EINVAL;
239 		}
240 	}
241 
242 	return 0;
243 }
244 #endif /* CONFIG_PRINTK && CONFIG_SYSCTL */
245 
246 /**
247  * console_list_lock - Lock the console list
248  *
249  * For console list or console->flags updates
250  */
251 void console_list_lock(void)
252 {
253 	/*
254 	 * In unregister_console() and console_force_preferred_locked(),
255 	 * synchronize_srcu() is called with the console_list_lock held.
256 	 * Therefore it is not allowed that the console_list_lock is taken
257 	 * with the srcu_lock held.
258 	 *
259 	 * Detecting if this context is really in the read-side critical
260 	 * section is only possible if the appropriate debug options are
261 	 * enabled.
262 	 */
263 	WARN_ON_ONCE(debug_lockdep_rcu_enabled() &&
264 		     srcu_read_lock_held(&console_srcu));
265 
266 	mutex_lock(&console_mutex);
267 }
268 EXPORT_SYMBOL(console_list_lock);
269 
270 /**
271  * console_list_unlock - Unlock the console list
272  *
273  * Counterpart to console_list_lock()
274  */
275 void console_list_unlock(void)
276 {
277 	mutex_unlock(&console_mutex);
278 }
279 EXPORT_SYMBOL(console_list_unlock);
280 
281 /**
282  * console_srcu_read_lock - Register a new reader for the
283  *	SRCU-protected console list
284  *
285  * Use for_each_console_srcu() to iterate the console list
286  *
287  * Context: Any context.
288  * Return: A cookie to pass to console_srcu_read_unlock().
289  */
290 int console_srcu_read_lock(void)
291 {
292 	return srcu_read_lock_nmisafe(&console_srcu);
293 }
294 EXPORT_SYMBOL(console_srcu_read_lock);
295 
296 /**
297  * console_srcu_read_unlock - Unregister an old reader from
298  *	the SRCU-protected console list
299  * @cookie: cookie returned from console_srcu_read_lock()
300  *
301  * Counterpart to console_srcu_read_lock()
302  */
303 void console_srcu_read_unlock(int cookie)
304 {
305 	srcu_read_unlock_nmisafe(&console_srcu, cookie);
306 }
307 EXPORT_SYMBOL(console_srcu_read_unlock);
308 
309 /*
310  * Helper macros to handle lockdep when locking/unlocking console_sem. We use
311  * macros instead of functions so that _RET_IP_ contains useful information.
312  */
313 #define down_console_sem() do { \
314 	down(&console_sem);\
315 	mutex_acquire(&console_lock_dep_map, 0, 0, _RET_IP_);\
316 } while (0)
317 
318 static int __down_trylock_console_sem(unsigned long ip)
319 {
320 	int lock_failed;
321 	unsigned long flags;
322 
323 	/*
324 	 * Here and in __up_console_sem() we need to be in safe mode,
325 	 * because spindump/WARN/etc from under console ->lock will
326 	 * deadlock in printk()->down_trylock_console_sem() otherwise.
327 	 */
328 	printk_safe_enter_irqsave(flags);
329 	lock_failed = down_trylock(&console_sem);
330 	printk_safe_exit_irqrestore(flags);
331 
332 	if (lock_failed)
333 		return 1;
334 	mutex_acquire(&console_lock_dep_map, 0, 1, ip);
335 	return 0;
336 }
337 #define down_trylock_console_sem() __down_trylock_console_sem(_RET_IP_)
338 
339 static void __up_console_sem(unsigned long ip)
340 {
341 	unsigned long flags;
342 
343 	mutex_release(&console_lock_dep_map, ip);
344 
345 	printk_safe_enter_irqsave(flags);
346 	up(&console_sem);
347 	printk_safe_exit_irqrestore(flags);
348 }
349 #define up_console_sem() __up_console_sem(_RET_IP_)
350 
351 static bool panic_in_progress(void)
352 {
353 	return unlikely(atomic_read(&panic_cpu) != PANIC_CPU_INVALID);
354 }
355 
356 /*
357  * This is used for debugging the mess that is the VT code by
358  * keeping track if we have the console semaphore held. It's
359  * definitely not the perfect debug tool (we don't know if _WE_
360  * hold it and are racing, but it helps tracking those weird code
361  * paths in the console code where we end up in places I want
362  * locked without the console semaphore held).
363  */
364 static int console_locked;
365 
366 /*
367  *	Array of consoles built from command line options (console=)
368  */
369 
370 #define MAX_CMDLINECONSOLES 8
371 
372 static struct console_cmdline console_cmdline[MAX_CMDLINECONSOLES];
373 
374 static int preferred_console = -1;
375 int console_set_on_cmdline;
376 EXPORT_SYMBOL(console_set_on_cmdline);
377 
378 /* Flag: console code may call schedule() */
379 static int console_may_schedule;
380 
381 enum con_msg_format_flags {
382 	MSG_FORMAT_DEFAULT	= 0,
383 	MSG_FORMAT_SYSLOG	= (1 << 0),
384 };
385 
386 static int console_msg_format = MSG_FORMAT_DEFAULT;
387 
388 /*
389  * The printk log buffer consists of a sequenced collection of records, each
390  * containing variable length message text. Every record also contains its
391  * own meta-data (@info).
392  *
393  * Every record meta-data carries the timestamp in microseconds, as well as
394  * the standard userspace syslog level and syslog facility. The usual kernel
395  * messages use LOG_KERN; userspace-injected messages always carry a matching
396  * syslog facility, by default LOG_USER. The origin of every message can be
397  * reliably determined that way.
398  *
399  * The human readable log message of a record is available in @text, the
400  * length of the message text in @text_len. The stored message is not
401  * terminated.
402  *
403  * Optionally, a record can carry a dictionary of properties (key/value
404  * pairs), to provide userspace with a machine-readable message context.
405  *
406  * Examples for well-defined, commonly used property names are:
407  *   DEVICE=b12:8               device identifier
408  *                                b12:8         block dev_t
409  *                                c127:3        char dev_t
410  *                                n8            netdev ifindex
411  *                                +sound:card0  subsystem:devname
412  *   SUBSYSTEM=pci              driver-core subsystem name
413  *
414  * Valid characters in property names are [a-zA-Z0-9.-_]. Property names
415  * and values are terminated by a '\0' character.
416  *
417  * Example of record values:
418  *   record.text_buf                = "it's a line" (unterminated)
419  *   record.info.seq                = 56
420  *   record.info.ts_nsec            = 36863
421  *   record.info.text_len           = 11
422  *   record.info.facility           = 0 (LOG_KERN)
423  *   record.info.flags              = 0
424  *   record.info.level              = 3 (LOG_ERR)
425  *   record.info.caller_id          = 299 (task 299)
426  *   record.info.dev_info.subsystem = "pci" (terminated)
427  *   record.info.dev_info.device    = "+pci:0000:00:01.0" (terminated)
428  *
429  * The 'struct printk_info' buffer must never be directly exported to
430  * userspace, it is a kernel-private implementation detail that might
431  * need to be changed in the future, when the requirements change.
432  *
433  * /dev/kmsg exports the structured data in the following line format:
434  *   "<level>,<sequnum>,<timestamp>,<contflag>[,additional_values, ... ];<message text>\n"
435  *
436  * Users of the export format should ignore possible additional values
437  * separated by ',', and find the message after the ';' character.
438  *
439  * The optional key/value pairs are attached as continuation lines starting
440  * with a space character and terminated by a newline. All possible
441  * non-prinatable characters are escaped in the "\xff" notation.
442  */
443 
444 /* syslog_lock protects syslog_* variables and write access to clear_seq. */
445 static DEFINE_MUTEX(syslog_lock);
446 
447 #ifdef CONFIG_PRINTK
448 DECLARE_WAIT_QUEUE_HEAD(log_wait);
449 /* All 3 protected by @syslog_lock. */
450 /* the next printk record to read by syslog(READ) or /proc/kmsg */
451 static u64 syslog_seq;
452 static size_t syslog_partial;
453 static bool syslog_time;
454 
455 struct latched_seq {
456 	seqcount_latch_t	latch;
457 	u64			val[2];
458 };
459 
460 /*
461  * The next printk record to read after the last 'clear' command. There are
462  * two copies (updated with seqcount_latch) so that reads can locklessly
463  * access a valid value. Writers are synchronized by @syslog_lock.
464  */
465 static struct latched_seq clear_seq = {
466 	.latch		= SEQCNT_LATCH_ZERO(clear_seq.latch),
467 	.val[0]		= 0,
468 	.val[1]		= 0,
469 };
470 
471 #define LOG_LEVEL(v)		((v) & 0x07)
472 #define LOG_FACILITY(v)		((v) >> 3 & 0xff)
473 
474 /* record buffer */
475 #define LOG_ALIGN __alignof__(unsigned long)
476 #define __LOG_BUF_LEN (1 << CONFIG_LOG_BUF_SHIFT)
477 #define LOG_BUF_LEN_MAX (u32)(1 << 31)
478 static char __log_buf[__LOG_BUF_LEN] __aligned(LOG_ALIGN);
479 static char *log_buf = __log_buf;
480 static u32 log_buf_len = __LOG_BUF_LEN;
481 
482 /*
483  * Define the average message size. This only affects the number of
484  * descriptors that will be available. Underestimating is better than
485  * overestimating (too many available descriptors is better than not enough).
486  */
487 #define PRB_AVGBITS 5	/* 32 character average length */
488 
489 #if CONFIG_LOG_BUF_SHIFT <= PRB_AVGBITS
490 #error CONFIG_LOG_BUF_SHIFT value too small.
491 #endif
492 _DEFINE_PRINTKRB(printk_rb_static, CONFIG_LOG_BUF_SHIFT - PRB_AVGBITS,
493 		 PRB_AVGBITS, &__log_buf[0]);
494 
495 static struct printk_ringbuffer printk_rb_dynamic;
496 
497 static struct printk_ringbuffer *prb = &printk_rb_static;
498 
499 /*
500  * We cannot access per-CPU data (e.g. per-CPU flush irq_work) before
501  * per_cpu_areas are initialised. This variable is set to true when
502  * it's safe to access per-CPU data.
503  */
504 static bool __printk_percpu_data_ready __ro_after_init;
505 
506 bool printk_percpu_data_ready(void)
507 {
508 	return __printk_percpu_data_ready;
509 }
510 
511 /* Must be called under syslog_lock. */
512 static void latched_seq_write(struct latched_seq *ls, u64 val)
513 {
514 	raw_write_seqcount_latch(&ls->latch);
515 	ls->val[0] = val;
516 	raw_write_seqcount_latch(&ls->latch);
517 	ls->val[1] = val;
518 }
519 
520 /* Can be called from any context. */
521 static u64 latched_seq_read_nolock(struct latched_seq *ls)
522 {
523 	unsigned int seq;
524 	unsigned int idx;
525 	u64 val;
526 
527 	do {
528 		seq = raw_read_seqcount_latch(&ls->latch);
529 		idx = seq & 0x1;
530 		val = ls->val[idx];
531 	} while (raw_read_seqcount_latch_retry(&ls->latch, seq));
532 
533 	return val;
534 }
535 
536 /* Return log buffer address */
537 char *log_buf_addr_get(void)
538 {
539 	return log_buf;
540 }
541 
542 /* Return log buffer size */
543 u32 log_buf_len_get(void)
544 {
545 	return log_buf_len;
546 }
547 
548 /*
549  * Define how much of the log buffer we could take at maximum. The value
550  * must be greater than two. Note that only half of the buffer is available
551  * when the index points to the middle.
552  */
553 #define MAX_LOG_TAKE_PART 4
554 static const char trunc_msg[] = "<truncated>";
555 
556 static void truncate_msg(u16 *text_len, u16 *trunc_msg_len)
557 {
558 	/*
559 	 * The message should not take the whole buffer. Otherwise, it might
560 	 * get removed too soon.
561 	 */
562 	u32 max_text_len = log_buf_len / MAX_LOG_TAKE_PART;
563 
564 	if (*text_len > max_text_len)
565 		*text_len = max_text_len;
566 
567 	/* enable the warning message (if there is room) */
568 	*trunc_msg_len = strlen(trunc_msg);
569 	if (*text_len >= *trunc_msg_len)
570 		*text_len -= *trunc_msg_len;
571 	else
572 		*trunc_msg_len = 0;
573 }
574 
575 int dmesg_restrict = IS_ENABLED(CONFIG_SECURITY_DMESG_RESTRICT);
576 
577 static int syslog_action_restricted(int type)
578 {
579 	if (dmesg_restrict)
580 		return 1;
581 	/*
582 	 * Unless restricted, we allow "read all" and "get buffer size"
583 	 * for everybody.
584 	 */
585 	return type != SYSLOG_ACTION_READ_ALL &&
586 	       type != SYSLOG_ACTION_SIZE_BUFFER;
587 }
588 
589 static int check_syslog_permissions(int type, int source)
590 {
591 	/*
592 	 * If this is from /proc/kmsg and we've already opened it, then we've
593 	 * already done the capabilities checks at open time.
594 	 */
595 	if (source == SYSLOG_FROM_PROC && type != SYSLOG_ACTION_OPEN)
596 		goto ok;
597 
598 	if (syslog_action_restricted(type)) {
599 		if (capable(CAP_SYSLOG))
600 			goto ok;
601 		/*
602 		 * For historical reasons, accept CAP_SYS_ADMIN too, with
603 		 * a warning.
604 		 */
605 		if (capable(CAP_SYS_ADMIN)) {
606 			pr_warn_once("%s (%d): Attempt to access syslog with "
607 				     "CAP_SYS_ADMIN but no CAP_SYSLOG "
608 				     "(deprecated).\n",
609 				 current->comm, task_pid_nr(current));
610 			goto ok;
611 		}
612 		return -EPERM;
613 	}
614 ok:
615 	return security_syslog(type);
616 }
617 
618 static void append_char(char **pp, char *e, char c)
619 {
620 	if (*pp < e)
621 		*(*pp)++ = c;
622 }
623 
624 static ssize_t info_print_ext_header(char *buf, size_t size,
625 				     struct printk_info *info)
626 {
627 	u64 ts_usec = info->ts_nsec;
628 	char caller[20];
629 #ifdef CONFIG_PRINTK_CALLER
630 	u32 id = info->caller_id;
631 
632 	snprintf(caller, sizeof(caller), ",caller=%c%u",
633 		 id & 0x80000000 ? 'C' : 'T', id & ~0x80000000);
634 #else
635 	caller[0] = '\0';
636 #endif
637 
638 	do_div(ts_usec, 1000);
639 
640 	return scnprintf(buf, size, "%u,%llu,%llu,%c%s;",
641 			 (info->facility << 3) | info->level, info->seq,
642 			 ts_usec, info->flags & LOG_CONT ? 'c' : '-', caller);
643 }
644 
645 static ssize_t msg_add_ext_text(char *buf, size_t size,
646 				const char *text, size_t text_len,
647 				unsigned char endc)
648 {
649 	char *p = buf, *e = buf + size;
650 	size_t i;
651 
652 	/* escape non-printable characters */
653 	for (i = 0; i < text_len; i++) {
654 		unsigned char c = text[i];
655 
656 		if (c < ' ' || c >= 127 || c == '\\')
657 			p += scnprintf(p, e - p, "\\x%02x", c);
658 		else
659 			append_char(&p, e, c);
660 	}
661 	append_char(&p, e, endc);
662 
663 	return p - buf;
664 }
665 
666 static ssize_t msg_add_dict_text(char *buf, size_t size,
667 				 const char *key, const char *val)
668 {
669 	size_t val_len = strlen(val);
670 	ssize_t len;
671 
672 	if (!val_len)
673 		return 0;
674 
675 	len = msg_add_ext_text(buf, size, "", 0, ' ');	/* dict prefix */
676 	len += msg_add_ext_text(buf + len, size - len, key, strlen(key), '=');
677 	len += msg_add_ext_text(buf + len, size - len, val, val_len, '\n');
678 
679 	return len;
680 }
681 
682 static ssize_t msg_print_ext_body(char *buf, size_t size,
683 				  char *text, size_t text_len,
684 				  struct dev_printk_info *dev_info)
685 {
686 	ssize_t len;
687 
688 	len = msg_add_ext_text(buf, size, text, text_len, '\n');
689 
690 	if (!dev_info)
691 		goto out;
692 
693 	len += msg_add_dict_text(buf + len, size - len, "SUBSYSTEM",
694 				 dev_info->subsystem);
695 	len += msg_add_dict_text(buf + len, size - len, "DEVICE",
696 				 dev_info->device);
697 out:
698 	return len;
699 }
700 
701 static bool printk_get_next_message(struct printk_message *pmsg, u64 seq,
702 				    bool is_extended, bool may_supress);
703 
704 /* /dev/kmsg - userspace message inject/listen interface */
705 struct devkmsg_user {
706 	atomic64_t seq;
707 	struct ratelimit_state rs;
708 	struct mutex lock;
709 	struct printk_buffers pbufs;
710 };
711 
712 static __printf(3, 4) __cold
713 int devkmsg_emit(int facility, int level, const char *fmt, ...)
714 {
715 	va_list args;
716 	int r;
717 
718 	va_start(args, fmt);
719 	r = vprintk_emit(facility, level, NULL, fmt, args);
720 	va_end(args);
721 
722 	return r;
723 }
724 
725 static ssize_t devkmsg_write(struct kiocb *iocb, struct iov_iter *from)
726 {
727 	char *buf, *line;
728 	int level = default_message_loglevel;
729 	int facility = 1;	/* LOG_USER */
730 	struct file *file = iocb->ki_filp;
731 	struct devkmsg_user *user = file->private_data;
732 	size_t len = iov_iter_count(from);
733 	ssize_t ret = len;
734 
735 	if (len > PRINTKRB_RECORD_MAX)
736 		return -EINVAL;
737 
738 	/* Ignore when user logging is disabled. */
739 	if (devkmsg_log & DEVKMSG_LOG_MASK_OFF)
740 		return len;
741 
742 	/* Ratelimit when not explicitly enabled. */
743 	if (!(devkmsg_log & DEVKMSG_LOG_MASK_ON)) {
744 		if (!___ratelimit(&user->rs, current->comm))
745 			return ret;
746 	}
747 
748 	buf = kmalloc(len+1, GFP_KERNEL);
749 	if (buf == NULL)
750 		return -ENOMEM;
751 
752 	buf[len] = '\0';
753 	if (!copy_from_iter_full(buf, len, from)) {
754 		kfree(buf);
755 		return -EFAULT;
756 	}
757 
758 	/*
759 	 * Extract and skip the syslog prefix <[0-9]*>. Coming from userspace
760 	 * the decimal value represents 32bit, the lower 3 bit are the log
761 	 * level, the rest are the log facility.
762 	 *
763 	 * If no prefix or no userspace facility is specified, we
764 	 * enforce LOG_USER, to be able to reliably distinguish
765 	 * kernel-generated messages from userspace-injected ones.
