xref: /openbmc/linux/kernel/printk/printk.c (revision 736b378b29d89c8c3567fa4b2e948be5568aebb8)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/printk.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  *
7  * Modified to make sys_syslog() more flexible: added commands to
8  * return the last 4k of kernel messages, regardless of whether
9  * they've been read or not.  Added option to suppress kernel printk's
10  * to the console.  Added hook for sending the console messages
11  * elsewhere, in preparation for a serial line console (someday).
12  * Ted Ts'o, 2/11/93.
13  * Modified for sysctl support, 1/8/97, Chris Horn.
14  * Fixed SMP synchronization, 08/08/99, Manfred Spraul
15  *     manfred@colorfullife.com
16  * Rewrote bits to get rid of console_lock
17  *	01Mar01 Andrew Morton
18  */
19 
20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
21 
22 #include <linux/kernel.h>
23 #include <linux/mm.h>
24 #include <linux/tty.h>
25 #include <linux/tty_driver.h>
26 #include <linux/console.h>
27 #include <linux/init.h>
28 #include <linux/jiffies.h>
29 #include <linux/nmi.h>
30 #include <linux/module.h>
31 #include <linux/moduleparam.h>
32 #include <linux/delay.h>
33 #include <linux/smp.h>
34 #include <linux/security.h>
35 #include <linux/memblock.h>
36 #include <linux/syscalls.h>
37 #include <linux/crash_core.h>
38 #include <linux/ratelimit.h>
39 #include <linux/kmsg_dump.h>
40 #include <linux/syslog.h>
41 #include <linux/cpu.h>
42 #include <linux/rculist.h>
43 #include <linux/poll.h>
44 #include <linux/irq_work.h>
45 #include <linux/ctype.h>
46 #include <linux/uio.h>
47 #include <linux/sched/clock.h>
48 #include <linux/sched/debug.h>
49 #include <linux/sched/task_stack.h>
50 
51 #include <linux/uaccess.h>
52 #include <asm/sections.h>
53 
54 #include <trace/events/initcall.h>
55 #define CREATE_TRACE_POINTS
56 #include <trace/events/printk.h>
57 
58 #include "printk_ringbuffer.h"
59 #include "console_cmdline.h"
60 #include "braille.h"
61 #include "internal.h"
62 
63 int console_printk[4] = {
64 	CONSOLE_LOGLEVEL_DEFAULT,	/* console_loglevel */
65 	MESSAGE_LOGLEVEL_DEFAULT,	/* default_message_loglevel */
66 	CONSOLE_LOGLEVEL_MIN,		/* minimum_console_loglevel */
67 	CONSOLE_LOGLEVEL_DEFAULT,	/* default_console_loglevel */
68 };
69 EXPORT_SYMBOL_GPL(console_printk);
70 
71 atomic_t ignore_console_lock_warning __read_mostly = ATOMIC_INIT(0);
72 EXPORT_SYMBOL(ignore_console_lock_warning);
73 
74 /*
75  * Low level drivers may need that to know if they can schedule in
76  * their unblank() callback or not. So let's export it.
77  */
78 int oops_in_progress;
79 EXPORT_SYMBOL(oops_in_progress);
80 
81 /*
82  * console_mutex protects console_list updates and console->flags updates.
83  * The flags are synchronized only for consoles that are registered, i.e.
84  * accessible via the console list.
85  */
86 static DEFINE_MUTEX(console_mutex);
87 
88 /*
89  * console_sem protects updates to console->seq and console_suspended,
90  * and also provides serialization for console printing.
91  */
92 static DEFINE_SEMAPHORE(console_sem);
93 HLIST_HEAD(console_list);
94 EXPORT_SYMBOL_GPL(console_list);
95 DEFINE_STATIC_SRCU(console_srcu);
96 
97 /*
98  * System may need to suppress printk message under certain
99  * circumstances, like after kernel panic happens.
100  */
101 int __read_mostly suppress_printk;
102 
103 /*
104  * During panic, heavy printk by other CPUs can delay the
105  * panic and risk deadlock on console resources.
106  */
107 static int __read_mostly suppress_panic_printk;
108 
109 #ifdef CONFIG_LOCKDEP
110 static struct lockdep_map console_lock_dep_map = {
111 	.name = "console_lock"
112 };
113 
114 void lockdep_assert_console_list_lock_held(void)
115 {
116 	lockdep_assert_held(&console_mutex);
117 }
118 EXPORT_SYMBOL(lockdep_assert_console_list_lock_held);
119 #endif
120 
121 #ifdef CONFIG_DEBUG_LOCK_ALLOC
122 bool console_srcu_read_lock_is_held(void)
123 {
124 	return srcu_read_lock_held(&console_srcu);
125 }
126 EXPORT_SYMBOL(console_srcu_read_lock_is_held);
127 #endif
128 
129 enum devkmsg_log_bits {
130 	__DEVKMSG_LOG_BIT_ON = 0,
131 	__DEVKMSG_LOG_BIT_OFF,
132 	__DEVKMSG_LOG_BIT_LOCK,
133 };
134 
135 enum devkmsg_log_masks {
136 	DEVKMSG_LOG_MASK_ON             = BIT(__DEVKMSG_LOG_BIT_ON),
137 	DEVKMSG_LOG_MASK_OFF            = BIT(__DEVKMSG_LOG_BIT_OFF),
138 	DEVKMSG_LOG_MASK_LOCK           = BIT(__DEVKMSG_LOG_BIT_LOCK),
139 };
140 
141 /* Keep both the 'on' and 'off' bits clear, i.e. ratelimit by default: */
142 #define DEVKMSG_LOG_MASK_DEFAULT	0
143 
144 static unsigned int __read_mostly devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT;
145 
146 static int __control_devkmsg(char *str)
147 {
148 	size_t len;
149 
150 	if (!str)
151 		return -EINVAL;
152 
153 	len = str_has_prefix(str, "on");
154 	if (len) {
155 		devkmsg_log = DEVKMSG_LOG_MASK_ON;
156 		return len;
157 	}
158 
159 	len = str_has_prefix(str, "off");
160 	if (len) {
161 		devkmsg_log = DEVKMSG_LOG_MASK_OFF;
162 		return len;
163 	}
164 
165 	len = str_has_prefix(str, "ratelimit");
166 	if (len) {
167 		devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT;
168 		return len;
169 	}
170 
171 	return -EINVAL;
172 }
173 
174 static int __init control_devkmsg(char *str)
175 {
176 	if (__control_devkmsg(str) < 0) {
177 		pr_warn("printk.devkmsg: bad option string '%s'\n", str);
178 		return 1;
179 	}
180 
181 	/*
182 	 * Set sysctl string accordingly:
183 	 */
184 	if (devkmsg_log == DEVKMSG_LOG_MASK_ON)
185 		strcpy(devkmsg_log_str, "on");
186 	else if (devkmsg_log == DEVKMSG_LOG_MASK_OFF)
187 		strcpy(devkmsg_log_str, "off");
188 	/* else "ratelimit" which is set by default. */
189 
190 	/*
191 	 * Sysctl cannot change it anymore. The kernel command line setting of
192 	 * this parameter is to force the setting to be permanent throughout the
193 	 * runtime of the system. This is a precation measure against userspace
194 	 * trying to be a smarta** and attempting to change it up on us.
195 	 */
196 	devkmsg_log |= DEVKMSG_LOG_MASK_LOCK;
197 
198 	return 1;
199 }
200 __setup("printk.devkmsg=", control_devkmsg);
201 
202 char devkmsg_log_str[DEVKMSG_STR_MAX_SIZE] = "ratelimit";
203 #if defined(CONFIG_PRINTK) && defined(CONFIG_SYSCTL)
204 int devkmsg_sysctl_set_loglvl(struct ctl_table *table, int write,
205 			      void *buffer, size_t *lenp, loff_t *ppos)
206 {
207 	char old_str[DEVKMSG_STR_MAX_SIZE];
208 	unsigned int old;
209 	int err;
210 
211 	if (write) {
212 		if (devkmsg_log & DEVKMSG_LOG_MASK_LOCK)
213 			return -EINVAL;
214 
215 		old = devkmsg_log;
216 		strncpy(old_str, devkmsg_log_str, DEVKMSG_STR_MAX_SIZE);
217 	}
218 
219 	err = proc_dostring(table, write, buffer, lenp, ppos);
220 	if (err)
221 		return err;
222 
223 	if (write) {
224 		err = __control_devkmsg(devkmsg_log_str);
225 
226 		/*
227 		 * Do not accept an unknown string OR a known string with
228 		 * trailing crap...
229 		 */
230 		if (err < 0 || (err + 1 != *lenp)) {
231 
232 			/* ... and restore old setting. */
233 			devkmsg_log = old;
234 			strncpy(devkmsg_log_str, old_str, DEVKMSG_STR_MAX_SIZE);
235 
236 			return -EINVAL;
237 		}
238 	}
239 
240 	return 0;
241 }
242 #endif /* CONFIG_PRINTK && CONFIG_SYSCTL */
243 
244 /**
245  * console_list_lock - Lock the console list
246  *
247  * For console list or console->flags updates
248  */
249 void console_list_lock(void)
250 {
251 	/*
252 	 * In unregister_console() and console_force_preferred_locked(),
253 	 * synchronize_srcu() is called with the console_list_lock held.
254 	 * Therefore it is not allowed that the console_list_lock is taken
255 	 * with the srcu_lock held.
256 	 *
257 	 * Detecting if this context is really in the read-side critical
258 	 * section is only possible if the appropriate debug options are
259 	 * enabled.
260 	 */
261 	WARN_ON_ONCE(debug_lockdep_rcu_enabled() &&
262 		     srcu_read_lock_held(&console_srcu));
263 
264 	mutex_lock(&console_mutex);
265 }
266 EXPORT_SYMBOL(console_list_lock);
267 
268 /**
269  * console_list_unlock - Unlock the console list
270  *
271  * Counterpart to console_list_lock()
272  */
273 void console_list_unlock(void)
274 {
275 	mutex_unlock(&console_mutex);
276 }
277 EXPORT_SYMBOL(console_list_unlock);
278 
279 /**
280  * console_srcu_read_lock - Register a new reader for the
281  *	SRCU-protected console list
282  *
283  * Use for_each_console_srcu() to iterate the console list
284  *
285  * Context: Any context.
286  * Return: A cookie to pass to console_srcu_read_unlock().
287  */
288 int console_srcu_read_lock(void)
289 {
290 	return srcu_read_lock_nmisafe(&console_srcu);
291 }
292 EXPORT_SYMBOL(console_srcu_read_lock);
293 
294 /**
295  * console_srcu_read_unlock - Unregister an old reader from
296  *	the SRCU-protected console list
297  * @cookie: cookie returned from console_srcu_read_lock()
298  *
299  * Counterpart to console_srcu_read_lock()
300  */
301 void console_srcu_read_unlock(int cookie)
302 {
303 	srcu_read_unlock_nmisafe(&console_srcu, cookie);
304 }
305 EXPORT_SYMBOL(console_srcu_read_unlock);
306 
307 /*
308  * Helper macros to handle lockdep when locking/unlocking console_sem. We use
309  * macros instead of functions so that _RET_IP_ contains useful information.
310  */
311 #define down_console_sem() do { \
312 	down(&console_sem);\
313 	mutex_acquire(&console_lock_dep_map, 0, 0, _RET_IP_);\
314 } while (0)
315 
316 static int __down_trylock_console_sem(unsigned long ip)
317 {
318 	int lock_failed;
319 	unsigned long flags;
320 
321 	/*
322 	 * Here and in __up_console_sem() we need to be in safe mode,
323 	 * because spindump/WARN/etc from under console ->lock will
324 	 * deadlock in printk()->down_trylock_console_sem() otherwise.
325 	 */
326 	printk_safe_enter_irqsave(flags);
327 	lock_failed = down_trylock(&console_sem);
328 	printk_safe_exit_irqrestore(flags);
329 
330 	if (lock_failed)
331 		return 1;
332 	mutex_acquire(&console_lock_dep_map, 0, 1, ip);
333 	return 0;
334 }
335 #define down_trylock_console_sem() __down_trylock_console_sem(_RET_IP_)
336 
337 static void __up_console_sem(unsigned long ip)
338 {
339 	unsigned long flags;
340 
341 	mutex_release(&console_lock_dep_map, ip);
342 
343 	printk_safe_enter_irqsave(flags);
344 	up(&console_sem);
345 	printk_safe_exit_irqrestore(flags);
346 }
347 #define up_console_sem() __up_console_sem(_RET_IP_)
348 
349 static bool panic_in_progress(void)
350 {
351 	return unlikely(atomic_read(&panic_cpu) != PANIC_CPU_INVALID);
352 }
353 
354 /*
355  * This is used for debugging the mess that is the VT code by
356  * keeping track if we have the console semaphore held. It's
357  * definitely not the perfect debug tool (we don't know if _WE_
358  * hold it and are racing, but it helps tracking those weird code
359  * paths in the console code where we end up in places I want
360  * locked without the console semaphore held).
361  */
362 static int console_locked, console_suspended;
363 
364 /*
365  *	Array of consoles built from command line options (console=)
366  */
367 
368 #define MAX_CMDLINECONSOLES 8
369 
370 static struct console_cmdline console_cmdline[MAX_CMDLINECONSOLES];
371 
372 static int preferred_console = -1;
373 int console_set_on_cmdline;
374 EXPORT_SYMBOL(console_set_on_cmdline);
375 
376 /* Flag: console code may call schedule() */
377 static int console_may_schedule;
378 
379 enum con_msg_format_flags {
380 	MSG_FORMAT_DEFAULT	= 0,
381 	MSG_FORMAT_SYSLOG	= (1 << 0),
382 };
383 
384 static int console_msg_format = MSG_FORMAT_DEFAULT;
385 
386 /*
387  * The printk log buffer consists of a sequenced collection of records, each
388  * containing variable length message text. Every record also contains its
389  * own meta-data (@info).
390  *
391  * Every record meta-data carries the timestamp in microseconds, as well as
392  * the standard userspace syslog level and syslog facility. The usual kernel
393  * messages use LOG_KERN; userspace-injected messages always carry a matching
394  * syslog facility, by default LOG_USER. The origin of every message can be
395  * reliably determined that way.
396  *
397  * The human readable log message of a record is available in @text, the
398  * length of the message text in @text_len. The stored message is not
399  * terminated.
400  *
401  * Optionally, a record can carry a dictionary of properties (key/value
402  * pairs), to provide userspace with a machine-readable message context.
403  *
404  * Examples for well-defined, commonly used property names are:
405  *   DEVICE=b12:8               device identifier
406  *                                b12:8         block dev_t
407  *                                c127:3        char dev_t
408  *                                n8            netdev ifindex
409  *                                +sound:card0  subsystem:devname
410  *   SUBSYSTEM=pci              driver-core subsystem name
411  *
412  * Valid characters in property names are [a-zA-Z0-9.-_]. Property names
413  * and values are terminated by a '\0' character.
414  *
415  * Example of record values:
416  *   record.text_buf                = "it's a line" (unterminated)
417  *   record.info.seq                = 56
418  *   record.info.ts_nsec            = 36863
419  *   record.info.text_len           = 11
420  *   record.info.facility           = 0 (LOG_KERN)
421  *   record.info.flags              = 0
422  *   record.info.level              = 3 (LOG_ERR)
423  *   record.info.caller_id          = 299 (task 299)
424  *   record.info.dev_info.subsystem = "pci" (terminated)
425  *   record.info.dev_info.device    = "+pci:0000:00:01.0" (terminated)
426  *
427  * The 'struct printk_info' buffer must never be directly exported to
428  * userspace, it is a kernel-private implementation detail that might
429  * need to be changed in the future, when the requirements change.
430  *
431  * /dev/kmsg exports the structured data in the following line format:
432  *   "<level>,<sequnum>,<timestamp>,<contflag>[,additional_values, ... ];<message text>\n"
433  *
434  * Users of the export format should ignore possible additional values
435  * separated by ',', and find the message after the ';' character.
436  *
437  * The optional key/value pairs are attached as continuation lines starting
438  * with a space character and terminated by a newline. All possible
439  * non-prinatable characters are escaped in the "\xff" notation.
440  */
441 
442 /* syslog_lock protects syslog_* variables and write access to clear_seq. */
443 static DEFINE_MUTEX(syslog_lock);
444 
445 #ifdef CONFIG_PRINTK
446 DECLARE_WAIT_QUEUE_HEAD(log_wait);
447 /* All 3 protected by @syslog_lock. */
448 /* the next printk record to read by syslog(READ) or /proc/kmsg */
449 static u64 syslog_seq;
450 static size_t syslog_partial;
451 static bool syslog_time;
452 
453 struct latched_seq {
454 	seqcount_latch_t	latch;
455 	u64			val[2];
456 };
457 
458 /*
459  * The next printk record to read after the last 'clear' command. There are
460  * two copies (updated with seqcount_latch) so that reads can locklessly
461  * access a valid value. Writers are synchronized by @syslog_lock.
462  */
463 static struct latched_seq clear_seq = {
464 	.latch		= SEQCNT_LATCH_ZERO(clear_seq.latch),
465 	.val[0]		= 0,
466 	.val[1]		= 0,
467 };
468 
469 #define LOG_LEVEL(v)		((v) & 0x07)
470 #define LOG_FACILITY(v)		((v) >> 3 & 0xff)
471 
472 /* record buffer */
473 #define LOG_ALIGN __alignof__(unsigned long)
474 #define __LOG_BUF_LEN (1 << CONFIG_LOG_BUF_SHIFT)
475 #define LOG_BUF_LEN_MAX (u32)(1 << 31)
476 static char __log_buf[__LOG_BUF_LEN] __aligned(LOG_ALIGN);
477 static char *log_buf = __log_buf;
478 static u32 log_buf_len = __LOG_BUF_LEN;
479 
480 /*
481  * Define the average message size. This only affects the number of
482  * descriptors that will be available. Underestimating is better than
483  * overestimating (too many available descriptors is better than not enough).
484  */
485 #define PRB_AVGBITS 5	/* 32 character average length */
486 
487 #if CONFIG_LOG_BUF_SHIFT <= PRB_AVGBITS
488 #error CONFIG_LOG_BUF_SHIFT value too small.
489 #endif
490 _DEFINE_PRINTKRB(printk_rb_static, CONFIG_LOG_BUF_SHIFT - PRB_AVGBITS,
491 		 PRB_AVGBITS, &__log_buf[0]);
492 
493 static struct printk_ringbuffer printk_rb_dynamic;
494 
495 static struct printk_ringbuffer *prb = &printk_rb_static;
496 
497 /*
498  * We cannot access per-CPU data (e.g. per-CPU flush irq_work) before
499  * per_cpu_areas are initialised. This variable is set to true when
500  * it's safe to access per-CPU data.
