xref: /openbmc/linux/kernel/printk/printk.c (revision 6c9111bc)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/printk.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  *
7  * Modified to make sys_syslog() more flexible: added commands to
8  * return the last 4k of kernel messages, regardless of whether
9  * they've been read or not.  Added option to suppress kernel printk's
10  * to the console.  Added hook for sending the console messages
11  * elsewhere, in preparation for a serial line console (someday).
12  * Ted Ts'o, 2/11/93.
13  * Modified for sysctl support, 1/8/97, Chris Horn.
14  * Fixed SMP synchronization, 08/08/99, Manfred Spraul
15  *     manfred@colorfullife.com
16  * Rewrote bits to get rid of console_lock
17  *	01Mar01 Andrew Morton
18  */
19 
20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
21 
22 #include <linux/kernel.h>
23 #include <linux/mm.h>
24 #include <linux/tty.h>
25 #include <linux/tty_driver.h>
26 #include <linux/console.h>
27 #include <linux/init.h>
28 #include <linux/jiffies.h>
29 #include <linux/nmi.h>
30 #include <linux/module.h>
31 #include <linux/moduleparam.h>
32 #include <linux/delay.h>
33 #include <linux/smp.h>
34 #include <linux/security.h>
35 #include <linux/memblock.h>
36 #include <linux/syscalls.h>
37 #include <linux/crash_core.h>
38 #include <linux/ratelimit.h>
39 #include <linux/kmsg_dump.h>
40 #include <linux/syslog.h>
41 #include <linux/cpu.h>
42 #include <linux/rculist.h>
43 #include <linux/poll.h>
44 #include <linux/irq_work.h>
45 #include <linux/ctype.h>
46 #include <linux/uio.h>
47 #include <linux/sched/clock.h>
48 #include <linux/sched/debug.h>
49 #include <linux/sched/task_stack.h>
50 
51 #include <linux/uaccess.h>
52 #include <asm/sections.h>
53 
54 #include <trace/events/initcall.h>
55 #define CREATE_TRACE_POINTS
56 #include <trace/events/printk.h>
57 
58 #include "printk_ringbuffer.h"
59 #include "console_cmdline.h"
60 #include "braille.h"
61 #include "internal.h"
62 
63 int console_printk[4] = {
64 	CONSOLE_LOGLEVEL_DEFAULT,	/* console_loglevel */
65 	MESSAGE_LOGLEVEL_DEFAULT,	/* default_message_loglevel */
66 	CONSOLE_LOGLEVEL_MIN,		/* minimum_console_loglevel */
67 	CONSOLE_LOGLEVEL_DEFAULT,	/* default_console_loglevel */
68 };
69 EXPORT_SYMBOL_GPL(console_printk);
70 
71 atomic_t ignore_console_lock_warning __read_mostly = ATOMIC_INIT(0);
72 EXPORT_SYMBOL(ignore_console_lock_warning);
73 
74 /*
75  * Low level drivers may need that to know if they can schedule in
76  * their unblank() callback or not. So let's export it.
77  */
78 int oops_in_progress;
79 EXPORT_SYMBOL(oops_in_progress);
80 
81 /*
82  * console_sem protects the console_drivers list, and also
83  * provides serialisation for access to the entire console
84  * driver system.
85  */
86 static DEFINE_SEMAPHORE(console_sem);
87 struct console *console_drivers;
88 EXPORT_SYMBOL_GPL(console_drivers);
89 
90 /*
91  * System may need to suppress printk message under certain
92  * circumstances, like after kernel panic happens.
93  */
94 int __read_mostly suppress_printk;
95 
96 #ifdef CONFIG_LOCKDEP
97 static struct lockdep_map console_lock_dep_map = {
98 	.name = "console_lock"
99 };
100 #endif
101 
102 enum devkmsg_log_bits {
103 	__DEVKMSG_LOG_BIT_ON = 0,
104 	__DEVKMSG_LOG_BIT_OFF,
105 	__DEVKMSG_LOG_BIT_LOCK,
106 };
107 
108 enum devkmsg_log_masks {
109 	DEVKMSG_LOG_MASK_ON             = BIT(__DEVKMSG_LOG_BIT_ON),
110 	DEVKMSG_LOG_MASK_OFF            = BIT(__DEVKMSG_LOG_BIT_OFF),
111 	DEVKMSG_LOG_MASK_LOCK           = BIT(__DEVKMSG_LOG_BIT_LOCK),
112 };
113 
114 /* Keep both the 'on' and 'off' bits clear, i.e. ratelimit by default: */
115 #define DEVKMSG_LOG_MASK_DEFAULT	0
116 
117 static unsigned int __read_mostly devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT;
118 
119 static int __control_devkmsg(char *str)
120 {
121 	size_t len;
122 
123 	if (!str)
124 		return -EINVAL;
125 
126 	len = str_has_prefix(str, "on");
127 	if (len) {
128 		devkmsg_log = DEVKMSG_LOG_MASK_ON;
129 		return len;
130 	}
131 
132 	len = str_has_prefix(str, "off");
133 	if (len) {
134 		devkmsg_log = DEVKMSG_LOG_MASK_OFF;
135 		return len;
136 	}
137 
138 	len = str_has_prefix(str, "ratelimit");
139 	if (len) {
140 		devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT;
141 		return len;
142 	}
143 
144 	return -EINVAL;
145 }
146 
147 static int __init control_devkmsg(char *str)
148 {
149 	if (__control_devkmsg(str) < 0)
150 		return 1;
151 
152 	/*
153 	 * Set sysctl string accordingly:
154 	 */
155 	if (devkmsg_log == DEVKMSG_LOG_MASK_ON)
156 		strcpy(devkmsg_log_str, "on");
157 	else if (devkmsg_log == DEVKMSG_LOG_MASK_OFF)
158 		strcpy(devkmsg_log_str, "off");
159 	/* else "ratelimit" which is set by default. */
160 
161 	/*
162 	 * Sysctl cannot change it anymore. The kernel command line setting of
163 	 * this parameter is to force the setting to be permanent throughout the
164 	 * runtime of the system. This is a precation measure against userspace
165 	 * trying to be a smarta** and attempting to change it up on us.
166 	 */
167 	devkmsg_log |= DEVKMSG_LOG_MASK_LOCK;
168 
169 	return 0;
170 }
171 __setup("printk.devkmsg=", control_devkmsg);
172 
173 char devkmsg_log_str[DEVKMSG_STR_MAX_SIZE] = "ratelimit";
174 
175 int devkmsg_sysctl_set_loglvl(struct ctl_table *table, int write,
176 			      void *buffer, size_t *lenp, loff_t *ppos)
177 {
178 	char old_str[DEVKMSG_STR_MAX_SIZE];
179 	unsigned int old;
180 	int err;
181 
182 	if (write) {
183 		if (devkmsg_log & DEVKMSG_LOG_MASK_LOCK)
184 			return -EINVAL;
185 
186 		old = devkmsg_log;
187 		strncpy(old_str, devkmsg_log_str, DEVKMSG_STR_MAX_SIZE);
188 	}
189 
190 	err = proc_dostring(table, write, buffer, lenp, ppos);
191 	if (err)
192 		return err;
193 
194 	if (write) {
195 		err = __control_devkmsg(devkmsg_log_str);
196 
197 		/*
198 		 * Do not accept an unknown string OR a known string with
199 		 * trailing crap...
200 		 */
201 		if (err < 0 || (err + 1 != *lenp)) {
202 
203 			/* ... and restore old setting. */
204 			devkmsg_log = old;
205 			strncpy(devkmsg_log_str, old_str, DEVKMSG_STR_MAX_SIZE);
206 
207 			return -EINVAL;
208 		}
209 	}
210 
211 	return 0;
212 }
213 
214 /* Number of registered extended console drivers. */
215 static int nr_ext_console_drivers;
216 
217 /*
218  * Helper macros to handle lockdep when locking/unlocking console_sem. We use
219  * macros instead of functions so that _RET_IP_ contains useful information.
220  */
221 #define down_console_sem() do { \
222 	down(&console_sem);\
223 	mutex_acquire(&console_lock_dep_map, 0, 0, _RET_IP_);\
224 } while (0)
225 
226 static int __down_trylock_console_sem(unsigned long ip)
227 {
228 	int lock_failed;
229 	unsigned long flags;
230 
231 	/*
232 	 * Here and in __up_console_sem() we need to be in safe mode,
233 	 * because spindump/WARN/etc from under console ->lock will
234 	 * deadlock in printk()->down_trylock_console_sem() otherwise.
235 	 */
236 	printk_safe_enter_irqsave(flags);
237 	lock_failed = down_trylock(&console_sem);
238 	printk_safe_exit_irqrestore(flags);
239 
240 	if (lock_failed)
241 		return 1;
242 	mutex_acquire(&console_lock_dep_map, 0, 1, ip);
243 	return 0;
244 }
245 #define down_trylock_console_sem() __down_trylock_console_sem(_RET_IP_)
246 
247 static void __up_console_sem(unsigned long ip)
248 {
249 	unsigned long flags;
250 
251 	mutex_release(&console_lock_dep_map, ip);
252 
253 	printk_safe_enter_irqsave(flags);
254 	up(&console_sem);
255 	printk_safe_exit_irqrestore(flags);
256 }
257 #define up_console_sem() __up_console_sem(_RET_IP_)
258 
259 /*
260  * This is used for debugging the mess that is the VT code by
261  * keeping track if we have the console semaphore held. It's
262  * definitely not the perfect debug tool (we don't know if _WE_
263  * hold it and are racing, but it helps tracking those weird code
264  * paths in the console code where we end up in places I want
265  * locked without the console sempahore held).