766 	 */
767 	line = buf;
768 	if (line[0] == '<') {
769 		char *endp = NULL;
770 		unsigned int u;
771 
772 		u = simple_strtoul(line + 1, &endp, 10);
773 		if (endp && endp[0] == '>') {
774 			level = LOG_LEVEL(u);
775 			if (LOG_FACILITY(u) != 0)
776 				facility = LOG_FACILITY(u);
777 			endp++;
778 			line = endp;
779 		}
780 	}
781 
782 	devkmsg_emit(facility, level, "%s", line);
783 	kfree(buf);
784 	return ret;
785 }
786 
787 static ssize_t devkmsg_read(struct file *file, char __user *buf,
788 			    size_t count, loff_t *ppos)
789 {
790 	struct devkmsg_user *user = file->private_data;
791 	char *outbuf = &user->pbufs.outbuf[0];
792 	struct printk_message pmsg = {
793 		.pbufs = &user->pbufs,
794 	};
795 	ssize_t ret;
796 
797 	ret = mutex_lock_interruptible(&user->lock);
798 	if (ret)
799 		return ret;
800 
801 	if (!printk_get_next_message(&pmsg, atomic64_read(&user->seq), true, false)) {
802 		if (file->f_flags & O_NONBLOCK) {
803 			ret = -EAGAIN;
804 			goto out;
805 		}
806 
807 		/*
808 		 * Guarantee this task is visible on the waitqueue before
809 		 * checking the wake condition.
810 		 *
811 		 * The full memory barrier within set_current_state() of
812 		 * prepare_to_wait_event() pairs with the full memory barrier
813 		 * within wq_has_sleeper().
814 		 *
815 		 * This pairs with __wake_up_klogd:A.
816 		 */
817 		ret = wait_event_interruptible(log_wait,
818 				printk_get_next_message(&pmsg, atomic64_read(&user->seq), true,
819 							false)); /* LMM(devkmsg_read:A) */
820 		if (ret)
821 			goto out;
822 	}
823 
824 	if (pmsg.dropped) {
825 		/* our last seen message is gone, return error and reset */
826 		atomic64_set(&user->seq, pmsg.seq);
827 		ret = -EPIPE;
828 		goto out;
829 	}
830 
831 	atomic64_set(&user->seq, pmsg.seq + 1);
832 
833 	if (pmsg.outbuf_len > count) {
834 		ret = -EINVAL;
835 		goto out;
836 	}
837 
838 	if (copy_to_user(buf, outbuf, pmsg.outbuf_len)) {
839 		ret = -EFAULT;
840 		goto out;
841 	}
842 	ret = pmsg.outbuf_len;
843 out:
844 	mutex_unlock(&user->lock);
845 	return ret;
846 }
847 
848 /*
849  * Be careful when modifying this function!!!
850  *
851  * Only few operations are supported because the device works only with the
852  * entire variable length messages (records). Non-standard values are
853  * returned in the other cases and has been this way for quite some time.
854  * User space applications might depend on this behavior.
855  */
856 static loff_t devkmsg_llseek(struct file *file, loff_t offset, int whence)
857 {
858 	struct devkmsg_user *user = file->private_data;
859 	loff_t ret = 0;
860 
861 	if (offset)
862 		return -ESPIPE;
863 
864 	switch (whence) {
865 	case SEEK_SET:
866 		/* the first record */
867 		atomic64_set(&user->seq, prb_first_valid_seq(prb));
868 		break;
869 	case SEEK_DATA:
870 		/*
871 		 * The first record after the last SYSLOG_ACTION_CLEAR,
872 		 * like issued by 'dmesg -c'. Reading /dev/kmsg itself
873 		 * changes no global state, and does not clear anything.
874 		 */
875 		atomic64_set(&user->seq, latched_seq_read_nolock(&clear_seq));
876 		break;
877 	case SEEK_END:
878 		/* after the last record */
879 		atomic64_set(&user->seq, prb_next_seq(prb));
880 		break;
881 	default:
882 		ret = -EINVAL;
883 	}
884 	return ret;
885 }
886 
887 static __poll_t devkmsg_poll(struct file *file, poll_table *wait)
888 {
889 	struct devkmsg_user *user = file->private_data;
890 	struct printk_info info;
891 	__poll_t ret = 0;
892 
893 	poll_wait(file, &log_wait, wait);
894 
895 	if (prb_read_valid_info(prb, atomic64_read(&user->seq), &info, NULL)) {
896 		/* return error when data has vanished underneath us */
897 		if (info.seq != atomic64_read(&user->seq))
898 			ret = EPOLLIN|EPOLLRDNORM|EPOLLERR|EPOLLPRI;
899 		else
900 			ret = EPOLLIN|EPOLLRDNORM;
901 	}
902 
903 	return ret;
904 }
905 
906 static int devkmsg_open(struct inode *inode, struct file *file)
907 {
908 	struct devkmsg_user *user;
909 	int err;
910 
911 	if (devkmsg_log & DEVKMSG_LOG_MASK_OFF)
912 		return -EPERM;
913 
914 	/* write-only does not need any file context */
915 	if ((file->f_flags & O_ACCMODE) != O_WRONLY) {
916 		err = check_syslog_permissions(SYSLOG_ACTION_READ_ALL,
917 					       SYSLOG_FROM_READER);
918 		if (err)
919 			return err;
920 	}
921 
922 	user = kvmalloc(sizeof(struct devkmsg_user), GFP_KERNEL);
923 	if (!user)
924 		return -ENOMEM;
925 
926 	ratelimit_default_init(&user->rs);
927 	ratelimit_set_flags(&user->rs, RATELIMIT_MSG_ON_RELEASE);
928 
929 	mutex_init(&user->lock);
930 
931 	atomic64_set(&user->seq, prb_first_valid_seq(prb));
932 
933 	file->private_data = user;
934 	return 0;
935 }
936 
937 static int devkmsg_release(struct inode *inode, struct file *file)
938 {
939 	struct devkmsg_user *user = file->private_data;
940 
941 	ratelimit_state_exit(&user->rs);
942 
943 	mutex_destroy(&user->lock);
944 	kvfree(user);
945 	return 0;
946 }
947 
948 const struct file_operations kmsg_fops = {
949 	.open = devkmsg_open,
950 	.read = devkmsg_read,
951 	.write_iter = devkmsg_write,
952 	.llseek = devkmsg_llseek,
953 	.poll = devkmsg_poll,
954 	.release = devkmsg_release,
955 };
956 
957 #ifdef CONFIG_CRASH_CORE
958 /*
959  * This appends the listed symbols to /proc/vmcore
960  *
961  * /proc/vmcore is used by various utilities, like crash and makedumpfile to
962  * obtain access to symbols that are otherwise very difficult to locate.  These
963  * symbols are specifically used so that utilities can access and extract the
964  * dmesg log from a vmcore file after a crash.
965  */
966 void log_buf_vmcoreinfo_setup(void)
967 {
968 	struct dev_printk_info *dev_info = NULL;
969 
970 	VMCOREINFO_SYMBOL(prb);
971 	VMCOREINFO_SYMBOL(printk_rb_static);
972 	VMCOREINFO_SYMBOL(clear_seq);
973 
974 	/*
975 	 * Export struct size and field offsets. User space tools can
976 	 * parse it and detect any changes to structure down the line.
977 	 */
978 
979 	VMCOREINFO_STRUCT_SIZE(printk_ringbuffer);
980 	VMCOREINFO_OFFSET(printk_ringbuffer, desc_ring);
981 	VMCOREINFO_OFFSET(printk_ringbuffer, text_data_ring);
982 	VMCOREINFO_OFFSET(printk_ringbuffer, fail);
983 
984 	VMCOREINFO_STRUCT_SIZE(prb_desc_ring);
985 	VMCOREINFO_OFFSET(prb_desc_ring, count_bits);
986 	VMCOREINFO_OFFSET(prb_desc_ring, descs);
987 	VMCOREINFO_OFFSET(prb_desc_ring, infos);
988 	VMCOREINFO_OFFSET(prb_desc_ring, head_id);
989 	VMCOREINFO_OFFSET(prb_desc_ring, tail_id);
990 
991 	VMCOREINFO_STRUCT_SIZE(prb_desc);
992 	VMCOREINFO_OFFSET(prb_desc, state_var);
993 	VMCOREINFO_OFFSET(prb_desc, text_blk_lpos);
994 
995 	VMCOREINFO_STRUCT_SIZE(prb_data_blk_lpos);
996 	VMCOREINFO_OFFSET(prb_data_blk_lpos, begin);
997 	VMCOREINFO_OFFSET(prb_data_blk_lpos, next);
998 
999 	VMCOREINFO_STRUCT_SIZE(printk_info);
1000 	VMCOREINFO_OFFSET(printk_info, seq);
1001 	VMCOREINFO_OFFSET(printk_info, ts_nsec);
1002 	VMCOREINFO_OFFSET(printk_info, text_len);
1003 	VMCOREINFO_OFFSET(printk_info, caller_id);
1004 	VMCOREINFO_OFFSET(printk_info, dev_info);
1005 
1006 	VMCOREINFO_STRUCT_SIZE(dev_printk_info);
1007 	VMCOREINFO_OFFSET(dev_printk_info, subsystem);
1008 	VMCOREINFO_LENGTH(printk_info_subsystem, sizeof(dev_info->subsystem));
1009 	VMCOREINFO_OFFSET(dev_printk_info, device);
1010 	VMCOREINFO_LENGTH(printk_info_device, sizeof(dev_info->device));
1011 
1012 	VMCOREINFO_STRUCT_SIZE(prb_data_ring);
1013 	VMCOREINFO_OFFSET(prb_data_ring, size_bits);
1014 	VMCOREINFO_OFFSET(prb_data_ring, data);
1015 	VMCOREINFO_OFFSET(prb_data_ring, head_lpos);
1016 	VMCOREINFO_OFFSET(prb_data_ring, tail_lpos);
1017 
1018 	VMCOREINFO_SIZE(atomic_long_t);
1019 	VMCOREINFO_TYPE_OFFSET(atomic_long_t, counter);
1020 
1021 	VMCOREINFO_STRUCT_SIZE(latched_seq);
1022 	VMCOREINFO_OFFSET(latched_seq, val);
1023 }
1024 #endif
1025 
1026 /* requested log_buf_len from kernel cmdline */
1027 static unsigned long __initdata new_log_buf_len;
1028 
1029 /* we practice scaling the ring buffer by powers of 2 */
1030 static void __init log_buf_len_update(u64 size)
1031 {
1032 	if (size > (u64)LOG_BUF_LEN_MAX) {
1033 		size = (u64)LOG_BUF_LEN_MAX;
1034 		pr_err("log_buf over 2G is not supported.\n");
1035 	}
1036 
1037 	if (size)
1038 		size = roundup_pow_of_two(size);
1039 	if (size > log_buf_len)
1040 		new_log_buf_len = (unsigned long)size;
1041 }
1042 
1043 /* save requested log_buf_len since it's too early to process it */
1044 static int __init log_buf_len_setup(char *str)
1045 {
1046 	u64 size;
1047 
1048 	if (!str)
1049 		return -EINVAL;
1050 
1051 	size = memparse(str, &str);
1052 
1053 	log_buf_len_update(size);
1054 
1055 	return 0;
1056 }
1057 early_param("log_buf_len", log_buf_len_setup);
1058 
1059 #ifdef CONFIG_SMP
1060 #define __LOG_CPU_MAX_BUF_LEN (1 << CONFIG_LOG_CPU_MAX_BUF_SHIFT)
1061 
1062 static void __init log_buf_add_cpu(void)
1063 {
1064 	unsigned int cpu_extra;
1065 
1066 	/*
1067 	 * archs should set up cpu_possible_bits properly with
1068 	 * set_cpu_possible() after setup_arch() but just in
1069 	 * case lets ensure this is valid.
1070 	 */
1071 	if (num_possible_cpus() == 1)
1072 		return;
1073 
1074 	cpu_extra = (num_possible_cpus() - 1) * __LOG_CPU_MAX_BUF_LEN;
1075 
1076 	/* by default this will only continue through for large > 64 CPUs */
1077 	if (cpu_extra <= __LOG_BUF_LEN / 2)
1078 		return;
1079 
1080 	pr_info("log_buf_len individual max cpu contribution: %d bytes\n",
1081 		__LOG_CPU_MAX_BUF_LEN);
1082 	pr_info("log_buf_len total cpu_extra contributions: %d bytes\n",
1083 		cpu_extra);
1084 	pr_info("log_buf_len min size: %d bytes\n", __LOG_BUF_LEN);
1085 
1086 	log_buf_len_update(cpu_extra + __LOG_BUF_LEN);
1087 }
1088 #else /* !CONFIG_SMP */
1089 static inline void log_buf_add_cpu(void) {}
1090 #endif /* CONFIG_SMP */
1091 
1092 static void __init set_percpu_data_ready(void)
1093 {
1094 	__printk_percpu_data_ready = true;
1095 }
1096 
1097 static unsigned int __init add_to_rb(struct printk_ringbuffer *rb,
1098 				     struct printk_record *r)
1099 {
1100 	struct prb_reserved_entry e;
1101 	struct printk_record dest_r;
1102 
1103 	prb_rec_init_wr(&dest_r, r->info->text_len);
1104 
1105 	if (!prb_reserve(&e, rb, &dest_r))
1106 		return 0;
1107 
1108 	memcpy(&dest_r.text_buf[0], &r->text_buf[0], r->info->text_len);
1109 	dest_r.info->text_len = r->info->text_len;
1110 	dest_r.info->facility = r->info->facility;
1111 	dest_r.info->level = r->info->level;
1112 	dest_r.info->flags = r->info->flags;
1113 	dest_r.info->ts_nsec = r->info->ts_nsec;
1114 	dest_r.info->caller_id = r->info->caller_id;
1115 	memcpy(&dest_r.info->dev_info, &r->info->dev_info, sizeof(dest_r.info->dev_info));
1116 
1117 	prb_final_commit(&e);
1118 
1119 	return prb_record_text_space(&e);
1120 }
1121 
1122 static char setup_text_buf[PRINTKRB_RECORD_MAX] __initdata;
1123 
1124 void __init setup_log_buf(int early)
1125 {
1126 	struct printk_info *new_infos;
1127 	unsigned int new_descs_count;
1128 	struct prb_desc *new_descs;
1129 	struct printk_info info;
1130 	struct printk_record r;
1131 	unsigned int text_size;
1132 	size_t new_descs_size;
1133 	size_t new_infos_size;
1134 	unsigned long flags;
1135 	char *new_log_buf;
1136 	unsigned int free;
1137 	u64 seq;
1138 
1139 	/*
1140 	 * Some archs call setup_log_buf() multiple times - first is very
1141 	 * early, e.g. from setup_arch(), and second - when percpu_areas
1142 	 * are initialised.
1143 	 */
1144 	if (!early)
1145 		set_percpu_data_ready();
1146 
1147 	if (log_buf != __log_buf)
1148 		return;
1149 
1150 	if (!early && !new_log_buf_len)
1151 		log_buf_add_cpu();
1152 
1153 	if (!new_log_buf_len)
1154 		return;
1155 
1156 	new_descs_count = new_log_buf_len >> PRB_AVGBITS;
1157 	if (new_descs_count == 0) {
1158 		pr_err("new_log_buf_len: %lu too small\n", new_log_buf_len);
1159 		return;
1160 	}
1161 
1162 	new_log_buf = memblock_alloc(new_log_buf_len, LOG_ALIGN);
1163 	if (unlikely(!new_log_buf)) {
1164 		pr_err("log_buf_len: %lu text bytes not available\n",
1165 		       new_log_buf_len);
1166 		return;
1167 	}
1168 
1169 	new_descs_size = new_descs_count * sizeof(struct prb_desc);
1170 	new_descs = memblock_alloc(new_descs_size, LOG_ALIGN);
1171 	if (unlikely(!new_descs)) {
1172 		pr_err("log_buf_len: %zu desc bytes not available\n",
1173 		       new_descs_size);
1174 		goto err_free_log_buf;
1175 	}
1176 
1177 	new_infos_size = new_descs_count * sizeof(struct printk_info);
1178 	new_infos = memblock_alloc(new_infos_size, LOG_ALIGN);
1179 	if (unlikely(!new_infos)) {
1180 		pr_err("log_buf_len: %zu info bytes not available\n",
1181 		       new_infos_size);
1182 		goto err_free_descs;
1183 	}
1184 
1185 	prb_rec_init_rd(&r, &info, &setup_text_buf[0], sizeof(setup_text_buf));
1186 
1187 	prb_init(&printk_rb_dynamic,
1188 		 new_log_buf, ilog2(new_log_buf_len),
1189 		 new_descs, ilog2(new_descs_count),
1190 		 new_infos);
1191 
1192 	local_irq_save(flags);
1193 
1194 	log_buf_len = new_log_buf_len;
1195 	log_buf = new_log_buf;
1196 	new_log_buf_len = 0;
1197 
1198 	free = __LOG_BUF_LEN;
1199 	prb_for_each_record(0, &printk_rb_static, seq, &r) {
1200 		text_size = add_to_rb(&printk_rb_dynamic, &r);
1201 		if (text_size > free)
1202 			free = 0;
1203 		else
1204 			free -= text_size;
1205 	}
1206 
1207 	prb = &printk_rb_dynamic;
1208 
1209 	local_irq_restore(flags);
1210 
1211 	/*
1212 	 * Copy any remaining messages that might have appeared from
1213 	 * NMI context after copying but before switching to the
1214 	 * dynamic buffer.