501  */
502 static bool __printk_percpu_data_ready __ro_after_init;
503 
504 bool printk_percpu_data_ready(void)
505 {
506 	return __printk_percpu_data_ready;
507 }
508 
509 /* Must be called under syslog_lock. */
510 static void latched_seq_write(struct latched_seq *ls, u64 val)
511 {
512 	raw_write_seqcount_latch(&ls->latch);
513 	ls->val[0] = val;
514 	raw_write_seqcount_latch(&ls->latch);
515 	ls->val[1] = val;
516 }
517 
518 /* Can be called from any context. */
519 static u64 latched_seq_read_nolock(struct latched_seq *ls)
520 {
521 	unsigned int seq;
522 	unsigned int idx;
523 	u64 val;
524 
525 	do {
526 		seq = raw_read_seqcount_latch(&ls->latch);
527 		idx = seq & 0x1;
528 		val = ls->val[idx];
529 	} while (read_seqcount_latch_retry(&ls->latch, seq));
530 
531 	return val;
532 }
533 
534 /* Return log buffer address */
535 char *log_buf_addr_get(void)
536 {
537 	return log_buf;
538 }
539 
540 /* Return log buffer size */
541 u32 log_buf_len_get(void)
542 {
543 	return log_buf_len;
544 }
545 
546 /*
547  * Define how much of the log buffer we could take at maximum. The value
548  * must be greater than two. Note that only half of the buffer is available
549  * when the index points to the middle.
550  */
551 #define MAX_LOG_TAKE_PART 4
552 static const char trunc_msg[] = "<truncated>";
553 
554 static void truncate_msg(u16 *text_len, u16 *trunc_msg_len)
555 {
556 	/*
557 	 * The message should not take the whole buffer. Otherwise, it might
558 	 * get removed too soon.
559 	 */
560 	u32 max_text_len = log_buf_len / MAX_LOG_TAKE_PART;
561 
562 	if (*text_len > max_text_len)
563 		*text_len = max_text_len;
564 
565 	/* enable the warning message (if there is room) */
566 	*trunc_msg_len = strlen(trunc_msg);
567 	if (*text_len >= *trunc_msg_len)
568 		*text_len -= *trunc_msg_len;
569 	else
570 		*trunc_msg_len = 0;
571 }
572 
573 int dmesg_restrict = IS_ENABLED(CONFIG_SECURITY_DMESG_RESTRICT);
574 
575 static int syslog_action_restricted(int type)
576 {
577 	if (dmesg_restrict)
578 		return 1;
579 	/*
580 	 * Unless restricted, we allow "read all" and "get buffer size"
581 	 * for everybody.
582 	 */
583 	return type != SYSLOG_ACTION_READ_ALL &&
584 	       type != SYSLOG_ACTION_SIZE_BUFFER;
585 }
586 
587 static int check_syslog_permissions(int type, int source)
588 {
589 	/*
590 	 * If this is from /proc/kmsg and we've already opened it, then we've
591 	 * already done the capabilities checks at open time.
592 	 */
593 	if (source == SYSLOG_FROM_PROC && type != SYSLOG_ACTION_OPEN)
594 		goto ok;
595 
596 	if (syslog_action_restricted(type)) {
597 		if (capable(CAP_SYSLOG))
598 			goto ok;
599 		/*
600 		 * For historical reasons, accept CAP_SYS_ADMIN too, with
601 		 * a warning.
602 		 */
603 		if (capable(CAP_SYS_ADMIN)) {
604 			pr_warn_once("%s (%d): Attempt to access syslog with "
605 				     "CAP_SYS_ADMIN but no CAP_SYSLOG "
606 				     "(deprecated).\n",
607 				 current->comm, task_pid_nr(current));
608 			goto ok;
609 		}
610 		return -EPERM;
611 	}
612 ok:
613 	return security_syslog(type);
614 }
615 
616 static void append_char(char **pp, char *e, char c)
617 {
618 	if (*pp < e)
619 		*(*pp)++ = c;
620 }
621 
622 static ssize_t info_print_ext_header(char *buf, size_t size,
623 				     struct printk_info *info)
624 {
625 	u64 ts_usec = info->ts_nsec;
626 	char caller[20];
627 #ifdef CONFIG_PRINTK_CALLER
628 	u32 id = info->caller_id;
629 
630 	snprintf(caller, sizeof(caller), ",caller=%c%u",
631 		 id & 0x80000000 ? 'C' : 'T', id & ~0x80000000);
632 #else
633 	caller[0] = '\0';
634 #endif
635 
636 	do_div(ts_usec, 1000);
637 
638 	return scnprintf(buf, size, "%u,%llu,%llu,%c%s;",
639 			 (info->facility << 3) | info->level, info->seq,
640 			 ts_usec, info->flags & LOG_CONT ? 'c' : '-', caller);
641 }
642 
643 static ssize_t msg_add_ext_text(char *buf, size_t size,
644 				const char *text, size_t text_len,
645 				unsigned char endc)
646 {
647 	char *p = buf, *e = buf + size;
648 	size_t i;
649 
650 	/* escape non-printable characters */
651 	for (i = 0; i < text_len; i++) {
652 		unsigned char c = text[i];
653 
654 		if (c < ' ' || c >= 127 || c == '\\')
655 			p += scnprintf(p, e - p, "\\x%02x", c);
656 		else
657 			append_char(&p, e, c);
658 	}
659 	append_char(&p, e, endc);
660 
661 	return p - buf;
662 }
663 
664 static ssize_t msg_add_dict_text(char *buf, size_t size,
665 				 const char *key, const char *val)
666 {
667 	size_t val_len = strlen(val);
668 	ssize_t len;
669 
670 	if (!val_len)
671 		return 0;
672 
673 	len = msg_add_ext_text(buf, size, "", 0, ' ');	/* dict prefix */
674 	len += msg_add_ext_text(buf + len, size - len, key, strlen(key), '=');
675 	len += msg_add_ext_text(buf + len, size - len, val, val_len, '\n');
676 
677 	return len;
678 }
679 
680 static ssize_t msg_print_ext_body(char *buf, size_t size,
681 				  char *text, size_t text_len,
682 				  struct dev_printk_info *dev_info)
683 {
684 	ssize_t len;
685 
686 	len = msg_add_ext_text(buf, size, text, text_len, '\n');
687 
688 	if (!dev_info)
689 		goto out;
690 
691 	len += msg_add_dict_text(buf + len, size - len, "SUBSYSTEM",
692 				 dev_info->subsystem);
693 	len += msg_add_dict_text(buf + len, size - len, "DEVICE",
694 				 dev_info->device);
695 out:
696 	return len;
697 }
698 
699 static bool printk_get_next_message(struct printk_message *pmsg, u64 seq,
700 				    bool is_extended, bool may_supress);
701 
702 /* /dev/kmsg - userspace message inject/listen interface */
703 struct devkmsg_user {
704 	atomic64_t seq;
705 	struct ratelimit_state rs;
706 	struct mutex lock;
707 	struct printk_buffers pbufs;
708 };
709 
710 static __printf(3, 4) __cold
711 int devkmsg_emit(int facility, int level, const char *fmt, ...)
712 {
713 	va_list args;
714 	int r;
715 
716 	va_start(args, fmt);
717 	r = vprintk_emit(facility, level, NULL, fmt, args);
718 	va_end(args);
719 
720 	return r;
721 }
722 
723 static ssize_t devkmsg_write(struct kiocb *iocb, struct iov_iter *from)
724 {
725 	char *buf, *line;
726 	int level = default_message_loglevel;
727 	int facility = 1;	/* LOG_USER */
728 	struct file *file = iocb->ki_filp;
729 	struct devkmsg_user *user = file->private_data;
730 	size_t len = iov_iter_count(from);
731 	ssize_t ret = len;
732 
733 	if (len > PRINTKRB_RECORD_MAX)
734 		return -EINVAL;
735 
736 	/* Ignore when user logging is disabled. */
737 	if (devkmsg_log & DEVKMSG_LOG_MASK_OFF)
738 		return len;
739 
740 	/* Ratelimit when not explicitly enabled. */
741 	if (!(devkmsg_log & DEVKMSG_LOG_MASK_ON)) {
742 		if (!___ratelimit(&user->rs, current->comm))
743 			return ret;
744 	}
745 
746 	buf = kmalloc(len+1, GFP_KERNEL);
747 	if (buf == NULL)
748 		return -ENOMEM;
749 
750 	buf[len] = '\0';
751 	if (!copy_from_iter_full(buf, len, from)) {
752 		kfree(buf);
753 		return -EFAULT;
754 	}
755 
756 	/*
757 	 * Extract and skip the syslog prefix <[0-9]*>. Coming from userspace
758 	 * the decimal value represents 32bit, the lower 3 bit are the log
759 	 * level, the rest are the log facility.
760 	 *
761 	 * If no prefix or no userspace facility is specified, we
762 	 * enforce LOG_USER, to be able to reliably distinguish
763 	 * kernel-generated messages from userspace-injected ones.
764 	 */
765 	line = buf;
766 	if (line[0] == '<') {
767 		char *endp = NULL;
768 		unsigned int u;
769 
770 		u = simple_strtoul(line + 1, &endp, 10);
771 		if (endp && endp[0] == '>') {
772 			level = LOG_LEVEL(u);
773 			if (LOG_FACILITY(u) != 0)
774 				facility = LOG_FACILITY(u);
775 			endp++;
776 			line = endp;
777 		}
778 	}
779 
780 	devkmsg_emit(facility, level, "%s", line);
781 	kfree(buf);
782 	return ret;
783 }
784 
785 static ssize_t devkmsg_read(struct file *file, char __user *buf,
786 			    size_t count, loff_t *ppos)
787 {
788 	struct devkmsg_user *user = file->private_data;
789 	char *outbuf = &user->pbufs.outbuf[0];
790 	struct printk_message pmsg = {
791 		.pbufs = &user->pbufs,
792 	};
793 	ssize_t ret;
794 
795 	ret = mutex_lock_interruptible(&user->lock);
796 	if (ret)
797 		return ret;
798 
799 	if (!printk_get_next_message(&pmsg, atomic64_read(&user->seq), true, false)) {
800 		if (file->f_flags & O_NONBLOCK) {
801 			ret = -EAGAIN;
802 			goto out;
803 		}
804 
805 		/*
806 		 * Guarantee this task is visible on the waitqueue before
807 		 * checking the wake condition.
808 		 *
809 		 * The full memory barrier within set_current_state() of
810 		 * prepare_to_wait_event() pairs with the full memory barrier
811 		 * within wq_has_sleeper().
812 		 *
813 		 * This pairs with __wake_up_klogd:A.
814 		 */
815 		ret = wait_event_interruptible(log_wait,
816 				printk_get_next_message(&pmsg, atomic64_read(&user->seq), true,
817 							false)); /* LMM(devkmsg_read:A) */
818 		if (ret)
819 			goto out;
820 	}
821 
822 	if (pmsg.dropped) {
823 		/* our last seen message is gone, return error and reset */
824 		atomic64_set(&user->seq, pmsg.seq);
825 		ret = -EPIPE;
826 		goto out;
827 	}
828 
829 	atomic64_set(&user->seq, pmsg.seq + 1);
830 
831 	if (pmsg.outbuf_len > count) {
832 		ret = -EINVAL;
833 		goto out;
834 	}
835 
836 	if (copy_to_user(buf, outbuf, pmsg.outbuf_len)) {
837 		ret = -EFAULT;
838 		goto out;
839 	}
840 	ret = pmsg.outbuf_len;
841 out:
842 	mutex_unlock(&user->lock);
843 	return ret;
844 }
845 
846 /*
847  * Be careful when modifying this function!!!
848  *
849  * Only few operations are supported because the device works only with the
850  * entire variable length messages (records). Non-standard values are
851  * returned in the other cases and has been this way for quite some time.
852  * User space applications might depend on this behavior.
853  */
854 static loff_t devkmsg_llseek(struct file *file, loff_t offset, int whence)
855 {
856 	struct devkmsg_user *user = file->private_data;
857 	loff_t ret = 0;
858 
859 	if (offset)
860 		return -ESPIPE;
861 
862 	switch (whence) {
863 	case SEEK_SET:
864 		/* the first record */
865 		atomic64_set(&user->seq, prb_first_valid_seq(prb));
866 		break;
867 	case SEEK_DATA:
868 		/*
869 		 * The first record after the last SYSLOG_ACTION_CLEAR,
870 		 * like issued by 'dmesg -c'. Reading /dev/kmsg itself
871 		 * changes no global state, and does not clear anything.
872 		 */
873 		atomic64_set(&user->seq, latched_seq_read_nolock(&clear_seq));
874 		break;
875 	case SEEK_END:
876 		/* after the last record */
877 		atomic64_set(&user->seq, prb_next_seq(prb));
878 		break;
879 	default:
880 		ret = -EINVAL;
881 	}
882 	return ret;
883 }
884 
885 static __poll_t devkmsg_poll(struct file *file, poll_table *wait)
886 {
887 	struct devkmsg_user *user = file->private_data;
888 	struct printk_info info;
889 	__poll_t ret = 0;
890 
891 	poll_wait(file, &log_wait, wait);
892 
893 	if (prb_read_valid_info(prb, atomic64_read(&user->seq), &info, NULL)) {
894 		/* return error when data has vanished underneath us */
895 		if (info.seq != atomic64_read(&user->seq))
896 			ret = EPOLLIN|EPOLLRDNORM|EPOLLERR|EPOLLPRI;
897 		else
898 			ret = EPOLLIN|EPOLLRDNORM;
899 	}
900 
901 	return ret;
902 }
903 
904 static int devkmsg_open(struct inode *inode, struct file *file)
905 {
906 	struct devkmsg_user *user;
907 	int err;
908 
909 	if (devkmsg_log & DEVKMSG_LOG_MASK_OFF)
910 		return -EPERM;
911 
912 	/* write-only does not need any file context */
913 	if ((file->f_flags & O_ACCMODE) != O_WRONLY) {
914 		err = check_syslog_permissions(SYSLOG_ACTION_READ_ALL,
915 					       SYSLOG_FROM_READER);
916 		if (err)
917 			return err;
918 	}
919 
920 	user = kvmalloc(sizeof(struct devkmsg_user), GFP_KERNEL);
921 	if (!user)
922 		return -ENOMEM;
923 
924 	ratelimit_default_init(&user->rs);
925 	ratelimit_set_flags(&user->rs, RATELIMIT_MSG_ON_RELEASE);
926 
927 	mutex_init(&user->lock);
928 
929 	atomic64_set(&user->seq, prb_first_valid_seq(prb));
930 
931 	file->private_data = user;
932 	return 0;
933 }
934 
935 static int devkmsg_release(struct inode *inode, struct file *file)
936 {
937 	struct devkmsg_user *user = file->private_data;
938 
939 	ratelimit_state_exit(&user->rs);
940 
941 	mutex_destroy(&user->lock);
942 	kvfree(user);
943 	return 0;
944 }
945 
946 const struct file_operations kmsg_fops = {
947 	.open = devkmsg_open,
948 	.read = devkmsg_read,
949 	.write_iter = devkmsg_write,
950 	.llseek = devkmsg_llseek,
951 	.poll = devkmsg_poll,
952 	.release = devkmsg_release,
953 };
954 
955 #ifdef CONFIG_CRASH_CORE
956 /*
957  * This appends the listed symbols to /proc/vmcore
958  *
959  * /proc/vmcore is used by various utilities, like crash and makedumpfile to
960  * obtain access to symbols that are otherwise very difficult to locate.  These
961  * symbols are specifically used so that utilities can access and extract the
962  * dmesg log from a vmcore file after a crash.
963  */
964 void log_buf_vmcoreinfo_setup(void)
965 {
966 	struct dev_printk_info *dev_info = NULL;
967 
968 	VMCOREINFO_SYMBOL(prb);
969 	VMCOREINFO_SYMBOL(printk_rb_static);
970 	VMCOREINFO_SYMBOL(clear_seq);
971 
972 	/*
973 	 * Export struct size and field offsets. User space tools can
974 	 * parse it and detect any changes to structure down the line.
975 	 */
976 
977 	VMCOREINFO_STRUCT_SIZE(printk_ringbuffer);
978 	VMCOREINFO_OFFSET(printk_ringbuffer, desc_ring);
979 	VMCOREINFO_OFFSET(printk_ringbuffer, text_data_ring);
980 	VMCOREINFO_OFFSET(printk_ringbuffer, fail);
981 
982 	VMCOREINFO_STRUCT_SIZE(prb_desc_ring);
983 	VMCOREINFO_OFFSET(prb_desc_ring, count_bits);
984 	VMCOREINFO_OFFSET(prb_desc_ring, descs);
985 	VMCOREINFO_OFFSET(prb_desc_ring, infos);
986 	VMCOREINFO_OFFSET(prb_desc_ring, head_id);
987 	VMCOREINFO_OFFSET(prb_desc_ring, tail_id);
988 
989 	VMCOREINFO_STRUCT_SIZE(prb_desc);
990 	VMCOREINFO_OFFSET(prb_desc, state_var);
991 	VMCOREINFO_OFFSET(prb_desc, text_blk_lpos);
992 
993 	VMCOREINFO_STRUCT_SIZE(prb_data_blk_lpos);
994 	VMCOREINFO_OFFSET(prb_data_blk_lpos, begin);
995 	VMCOREINFO_OFFSET(prb_data_blk_lpos, next);
996 
997 	VMCOREINFO_STRUCT_SIZE(printk_info);
998 	VMCOREINFO_OFFSET(printk_info, seq);
999 	VMCOREINFO_OFFSET(printk_info, ts_nsec);
1000 	VMCOREINFO_OFFSET(printk_info, text_len);
1001 	VMCOREINFO_OFFSET(printk_info, caller_id);
1002 	VMCOREINFO_OFFSET(printk_info, dev_info);
1003 
1004 	VMCOREINFO_STRUCT_SIZE(dev_printk_info);
1005 	VMCOREINFO_OFFSET(dev_printk_info, subsystem);
1006 	VMCOREINFO_LENGTH(printk_info_subsystem, sizeof(dev_info->subsystem));
1007 	VMCOREINFO_OFFSET(dev_printk_info, device);
1008 	VMCOREINFO_LENGTH(printk_info_device, sizeof(dev_info->device));
1009 
1010 	VMCOREINFO_STRUCT_SIZE(prb_data_ring);
1011 	VMCOREINFO_OFFSET(prb_data_ring, size_bits);
1012 	VMCOREINFO_OFFSET(prb_data_ring, data);
1013 	VMCOREINFO_OFFSET(prb_data_ring, head_lpos);
1014 	VMCOREINFO_OFFSET(prb_data_ring, tail_lpos);
1015 
1016 	VMCOREINFO_SIZE(atomic_long_t);
1017 	VMCOREINFO_TYPE_OFFSET(atomic_long_t, counter);
1018 
1019 	VMCOREINFO_STRUCT_SIZE(latched_seq);
1020 	VMCOREINFO_OFFSET(latched_seq, val);
1021 }
1022 #endif
1023 
1024 /* requested log_buf_len from kernel cmdline */
1025 static unsigned long __initdata new_log_buf_len;
1026 
1027 /* we practice scaling the ring buffer by powers of 2 */
1028 static void __init log_buf_len_update(u64 size)
1029 {
1030 	if (size > (u64)LOG_BUF_LEN_MAX) {
1031 		size = (u64)LOG_BUF_LEN_MAX;
1032 		pr_err("log_buf over 2G is not supported.\n");
1033 	}
1034 
1035 	if (size)
1036 		size = roundup_pow_of_two(size);
1037 	if (size > log_buf_len)
1038 		new_log_buf_len = (unsigned long)size;
1039 }
1040 
1041 /* save requested log_buf_len since it's too early to process it */
1042 static int __init log_buf_len_setup(char *str)
1043 {
1044 	u64 size;
1045 
1046 	if (!str)
1047 		return -EINVAL;
1048 
1049 	size = memparse(str, &str);
1050 
1051 	log_buf_len_update(size);
1052 
1053 	return 0;
1054 }
1055 early_param("log_buf_len", log_buf_len_setup);
1056 
1057 #ifdef CONFIG_SMP
1058 #define __LOG_CPU_MAX_BUF_LEN (1 << CONFIG_LOG_CPU_MAX_BUF_SHIFT)
1059 
1060 static void __init log_buf_add_cpu(void)
1061 {
1062 	unsigned int cpu_extra;
1063 
1064 	/*
1065 	 * archs should set up cpu_possible_bits properly with
1066 	 * set_cpu_possible() after setup_arch() but just in
1067 	 * case lets ensure this is valid.