266  */
267 static int console_locked, console_suspended;
268 
269 /*
270  * If exclusive_console is non-NULL then only this console is to be printed to.
271  */
272 static struct console *exclusive_console;
273 
274 /*
275  *	Array of consoles built from command line options (console=)
276  */
277 
278 #define MAX_CMDLINECONSOLES 8
279 
280 static struct console_cmdline console_cmdline[MAX_CMDLINECONSOLES];
281 
282 static int preferred_console = -1;
283 static bool has_preferred_console;
284 int console_set_on_cmdline;
285 EXPORT_SYMBOL(console_set_on_cmdline);
286 
287 /* Flag: console code may call schedule() */
288 static int console_may_schedule;
289 
290 enum con_msg_format_flags {
291 	MSG_FORMAT_DEFAULT	= 0,
292 	MSG_FORMAT_SYSLOG	= (1 << 0),
293 };
294 
295 static int console_msg_format = MSG_FORMAT_DEFAULT;
296 
297 /*
298  * The printk log buffer consists of a sequenced collection of records, each
299  * containing variable length message text. Every record also contains its
300  * own meta-data (@info).
301  *
302  * Every record meta-data carries the timestamp in microseconds, as well as
303  * the standard userspace syslog level and syslog facility. The usual kernel
304  * messages use LOG_KERN; userspace-injected messages always carry a matching
305  * syslog facility, by default LOG_USER. The origin of every message can be
306  * reliably determined that way.
307  *
308  * The human readable log message of a record is available in @text, the
309  * length of the message text in @text_len. The stored message is not
310  * terminated.
311  *
312  * Optionally, a record can carry a dictionary of properties (key/value
313  * pairs), to provide userspace with a machine-readable message context.
314  *
315  * Examples for well-defined, commonly used property names are:
316  *   DEVICE=b12:8               device identifier
317  *                                b12:8         block dev_t
318  *                                c127:3        char dev_t
319  *                                n8            netdev ifindex
320  *                                +sound:card0  subsystem:devname
321  *   SUBSYSTEM=pci              driver-core subsystem name
322  *
323  * Valid characters in property names are [a-zA-Z0-9.-_]. Property names
324  * and values are terminated by a '\0' character.
325  *
326  * Example of record values:
327  *   record.text_buf                = "it's a line" (unterminated)
328  *   record.info.seq                = 56
329  *   record.info.ts_nsec            = 36863
330  *   record.info.text_len           = 11
331  *   record.info.facility           = 0 (LOG_KERN)
332  *   record.info.flags              = 0
333  *   record.info.level              = 3 (LOG_ERR)
334  *   record.info.caller_id          = 299 (task 299)
335  *   record.info.dev_info.subsystem = "pci" (terminated)
336  *   record.info.dev_info.device    = "+pci:0000:00:01.0" (terminated)
337  *
338  * The 'struct printk_info' buffer must never be directly exported to
339  * userspace, it is a kernel-private implementation detail that might
340  * need to be changed in the future, when the requirements change.
341  *
342  * /dev/kmsg exports the structured data in the following line format:
343  *   "<level>,<sequnum>,<timestamp>,<contflag>[,additional_values, ... ];<message text>\n"
344  *
345  * Users of the export format should ignore possible additional values
346  * separated by ',', and find the message after the ';' character.
347  *
348  * The optional key/value pairs are attached as continuation lines starting
349  * with a space character and terminated by a newline. All possible
350  * non-prinatable characters are escaped in the "\xff" notation.
351  */
352 
353 enum log_flags {
354 	LOG_NEWLINE	= 2,	/* text ended with a newline */
355 	LOG_CONT	= 8,	/* text is a fragment of a continuation line */
356 };
357 
358 /*
359  * The logbuf_lock protects kmsg buffer, indices, counters.  This can be taken
360  * within the scheduler's rq lock. It must be released before calling
361  * console_unlock() or anything else that might wake up a process.
362  */
363 DEFINE_RAW_SPINLOCK(logbuf_lock);
364 
365 /*
366  * Helper macros to lock/unlock logbuf_lock and switch between
367  * printk-safe/unsafe modes.
368  */
369 #define logbuf_lock_irq()				\
370 	do {						\
371 		printk_safe_enter_irq();		\
372 		raw_spin_lock(&logbuf_lock);		\
373 	} while (0)
374 
375 #define logbuf_unlock_irq()				\
376 	do {						\
377 		raw_spin_unlock(&logbuf_lock);		\
378 		printk_safe_exit_irq();			\
379 	} while (0)
380 
381 #define logbuf_lock_irqsave(flags)			\
382 	do {						\
383 		printk_safe_enter_irqsave(flags);	\
384 		raw_spin_lock(&logbuf_lock);		\
385 	} while (0)
386 
387 #define logbuf_unlock_irqrestore(flags)		\
388 	do {						\
389 		raw_spin_unlock(&logbuf_lock);		\
390 		printk_safe_exit_irqrestore(flags);	\
391 	} while (0)
392 
393 #ifdef CONFIG_PRINTK
394 DECLARE_WAIT_QUEUE_HEAD(log_wait);
395 /* the next printk record to read by syslog(READ) or /proc/kmsg */
396 static u64 syslog_seq;
397 static size_t syslog_partial;
398 static bool syslog_time;
399 
400 /* the next printk record to write to the console */
401 static u64 console_seq;
402 static u64 exclusive_console_stop_seq;
403 static unsigned long console_dropped;
404 
405 /* the next printk record to read after the last 'clear' command */
406 static u64 clear_seq;
407 
408 #ifdef CONFIG_PRINTK_CALLER
409 #define PREFIX_MAX		48
410 #else
411 #define PREFIX_MAX		32
412 #endif
413 #define LOG_LINE_MAX		(1024 - PREFIX_MAX)
414 
415 #define LOG_LEVEL(v)		((v) & 0x07)
416 #define LOG_FACILITY(v)		((v) >> 3 & 0xff)
417 
418 /* record buffer */
419 #define LOG_ALIGN __alignof__(unsigned long)
420 #define __LOG_BUF_LEN (1 << CONFIG_LOG_BUF_SHIFT)
421 #define LOG_BUF_LEN_MAX (u32)(1 << 31)
422 static char __log_buf[__LOG_BUF_LEN] __aligned(LOG_ALIGN);
423 static char *log_buf = __log_buf;
424 static u32 log_buf_len = __LOG_BUF_LEN;
425 
426 /*
427  * Define the average message size. This only affects the number of
428  * descriptors that will be available. Underestimating is better than
429  * overestimating (too many available descriptors is better than not enough).
430  */
431 #define PRB_AVGBITS 5	/* 32 character average length */
432 
433 #if CONFIG_LOG_BUF_SHIFT <= PRB_AVGBITS
434 #error CONFIG_LOG_BUF_SHIFT value too small.
435 #endif
436 _DEFINE_PRINTKRB(printk_rb_static, CONFIG_LOG_BUF_SHIFT - PRB_AVGBITS,
437 		 PRB_AVGBITS, &__log_buf[0]);
438 
439 static struct printk_ringbuffer printk_rb_dynamic;
440 
441 static struct printk_ringbuffer *prb = &printk_rb_static;
442 
443 /*
444  * We cannot access per-CPU data (e.g. per-CPU flush irq_work) before
445  * per_cpu_areas are initialised. This variable is set to true when
446  * it's safe to access per-CPU data.
447  */
448 static bool __printk_percpu_data_ready __read_mostly;
449 
450 bool printk_percpu_data_ready(void)
451 {
452 	return __printk_percpu_data_ready;
453 }
454 
455 /* Return log buffer address */
456 char *log_buf_addr_get(void)
457 {
458 	return log_buf;
459 }
460 
461 /* Return log buffer size */
462 u32 log_buf_len_get(void)
463 {
464 	return log_buf_len;
465 }
466 
467 /*
468  * Define how much of the log buffer we could take at maximum. The value
469  * must be greater than two. Note that only half of the buffer is available
470  * when the index points to the middle.
471  */
472 #define MAX_LOG_TAKE_PART 4
473 static const char trunc_msg[] = "<truncated>";
474 
475 static void truncate_msg(u16 *text_len, u16 *trunc_msg_len)
476 {
477 	/*
478 	 * The message should not take the whole buffer. Otherwise, it might
479 	 * get removed too soon.