1215 	 */
1216 	prb_for_each_record(seq, &printk_rb_static, seq, &r) {
1217 		text_size = add_to_rb(&printk_rb_dynamic, &r);
1218 		if (text_size > free)
1219 			free = 0;
1220 		else
1221 			free -= text_size;
1222 	}
1223 
1224 	if (seq != prb_next_seq(&printk_rb_static)) {
1225 		pr_err("dropped %llu messages\n",
1226 		       prb_next_seq(&printk_rb_static) - seq);
1227 	}
1228 
1229 	pr_info("log_buf_len: %u bytes\n", log_buf_len);
1230 	pr_info("early log buf free: %u(%u%%)\n",
1231 		free, (free * 100) / __LOG_BUF_LEN);
1232 	return;
1233 
1234 err_free_descs:
1235 	memblock_free(new_descs, new_descs_size);
1236 err_free_log_buf:
1237 	memblock_free(new_log_buf, new_log_buf_len);
1238 }
1239 
1240 static bool __read_mostly ignore_loglevel;
1241 
1242 static int __init ignore_loglevel_setup(char *str)
1243 {
1244 	ignore_loglevel = true;
1245 	pr_info("debug: ignoring loglevel setting.\n");
1246 
1247 	return 0;
1248 }
1249 
1250 early_param("ignore_loglevel", ignore_loglevel_setup);
1251 module_param(ignore_loglevel, bool, S_IRUGO | S_IWUSR);
1252 MODULE_PARM_DESC(ignore_loglevel,
1253 		 "ignore loglevel setting (prints all kernel messages to the console)");
1254 
1255 static bool suppress_message_printing(int level)
1256 {
1257 	return (level >= console_loglevel && !ignore_loglevel);
1258 }
1259 
1260 #ifdef CONFIG_BOOT_PRINTK_DELAY
1261 
1262 static int boot_delay; /* msecs delay after each printk during bootup */
1263 static unsigned long long loops_per_msec;	/* based on boot_delay */
1264 
1265 static int __init boot_delay_setup(char *str)
1266 {
1267 	unsigned long lpj;
1268 
1269 	lpj = preset_lpj ? preset_lpj : 1000000;	/* some guess */
1270 	loops_per_msec = (unsigned long long)lpj / 1000 * HZ;
1271 
1272 	get_option(&str, &boot_delay);
1273 	if (boot_delay > 10 * 1000)
1274 		boot_delay = 0;
1275 
1276 	pr_debug("boot_delay: %u, preset_lpj: %ld, lpj: %lu, "
1277 		"HZ: %d, loops_per_msec: %llu\n",
1278 		boot_delay, preset_lpj, lpj, HZ, loops_per_msec);
1279 	return 0;
1280 }
1281 early_param("boot_delay", boot_delay_setup);
1282 
1283 static void boot_delay_msec(int level)
1284 {
1285 	unsigned long long k;
1286 	unsigned long timeout;
1287 
1288 	if ((boot_delay == 0 || system_state >= SYSTEM_RUNNING)
1289 		|| suppress_message_printing(level)) {
1290 		return;
1291 	}
1292 
1293 	k = (unsigned long long)loops_per_msec * boot_delay;
1294 
1295 	timeout = jiffies + msecs_to_jiffies(boot_delay);
1296 	while (k) {
1297 		k--;
1298 		cpu_relax();
1299 		/*
1300 		 * use (volatile) jiffies to prevent
1301 		 * compiler reduction; loop termination via jiffies
1302 		 * is secondary and may or may not happen.
1303 		 */
1304 		if (time_after(jiffies, timeout))
1305 			break;
1306 		touch_nmi_watchdog();
1307 	}
1308 }
1309 #else
1310 static inline void boot_delay_msec(int level)
1311 {
1312 }
1313 #endif
1314 
1315 static bool printk_time = IS_ENABLED(CONFIG_PRINTK_TIME);
1316 module_param_named(time, printk_time, bool, S_IRUGO | S_IWUSR);
1317 
1318 static size_t print_syslog(unsigned int level, char *buf)
1319 {
1320 	return sprintf(buf, "<%u>", level);
1321 }
1322 
1323 static size_t print_time(u64 ts, char *buf)
1324 {
1325 	unsigned long rem_nsec = do_div(ts, 1000000000);
1326 
1327 	return sprintf(buf, "[%5lu.%06lu]",
1328 		       (unsigned long)ts, rem_nsec / 1000);
1329 }
1330 
1331 #ifdef CONFIG_PRINTK_CALLER
1332 static size_t print_caller(u32 id, char *buf)
1333 {
1334 	char caller[12];
1335 
1336 	snprintf(caller, sizeof(caller), "%c%u",
1337 		 id & 0x80000000 ? 'C' : 'T', id & ~0x80000000);
1338 	return sprintf(buf, "[%6s]", caller);
1339 }
1340 #else
1341 #define print_caller(id, buf) 0
1342 #endif
1343 
1344 static size_t info_print_prefix(const struct printk_info  *info, bool syslog,
1345 				bool time, char *buf)
1346 {
1347 	size_t len = 0;
1348 
1349 	if (syslog)
1350 		len = print_syslog((info->facility << 3) | info->level, buf);
1351 
1352 	if (time)
1353 		len += print_time(info->ts_nsec, buf + len);
1354 
1355 	len += print_caller(info->caller_id, buf + len);
1356 
1357 	if (IS_ENABLED(CONFIG_PRINTK_CALLER) || time) {
1358 		buf[len++] = ' ';
1359 		buf[len] = '\0';
1360 	}
1361 
1362 	return len;
1363 }
1364 
1365 /*
1366  * Prepare the record for printing. The text is shifted within the given
1367  * buffer to avoid a need for another one. The following operations are
1368  * done:
1369  *
1370  *   - Add prefix for each line.
1371  *   - Drop truncated lines that no longer fit into the buffer.
1372  *   - Add the trailing newline that has been removed in vprintk_store().
1373  *   - Add a string terminator.
1374  *
1375  * Since the produced string is always terminated, the maximum possible
1376  * return value is @r->text_buf_size - 1;
1377  *
1378  * Return: The length of the updated/prepared text, including the added
1379  * prefixes and the newline. The terminator is not counted. The dropped
1380  * line(s) are not counted.
1381  */
1382 static size_t record_print_text(struct printk_record *r, bool syslog,
1383 				bool time)
1384 {
1385 	size_t text_len = r->info->text_len;
1386 	size_t buf_size = r->text_buf_size;
1387 	char *text = r->text_buf;
1388 	char prefix[PRINTK_PREFIX_MAX];
1389 	bool truncated = false;
1390 	size_t prefix_len;
1391 	size_t line_len;
1392 	size_t len = 0;
1393 	char *next;
1394 
1395 	/*
1396 	 * If the message was truncated because the buffer was not large
1397 	 * enough, treat the available text as if it were the full text.
1398 	 */
1399 	if (text_len > buf_size)
1400 		text_len = buf_size;
1401 
1402 	prefix_len = info_print_prefix(r->info, syslog, time, prefix);
1403 
1404 	/*
1405 	 * @text_len: bytes of unprocessed text
1406 	 * @line_len: bytes of current line _without_ newline
1407 	 * @text:     pointer to beginning of current line
1408 	 * @len:      number of bytes prepared in r->text_buf
1409 	 */
1410 	for (;;) {
1411 		next = memchr(text, '\n', text_len);
1412 		if (next) {
1413 			line_len = next - text;
1414 		} else {
1415 			/* Drop truncated line(s). */
1416 			if (truncated)
1417 				break;
1418 			line_len = text_len;
1419 		}
1420 
1421 		/*
1422 		 * Truncate the text if there is not enough space to add the
1423 		 * prefix and a trailing newline and a terminator.
1424 		 */
1425 		if (len + prefix_len + text_len + 1 + 1 > buf_size) {
1426 			/* Drop even the current line if no space. */
1427 			if (len + prefix_len + line_len + 1 + 1 > buf_size)
1428 				break;
1429 
1430 			text_len = buf_size - len - prefix_len - 1 - 1;
1431 			truncated = true;
1432 		}
1433 
1434 		memmove(text + prefix_len, text, text_len);
1435 		memcpy(text, prefix, prefix_len);
1436 
1437 		/*
1438 		 * Increment the prepared length to include the text and
1439 		 * prefix that were just moved+copied. Also increment for the
1440 		 * newline at the end of this line. If this is the last line,
1441 		 * there is no newline, but it will be added immediately below.
1442 		 */
1443 		len += prefix_len + line_len + 1;
1444 		if (text_len == line_len) {
1445 			/*
1446 			 * This is the last line. Add the trailing newline
1447 			 * removed in vprintk_store().
1448 			 */
1449 			text[prefix_len + line_len] = '\n';
1450 			break;
1451 		}
1452 
1453 		/*
1454 		 * Advance beyond the added prefix and the related line with
1455 		 * its newline.
1456 		 */
1457 		text += prefix_len + line_len + 1;
1458 
1459 		/*
1460 		 * The remaining text has only decreased by the line with its
1461 		 * newline.
1462 		 *
1463 		 * Note that @text_len can become zero. It happens when @text
1464 		 * ended with a newline (either due to truncation or the
1465 		 * original string ending with "\n\n"). The loop is correctly
1466 		 * repeated and (if not truncated) an empty line with a prefix
1467 		 * will be prepared.
1468 		 */
1469 		text_len -= line_len + 1;
1470 	}
1471 
1472 	/*
1473 	 * If a buffer was provided, it will be terminated. Space for the
1474 	 * string terminator is guaranteed to be available. The terminator is
1475 	 * not counted in the return value.
1476 	 */
1477 	if (buf_size > 0)
1478 		r->text_buf[len] = 0;
1479 
1480 	return len;
1481 }
1482 
1483 static size_t get_record_print_text_size(struct printk_info *info,
1484 					 unsigned int line_count,
1485 					 bool syslog, bool time)
1486 {
1487 	char prefix[PRINTK_PREFIX_MAX];
1488 	size_t prefix_len;
1489 
1490 	prefix_len = info_print_prefix(info, syslog, time, prefix);
1491 
1492 	/*
1493 	 * Each line will be preceded with a prefix. The intermediate
1494 	 * newlines are already within the text, but a final trailing
1495 	 * newline will be added.
1496 	 */
1497 	return ((prefix_len * line_count) + info->text_len + 1);
1498 }
1499 
1500 /*
1501  * Beginning with @start_seq, find the first record where it and all following
1502  * records up to (but not including) @max_seq fit into @size.
1503  *
1504  * @max_seq is simply an upper bound and does not need to exist. If the caller
1505  * does not require an upper bound, -1 can be used for @max_seq.
1506  */
1507 static u64 find_first_fitting_seq(u64 start_seq, u64 max_seq, size_t size,
1508 				  bool syslog, bool time)
1509 {
1510 	struct printk_info info;
1511 	unsigned int line_count;
1512 	size_t len = 0;
1513 	u64 seq;
1514 
1515 	/* Determine the size of the records up to @max_seq. */
1516 	prb_for_each_info(start_seq, prb, seq, &info, &line_count) {
1517 		if (info.seq >= max_seq)
1518 			break;
1519 		len += get_record_print_text_size(&info, line_count, syslog, time);
1520 	}
1521 
1522 	/*
1523 	 * Adjust the upper bound for the next loop to avoid subtracting
1524 	 * lengths that were never added.
1525 	 */
1526 	if (seq < max_seq)
1527 		max_seq = seq;
1528 
1529 	/*
1530 	 * Move first record forward until length fits into the buffer. Ignore
1531 	 * newest messages that were not counted in the above cycle. Messages
1532 	 * might appear and get lost in the meantime. This is a best effort
1533 	 * that prevents an infinite loop that could occur with a retry.
1534 	 */
1535 	prb_for_each_info(start_seq, prb, seq, &info, &line_count) {
1536 		if (len <= size || info.seq >= max_seq)
1537 			break;
1538 		len -= get_record_print_text_size(&info, line_count, syslog, time);
1539 	}
1540 
1541 	return seq;
1542 }
1543 
1544 /* The caller is responsible for making sure @size is greater than 0. */
1545 static int syslog_print(char __user *buf, int size)
1546 {
1547 	struct printk_info info;
1548 	struct printk_record r;
1549 	char *text;
1550 	int len = 0;
1551 	u64 seq;
1552 
1553 	text = kmalloc(PRINTK_MESSAGE_MAX, GFP_KERNEL);
1554 	if (!text)
1555 		return -ENOMEM;
1556 
1557 	prb_rec_init_rd(&r, &info, text, PRINTK_MESSAGE_MAX);
1558 
1559 	mutex_lock(&syslog_lock);
1560 
1561 	/*
1562 	 * Wait for the @syslog_seq record to be available. @syslog_seq may
1563 	 * change while waiting.
1564 	 */
1565 	do {
1566 		seq = syslog_seq;
1567 
1568 		mutex_unlock(&syslog_lock);
1569 		/*
1570 		 * Guarantee this task is visible on the waitqueue before
1571 		 * checking the wake condition.
1572 		 *
1573 		 * The full memory barrier within set_current_state() of
1574 		 * prepare_to_wait_event() pairs with the full memory barrier
1575 		 * within wq_has_sleeper().
1576 		 *
1577 		 * This pairs with __wake_up_klogd:A.
1578 		 */
1579 		len = wait_event_interruptible(log_wait,
1580 				prb_read_valid(prb, seq, NULL)); /* LMM(syslog_print:A) */
1581 		mutex_lock(&syslog_lock);
1582 
1583 		if (len)
1584 			goto out;
1585 	} while (syslog_seq != seq);
1586 
1587 	/*
1588 	 * Copy records that fit into the buffer. The above cycle makes sure
1589 	 * that the first record is always available.
1590 	 */
1591 	do {
1592 		size_t n;
1593 		size_t skip;
1594 		int err;
1595 
1596 		if (!prb_read_valid(prb, syslog_seq, &r))
1597 			break;
1598 
1599 		if (r.info->seq != syslog_seq) {
1600 			/* message is gone, move to next valid one */
1601 			syslog_seq = r.info->seq;
1602 			syslog_partial = 0;
1603 		}
1604 
1605 		/*
1606 		 * To keep reading/counting partial line consistent,
1607 		 * use printk_time value as of the beginning of a line.
1608 		 */
1609 		if (!syslog_partial)
1610 			syslog_time = printk_time;
1611 
1612 		skip = syslog_partial;
1613 		n = record_print_text(&r, true, syslog_time);
1614 		if (n - syslog_partial <= size) {
1615 			/* message fits into buffer, move forward */
1616 			syslog_seq = r.info->seq + 1;
1617 			n -= syslog_partial;
1618 			syslog_partial = 0;
1619 		} else if (!len){
1620 			/* partial read(), remember position */
1621 			n = size;
1622 			syslog_partial += n;
1623 		} else
1624 			n = 0;
1625 
1626 		if (!n)
1627 			break;
1628 
1629 		mutex_unlock(&syslog_lock);
1630 		err = copy_to_user(buf, text + skip, n);
1631 		mutex_lock(&syslog_lock);
1632 
1633 		if (err) {
1634 			if (!len)
1635 				len = -EFAULT;
1636 			break;
1637 		}
1638 
1639 		len += n;
1640 		size -= n;
1641 		buf += n;
1642 	} while (size);
1643 out:
1644 	mutex_unlock(&syslog_lock);
1645 	kfree(text);
1646 	return len;
1647 }
1648 
1649 static int syslog_print_all(char __user *buf, int size, bool clear)
1650 {
1651 	struct printk_info info;
1652 	struct printk_record r;
1653 	char *text;
1654 	int len = 0;
1655 	u64 seq;
1656 	bool time;
1657 
1658 	text = kmalloc(PRINTK_MESSAGE_MAX, GFP_KERNEL);
1659 	if (!text)
1660 		return -ENOMEM;
1661 
1662 	time = printk_time;
1663 	/*
1664 	 * Find first record that fits, including all following records,
1665 	 * into the user-provided buffer for this dump.
1666 	 */
1667 	seq = find_first_fitting_seq(latched_seq_read_nolock(&clear_seq), -1,
1668 				     size, true, time);
1669 
1670 	prb_rec_init_rd(&r, &info, text, PRINTK_MESSAGE_MAX);
1671 
1672 	len = 0;
1673 	prb_for_each_record(seq, prb, seq, &r) {
1674 		int textlen;
1675 
1676 		textlen = record_print_text(&r, true, time);
1677 
1678 		if (len + textlen > size) {
1679 			seq--;
1680 			break;
1681 		}
1682 
1683 		if (copy_to_user(buf + len, text, textlen))
1684 			len = -EFAULT;
1685 		else
1686 			len += textlen;
1687 
1688 		if (len < 0)
1689 			break;
1690 	}
1691 
1692 	if (clear) {
1693 		mutex_lock(&syslog_lock);
1694 		latched_seq_write(&clear_seq, seq);
1695 		mutex_unlock(&syslog_lock);
1696 	}
1697 
1698 	kfree(text);
1699 	return len;
1700 }
1701 
1702 static void syslog_clear(void)
1703 {
1704 	mutex_lock(&syslog_lock);
1705 	latched_seq_write(&clear_seq, prb_next_seq(prb));
1706 	mutex_unlock(&syslog_lock);
1707 }
1708 
1709 int do_syslog(int type, char __user *buf, int len, int source)
1710 {
1711 	struct printk_info info;
1712 	bool clear = false;
1713 	static int saved_console_loglevel = LOGLEVEL_DEFAULT;
1714 	int error;
1715 
1716 	error = check_syslog_permissions(type, source);
1717 	if (error)
1718 		return error;
1719 
1720 	switch (type) {
1721 	case SYSLOG_ACTION_CLOSE:	/* Close log */
1722 		break;
1723 	case SYSLOG_ACTION_OPEN:	/* Open log */
1724 		break;
1725 	case SYSLOG_ACTION_READ:	/* Read from log */
1726 		if (!buf || len < 0)
1727 			return -EINVAL;
1728 		if (!len)
1729 			return 0;
1730 		if (!access_ok(buf, len))
1731 			return -EFAULT;
1732 		error = syslog_print(buf, len);
1733 		break;
1734 	/* Read/clear last kernel messages */
1735 	case SYSLOG_ACTION_READ_CLEAR:
1736 		clear = true;
1737 		fallthrough;
1738 	/* Read last kernel messages */
1739 	case SYSLOG_ACTION_READ_ALL:
1740 		if (!buf || len < 0)
1741 			return -EINVAL;
1742 		if (!len)
1743 			return 0;
1744 		if (!access_ok(buf, len))
1745 			return -EFAULT;
1746 		error = syslog_print_all(buf, len, clear);
1747 		break;
1748 	/* Clear ring buffer */
1749 	case SYSLOG_ACTION_CLEAR:
1750 		syslog_clear();
1751 		break;
1752 	/* Disable logging to console */
1753 	case SYSLOG_ACTION_CONSOLE_OFF:
1754 		if (saved_console_loglevel == LOGLEVEL_DEFAULT)
1755 			saved_console_loglevel = console_loglevel;
1756 		console_loglevel = minimum_console_loglevel;
1757 		break;
1758 	/* Enable logging to console */
1759 	case SYSLOG_ACTION_CONSOLE_ON:
1760 		if (saved_console_loglevel != LOGLEVEL_DEFAULT) {
1761 			console_loglevel = saved_console_loglevel;
1762 			saved_console_loglevel = LOGLEVEL_DEFAULT;
1763 		}
1764 		break;
1765 	/* Set level of messages printed to console */
1766 	case SYSLOG_ACTION_CONSOLE_LEVEL:
1767 		if (len < 1 || len > 8)
1768 			return -EINVAL;
1769 		if (len < minimum_console_loglevel)
1770 			len = minimum_console_loglevel;
1771 		console_loglevel = len;
1772 		/* Implicitly re-enable logging to console */
1773 		saved_console_loglevel = LOGLEVEL_DEFAULT;
1774 		break;
1775 	/* Number of chars in the log buffer */
1776 	case SYSLOG_ACTION_SIZE_UNREAD:
1777 		mutex_lock(&syslog_lock);
1778 		if (!prb_read_valid_info(prb, syslog_seq, &info, NULL)) {
1779 			/* No unread messages. */
1780 			mutex_unlock(&syslog_lock);
1781 			return 0;
1782 		}
1783 		if (info.seq != syslog_seq) {
1784 			/* messages are gone, move to first one */
1785 			syslog_seq = info.seq;
1786 			syslog_partial = 0;
1787 		}
1788 		if (source == SYSLOG_FROM_PROC) {
1789 			/*
1790 			 * Short-cut for poll(/"proc/kmsg") which simply checks
1791 			 * for pending data, not the size; return the count of
1792 			 * records, not the length.