1068 	 */
1069 	if (num_possible_cpus() == 1)
1070 		return;
1071 
1072 	cpu_extra = (num_possible_cpus() - 1) * __LOG_CPU_MAX_BUF_LEN;
1073 
1074 	/* by default this will only continue through for large > 64 CPUs */
1075 	if (cpu_extra <= __LOG_BUF_LEN / 2)
1076 		return;
1077 
1078 	pr_info("log_buf_len individual max cpu contribution: %d bytes\n",
1079 		__LOG_CPU_MAX_BUF_LEN);
1080 	pr_info("log_buf_len total cpu_extra contributions: %d bytes\n",
1081 		cpu_extra);
1082 	pr_info("log_buf_len min size: %d bytes\n", __LOG_BUF_LEN);
1083 
1084 	log_buf_len_update(cpu_extra + __LOG_BUF_LEN);
1085 }
1086 #else /* !CONFIG_SMP */
1087 static inline void log_buf_add_cpu(void) {}
1088 #endif /* CONFIG_SMP */
1089 
1090 static void __init set_percpu_data_ready(void)
1091 {
1092 	__printk_percpu_data_ready = true;
1093 }
1094 
1095 static unsigned int __init add_to_rb(struct printk_ringbuffer *rb,
1096 				     struct printk_record *r)
1097 {
1098 	struct prb_reserved_entry e;
1099 	struct printk_record dest_r;
1100 
1101 	prb_rec_init_wr(&dest_r, r->info->text_len);
1102 
1103 	if (!prb_reserve(&e, rb, &dest_r))
1104 		return 0;
1105 
1106 	memcpy(&dest_r.text_buf[0], &r->text_buf[0], r->info->text_len);
1107 	dest_r.info->text_len = r->info->text_len;
1108 	dest_r.info->facility = r->info->facility;
1109 	dest_r.info->level = r->info->level;
1110 	dest_r.info->flags = r->info->flags;
1111 	dest_r.info->ts_nsec = r->info->ts_nsec;
1112 	dest_r.info->caller_id = r->info->caller_id;
1113 	memcpy(&dest_r.info->dev_info, &r->info->dev_info, sizeof(dest_r.info->dev_info));
1114 
1115 	prb_final_commit(&e);
1116 
1117 	return prb_record_text_space(&e);
1118 }
1119 
1120 static char setup_text_buf[PRINTKRB_RECORD_MAX] __initdata;
1121 
1122 void __init setup_log_buf(int early)
1123 {
1124 	struct printk_info *new_infos;
1125 	unsigned int new_descs_count;
1126 	struct prb_desc *new_descs;
1127 	struct printk_info info;
1128 	struct printk_record r;
1129 	unsigned int text_size;
1130 	size_t new_descs_size;
1131 	size_t new_infos_size;
1132 	unsigned long flags;
1133 	char *new_log_buf;
1134 	unsigned int free;
1135 	u64 seq;
1136 
1137 	/*
1138 	 * Some archs call setup_log_buf() multiple times - first is very
1139 	 * early, e.g. from setup_arch(), and second - when percpu_areas
1140 	 * are initialised.
1141 	 */
1142 	if (!early)
1143 		set_percpu_data_ready();
1144 
1145 	if (log_buf != __log_buf)
1146 		return;
1147 
1148 	if (!early && !new_log_buf_len)
1149 		log_buf_add_cpu();
1150 
1151 	if (!new_log_buf_len)
1152 		return;
1153 
1154 	new_descs_count = new_log_buf_len >> PRB_AVGBITS;
1155 	if (new_descs_count == 0) {
1156 		pr_err("new_log_buf_len: %lu too small\n", new_log_buf_len);
1157 		return;
1158 	}
1159 
1160 	new_log_buf = memblock_alloc(new_log_buf_len, LOG_ALIGN);
1161 	if (unlikely(!new_log_buf)) {
1162 		pr_err("log_buf_len: %lu text bytes not available\n",
1163 		       new_log_buf_len);
1164 		return;
1165 	}
1166 
1167 	new_descs_size = new_descs_count * sizeof(struct prb_desc);
1168 	new_descs = memblock_alloc(new_descs_size, LOG_ALIGN);
1169 	if (unlikely(!new_descs)) {
1170 		pr_err("log_buf_len: %zu desc bytes not available\n",
1171 		       new_descs_size);
1172 		goto err_free_log_buf;
1173 	}
1174 
1175 	new_infos_size = new_descs_count * sizeof(struct printk_info);
1176 	new_infos = memblock_alloc(new_infos_size, LOG_ALIGN);
1177 	if (unlikely(!new_infos)) {
1178 		pr_err("log_buf_len: %zu info bytes not available\n",
1179 		       new_infos_size);
1180 		goto err_free_descs;
1181 	}
1182 
1183 	prb_rec_init_rd(&r, &info, &setup_text_buf[0], sizeof(setup_text_buf));
1184 
1185 	prb_init(&printk_rb_dynamic,
1186 		 new_log_buf, ilog2(new_log_buf_len),
1187 		 new_descs, ilog2(new_descs_count),
1188 		 new_infos);
1189 
1190 	local_irq_save(flags);
1191 
1192 	log_buf_len = new_log_buf_len;
1193 	log_buf = new_log_buf;
1194 	new_log_buf_len = 0;
1195 
1196 	free = __LOG_BUF_LEN;
1197 	prb_for_each_record(0, &printk_rb_static, seq, &r) {
1198 		text_size = add_to_rb(&printk_rb_dynamic, &r);
1199 		if (text_size > free)
1200 			free = 0;
1201 		else
1202 			free -= text_size;
1203 	}
1204 
1205 	prb = &printk_rb_dynamic;
1206 
1207 	local_irq_restore(flags);
1208 
1209 	/*
1210 	 * Copy any remaining messages that might have appeared from
1211 	 * NMI context after copying but before switching to the
1212 	 * dynamic buffer.
1213 	 */
1214 	prb_for_each_record(seq, &printk_rb_static, seq, &r) {
1215 		text_size = add_to_rb(&printk_rb_dynamic, &r);
1216 		if (text_size > free)
1217 			free = 0;
1218 		else
1219 			free -= text_size;
1220 	}
1221 
1222 	if (seq != prb_next_seq(&printk_rb_static)) {
1223 		pr_err("dropped %llu messages\n",
1224 		       prb_next_seq(&printk_rb_static) - seq);
1225 	}
1226 
1227 	pr_info("log_buf_len: %u bytes\n", log_buf_len);
1228 	pr_info("early log buf free: %u(%u%%)\n",
1229 		free, (free * 100) / __LOG_BUF_LEN);
1230 	return;
1231 
1232 err_free_descs:
1233 	memblock_free(new_descs, new_descs_size);
1234 err_free_log_buf:
1235 	memblock_free(new_log_buf, new_log_buf_len);
1236 }
1237 
1238 static bool __read_mostly ignore_loglevel;
1239 
1240 static int __init ignore_loglevel_setup(char *str)
1241 {
1242 	ignore_loglevel = true;
1243 	pr_info("debug: ignoring loglevel setting.\n");
1244 
1245 	return 0;
1246 }
1247 
1248 early_param("ignore_loglevel", ignore_loglevel_setup);
1249 module_param(ignore_loglevel, bool, S_IRUGO | S_IWUSR);
1250 MODULE_PARM_DESC(ignore_loglevel,
1251 		 "ignore loglevel setting (prints all kernel messages to the console)");
1252 
1253 static bool suppress_message_printing(int level)
1254 {
1255 	return (level >= console_loglevel && !ignore_loglevel);
1256 }
1257 
1258 #ifdef CONFIG_BOOT_PRINTK_DELAY
1259 
1260 static int boot_delay; /* msecs delay after each printk during bootup */
1261 static unsigned long long loops_per_msec;	/* based on boot_delay */
1262 
1263 static int __init boot_delay_setup(char *str)
1264 {
1265 	unsigned long lpj;
1266 
1267 	lpj = preset_lpj ? preset_lpj : 1000000;	/* some guess */
1268 	loops_per_msec = (unsigned long long)lpj / 1000 * HZ;
1269 
1270 	get_option(&str, &boot_delay);
1271 	if (boot_delay > 10 * 1000)
1272 		boot_delay = 0;
1273 
1274 	pr_debug("boot_delay: %u, preset_lpj: %ld, lpj: %lu, "
1275 		"HZ: %d, loops_per_msec: %llu\n",
1276 		boot_delay, preset_lpj, lpj, HZ, loops_per_msec);
1277 	return 0;
1278 }
1279 early_param("boot_delay", boot_delay_setup);
1280 
1281 static void boot_delay_msec(int level)
1282 {
1283 	unsigned long long k;
1284 	unsigned long timeout;
1285 
1286 	if ((boot_delay == 0 || system_state >= SYSTEM_RUNNING)
1287 		|| suppress_message_printing(level)) {
1288 		return;
1289 	}
1290 
1291 	k = (unsigned long long)loops_per_msec * boot_delay;
1292 
1293 	timeout = jiffies + msecs_to_jiffies(boot_delay);
1294 	while (k) {
1295 		k--;
1296 		cpu_relax();
1297 		/*
1298 		 * use (volatile) jiffies to prevent
1299 		 * compiler reduction; loop termination via jiffies
1300 		 * is secondary and may or may not happen.
1301 		 */
1302 		if (time_after(jiffies, timeout))
1303 			break;
1304 		touch_nmi_watchdog();
1305 	}
1306 }
1307 #else
1308 static inline void boot_delay_msec(int level)
1309 {
1310 }
1311 #endif
1312 
1313 static bool printk_time = IS_ENABLED(CONFIG_PRINTK_TIME);
1314 module_param_named(time, printk_time, bool, S_IRUGO | S_IWUSR);
1315 
1316 static size_t print_syslog(unsigned int level, char *buf)
1317 {
1318 	return sprintf(buf, "<%u>", level);
1319 }
1320 
1321 static size_t print_time(u64 ts, char *buf)
1322 {
1323 	unsigned long rem_nsec = do_div(ts, 1000000000);
1324 
1325 	return sprintf(buf, "[%5lu.%06lu]",
1326 		       (unsigned long)ts, rem_nsec / 1000);
1327 }
1328 
1329 #ifdef CONFIG_PRINTK_CALLER
1330 static size_t print_caller(u32 id, char *buf)
1331 {
1332 	char caller[12];
1333 
1334 	snprintf(caller, sizeof(caller), "%c%u",
1335 		 id & 0x80000000 ? 'C' : 'T', id & ~0x80000000);
1336 	return sprintf(buf, "[%6s]", caller);
1337 }
1338 #else
1339 #define print_caller(id, buf) 0
1340 #endif
1341 
1342 static size_t info_print_prefix(const struct printk_info  *info, bool syslog,
1343 				bool time, char *buf)
1344 {
1345 	size_t len = 0;
1346 
1347 	if (syslog)
1348 		len = print_syslog((info->facility << 3) | info->level, buf);
1349 
1350 	if (time)
1351 		len += print_time(info->ts_nsec, buf + len);
1352 
1353 	len += print_caller(info->caller_id, buf + len);
1354 
1355 	if (IS_ENABLED(CONFIG_PRINTK_CALLER) || time) {
1356 		buf[len++] = ' ';
1357 		buf[len] = '\0';
1358 	}
1359 
1360 	return len;
1361 }
1362 
1363 /*
1364  * Prepare the record for printing. The text is shifted within the given
1365  * buffer to avoid a need for another one. The following operations are
1366  * done:
1367  *
1368  *   - Add prefix for each line.
1369  *   - Drop truncated lines that no longer fit into the buffer.
1370  *   - Add the trailing newline that has been removed in vprintk_store().
1371  *   - Add a string terminator.
1372  *
1373  * Since the produced string is always terminated, the maximum possible
1374  * return value is @r->text_buf_size - 1;
1375  *
1376  * Return: The length of the updated/prepared text, including the added
1377  * prefixes and the newline. The terminator is not counted. The dropped
1378  * line(s) are not counted.
1379  */
1380 static size_t record_print_text(struct printk_record *r, bool syslog,
1381 				bool time)
1382 {
1383 	size_t text_len = r->info->text_len;
1384 	size_t buf_size = r->text_buf_size;
1385 	char *text = r->text_buf;
1386 	char prefix[PRINTK_PREFIX_MAX];
1387 	bool truncated = false;
1388 	size_t prefix_len;
1389 	size_t line_len;
1390 	size_t len = 0;
1391 	char *next;
1392 
1393 	/*
1394 	 * If the message was truncated because the buffer was not large
1395 	 * enough, treat the available text as if it were the full text.
1396 	 */
1397 	if (text_len > buf_size)
1398 		text_len = buf_size;
1399 
1400 	prefix_len = info_print_prefix(r->info, syslog, time, prefix);
1401 
1402 	/*
1403 	 * @text_len: bytes of unprocessed text
1404 	 * @line_len: bytes of current line _without_ newline
1405 	 * @text:     pointer to beginning of current line
1406 	 * @len:      number of bytes prepared in r->text_buf
1407 	 */
1408 	for (;;) {
1409 		next = memchr(text, '\n', text_len);
1410 		if (next) {
1411 			line_len = next - text;
1412 		} else {
1413 			/* Drop truncated line(s). */
1414 			if (truncated)
1415 				break;
1416 			line_len = text_len;
1417 		}
1418 
1419 		/*
1420 		 * Truncate the text if there is not enough space to add the
1421 		 * prefix and a trailing newline and a terminator.
1422 		 */
1423 		if (len + prefix_len + text_len + 1 + 1 > buf_size) {
1424 			/* Drop even the current line if no space. */
1425 			if (len + prefix_len + line_len + 1 + 1 > buf_size)
1426 				break;
1427 
1428 			text_len = buf_size - len - prefix_len - 1 - 1;
1429 			truncated = true;
1430 		}
1431 
1432 		memmove(text + prefix_len, text, text_len);
1433 		memcpy(text, prefix, prefix_len);
1434 
1435 		/*
1436 		 * Increment the prepared length to include the text and
1437 		 * prefix that were just moved+copied. Also increment for the
1438 		 * newline at the end of this line. If this is the last line,
1439 		 * there is no newline, but it will be added immediately below.
1440 		 */
1441 		len += prefix_len + line_len + 1;
1442 		if (text_len == line_len) {
1443 			/*
1444 			 * This is the last line. Add the trailing newline
1445 			 * removed in vprintk_store().
1446 			 */
1447 			text[prefix_len + line_len] = '\n';
1448 			break;
1449 		}
1450 
1451 		/*
1452 		 * Advance beyond the added prefix and the related line with
1453 		 * its newline.
1454 		 */
1455 		text += prefix_len + line_len + 1;
1456 
1457 		/*
1458 		 * The remaining text has only decreased by the line with its
1459 		 * newline.
1460 		 *
1461 		 * Note that @text_len can become zero. It happens when @text
1462 		 * ended with a newline (either due to truncation or the
1463 		 * original string ending with "\n\n"). The loop is correctly
1464 		 * repeated and (if not truncated) an empty line with a prefix
1465 		 * will be prepared.
1466 		 */
1467 		text_len -= line_len + 1;
1468 	}
1469 
1470 	/*
1471 	 * If a buffer was provided, it will be terminated. Space for the
1472 	 * string terminator is guaranteed to be available. The terminator is
1473 	 * not counted in the return value.
1474 	 */
1475 	if (buf_size > 0)
1476 		r->text_buf[len] = 0;
1477 
1478 	return len;
1479 }
1480 
1481 static size_t get_record_print_text_size(struct printk_info *info,
1482 					 unsigned int line_count,
1483 					 bool syslog, bool time)
1484 {
1485 	char prefix[PRINTK_PREFIX_MAX];
1486 	size_t prefix_len;
1487 
1488 	prefix_len = info_print_prefix(info, syslog, time, prefix);
1489 
1490 	/*
1491 	 * Each line will be preceded with a prefix. The intermediate
1492 	 * newlines are already within the text, but a final trailing
1493 	 * newline will be added.
1494 	 */
1495 	return ((prefix_len * line_count) + info->text_len + 1);
1496 }
1497 
1498 /*
1499  * Beginning with @start_seq, find the first record where it and all following
1500  * records up to (but not including) @max_seq fit into @size.
1501  *
1502  * @max_seq is simply an upper bound and does not need to exist. If the caller
1503  * does not require an upper bound, -1 can be used for @max_seq.
1504  */
1505 static u64 find_first_fitting_seq(u64 start_seq, u64 max_seq, size_t size,
1506 				  bool syslog, bool time)
1507 {
1508 	struct printk_info info;
1509 	unsigned int line_count;
1510 	size_t len = 0;
1511 	u64 seq;
1512 
1513 	/* Determine the size of the records up to @max_seq. */
1514 	prb_for_each_info(start_seq, prb, seq, &info, &line_count) {
1515 		if (info.seq >= max_seq)
1516 			break;
1517 		len += get_record_print_text_size(&info, line_count, syslog, time);
1518 	}
1519 
1520 	/*
1521 	 * Adjust the upper bound for the next loop to avoid subtracting
1522 	 * lengths that were never added.
1523 	 */
1524 	if (seq < max_seq)
1525 		max_seq = seq;
1526 
1527 	/*
1528 	 * Move first record forward until length fits into the buffer. Ignore
1529 	 * newest messages that were not counted in the above cycle. Messages
1530 	 * might appear and get lost in the meantime. This is a best effort
1531 	 * that prevents an infinite loop that could occur with a retry.
1532 	 */
1533 	prb_for_each_info(start_seq, prb, seq, &info, &line_count) {
1534 		if (len <= size || info.seq >= max_seq)
1535 			break;
1536 		len -= get_record_print_text_size(&info, line_count, syslog, time);
1537 	}
1538 
1539 	return seq;
1540 }
1541 
1542 /* The caller is responsible for making sure @size is greater than 0. */
1543 static int syslog_print(char __user *buf, int size)
1544 {
1545 	struct printk_info info;
1546 	struct printk_record r;
1547 	char *text;
1548 	int len = 0;
1549 	u64 seq;
1550 
1551 	text = kmalloc(PRINTK_MESSAGE_MAX, GFP_KERNEL);
1552 	if (!text)
1553 		return -ENOMEM;
1554 
1555 	prb_rec_init_rd(&r, &info, text, PRINTK_MESSAGE_MAX);
1556 
1557 	mutex_lock(&syslog_lock);
1558 
1559 	/*
1560 	 * Wait for the @syslog_seq record to be available. @syslog_seq may
1561 	 * change while waiting.
1562 	 */
1563 	do {
1564 		seq = syslog_seq;
1565 
1566 		mutex_unlock(&syslog_lock);
1567 		/*
1568 		 * Guarantee this task is visible on the waitqueue before
1569 		 * checking the wake condition.
1570 		 *
1571 		 * The full memory barrier within set_current_state() of
1572 		 * prepare_to_wait_event() pairs with the full memory barrier
1573 		 * within wq_has_sleeper().
1574 		 *
1575 		 * This pairs with __wake_up_klogd:A.