480 	 */
481 	u32 max_text_len = log_buf_len / MAX_LOG_TAKE_PART;
482 
483 	if (*text_len > max_text_len)
484 		*text_len = max_text_len;
485 
486 	/* enable the warning message (if there is room) */
487 	*trunc_msg_len = strlen(trunc_msg);
488 	if (*text_len >= *trunc_msg_len)
489 		*text_len -= *trunc_msg_len;
490 	else
491 		*trunc_msg_len = 0;
492 }
493 
494 /* insert record into the buffer, discard old ones, update heads */
495 static int log_store(u32 caller_id, int facility, int level,
496 		     enum log_flags flags, u64 ts_nsec,
497 		     const struct dev_printk_info *dev_info,
498 		     const char *text, u16 text_len)
499 {
500 	struct prb_reserved_entry e;
501 	struct printk_record r;
502 	u16 trunc_msg_len = 0;
503 
504 	prb_rec_init_wr(&r, text_len);
505 
506 	if (!prb_reserve(&e, prb, &r)) {
507 		/* truncate the message if it is too long for empty buffer */
508 		truncate_msg(&text_len, &trunc_msg_len);
509 		prb_rec_init_wr(&r, text_len + trunc_msg_len);
510 		/* survive when the log buffer is too small for trunc_msg */
511 		if (!prb_reserve(&e, prb, &r))
512 			return 0;
513 	}
514 
515 	/* fill message */
516 	memcpy(&r.text_buf[0], text, text_len);
517 	if (trunc_msg_len)
518 		memcpy(&r.text_buf[text_len], trunc_msg, trunc_msg_len);
519 	r.info->text_len = text_len + trunc_msg_len;
520 	r.info->facility = facility;
521 	r.info->level = level & 7;
522 	r.info->flags = flags & 0x1f;
523 	if (ts_nsec > 0)
524 		r.info->ts_nsec = ts_nsec;
525 	else
526 		r.info->ts_nsec = local_clock();
527 	r.info->caller_id = caller_id;
528 	if (dev_info)
529 		memcpy(&r.info->dev_info, dev_info, sizeof(r.info->dev_info));
530 
531 	/* insert message */
532 	if ((flags & LOG_CONT) || !(flags & LOG_NEWLINE))
533 		prb_commit(&e);
534 	else
535 		prb_final_commit(&e);
536 
537 	return (text_len + trunc_msg_len);
538 }
539 
540 int dmesg_restrict = IS_ENABLED(CONFIG_SECURITY_DMESG_RESTRICT);
541 
542 static int syslog_action_restricted(int type)
543 {
544 	if (dmesg_restrict)
545 		return 1;
546 	/*
547 	 * Unless restricted, we allow "read all" and "get buffer size"
548 	 * for everybody.
549 	 */
550 	return type != SYSLOG_ACTION_READ_ALL &&
551 	       type != SYSLOG_ACTION_SIZE_BUFFER;
552 }
553 
554 static int check_syslog_permissions(int type, int source)
555 {
556 	/*
557 	 * If this is from /proc/kmsg and we've already opened it, then we've
558 	 * already done the capabilities checks at open time.
559 	 */
560 	if (source == SYSLOG_FROM_PROC && type != SYSLOG_ACTION_OPEN)
561 		goto ok;
562 
563 	if (syslog_action_restricted(type)) {
564 		if (capable(CAP_SYSLOG))
565 			goto ok;
566 		/*
567 		 * For historical reasons, accept CAP_SYS_ADMIN too, with
568 		 * a warning.
569 		 */
570 		if (capable(CAP_SYS_ADMIN)) {
571 			pr_warn_once("%s (%d): Attempt to access syslog with "
572 				     "CAP_SYS_ADMIN but no CAP_SYSLOG "
573 				     "(deprecated).\n",
574 				 current->comm, task_pid_nr(current));
575 			goto ok;
576 		}
577 		return -EPERM;
578 	}
579 ok:
580 	return security_syslog(type);
581 }
582 
583 static void append_char(char **pp, char *e, char c)
584 {
585 	if (*pp < e)
586 		*(*pp)++ = c;
587 }
588 
589 static ssize_t info_print_ext_header(char *buf, size_t size,
590 				     struct printk_info *info)
591 {
592 	u64 ts_usec = info->ts_nsec;
593 	char caller[20];
594 #ifdef CONFIG_PRINTK_CALLER
595 	u32 id = info->caller_id;
596 
597 	snprintf(caller, sizeof(caller), ",caller=%c%u",
598 		 id & 0x80000000 ? 'C' : 'T', id & ~0x80000000);
599 #else
600 	caller[0] = '\0';
601 #endif
602 
603 	do_div(ts_usec, 1000);
604 
605 	return scnprintf(buf, size, "%u,%llu,%llu,%c%s;",
606 			 (info->facility << 3) | info->level, info->seq,
607 			 ts_usec, info->flags & LOG_CONT ? 'c' : '-', caller);
608 }
609 
610 static ssize_t msg_add_ext_text(char *buf, size_t size,
611 				const char *text, size_t text_len,
612 				unsigned char endc)
613 {
614 	char *p = buf, *e = buf + size;
615 	size_t i;
616 
617 	/* escape non-printable characters */
618 	for (i = 0; i < text_len; i++) {
619 		unsigned char c = text[i];
620 
621 		if (c < ' ' || c >= 127 || c == '\\')
622 			p += scnprintf(p, e - p, "\\x%02x", c);
623 		else
624 			append_char(&p, e, c);
625 	}
626 	append_char(&p, e, endc);
627 
628 	return p - buf;
629 }
630 
631 static ssize_t msg_add_dict_text(char *buf, size_t size,
632 				 const char *key, const char *val)
633 {
634 	size_t val_len = strlen(val);
635 	ssize_t len;
636 
637 	if (!val_len)
638 		return 0;
639 
640 	len = msg_add_ext_text(buf, size, "", 0, ' ');	/* dict prefix */
641 	len += msg_add_ext_text(buf + len, size - len, key, strlen(key), '=');
642 	len += msg_add_ext_text(buf + len, size - len, val, val_len, '\n');
643 
644 	return len;
645 }
646 
647 static ssize_t msg_print_ext_body(char *buf, size_t size,
648 				  char *text, size_t text_len,
649 				  struct dev_printk_info *dev_info)
650 {
651 	ssize_t len;
652 
653 	len = msg_add_ext_text(buf, size, text, text_len, '\n');
654 
655 	if (!dev_info)
656 		goto out;
657 
658 	len += msg_add_dict_text(buf + len, size - len, "SUBSYSTEM",
659 				 dev_info->subsystem);
660 	len += msg_add_dict_text(buf + len, size - len, "DEVICE",
661 				 dev_info->device);
662 out:
663 	return len;
664 }
665 
666 /* /dev/kmsg - userspace message inject/listen interface */
667 struct devkmsg_user {
668 	u64 seq;
669 	struct ratelimit_state rs;
670 	struct mutex lock;
671 	char buf[CONSOLE_EXT_LOG_MAX];
672 
673 	struct printk_info info;
674 	char text_buf[CONSOLE_EXT_LOG_MAX];
675 	struct printk_record record;
676 };
677 
678 static __printf(3, 4) __cold
679 int devkmsg_emit(int facility, int level, const char *fmt, ...)
680 {
681 	va_list args;
682 	int r;
683 
684 	va_start(args, fmt);
685 	r = vprintk_emit(facility, level, NULL, fmt, args);
686 	va_end(args);
687 
688 	return r;
689 }
690 
691 static ssize_t devkmsg_write(struct kiocb *iocb, struct iov_iter *from)
692 {
693 	char *buf, *line;
694 	int level = default_message_loglevel;
695 	int facility = 1;	/* LOG_USER */
696 	struct file *file = iocb->ki_filp;
697 	struct devkmsg_user *user = file->private_data;
698 	size_t len = iov_iter_count(from);
699 	ssize_t ret = len;
700 
701 	if (!user || len > LOG_LINE_MAX)
702 		return -EINVAL;
703 
704 	/* Ignore when user logging is disabled. */
705 	if (devkmsg_log & DEVKMSG_LOG_MASK_OFF)
706 		return len;
707 
708 	/* Ratelimit when not explicitly enabled. */
709 	if (!(devkmsg_log & DEVKMSG_LOG_MASK_ON)) {
710 		if (!___ratelimit(&user->rs, current->comm))
711 			return ret;
712 	}
713 
714 	buf = kmalloc(len+1, GFP_KERNEL);
715 	if (buf == NULL)
716 		return -ENOMEM;
717 
718 	buf[len] = '\0';
719 	if (!copy_from_iter_full(buf, len, from)) {
720 		kfree(buf);
721 		return -EFAULT;
722 	}
723 
724 	/*
725 	 * Extract and skip the syslog prefix <[0-9]*>. Coming from userspace
726 	 * the decimal value represents 32bit, the lower 3 bit are the log
727 	 * level, the rest are the log facility.
728 	 *
729 	 * If no prefix or no userspace facility is specified, we
730 	 * enforce LOG_USER, to be able to reliably distinguish
731 	 * kernel-generated messages from userspace-injected ones.