1793 			 */
1794 			error = prb_next_seq(prb) - syslog_seq;
1795 		} else {
1796 			bool time = syslog_partial ? syslog_time : printk_time;
1797 			unsigned int line_count;
1798 			u64 seq;
1799 
1800 			prb_for_each_info(syslog_seq, prb, seq, &info,
1801 					  &line_count) {
1802 				error += get_record_print_text_size(&info, line_count,
1803 								    true, time);
1804 				time = printk_time;
1805 			}
1806 			error -= syslog_partial;
1807 		}
1808 		mutex_unlock(&syslog_lock);
1809 		break;
1810 	/* Size of the log buffer */
1811 	case SYSLOG_ACTION_SIZE_BUFFER:
1812 		error = log_buf_len;
1813 		break;
1814 	default:
1815 		error = -EINVAL;
1816 		break;
1817 	}
1818 
1819 	return error;
1820 }
1821 
1822 SYSCALL_DEFINE3(syslog, int, type, char __user *, buf, int, len)
1823 {
1824 	return do_syslog(type, buf, len, SYSLOG_FROM_READER);
1825 }
1826 
1827 /*
1828  * Special console_lock variants that help to reduce the risk of soft-lockups.
1829  * They allow to pass console_lock to another printk() call using a busy wait.
1830  */
1831 
1832 #ifdef CONFIG_LOCKDEP
1833 static struct lockdep_map console_owner_dep_map = {
1834 	.name = "console_owner"
1835 };
1836 #endif
1837 
1838 static DEFINE_RAW_SPINLOCK(console_owner_lock);
1839 static struct task_struct *console_owner;
1840 static bool console_waiter;
1841 
1842 /**
1843  * console_lock_spinning_enable - mark beginning of code where another
1844  *	thread might safely busy wait
1845  *
1846  * This basically converts console_lock into a spinlock. This marks
1847  * the section where the console_lock owner can not sleep, because
1848  * there may be a waiter spinning (like a spinlock). Also it must be
1849  * ready to hand over the lock at the end of the section.
1850  */
1851 static void console_lock_spinning_enable(void)
1852 {
1853 	/*
1854 	 * Do not use spinning in panic(). The panic CPU wants to keep the lock.
1855 	 * Non-panic CPUs abandon the flush anyway.
1856 	 *
1857 	 * Just keep the lockdep annotation. The panic-CPU should avoid
1858 	 * taking console_owner_lock because it might cause a deadlock.
1859 	 * This looks like the easiest way how to prevent false lockdep
1860 	 * reports without handling races a lockless way.
1861 	 */
1862 	if (panic_in_progress())
1863 		goto lockdep;
1864 
1865 	raw_spin_lock(&console_owner_lock);
1866 	console_owner = current;
1867 	raw_spin_unlock(&console_owner_lock);
1868 
1869 lockdep:
1870 	/* The waiter may spin on us after setting console_owner */
1871 	spin_acquire(&console_owner_dep_map, 0, 0, _THIS_IP_);
1872 }
1873 
1874 /**
1875  * console_lock_spinning_disable_and_check - mark end of code where another
1876  *	thread was able to busy wait and check if there is a waiter
1877  * @cookie: cookie returned from console_srcu_read_lock()
1878  *
1879  * This is called at the end of the section where spinning is allowed.
1880  * It has two functions. First, it is a signal that it is no longer
1881  * safe to start busy waiting for the lock. Second, it checks if
1882  * there is a busy waiter and passes the lock rights to her.
1883  *
1884  * Important: Callers lose both the console_lock and the SRCU read lock if
1885  *	there was a busy waiter. They must not touch items synchronized by
1886  *	console_lock or SRCU read lock in this case.
1887  *
1888  * Return: 1 if the lock rights were passed, 0 otherwise.
1889  */
1890 static int console_lock_spinning_disable_and_check(int cookie)
1891 {
1892 	int waiter;
1893 
1894 	/*
1895 	 * Ignore spinning waiters during panic() because they might get stopped
1896 	 * or blocked at any time,
1897 	 *
1898 	 * It is safe because nobody is allowed to start spinning during panic
1899 	 * in the first place. If there has been a waiter then non panic CPUs
1900 	 * might stay spinning. They would get stopped anyway. The panic context
1901 	 * will never start spinning and an interrupted spin on panic CPU will
1902 	 * never continue.
1903 	 */
1904 	if (panic_in_progress()) {
1905 		/* Keep lockdep happy. */
1906 		spin_release(&console_owner_dep_map, _THIS_IP_);
1907 		return 0;
1908 	}
1909 
1910 	raw_spin_lock(&console_owner_lock);
1911 	waiter = READ_ONCE(console_waiter);
1912 	console_owner = NULL;
1913 	raw_spin_unlock(&console_owner_lock);
1914 
1915 	if (!waiter) {
1916 		spin_release(&console_owner_dep_map, _THIS_IP_);
1917 		return 0;
1918 	}
1919 
1920 	/* The waiter is now free to continue */
1921 	WRITE_ONCE(console_waiter, false);
1922 
1923 	spin_release(&console_owner_dep_map, _THIS_IP_);
1924 
1925 	/*
1926 	 * Preserve lockdep lock ordering. Release the SRCU read lock before
1927 	 * releasing the console_lock.
1928 	 */
1929 	console_srcu_read_unlock(cookie);
1930 
1931 	/*
1932 	 * Hand off console_lock to waiter. The waiter will perform
1933 	 * the up(). After this, the waiter is the console_lock owner.
1934 	 */
1935 	mutex_release(&console_lock_dep_map, _THIS_IP_);
1936 	return 1;
1937 }
1938 
1939 /**
1940  * console_trylock_spinning - try to get console_lock by busy waiting
1941  *
1942  * This allows to busy wait for the console_lock when the current
1943  * owner is running in specially marked sections. It means that
1944  * the current owner is running and cannot reschedule until it
1945  * is ready to lose the lock.
1946  *
1947  * Return: 1 if we got the lock, 0 othrewise
1948  */
1949 static int console_trylock_spinning(void)
1950 {
1951 	struct task_struct *owner = NULL;
1952 	bool waiter;
1953 	bool spin = false;
1954 	unsigned long flags;
1955 
1956 	if (console_trylock())
1957 		return 1;
1958 
1959 	/*
1960 	 * It's unsafe to spin once a panic has begun. If we are the
1961 	 * panic CPU, we may have already halted the owner of the
1962 	 * console_sem. If we are not the panic CPU, then we should
1963 	 * avoid taking console_sem, so the panic CPU has a better
1964 	 * chance of cleanly acquiring it later.
1965 	 */
1966 	if (panic_in_progress())
1967 		return 0;
1968 
1969 	printk_safe_enter_irqsave(flags);
1970 
1971 	raw_spin_lock(&console_owner_lock);
1972 	owner = READ_ONCE(console_owner);
1973 	waiter = READ_ONCE(console_waiter);
1974 	if (!waiter && owner && owner != current) {
1975 		WRITE_ONCE(console_waiter, true);
1976 		spin = true;
1977 	}
1978 	raw_spin_unlock(&console_owner_lock);
1979 
1980 	/*
1981 	 * If there is an active printk() writing to the
1982 	 * consoles, instead of having it write our data too,
1983 	 * see if we can offload that load from the active
1984 	 * printer, and do some printing ourselves.
1985 	 * Go into a spin only if there isn't already a waiter
1986 	 * spinning, and there is an active printer, and
1987 	 * that active printer isn't us (recursive printk?).
1988 	 */
1989 	if (!spin) {
1990 		printk_safe_exit_irqrestore(flags);
1991 		return 0;
1992 	}
1993 
1994 	/* We spin waiting for the owner to release us */
1995 	spin_acquire(&console_owner_dep_map, 0, 0, _THIS_IP_);
1996 	/* Owner will clear console_waiter on hand off */
1997 	while (READ_ONCE(console_waiter))
1998 		cpu_relax();
1999 	spin_release(&console_owner_dep_map, _THIS_IP_);
2000 
2001 	printk_safe_exit_irqrestore(flags);
2002 	/*
2003 	 * The owner passed the console lock to us.
2004 	 * Since we did not spin on console lock, annotate
2005 	 * this as a trylock. Otherwise lockdep will
2006 	 * complain.
2007 	 */
2008 	mutex_acquire(&console_lock_dep_map, 0, 1, _THIS_IP_);
2009 
2010 	/*
2011 	 * Update @console_may_schedule for trylock because the previous
2012 	 * owner may have been schedulable.
2013 	 */
2014 	console_may_schedule = 0;
2015 
2016 	return 1;
2017 }
2018 
2019 /*
2020  * Recursion is tracked separately on each CPU. If NMIs are supported, an
2021  * additional NMI context per CPU is also separately tracked. Until per-CPU
2022  * is available, a separate "early tracking" is performed.
2023  */
2024 static DEFINE_PER_CPU(u8, printk_count);
2025 static u8 printk_count_early;
2026 #ifdef CONFIG_HAVE_NMI
2027 static DEFINE_PER_CPU(u8, printk_count_nmi);
2028 static u8 printk_count_nmi_early;
2029 #endif
2030 
2031 /*
2032  * Recursion is limited to keep the output sane. printk() should not require
2033  * more than 1 level of recursion (allowing, for example, printk() to trigger
2034  * a WARN), but a higher value is used in case some printk-internal errors
2035  * exist, such as the ringbuffer validation checks failing.
2036  */
2037 #define PRINTK_MAX_RECURSION 3
2038 
2039 /*
2040  * Return a pointer to the dedicated counter for the CPU+context of the
2041  * caller.
2042  */
2043 static u8 *__printk_recursion_counter(void)
2044 {
2045 #ifdef CONFIG_HAVE_NMI
2046 	if (in_nmi()) {
2047 		if (printk_percpu_data_ready())
2048 			return this_cpu_ptr(&printk_count_nmi);
2049 		return &printk_count_nmi_early;
2050 	}
2051 #endif
2052 	if (printk_percpu_data_ready())
2053 		return this_cpu_ptr(&printk_count);
2054 	return &printk_count_early;
2055 }
2056 
2057 /*
2058  * Enter recursion tracking. Interrupts are disabled to simplify tracking.
2059  * The caller must check the boolean return value to see if the recursion is
2060  * allowed. On failure, interrupts are not disabled.
2061  *
2062  * @recursion_ptr must be a variable of type (u8 *) and is the same variable
2063  * that is passed to printk_exit_irqrestore().
2064  */
2065 #define printk_enter_irqsave(recursion_ptr, flags)	\
2066 ({							\
2067 	bool success = true;				\
2068 							\
2069 	typecheck(u8 *, recursion_ptr);			\
2070 	local_irq_save(flags);				\
2071 	(recursion_ptr) = __printk_recursion_counter();	\
2072 	if (*(recursion_ptr) > PRINTK_MAX_RECURSION) {	\
2073 		local_irq_restore(flags);		\
2074 		success = false;			\
2075 	} else {					\
2076 		(*(recursion_ptr))++;			\
2077 	}						\
2078 	success;					\
2079 })
2080 
2081 /* Exit recursion tracking, restoring interrupts. */
2082 #define printk_exit_irqrestore(recursion_ptr, flags)	\
2083 	do {						\
2084 		typecheck(u8 *, recursion_ptr);		\
2085 		(*(recursion_ptr))--;			\
2086 		local_irq_restore(flags);		\
2087 	} while (0)
2088 
2089 int printk_delay_msec __read_mostly;
2090 
2091 static inline void printk_delay(int level)
2092 {
2093 	boot_delay_msec(level);
2094 
2095 	if (unlikely(printk_delay_msec)) {
2096 		int m = printk_delay_msec;
2097 
2098 		while (m--) {
2099 			mdelay(1);
2100 			touch_nmi_watchdog();
2101 		}
2102 	}
2103 }
2104 
2105 static inline u32 printk_caller_id(void)
2106 {
2107 	return in_task() ? task_pid_nr(current) :
2108 		0x80000000 + smp_processor_id();
2109 }
2110 
2111 /**
2112  * printk_parse_prefix - Parse level and control flags.
2113  *
2114  * @text:     The terminated text message.
2115  * @level:    A pointer to the current level value, will be updated.
2116  * @flags:    A pointer to the current printk_info flags, will be updated.
2117  *
2118  * @level may be NULL if the caller is not interested in the parsed value.
2119  * Otherwise the variable pointed to by @level must be set to
2120  * LOGLEVEL_DEFAULT in order to be updated with the parsed value.
2121  *
2122  * @flags may be NULL if the caller is not interested in the parsed value.
2123  * Otherwise the variable pointed to by @flags will be OR'd with the parsed
2124  * value.
2125  *
2126  * Return: The length of the parsed level and control flags.
2127  */
2128 u16 printk_parse_prefix(const char *text, int *level,
2129 			enum printk_info_flags *flags)
2130 {
2131 	u16 prefix_len = 0;
2132 	int kern_level;
2133 
2134 	while (*text) {
2135 		kern_level = printk_get_level(text);
2136 		if (!kern_level)
2137 			break;
2138 
2139 		switch (kern_level) {
2140 		case '0' ... '7':
2141 			if (level && *level == LOGLEVEL_DEFAULT)
2142 				*level = kern_level - '0';
2143 			break;
2144 		case 'c':	/* KERN_CONT */
2145 			if (flags)
2146 				*flags |= LOG_CONT;
2147 		}
2148 
2149 		prefix_len += 2;
2150 		text += 2;
2151 	}
2152 
2153 	return prefix_len;
2154 }
2155 
2156 __printf(5, 0)
2157 static u16 printk_sprint(char *text, u16 size, int facility,
2158 			 enum printk_info_flags *flags, const char *fmt,
2159 			 va_list args)
2160 {
2161 	u16 text_len;
2162 
2163 	text_len = vscnprintf(text, size, fmt, args);
2164 
2165 	/* Mark and strip a trailing newline. */
2166 	if (text_len && text[text_len - 1] == '\n') {
2167 		text_len--;
2168 		*flags |= LOG_NEWLINE;
2169 	}
2170 
2171 	/* Strip log level and control flags. */
2172 	if (facility == 0) {
2173 		u16 prefix_len;
2174 
2175 		prefix_len = printk_parse_prefix(text, NULL, NULL);
2176 		if (prefix_len) {
2177 			text_len -= prefix_len;
2178 			memmove(text, text + prefix_len, text_len);
2179 		}
2180 	}
2181 
2182 	trace_console(text, text_len);
2183 
2184 	return text_len;
2185 }
2186 
2187 __printf(4, 0)
2188 int vprintk_store(int facility, int level,
2189 		  const struct dev_printk_info *dev_info,
2190 		  const char *fmt, va_list args)
2191 {
2192 	struct prb_reserved_entry e;
2193 	enum printk_info_flags flags = 0;
2194 	struct printk_record r;
2195 	unsigned long irqflags;
2196 	u16 trunc_msg_len = 0;
2197 	char prefix_buf[8];
2198 	u8 *recursion_ptr;
2199 	u16 reserve_size;
2200 	va_list args2;
2201 	u32 caller_id;
2202 	u16 text_len;
2203 	int ret = 0;
2204 	u64 ts_nsec;
2205 
2206 	if (!printk_enter_irqsave(recursion_ptr, irqflags))
2207 		return 0;
2208 
2209 	/*
2210 	 * Since the duration of printk() can vary depending on the message
2211 	 * and state of the ringbuffer, grab the timestamp now so that it is
2212 	 * close to the call of printk(). This provides a more deterministic
2213 	 * timestamp with respect to the caller.
2214 	 */
2215 	ts_nsec = local_clock();
2216 
2217 	caller_id = printk_caller_id();
2218 
2219 	/*
2220 	 * The sprintf needs to come first since the syslog prefix might be
2221 	 * passed in as a parameter. An extra byte must be reserved so that
2222 	 * later the vscnprintf() into the reserved buffer has room for the
2223 	 * terminating '\0', which is not counted by vsnprintf().
2224 	 */
2225 	va_copy(args2, args);
2226 	reserve_size = vsnprintf(&prefix_buf[0], sizeof(prefix_buf), fmt, args2) + 1;
2227 	va_end(args2);
2228 
2229 	if (reserve_size > PRINTKRB_RECORD_MAX)
2230 		reserve_size = PRINTKRB_RECORD_MAX;
2231 
2232 	/* Extract log level or control flags. */
2233 	if (facility == 0)
2234 		printk_parse_prefix(&prefix_buf[0], &level, &flags);
2235 
2236 	if (level == LOGLEVEL_DEFAULT)
2237 		level = default_message_loglevel;
2238 
2239 	if (dev_info)
2240 		flags |= LOG_NEWLINE;
2241 
2242 	if (flags & LOG_CONT) {
2243 		prb_rec_init_wr(&r, reserve_size);
2244 		if (prb_reserve_in_last(&e, prb, &r, caller_id, PRINTKRB_RECORD_MAX)) {
2245 			text_len = printk_sprint(&r.text_buf[r.info->text_len], reserve_size,
2246 						 facility, &flags, fmt, args);
2247 			r.info->text_len += text_len;
2248 
2249 			if (flags & LOG_NEWLINE) {
2250 				r.info->flags |= LOG_NEWLINE;
2251 				prb_final_commit(&e);
2252 			} else {
2253 				prb_commit(&e);
2254 			}
2255 
2256 			ret = text_len;
2257 			goto out;
2258 		}
2259 	}
2260 
2261 	/*
2262 	 * Explicitly initialize the record before every prb_reserve() call.
2263 	 * prb_reserve_in_last() and prb_reserve() purposely invalidate the
2264 	 * structure when they fail.