1576 		 */
1577 		len = wait_event_interruptible(log_wait,
1578 				prb_read_valid(prb, seq, NULL)); /* LMM(syslog_print:A) */
1579 		mutex_lock(&syslog_lock);
1580 
1581 		if (len)
1582 			goto out;
1583 	} while (syslog_seq != seq);
1584 
1585 	/*
1586 	 * Copy records that fit into the buffer. The above cycle makes sure
1587 	 * that the first record is always available.
1588 	 */
1589 	do {
1590 		size_t n;
1591 		size_t skip;
1592 		int err;
1593 
1594 		if (!prb_read_valid(prb, syslog_seq, &r))
1595 			break;
1596 
1597 		if (r.info->seq != syslog_seq) {
1598 			/* message is gone, move to next valid one */
1599 			syslog_seq = r.info->seq;
1600 			syslog_partial = 0;
1601 		}
1602 
1603 		/*
1604 		 * To keep reading/counting partial line consistent,
1605 		 * use printk_time value as of the beginning of a line.
1606 		 */
1607 		if (!syslog_partial)
1608 			syslog_time = printk_time;
1609 
1610 		skip = syslog_partial;
1611 		n = record_print_text(&r, true, syslog_time);
1612 		if (n - syslog_partial <= size) {
1613 			/* message fits into buffer, move forward */
1614 			syslog_seq = r.info->seq + 1;
1615 			n -= syslog_partial;
1616 			syslog_partial = 0;
1617 		} else if (!len){
1618 			/* partial read(), remember position */
1619 			n = size;
1620 			syslog_partial += n;
1621 		} else
1622 			n = 0;
1623 
1624 		if (!n)
1625 			break;
1626 
1627 		mutex_unlock(&syslog_lock);
1628 		err = copy_to_user(buf, text + skip, n);
1629 		mutex_lock(&syslog_lock);
1630 
1631 		if (err) {
1632 			if (!len)
1633 				len = -EFAULT;
1634 			break;
1635 		}
1636 
1637 		len += n;
1638 		size -= n;
1639 		buf += n;
1640 	} while (size);
1641 out:
1642 	mutex_unlock(&syslog_lock);
1643 	kfree(text);
1644 	return len;
1645 }
1646 
1647 static int syslog_print_all(char __user *buf, int size, bool clear)
1648 {
1649 	struct printk_info info;
1650 	struct printk_record r;
1651 	char *text;
1652 	int len = 0;
1653 	u64 seq;
1654 	bool time;
1655 
1656 	text = kmalloc(PRINTK_MESSAGE_MAX, GFP_KERNEL);
1657 	if (!text)
1658 		return -ENOMEM;
1659 
1660 	time = printk_time;
1661 	/*
1662 	 * Find first record that fits, including all following records,
1663 	 * into the user-provided buffer for this dump.
1664 	 */
1665 	seq = find_first_fitting_seq(latched_seq_read_nolock(&clear_seq), -1,
1666 				     size, true, time);
1667 
1668 	prb_rec_init_rd(&r, &info, text, PRINTK_MESSAGE_MAX);
1669 
1670 	len = 0;
1671 	prb_for_each_record(seq, prb, seq, &r) {
1672 		int textlen;
1673 
1674 		textlen = record_print_text(&r, true, time);
1675 
1676 		if (len + textlen > size) {
1677 			seq--;
1678 			break;
1679 		}
1680 
1681 		if (copy_to_user(buf + len, text, textlen))
1682 			len = -EFAULT;
1683 		else
1684 			len += textlen;
1685 
1686 		if (len < 0)
1687 			break;
1688 	}
1689 
1690 	if (clear) {
1691 		mutex_lock(&syslog_lock);
1692 		latched_seq_write(&clear_seq, seq);
1693 		mutex_unlock(&syslog_lock);
1694 	}
1695 
1696 	kfree(text);
1697 	return len;
1698 }
1699 
1700 static void syslog_clear(void)
1701 {
1702 	mutex_lock(&syslog_lock);
1703 	latched_seq_write(&clear_seq, prb_next_seq(prb));
1704 	mutex_unlock(&syslog_lock);
1705 }
1706 
1707 int do_syslog(int type, char __user *buf, int len, int source)
1708 {
1709 	struct printk_info info;
1710 	bool clear = false;
1711 	static int saved_console_loglevel = LOGLEVEL_DEFAULT;
1712 	int error;
1713 
1714 	error = check_syslog_permissions(type, source);
1715 	if (error)
1716 		return error;
1717 
1718 	switch (type) {
1719 	case SYSLOG_ACTION_CLOSE:	/* Close log */
1720 		break;
1721 	case SYSLOG_ACTION_OPEN:	/* Open log */
1722 		break;
1723 	case SYSLOG_ACTION_READ:	/* Read from log */
1724 		if (!buf || len < 0)
1725 			return -EINVAL;
1726 		if (!len)
1727 			return 0;
1728 		if (!access_ok(buf, len))
1729 			return -EFAULT;
1730 		error = syslog_print(buf, len);
1731 		break;
1732 	/* Read/clear last kernel messages */
1733 	case SYSLOG_ACTION_READ_CLEAR:
1734 		clear = true;
1735 		fallthrough;
1736 	/* Read last kernel messages */
1737 	case SYSLOG_ACTION_READ_ALL:
1738 		if (!buf || len < 0)
1739 			return -EINVAL;
1740 		if (!len)
1741 			return 0;
1742 		if (!access_ok(buf, len))
1743 			return -EFAULT;
1744 		error = syslog_print_all(buf, len, clear);
1745 		break;
1746 	/* Clear ring buffer */
1747 	case SYSLOG_ACTION_CLEAR:
1748 		syslog_clear();
1749 		break;
1750 	/* Disable logging to console */
1751 	case SYSLOG_ACTION_CONSOLE_OFF:
1752 		if (saved_console_loglevel == LOGLEVEL_DEFAULT)
1753 			saved_console_loglevel = console_loglevel;
1754 		console_loglevel = minimum_console_loglevel;
1755 		break;
1756 	/* Enable logging to console */
1757 	case SYSLOG_ACTION_CONSOLE_ON:
1758 		if (saved_console_loglevel != LOGLEVEL_DEFAULT) {
1759 			console_loglevel = saved_console_loglevel;
1760 			saved_console_loglevel = LOGLEVEL_DEFAULT;
1761 		}
1762 		break;
1763 	/* Set level of messages printed to console */
1764 	case SYSLOG_ACTION_CONSOLE_LEVEL:
1765 		if (len < 1 || len > 8)
1766 			return -EINVAL;
1767 		if (len < minimum_console_loglevel)
1768 			len = minimum_console_loglevel;
1769 		console_loglevel = len;
1770 		/* Implicitly re-enable logging to console */
1771 		saved_console_loglevel = LOGLEVEL_DEFAULT;
1772 		break;
1773 	/* Number of chars in the log buffer */
1774 	case SYSLOG_ACTION_SIZE_UNREAD:
1775 		mutex_lock(&syslog_lock);
1776 		if (!prb_read_valid_info(prb, syslog_seq, &info, NULL)) {
1777 			/* No unread messages. */
1778 			mutex_unlock(&syslog_lock);
1779 			return 0;
1780 		}
1781 		if (info.seq != syslog_seq) {
1782 			/* messages are gone, move to first one */
1783 			syslog_seq = info.seq;
1784 			syslog_partial = 0;
1785 		}
1786 		if (source == SYSLOG_FROM_PROC) {
1787 			/*
1788 			 * Short-cut for poll(/"proc/kmsg") which simply checks
1789 			 * for pending data, not the size; return the count of
1790 			 * records, not the length.
1791 			 */
1792 			error = prb_next_seq(prb) - syslog_seq;
1793 		} else {
1794 			bool time = syslog_partial ? syslog_time : printk_time;
1795 			unsigned int line_count;
1796 			u64 seq;
1797 
1798 			prb_for_each_info(syslog_seq, prb, seq, &info,
1799 					  &line_count) {
1800 				error += get_record_print_text_size(&info, line_count,
1801 								    true, time);
1802 				time = printk_time;
1803 			}
1804 			error -= syslog_partial;
1805 		}
1806 		mutex_unlock(&syslog_lock);
1807 		break;
1808 	/* Size of the log buffer */
1809 	case SYSLOG_ACTION_SIZE_BUFFER:
1810 		error = log_buf_len;
1811 		break;
1812 	default:
1813 		error = -EINVAL;
1814 		break;
1815 	}
1816 
1817 	return error;
1818 }
1819 
1820 SYSCALL_DEFINE3(syslog, int, type, char __user *, buf, int, len)
1821 {
1822 	return do_syslog(type, buf, len, SYSLOG_FROM_READER);
1823 }
1824 
1825 /*
1826  * Special console_lock variants that help to reduce the risk of soft-lockups.
1827  * They allow to pass console_lock to another printk() call using a busy wait.
1828  */
1829 
1830 #ifdef CONFIG_LOCKDEP
1831 static struct lockdep_map console_owner_dep_map = {
1832 	.name = "console_owner"
1833 };
1834 #endif
1835 
1836 static DEFINE_RAW_SPINLOCK(console_owner_lock);
1837 static struct task_struct *console_owner;
1838 static bool console_waiter;
1839 
1840 /**
1841  * console_lock_spinning_enable - mark beginning of code where another
1842  *	thread might safely busy wait
1843  *
1844  * This basically converts console_lock into a spinlock. This marks
1845  * the section where the console_lock owner can not sleep, because
1846  * there may be a waiter spinning (like a spinlock). Also it must be
1847  * ready to hand over the lock at the end of the section.
1848  */
1849 static void console_lock_spinning_enable(void)
1850 {
1851 	raw_spin_lock(&console_owner_lock);
1852 	console_owner = current;
1853 	raw_spin_unlock(&console_owner_lock);
1854 
1855 	/* The waiter may spin on us after setting console_owner */
1856 	spin_acquire(&console_owner_dep_map, 0, 0, _THIS_IP_);
1857 }
1858 
1859 /**
1860  * console_lock_spinning_disable_and_check - mark end of code where another
1861  *	thread was able to busy wait and check if there is a waiter
1862  * @cookie: cookie returned from console_srcu_read_lock()
1863  *
1864  * This is called at the end of the section where spinning is allowed.
1865  * It has two functions. First, it is a signal that it is no longer
1866  * safe to start busy waiting for the lock. Second, it checks if
1867  * there is a busy waiter and passes the lock rights to her.
1868  *
1869  * Important: Callers lose both the console_lock and the SRCU read lock if
1870  *	there was a busy waiter. They must not touch items synchronized by
1871  *	console_lock or SRCU read lock in this case.
1872  *
1873  * Return: 1 if the lock rights were passed, 0 otherwise.
1874  */
1875 static int console_lock_spinning_disable_and_check(int cookie)
1876 {
1877 	int waiter;
1878 
1879 	raw_spin_lock(&console_owner_lock);
1880 	waiter = READ_ONCE(console_waiter);
1881 	console_owner = NULL;
1882 	raw_spin_unlock(&console_owner_lock);
1883 
1884 	if (!waiter) {
1885 		spin_release(&console_owner_dep_map, _THIS_IP_);
1886 		return 0;
1887 	}
1888 
1889 	/* The waiter is now free to continue */
1890 	WRITE_ONCE(console_waiter, false);
1891 
1892 	spin_release(&console_owner_dep_map, _THIS_IP_);
1893 
1894 	/*
1895 	 * Preserve lockdep lock ordering. Release the SRCU read lock before
1896 	 * releasing the console_lock.
1897 	 */
1898 	console_srcu_read_unlock(cookie);
1899 
1900 	/*
1901 	 * Hand off console_lock to waiter. The waiter will perform
1902 	 * the up(). After this, the waiter is the console_lock owner.
1903 	 */
1904 	mutex_release(&console_lock_dep_map, _THIS_IP_);
1905 	return 1;
1906 }
1907 
1908 /**
1909  * console_trylock_spinning - try to get console_lock by busy waiting
1910  *
1911  * This allows to busy wait for the console_lock when the current
1912  * owner is running in specially marked sections. It means that
1913  * the current owner is running and cannot reschedule until it
1914  * is ready to lose the lock.
1915  *
1916  * Return: 1 if we got the lock, 0 othrewise
1917  */
1918 static int console_trylock_spinning(void)
1919 {
1920 	struct task_struct *owner = NULL;
1921 	bool waiter;
1922 	bool spin = false;
1923 	unsigned long flags;
1924 
1925 	if (console_trylock())
1926 		return 1;
1927 
1928 	/*
1929 	 * It's unsafe to spin once a panic has begun. If we are the
1930 	 * panic CPU, we may have already halted the owner of the
1931 	 * console_sem. If we are not the panic CPU, then we should
1932 	 * avoid taking console_sem, so the panic CPU has a better
1933 	 * chance of cleanly acquiring it later.
1934 	 */
1935 	if (panic_in_progress())
1936 		return 0;
1937 
1938 	printk_safe_enter_irqsave(flags);
1939 
1940 	raw_spin_lock(&console_owner_lock);
1941 	owner = READ_ONCE(console_owner);
1942 	waiter = READ_ONCE(console_waiter);
1943 	if (!waiter && owner && owner != current) {
1944 		WRITE_ONCE(console_waiter, true);
1945 		spin = true;
1946 	}
1947 	raw_spin_unlock(&console_owner_lock);
1948 
1949 	/*
1950 	 * If there is an active printk() writing to the
1951 	 * consoles, instead of having it write our data too,
1952 	 * see if we can offload that load from the active
1953 	 * printer, and do some printing ourselves.
1954 	 * Go into a spin only if there isn't already a waiter
1955 	 * spinning, and there is an active printer, and
1956 	 * that active printer isn't us (recursive printk?).
1957 	 */
1958 	if (!spin) {
1959 		printk_safe_exit_irqrestore(flags);
1960 		return 0;
1961 	}
1962 
1963 	/* We spin waiting for the owner to release us */
1964 	spin_acquire(&console_owner_dep_map, 0, 0, _THIS_IP_);
1965 	/* Owner will clear console_waiter on hand off */
1966 	while (READ_ONCE(console_waiter))
1967 		cpu_relax();
1968 	spin_release(&console_owner_dep_map, _THIS_IP_);
1969 
1970 	printk_safe_exit_irqrestore(flags);
1971 	/*
1972 	 * The owner passed the console lock to us.
1973 	 * Since we did not spin on console lock, annotate
1974 	 * this as a trylock. Otherwise lockdep will
1975 	 * complain.
1976 	 */
1977 	mutex_acquire(&console_lock_dep_map, 0, 1, _THIS_IP_);
1978 
1979 	return 1;
1980 }
1981 
1982 /*
1983  * Recursion is tracked separately on each CPU. If NMIs are supported, an
1984  * additional NMI context per CPU is also separately tracked. Until per-CPU
1985  * is available, a separate "early tracking" is performed.
1986  */
1987 static DEFINE_PER_CPU(u8, printk_count);
1988 static u8 printk_count_early;
1989 #ifdef CONFIG_HAVE_NMI
1990 static DEFINE_PER_CPU(u8, printk_count_nmi);
1991 static u8 printk_count_nmi_early;
1992 #endif
1993 
1994 /*
1995  * Recursion is limited to keep the output sane. printk() should not require
1996  * more than 1 level of recursion (allowing, for example, printk() to trigger
1997  * a WARN), but a higher value is used in case some printk-internal errors
1998  * exist, such as the ringbuffer validation checks failing.
1999  */
2000 #define PRINTK_MAX_RECURSION 3
2001 
2002 /*
2003  * Return a pointer to the dedicated counter for the CPU+context of the
2004  * caller.
2005  */
2006 static u8 *__printk_recursion_counter(void)
2007 {
2008 #ifdef CONFIG_HAVE_NMI
2009 	if (in_nmi()) {
2010 		if (printk_percpu_data_ready())
2011 			return this_cpu_ptr(&printk_count_nmi);
2012 		return &printk_count_nmi_early;
2013 	}
2014 #endif
2015 	if (printk_percpu_data_ready())
2016 		return this_cpu_ptr(&printk_count);
2017 	return &printk_count_early;
2018 }
2019 
2020 /*
2021  * Enter recursion tracking. Interrupts are disabled to simplify tracking.
2022  * The caller must check the boolean return value to see if the recursion is
2023  * allowed. On failure, interrupts are not disabled.
2024  *
2025  * @recursion_ptr must be a variable of type (u8 *) and is the same variable
2026  * that is passed to printk_exit_irqrestore().
2027  */
2028 #define printk_enter_irqsave(recursion_ptr, flags)	\
2029 ({							\
2030 	bool success = true;				\
2031 							\
2032 	typecheck(u8 *, recursion_ptr);			\
2033 	local_irq_save(flags);				\
2034 	(recursion_ptr) = __printk_recursion_counter();	\
2035 	if (*(recursion_ptr) > PRINTK_MAX_RECURSION) {	\
2036 		local_irq_restore(flags);		\
2037 		success = false;			\
2038 	} else {					\
2039 		(*(recursion_ptr))++;			\
2040 	}						\
2041 	success;					\
2042 })
2043 
2044 /* Exit recursion tracking, restoring interrupts. */
2045 #define printk_exit_irqrestore(recursion_ptr, flags)	\
2046 	do {						\
2047 		typecheck(u8 *, recursion_ptr);		\
2048 		(*(recursion_ptr))--;			\
2049 		local_irq_restore(flags);		\
2050 	} while (0)
2051 
2052 int printk_delay_msec __read_mostly;
2053 
2054 static inline void printk_delay(int level)
2055 {
2056 	boot_delay_msec(level);
2057 
2058 	if (unlikely(printk_delay_msec)) {
2059 		int m = printk_delay_msec;
2060 
2061 		while (m--) {
2062 			mdelay(1);
2063 			touch_nmi_watchdog();
2064 		}
2065 	}
2066 }
2067 
2068 static inline u32 printk_caller_id(void)
2069 {
2070 	return in_task() ? task_pid_nr(current) :
2071 		0x80000000 + smp_processor_id();
2072 }
2073 
2074 /**
2075  * printk_parse_prefix - Parse level and control flags.
2076  *
2077  * @text:     The terminated text message.
2078  * @level:    A pointer to the current level value, will be updated.
2079  * @flags:    A pointer to the current printk_info flags, will be updated.
2080  *
2081  * @level may be NULL if the caller is not interested in the parsed value.
2082  * Otherwise the variable pointed to by @level must be set to
2083  * LOGLEVEL_DEFAULT in order to be updated with the parsed value.
2084  *
2085  * @flags may be NULL if the caller is not interested in the parsed value.
2086  * Otherwise the variable pointed to by @flags will be OR'd with the parsed
2087  * value.
2088  *
2089  * Return: The length of the parsed level and control flags.