732 	 */
733 	line = buf;
734 	if (line[0] == '<') {
735 		char *endp = NULL;
736 		unsigned int u;
737 
738 		u = simple_strtoul(line + 1, &endp, 10);
739 		if (endp && endp[0] == '>') {
740 			level = LOG_LEVEL(u);
741 			if (LOG_FACILITY(u) != 0)
742 				facility = LOG_FACILITY(u);
743 			endp++;
744 			len -= endp - line;
745 			line = endp;
746 		}
747 	}
748 
749 	devkmsg_emit(facility, level, "%s", line);
750 	kfree(buf);
751 	return ret;
752 }
753 
754 static ssize_t devkmsg_read(struct file *file, char __user *buf,
755 			    size_t count, loff_t *ppos)
756 {
757 	struct devkmsg_user *user = file->private_data;
758 	struct printk_record *r = &user->record;
759 	size_t len;
760 	ssize_t ret;
761 
762 	if (!user)
763 		return -EBADF;
764 
765 	ret = mutex_lock_interruptible(&user->lock);
766 	if (ret)
767 		return ret;
768 
769 	logbuf_lock_irq();
770 	if (!prb_read_valid(prb, user->seq, r)) {
771 		if (file->f_flags & O_NONBLOCK) {
772 			ret = -EAGAIN;
773 			logbuf_unlock_irq();
774 			goto out;
775 		}
776 
777 		logbuf_unlock_irq();
778 		ret = wait_event_interruptible(log_wait,
779 					prb_read_valid(prb, user->seq, r));
780 		if (ret)
781 			goto out;
782 		logbuf_lock_irq();
783 	}
784 
785 	if (user->seq < prb_first_valid_seq(prb)) {
786 		/* our last seen message is gone, return error and reset */
787 		user->seq = prb_first_valid_seq(prb);
788 		ret = -EPIPE;
789 		logbuf_unlock_irq();
790 		goto out;
791 	}
792 
793 	len = info_print_ext_header(user->buf, sizeof(user->buf), r->info);
794 	len += msg_print_ext_body(user->buf + len, sizeof(user->buf) - len,
795 				  &r->text_buf[0], r->info->text_len,
796 				  &r->info->dev_info);
797 
798 	user->seq = r->info->seq + 1;
799 	logbuf_unlock_irq();
800 
801 	if (len > count) {
802 		ret = -EINVAL;
803 		goto out;
804 	}
805 
806 	if (copy_to_user(buf, user->buf, len)) {
807 		ret = -EFAULT;
808 		goto out;
809 	}
810 	ret = len;
811 out:
812 	mutex_unlock(&user->lock);
813 	return ret;
814 }
815 
816 /*
817  * Be careful when modifying this function!!!
818  *
819  * Only few operations are supported because the device works only with the
820  * entire variable length messages (records). Non-standard values are
821  * returned in the other cases and has been this way for quite some time.
822  * User space applications might depend on this behavior.
823  */
824 static loff_t devkmsg_llseek(struct file *file, loff_t offset, int whence)
825 {
826 	struct devkmsg_user *user = file->private_data;
827 	loff_t ret = 0;
828 
829 	if (!user)
830 		return -EBADF;
831 	if (offset)
832 		return -ESPIPE;
833 
834 	logbuf_lock_irq();
835 	switch (whence) {
836 	case SEEK_SET:
837 		/* the first record */
838 		user->seq = prb_first_valid_seq(prb);
839 		break;
840 	case SEEK_DATA:
841 		/*
842 		 * The first record after the last SYSLOG_ACTION_CLEAR,
843 		 * like issued by 'dmesg -c'. Reading /dev/kmsg itself
844 		 * changes no global state, and does not clear anything.
845 		 */
846 		user->seq = clear_seq;
847 		break;
848 	case SEEK_END:
849 		/* after the last record */
850 		user->seq = prb_next_seq(prb);
851 		break;
852 	default:
853 		ret = -EINVAL;
854 	}
855 	logbuf_unlock_irq();
856 	return ret;
857 }
858 
859 static __poll_t devkmsg_poll(struct file *file, poll_table *wait)
860 {
861 	struct devkmsg_user *user = file->private_data;
862 	__poll_t ret = 0;
863 
864 	if (!user)
865 		return EPOLLERR|EPOLLNVAL;
866 
867 	poll_wait(file, &log_wait, wait);
868 
869 	logbuf_lock_irq();
870 	if (prb_read_valid(prb, user->seq, NULL)) {
871 		/* return error when data has vanished underneath us */
872 		if (user->seq < prb_first_valid_seq(prb))
873 			ret = EPOLLIN|EPOLLRDNORM|EPOLLERR|EPOLLPRI;
874 		else
875 			ret = EPOLLIN|EPOLLRDNORM;
876 	}
877 	logbuf_unlock_irq();
878 
879 	return ret;
880 }
881 
882 static int devkmsg_open(struct inode *inode, struct file *file)
883 {
884 	struct devkmsg_user *user;
885 	int err;
886 
887 	if (devkmsg_log & DEVKMSG_LOG_MASK_OFF)
888 		return -EPERM;
889 
890 	/* write-only does not need any file context */
891 	if ((file->f_flags & O_ACCMODE) != O_WRONLY) {
892 		err = check_syslog_permissions(SYSLOG_ACTION_READ_ALL,
893 					       SYSLOG_FROM_READER);
894 		if (err)
895 			return err;
896 	}
897 
898 	user = kmalloc(sizeof(struct devkmsg_user), GFP_KERNEL);
899 	if (!user)
900 		return -ENOMEM;
901 
902 	ratelimit_default_init(&user->rs);
903 	ratelimit_set_flags(&user->rs, RATELIMIT_MSG_ON_RELEASE);
904 
905 	mutex_init(&user->lock);
906 
907 	prb_rec_init_rd(&user->record, &user->info,
908 			&user->text_buf[0], sizeof(user->text_buf));
909 
910 	logbuf_lock_irq();
911 	user->seq = prb_first_valid_seq(prb);
912 	logbuf_unlock_irq();
913 
914 	file->private_data = user;
915 	return 0;
916 }
917 
918 static int devkmsg_release(struct inode *inode, struct file *file)
919 {
920 	struct devkmsg_user *user = file->private_data;
921 
922 	if (!user)
923 		return 0;
924 
925 	ratelimit_state_exit(&user->rs);
926 
927 	mutex_destroy(&user->lock);
928 	kfree(user);
929 	return 0;
930 }
931 
932 const struct file_operations kmsg_fops = {
933 	.open = devkmsg_open,
934 	.read = devkmsg_read,
935 	.write_iter = devkmsg_write,
936 	.llseek = devkmsg_llseek,
937 	.poll = devkmsg_poll,
938 	.release = devkmsg_release,
939 };
940 
941 #ifdef CONFIG_CRASH_CORE
942 /*
943  * This appends the listed symbols to /proc/vmcore
944  *
945  * /proc/vmcore is used by various utilities, like crash and makedumpfile to
946  * obtain access to symbols that are otherwise very difficult to locate.  These
947  * symbols are specifically used so that utilities can access and extract the
948  * dmesg log from a vmcore file after a crash.
949  */
950 void log_buf_vmcoreinfo_setup(void)
951 {
952 	struct dev_printk_info *dev_info = NULL;
953 
954 	VMCOREINFO_SYMBOL(prb);
955 	VMCOREINFO_SYMBOL(printk_rb_static);
956 	VMCOREINFO_SYMBOL(clear_seq);
957 
958 	/*
959 	 * Export struct size and field offsets. User space tools can
960 	 * parse it and detect any changes to structure down the line.
961 	 */
962 
963 	VMCOREINFO_STRUCT_SIZE(printk_ringbuffer);
964 	VMCOREINFO_OFFSET(printk_ringbuffer, desc_ring);
965 	VMCOREINFO_OFFSET(printk_ringbuffer, text_data_ring);
966 	VMCOREINFO_OFFSET(printk_ringbuffer, fail);
967 
968 	VMCOREINFO_STRUCT_SIZE(prb_desc_ring);
969 	VMCOREINFO_OFFSET(prb_desc_ring, count_bits);
970 	VMCOREINFO_OFFSET(prb_desc_ring, descs);
971 	VMCOREINFO_OFFSET(prb_desc_ring, infos);
972 	VMCOREINFO_OFFSET(prb_desc_ring, head_id);
973 	VMCOREINFO_OFFSET(prb_desc_ring, tail_id);
974 
975 	VMCOREINFO_STRUCT_SIZE(prb_desc);
976 	VMCOREINFO_OFFSET(prb_desc, state_var);
977 	VMCOREINFO_OFFSET(prb_desc, text_blk_lpos);
978 
979 	VMCOREINFO_STRUCT_SIZE(prb_data_blk_lpos);
980 	VMCOREINFO_OFFSET(prb_data_blk_lpos, begin);
981 	VMCOREINFO_OFFSET(prb_data_blk_lpos, next);
982 
983 	VMCOREINFO_STRUCT_SIZE(printk_info);
984 	VMCOREINFO_OFFSET(printk_info, seq);
985 	VMCOREINFO_OFFSET(printk_info, ts_nsec);
986 	VMCOREINFO_OFFSET(printk_info, text_len);
987 	VMCOREINFO_OFFSET(printk_info, caller_id);
988 	VMCOREINFO_OFFSET(printk_info, dev_info);
989 
990 	VMCOREINFO_STRUCT_SIZE(dev_printk_info);
991 	VMCOREINFO_OFFSET(dev_printk_info, subsystem);
992 	VMCOREINFO_LENGTH(printk_info_subsystem, sizeof(dev_info->subsystem));
993 	VMCOREINFO_OFFSET(dev_printk_info, device);
994 	VMCOREINFO_LENGTH(printk_info_device, sizeof(dev_info->device));
995 
996 	VMCOREINFO_STRUCT_SIZE(prb_data_ring);
997 	VMCOREINFO_OFFSET(prb_data_ring, size_bits);
998 	VMCOREINFO_OFFSET(prb_data_ring, data);
999 	VMCOREINFO_OFFSET(prb_data_ring, head_lpos);
1000 	VMCOREINFO_OFFSET(prb_data_ring, tail_lpos);
1001 
1002 	VMCOREINFO_SIZE(atomic_long_t);
1003 	VMCOREINFO_TYPE_OFFSET(atomic_long_t, counter);
1004 }
1005 #endif
1006 
1007 /* requested log_buf_len from kernel cmdline */
1008 static unsigned long __initdata new_log_buf_len;
1009 
1010 /* we practice scaling the ring buffer by powers of 2 */
1011 static void __init log_buf_len_update(u64 size)
1012 {
1013 	if (size > (u64)LOG_BUF_LEN_MAX) {
1014 		size = (u64)LOG_BUF_LEN_MAX;
1015 		pr_err("log_buf over 2G is not supported.\n");
1016 	}
1017 
1018 	if (size)
1019 		size = roundup_pow_of_two(size);
1020 	if (size > log_buf_len)
1021 		new_log_buf_len = (unsigned long)size;
1022 }
1023 
1024 /* save requested log_buf_len since it's too early to process it */
1025 static int __init log_buf_len_setup(char *str)
1026 {
1027 	u64 size;
1028 
1029 	if (!str)
1030 		return -EINVAL;
1031 
1032 	size = memparse(str, &str);
1033 
1034 	log_buf_len_update(size);
1035 
1036 	return 0;
1037 }
1038 early_param("log_buf_len", log_buf_len_setup);
1039 
1040 #ifdef CONFIG_SMP
1041 #define __LOG_CPU_MAX_BUF_LEN (1 << CONFIG_LOG_CPU_MAX_BUF_SHIFT)
1042 
1043 static void __init log_buf_add_cpu(void)
1044 {
1045 	unsigned int cpu_extra;
1046 
1047 	/*
1048 	 * archs should set up cpu_possible_bits properly with
1049 	 * set_cpu_possible() after setup_arch() but just in
1050 	 * case lets ensure this is valid.