2265 	 */
2266 	prb_rec_init_wr(&r, reserve_size);
2267 	if (!prb_reserve(&e, prb, &r)) {
2268 		/* truncate the message if it is too long for empty buffer */
2269 		truncate_msg(&reserve_size, &trunc_msg_len);
2270 
2271 		prb_rec_init_wr(&r, reserve_size + trunc_msg_len);
2272 		if (!prb_reserve(&e, prb, &r))
2273 			goto out;
2274 	}
2275 
2276 	/* fill message */
2277 	text_len = printk_sprint(&r.text_buf[0], reserve_size, facility, &flags, fmt, args);
2278 	if (trunc_msg_len)
2279 		memcpy(&r.text_buf[text_len], trunc_msg, trunc_msg_len);
2280 	r.info->text_len = text_len + trunc_msg_len;
2281 	r.info->facility = facility;
2282 	r.info->level = level & 7;
2283 	r.info->flags = flags & 0x1f;
2284 	r.info->ts_nsec = ts_nsec;
2285 	r.info->caller_id = caller_id;
2286 	if (dev_info)
2287 		memcpy(&r.info->dev_info, dev_info, sizeof(r.info->dev_info));
2288 
2289 	/* A message without a trailing newline can be continued. */
2290 	if (!(flags & LOG_NEWLINE))
2291 		prb_commit(&e);
2292 	else
2293 		prb_final_commit(&e);
2294 
2295 	ret = text_len + trunc_msg_len;
2296 out:
2297 	printk_exit_irqrestore(recursion_ptr, irqflags);
2298 	return ret;
2299 }
2300 
2301 asmlinkage int vprintk_emit(int facility, int level,
2302 			    const struct dev_printk_info *dev_info,
2303 			    const char *fmt, va_list args)
2304 {
2305 	int printed_len;
2306 	bool in_sched = false;
2307 
2308 	/* Suppress unimportant messages after panic happens */
2309 	if (unlikely(suppress_printk))
2310 		return 0;
2311 
2312 	if (unlikely(suppress_panic_printk) &&
2313 	    atomic_read(&panic_cpu) != raw_smp_processor_id())
2314 		return 0;
2315 
2316 	if (level == LOGLEVEL_SCHED) {
2317 		level = LOGLEVEL_DEFAULT;
2318 		in_sched = true;
2319 	}
2320 
2321 	printk_delay(level);
2322 
2323 	printed_len = vprintk_store(facility, level, dev_info, fmt, args);
2324 
2325 	/* If called from the scheduler, we can not call up(). */
2326 	if (!in_sched) {
2327 		/*
2328 		 * The caller may be holding system-critical or
2329 		 * timing-sensitive locks. Disable preemption during
2330 		 * printing of all remaining records to all consoles so that
2331 		 * this context can return as soon as possible. Hopefully
2332 		 * another printk() caller will take over the printing.
2333 		 */
2334 		preempt_disable();
2335 		/*
2336 		 * Try to acquire and then immediately release the console
2337 		 * semaphore. The release will print out buffers. With the
2338 		 * spinning variant, this context tries to take over the
2339 		 * printing from another printing context.
2340 		 */
2341 		if (console_trylock_spinning())
2342 			console_unlock();
2343 		preempt_enable();
2344 	}
2345 
2346 	if (in_sched)
2347 		defer_console_output();
2348 	else
2349 		wake_up_klogd();
2350 
2351 	return printed_len;
2352 }
2353 EXPORT_SYMBOL(vprintk_emit);
2354 
2355 int vprintk_default(const char *fmt, va_list args)
2356 {
2357 	return vprintk_emit(0, LOGLEVEL_DEFAULT, NULL, fmt, args);
2358 }
2359 EXPORT_SYMBOL_GPL(vprintk_default);
2360 
2361 asmlinkage __visible int _printk(const char *fmt, ...)
2362 {
2363 	va_list args;
2364 	int r;
2365 
2366 	va_start(args, fmt);
2367 	r = vprintk(fmt, args);
2368 	va_end(args);
2369 
2370 	return r;
2371 }
2372 EXPORT_SYMBOL(_printk);
2373 
2374 static bool pr_flush(int timeout_ms, bool reset_on_progress);
2375 static bool __pr_flush(struct console *con, int timeout_ms, bool reset_on_progress);
2376 
2377 #else /* CONFIG_PRINTK */
2378 
2379 #define printk_time		false
2380 
2381 #define prb_read_valid(rb, seq, r)	false
2382 #define prb_first_valid_seq(rb)		0
2383 #define prb_next_seq(rb)		0
2384 
2385 static u64 syslog_seq;
2386 
2387 static size_t record_print_text(const struct printk_record *r,
2388 				bool syslog, bool time)
2389 {
2390 	return 0;
2391 }
2392 static ssize_t info_print_ext_header(char *buf, size_t size,
2393 				     struct printk_info *info)
2394 {
2395 	return 0;
2396 }
2397 static ssize_t msg_print_ext_body(char *buf, size_t size,
2398 				  char *text, size_t text_len,
2399 				  struct dev_printk_info *dev_info) { return 0; }
2400 static void console_lock_spinning_enable(void) { }
2401 static int console_lock_spinning_disable_and_check(int cookie) { return 0; }
2402 static bool suppress_message_printing(int level) { return false; }
2403 static bool pr_flush(int timeout_ms, bool reset_on_progress) { return true; }
2404 static bool __pr_flush(struct console *con, int timeout_ms, bool reset_on_progress) { return true; }
2405 
2406 #endif /* CONFIG_PRINTK */
2407 
2408 #ifdef CONFIG_EARLY_PRINTK
2409 struct console *early_console;
2410 
2411 asmlinkage __visible void early_printk(const char *fmt, ...)
2412 {
2413 	va_list ap;
2414 	char buf[512];
2415 	int n;
2416 
2417 	if (!early_console)
2418 		return;
2419 
2420 	va_start(ap, fmt);
2421 	n = vscnprintf(buf, sizeof(buf), fmt, ap);
2422 	va_end(ap);
2423 
2424 	early_console->write(early_console, buf, n);
2425 }
2426 #endif
2427 
2428 static void set_user_specified(struct console_cmdline *c, bool user_specified)
2429 {
2430 	if (!user_specified)
2431 		return;
2432 
2433 	/*
2434 	 * @c console was defined by the user on the command line.
2435 	 * Do not clear when added twice also by SPCR or the device tree.
2436 	 */
2437 	c->user_specified = true;
2438 	/* At least one console defined by the user on the command line. */
2439 	console_set_on_cmdline = 1;
2440 }
2441 
2442 static int __add_preferred_console(char *name, int idx, char *options,
2443 				   char *brl_options, bool user_specified)
2444 {
2445 	struct console_cmdline *c;
2446 	int i;
2447 
2448 	/*
2449 	 *	See if this tty is not yet registered, and
2450 	 *	if we have a slot free.
2451 	 */
2452 	for (i = 0, c = console_cmdline;
2453 	     i < MAX_CMDLINECONSOLES && c->name[0];
2454 	     i++, c++) {
2455 		if (strcmp(c->name, name) == 0 && c->index == idx) {
2456 			if (!brl_options)
2457 				preferred_console = i;
2458 			set_user_specified(c, user_specified);
2459 			return 0;
2460 		}
2461 	}
2462 	if (i == MAX_CMDLINECONSOLES)
2463 		return -E2BIG;
2464 	if (!brl_options)
2465 		preferred_console = i;
2466 	strscpy(c->name, name, sizeof(c->name));
2467 	c->options = options;
2468 	set_user_specified(c, user_specified);
2469 	braille_set_options(c, brl_options);
2470 
2471 	c->index = idx;
2472 	return 0;
2473 }
2474 
2475 static int __init console_msg_format_setup(char *str)
2476 {
2477 	if (!strcmp(str, "syslog"))
2478 		console_msg_format = MSG_FORMAT_SYSLOG;
2479 	if (!strcmp(str, "default"))
2480 		console_msg_format = MSG_FORMAT_DEFAULT;
2481 	return 1;
2482 }
2483 __setup("console_msg_format=", console_msg_format_setup);
2484 
2485 /*
2486  * Set up a console.  Called via do_early_param() in init/main.c
2487  * for each "console=" parameter in the boot command line.
2488  */
2489 static int __init console_setup(char *str)
2490 {
2491 	char buf[sizeof(console_cmdline[0].name) + 4]; /* 4 for "ttyS" */
2492 	char *s, *options, *brl_options = NULL;
2493 	int idx;
2494 
2495 	/*
2496 	 * console="" or console=null have been suggested as a way to
2497 	 * disable console output. Use ttynull that has been created
2498 	 * for exactly this purpose.
2499 	 */
2500 	if (str[0] == 0 || strcmp(str, "null") == 0) {
2501 		__add_preferred_console("ttynull", 0, NULL, NULL, true);
2502 		return 1;
2503 	}
2504 
2505 	if (_braille_console_setup(&str, &brl_options))
2506 		return 1;
2507 
2508 	/*
2509 	 * Decode str into name, index, options.
2510 	 */
2511 	if (str[0] >= '0' && str[0] <= '9') {
2512 		strcpy(buf, "ttyS");
2513 		strncpy(buf + 4, str, sizeof(buf) - 5);
2514 	} else {
2515 		strncpy(buf, str, sizeof(buf) - 1);
2516 	}
2517 	buf[sizeof(buf) - 1] = 0;
2518 	options = strchr(str, ',');
2519 	if (options)
2520 		*(options++) = 0;
2521 #ifdef __sparc__
2522 	if (!strcmp(str, "ttya"))
2523 		strcpy(buf, "ttyS0");
2524 	if (!strcmp(str, "ttyb"))
2525 		strcpy(buf, "ttyS1");
2526 #endif
2527 	for (s = buf; *s; s++)
2528 		if (isdigit(*s) || *s == ',')
2529 			break;
2530 	idx = simple_strtoul(s, NULL, 10);
2531 	*s = 0;
2532 
2533 	__add_preferred_console(buf, idx, options, brl_options, true);
2534 	return 1;
2535 }
2536 __setup("console=", console_setup);
2537 
2538 /**
2539  * add_preferred_console - add a device to the list of preferred consoles.
2540  * @name: device name
2541  * @idx: device index
2542  * @options: options for this console
2543  *
2544  * The last preferred console added will be used for kernel messages
2545  * and stdin/out/err for init.  Normally this is used by console_setup
2546  * above to handle user-supplied console arguments; however it can also
2547  * be used by arch-specific code either to override the user or more
2548  * commonly to provide a default console (ie from PROM variables) when
2549  * the user has not supplied one.
2550  */
2551 int add_preferred_console(char *name, int idx, char *options)
2552 {
2553 	return __add_preferred_console(name, idx, options, NULL, false);
2554 }
2555 
2556 bool console_suspend_enabled = true;
2557 EXPORT_SYMBOL(console_suspend_enabled);
2558 
2559 static int __init console_suspend_disable(char *str)
2560 {
2561 	console_suspend_enabled = false;
2562 	return 1;
2563 }
2564 __setup("no_console_suspend", console_suspend_disable);
2565 module_param_named(console_suspend, console_suspend_enabled,
2566 		bool, S_IRUGO | S_IWUSR);
2567 MODULE_PARM_DESC(console_suspend, "suspend console during suspend"
2568 	" and hibernate operations");
2569 
2570 static bool printk_console_no_auto_verbose;
2571 
2572 void console_verbose(void)
2573 {
2574 	if (console_loglevel && !printk_console_no_auto_verbose)
2575 		console_loglevel = CONSOLE_LOGLEVEL_MOTORMOUTH;
2576 }
2577 EXPORT_SYMBOL_GPL(console_verbose);
2578 
2579 module_param_named(console_no_auto_verbose, printk_console_no_auto_verbose, bool, 0644);
2580 MODULE_PARM_DESC(console_no_auto_verbose, "Disable console loglevel raise to highest on oops/panic/etc");
2581 
2582 /**
2583  * suspend_console - suspend the console subsystem
2584  *
2585  * This disables printk() while we go into suspend states
2586  */
2587 void suspend_console(void)
2588 {
2589 	struct console *con;
2590 
2591 	if (!console_suspend_enabled)
2592 		return;
2593 	pr_info("Suspending console(s) (use no_console_suspend to debug)\n");
2594 	pr_flush(1000, true);
2595 
2596 	console_list_lock();
2597 	for_each_console(con)
2598 		console_srcu_write_flags(con, con->flags | CON_SUSPENDED);
2599 	console_list_unlock();
2600 
2601 	/*
2602 	 * Ensure that all SRCU list walks have completed. All printing
2603 	 * contexts must be able to see that they are suspended so that it
2604 	 * is guaranteed that all printing has stopped when this function
2605 	 * completes.
2606 	 */
2607 	synchronize_srcu(&console_srcu);
2608 }
2609 
2610 void resume_console(void)
2611 {
2612 	struct console *con;
2613 
2614 	if (!console_suspend_enabled)
2615 		return;
2616 
2617 	console_list_lock();
2618 	for_each_console(con)
2619 		console_srcu_write_flags(con, con->flags & ~CON_SUSPENDED);
2620 	console_list_unlock();
2621 
2622 	/*
2623 	 * Ensure that all SRCU list walks have completed. All printing
2624 	 * contexts must be able to see they are no longer suspended so
2625 	 * that they are guaranteed to wake up and resume printing.
2626 	 */
2627 	synchronize_srcu(&console_srcu);
2628 
2629 	pr_flush(1000, true);
2630 }
2631 
2632 /**
2633  * console_cpu_notify - print deferred console messages after CPU hotplug
2634  * @cpu: unused
2635  *
2636  * If printk() is called from a CPU that is not online yet, the messages
2637  * will be printed on the console only if there are CON_ANYTIME consoles.
2638  * This function is called when a new CPU comes online (or fails to come
2639  * up) or goes offline.
2640  */
2641 static int console_cpu_notify(unsigned int cpu)
2642 {
2643 	if (!cpuhp_tasks_frozen) {
2644 		/* If trylock fails, someone else is doing the printing */
2645 		if (console_trylock())
2646 			console_unlock();
2647 	}
2648 	return 0;
2649 }
2650 
2651 /*
2652  * Return true if a panic is in progress on a remote CPU.
2653  *
2654  * On true, the local CPU should immediately release any printing resources
2655  * that may be needed by the panic CPU.
2656  */
2657 bool other_cpu_in_panic(void)
2658 {
2659 	if (!panic_in_progress())
2660 		return false;
2661 
2662 	/*
2663 	 * We can use raw_smp_processor_id() here because it is impossible for
2664 	 * the task to be migrated to the panic_cpu, or away from it. If
2665 	 * panic_cpu has already been set, and we're not currently executing on
2666 	 * that CPU, then we never will be.
2667 	 */
2668 	return atomic_read(&panic_cpu) != raw_smp_processor_id();
2669 }
2670 
2671 /**
2672  * console_lock - block the console subsystem from printing
2673  *
2674  * Acquires a lock which guarantees that no consoles will
2675  * be in or enter their write() callback.
2676  *
2677  * Can sleep, returns nothing.
2678  */
2679 void console_lock(void)
2680 {
2681 	might_sleep();
2682 
2683 	/* On panic, the console_lock must be left to the panic cpu. */
2684 	while (other_cpu_in_panic())
2685 		msleep(1000);
2686 
2687 	down_console_sem();
2688 	console_locked = 1;
2689 	console_may_schedule = 1;
2690 }
2691 EXPORT_SYMBOL(console_lock);
2692 
2693 /**
2694  * console_trylock - try to block the console subsystem from printing
2695  *
2696  * Try to acquire a lock which guarantees that no consoles will
2697  * be in or enter their write() callback.
2698  *
2699  * returns 1 on success, and 0 on failure to acquire the lock.
2700  */
2701 int console_trylock(void)
2702 {
2703 	/* On panic, the console_lock must be left to the panic cpu. */
2704 	if (other_cpu_in_panic())
2705 		return 0;
2706 	if (down_trylock_console_sem())
2707 		return 0;
2708 	console_locked = 1;
2709 	console_may_schedule = 0;
2710 	return 1;
2711 }
2712 EXPORT_SYMBOL(console_trylock);
2713 
2714 int is_console_locked(void)
2715 {
2716 	return console_locked;
2717 }
2718 EXPORT_SYMBOL(is_console_locked);
2719 
2720 /*
2721  * Check if the given console is currently capable and allowed to print
2722  * records.
2723  *
2724  * Requires the console_srcu_read_lock.
2725  */
2726 static inline bool console_is_usable(struct console *con)
2727 {
2728 	short flags = console_srcu_read_flags(con);
2729 
2730 	if (!(flags & CON_ENABLED))
2731 		return false;
2732 
2733 	if ((flags & CON_SUSPENDED))
2734 		return false;
2735 
2736 	if (!con->write)
2737 		return false;
2738 
2739 	/*
2740 	 * Console drivers may assume that per-cpu resources have been
2741 	 * allocated. So unless they're explicitly marked as being able to
2742 	 * cope (CON_ANYTIME) don't call them until this CPU is officially up.
2743 	 */
2744 	if (!cpu_online(raw_smp_processor_id()) && !(flags & CON_ANYTIME))
2745 		return false;
2746 
2747 	return true;
2748 }
2749 
2750 static void __console_unlock(void)
2751 {
2752 	console_locked = 0;
2753 	up_console_sem();
2754 }
2755 
2756 /*
2757  * Prepend the message in @pmsg->pbufs->outbuf with a "dropped message". This
2758  * is achieved by shifting the existing message over and inserting the dropped
2759  * message.
2760  *
2761  * @pmsg is the printk message to prepend.
2762  *
2763  * @dropped is the dropped count to report in the dropped message.
2764  *
2765  * If the message text in @pmsg->pbufs->outbuf does not have enough space for
2766  * the dropped message, the message text will be sufficiently truncated.
2767  *
2768  * If @pmsg->pbufs->outbuf is modified, @pmsg->outbuf_len is updated.
2769  */
2770 #ifdef CONFIG_PRINTK
2771 static void console_prepend_dropped(struct printk_message *pmsg, unsigned long dropped)
2772 {
2773 	struct printk_buffers *pbufs = pmsg->pbufs;
2774 	const size_t scratchbuf_sz = sizeof(pbufs->scratchbuf);
2775 	const size_t outbuf_sz = sizeof(pbufs->outbuf);
2776 	char *scratchbuf = &pbufs->scratchbuf[0];
2777 	char *outbuf = &pbufs->outbuf[0];
2778 	size_t len;
2779 
2780 	len = scnprintf(scratchbuf, scratchbuf_sz,
2781 		       "** %lu printk messages dropped **\n", dropped);
2782 
2783 	/*
2784 	 * Make sure outbuf is sufficiently large before prepending.
2785 	 * Keep at least the prefix when the message must be truncated.
2786 	 * It is a rather theoretical problem when someone tries to
2787 	 * use a minimalist buffer.
2788 	 */
2789 	if (WARN_ON_ONCE(len + PRINTK_PREFIX_MAX >= outbuf_sz))
2790 		return;
2791 
2792 	if (pmsg->outbuf_len + len >= outbuf_sz) {
2793 		/* Truncate the message, but keep it terminated. */
2794 		pmsg->outbuf_len = outbuf_sz - (len + 1);
2795 		outbuf[pmsg->outbuf_len] = 0;
2796 	}
2797 
2798 	memmove(outbuf + len, outbuf, pmsg->outbuf_len + 1);
2799 	memcpy(outbuf, scratchbuf, len);
2800 	pmsg->outbuf_len += len;
2801 }
2802 #else
2803 #define console_prepend_dropped(pmsg, dropped)
2804 #endif /* CONFIG_PRINTK */
2805 
2806 /*
2807  * Read and format the specified record (or a later record if the specified
2808  * record is not available).
2809  *
2810  * @pmsg will contain the formatted result. @pmsg->pbufs must point to a
2811  * struct printk_buffers.
2812  *
2813  * @seq is the record to read and format. If it is not available, the next
2814  * valid record is read.
2815  *
2816  * @is_extended specifies if the message should be formatted for extended
2817  * console output.
2818  *
2819  * @may_supress specifies if records may be skipped based on loglevel.
2820  *
2821  * Returns false if no record is available. Otherwise true and all fields
2822  * of @pmsg are valid. (See the documentation of struct printk_message
2823  * for information about the @pmsg fields.)