2090  */
2091 u16 printk_parse_prefix(const char *text, int *level,
2092 			enum printk_info_flags *flags)
2093 {
2094 	u16 prefix_len = 0;
2095 	int kern_level;
2096 
2097 	while (*text) {
2098 		kern_level = printk_get_level(text);
2099 		if (!kern_level)
2100 			break;
2101 
2102 		switch (kern_level) {
2103 		case '0' ... '7':
2104 			if (level && *level == LOGLEVEL_DEFAULT)
2105 				*level = kern_level - '0';
2106 			break;
2107 		case 'c':	/* KERN_CONT */
2108 			if (flags)
2109 				*flags |= LOG_CONT;
2110 		}
2111 
2112 		prefix_len += 2;
2113 		text += 2;
2114 	}
2115 
2116 	return prefix_len;
2117 }
2118 
2119 __printf(5, 0)
2120 static u16 printk_sprint(char *text, u16 size, int facility,
2121 			 enum printk_info_flags *flags, const char *fmt,
2122 			 va_list args)
2123 {
2124 	u16 text_len;
2125 
2126 	text_len = vscnprintf(text, size, fmt, args);
2127 
2128 	/* Mark and strip a trailing newline. */
2129 	if (text_len && text[text_len - 1] == '\n') {
2130 		text_len--;
2131 		*flags |= LOG_NEWLINE;
2132 	}
2133 
2134 	/* Strip log level and control flags. */
2135 	if (facility == 0) {
2136 		u16 prefix_len;
2137 
2138 		prefix_len = printk_parse_prefix(text, NULL, NULL);
2139 		if (prefix_len) {
2140 			text_len -= prefix_len;
2141 			memmove(text, text + prefix_len, text_len);
2142 		}
2143 	}
2144 
2145 	trace_console(text, text_len);
2146 
2147 	return text_len;
2148 }
2149 
2150 __printf(4, 0)
2151 int vprintk_store(int facility, int level,
2152 		  const struct dev_printk_info *dev_info,
2153 		  const char *fmt, va_list args)
2154 {
2155 	struct prb_reserved_entry e;
2156 	enum printk_info_flags flags = 0;
2157 	struct printk_record r;
2158 	unsigned long irqflags;
2159 	u16 trunc_msg_len = 0;
2160 	char prefix_buf[8];
2161 	u8 *recursion_ptr;
2162 	u16 reserve_size;
2163 	va_list args2;
2164 	u32 caller_id;
2165 	u16 text_len;
2166 	int ret = 0;
2167 	u64 ts_nsec;
2168 
2169 	if (!printk_enter_irqsave(recursion_ptr, irqflags))
2170 		return 0;
2171 
2172 	/*
2173 	 * Since the duration of printk() can vary depending on the message
2174 	 * and state of the ringbuffer, grab the timestamp now so that it is
2175 	 * close to the call of printk(). This provides a more deterministic
2176 	 * timestamp with respect to the caller.
2177 	 */
2178 	ts_nsec = local_clock();
2179 
2180 	caller_id = printk_caller_id();
2181 
2182 	/*
2183 	 * The sprintf needs to come first since the syslog prefix might be
2184 	 * passed in as a parameter. An extra byte must be reserved so that
2185 	 * later the vscnprintf() into the reserved buffer has room for the
2186 	 * terminating '\0', which is not counted by vsnprintf().
2187 	 */
2188 	va_copy(args2, args);
2189 	reserve_size = vsnprintf(&prefix_buf[0], sizeof(prefix_buf), fmt, args2) + 1;
2190 	va_end(args2);
2191 
2192 	if (reserve_size > PRINTKRB_RECORD_MAX)
2193 		reserve_size = PRINTKRB_RECORD_MAX;
2194 
2195 	/* Extract log level or control flags. */
2196 	if (facility == 0)
2197 		printk_parse_prefix(&prefix_buf[0], &level, &flags);
2198 
2199 	if (level == LOGLEVEL_DEFAULT)
2200 		level = default_message_loglevel;
2201 
2202 	if (dev_info)
2203 		flags |= LOG_NEWLINE;
2204 
2205 	if (flags & LOG_CONT) {
2206 		prb_rec_init_wr(&r, reserve_size);
2207 		if (prb_reserve_in_last(&e, prb, &r, caller_id, PRINTKRB_RECORD_MAX)) {
2208 			text_len = printk_sprint(&r.text_buf[r.info->text_len], reserve_size,
2209 						 facility, &flags, fmt, args);
2210 			r.info->text_len += text_len;
2211 
2212 			if (flags & LOG_NEWLINE) {
2213 				r.info->flags |= LOG_NEWLINE;
2214 				prb_final_commit(&e);
2215 			} else {
2216 				prb_commit(&e);
2217 			}
2218 
2219 			ret = text_len;
2220 			goto out;
2221 		}
2222 	}
2223 
2224 	/*
2225 	 * Explicitly initialize the record before every prb_reserve() call.
2226 	 * prb_reserve_in_last() and prb_reserve() purposely invalidate the
2227 	 * structure when they fail.
2228 	 */
2229 	prb_rec_init_wr(&r, reserve_size);
2230 	if (!prb_reserve(&e, prb, &r)) {
2231 		/* truncate the message if it is too long for empty buffer */
2232 		truncate_msg(&reserve_size, &trunc_msg_len);
2233 
2234 		prb_rec_init_wr(&r, reserve_size + trunc_msg_len);
2235 		if (!prb_reserve(&e, prb, &r))
2236 			goto out;
2237 	}
2238 
2239 	/* fill message */
2240 	text_len = printk_sprint(&r.text_buf[0], reserve_size, facility, &flags, fmt, args);
2241 	if (trunc_msg_len)
2242 		memcpy(&r.text_buf[text_len], trunc_msg, trunc_msg_len);
2243 	r.info->text_len = text_len + trunc_msg_len;
2244 	r.info->facility = facility;
2245 	r.info->level = level & 7;
2246 	r.info->flags = flags & 0x1f;
2247 	r.info->ts_nsec = ts_nsec;
2248 	r.info->caller_id = caller_id;
2249 	if (dev_info)
2250 		memcpy(&r.info->dev_info, dev_info, sizeof(r.info->dev_info));
2251 
2252 	/* A message without a trailing newline can be continued. */
2253 	if (!(flags & LOG_NEWLINE))
2254 		prb_commit(&e);
2255 	else
2256 		prb_final_commit(&e);
2257 
2258 	ret = text_len + trunc_msg_len;
2259 out:
2260 	printk_exit_irqrestore(recursion_ptr, irqflags);
2261 	return ret;
2262 }
2263 
2264 asmlinkage int vprintk_emit(int facility, int level,
2265 			    const struct dev_printk_info *dev_info,
2266 			    const char *fmt, va_list args)
2267 {
2268 	int printed_len;
2269 	bool in_sched = false;
2270 
2271 	/* Suppress unimportant messages after panic happens */
2272 	if (unlikely(suppress_printk))
2273 		return 0;
2274 
2275 	if (unlikely(suppress_panic_printk) &&
2276 	    atomic_read(&panic_cpu) != raw_smp_processor_id())
2277 		return 0;
2278 
2279 	if (level == LOGLEVEL_SCHED) {
2280 		level = LOGLEVEL_DEFAULT;
2281 		in_sched = true;
2282 	}
2283 
2284 	printk_delay(level);
2285 
2286 	printed_len = vprintk_store(facility, level, dev_info, fmt, args);
2287 
2288 	/* If called from the scheduler, we can not call up(). */
2289 	if (!in_sched) {
2290 		/*
2291 		 * The caller may be holding system-critical or
2292 		 * timing-sensitive locks. Disable preemption during
2293 		 * printing of all remaining records to all consoles so that
2294 		 * this context can return as soon as possible. Hopefully
2295 		 * another printk() caller will take over the printing.
2296 		 */
2297 		preempt_disable();
2298 		/*
2299 		 * Try to acquire and then immediately release the console
2300 		 * semaphore. The release will print out buffers. With the
2301 		 * spinning variant, this context tries to take over the
2302 		 * printing from another printing context.
2303 		 */
2304 		if (console_trylock_spinning())
2305 			console_unlock();
2306 		preempt_enable();
2307 	}
2308 
2309 	wake_up_klogd();
2310 	return printed_len;
2311 }
2312 EXPORT_SYMBOL(vprintk_emit);
2313 
2314 int vprintk_default(const char *fmt, va_list args)
2315 {
2316 	return vprintk_emit(0, LOGLEVEL_DEFAULT, NULL, fmt, args);
2317 }
2318 EXPORT_SYMBOL_GPL(vprintk_default);
2319 
2320 asmlinkage __visible int _printk(const char *fmt, ...)
2321 {
2322 	va_list args;
2323 	int r;
2324 
2325 	va_start(args, fmt);
2326 	r = vprintk(fmt, args);
2327 	va_end(args);
2328 
2329 	return r;
2330 }
2331 EXPORT_SYMBOL(_printk);
2332 
2333 static bool pr_flush(int timeout_ms, bool reset_on_progress);
2334 static bool __pr_flush(struct console *con, int timeout_ms, bool reset_on_progress);
2335 
2336 #else /* CONFIG_PRINTK */
2337 
2338 #define printk_time		false
2339 
2340 #define prb_read_valid(rb, seq, r)	false
2341 #define prb_first_valid_seq(rb)		0
2342 #define prb_next_seq(rb)		0
2343 
2344 static u64 syslog_seq;
2345 
2346 static size_t record_print_text(const struct printk_record *r,
2347 				bool syslog, bool time)
2348 {
2349 	return 0;
2350 }
2351 static ssize_t info_print_ext_header(char *buf, size_t size,
2352 				     struct printk_info *info)
2353 {
2354 	return 0;
2355 }
2356 static ssize_t msg_print_ext_body(char *buf, size_t size,
2357 				  char *text, size_t text_len,
2358 				  struct dev_printk_info *dev_info) { return 0; }
2359 static void console_lock_spinning_enable(void) { }
2360 static int console_lock_spinning_disable_and_check(int cookie) { return 0; }
2361 static bool suppress_message_printing(int level) { return false; }
2362 static bool pr_flush(int timeout_ms, bool reset_on_progress) { return true; }
2363 static bool __pr_flush(struct console *con, int timeout_ms, bool reset_on_progress) { return true; }
2364 
2365 #endif /* CONFIG_PRINTK */
2366 
2367 #ifdef CONFIG_EARLY_PRINTK
2368 struct console *early_console;
2369 
2370 asmlinkage __visible void early_printk(const char *fmt, ...)
2371 {
2372 	va_list ap;
2373 	char buf[512];
2374 	int n;
2375 
2376 	if (!early_console)
2377 		return;
2378 
2379 	va_start(ap, fmt);
2380 	n = vscnprintf(buf, sizeof(buf), fmt, ap);
2381 	va_end(ap);
2382 
2383 	early_console->write(early_console, buf, n);
2384 }
2385 #endif
2386 
2387 static void set_user_specified(struct console_cmdline *c, bool user_specified)
2388 {
2389 	if (!user_specified)
2390 		return;
2391 
2392 	/*
2393 	 * @c console was defined by the user on the command line.
2394 	 * Do not clear when added twice also by SPCR or the device tree.
2395 	 */
2396 	c->user_specified = true;
2397 	/* At least one console defined by the user on the command line. */
2398 	console_set_on_cmdline = 1;
2399 }
2400 
2401 static int __add_preferred_console(char *name, int idx, char *options,
2402 				   char *brl_options, bool user_specified)
2403 {
2404 	struct console_cmdline *c;
2405 	int i;
2406 
2407 	/*
2408 	 *	See if this tty is not yet registered, and
2409 	 *	if we have a slot free.
2410 	 */
2411 	for (i = 0, c = console_cmdline;
2412 	     i < MAX_CMDLINECONSOLES && c->name[0];
2413 	     i++, c++) {
2414 		if (strcmp(c->name, name) == 0 && c->index == idx) {
2415 			if (!brl_options)
2416 				preferred_console = i;
2417 			set_user_specified(c, user_specified);
2418 			return 0;
2419 		}
2420 	}
2421 	if (i == MAX_CMDLINECONSOLES)
2422 		return -E2BIG;
2423 	if (!brl_options)
2424 		preferred_console = i;
2425 	strscpy(c->name, name, sizeof(c->name));
2426 	c->options = options;
2427 	set_user_specified(c, user_specified);
2428 	braille_set_options(c, brl_options);
2429 
2430 	c->index = idx;
2431 	return 0;
2432 }
2433 
2434 static int __init console_msg_format_setup(char *str)
2435 {
2436 	if (!strcmp(str, "syslog"))
2437 		console_msg_format = MSG_FORMAT_SYSLOG;
2438 	if (!strcmp(str, "default"))
2439 		console_msg_format = MSG_FORMAT_DEFAULT;
2440 	return 1;
2441 }
2442 __setup("console_msg_format=", console_msg_format_setup);
2443 
2444 /*
2445  * Set up a console.  Called via do_early_param() in init/main.c
2446  * for each "console=" parameter in the boot command line.
2447  */
2448 static int __init console_setup(char *str)
2449 {
2450 	char buf[sizeof(console_cmdline[0].name) + 4]; /* 4 for "ttyS" */
2451 	char *s, *options, *brl_options = NULL;
2452 	int idx;
2453 
2454 	/*
2455 	 * console="" or console=null have been suggested as a way to
2456 	 * disable console output. Use ttynull that has been created
2457 	 * for exactly this purpose.
2458 	 */
2459 	if (str[0] == 0 || strcmp(str, "null") == 0) {
2460 		__add_preferred_console("ttynull", 0, NULL, NULL, true);
2461 		return 1;
2462 	}
2463 
2464 	if (_braille_console_setup(&str, &brl_options))
2465 		return 1;
2466 
2467 	/*
2468 	 * Decode str into name, index, options.
2469 	 */
2470 	if (str[0] >= '0' && str[0] <= '9') {
2471 		strcpy(buf, "ttyS");
2472 		strncpy(buf + 4, str, sizeof(buf) - 5);
2473 	} else {
2474 		strncpy(buf, str, sizeof(buf) - 1);
2475 	}
2476 	buf[sizeof(buf) - 1] = 0;
2477 	options = strchr(str, ',');
2478 	if (options)
2479 		*(options++) = 0;
2480 #ifdef __sparc__
2481 	if (!strcmp(str, "ttya"))
2482 		strcpy(buf, "ttyS0");
2483 	if (!strcmp(str, "ttyb"))
2484 		strcpy(buf, "ttyS1");
2485 #endif
2486 	for (s = buf; *s; s++)
2487 		if (isdigit(*s) || *s == ',')
2488 			break;
2489 	idx = simple_strtoul(s, NULL, 10);
2490 	*s = 0;
2491 
2492 	__add_preferred_console(buf, idx, options, brl_options, true);
2493 	return 1;
2494 }
2495 __setup("console=", console_setup);
2496 
2497 /**
2498  * add_preferred_console - add a device to the list of preferred consoles.
2499  * @name: device name
2500  * @idx: device index
2501  * @options: options for this console
2502  *
2503  * The last preferred console added will be used for kernel messages
2504  * and stdin/out/err for init.  Normally this is used by console_setup
2505  * above to handle user-supplied console arguments; however it can also
2506  * be used by arch-specific code either to override the user or more
2507  * commonly to provide a default console (ie from PROM variables) when
2508  * the user has not supplied one.
2509  */
2510 int add_preferred_console(char *name, int idx, char *options)
2511 {
2512 	return __add_preferred_console(name, idx, options, NULL, false);
2513 }
2514 
2515 bool console_suspend_enabled = true;
2516 EXPORT_SYMBOL(console_suspend_enabled);
2517 
2518 static int __init console_suspend_disable(char *str)
2519 {
2520 	console_suspend_enabled = false;
2521 	return 1;
2522 }
2523 __setup("no_console_suspend", console_suspend_disable);
2524 module_param_named(console_suspend, console_suspend_enabled,
2525 		bool, S_IRUGO | S_IWUSR);
2526 MODULE_PARM_DESC(console_suspend, "suspend console during suspend"
2527 	" and hibernate operations");
2528 
2529 static bool printk_console_no_auto_verbose;
2530 
2531 void console_verbose(void)
2532 {
2533 	if (console_loglevel && !printk_console_no_auto_verbose)
2534 		console_loglevel = CONSOLE_LOGLEVEL_MOTORMOUTH;
2535 }
2536 EXPORT_SYMBOL_GPL(console_verbose);
2537 
2538 module_param_named(console_no_auto_verbose, printk_console_no_auto_verbose, bool, 0644);
2539 MODULE_PARM_DESC(console_no_auto_verbose, "Disable console loglevel raise to highest on oops/panic/etc");
2540 
2541 /**
2542  * suspend_console - suspend the console subsystem
2543  *
2544  * This disables printk() while we go into suspend states
2545  */
2546 void suspend_console(void)
2547 {
2548 	if (!console_suspend_enabled)
2549 		return;
2550 	pr_info("Suspending console(s) (use no_console_suspend to debug)\n");
2551 	pr_flush(1000, true);
2552 	console_lock();
2553 	console_suspended = 1;
2554 	up_console_sem();
2555 }
2556 
2557 void resume_console(void)
2558 {
2559 	if (!console_suspend_enabled)
2560 		return;
2561 	down_console_sem();
2562 	console_suspended = 0;
2563 	console_unlock();
2564 	pr_flush(1000, true);
2565 }
2566 
2567 /**
2568  * console_cpu_notify - print deferred console messages after CPU hotplug
2569  * @cpu: unused
2570  *
2571  * If printk() is called from a CPU that is not online yet, the messages
2572  * will be printed on the console only if there are CON_ANYTIME consoles.
2573  * This function is called when a new CPU comes online (or fails to come
2574  * up) or goes offline.
2575  */
2576 static int console_cpu_notify(unsigned int cpu)
2577 {
2578 	if (!cpuhp_tasks_frozen) {
2579 		/* If trylock fails, someone else is doing the printing */
2580 		if (console_trylock())
2581 			console_unlock();
2582 	}
2583 	return 0;
2584 }
2585 
2586 /**
2587  * console_lock - block the console subsystem from printing
2588  *
2589  * Acquires a lock which guarantees that no consoles will
2590  * be in or enter their write() callback.
2591  *
2592  * Can sleep, returns nothing.
2593  */
2594 void console_lock(void)
2595 {
2596 	might_sleep();
2597 
2598 	down_console_sem();
2599 	if (console_suspended)
2600 		return;
2601 	console_locked = 1;
2602 	console_may_schedule = 1;
2603 }
2604 EXPORT_SYMBOL(console_lock);
2605 
2606 /**
2607  * console_trylock - try to block the console subsystem from printing
2608  *
2609  * Try to acquire a lock which guarantees that no consoles will
2610  * be in or enter their write() callback.
2611  *
2612  * returns 1 on success, and 0 on failure to acquire the lock.
2613  */
2614 int console_trylock(void)
2615 {
2616 	if (down_trylock_console_sem())
2617 		return 0;
2618 	if (console_suspended) {
2619 		up_console_sem();
2620 		return 0;
2621 	}
2622 	console_locked = 1;
2623 	console_may_schedule = 0;
2624 	return 1;
2625 }
2626 EXPORT_SYMBOL(console_trylock);
2627 
2628 int is_console_locked(void)
2629 {
2630 	return console_locked;
2631 }
2632 EXPORT_SYMBOL(is_console_locked);
2633 
2634 /*
2635  * Return true when this CPU should unlock console_sem without pushing all
2636  * messages to the console. This reduces the chance that the console is
2637  * locked when the panic CPU tries to use it.
2638  */
2639 static bool abandon_console_lock_in_panic(void)
2640 {
2641 	if (!panic_in_progress())
2642 		return false;
2643 
2644 	/*
2645 	 * We can use raw_smp_processor_id() here because it is impossible for
2646 	 * the task to be migrated to the panic_cpu, or away from it. If
2647 	 * panic_cpu has already been set, and we're not currently executing on
2648 	 * that CPU, then we never will be.
2649 	 */
2650 	return atomic_read(&panic_cpu) != raw_smp_processor_id();
2651 }
2652 
2653 /*
2654  * Check if the given console is currently capable and allowed to print
2655  * records.
2656  *
2657  * Requires the console_srcu_read_lock.