1051 	 */
1052 	if (num_possible_cpus() == 1)
1053 		return;
1054 
1055 	cpu_extra = (num_possible_cpus() - 1) * __LOG_CPU_MAX_BUF_LEN;
1056 
1057 	/* by default this will only continue through for large > 64 CPUs */
1058 	if (cpu_extra <= __LOG_BUF_LEN / 2)
1059 		return;
1060 
1061 	pr_info("log_buf_len individual max cpu contribution: %d bytes\n",
1062 		__LOG_CPU_MAX_BUF_LEN);
1063 	pr_info("log_buf_len total cpu_extra contributions: %d bytes\n",
1064 		cpu_extra);
1065 	pr_info("log_buf_len min size: %d bytes\n", __LOG_BUF_LEN);
1066 
1067 	log_buf_len_update(cpu_extra + __LOG_BUF_LEN);
1068 }
1069 #else /* !CONFIG_SMP */
1070 static inline void log_buf_add_cpu(void) {}
1071 #endif /* CONFIG_SMP */
1072 
1073 static void __init set_percpu_data_ready(void)
1074 {
1075 	printk_safe_init();
1076 	/* Make sure we set this flag only after printk_safe() init is done */
1077 	barrier();
1078 	__printk_percpu_data_ready = true;
1079 }
1080 
1081 static unsigned int __init add_to_rb(struct printk_ringbuffer *rb,
1082 				     struct printk_record *r)
1083 {
1084 	struct prb_reserved_entry e;
1085 	struct printk_record dest_r;
1086 
1087 	prb_rec_init_wr(&dest_r, r->info->text_len);
1088 
1089 	if (!prb_reserve(&e, rb, &dest_r))
1090 		return 0;
1091 
1092 	memcpy(&dest_r.text_buf[0], &r->text_buf[0], r->info->text_len);
1093 	dest_r.info->text_len = r->info->text_len;
1094 	dest_r.info->facility = r->info->facility;
1095 	dest_r.info->level = r->info->level;
1096 	dest_r.info->flags = r->info->flags;
1097 	dest_r.info->ts_nsec = r->info->ts_nsec;
1098 	dest_r.info->caller_id = r->info->caller_id;
1099 	memcpy(&dest_r.info->dev_info, &r->info->dev_info, sizeof(dest_r.info->dev_info));
1100 
1101 	prb_final_commit(&e);
1102 
1103 	return prb_record_text_space(&e);
1104 }
1105 
1106 static char setup_text_buf[LOG_LINE_MAX] __initdata;
1107 
1108 void __init setup_log_buf(int early)
1109 {
1110 	struct printk_info *new_infos;
1111 	unsigned int new_descs_count;
1112 	struct prb_desc *new_descs;
1113 	struct printk_info info;
1114 	struct printk_record r;
1115 	size_t new_descs_size;
1116 	size_t new_infos_size;
1117 	unsigned long flags;
1118 	char *new_log_buf;
1119 	unsigned int free;
1120 	u64 seq;
1121 
1122 	/*
1123 	 * Some archs call setup_log_buf() multiple times - first is very
1124 	 * early, e.g. from setup_arch(), and second - when percpu_areas
1125 	 * are initialised.
1126 	 */
1127 	if (!early)
1128 		set_percpu_data_ready();
1129 
1130 	if (log_buf != __log_buf)
1131 		return;
1132 
1133 	if (!early && !new_log_buf_len)
1134 		log_buf_add_cpu();
1135 
1136 	if (!new_log_buf_len)
1137 		return;
1138 
1139 	new_descs_count = new_log_buf_len >> PRB_AVGBITS;
1140 	if (new_descs_count == 0) {
1141 		pr_err("new_log_buf_len: %lu too small\n", new_log_buf_len);
1142 		return;
1143 	}
1144 
1145 	new_log_buf = memblock_alloc(new_log_buf_len, LOG_ALIGN);
1146 	if (unlikely(!new_log_buf)) {
1147 		pr_err("log_buf_len: %lu text bytes not available\n",
1148 		       new_log_buf_len);
1149 		return;
1150 	}
1151 
1152 	new_descs_size = new_descs_count * sizeof(struct prb_desc);
1153 	new_descs = memblock_alloc(new_descs_size, LOG_ALIGN);
1154 	if (unlikely(!new_descs)) {
1155 		pr_err("log_buf_len: %zu desc bytes not available\n",
1156 		       new_descs_size);
1157 		goto err_free_log_buf;
1158 	}
1159 
1160 	new_infos_size = new_descs_count * sizeof(struct printk_info);
1161 	new_infos = memblock_alloc(new_infos_size, LOG_ALIGN);
1162 	if (unlikely(!new_infos)) {
1163 		pr_err("log_buf_len: %zu info bytes not available\n",
1164 		       new_infos_size);
1165 		goto err_free_descs;
1166 	}
1167 
1168 	prb_rec_init_rd(&r, &info, &setup_text_buf[0], sizeof(setup_text_buf));
1169 
1170 	prb_init(&printk_rb_dynamic,
1171 		 new_log_buf, ilog2(new_log_buf_len),
1172 		 new_descs, ilog2(new_descs_count),
1173 		 new_infos);
1174 
1175 	logbuf_lock_irqsave(flags);
1176 
1177 	log_buf_len = new_log_buf_len;
1178 	log_buf = new_log_buf;
1179 	new_log_buf_len = 0;
1180 
1181 	free = __LOG_BUF_LEN;
1182 	prb_for_each_record(0, &printk_rb_static, seq, &r)
1183 		free -= add_to_rb(&printk_rb_dynamic, &r);
1184 
1185 	/*
1186 	 * This is early enough that everything is still running on the
1187 	 * boot CPU and interrupts are disabled. So no new messages will
1188 	 * appear during the transition to the dynamic buffer.