2824  */
2825 static bool printk_get_next_message(struct printk_message *pmsg, u64 seq,
2826 				    bool is_extended, bool may_suppress)
2827 {
2828 	static int panic_console_dropped;
2829 
2830 	struct printk_buffers *pbufs = pmsg->pbufs;
2831 	const size_t scratchbuf_sz = sizeof(pbufs->scratchbuf);
2832 	const size_t outbuf_sz = sizeof(pbufs->outbuf);
2833 	char *scratchbuf = &pbufs->scratchbuf[0];
2834 	char *outbuf = &pbufs->outbuf[0];
2835 	struct printk_info info;
2836 	struct printk_record r;
2837 	size_t len = 0;
2838 
2839 	/*
2840 	 * Formatting extended messages requires a separate buffer, so use the
2841 	 * scratch buffer to read in the ringbuffer text.
2842 	 *
2843 	 * Formatting normal messages is done in-place, so read the ringbuffer
2844 	 * text directly into the output buffer.
2845 	 */
2846 	if (is_extended)
2847 		prb_rec_init_rd(&r, &info, scratchbuf, scratchbuf_sz);
2848 	else
2849 		prb_rec_init_rd(&r, &info, outbuf, outbuf_sz);
2850 
2851 	if (!prb_read_valid(prb, seq, &r))
2852 		return false;
2853 
2854 	pmsg->seq = r.info->seq;
2855 	pmsg->dropped = r.info->seq - seq;
2856 
2857 	/*
2858 	 * Check for dropped messages in panic here so that printk
2859 	 * suppression can occur as early as possible if necessary.
2860 	 */
2861 	if (pmsg->dropped &&
2862 	    panic_in_progress() &&
2863 	    panic_console_dropped++ > 10) {
2864 		suppress_panic_printk = 1;
2865 		pr_warn_once("Too many dropped messages. Suppress messages on non-panic CPUs to prevent livelock.\n");
2866 	}
2867 
2868 	/* Skip record that has level above the console loglevel. */
2869 	if (may_suppress && suppress_message_printing(r.info->level))
2870 		goto out;
2871 
2872 	if (is_extended) {
2873 		len = info_print_ext_header(outbuf, outbuf_sz, r.info);
2874 		len += msg_print_ext_body(outbuf + len, outbuf_sz - len,
2875 					  &r.text_buf[0], r.info->text_len, &r.info->dev_info);
2876 	} else {
2877 		len = record_print_text(&r, console_msg_format & MSG_FORMAT_SYSLOG, printk_time);
2878 	}
2879 out:
2880 	pmsg->outbuf_len = len;
2881 	return true;
2882 }
2883 
2884 /*
2885  * Print one record for the given console. The record printed is whatever
2886  * record is the next available record for the given console.
2887  *
2888  * @handover will be set to true if a printk waiter has taken over the
2889  * console_lock, in which case the caller is no longer holding both the
2890  * console_lock and the SRCU read lock. Otherwise it is set to false.
2891  *
2892  * @cookie is the cookie from the SRCU read lock.
2893  *
2894  * Returns false if the given console has no next record to print, otherwise
2895  * true.
2896  *
2897  * Requires the console_lock and the SRCU read lock.
2898  */
2899 static bool console_emit_next_record(struct console *con, bool *handover, int cookie)
2900 {
2901 	static struct printk_buffers pbufs;
2902 
2903 	bool is_extended = console_srcu_read_flags(con) & CON_EXTENDED;
2904 	char *outbuf = &pbufs.outbuf[0];
2905 	struct printk_message pmsg = {
2906 		.pbufs = &pbufs,
2907 	};
2908 	unsigned long flags;
2909 
2910 	*handover = false;
2911 
2912 	if (!printk_get_next_message(&pmsg, con->seq, is_extended, true))
2913 		return false;
2914 
2915 	con->dropped += pmsg.dropped;
2916 
2917 	/* Skip messages of formatted length 0. */
2918 	if (pmsg.outbuf_len == 0) {
2919 		con->seq = pmsg.seq + 1;
2920 		goto skip;
2921 	}
2922 
2923 	if (con->dropped && !is_extended) {
2924 		console_prepend_dropped(&pmsg, con->dropped);
2925 		con->dropped = 0;
2926 	}
2927 
2928 	/*
2929 	 * While actively printing out messages, if another printk()
2930 	 * were to occur on another CPU, it may wait for this one to
2931 	 * finish. This task can not be preempted if there is a
2932 	 * waiter waiting to take over.
2933 	 *
2934 	 * Interrupts are disabled because the hand over to a waiter
2935 	 * must not be interrupted until the hand over is completed
2936 	 * (@console_waiter is cleared).
2937 	 */
2938 	printk_safe_enter_irqsave(flags);
2939 	console_lock_spinning_enable();
2940 
2941 	/* Do not trace print latency. */
2942 	stop_critical_timings();
2943 
2944 	/* Write everything out to the hardware. */
2945 	con->write(con, outbuf, pmsg.outbuf_len);
2946 
2947 	start_critical_timings();
2948 
2949 	con->seq = pmsg.seq + 1;
2950 
2951 	*handover = console_lock_spinning_disable_and_check(cookie);
2952 	printk_safe_exit_irqrestore(flags);
2953 skip:
2954 	return true;
2955 }
2956 
2957 /*
2958  * Print out all remaining records to all consoles.
2959  *
2960  * @do_cond_resched is set by the caller. It can be true only in schedulable
2961  * context.
2962  *
2963  * @next_seq is set to the sequence number after the last available record.
2964  * The value is valid only when this function returns true. It means that all
2965  * usable consoles are completely flushed.
2966  *
2967  * @handover will be set to true if a printk waiter has taken over the
2968  * console_lock, in which case the caller is no longer holding the
2969  * console_lock. Otherwise it is set to false.
2970  *
2971  * Returns true when there was at least one usable console and all messages
2972  * were flushed to all usable consoles. A returned false informs the caller
2973  * that everything was not flushed (either there were no usable consoles or
2974  * another context has taken over printing or it is a panic situation and this
2975  * is not the panic CPU). Regardless the reason, the caller should assume it
2976  * is not useful to immediately try again.
2977  *
2978  * Requires the console_lock.
2979  */
2980 static bool console_flush_all(bool do_cond_resched, u64 *next_seq, bool *handover)
2981 {
2982 	bool any_usable = false;
2983 	struct console *con;
2984 	bool any_progress;
2985 	int cookie;
2986 
2987 	*next_seq = 0;
2988 	*handover = false;
2989 
2990 	do {
2991 		any_progress = false;
2992 
2993 		cookie = console_srcu_read_lock();
2994 		for_each_console_srcu(con) {
2995 			bool progress;
2996 
2997 			if (!console_is_usable(con))
2998 				continue;
2999 			any_usable = true;
3000 
3001 			progress = console_emit_next_record(con, handover, cookie);
3002 
3003 			/*
3004 			 * If a handover has occurred, the SRCU read lock
3005 			 * is already released.
3006 			 */
3007 			if (*handover)
3008 				return false;
3009 
3010 			/* Track the next of the highest seq flushed. */
3011 			if (con->seq > *next_seq)
3012 				*next_seq = con->seq;
3013 
3014 			if (!progress)
3015 				continue;
3016 			any_progress = true;
3017 
3018 			/* Allow panic_cpu to take over the consoles safely. */
3019 			if (other_cpu_in_panic())
3020 				goto abandon;
3021 
3022 			if (do_cond_resched)
3023 				cond_resched();
3024 		}
3025 		console_srcu_read_unlock(cookie);
3026 	} while (any_progress);
3027 
3028 	return any_usable;
3029 
3030 abandon:
3031 	console_srcu_read_unlock(cookie);
3032 	return false;
3033 }
3034 
3035 /**
3036  * console_unlock - unblock the console subsystem from printing
3037  *
3038  * Releases the console_lock which the caller holds to block printing of
3039  * the console subsystem.
3040  *
3041  * While the console_lock was held, console output may have been buffered
3042  * by printk().  If this is the case, console_unlock(); emits
3043  * the output prior to releasing the lock.
3044  *
3045  * console_unlock(); may be called from any context.
3046  */
3047 void console_unlock(void)
3048 {
3049 	bool do_cond_resched;
3050 	bool handover;
3051 	bool flushed;
3052 	u64 next_seq;
3053 
3054 	/*
3055 	 * Console drivers are called with interrupts disabled, so
3056 	 * @console_may_schedule should be cleared before; however, we may
3057 	 * end up dumping a lot of lines, for example, if called from
3058 	 * console registration path, and should invoke cond_resched()
3059 	 * between lines if allowable.  Not doing so can cause a very long
3060 	 * scheduling stall on a slow console leading to RCU stall and
3061 	 * softlockup warnings which exacerbate the issue with more
3062 	 * messages practically incapacitating the system. Therefore, create
3063 	 * a local to use for the printing loop.
3064 	 */
3065 	do_cond_resched = console_may_schedule;
3066 
3067 	do {
3068 		console_may_schedule = 0;
3069 
3070 		flushed = console_flush_all(do_cond_resched, &next_seq, &handover);
3071 		if (!handover)
3072 			__console_unlock();
3073 
3074 		/*
3075 		 * Abort if there was a failure to flush all messages to all
3076 		 * usable consoles. Either it is not possible to flush (in
3077 		 * which case it would be an infinite loop of retrying) or
3078 		 * another context has taken over printing.
3079 		 */
3080 		if (!flushed)
3081 			break;
3082 
3083 		/*
3084 		 * Some context may have added new records after
3085 		 * console_flush_all() but before unlocking the console.
3086 		 * Re-check if there is a new record to flush. If the trylock
3087 		 * fails, another context is already handling the printing.
3088 		 */
3089 	} while (prb_read_valid(prb, next_seq, NULL) && console_trylock());
3090 }
3091 EXPORT_SYMBOL(console_unlock);
3092 
3093 /**
3094  * console_conditional_schedule - yield the CPU if required
3095  *
3096  * If the console code is currently allowed to sleep, and
3097  * if this CPU should yield the CPU to another task, do
3098  * so here.
3099  *
3100  * Must be called within console_lock();.
3101  */
3102 void __sched console_conditional_schedule(void)
3103 {
3104 	if (console_may_schedule)
3105 		cond_resched();
3106 }
3107 EXPORT_SYMBOL(console_conditional_schedule);
3108 
3109 void console_unblank(void)
3110 {
3111 	bool found_unblank = false;
3112 	struct console *c;
3113 	int cookie;
3114 
3115 	/*
3116 	 * First check if there are any consoles implementing the unblank()
3117 	 * callback. If not, there is no reason to continue and take the
3118 	 * console lock, which in particular can be dangerous if
3119 	 * @oops_in_progress is set.
3120 	 */
3121 	cookie = console_srcu_read_lock();
3122 	for_each_console_srcu(c) {
3123 		if ((console_srcu_read_flags(c) & CON_ENABLED) && c->unblank) {
3124 			found_unblank = true;
3125 			break;
3126 		}
3127 	}
3128 	console_srcu_read_unlock(cookie);
3129 	if (!found_unblank)
3130 		return;
3131 
3132 	/*
3133 	 * Stop console printing because the unblank() callback may
3134 	 * assume the console is not within its write() callback.
3135 	 *
3136 	 * If @oops_in_progress is set, this may be an atomic context.
3137 	 * In that case, attempt a trylock as best-effort.
3138 	 */
3139 	if (oops_in_progress) {
3140 		/* Semaphores are not NMI-safe. */
3141 		if (in_nmi())
3142 			return;
3143 
3144 		/*
3145 		 * Attempting to trylock the console lock can deadlock
3146 		 * if another CPU was stopped while modifying the
3147 		 * semaphore. "Hope and pray" that this is not the
3148 		 * current situation.
3149 		 */
3150 		if (down_trylock_console_sem() != 0)
3151 			return;
3152 	} else
3153 		console_lock();
3154 
3155 	console_locked = 1;
3156 	console_may_schedule = 0;
3157 
3158 	cookie = console_srcu_read_lock();
3159 	for_each_console_srcu(c) {
3160 		if ((console_srcu_read_flags(c) & CON_ENABLED) && c->unblank)
3161 			c->unblank();
3162 	}
3163 	console_srcu_read_unlock(cookie);
3164 
3165 	console_unlock();
3166 
3167 	if (!oops_in_progress)
3168 		pr_flush(1000, true);
3169 }
3170 
3171 /**
3172  * console_flush_on_panic - flush console content on panic
3173  * @mode: flush all messages in buffer or just the pending ones
3174  *
3175  * Immediately output all pending messages no matter what.
3176  */
3177 void console_flush_on_panic(enum con_flush_mode mode)
3178 {
3179 	bool handover;
3180 	u64 next_seq;
3181 
3182 	/*
3183 	 * Ignore the console lock and flush out the messages. Attempting a
3184 	 * trylock would not be useful because:
3185 	 *
3186 	 *   - if it is contended, it must be ignored anyway
3187 	 *   - console_lock() and console_trylock() block and fail
3188 	 *     respectively in panic for non-panic CPUs
3189 	 *   - semaphores are not NMI-safe
3190 	 */
3191 
3192 	/*
3193 	 * If another context is holding the console lock,
3194 	 * @console_may_schedule might be set. Clear it so that
3195 	 * this context does not call cond_resched() while flushing.
3196 	 */
3197 	console_may_schedule = 0;
3198 
3199 	if (mode == CONSOLE_REPLAY_ALL) {
3200 		struct console *c;
3201 		int cookie;
3202 		u64 seq;
3203 
3204 		seq = prb_first_valid_seq(prb);
3205 
3206 		cookie = console_srcu_read_lock();
3207 		for_each_console_srcu(c) {
3208 			/*
3209 			 * This is an unsynchronized assignment, but the
3210 			 * kernel is in "hope and pray" mode anyway.
3211 			 */
3212 			c->seq = seq;
3213 		}
3214 		console_srcu_read_unlock(cookie);
3215 	}
3216 
3217 	console_flush_all(false, &next_seq, &handover);
3218 }
3219 
3220 /*
3221  * Return the console tty driver structure and its associated index
3222  */
3223 struct tty_driver *console_device(int *index)
3224 {
3225 	struct console *c;
3226 	struct tty_driver *driver = NULL;
3227 	int cookie;
3228 
3229 	/*
3230 	 * Take console_lock to serialize device() callback with
3231 	 * other console operations. For example, fg_console is
3232 	 * modified under console_lock when switching vt.
3233 	 */
3234 	console_lock();
3235 
3236 	cookie = console_srcu_read_lock();
3237 	for_each_console_srcu(c) {
3238 		if (!c->device)
3239 			continue;
3240 		driver = c->device(c, index);
3241 		if (driver)
3242 			break;
3243 	}
3244 	console_srcu_read_unlock(cookie);
3245 
3246 	console_unlock();
3247 	return driver;
3248 }
3249 
3250 /*
3251  * Prevent further output on the passed console device so that (for example)
3252  * serial drivers can disable console output before suspending a port, and can
3253  * re-enable output afterwards.
3254  */
3255 void console_stop(struct console *console)
3256 {
3257 	__pr_flush(console, 1000, true);
3258 	console_list_lock();
3259 	console_srcu_write_flags(console, console->flags & ~CON_ENABLED);
3260 	console_list_unlock();
3261 
3262 	/*
3263 	 * Ensure that all SRCU list walks have completed. All contexts must
3264 	 * be able to see that this console is disabled so that (for example)
3265 	 * the caller can suspend the port without risk of another context
3266 	 * using the port.
3267 	 */
3268 	synchronize_srcu(&console_srcu);
3269 }
3270 EXPORT_SYMBOL(console_stop);
3271 
3272 void console_start(struct console *console)
3273 {
3274 	console_list_lock();
3275 	console_srcu_write_flags(console, console->flags | CON_ENABLED);
3276 	console_list_unlock();
3277 	__pr_flush(console, 1000, true);
3278 }
3279 EXPORT_SYMBOL(console_start);
3280 
3281 static int __read_mostly keep_bootcon;
3282 
3283 static int __init keep_bootcon_setup(char *str)
3284 {
3285 	keep_bootcon = 1;
3286 	pr_info("debug: skip boot console de-registration.\n");
3287 
3288 	return 0;
3289 }
3290 
3291 early_param("keep_bootcon", keep_bootcon_setup);
3292 
3293 static int console_call_setup(struct console *newcon, char *options)
3294 {
3295 	int err;
3296 
3297 	if (!newcon->setup)
3298 		return 0;
3299 
3300 	/* Synchronize with possible boot console. */
3301 	console_lock();
3302 	err = newcon->setup(newcon, options);
3303 	console_unlock();
3304 
3305 	return err;
3306 }
3307 
3308 /*
3309  * This is called by register_console() to try to match
3310  * the newly registered console with any of the ones selected
3311  * by either the command line or add_preferred_console() and
3312  * setup/enable it.
3313  *
3314  * Care need to be taken with consoles that are statically
3315  * enabled such as netconsole
3316  */
3317 static int try_enable_preferred_console(struct console *newcon,
3318 					bool user_specified)
3319 {
3320 	struct console_cmdline *c;
3321 	int i, err;
3322 
3323 	for (i = 0, c = console_cmdline;
3324 	     i < MAX_CMDLINECONSOLES && c->name[0];
3325 	     i++, c++) {
3326 		if (c->user_specified != user_specified)
3327 			continue;
3328 		if (!newcon->match ||
3329 		    newcon->match(newcon, c->name, c->index, c->options) != 0) {
3330 			/* default matching */
3331 			BUILD_BUG_ON(sizeof(c->name) != sizeof(newcon->name));
3332 			if (strcmp(c->name, newcon->name) != 0)
3333 				continue;
3334 			if (newcon->index >= 0 &&
3335 			    newcon->index != c->index)
3336 				continue;
3337 			if (newcon->index < 0)
3338 				newcon->index = c->index;
3339 
3340 			if (_braille_register_console(newcon, c))
3341 				return 0;
3342 
3343 			err = console_call_setup(newcon, c->options);
3344 			if (err)
3345 				return err;
3346 		}
3347 		newcon->flags |= CON_ENABLED;
3348 		if (i == preferred_console)
3349 			newcon->flags |= CON_CONSDEV;
3350 		return 0;
3351 	}
3352 
3353 	/*
3354 	 * Some consoles, such as pstore and netconsole, can be enabled even
3355 	 * without matching. Accept the pre-enabled consoles only when match()
3356 	 * and setup() had a chance to be called.