2658  */
2659 static inline bool console_is_usable(struct console *con)
2660 {
2661 	short flags = console_srcu_read_flags(con);
2662 
2663 	if (!(flags & CON_ENABLED))
2664 		return false;
2665 
2666 	if (!con->write)
2667 		return false;
2668 
2669 	/*
2670 	 * Console drivers may assume that per-cpu resources have been
2671 	 * allocated. So unless they're explicitly marked as being able to
2672 	 * cope (CON_ANYTIME) don't call them until this CPU is officially up.
2673 	 */
2674 	if (!cpu_online(raw_smp_processor_id()) && !(flags & CON_ANYTIME))
2675 		return false;
2676 
2677 	return true;
2678 }
2679 
2680 static void __console_unlock(void)
2681 {
2682 	console_locked = 0;
2683 	up_console_sem();
2684 }
2685 
2686 /*
2687  * Prepend the message in @pmsg->pbufs->outbuf with a "dropped message". This
2688  * is achieved by shifting the existing message over and inserting the dropped
2689  * message.
2690  *
2691  * @pmsg is the printk message to prepend.
2692  *
2693  * @dropped is the dropped count to report in the dropped message.
2694  *
2695  * If the message text in @pmsg->pbufs->outbuf does not have enough space for
2696  * the dropped message, the message text will be sufficiently truncated.
2697  *
2698  * If @pmsg->pbufs->outbuf is modified, @pmsg->outbuf_len is updated.
2699  */
2700 #ifdef CONFIG_PRINTK
2701 static void console_prepend_dropped(struct printk_message *pmsg, unsigned long dropped)
2702 {
2703 	struct printk_buffers *pbufs = pmsg->pbufs;
2704 	const size_t scratchbuf_sz = sizeof(pbufs->scratchbuf);
2705 	const size_t outbuf_sz = sizeof(pbufs->outbuf);
2706 	char *scratchbuf = &pbufs->scratchbuf[0];
2707 	char *outbuf = &pbufs->outbuf[0];
2708 	size_t len;
2709 
2710 	len = scnprintf(scratchbuf, scratchbuf_sz,
2711 		       "** %lu printk messages dropped **\n", dropped);
2712 
2713 	/*
2714 	 * Make sure outbuf is sufficiently large before prepending.
2715 	 * Keep at least the prefix when the message must be truncated.
2716 	 * It is a rather theoretical problem when someone tries to
2717 	 * use a minimalist buffer.
2718 	 */
2719 	if (WARN_ON_ONCE(len + PRINTK_PREFIX_MAX >= outbuf_sz))
2720 		return;
2721 
2722 	if (pmsg->outbuf_len + len >= outbuf_sz) {
2723 		/* Truncate the message, but keep it terminated. */
2724 		pmsg->outbuf_len = outbuf_sz - (len + 1);
2725 		outbuf[pmsg->outbuf_len] = 0;
2726 	}
2727 
2728 	memmove(outbuf + len, outbuf, pmsg->outbuf_len + 1);
2729 	memcpy(outbuf, scratchbuf, len);
2730 	pmsg->outbuf_len += len;
2731 }
2732 #else
2733 #define console_prepend_dropped(pmsg, dropped)
2734 #endif /* CONFIG_PRINTK */
2735 
2736 /*
2737  * Read and format the specified record (or a later record if the specified
2738  * record is not available).
2739  *
2740  * @pmsg will contain the formatted result. @pmsg->pbufs must point to a
2741  * struct printk_buffers.
2742  *
2743  * @seq is the record to read and format. If it is not available, the next
2744  * valid record is read.
2745  *
2746  * @is_extended specifies if the message should be formatted for extended
2747  * console output.
2748  *
2749  * @may_supress specifies if records may be skipped based on loglevel.
2750  *
2751  * Returns false if no record is available. Otherwise true and all fields
2752  * of @pmsg are valid. (See the documentation of struct printk_message
2753  * for information about the @pmsg fields.)
2754  */
2755 static bool printk_get_next_message(struct printk_message *pmsg, u64 seq,
2756 				    bool is_extended, bool may_suppress)
2757 {
2758 	static int panic_console_dropped;
2759 
2760 	struct printk_buffers *pbufs = pmsg->pbufs;
2761 	const size_t scratchbuf_sz = sizeof(pbufs->scratchbuf);
2762 	const size_t outbuf_sz = sizeof(pbufs->outbuf);
2763 	char *scratchbuf = &pbufs->scratchbuf[0];
2764 	char *outbuf = &pbufs->outbuf[0];
2765 	struct printk_info info;
2766 	struct printk_record r;
2767 	size_t len = 0;
2768 
2769 	/*
2770 	 * Formatting extended messages requires a separate buffer, so use the
2771 	 * scratch buffer to read in the ringbuffer text.
2772 	 *
2773 	 * Formatting normal messages is done in-place, so read the ringbuffer
2774 	 * text directly into the output buffer.
2775 	 */
2776 	if (is_extended)
2777 		prb_rec_init_rd(&r, &info, scratchbuf, scratchbuf_sz);
2778 	else
2779 		prb_rec_init_rd(&r, &info, outbuf, outbuf_sz);
2780 
2781 	if (!prb_read_valid(prb, seq, &r))
2782 		return false;
2783 
2784 	pmsg->seq = r.info->seq;
2785 	pmsg->dropped = r.info->seq - seq;
2786 
2787 	/*
2788 	 * Check for dropped messages in panic here so that printk
2789 	 * suppression can occur as early as possible if necessary.
2790 	 */
2791 	if (pmsg->dropped &&
2792 	    panic_in_progress() &&
2793 	    panic_console_dropped++ > 10) {
2794 		suppress_panic_printk = 1;
2795 		pr_warn_once("Too many dropped messages. Suppress messages on non-panic CPUs to prevent livelock.\n");
2796 	}
2797 
2798 	/* Skip record that has level above the console loglevel. */
2799 	if (may_suppress && suppress_message_printing(r.info->level))
2800 		goto out;
2801 
2802 	if (is_extended) {
2803 		len = info_print_ext_header(outbuf, outbuf_sz, r.info);
2804 		len += msg_print_ext_body(outbuf + len, outbuf_sz - len,
2805 					  &r.text_buf[0], r.info->text_len, &r.info->dev_info);
2806 	} else {
2807 		len = record_print_text(&r, console_msg_format & MSG_FORMAT_SYSLOG, printk_time);
2808 	}
2809 out:
2810 	pmsg->outbuf_len = len;
2811 	return true;
2812 }
2813 
2814 /*
2815  * Print one record for the given console. The record printed is whatever
2816  * record is the next available record for the given console.
2817  *
2818  * @handover will be set to true if a printk waiter has taken over the
2819  * console_lock, in which case the caller is no longer holding both the
2820  * console_lock and the SRCU read lock. Otherwise it is set to false.
2821  *
2822  * @cookie is the cookie from the SRCU read lock.
2823  *
2824  * Returns false if the given console has no next record to print, otherwise
2825  * true.
2826  *
2827  * Requires the console_lock and the SRCU read lock.
2828  */
2829 static bool console_emit_next_record(struct console *con, bool *handover, int cookie)
2830 {
2831 	static struct printk_buffers pbufs;
2832 
2833 	bool is_extended = console_srcu_read_flags(con) & CON_EXTENDED;
2834 	char *outbuf = &pbufs.outbuf[0];
2835 	struct printk_message pmsg = {
2836 		.pbufs = &pbufs,
2837 	};
2838 	unsigned long flags;
2839 
2840 	*handover = false;
2841 
2842 	if (!printk_get_next_message(&pmsg, con->seq, is_extended, true))
2843 		return false;
2844 
2845 	con->dropped += pmsg.dropped;
2846 
2847 	/* Skip messages of formatted length 0. */
2848 	if (pmsg.outbuf_len == 0) {
2849 		con->seq = pmsg.seq + 1;
2850 		goto skip;
2851 	}
2852 
2853 	if (con->dropped && !is_extended) {
2854 		console_prepend_dropped(&pmsg, con->dropped);
2855 		con->dropped = 0;
2856 	}
2857 
2858 	/*
2859 	 * While actively printing out messages, if another printk()
2860 	 * were to occur on another CPU, it may wait for this one to
2861 	 * finish. This task can not be preempted if there is a
2862 	 * waiter waiting to take over.
2863 	 *
2864 	 * Interrupts are disabled because the hand over to a waiter
2865 	 * must not be interrupted until the hand over is completed
2866 	 * (@console_waiter is cleared).
2867 	 */
2868 	printk_safe_enter_irqsave(flags);
2869 	console_lock_spinning_enable();
2870 
2871 	/* Do not trace print latency. */
2872 	stop_critical_timings();
2873 
2874 	/* Write everything out to the hardware. */
2875 	con->write(con, outbuf, pmsg.outbuf_len);
2876 
2877 	start_critical_timings();
2878 
2879 	con->seq = pmsg.seq + 1;
2880 
2881 	*handover = console_lock_spinning_disable_and_check(cookie);
2882 	printk_safe_exit_irqrestore(flags);
2883 skip:
2884 	return true;
2885 }
2886 
2887 /*
2888  * Print out all remaining records to all consoles.
2889  *
2890  * @do_cond_resched is set by the caller. It can be true only in schedulable
2891  * context.
2892  *
2893  * @next_seq is set to the sequence number after the last available record.
2894  * The value is valid only when this function returns true. It means that all
2895  * usable consoles are completely flushed.
2896  *
2897  * @handover will be set to true if a printk waiter has taken over the
2898  * console_lock, in which case the caller is no longer holding the
2899  * console_lock. Otherwise it is set to false.
2900  *
2901  * Returns true when there was at least one usable console and all messages
2902  * were flushed to all usable consoles. A returned false informs the caller
2903  * that everything was not flushed (either there were no usable consoles or
2904  * another context has taken over printing or it is a panic situation and this
2905  * is not the panic CPU). Regardless the reason, the caller should assume it
2906  * is not useful to immediately try again.
2907  *
2908  * Requires the console_lock.
2909  */
2910 static bool console_flush_all(bool do_cond_resched, u64 *next_seq, bool *handover)
2911 {
2912 	bool any_usable = false;
2913 	struct console *con;
2914 	bool any_progress;
2915 	int cookie;
2916 
2917 	*next_seq = 0;
2918 	*handover = false;
2919 
2920 	do {
2921 		any_progress = false;
2922 
2923 		cookie = console_srcu_read_lock();
2924 		for_each_console_srcu(con) {
2925 			bool progress;
2926 
2927 			if (!console_is_usable(con))
2928 				continue;
2929 			any_usable = true;
2930 
2931 			progress = console_emit_next_record(con, handover, cookie);
2932 
2933 			/*
2934 			 * If a handover has occurred, the SRCU read lock
2935 			 * is already released.
2936 			 */
2937 			if (*handover)
2938 				return false;
2939 
2940 			/* Track the next of the highest seq flushed. */
2941 			if (con->seq > *next_seq)
2942 				*next_seq = con->seq;
2943 
2944 			if (!progress)
2945 				continue;
2946 			any_progress = true;
2947 
2948 			/* Allow panic_cpu to take over the consoles safely. */
2949 			if (abandon_console_lock_in_panic())
2950 				goto abandon;
2951 
2952 			if (do_cond_resched)
2953 				cond_resched();
2954 		}
2955 		console_srcu_read_unlock(cookie);
2956 	} while (any_progress);
2957 
2958 	return any_usable;
2959 
2960 abandon:
2961 	console_srcu_read_unlock(cookie);
2962 	return false;
2963 }
2964 
2965 /**
2966  * console_unlock - unblock the console subsystem from printing
2967  *
2968  * Releases the console_lock which the caller holds to block printing of
2969  * the console subsystem.
2970  *
2971  * While the console_lock was held, console output may have been buffered
2972  * by printk().  If this is the case, console_unlock(); emits
2973  * the output prior to releasing the lock.
2974  *
2975  * console_unlock(); may be called from any context.
2976  */
2977 void console_unlock(void)
2978 {
2979 	bool do_cond_resched;
2980 	bool handover;
2981 	bool flushed;
2982 	u64 next_seq;
2983 
2984 	if (console_suspended) {
2985 		up_console_sem();
2986 		return;
2987 	}
2988 
2989 	/*
2990 	 * Console drivers are called with interrupts disabled, so
2991 	 * @console_may_schedule should be cleared before; however, we may
2992 	 * end up dumping a lot of lines, for example, if called from
2993 	 * console registration path, and should invoke cond_resched()
2994 	 * between lines if allowable.  Not doing so can cause a very long
2995 	 * scheduling stall on a slow console leading to RCU stall and
2996 	 * softlockup warnings which exacerbate the issue with more
2997 	 * messages practically incapacitating the system. Therefore, create
2998 	 * a local to use for the printing loop.
2999 	 */
3000 	do_cond_resched = console_may_schedule;
3001 
3002 	do {
3003 		console_may_schedule = 0;
3004 
3005 		flushed = console_flush_all(do_cond_resched, &next_seq, &handover);
3006 		if (!handover)
3007 			__console_unlock();
3008 
3009 		/*
3010 		 * Abort if there was a failure to flush all messages to all
3011 		 * usable consoles. Either it is not possible to flush (in
3012 		 * which case it would be an infinite loop of retrying) or
3013 		 * another context has taken over printing.
3014 		 */
3015 		if (!flushed)
3016 			break;
3017 
3018 		/*
3019 		 * Some context may have added new records after
3020 		 * console_flush_all() but before unlocking the console.
3021 		 * Re-check if there is a new record to flush. If the trylock
3022 		 * fails, another context is already handling the printing.
3023 		 */
3024 	} while (prb_read_valid(prb, next_seq, NULL) && console_trylock());
3025 }
3026 EXPORT_SYMBOL(console_unlock);
3027 
3028 /**
3029  * console_conditional_schedule - yield the CPU if required
3030  *
3031  * If the console code is currently allowed to sleep, and
3032  * if this CPU should yield the CPU to another task, do
3033  * so here.
3034  *
3035  * Must be called within console_lock();.
3036  */
3037 void __sched console_conditional_schedule(void)
3038 {
3039 	if (console_may_schedule)
3040 		cond_resched();
3041 }
3042 EXPORT_SYMBOL(console_conditional_schedule);
3043 
3044 void console_unblank(void)
3045 {
3046 	struct console *c;
3047 	int cookie;
3048 
3049 	/*
3050 	 * Stop console printing because the unblank() callback may
3051 	 * assume the console is not within its write() callback.
3052 	 *
3053 	 * If @oops_in_progress is set, this may be an atomic context.
3054 	 * In that case, attempt a trylock as best-effort.
3055 	 */
3056 	if (oops_in_progress) {
3057 		if (down_trylock_console_sem() != 0)
3058 			return;
3059 	} else
3060 		console_lock();
3061 
3062 	console_locked = 1;
3063 	console_may_schedule = 0;
3064 
3065 	cookie = console_srcu_read_lock();
3066 	for_each_console_srcu(c) {
3067 		if ((console_srcu_read_flags(c) & CON_ENABLED) && c->unblank)
3068 			c->unblank();
3069 	}
3070 	console_srcu_read_unlock(cookie);
3071 
3072 	console_unlock();
3073 
3074 	if (!oops_in_progress)
3075 		pr_flush(1000, true);
3076 }
3077 
3078 /**
3079  * console_flush_on_panic - flush console content on panic
3080  * @mode: flush all messages in buffer or just the pending ones
3081  *
3082  * Immediately output all pending messages no matter what.
3083  */
3084 void console_flush_on_panic(enum con_flush_mode mode)
3085 {
3086 	/*
3087 	 * If someone else is holding the console lock, trylock will fail
3088 	 * and may_schedule may be set.  Ignore and proceed to unlock so
3089 	 * that messages are flushed out.  As this can be called from any
3090 	 * context and we don't want to get preempted while flushing,
3091 	 * ensure may_schedule is cleared.
3092 	 */
3093 	console_trylock();
3094 	console_may_schedule = 0;
3095 
3096 	if (mode == CONSOLE_REPLAY_ALL) {
3097 		struct console *c;
3098 		int cookie;
3099 		u64 seq;
3100 
3101 		seq = prb_first_valid_seq(prb);
3102 
3103 		cookie = console_srcu_read_lock();
3104 		for_each_console_srcu(c) {
3105 			/*
3106 			 * If the above console_trylock() failed, this is an
3107 			 * unsynchronized assignment. But in that case, the
3108 			 * kernel is in "hope and pray" mode anyway.
3109 			 */
3110 			c->seq = seq;
3111 		}
3112 		console_srcu_read_unlock(cookie);
3113 	}
3114 	console_unlock();
3115 }
3116 
3117 /*
3118  * Return the console tty driver structure and its associated index
3119  */
3120 struct tty_driver *console_device(int *index)
3121 {
3122 	struct console *c;
3123 	struct tty_driver *driver = NULL;
3124 	int cookie;
3125 
3126 	/*
3127 	 * Take console_lock to serialize device() callback with
3128 	 * other console operations. For example, fg_console is
3129 	 * modified under console_lock when switching vt.
3130 	 */
3131 	console_lock();
3132 
3133 	cookie = console_srcu_read_lock();
3134 	for_each_console_srcu(c) {
3135 		if (!c->device)
3136 			continue;
3137 		driver = c->device(c, index);
3138 		if (driver)
3139 			break;
3140 	}
3141 	console_srcu_read_unlock(cookie);
3142 
3143 	console_unlock();
3144 	return driver;
3145 }
3146 
3147 /*
3148  * Prevent further output on the passed console device so that (for example)
3149  * serial drivers can disable console output before suspending a port, and can
3150  * re-enable output afterwards.
3151  */
3152 void console_stop(struct console *console)
3153 {
3154 	__pr_flush(console, 1000, true);
3155 	console_list_lock();
3156 	console_srcu_write_flags(console, console->flags & ~CON_ENABLED);
3157 	console_list_unlock();
3158 
3159 	/*
3160 	 * Ensure that all SRCU list walks have completed. All contexts must
3161 	 * be able to see that this console is disabled so that (for example)
3162 	 * the caller can suspend the port without risk of another context
3163 	 * using the port.
3164 	 */
3165 	synchronize_srcu(&console_srcu);
3166 }
3167 EXPORT_SYMBOL(console_stop);
3168 
3169 void console_start(struct console *console)
3170 {
3171 	console_list_lock();
3172 	console_srcu_write_flags(console, console->flags | CON_ENABLED);
3173 	console_list_unlock();
3174 	__pr_flush(console, 1000, true);
3175 }
3176 EXPORT_SYMBOL(console_start);
3177 
3178 static int __read_mostly keep_bootcon;
3179 
3180 static int __init keep_bootcon_setup(char *str)
3181 {
3182 	keep_bootcon = 1;
3183 	pr_info("debug: skip boot console de-registration.\n");
3184 
3185 	return 0;
3186 }
3187 
3188 early_param("keep_bootcon", keep_bootcon_setup);
3189 
3190 /*
3191  * This is called by register_console() to try to match
3192  * the newly registered console with any of the ones selected
3193  * by either the command line or add_preferred_console() and
3194  * setup/enable it.