1189 	 */
1190 	prb = &printk_rb_dynamic;
1191 
1192 	logbuf_unlock_irqrestore(flags);
1193 
1194 	if (seq != prb_next_seq(&printk_rb_static)) {
1195 		pr_err("dropped %llu messages\n",
1196 		       prb_next_seq(&printk_rb_static) - seq);
1197 	}
1198 
1199 	pr_info("log_buf_len: %u bytes\n", log_buf_len);
1200 	pr_info("early log buf free: %u(%u%%)\n",
1201 		free, (free * 100) / __LOG_BUF_LEN);
1202 	return;
1203 
1204 err_free_descs:
1205 	memblock_free(__pa(new_descs), new_descs_size);
1206 err_free_log_buf:
1207 	memblock_free(__pa(new_log_buf), new_log_buf_len);
1208 }
1209 
1210 static bool __read_mostly ignore_loglevel;
1211 
1212 static int __init ignore_loglevel_setup(char *str)
1213 {
1214 	ignore_loglevel = true;
1215 	pr_info("debug: ignoring loglevel setting.\n");
1216 
1217 	return 0;
1218 }
1219 
1220 early_param("ignore_loglevel", ignore_loglevel_setup);
1221 module_param(ignore_loglevel, bool, S_IRUGO | S_IWUSR);
1222 MODULE_PARM_DESC(ignore_loglevel,
1223 		 "ignore loglevel setting (prints all kernel messages to the console)");
1224 
1225 static bool suppress_message_printing(int level)
1226 {
1227 	return (level >= console_loglevel && !ignore_loglevel);
1228 }
1229 
1230 #ifdef CONFIG_BOOT_PRINTK_DELAY
1231 
1232 static int boot_delay; /* msecs delay after each printk during bootup */
1233 static unsigned long long loops_per_msec;	/* based on boot_delay */
1234 
1235 static int __init boot_delay_setup(char *str)
1236 {
1237 	unsigned long lpj;
1238 
1239 	lpj = preset_lpj ? preset_lpj : 1000000;	/* some guess */
1240 	loops_per_msec = (unsigned long long)lpj / 1000 * HZ;
1241 
1242 	get_option(&str, &boot_delay);
1243 	if (boot_delay > 10 * 1000)
1244 		boot_delay = 0;
1245 
1246 	pr_debug("boot_delay: %u, preset_lpj: %ld, lpj: %lu, "
1247 		"HZ: %d, loops_per_msec: %llu\n",
1248 		boot_delay, preset_lpj, lpj, HZ, loops_per_msec);
1249 	return 0;
1250 }
1251 early_param("boot_delay", boot_delay_setup);
1252 
1253 static void boot_delay_msec(int level)
1254 {
1255 	unsigned long long k;
1256 	unsigned long timeout;
1257 
1258 	if ((boot_delay == 0 || system_state >= SYSTEM_RUNNING)
1259 		|| suppress_message_printing(level)) {
1260 		return;
1261 	}
1262 
1263 	k = (unsigned long long)loops_per_msec * boot_delay;
1264 
1265 	timeout = jiffies + msecs_to_jiffies(boot_delay);
1266 	while (k) {
1267 		k--;
1268 		cpu_relax();
1269 		/*
1270 		 * use (volatile) jiffies to prevent
1271 		 * compiler reduction; loop termination via jiffies
1272 		 * is secondary and may or may not happen.
1273 		 */
1274 		if (time_after(jiffies, timeout))
1275 			break;
1276 		touch_nmi_watchdog();
1277 	}
1278 }
1279 #else
1280 static inline void boot_delay_msec(int level)
1281 {
1282 }
1283 #endif
1284 
1285 static bool printk_time = IS_ENABLED(CONFIG_PRINTK_TIME);
1286 module_param_named(time, printk_time, bool, S_IRUGO | S_IWUSR);
1287 
1288 static size_t print_syslog(unsigned int level, char *buf)
1289 {
1290 	return sprintf(buf, "<%u>", level);
1291 }
1292 
1293 static size_t print_time(u64 ts, char *buf)
1294 {
1295 	unsigned long rem_nsec = do_div(ts, 1000000000);
1296 
1297 	return sprintf(buf, "[%5lu.%06lu]",
1298 		       (unsigned long)ts, rem_nsec / 1000);
1299 }
1300 
1301 #ifdef CONFIG_PRINTK_CALLER
1302 static size_t print_caller(u32 id, char *buf)
1303 {
1304 	char caller[12];
1305 
1306 	snprintf(caller, sizeof(caller), "%c%u",
1307 		 id & 0x80000000 ? 'C' : 'T', id & ~0x80000000);
1308 	return sprintf(buf, "[%6s]", caller);
1309 }
1310 #else
1311 #define print_caller(id, buf) 0
1312 #endif
1313 
1314 static size_t info_print_prefix(const struct printk_info  *info, bool syslog,
1315 				bool time, char *buf)
1316 {
1317 	size_t len = 0;
1318 
1319 	if (syslog)
1320 		len = print_syslog((info->facility << 3) | info->level, buf);
1321 
1322 	if (time)
1323 		len += print_time(info->ts_nsec, buf + len);
1324 
1325 	len += print_caller(info->caller_id, buf + len);
1326 
1327 	if (IS_ENABLED(CONFIG_PRINTK_CALLER) || time) {
1328 		buf[len++] = ' ';
1329 		buf[len] = '\0';
1330 	}
1331 
1332 	return len;
1333 }
1334 
1335 /*
1336  * Prepare the record for printing. The text is shifted within the given
1337  * buffer to avoid a need for another one. The following operations are
1338  * done:
1339  *
1340  *   - Add prefix for each line.
1341  *   - Add the trailing newline that has been removed in vprintk_store().
1342  *   - Drop truncated lines that do not longer fit into the buffer.
1343  *
1344  * Return: The length of the updated/prepared text, including the added
1345  * prefixes and the newline. The dropped line(s) are not counted.
1346  */
1347 static size_t record_print_text(struct printk_record *r, bool syslog,
1348 				bool time)
1349 {
1350 	size_t text_len = r->info->text_len;
1351 	size_t buf_size = r->text_buf_size;
1352 	char *text = r->text_buf;
1353 	char prefix[PREFIX_MAX];
1354 	bool truncated = false;
1355 	size_t prefix_len;
1356 	size_t line_len;
1357 	size_t len = 0;
1358 	char *next;
1359 
1360 	/*
1361 	 * If the message was truncated because the buffer was not large
1362 	 * enough, treat the available text as if it were the full text.
1363 	 */
1364 	if (text_len > buf_size)
1365 		text_len = buf_size;
1366 
1367 	prefix_len = info_print_prefix(r->info, syslog, time, prefix);
1368 
1369 	/*
1370 	 * @text_len: bytes of unprocessed text
1371 	 * @line_len: bytes of current line _without_ newline
1372 	 * @text:     pointer to beginning of current line
1373 	 * @len:      number of bytes prepared in r->text_buf
1374 	 */
1375 	for (;;) {
1376 		next = memchr(text, '\n', text_len);
1377 		if (next) {
1378 			line_len = next - text;
1379 		} else {
1380 			/* Drop truncated line(s). */
1381 			if (truncated)
1382 				break;
1383 			line_len = text_len;
1384 		}
1385 
1386 		/*
1387 		 * Truncate the text if there is not enough space to add the
1388 		 * prefix and a trailing newline.
1389 		 */
1390 		if (len + prefix_len + text_len + 1 > buf_size) {
1391 			/* Drop even the current line if no space. */
1392 			if (len + prefix_len + line_len + 1 > buf_size)
1393 				break;
1394 
1395 			text_len = buf_size - len - prefix_len - 1;
1396 			truncated = true;
1397 		}
1398 
1399 		memmove(text + prefix_len, text, text_len);
1400 		memcpy(text, prefix, prefix_len);
1401 
1402 		len += prefix_len + line_len + 1;
1403 
1404 		if (text_len == line_len) {
1405 			/*
1406 			 * Add the trailing newline removed in
1407 			 * vprintk_store().
1408 			 */
1409 			text[prefix_len + line_len] = '\n';
1410 			break;
1411 		}
1412 
1413 		/*
1414 		 * Advance beyond the added prefix and the related line with
1415 		 * its newline.
1416 		 */
1417 		text += prefix_len + line_len + 1;
1418 
1419 		/*
1420 		 * The remaining text has only decreased by the line with its
1421 		 * newline.
1422 		 *
1423 		 * Note that @text_len can become zero. It happens when @text
1424 		 * ended with a newline (either due to truncation or the
1425 		 * original string ending with "\n\n"). The loop is correctly
1426 		 * repeated and (if not truncated) an empty line with a prefix
1427 		 * will be prepared.
1428 		 */
1429 		text_len -= line_len + 1;
1430 	}
1431 
1432 	return len;
1433 }
1434 
1435 static size_t get_record_print_text_size(struct printk_info *info,
1436 					 unsigned int line_count,
1437 					 bool syslog, bool time)
1438 {
1439 	char prefix[PREFIX_MAX];
1440 	size_t prefix_len;
1441 
1442 	prefix_len = info_print_prefix(info, syslog, time, prefix);
1443 
1444 	/*
1445 	 * Each line will be preceded with a prefix. The intermediate
1446 	 * newlines are already within the text, but a final trailing
1447 	 * newline will be added.
1448 	 */
1449 	return ((prefix_len * line_count) + info->text_len + 1);
1450 }
1451 
1452 static int syslog_print(char __user *buf, int size)
1453 {
1454 	struct printk_info info;
1455 	struct printk_record r;
1456 	char *text;
1457 	int len = 0;
1458 
1459 	text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
1460 	if (!text)
1461 		return -ENOMEM;
1462 
1463 	prb_rec_init_rd(&r, &info, text, LOG_LINE_MAX + PREFIX_MAX);
1464 
1465 	while (size > 0) {
1466 		size_t n;
1467 		size_t skip;
1468 
1469 		logbuf_lock_irq();
1470 		if (!prb_read_valid(prb, syslog_seq, &r)) {
1471 			logbuf_unlock_irq();
1472 			break;
1473 		}
1474 		if (r.info->seq != syslog_seq) {
1475 			/* message is gone, move to next valid one */
1476 			syslog_seq = r.info->seq;
1477 			syslog_partial = 0;
1478 		}
1479 
1480 		/*
1481 		 * To keep reading/counting partial line consistent,
1482 		 * use printk_time value as of the beginning of a line.