3357 	 */
3358 	if (newcon->flags & CON_ENABLED && c->user_specified ==	user_specified)
3359 		return 0;
3360 
3361 	return -ENOENT;
3362 }
3363 
3364 /* Try to enable the console unconditionally */
3365 static void try_enable_default_console(struct console *newcon)
3366 {
3367 	if (newcon->index < 0)
3368 		newcon->index = 0;
3369 
3370 	if (console_call_setup(newcon, NULL) != 0)
3371 		return;
3372 
3373 	newcon->flags |= CON_ENABLED;
3374 
3375 	if (newcon->device)
3376 		newcon->flags |= CON_CONSDEV;
3377 }
3378 
3379 #define con_printk(lvl, con, fmt, ...)			\
3380 	printk(lvl pr_fmt("%sconsole [%s%d] " fmt),	\
3381 	       (con->flags & CON_BOOT) ? "boot" : "",	\
3382 	       con->name, con->index, ##__VA_ARGS__)
3383 
3384 static void console_init_seq(struct console *newcon, bool bootcon_registered)
3385 {
3386 	struct console *con;
3387 	bool handover;
3388 
3389 	if (newcon->flags & (CON_PRINTBUFFER | CON_BOOT)) {
3390 		/* Get a consistent copy of @syslog_seq. */
3391 		mutex_lock(&syslog_lock);
3392 		newcon->seq = syslog_seq;
3393 		mutex_unlock(&syslog_lock);
3394 	} else {
3395 		/* Begin with next message added to ringbuffer. */
3396 		newcon->seq = prb_next_seq(prb);
3397 
3398 		/*
3399 		 * If any enabled boot consoles are due to be unregistered
3400 		 * shortly, some may not be caught up and may be the same
3401 		 * device as @newcon. Since it is not known which boot console
3402 		 * is the same device, flush all consoles and, if necessary,
3403 		 * start with the message of the enabled boot console that is
3404 		 * the furthest behind.
3405 		 */
3406 		if (bootcon_registered && !keep_bootcon) {
3407 			/*
3408 			 * Hold the console_lock to stop console printing and
3409 			 * guarantee safe access to console->seq.
3410 			 */
3411 			console_lock();
3412 
3413 			/*
3414 			 * Flush all consoles and set the console to start at
3415 			 * the next unprinted sequence number.
3416 			 */
3417 			if (!console_flush_all(true, &newcon->seq, &handover)) {
3418 				/*
3419 				 * Flushing failed. Just choose the lowest
3420 				 * sequence of the enabled boot consoles.
3421 				 */
3422 
3423 				/*
3424 				 * If there was a handover, this context no
3425 				 * longer holds the console_lock.
3426 				 */
3427 				if (handover)
3428 					console_lock();
3429 
3430 				newcon->seq = prb_next_seq(prb);
3431 				for_each_console(con) {
3432 					if ((con->flags & CON_BOOT) &&
3433 					    (con->flags & CON_ENABLED) &&
3434 					    con->seq < newcon->seq) {
3435 						newcon->seq = con->seq;
3436 					}
3437 				}
3438 			}
3439 
3440 			console_unlock();
3441 		}
3442 	}
3443 }
3444 
3445 #define console_first()				\
3446 	hlist_entry(console_list.first, struct console, node)
3447 
3448 static int unregister_console_locked(struct console *console);
3449 
3450 /*
3451  * The console driver calls this routine during kernel initialization
3452  * to register the console printing procedure with printk() and to
3453  * print any messages that were printed by the kernel before the
3454  * console driver was initialized.
3455  *
3456  * This can happen pretty early during the boot process (because of
3457  * early_printk) - sometimes before setup_arch() completes - be careful
3458  * of what kernel features are used - they may not be initialised yet.
3459  *
3460  * There are two types of consoles - bootconsoles (early_printk) and
3461  * "real" consoles (everything which is not a bootconsole) which are
3462  * handled differently.
3463  *  - Any number of bootconsoles can be registered at any time.
3464  *  - As soon as a "real" console is registered, all bootconsoles
3465  *    will be unregistered automatically.
3466  *  - Once a "real" console is registered, any attempt to register a
3467  *    bootconsoles will be rejected
3468  */
3469 void register_console(struct console *newcon)
3470 {
3471 	struct console *con;
3472 	bool bootcon_registered = false;
3473 	bool realcon_registered = false;
3474 	int err;
3475 
3476 	console_list_lock();
3477 
3478 	for_each_console(con) {
3479 		if (WARN(con == newcon, "console '%s%d' already registered\n",
3480 					 con->name, con->index)) {
3481 			goto unlock;
3482 		}
3483 
3484 		if (con->flags & CON_BOOT)
3485 			bootcon_registered = true;
3486 		else
3487 			realcon_registered = true;
3488 	}
3489 
3490 	/* Do not register boot consoles when there already is a real one. */
3491 	if ((newcon->flags & CON_BOOT) && realcon_registered) {
3492 		pr_info("Too late to register bootconsole %s%d\n",
3493 			newcon->name, newcon->index);
3494 		goto unlock;
3495 	}
3496 
3497 	/*
3498 	 * See if we want to enable this console driver by default.
3499 	 *
3500 	 * Nope when a console is preferred by the command line, device
3501 	 * tree, or SPCR.
3502 	 *
3503 	 * The first real console with tty binding (driver) wins. More
3504 	 * consoles might get enabled before the right one is found.
3505 	 *
3506 	 * Note that a console with tty binding will have CON_CONSDEV
3507 	 * flag set and will be first in the list.
3508 	 */
3509 	if (preferred_console < 0) {
3510 		if (hlist_empty(&console_list) || !console_first()->device ||
3511 		    console_first()->flags & CON_BOOT) {
3512 			try_enable_default_console(newcon);
3513 		}
3514 	}
3515 
3516 	/* See if this console matches one we selected on the command line */
3517 	err = try_enable_preferred_console(newcon, true);
3518 
3519 	/* If not, try to match against the platform default(s) */
3520 	if (err == -ENOENT)
3521 		err = try_enable_preferred_console(newcon, false);
3522 
3523 	/* printk() messages are not printed to the Braille console. */
3524 	if (err || newcon->flags & CON_BRL)
3525 		goto unlock;
3526 
3527 	/*
3528 	 * If we have a bootconsole, and are switching to a real console,
3529 	 * don't print everything out again, since when the boot console, and
3530 	 * the real console are the same physical device, it's annoying to
3531 	 * see the beginning boot messages twice
3532 	 */
3533 	if (bootcon_registered &&
3534 	    ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV)) {
3535 		newcon->flags &= ~CON_PRINTBUFFER;
3536 	}
3537 
3538 	newcon->dropped = 0;
3539 	console_init_seq(newcon, bootcon_registered);
3540 
3541 	/*
3542 	 * Put this console in the list - keep the
3543 	 * preferred driver at the head of the list.
3544 	 */
3545 	if (hlist_empty(&console_list)) {
3546 		/* Ensure CON_CONSDEV is always set for the head. */
3547 		newcon->flags |= CON_CONSDEV;
3548 		hlist_add_head_rcu(&newcon->node, &console_list);
3549 
3550 	} else if (newcon->flags & CON_CONSDEV) {
3551 		/* Only the new head can have CON_CONSDEV set. */
3552 		console_srcu_write_flags(console_first(), console_first()->flags & ~CON_CONSDEV);
3553 		hlist_add_head_rcu(&newcon->node, &console_list);
3554 
3555 	} else {
3556 		hlist_add_behind_rcu(&newcon->node, console_list.first);
3557 	}
3558 
3559 	/*
3560 	 * No need to synchronize SRCU here! The caller does not rely
3561 	 * on all contexts being able to see the new console before
3562 	 * register_console() completes.
3563 	 */
3564 
3565 	console_sysfs_notify();
3566 
3567 	/*
3568 	 * By unregistering the bootconsoles after we enable the real console
3569 	 * we get the "console xxx enabled" message on all the consoles -
3570 	 * boot consoles, real consoles, etc - this is to ensure that end
3571 	 * users know there might be something in the kernel's log buffer that
3572 	 * went to the bootconsole (that they do not see on the real console)
3573 	 */
3574 	con_printk(KERN_INFO, newcon, "enabled\n");
3575 	if (bootcon_registered &&
3576 	    ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV) &&
3577 	    !keep_bootcon) {
3578 		struct hlist_node *tmp;
3579 
3580 		hlist_for_each_entry_safe(con, tmp, &console_list, node) {
3581 			if (con->flags & CON_BOOT)
3582 				unregister_console_locked(con);
3583 		}
3584 	}
3585 unlock:
3586 	console_list_unlock();
3587 }
3588 EXPORT_SYMBOL(register_console);
3589 
3590 /* Must be called under console_list_lock(). */
3591 static int unregister_console_locked(struct console *console)
3592 {
3593 	int res;
3594 
3595 	lockdep_assert_console_list_lock_held();
3596 
3597 	con_printk(KERN_INFO, console, "disabled\n");
3598 
3599 	res = _braille_unregister_console(console);
3600 	if (res < 0)
3601 		return res;
3602 	if (res > 0)
3603 		return 0;
3604 
3605 	/* Disable it unconditionally */
3606 	console_srcu_write_flags(console, console->flags & ~CON_ENABLED);
3607 
3608 	if (!console_is_registered_locked(console))
3609 		return -ENODEV;
3610 
3611 	hlist_del_init_rcu(&console->node);
3612 
3613 	/*
3614 	 * <HISTORICAL>
3615 	 * If this isn't the last console and it has CON_CONSDEV set, we
3616 	 * need to set it on the next preferred console.
3617 	 * </HISTORICAL>
3618 	 *
3619 	 * The above makes no sense as there is no guarantee that the next
3620 	 * console has any device attached. Oh well....
3621 	 */
3622 	if (!hlist_empty(&console_list) && console->flags & CON_CONSDEV)
3623 		console_srcu_write_flags(console_first(), console_first()->flags | CON_CONSDEV);
3624 
3625 	/*
3626 	 * Ensure that all SRCU list walks have completed. All contexts
3627 	 * must not be able to see this console in the list so that any
3628 	 * exit/cleanup routines can be performed safely.
3629 	 */
3630 	synchronize_srcu(&console_srcu);
3631 
3632 	console_sysfs_notify();
3633 
3634 	if (console->exit)
3635 		res = console->exit(console);
3636 
3637 	return res;
3638 }
3639 
3640 int unregister_console(struct console *console)
3641 {
3642 	int res;
3643 
3644 	console_list_lock();
3645 	res = unregister_console_locked(console);
3646 	console_list_unlock();
3647 	return res;
3648 }
3649 EXPORT_SYMBOL(unregister_console);
3650 
3651 /**
3652  * console_force_preferred_locked - force a registered console preferred
3653  * @con: The registered console to force preferred.
3654  *
3655  * Must be called under console_list_lock().
3656  */
3657 void console_force_preferred_locked(struct console *con)
3658 {
3659 	struct console *cur_pref_con;
3660 
3661 	if (!console_is_registered_locked(con))
3662 		return;
3663 
3664 	cur_pref_con = console_first();
3665 
3666 	/* Already preferred? */
3667 	if (cur_pref_con == con)
3668 		return;
3669 
3670 	/*
3671 	 * Delete, but do not re-initialize the entry. This allows the console
3672 	 * to continue to appear registered (via any hlist_unhashed_lockless()
3673 	 * checks), even though it was briefly removed from the console list.
3674 	 */
3675 	hlist_del_rcu(&con->node);
3676 
3677 	/*
3678 	 * Ensure that all SRCU list walks have completed so that the console
3679 	 * can be added to the beginning of the console list and its forward
3680 	 * list pointer can be re-initialized.
3681 	 */
3682 	synchronize_srcu(&console_srcu);
3683 
3684 	con->flags |= CON_CONSDEV;
3685 	WARN_ON(!con->device);
3686 
3687 	/* Only the new head can have CON_CONSDEV set. */
3688 	console_srcu_write_flags(cur_pref_con, cur_pref_con->flags & ~CON_CONSDEV);
3689 	hlist_add_head_rcu(&con->node, &console_list);
3690 }
3691 EXPORT_SYMBOL(console_force_preferred_locked);
3692 
3693 /*
3694  * Initialize the console device. This is called *early*, so
3695  * we can't necessarily depend on lots of kernel help here.
3696  * Just do some early initializations, and do the complex setup
3697  * later.
3698  */
3699 void __init console_init(void)
3700 {
3701 	int ret;
3702 	initcall_t call;
3703 	initcall_entry_t *ce;
3704 
3705 	/* Setup the default TTY line discipline. */
3706 	n_tty_init();
3707 
3708 	/*
3709 	 * set up the console device so that later boot sequences can
3710 	 * inform about problems etc..
3711 	 */
3712 	ce = __con_initcall_start;
3713 	trace_initcall_level("console");
3714 	while (ce < __con_initcall_end) {
3715 		call = initcall_from_entry(ce);
3716 		trace_initcall_start(call);
3717 		ret = call();
3718 		trace_initcall_finish(call, ret);
3719 		ce++;
3720 	}
3721 }
3722 
3723 /*
3724  * Some boot consoles access data that is in the init section and which will
3725  * be discarded after the initcalls have been run. To make sure that no code
3726  * will access this data, unregister the boot consoles in a late initcall.
3727  *
3728  * If for some reason, such as deferred probe or the driver being a loadable
3729  * module, the real console hasn't registered yet at this point, there will
3730  * be a brief interval in which no messages are logged to the console, which
3731  * makes it difficult to diagnose problems that occur during this time.
3732  *
3733  * To mitigate this problem somewhat, only unregister consoles whose memory
3734  * intersects with the init section. Note that all other boot consoles will
3735  * get unregistered when the real preferred console is registered.
3736  */
3737 static int __init printk_late_init(void)
3738 {
3739 	struct hlist_node *tmp;
3740 	struct console *con;
3741 	int ret;
3742 
3743 	console_list_lock();
3744 	hlist_for_each_entry_safe(con, tmp, &console_list, node) {
3745 		if (!(con->flags & CON_BOOT))
3746 			continue;
3747 
3748 		/* Check addresses that might be used for enabled consoles. */
3749 		if (init_section_intersects(con, sizeof(*con)) ||
3750 		    init_section_contains(con->write, 0) ||
3751 		    init_section_contains(con->read, 0) ||
3752 		    init_section_contains(con->device, 0) ||
3753 		    init_section_contains(con->unblank, 0) ||
3754 		    init_section_contains(con->data, 0)) {
3755 			/*
3756 			 * Please, consider moving the reported consoles out
3757 			 * of the init section.
3758 			 */
3759 			pr_warn("bootconsole [%s%d] uses init memory and must be disabled even before the real one is ready\n",
3760 				con->name, con->index);
3761 			unregister_console_locked(con);
3762 		}
3763 	}
3764 	console_list_unlock();
3765 
3766 	ret = cpuhp_setup_state_nocalls(CPUHP_PRINTK_DEAD, "printk:dead", NULL,
3767 					console_cpu_notify);
3768 	WARN_ON(ret < 0);
3769 	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "printk:online",
3770 					console_cpu_notify, NULL);
3771 	WARN_ON(ret < 0);
3772 	printk_sysctl_init();
3773 	return 0;
3774 }
3775 late_initcall(printk_late_init);
3776 
3777 #if defined CONFIG_PRINTK
3778 /* If @con is specified, only wait for that console. Otherwise wait for all. */
3779 static bool __pr_flush(struct console *con, int timeout_ms, bool reset_on_progress)
3780 {
3781 	int remaining = timeout_ms;
3782 	struct console *c;
3783 	u64 last_diff = 0;
3784 	u64 printk_seq;
3785 	int cookie;
3786 	u64 diff;
3787 	u64 seq;
3788 
3789 	might_sleep();
3790 
3791 	seq = prb_next_seq(prb);
3792 
3793 	/* Flush the consoles so that records up to @seq are printed. */
3794 	console_lock();
3795 	console_unlock();
3796 
3797 	for (;;) {
3798 		diff = 0;
3799 
3800 		/*
3801 		 * Hold the console_lock to guarantee safe access to
3802 		 * console->seq. Releasing console_lock flushes more
3803 		 * records in case @seq is still not printed on all
3804 		 * usable consoles.
3805 		 */
3806 		console_lock();
3807 
3808 		cookie = console_srcu_read_lock();
3809 		for_each_console_srcu(c) {
3810 			if (con && con != c)
3811 				continue;
3812 			/*
3813 			 * If consoles are not usable, it cannot be expected
3814 			 * that they make forward progress, so only increment
3815 			 * @diff for usable consoles.
3816 			 */
3817 			if (!console_is_usable(c))
3818 				continue;
3819 			printk_seq = c->seq;
3820 			if (printk_seq < seq)
3821 				diff += seq - printk_seq;
3822 		}
3823 		console_srcu_read_unlock(cookie);
3824 
3825 		if (diff != last_diff && reset_on_progress)
3826 			remaining = timeout_ms;
3827 
3828 		console_unlock();
3829 
3830 		/* Note: @diff is 0 if there are no usable consoles. */
3831 		if (diff == 0 || remaining == 0)
3832 			break;
3833 
3834 		if (remaining < 0) {
3835 			/* no timeout limit */
3836 			msleep(100);
3837 		} else if (remaining < 100) {
3838 			msleep(remaining);
3839 			remaining = 0;
3840 		} else {
3841 			msleep(100);
3842 			remaining -= 100;
3843 		}
3844 
3845 		last_diff = diff;
3846 	}
3847 
3848 	return (diff == 0);
3849 }
3850 
3851 /**
3852  * pr_flush() - Wait for printing threads to catch up.
3853  *
3854  * @timeout_ms:        The maximum time (in ms) to wait.
3855  * @reset_on_progress: Reset the timeout if forward progress is seen.
3856  *
3857  * A value of 0 for @timeout_ms means no waiting will occur. A value of -1
3858  * represents infinite waiting.
3859  *
3860  * If @reset_on_progress is true, the timeout will be reset whenever any
3861  * printer has been seen to make some forward progress.
3862  *
3863  * Context: Process context. May sleep while acquiring console lock.
3864  * Return: true if all usable printers are caught up.
3865  */
3866 static bool pr_flush(int timeout_ms, bool reset_on_progress)
3867 {
3868 	return __pr_flush(NULL, timeout_ms, reset_on_progress);
3869 }
3870 
3871 /*
3872  * Delayed printk version, for scheduler-internal messages:
3873  */
3874 #define PRINTK_PENDING_WAKEUP	0x01
3875 #define PRINTK_PENDING_OUTPUT	0x02
3876 
3877 static DEFINE_PER_CPU(int, printk_pending);
3878 
3879 static void wake_up_klogd_work_func(struct irq_work *irq_work)
3880 {
3881 	int pending = this_cpu_xchg(printk_pending, 0);
3882 
3883 	if (pending & PRINTK_PENDING_OUTPUT) {
3884 		/* If trylock fails, someone else is doing the printing */
3885 		if (console_trylock())
3886 			console_unlock();
3887 	}
3888 
3889 	if (pending & PRINTK_PENDING_WAKEUP)
3890 		wake_up_interruptible(&log_wait);
3891 }
3892 
3893 static DEFINE_PER_CPU(struct irq_work, wake_up_klogd_work) =
3894 	IRQ_WORK_INIT_LAZY(wake_up_klogd_work_func);
3895 
3896 static void __wake_up_klogd(int val)
3897 {
3898 	if (!printk_percpu_data_ready())
3899 		return;
3900 
3901 	preempt_disable();
3902 	/*
3903 	 * Guarantee any new records can be seen by tasks preparing to wait
3904 	 * before this context checks if the wait queue is empty.