3195  *
3196  * Care need to be taken with consoles that are statically
3197  * enabled such as netconsole
3198  */
3199 static int try_enable_preferred_console(struct console *newcon,
3200 					bool user_specified)
3201 {
3202 	struct console_cmdline *c;
3203 	int i, err;
3204 
3205 	for (i = 0, c = console_cmdline;
3206 	     i < MAX_CMDLINECONSOLES && c->name[0];
3207 	     i++, c++) {
3208 		if (c->user_specified != user_specified)
3209 			continue;
3210 		if (!newcon->match ||
3211 		    newcon->match(newcon, c->name, c->index, c->options) != 0) {
3212 			/* default matching */
3213 			BUILD_BUG_ON(sizeof(c->name) != sizeof(newcon->name));
3214 			if (strcmp(c->name, newcon->name) != 0)
3215 				continue;
3216 			if (newcon->index >= 0 &&
3217 			    newcon->index != c->index)
3218 				continue;
3219 			if (newcon->index < 0)
3220 				newcon->index = c->index;
3221 
3222 			if (_braille_register_console(newcon, c))
3223 				return 0;
3224 
3225 			if (newcon->setup &&
3226 			    (err = newcon->setup(newcon, c->options)) != 0)
3227 				return err;
3228 		}
3229 		newcon->flags |= CON_ENABLED;
3230 		if (i == preferred_console)
3231 			newcon->flags |= CON_CONSDEV;
3232 		return 0;
3233 	}
3234 
3235 	/*
3236 	 * Some consoles, such as pstore and netconsole, can be enabled even
3237 	 * without matching. Accept the pre-enabled consoles only when match()
3238 	 * and setup() had a chance to be called.
3239 	 */
3240 	if (newcon->flags & CON_ENABLED && c->user_specified ==	user_specified)
3241 		return 0;
3242 
3243 	return -ENOENT;
3244 }
3245 
3246 /* Try to enable the console unconditionally */
3247 static void try_enable_default_console(struct console *newcon)
3248 {
3249 	if (newcon->index < 0)
3250 		newcon->index = 0;
3251 
3252 	if (newcon->setup && newcon->setup(newcon, NULL) != 0)
3253 		return;
3254 
3255 	newcon->flags |= CON_ENABLED;
3256 
3257 	if (newcon->device)
3258 		newcon->flags |= CON_CONSDEV;
3259 }
3260 
3261 #define con_printk(lvl, con, fmt, ...)			\
3262 	printk(lvl pr_fmt("%sconsole [%s%d] " fmt),	\
3263 	       (con->flags & CON_BOOT) ? "boot" : "",	\
3264 	       con->name, con->index, ##__VA_ARGS__)
3265 
3266 static void console_init_seq(struct console *newcon, bool bootcon_registered)
3267 {
3268 	struct console *con;
3269 	bool handover;
3270 
3271 	if (newcon->flags & (CON_PRINTBUFFER | CON_BOOT)) {
3272 		/* Get a consistent copy of @syslog_seq. */
3273 		mutex_lock(&syslog_lock);
3274 		newcon->seq = syslog_seq;
3275 		mutex_unlock(&syslog_lock);
3276 	} else {
3277 		/* Begin with next message added to ringbuffer. */
3278 		newcon->seq = prb_next_seq(prb);
3279 
3280 		/*
3281 		 * If any enabled boot consoles are due to be unregistered
3282 		 * shortly, some may not be caught up and may be the same
3283 		 * device as @newcon. Since it is not known which boot console
3284 		 * is the same device, flush all consoles and, if necessary,
3285 		 * start with the message of the enabled boot console that is
3286 		 * the furthest behind.
3287 		 */
3288 		if (bootcon_registered && !keep_bootcon) {
3289 			/*
3290 			 * Hold the console_lock to stop console printing and
3291 			 * guarantee safe access to console->seq.
3292 			 */
3293 			console_lock();
3294 
3295 			/*
3296 			 * Flush all consoles and set the console to start at
3297 			 * the next unprinted sequence number.
3298 			 */
3299 			if (!console_flush_all(true, &newcon->seq, &handover)) {
3300 				/*
3301 				 * Flushing failed. Just choose the lowest
3302 				 * sequence of the enabled boot consoles.
3303 				 */
3304 
3305 				/*
3306 				 * If there was a handover, this context no
3307 				 * longer holds the console_lock.
3308 				 */
3309 				if (handover)
3310 					console_lock();
3311 
3312 				newcon->seq = prb_next_seq(prb);
3313 				for_each_console(con) {
3314 					if ((con->flags & CON_BOOT) &&
3315 					    (con->flags & CON_ENABLED) &&
3316 					    con->seq < newcon->seq) {
3317 						newcon->seq = con->seq;
3318 					}
3319 				}
3320 			}
3321 
3322 			console_unlock();
3323 		}
3324 	}
3325 }
3326 
3327 #define console_first()				\
3328 	hlist_entry(console_list.first, struct console, node)
3329 
3330 static int unregister_console_locked(struct console *console);
3331 
3332 /*
3333  * The console driver calls this routine during kernel initialization
3334  * to register the console printing procedure with printk() and to
3335  * print any messages that were printed by the kernel before the
3336  * console driver was initialized.
3337  *
3338  * This can happen pretty early during the boot process (because of
3339  * early_printk) - sometimes before setup_arch() completes - be careful
3340  * of what kernel features are used - they may not be initialised yet.
3341  *
3342  * There are two types of consoles - bootconsoles (early_printk) and
3343  * "real" consoles (everything which is not a bootconsole) which are
3344  * handled differently.
3345  *  - Any number of bootconsoles can be registered at any time.
3346  *  - As soon as a "real" console is registered, all bootconsoles
3347  *    will be unregistered automatically.
3348  *  - Once a "real" console is registered, any attempt to register a
3349  *    bootconsoles will be rejected
3350  */
3351 void register_console(struct console *newcon)
3352 {
3353 	struct console *con;
3354 	bool bootcon_registered = false;
3355 	bool realcon_registered = false;
3356 	int err;
3357 
3358 	console_list_lock();
3359 
3360 	for_each_console(con) {
3361 		if (WARN(con == newcon, "console '%s%d' already registered\n",
3362 					 con->name, con->index)) {
3363 			goto unlock;
3364 		}
3365 
3366 		if (con->flags & CON_BOOT)
3367 			bootcon_registered = true;
3368 		else
3369 			realcon_registered = true;
3370 	}
3371 
3372 	/* Do not register boot consoles when there already is a real one. */
3373 	if ((newcon->flags & CON_BOOT) && realcon_registered) {
3374 		pr_info("Too late to register bootconsole %s%d\n",
3375 			newcon->name, newcon->index);
3376 		goto unlock;
3377 	}
3378 
3379 	/*
3380 	 * See if we want to enable this console driver by default.
3381 	 *
3382 	 * Nope when a console is preferred by the command line, device
3383 	 * tree, or SPCR.
3384 	 *
3385 	 * The first real console with tty binding (driver) wins. More
3386 	 * consoles might get enabled before the right one is found.
3387 	 *
3388 	 * Note that a console with tty binding will have CON_CONSDEV
3389 	 * flag set and will be first in the list.
3390 	 */
3391 	if (preferred_console < 0) {
3392 		if (hlist_empty(&console_list) || !console_first()->device ||
3393 		    console_first()->flags & CON_BOOT) {
3394 			try_enable_default_console(newcon);
3395 		}
3396 	}
3397 
3398 	/* See if this console matches one we selected on the command line */
3399 	err = try_enable_preferred_console(newcon, true);
3400 
3401 	/* If not, try to match against the platform default(s) */
3402 	if (err == -ENOENT)
3403 		err = try_enable_preferred_console(newcon, false);
3404 
3405 	/* printk() messages are not printed to the Braille console. */
3406 	if (err || newcon->flags & CON_BRL)
3407 		goto unlock;
3408 
3409 	/*
3410 	 * If we have a bootconsole, and are switching to a real console,
3411 	 * don't print everything out again, since when the boot console, and
3412 	 * the real console are the same physical device, it's annoying to
3413 	 * see the beginning boot messages twice
3414 	 */
3415 	if (bootcon_registered &&
3416 	    ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV)) {
3417 		newcon->flags &= ~CON_PRINTBUFFER;
3418 	}
3419 
3420 	newcon->dropped = 0;
3421 	console_init_seq(newcon, bootcon_registered);
3422 
3423 	/*
3424 	 * Put this console in the list - keep the
3425 	 * preferred driver at the head of the list.
3426 	 */
3427 	if (hlist_empty(&console_list)) {
3428 		/* Ensure CON_CONSDEV is always set for the head. */
3429 		newcon->flags |= CON_CONSDEV;
3430 		hlist_add_head_rcu(&newcon->node, &console_list);
3431 
3432 	} else if (newcon->flags & CON_CONSDEV) {
3433 		/* Only the new head can have CON_CONSDEV set. */
3434 		console_srcu_write_flags(console_first(), console_first()->flags & ~CON_CONSDEV);
3435 		hlist_add_head_rcu(&newcon->node, &console_list);
3436 
3437 	} else {
3438 		hlist_add_behind_rcu(&newcon->node, console_list.first);
3439 	}
3440 
3441 	/*
3442 	 * No need to synchronize SRCU here! The caller does not rely
3443 	 * on all contexts being able to see the new console before
3444 	 * register_console() completes.
3445 	 */
3446 
3447 	console_sysfs_notify();
3448 
3449 	/*
3450 	 * By unregistering the bootconsoles after we enable the real console
3451 	 * we get the "console xxx enabled" message on all the consoles -
3452 	 * boot consoles, real consoles, etc - this is to ensure that end
3453 	 * users know there might be something in the kernel's log buffer that
3454 	 * went to the bootconsole (that they do not see on the real console)
3455 	 */
3456 	con_printk(KERN_INFO, newcon, "enabled\n");
3457 	if (bootcon_registered &&
3458 	    ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV) &&
3459 	    !keep_bootcon) {
3460 		struct hlist_node *tmp;
3461 
3462 		hlist_for_each_entry_safe(con, tmp, &console_list, node) {
3463 			if (con->flags & CON_BOOT)
3464 				unregister_console_locked(con);
3465 		}
3466 	}
3467 unlock:
3468 	console_list_unlock();
3469 }
3470 EXPORT_SYMBOL(register_console);
3471 
3472 /* Must be called under console_list_lock(). */
3473 static int unregister_console_locked(struct console *console)
3474 {
3475 	int res;
3476 
3477 	lockdep_assert_console_list_lock_held();
3478 
3479 	con_printk(KERN_INFO, console, "disabled\n");
3480 
3481 	res = _braille_unregister_console(console);
3482 	if (res < 0)
3483 		return res;
3484 	if (res > 0)
3485 		return 0;
3486 
3487 	/* Disable it unconditionally */
3488 	console_srcu_write_flags(console, console->flags & ~CON_ENABLED);
3489 
3490 	if (!console_is_registered_locked(console))
3491 		return -ENODEV;
3492 
3493 	hlist_del_init_rcu(&console->node);
3494 
3495 	/*
3496 	 * <HISTORICAL>
3497 	 * If this isn't the last console and it has CON_CONSDEV set, we
3498 	 * need to set it on the next preferred console.
3499 	 * </HISTORICAL>
3500 	 *
3501 	 * The above makes no sense as there is no guarantee that the next
3502 	 * console has any device attached. Oh well....
3503 	 */
3504 	if (!hlist_empty(&console_list) && console->flags & CON_CONSDEV)
3505 		console_srcu_write_flags(console_first(), console_first()->flags | CON_CONSDEV);
3506 
3507 	/*
3508 	 * Ensure that all SRCU list walks have completed. All contexts
3509 	 * must not be able to see this console in the list so that any
3510 	 * exit/cleanup routines can be performed safely.
3511 	 */
3512 	synchronize_srcu(&console_srcu);
3513 
3514 	console_sysfs_notify();
3515 
3516 	if (console->exit)
3517 		res = console->exit(console);
3518 
3519 	return res;
3520 }
3521 
3522 int unregister_console(struct console *console)
3523 {
3524 	int res;
3525 
3526 	console_list_lock();
3527 	res = unregister_console_locked(console);
3528 	console_list_unlock();
3529 	return res;
3530 }
3531 EXPORT_SYMBOL(unregister_console);
3532 
3533 /**
3534  * console_force_preferred_locked - force a registered console preferred
3535  * @con: The registered console to force preferred.
3536  *
3537  * Must be called under console_list_lock().
3538  */
3539 void console_force_preferred_locked(struct console *con)
3540 {
3541 	struct console *cur_pref_con;
3542 
3543 	if (!console_is_registered_locked(con))
3544 		return;
3545 
3546 	cur_pref_con = console_first();
3547 
3548 	/* Already preferred? */
3549 	if (cur_pref_con == con)
3550 		return;
3551 
3552 	/*
3553 	 * Delete, but do not re-initialize the entry. This allows the console
3554 	 * to continue to appear registered (via any hlist_unhashed_lockless()
3555 	 * checks), even though it was briefly removed from the console list.
3556 	 */
3557 	hlist_del_rcu(&con->node);
3558 
3559 	/*
3560 	 * Ensure that all SRCU list walks have completed so that the console
3561 	 * can be added to the beginning of the console list and its forward
3562 	 * list pointer can be re-initialized.
3563 	 */
3564 	synchronize_srcu(&console_srcu);
3565 
3566 	con->flags |= CON_CONSDEV;
3567 	WARN_ON(!con->device);
3568 
3569 	/* Only the new head can have CON_CONSDEV set. */
3570 	console_srcu_write_flags(cur_pref_con, cur_pref_con->flags & ~CON_CONSDEV);
3571 	hlist_add_head_rcu(&con->node, &console_list);
3572 }
3573 EXPORT_SYMBOL(console_force_preferred_locked);
3574 
3575 /*
3576  * Initialize the console device. This is called *early*, so
3577  * we can't necessarily depend on lots of kernel help here.
3578  * Just do some early initializations, and do the complex setup
3579  * later.
3580  */
3581 void __init console_init(void)
3582 {
3583 	int ret;
3584 	initcall_t call;
3585 	initcall_entry_t *ce;
3586 
3587 	/* Setup the default TTY line discipline. */
3588 	n_tty_init();
3589 
3590 	/*
3591 	 * set up the console device so that later boot sequences can
3592 	 * inform about problems etc..
3593 	 */
3594 	ce = __con_initcall_start;
3595 	trace_initcall_level("console");
3596 	while (ce < __con_initcall_end) {
3597 		call = initcall_from_entry(ce);
3598 		trace_initcall_start(call);
3599 		ret = call();
3600 		trace_initcall_finish(call, ret);
3601 		ce++;
3602 	}
3603 }
3604 
3605 /*
3606  * Some boot consoles access data that is in the init section and which will
3607  * be discarded after the initcalls have been run. To make sure that no code
3608  * will access this data, unregister the boot consoles in a late initcall.
3609  *
3610  * If for some reason, such as deferred probe or the driver being a loadable
3611  * module, the real console hasn't registered yet at this point, there will
3612  * be a brief interval in which no messages are logged to the console, which
3613  * makes it difficult to diagnose problems that occur during this time.
3614  *
3615  * To mitigate this problem somewhat, only unregister consoles whose memory
3616  * intersects with the init section. Note that all other boot consoles will
3617  * get unregistered when the real preferred console is registered.
3618  */
3619 static int __init printk_late_init(void)
3620 {
3621 	struct hlist_node *tmp;
3622 	struct console *con;
3623 	int ret;
3624 
3625 	console_list_lock();
3626 	hlist_for_each_entry_safe(con, tmp, &console_list, node) {
3627 		if (!(con->flags & CON_BOOT))
3628 			continue;
3629 
3630 		/* Check addresses that might be used for enabled consoles. */
3631 		if (init_section_intersects(con, sizeof(*con)) ||
3632 		    init_section_contains(con->write, 0) ||
3633 		    init_section_contains(con->read, 0) ||
3634 		    init_section_contains(con->device, 0) ||
3635 		    init_section_contains(con->unblank, 0) ||
3636 		    init_section_contains(con->data, 0)) {
3637 			/*
3638 			 * Please, consider moving the reported consoles out
3639 			 * of the init section.
3640 			 */
3641 			pr_warn("bootconsole [%s%d] uses init memory and must be disabled even before the real one is ready\n",
3642 				con->name, con->index);
3643 			unregister_console_locked(con);
3644 		}
3645 	}
3646 	console_list_unlock();
3647 
3648 	ret = cpuhp_setup_state_nocalls(CPUHP_PRINTK_DEAD, "printk:dead", NULL,
3649 					console_cpu_notify);
3650 	WARN_ON(ret < 0);
3651 	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "printk:online",
3652 					console_cpu_notify, NULL);
3653 	WARN_ON(ret < 0);
3654 	printk_sysctl_init();
3655 	return 0;
3656 }
3657 late_initcall(printk_late_init);
3658 
3659 #if defined CONFIG_PRINTK
3660 /* If @con is specified, only wait for that console. Otherwise wait for all. */
3661 static bool __pr_flush(struct console *con, int timeout_ms, bool reset_on_progress)
3662 {
3663 	int remaining = timeout_ms;
3664 	struct console *c;
3665 	u64 last_diff = 0;
3666 	u64 printk_seq;
3667 	int cookie;
3668 	u64 diff;
3669 	u64 seq;
3670 
3671 	might_sleep();
3672 
3673 	seq = prb_next_seq(prb);
3674 
3675 	for (;;) {
3676 		diff = 0;
3677 
3678 		/*
3679 		 * Hold the console_lock to guarantee safe access to
3680 		 * console->seq and to prevent changes to @console_suspended
3681 		 * until all consoles have been processed.
3682 		 */
3683 		console_lock();
3684 
3685 		cookie = console_srcu_read_lock();
3686 		for_each_console_srcu(c) {
3687 			if (con && con != c)
3688 				continue;
3689 			if (!console_is_usable(c))
3690 				continue;
3691 			printk_seq = c->seq;
3692 			if (printk_seq < seq)
3693 				diff += seq - printk_seq;
3694 		}
3695 		console_srcu_read_unlock(cookie);
3696 
3697 		/*
3698 		 * If consoles are suspended, it cannot be expected that they
3699 		 * make forward progress, so timeout immediately. @diff is
3700 		 * still used to return a valid flush status.
3701 		 */
3702 		if (console_suspended)
3703 			remaining = 0;
3704 		else if (diff != last_diff && reset_on_progress)
3705 			remaining = timeout_ms;
3706 
3707 		console_unlock();
3708 
3709 		if (diff == 0 || remaining == 0)
3710 			break;
3711 
3712 		if (remaining < 0) {
3713 			/* no timeout limit */
3714 			msleep(100);
3715 		} else if (remaining < 100) {
3716 			msleep(remaining);
3717 			remaining = 0;
3718 		} else {
3719 			msleep(100);
3720 			remaining -= 100;
3721 		}
3722 
3723 		last_diff = diff;
3724 	}
3725 
3726 	return (diff == 0);
3727 }
3728 
3729 /**
3730  * pr_flush() - Wait for printing threads to catch up.
3731  *
3732  * @timeout_ms:        The maximum time (in ms) to wait.
3733  * @reset_on_progress: Reset the timeout if forward progress is seen.
3734  *
3735  * A value of 0 for @timeout_ms means no waiting will occur. A value of -1
3736  * represents infinite waiting.
3737  *
3738  * If @reset_on_progress is true, the timeout will be reset whenever any
3739  * printer has been seen to make some forward progress.
3740  *
3741  * Context: Process context. May sleep while acquiring console lock.
3742  * Return: true if all enabled printers are caught up.