1483 		 */
1484 		if (!syslog_partial)
1485 			syslog_time = printk_time;
1486 
1487 		skip = syslog_partial;
1488 		n = record_print_text(&r, true, syslog_time);
1489 		if (n - syslog_partial <= size) {
1490 			/* message fits into buffer, move forward */
1491 			syslog_seq = r.info->seq + 1;
1492 			n -= syslog_partial;
1493 			syslog_partial = 0;
1494 		} else if (!len){
1495 			/* partial read(), remember position */
1496 			n = size;
1497 			syslog_partial += n;
1498 		} else
1499 			n = 0;
1500 		logbuf_unlock_irq();
1501 
1502 		if (!n)
1503 			break;
1504 
1505 		if (copy_to_user(buf, text + skip, n)) {
1506 			if (!len)
1507 				len = -EFAULT;
1508 			break;
1509 		}
1510 
1511 		len += n;
1512 		size -= n;
1513 		buf += n;
1514 	}
1515 
1516 	kfree(text);
1517 	return len;
1518 }
1519 
1520 static int syslog_print_all(char __user *buf, int size, bool clear)
1521 {
1522 	struct printk_info info;
1523 	unsigned int line_count;
1524 	struct printk_record r;
1525 	char *text;
1526 	int len = 0;
1527 	u64 seq;
1528 	bool time;
1529 
1530 	text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
1531 	if (!text)
1532 		return -ENOMEM;
1533 
1534 	time = printk_time;
1535 	logbuf_lock_irq();
1536 	/*
1537 	 * Find first record that fits, including all following records,
1538 	 * into the user-provided buffer for this dump.
1539 	 */
1540 	prb_for_each_info(clear_seq, prb, seq, &info, &line_count)
1541 		len += get_record_print_text_size(&info, line_count, true, time);
1542 
1543 	/* move first record forward until length fits into the buffer */
1544 	prb_for_each_info(clear_seq, prb, seq, &info, &line_count) {
1545 		if (len <= size)
1546 			break;
1547 		len -= get_record_print_text_size(&info, line_count, true, time);
1548 	}
1549 
1550 	prb_rec_init_rd(&r, &info, text, LOG_LINE_MAX + PREFIX_MAX);
1551 
1552 	len = 0;
1553 	prb_for_each_record(seq, prb, seq, &r) {
1554 		int textlen;
1555 
1556 		textlen = record_print_text(&r, true, time);
1557 
1558 		if (len + textlen > size) {
1559 			seq--;
1560 			break;
1561 		}
1562 
1563 		logbuf_unlock_irq();
1564 		if (copy_to_user(buf + len, text, textlen))
1565 			len = -EFAULT;
1566 		else
1567 			len += textlen;
1568 		logbuf_lock_irq();
1569 
1570 		if (len < 0)
1571 			break;
1572 	}
1573 
1574 	if (clear)
1575 		clear_seq = seq;
1576 	logbuf_unlock_irq();
1577 
1578 	kfree(text);
1579 	return len;
1580 }
1581 
1582 static void syslog_clear(void)
1583 {
1584 	logbuf_lock_irq();
1585 	clear_seq = prb_next_seq(prb);
1586 	logbuf_unlock_irq();
1587 }
1588 
1589 int do_syslog(int type, char __user *buf, int len, int source)
1590 {
1591 	bool clear = false;
1592 	static int saved_console_loglevel = LOGLEVEL_DEFAULT;
1593 	int error;
1594 
1595 	error = check_syslog_permissions(type, source);
1596 	if (error)
1597 		return error;
1598 
1599 	switch (type) {
1600 	case SYSLOG_ACTION_CLOSE:	/* Close log */
1601 		break;
1602 	case SYSLOG_ACTION_OPEN:	/* Open log */
1603 		break;
1604 	case SYSLOG_ACTION_READ:	/* Read from log */
1605 		if (!buf || len < 0)
1606 			return -EINVAL;
1607 		if (!len)
1608 			return 0;
1609 		if (!access_ok(buf, len))
1610 			return -EFAULT;
1611 		error = wait_event_interruptible(log_wait,
1612 				prb_read_valid(prb, syslog_seq, NULL));
1613 		if (error)
1614 			return error;
1615 		error = syslog_print(buf, len);
1616 		break;
1617 	/* Read/clear last kernel messages */
1618 	case SYSLOG_ACTION_READ_CLEAR:
1619 		clear = true;
1620 		fallthrough;
1621 	/* Read last kernel messages */
1622 	case SYSLOG_ACTION_READ_ALL:
1623 		if (!buf || len < 0)
1624 			return -EINVAL;
1625 		if (!len)
1626 			return 0;
1627 		if (!access_ok(buf, len))
1628 			return -EFAULT;
1629 		error = syslog_print_all(buf, len, clear);
1630 		break;
1631 	/* Clear ring buffer */
1632 	case SYSLOG_ACTION_CLEAR:
1633 		syslog_clear();
1634 		break;
1635 	/* Disable logging to console */
1636 	case SYSLOG_ACTION_CONSOLE_OFF:
1637 		if (saved_console_loglevel == LOGLEVEL_DEFAULT)
1638 			saved_console_loglevel = console_loglevel;
1639 		console_loglevel = minimum_console_loglevel;
1640 		break;
1641 	/* Enable logging to console */
1642 	case SYSLOG_ACTION_CONSOLE_ON:
1643 		if (saved_console_loglevel != LOGLEVEL_DEFAULT) {
1644 			console_loglevel = saved_console_loglevel;
1645 			saved_console_loglevel = LOGLEVEL_DEFAULT;
1646 		}
1647 		break;
1648 	/* Set level of messages printed to console */
1649 	case SYSLOG_ACTION_CONSOLE_LEVEL:
1650 		if (len < 1 || len > 8)
1651 			return -EINVAL;
1652 		if (len < minimum_console_loglevel)
1653 			len = minimum_console_loglevel;
1654 		console_loglevel = len;
1655 		/* Implicitly re-enable logging to console */
1656 		saved_console_loglevel = LOGLEVEL_DEFAULT;
1657 		break;
1658 	/* Number of chars in the log buffer */
1659 	case SYSLOG_ACTION_SIZE_UNREAD:
1660 		logbuf_lock_irq();
1661 		if (syslog_seq < prb_first_valid_seq(prb)) {
1662 			/* messages are gone, move to first one */
1663 			syslog_seq = prb_first_valid_seq(prb);
1664 			syslog_partial = 0;
1665 		}
1666 		if (source == SYSLOG_FROM_PROC) {
1667 			/*
1668 			 * Short-cut for poll(/"proc/kmsg") which simply checks
1669 			 * for pending data, not the size; return the count of
1670 			 * records, not the length.
1671 			 */
1672 			error = prb_next_seq(prb) - syslog_seq;
1673 		} else {
1674 			bool time = syslog_partial ? syslog_time : printk_time;
1675 			struct printk_info info;
1676 			unsigned int line_count;
1677 			u64 seq;
1678 
1679 			prb_for_each_info(syslog_seq, prb, seq, &info,
1680 					  &line_count) {
1681 				error += get_record_print_text_size(&info, line_count,
1682 								    true, time);
1683 				time = printk_time;
1684 			}
1685 			error -= syslog_partial;
1686 		}
1687 		logbuf_unlock_irq();
1688 		break;
1689 	/* Size of the log buffer */
1690 	case SYSLOG_ACTION_SIZE_BUFFER:
1691 		error = log_buf_len;
1692 		break;
1693 	default:
1694 		error = -EINVAL;
1695 		break;
1696 	}
1697 
1698 	return error;
1699 }
1700 
1701 SYSCALL_DEFINE3(syslog, int, type, char __user *, buf, int, len)
1702 {
1703 	return do_syslog(type, buf, len, SYSLOG_FROM_READER);
1704 }
1705 
1706 /*
1707  * Special console_lock variants that help to reduce the risk of soft-lockups.
1708  * They allow to pass console_lock to another printk() call using a busy wait.
1709  */
1710 
1711 #ifdef CONFIG_LOCKDEP
1712 static struct lockdep_map console_owner_dep_map = {
1713 	.name = "console_owner"
1714 };
1715 #endif
1716 
1717 static DEFINE_RAW_SPINLOCK(console_owner_lock);
1718 static struct task_struct *console_owner;
1719 static bool console_waiter;
1720 
1721 /**
1722  * console_lock_spinning_enable - mark beginning of code where another
1723  *	thread might safely busy wait
1724  *
1725  * This basically converts console_lock into a spinlock. This marks
1726  * the section where the console_lock owner can not sleep, because
1727  * there may be a waiter spinning (like a spinlock). Also it must be
1728  * ready to hand over the lock at the end of the section.
1729  */
1730 static void console_lock_spinning_enable(void)
1731 {
1732 	raw_spin_lock(&console_owner_lock);
1733 	console_owner = current;
1734 	raw_spin_unlock(&console_owner_lock);
1735 
1736 	/* The waiter may spin on us after setting console_owner */
1737 	spin_acquire(&console_owner_dep_map, 0, 0, _THIS_IP_);
1738 }
1739 
1740 /**
1741  * console_lock_spinning_disable_and_check - mark end of code where another
1742  *	thread was able to busy wait and check if there is a waiter
1743  *
1744  * This is called at the end of the section where spinning is allowed.
1745  * It has two functions. First, it is a signal that it is no longer
1746  * safe to start busy waiting for the lock. Second, it checks if
1747  * there is a busy waiter and passes the lock rights to her.
1748  *
1749  * Important: Callers lose the lock if there was a busy waiter.
1750  *	They must not touch items synchronized by console_lock
1751  *	in this case.
1752  *
1753  * Return: 1 if the lock rights were passed, 0 otherwise.