3905 	 *
3906 	 * The full memory barrier within wq_has_sleeper() pairs with the full
3907 	 * memory barrier within set_current_state() of
3908 	 * prepare_to_wait_event(), which is called after ___wait_event() adds
3909 	 * the waiter but before it has checked the wait condition.
3910 	 *
3911 	 * This pairs with devkmsg_read:A and syslog_print:A.
3912 	 */
3913 	if (wq_has_sleeper(&log_wait) || /* LMM(__wake_up_klogd:A) */
3914 	    (val & PRINTK_PENDING_OUTPUT)) {
3915 		this_cpu_or(printk_pending, val);
3916 		irq_work_queue(this_cpu_ptr(&wake_up_klogd_work));
3917 	}
3918 	preempt_enable();
3919 }
3920 
3921 /**
3922  * wake_up_klogd - Wake kernel logging daemon
3923  *
3924  * Use this function when new records have been added to the ringbuffer
3925  * and the console printing of those records has already occurred or is
3926  * known to be handled by some other context. This function will only
3927  * wake the logging daemon.
3928  *
3929  * Context: Any context.
3930  */
3931 void wake_up_klogd(void)
3932 {
3933 	__wake_up_klogd(PRINTK_PENDING_WAKEUP);
3934 }
3935 
3936 /**
3937  * defer_console_output - Wake kernel logging daemon and trigger
3938  *	console printing in a deferred context
3939  *
3940  * Use this function when new records have been added to the ringbuffer,
3941  * this context is responsible for console printing those records, but
3942  * the current context is not allowed to perform the console printing.
3943  * Trigger an irq_work context to perform the console printing. This
3944  * function also wakes the logging daemon.
3945  *
3946  * Context: Any context.
3947  */
3948 void defer_console_output(void)
3949 {
3950 	/*
3951 	 * New messages may have been added directly to the ringbuffer
3952 	 * using vprintk_store(), so wake any waiters as well.
3953 	 */
3954 	__wake_up_klogd(PRINTK_PENDING_WAKEUP | PRINTK_PENDING_OUTPUT);
3955 }
3956 
3957 void printk_trigger_flush(void)
3958 {
3959 	defer_console_output();
3960 }
3961 
3962 int vprintk_deferred(const char *fmt, va_list args)
3963 {
3964 	return vprintk_emit(0, LOGLEVEL_SCHED, NULL, fmt, args);
3965 }
3966 
3967 int _printk_deferred(const char *fmt, ...)
3968 {
3969 	va_list args;
3970 	int r;
3971 
3972 	va_start(args, fmt);
3973 	r = vprintk_deferred(fmt, args);
3974 	va_end(args);
3975 
3976 	return r;
3977 }
3978 
3979 /*
3980  * printk rate limiting, lifted from the networking subsystem.
3981  *
3982  * This enforces a rate limit: not more than 10 kernel messages
3983  * every 5s to make a denial-of-service attack impossible.
3984  */
3985 DEFINE_RATELIMIT_STATE(printk_ratelimit_state, 5 * HZ, 10);
3986 
3987 int __printk_ratelimit(const char *func)
3988 {
3989 	return ___ratelimit(&printk_ratelimit_state, func);
3990 }
3991 EXPORT_SYMBOL(__printk_ratelimit);
3992 
3993 /**
3994  * printk_timed_ratelimit - caller-controlled printk ratelimiting
3995  * @caller_jiffies: pointer to caller's state
3996  * @interval_msecs: minimum interval between prints
3997  *
3998  * printk_timed_ratelimit() returns true if more than @interval_msecs
3999  * milliseconds have elapsed since the last time printk_timed_ratelimit()
4000  * returned true.
4001  */
4002 bool printk_timed_ratelimit(unsigned long *caller_jiffies,
4003 			unsigned int interval_msecs)
4004 {
4005 	unsigned long elapsed = jiffies - *caller_jiffies;
4006 
4007 	if (*caller_jiffies && elapsed <= msecs_to_jiffies(interval_msecs))
4008 		return false;
4009 
4010 	*caller_jiffies = jiffies;
4011 	return true;
4012 }
4013 EXPORT_SYMBOL(printk_timed_ratelimit);
4014 
4015 static DEFINE_SPINLOCK(dump_list_lock);
4016 static LIST_HEAD(dump_list);
4017 
4018 /**
4019  * kmsg_dump_register - register a kernel log dumper.
4020  * @dumper: pointer to the kmsg_dumper structure
4021  *
4022  * Adds a kernel log dumper to the system. The dump callback in the
4023  * structure will be called when the kernel oopses or panics and must be
4024  * set. Returns zero on success and %-EINVAL or %-EBUSY otherwise.
4025  */
4026 int kmsg_dump_register(struct kmsg_dumper *dumper)
4027 {
4028 	unsigned long flags;
4029 	int err = -EBUSY;
4030 
4031 	/* The dump callback needs to be set */
4032 	if (!dumper->dump)
4033 		return -EINVAL;
4034 
4035 	spin_lock_irqsave(&dump_list_lock, flags);
4036 	/* Don't allow registering multiple times */
4037 	if (!dumper->registered) {
4038 		dumper->registered = 1;
4039 		list_add_tail_rcu(&dumper->list, &dump_list);
4040 		err = 0;
4041 	}
4042 	spin_unlock_irqrestore(&dump_list_lock, flags);
4043 
4044 	return err;
4045 }
4046 EXPORT_SYMBOL_GPL(kmsg_dump_register);
4047 
4048 /**
4049  * kmsg_dump_unregister - unregister a kmsg dumper.
4050  * @dumper: pointer to the kmsg_dumper structure
4051  *
4052  * Removes a dump device from the system. Returns zero on success and
4053  * %-EINVAL otherwise.
4054  */
4055 int kmsg_dump_unregister(struct kmsg_dumper *dumper)
4056 {
4057 	unsigned long flags;
4058 	int err = -EINVAL;
4059 
4060 	spin_lock_irqsave(&dump_list_lock, flags);
4061 	if (dumper->registered) {
4062 		dumper->registered = 0;
4063 		list_del_rcu(&dumper->list);
4064 		err = 0;
4065 	}
4066 	spin_unlock_irqrestore(&dump_list_lock, flags);
4067 	synchronize_rcu();
4068 
4069 	return err;
4070 }
4071 EXPORT_SYMBOL_GPL(kmsg_dump_unregister);
4072 
4073 static bool always_kmsg_dump;
4074 module_param_named(always_kmsg_dump, always_kmsg_dump, bool, S_IRUGO | S_IWUSR);
4075 
4076 const char *kmsg_dump_reason_str(enum kmsg_dump_reason reason)
4077 {
4078 	switch (reason) {
4079 	case KMSG_DUMP_PANIC:
4080 		return "Panic";
4081 	case KMSG_DUMP_OOPS:
4082 		return "Oops";
4083 	case KMSG_DUMP_EMERG:
4084 		return "Emergency";
4085 	case KMSG_DUMP_SHUTDOWN:
4086 		return "Shutdown";
4087 	default:
4088 		return "Unknown";
4089 	}
4090 }
4091 EXPORT_SYMBOL_GPL(kmsg_dump_reason_str);
4092 
4093 /**
4094  * kmsg_dump - dump kernel log to kernel message dumpers.
4095  * @reason: the reason (oops, panic etc) for dumping
4096  *
4097  * Call each of the registered dumper's dump() callback, which can
4098  * retrieve the kmsg records with kmsg_dump_get_line() or
4099  * kmsg_dump_get_buffer().
4100  */
4101 void kmsg_dump(enum kmsg_dump_reason reason)
4102 {
4103 	struct kmsg_dumper *dumper;
4104 
4105 	rcu_read_lock();
4106 	list_for_each_entry_rcu(dumper, &dump_list, list) {
4107 		enum kmsg_dump_reason max_reason = dumper->max_reason;
4108 
4109 		/*
4110 		 * If client has not provided a specific max_reason, default
4111 		 * to KMSG_DUMP_OOPS, unless always_kmsg_dump was set.
4112 		 */
4113 		if (max_reason == KMSG_DUMP_UNDEF) {
4114 			max_reason = always_kmsg_dump ? KMSG_DUMP_MAX :
4115 							KMSG_DUMP_OOPS;
4116 		}
4117 		if (reason > max_reason)
4118 			continue;
4119 
4120 		/* invoke dumper which will iterate over records */
4121 		dumper->dump(dumper, reason);
4122 	}
4123 	rcu_read_unlock();
4124 }
4125 
4126 /**
4127  * kmsg_dump_get_line - retrieve one kmsg log line
4128  * @iter: kmsg dump iterator
4129  * @syslog: include the "<4>" prefixes
4130  * @line: buffer to copy the line to
4131  * @size: maximum size of the buffer
4132  * @len: length of line placed into buffer
4133  *
4134  * Start at the beginning of the kmsg buffer, with the oldest kmsg
4135  * record, and copy one record into the provided buffer.
4136  *
4137  * Consecutive calls will return the next available record moving
4138  * towards the end of the buffer with the youngest messages.
4139  *
4140  * A return value of FALSE indicates that there are no more records to
4141  * read.
4142  */
4143 bool kmsg_dump_get_line(struct kmsg_dump_iter *iter, bool syslog,
4144 			char *line, size_t size, size_t *len)
4145 {
4146 	u64 min_seq = latched_seq_read_nolock(&clear_seq);
4147 	struct printk_info info;
4148 	unsigned int line_count;
4149 	struct printk_record r;
4150 	size_t l = 0;
4151 	bool ret = false;
4152 
4153 	if (iter->cur_seq < min_seq)
4154 		iter->cur_seq = min_seq;
4155 
4156 	prb_rec_init_rd(&r, &info, line, size);
4157 
4158 	/* Read text or count text lines? */
4159 	if (line) {
4160 		if (!prb_read_valid(prb, iter->cur_seq, &r))
4161 			goto out;
4162 		l = record_print_text(&r, syslog, printk_time);
4163 	} else {
4164 		if (!prb_read_valid_info(prb, iter->cur_seq,
4165 					 &info, &line_count)) {
4166 			goto out;
4167 		}
4168 		l = get_record_print_text_size(&info, line_count, syslog,
4169 					       printk_time);
4170 
4171 	}
4172 
4173 	iter->cur_seq = r.info->seq + 1;
4174 	ret = true;
4175 out:
4176 	if (len)
4177 		*len = l;
4178 	return ret;
4179 }
4180 EXPORT_SYMBOL_GPL(kmsg_dump_get_line);
4181 
4182 /**
4183  * kmsg_dump_get_buffer - copy kmsg log lines
4184  * @iter: kmsg dump iterator
4185  * @syslog: include the "<4>" prefixes
4186  * @buf: buffer to copy the line to
4187  * @size: maximum size of the buffer
4188  * @len_out: length of line placed into buffer
4189  *
4190  * Start at the end of the kmsg buffer and fill the provided buffer
4191  * with as many of the *youngest* kmsg records that fit into it.
4192  * If the buffer is large enough, all available kmsg records will be
4193  * copied with a single call.
4194  *
4195  * Consecutive calls will fill the buffer with the next block of
4196  * available older records, not including the earlier retrieved ones.
4197  *
4198  * A return value of FALSE indicates that there are no more records to
4199  * read.
4200  */
4201 bool kmsg_dump_get_buffer(struct kmsg_dump_iter *iter, bool syslog,
4202 			  char *buf, size_t size, size_t *len_out)
4203 {
4204 	u64 min_seq = latched_seq_read_nolock(&clear_seq);
4205 	struct printk_info info;
4206 	struct printk_record r;
4207 	u64 seq;
4208 	u64 next_seq;
4209 	size_t len = 0;
4210 	bool ret = false;
4211 	bool time = printk_time;
4212 
4213 	if (!buf || !size)
4214 		goto out;
4215 
4216 	if (iter->cur_seq < min_seq)
4217 		iter->cur_seq = min_seq;
4218 
4219 	if (prb_read_valid_info(prb, iter->cur_seq, &info, NULL)) {
4220 		if (info.seq != iter->cur_seq) {
4221 			/* messages are gone, move to first available one */
4222 			iter->cur_seq = info.seq;
4223 		}
4224 	}
4225 
4226 	/* last entry */
4227 	if (iter->cur_seq >= iter->next_seq)
4228 		goto out;
4229 
4230 	/*
4231 	 * Find first record that fits, including all following records,
4232 	 * into the user-provided buffer for this dump. Pass in size-1
4233 	 * because this function (by way of record_print_text()) will
4234 	 * not write more than size-1 bytes of text into @buf.
4235 	 */
4236 	seq = find_first_fitting_seq(iter->cur_seq, iter->next_seq,
4237 				     size - 1, syslog, time);
4238 
4239 	/*
4240 	 * Next kmsg_dump_get_buffer() invocation will dump block of
4241 	 * older records stored right before this one.
4242 	 */
4243 	next_seq = seq;
4244 
4245 	prb_rec_init_rd(&r, &info, buf, size);
4246 
4247 	len = 0;
4248 	prb_for_each_record(seq, prb, seq, &r) {
4249 		if (r.info->seq >= iter->next_seq)
4250 			break;
4251 
4252 		len += record_print_text(&r, syslog, time);
4253 
4254 		/* Adjust record to store to remaining buffer space. */
4255 		prb_rec_init_rd(&r, &info, buf + len, size - len);
4256 	}
4257 
4258 	iter->next_seq = next_seq;
4259 	ret = true;
4260 out:
4261 	if (len_out)
4262 		*len_out = len;
4263 	return ret;
4264 }
4265 EXPORT_SYMBOL_GPL(kmsg_dump_get_buffer);
4266 
4267 /**
4268  * kmsg_dump_rewind - reset the iterator
4269  * @iter: kmsg dump iterator
4270  *
4271  * Reset the dumper's iterator so that kmsg_dump_get_line() and
4272  * kmsg_dump_get_buffer() can be called again and used multiple
4273  * times within the same dumper.dump() callback.
4274  */
4275 void kmsg_dump_rewind(struct kmsg_dump_iter *iter)
4276 {
4277 	iter->cur_seq = latched_seq_read_nolock(&clear_seq);
4278 	iter->next_seq = prb_next_seq(prb);
4279 }
4280 EXPORT_SYMBOL_GPL(kmsg_dump_rewind);
4281 
4282 #endif
4283 
4284 #ifdef CONFIG_SMP
4285 static atomic_t printk_cpu_sync_owner = ATOMIC_INIT(-1);
4286 static atomic_t printk_cpu_sync_nested = ATOMIC_INIT(0);
4287 
4288 /**
4289  * __printk_cpu_sync_wait() - Busy wait until the printk cpu-reentrant
4290  *                            spinning lock is not owned by any CPU.
4291  *
4292  * Context: Any context.
4293  */
4294 void __printk_cpu_sync_wait(void)
4295 {
4296 	do {
4297 		cpu_relax();
4298 	} while (atomic_read(&printk_cpu_sync_owner) != -1);
4299 }
4300 EXPORT_SYMBOL(__printk_cpu_sync_wait);
4301 
4302 /**
4303  * __printk_cpu_sync_try_get() - Try to acquire the printk cpu-reentrant
4304  *                               spinning lock.
4305  *
4306  * If no processor has the lock, the calling processor takes the lock and
4307  * becomes the owner. If the calling processor is already the owner of the
4308  * lock, this function succeeds immediately.
4309  *
4310  * Context: Any context. Expects interrupts to be disabled.
4311  * Return: 1 on success, otherwise 0.
4312  */
4313 int __printk_cpu_sync_try_get(void)
4314 {
4315 	int cpu;
4316 	int old;
4317 
4318 	cpu = smp_processor_id();
4319 
4320 	/*
4321 	 * Guarantee loads and stores from this CPU when it is the lock owner
4322 	 * are _not_ visible to the previous lock owner. This pairs with
4323 	 * __printk_cpu_sync_put:B.
4324 	 *
4325 	 * Memory barrier involvement:
4326 	 *
4327 	 * If __printk_cpu_sync_try_get:A reads from __printk_cpu_sync_put:B,
4328 	 * then __printk_cpu_sync_put:A can never read from
4329 	 * __printk_cpu_sync_try_get:B.
4330 	 *
4331 	 * Relies on:
4332 	 *
4333 	 * RELEASE from __printk_cpu_sync_put:A to __printk_cpu_sync_put:B
4334 	 * of the previous CPU
4335 	 *    matching
4336 	 * ACQUIRE from __printk_cpu_sync_try_get:A to
4337 	 * __printk_cpu_sync_try_get:B of this CPU
4338 	 */
4339 	old = atomic_cmpxchg_acquire(&printk_cpu_sync_owner, -1,
4340 				     cpu); /* LMM(__printk_cpu_sync_try_get:A) */
4341 	if (old == -1) {
4342 		/*
4343 		 * This CPU is now the owner and begins loading/storing
4344 		 * data: LMM(__printk_cpu_sync_try_get:B)
4345 		 */
4346 		return 1;
4347 
4348 	} else if (old == cpu) {
4349 		/* This CPU is already the owner. */
4350 		atomic_inc(&printk_cpu_sync_nested);
4351 		return 1;
4352 	}
4353 
4354 	return 0;
4355 }
4356 EXPORT_SYMBOL(__printk_cpu_sync_try_get);
4357 
4358 /**
4359  * __printk_cpu_sync_put() - Release the printk cpu-reentrant spinning lock.
4360  *
4361  * The calling processor must be the owner of the lock.
4362  *
4363  * Context: Any context. Expects interrupts to be disabled.
4364  */
4365 void __printk_cpu_sync_put(void)
4366 {
4367 	if (atomic_read(&printk_cpu_sync_nested)) {
4368 		atomic_dec(&printk_cpu_sync_nested);
4369 		return;
4370 	}
4371 
4372 	/*
4373 	 * This CPU is finished loading/storing data:
4374 	 * LMM(__printk_cpu_sync_put:A)
4375 	 */
4376 
4377 	/*
4378 	 * Guarantee loads and stores from this CPU when it was the
4379 	 * lock owner are visible to the next lock owner. This pairs
4380 	 * with __printk_cpu_sync_try_get:A.
4381 	 *
4382 	 * Memory barrier involvement:
4383 	 *
4384 	 * If __printk_cpu_sync_try_get:A reads from __printk_cpu_sync_put:B,
4385 	 * then __printk_cpu_sync_try_get:B reads from __printk_cpu_sync_put:A.
4386 	 *
4387 	 * Relies on:
4388 	 *
4389 	 * RELEASE from __printk_cpu_sync_put:A to __printk_cpu_sync_put:B
4390 	 * of this CPU
4391 	 *    matching
4392 	 * ACQUIRE from __printk_cpu_sync_try_get:A to
4393 	 * __printk_cpu_sync_try_get:B of the next CPU
4394 	 */
4395 	atomic_set_release(&printk_cpu_sync_owner,
4396 			   -1); /* LMM(__printk_cpu_sync_put:B) */
4397 }
4398 EXPORT_SYMBOL(__printk_cpu_sync_put);
4399 #endif /* CONFIG_SMP */
4400