3743  */
3744 static bool pr_flush(int timeout_ms, bool reset_on_progress)
3745 {
3746 	return __pr_flush(NULL, timeout_ms, reset_on_progress);
3747 }
3748 
3749 /*
3750  * Delayed printk version, for scheduler-internal messages:
3751  */
3752 #define PRINTK_PENDING_WAKEUP	0x01
3753 #define PRINTK_PENDING_OUTPUT	0x02
3754 
3755 static DEFINE_PER_CPU(int, printk_pending);
3756 
3757 static void wake_up_klogd_work_func(struct irq_work *irq_work)
3758 {
3759 	int pending = this_cpu_xchg(printk_pending, 0);
3760 
3761 	if (pending & PRINTK_PENDING_OUTPUT) {
3762 		/* If trylock fails, someone else is doing the printing */
3763 		if (console_trylock())
3764 			console_unlock();
3765 	}
3766 
3767 	if (pending & PRINTK_PENDING_WAKEUP)
3768 		wake_up_interruptible(&log_wait);
3769 }
3770 
3771 static DEFINE_PER_CPU(struct irq_work, wake_up_klogd_work) =
3772 	IRQ_WORK_INIT_LAZY(wake_up_klogd_work_func);
3773 
3774 static void __wake_up_klogd(int val)
3775 {
3776 	if (!printk_percpu_data_ready())
3777 		return;
3778 
3779 	preempt_disable();
3780 	/*
3781 	 * Guarantee any new records can be seen by tasks preparing to wait
3782 	 * before this context checks if the wait queue is empty.
3783 	 *
3784 	 * The full memory barrier within wq_has_sleeper() pairs with the full
3785 	 * memory barrier within set_current_state() of
3786 	 * prepare_to_wait_event(), which is called after ___wait_event() adds
3787 	 * the waiter but before it has checked the wait condition.
3788 	 *
3789 	 * This pairs with devkmsg_read:A and syslog_print:A.
3790 	 */
3791 	if (wq_has_sleeper(&log_wait) || /* LMM(__wake_up_klogd:A) */
3792 	    (val & PRINTK_PENDING_OUTPUT)) {
3793 		this_cpu_or(printk_pending, val);
3794 		irq_work_queue(this_cpu_ptr(&wake_up_klogd_work));
3795 	}
3796 	preempt_enable();
3797 }
3798 
3799 void wake_up_klogd(void)
3800 {
3801 	__wake_up_klogd(PRINTK_PENDING_WAKEUP);
3802 }
3803 
3804 void defer_console_output(void)
3805 {
3806 	/*
3807 	 * New messages may have been added directly to the ringbuffer
3808 	 * using vprintk_store(), so wake any waiters as well.
3809 	 */
3810 	__wake_up_klogd(PRINTK_PENDING_WAKEUP | PRINTK_PENDING_OUTPUT);
3811 }
3812 
3813 void printk_trigger_flush(void)
3814 {
3815 	defer_console_output();
3816 }
3817 
3818 int vprintk_deferred(const char *fmt, va_list args)
3819 {
3820 	int r;
3821 
3822 	r = vprintk_emit(0, LOGLEVEL_SCHED, NULL, fmt, args);
3823 	defer_console_output();
3824 
3825 	return r;
3826 }
3827 
3828 int _printk_deferred(const char *fmt, ...)
3829 {
3830 	va_list args;
3831 	int r;
3832 
3833 	va_start(args, fmt);
3834 	r = vprintk_deferred(fmt, args);
3835 	va_end(args);
3836 
3837 	return r;
3838 }
3839 
3840 /*
3841  * printk rate limiting, lifted from the networking subsystem.
3842  *
3843  * This enforces a rate limit: not more than 10 kernel messages
3844  * every 5s to make a denial-of-service attack impossible.
3845  */
3846 DEFINE_RATELIMIT_STATE(printk_ratelimit_state, 5 * HZ, 10);
3847 
3848 int __printk_ratelimit(const char *func)
3849 {
3850 	return ___ratelimit(&printk_ratelimit_state, func);
3851 }
3852 EXPORT_SYMBOL(__printk_ratelimit);
3853 
3854 /**
3855  * printk_timed_ratelimit - caller-controlled printk ratelimiting
3856  * @caller_jiffies: pointer to caller's state
3857  * @interval_msecs: minimum interval between prints
3858  *
3859  * printk_timed_ratelimit() returns true if more than @interval_msecs
3860  * milliseconds have elapsed since the last time printk_timed_ratelimit()
3861  * returned true.
3862  */
3863 bool printk_timed_ratelimit(unsigned long *caller_jiffies,
3864 			unsigned int interval_msecs)
3865 {
3866 	unsigned long elapsed = jiffies - *caller_jiffies;
3867 
3868 	if (*caller_jiffies && elapsed <= msecs_to_jiffies(interval_msecs))
3869 		return false;
3870 
3871 	*caller_jiffies = jiffies;
3872 	return true;
3873 }
3874 EXPORT_SYMBOL(printk_timed_ratelimit);
3875 
3876 static DEFINE_SPINLOCK(dump_list_lock);
3877 static LIST_HEAD(dump_list);
3878 
3879 /**
3880  * kmsg_dump_register - register a kernel log dumper.
3881  * @dumper: pointer to the kmsg_dumper structure
3882  *
3883  * Adds a kernel log dumper to the system. The dump callback in the
3884  * structure will be called when the kernel oopses or panics and must be
3885  * set. Returns zero on success and %-EINVAL or %-EBUSY otherwise.
3886  */
3887 int kmsg_dump_register(struct kmsg_dumper *dumper)
3888 {
3889 	unsigned long flags;
3890 	int err = -EBUSY;
3891 
3892 	/* The dump callback needs to be set */
3893 	if (!dumper->dump)
3894 		return -EINVAL;
3895 
3896 	spin_lock_irqsave(&dump_list_lock, flags);
3897 	/* Don't allow registering multiple times */
3898 	if (!dumper->registered) {
3899 		dumper->registered = 1;
3900 		list_add_tail_rcu(&dumper->list, &dump_list);
3901 		err = 0;
3902 	}
3903 	spin_unlock_irqrestore(&dump_list_lock, flags);
3904 
3905 	return err;
3906 }
3907 EXPORT_SYMBOL_GPL(kmsg_dump_register);
3908 
3909 /**
3910  * kmsg_dump_unregister - unregister a kmsg dumper.
3911  * @dumper: pointer to the kmsg_dumper structure
3912  *
3913  * Removes a dump device from the system. Returns zero on success and
3914  * %-EINVAL otherwise.
3915  */
3916 int kmsg_dump_unregister(struct kmsg_dumper *dumper)
3917 {
3918 	unsigned long flags;
3919 	int err = -EINVAL;
3920 
3921 	spin_lock_irqsave(&dump_list_lock, flags);
3922 	if (dumper->registered) {
3923 		dumper->registered = 0;
3924 		list_del_rcu(&dumper->list);
3925 		err = 0;
3926 	}
3927 	spin_unlock_irqrestore(&dump_list_lock, flags);
3928 	synchronize_rcu();
3929 
3930 	return err;
3931 }
3932 EXPORT_SYMBOL_GPL(kmsg_dump_unregister);
3933 
3934 static bool always_kmsg_dump;
3935 module_param_named(always_kmsg_dump, always_kmsg_dump, bool, S_IRUGO | S_IWUSR);
3936 
3937 const char *kmsg_dump_reason_str(enum kmsg_dump_reason reason)
3938 {
3939 	switch (reason) {
3940 	case KMSG_DUMP_PANIC:
3941 		return "Panic";
3942 	case KMSG_DUMP_OOPS:
3943 		return "Oops";
3944 	case KMSG_DUMP_EMERG:
3945 		return "Emergency";
3946 	case KMSG_DUMP_SHUTDOWN:
3947 		return "Shutdown";
3948 	default:
3949 		return "Unknown";
3950 	}
3951 }
3952 EXPORT_SYMBOL_GPL(kmsg_dump_reason_str);
3953 
3954 /**
3955  * kmsg_dump - dump kernel log to kernel message dumpers.
3956  * @reason: the reason (oops, panic etc) for dumping
3957  *
3958  * Call each of the registered dumper's dump() callback, which can
3959  * retrieve the kmsg records with kmsg_dump_get_line() or
3960  * kmsg_dump_get_buffer().
3961  */
3962 void kmsg_dump(enum kmsg_dump_reason reason)
3963 {
3964 	struct kmsg_dumper *dumper;
3965 
3966 	rcu_read_lock();
3967 	list_for_each_entry_rcu(dumper, &dump_list, list) {
3968 		enum kmsg_dump_reason max_reason = dumper->max_reason;
3969 
3970 		/*
3971 		 * If client has not provided a specific max_reason, default
3972 		 * to KMSG_DUMP_OOPS, unless always_kmsg_dump was set.
3973 		 */
3974 		if (max_reason == KMSG_DUMP_UNDEF) {
3975 			max_reason = always_kmsg_dump ? KMSG_DUMP_MAX :
3976 							KMSG_DUMP_OOPS;
3977 		}
3978 		if (reason > max_reason)
3979 			continue;
3980 
3981 		/* invoke dumper which will iterate over records */
3982 		dumper->dump(dumper, reason);
3983 	}
3984 	rcu_read_unlock();
3985 }
3986 
3987 /**
3988  * kmsg_dump_get_line - retrieve one kmsg log line
3989  * @iter: kmsg dump iterator
3990  * @syslog: include the "<4>" prefixes
3991  * @line: buffer to copy the line to
3992  * @size: maximum size of the buffer
3993  * @len: length of line placed into buffer
3994  *
3995  * Start at the beginning of the kmsg buffer, with the oldest kmsg
3996  * record, and copy one record into the provided buffer.
3997  *
3998  * Consecutive calls will return the next available record moving
3999  * towards the end of the buffer with the youngest messages.
4000  *
4001  * A return value of FALSE indicates that there are no more records to
4002  * read.
4003  */
4004 bool kmsg_dump_get_line(struct kmsg_dump_iter *iter, bool syslog,
4005 			char *line, size_t size, size_t *len)
4006 {
4007 	u64 min_seq = latched_seq_read_nolock(&clear_seq);
4008 	struct printk_info info;
4009 	unsigned int line_count;
4010 	struct printk_record r;
4011 	size_t l = 0;
4012 	bool ret = false;
4013 
4014 	if (iter->cur_seq < min_seq)
4015 		iter->cur_seq = min_seq;
4016 
4017 	prb_rec_init_rd(&r, &info, line, size);
4018 
4019 	/* Read text or count text lines? */
4020 	if (line) {
4021 		if (!prb_read_valid(prb, iter->cur_seq, &r))
4022 			goto out;
4023 		l = record_print_text(&r, syslog, printk_time);
4024 	} else {
4025 		if (!prb_read_valid_info(prb, iter->cur_seq,
4026 					 &info, &line_count)) {
4027 			goto out;
4028 		}
4029 		l = get_record_print_text_size(&info, line_count, syslog,
4030 					       printk_time);
4031 
4032 	}
4033 
4034 	iter->cur_seq = r.info->seq + 1;
4035 	ret = true;
4036 out:
4037 	if (len)
4038 		*len = l;
4039 	return ret;
4040 }
4041 EXPORT_SYMBOL_GPL(kmsg_dump_get_line);
4042 
4043 /**
4044  * kmsg_dump_get_buffer - copy kmsg log lines
4045  * @iter: kmsg dump iterator
4046  * @syslog: include the "<4>" prefixes
4047  * @buf: buffer to copy the line to
4048  * @size: maximum size of the buffer
4049  * @len_out: length of line placed into buffer
4050  *
4051  * Start at the end of the kmsg buffer and fill the provided buffer
4052  * with as many of the *youngest* kmsg records that fit into it.
4053  * If the buffer is large enough, all available kmsg records will be
4054  * copied with a single call.
4055  *
4056  * Consecutive calls will fill the buffer with the next block of
4057  * available older records, not including the earlier retrieved ones.
4058  *
4059  * A return value of FALSE indicates that there are no more records to
4060  * read.
4061  */
4062 bool kmsg_dump_get_buffer(struct kmsg_dump_iter *iter, bool syslog,
4063 			  char *buf, size_t size, size_t *len_out)
4064 {
4065 	u64 min_seq = latched_seq_read_nolock(&clear_seq);
4066 	struct printk_info info;
4067 	struct printk_record r;
4068 	u64 seq;
4069 	u64 next_seq;
4070 	size_t len = 0;
4071 	bool ret = false;
4072 	bool time = printk_time;
4073 
4074 	if (!buf || !size)
4075 		goto out;
4076 
4077 	if (iter->cur_seq < min_seq)
4078 		iter->cur_seq = min_seq;
4079 
4080 	if (prb_read_valid_info(prb, iter->cur_seq, &info, NULL)) {
4081 		if (info.seq != iter->cur_seq) {
4082 			/* messages are gone, move to first available one */
4083 			iter->cur_seq = info.seq;
4084 		}
4085 	}
4086 
4087 	/* last entry */
4088 	if (iter->cur_seq >= iter->next_seq)
4089 		goto out;
4090 
4091 	/*
4092 	 * Find first record that fits, including all following records,
4093 	 * into the user-provided buffer for this dump. Pass in size-1
4094 	 * because this function (by way of record_print_text()) will
4095 	 * not write more than size-1 bytes of text into @buf.
4096 	 */
4097 	seq = find_first_fitting_seq(iter->cur_seq, iter->next_seq,
4098 				     size - 1, syslog, time);
4099 
4100 	/*
4101 	 * Next kmsg_dump_get_buffer() invocation will dump block of
4102 	 * older records stored right before this one.
4103 	 */
4104 	next_seq = seq;
4105 
4106 	prb_rec_init_rd(&r, &info, buf, size);
4107 
4108 	len = 0;
4109 	prb_for_each_record(seq, prb, seq, &r) {
4110 		if (r.info->seq >= iter->next_seq)
4111 			break;
4112 
4113 		len += record_print_text(&r, syslog, time);
4114 
4115 		/* Adjust record to store to remaining buffer space. */
4116 		prb_rec_init_rd(&r, &info, buf + len, size - len);
4117 	}
4118 
4119 	iter->next_seq = next_seq;
4120 	ret = true;
4121 out:
4122 	if (len_out)
4123 		*len_out = len;
4124 	return ret;
4125 }
4126 EXPORT_SYMBOL_GPL(kmsg_dump_get_buffer);
4127 
4128 /**
4129  * kmsg_dump_rewind - reset the iterator
4130  * @iter: kmsg dump iterator
4131  *
4132  * Reset the dumper's iterator so that kmsg_dump_get_line() and
4133  * kmsg_dump_get_buffer() can be called again and used multiple
4134  * times within the same dumper.dump() callback.
4135  */
4136 void kmsg_dump_rewind(struct kmsg_dump_iter *iter)
4137 {
4138 	iter->cur_seq = latched_seq_read_nolock(&clear_seq);
4139 	iter->next_seq = prb_next_seq(prb);
4140 }
4141 EXPORT_SYMBOL_GPL(kmsg_dump_rewind);
4142 
4143 #endif
4144 
4145 #ifdef CONFIG_SMP
4146 static atomic_t printk_cpu_sync_owner = ATOMIC_INIT(-1);
4147 static atomic_t printk_cpu_sync_nested = ATOMIC_INIT(0);
4148 
4149 /**
4150  * __printk_cpu_sync_wait() - Busy wait until the printk cpu-reentrant
4151  *                            spinning lock is not owned by any CPU.
4152  *
4153  * Context: Any context.
4154  */
4155 void __printk_cpu_sync_wait(void)
4156 {
4157 	do {
4158 		cpu_relax();
4159 	} while (atomic_read(&printk_cpu_sync_owner) != -1);
4160 }
4161 EXPORT_SYMBOL(__printk_cpu_sync_wait);
4162 
4163 /**
4164  * __printk_cpu_sync_try_get() - Try to acquire the printk cpu-reentrant
4165  *                               spinning lock.
4166  *
4167  * If no processor has the lock, the calling processor takes the lock and
4168  * becomes the owner. If the calling processor is already the owner of the
4169  * lock, this function succeeds immediately.
4170  *
4171  * Context: Any context. Expects interrupts to be disabled.
4172  * Return: 1 on success, otherwise 0.
4173  */
4174 int __printk_cpu_sync_try_get(void)
4175 {
4176 	int cpu;
4177 	int old;
4178 
4179 	cpu = smp_processor_id();
4180 
4181 	/*
4182 	 * Guarantee loads and stores from this CPU when it is the lock owner
4183 	 * are _not_ visible to the previous lock owner. This pairs with
4184 	 * __printk_cpu_sync_put:B.
4185 	 *
4186 	 * Memory barrier involvement:
4187 	 *
4188 	 * If __printk_cpu_sync_try_get:A reads from __printk_cpu_sync_put:B,
4189 	 * then __printk_cpu_sync_put:A can never read from
4190 	 * __printk_cpu_sync_try_get:B.
4191 	 *
4192 	 * Relies on:
4193 	 *
4194 	 * RELEASE from __printk_cpu_sync_put:A to __printk_cpu_sync_put:B
4195 	 * of the previous CPU
4196 	 *    matching
4197 	 * ACQUIRE from __printk_cpu_sync_try_get:A to
4198 	 * __printk_cpu_sync_try_get:B of this CPU
4199 	 */
4200 	old = atomic_cmpxchg_acquire(&printk_cpu_sync_owner, -1,
4201 				     cpu); /* LMM(__printk_cpu_sync_try_get:A) */
4202 	if (old == -1) {
4203 		/*
4204 		 * This CPU is now the owner and begins loading/storing
4205 		 * data: LMM(__printk_cpu_sync_try_get:B)
4206 		 */
4207 		return 1;
4208 
4209 	} else if (old == cpu) {
4210 		/* This CPU is already the owner. */
4211 		atomic_inc(&printk_cpu_sync_nested);
4212 		return 1;
4213 	}
4214 
4215 	return 0;
4216 }
4217 EXPORT_SYMBOL(__printk_cpu_sync_try_get);
4218 
4219 /**
4220  * __printk_cpu_sync_put() - Release the printk cpu-reentrant spinning lock.
4221  *
4222  * The calling processor must be the owner of the lock.
4223  *
4224  * Context: Any context. Expects interrupts to be disabled.
4225  */
4226 void __printk_cpu_sync_put(void)
4227 {
4228 	if (atomic_read(&printk_cpu_sync_nested)) {
4229 		atomic_dec(&printk_cpu_sync_nested);
4230 		return;
4231 	}
4232 
4233 	/*
4234 	 * This CPU is finished loading/storing data:
4235 	 * LMM(__printk_cpu_sync_put:A)
4236 	 */
4237 
4238 	/*
4239 	 * Guarantee loads and stores from this CPU when it was the
4240 	 * lock owner are visible to the next lock owner. This pairs
4241 	 * with __printk_cpu_sync_try_get:A.
4242 	 *
4243 	 * Memory barrier involvement:
4244 	 *
4245 	 * If __printk_cpu_sync_try_get:A reads from __printk_cpu_sync_put:B,
4246 	 * then __printk_cpu_sync_try_get:B reads from __printk_cpu_sync_put:A.
4247 	 *
4248 	 * Relies on:
4249 	 *
4250 	 * RELEASE from __printk_cpu_sync_put:A to __printk_cpu_sync_put:B
4251 	 * of this CPU
4252 	 *    matching
4253 	 * ACQUIRE from __printk_cpu_sync_try_get:A to
4254 	 * __printk_cpu_sync_try_get:B of the next CPU
4255 	 */
4256 	atomic_set_release(&printk_cpu_sync_owner,
4257 			   -1); /* LMM(__printk_cpu_sync_put:B) */
4258 }
4259 EXPORT_SYMBOL(__printk_cpu_sync_put);
4260 #endif /* CONFIG_SMP */
4261