1754  */
1755 static int console_lock_spinning_disable_and_check(void)
1756 {
1757 	int waiter;
1758 
1759 	raw_spin_lock(&console_owner_lock);
1760 	waiter = READ_ONCE(console_waiter);
1761 	console_owner = NULL;
1762 	raw_spin_unlock(&console_owner_lock);
1763 
1764 	if (!waiter) {
1765 		spin_release(&console_owner_dep_map, _THIS_IP_);
1766 		return 0;
1767 	}
1768 
1769 	/* The waiter is now free to continue */
1770 	WRITE_ONCE(console_waiter, false);
1771 
1772 	spin_release(&console_owner_dep_map, _THIS_IP_);
1773 
1774 	/*
1775 	 * Hand off console_lock to waiter. The waiter will perform
1776 	 * the up(). After this, the waiter is the console_lock owner.
1777 	 */
1778 	mutex_release(&console_lock_dep_map, _THIS_IP_);
1779 	return 1;
1780 }
1781 
1782 /**
1783  * console_trylock_spinning - try to get console_lock by busy waiting
1784  *
1785  * This allows to busy wait for the console_lock when the current
1786  * owner is running in specially marked sections. It means that
1787  * the current owner is running and cannot reschedule until it
1788  * is ready to lose the lock.
1789  *
1790  * Return: 1 if we got the lock, 0 othrewise
1791  */
1792 static int console_trylock_spinning(void)
1793 {
1794 	struct task_struct *owner = NULL;
1795 	bool waiter;
1796 	bool spin = false;
1797 	unsigned long flags;
1798 
1799 	if (console_trylock())
1800 		return 1;
1801 
1802 	printk_safe_enter_irqsave(flags);
1803 
1804 	raw_spin_lock(&console_owner_lock);
1805 	owner = READ_ONCE(console_owner);
1806 	waiter = READ_ONCE(console_waiter);
1807 	if (!waiter && owner && owner != current) {
1808 		WRITE_ONCE(console_waiter, true);
1809 		spin = true;
1810 	}
1811 	raw_spin_unlock(&console_owner_lock);
1812 
1813 	/*
1814 	 * If there is an active printk() writing to the
1815 	 * consoles, instead of having it write our data too,
1816 	 * see if we can offload that load from the active
1817 	 * printer, and do some printing ourselves.
1818 	 * Go into a spin only if there isn't already a waiter
1819 	 * spinning, and there is an active printer, and
1820 	 * that active printer isn't us (recursive printk?).
1821 	 */
1822 	if (!spin) {
1823 		printk_safe_exit_irqrestore(flags);
1824 		return 0;
1825 	}
1826 
1827 	/* We spin waiting for the owner to release us */
1828 	spin_acquire(&console_owner_dep_map, 0, 0, _THIS_IP_);
1829 	/* Owner will clear console_waiter on hand off */
1830 	while (READ_ONCE(console_waiter))
1831 		cpu_relax();
1832 	spin_release(&console_owner_dep_map, _THIS_IP_);
1833 
1834 	printk_safe_exit_irqrestore(flags);
1835 	/*
1836 	 * The owner passed the console lock to us.
1837 	 * Since we did not spin on console lock, annotate
1838 	 * this as a trylock. Otherwise lockdep will
1839 	 * complain.
1840 	 */
1841 	mutex_acquire(&console_lock_dep_map, 0, 1, _THIS_IP_);
1842 
1843 	return 1;
1844 }
1845 
1846 /*
1847  * Call the console drivers, asking them to write out
1848  * log_buf[start] to log_buf[end - 1].
1849  * The console_lock must be held.
1850  */
1851 static void call_console_drivers(const char *ext_text, size_t ext_len,
1852 				 const char *text, size_t len)
1853 {
1854 	static char dropped_text[64];
1855 	size_t dropped_len = 0;
1856 	struct console *con;
1857 
1858 	trace_console_rcuidle(text, len);
1859 
1860 	if (!console_drivers)
1861 		return;
1862 
1863 	if (console_dropped) {
1864 		dropped_len = snprintf(dropped_text, sizeof(dropped_text),
1865 				       "** %lu printk messages dropped **\n",
1866 				       console_dropped);
1867 		console_dropped = 0;
1868 	}
1869 
1870 	for_each_console(con) {
1871 		if (exclusive_console && con != exclusive_console)
1872 			continue;
1873 		if (!(con->flags & CON_ENABLED))
1874 			continue;
1875 		if (!con->write)
1876 			continue;
1877 		if (!cpu_online(smp_processor_id()) &&
1878 		    !(con->flags & CON_ANYTIME))
1879 			continue;
1880 		if (con->flags & CON_EXTENDED)
1881 			con->write(con, ext_text, ext_len);
1882 		else {
1883 			if (dropped_len)
1884 				con->write(con, dropped_text, dropped_len);
1885 			con->write(con, text, len);
1886 		}
1887 	}
1888 }
1889 
1890 int printk_delay_msec __read_mostly;
1891 
1892 static inline void printk_delay(void)
1893 {
1894 	if (unlikely(printk_delay_msec)) {
1895 		int m = printk_delay_msec;
1896 
1897 		while (m--) {
1898 			mdelay(1);
1899 			touch_nmi_watchdog();
1900 		}
1901 	}
1902 }
1903 
1904 static inline u32 printk_caller_id(void)
1905 {
1906 	return in_task() ? task_pid_nr(current) :
1907 		0x80000000 + raw_smp_processor_id();
1908 }
1909 
1910 static size_t log_output(int facility, int level, enum log_flags lflags,
1911 			 const struct dev_printk_info *dev_info,
1912 			 char *text, size_t text_len)
1913 {
1914 	const u32 caller_id = printk_caller_id();
1915 
1916 	if (lflags & LOG_CONT) {
1917 		struct prb_reserved_entry e;
1918 		struct printk_record r;
1919 
1920 		prb_rec_init_wr(&r, text_len);
1921 		if (prb_reserve_in_last(&e, prb, &r, caller_id, LOG_LINE_MAX)) {
1922 			memcpy(&r.text_buf[r.info->text_len], text, text_len);
1923 			r.info->text_len += text_len;
1924 			if (lflags & LOG_NEWLINE) {
1925 				r.info->flags |= LOG_NEWLINE;
1926 				prb_final_commit(&e);
1927 			} else {
1928 				prb_commit(&e);
1929 			}
1930 			return text_len;
1931 		}
1932 	}
1933 
1934 	/* Store it in the record log */
1935 	return log_store(caller_id, facility, level, lflags, 0,
1936 			 dev_info, text, text_len);
1937 }
1938 
1939 /* Must be called under logbuf_lock. */
1940 int vprintk_store(int facility, int level,
1941 		  const struct dev_printk_info *dev_info,
1942 		  const char *fmt, va_list args)
1943 {
1944 	static char textbuf[LOG_LINE_MAX];
1945 	char *text = textbuf;
1946 	size_t text_len;
1947 	enum log_flags lflags = 0;
1948 
1949 	/*
1950 	 * The printf needs to come first; we need the syslog
1951 	 * prefix which might be passed-in as a parameter.
1952 	 */
1953 	text_len = vscnprintf(text, sizeof(textbuf), fmt, args);
1954 
1955 	/* mark and strip a trailing newline */
1956 	if (text_len && text[text_len-1] == '\n') {
1957 		text_len--;
1958 		lflags |= LOG_NEWLINE;
1959 	}
1960 
1961 	/* strip kernel syslog prefix and extract log level or control flags */
1962 	if (facility == 0) {
1963 		int kern_level;
1964 
1965 		while ((kern_level = printk_get_level(text)) != 0) {
1966 			switch (kern_level) {
1967 			case '0' ... '7':
1968 				if (level == LOGLEVEL_DEFAULT)
1969 					level = kern_level - '0';
1970 				break;
1971 			case 'c':	/* KERN_CONT */
1972 				lflags |= LOG_CONT;
1973 			}
1974 
1975 			text_len -= 2;
1976 			text += 2;
1977 		}
1978 	}
1979 
1980 	if (level == LOGLEVEL_DEFAULT)
1981 		level = default_message_loglevel;
1982 
1983 	if (dev_info)
1984 		lflags |= LOG_NEWLINE;
1985 
1986 	return log_output(facility, level, lflags, dev_info, text, text_len);
1987 }
1988 
1989 asmlinkage int vprintk_emit(int facility, int level,
1990 			    const struct dev_printk_info *dev_info,
1991 			    const char *fmt, va_list args)
1992 {
1993 	int printed_len;
1994 	bool in_sched = false;
1995 	unsigned long flags;
1996 
1997 	/* Suppress unimportant messages after panic happens */
1998 	if (unlikely(suppress_printk))
1999 		return 0;
2000 
2001 	if (level == LOGLEVEL_SCHED) {
2002 		level = LOGLEVEL_DEFAULT;
2003 		in_sched = true;
2004 	}
2005 
2006 	boot_delay_msec(level);
2007 	printk_delay();
2008 
2009 	/* This stops the holder of console_sem just where we want him */
2010 	logbuf_lock_irqsave(flags);
2011 	printed_len = vprintk_store(facility, level, dev_info, fmt, args);
2012 	logbuf_unlock_irqrestore(flags);
2013 
2014 	/* If called from the scheduler, we can not call up(). */
2015 	if (!in_sched) {
2016 		/*
2017 		 * Disable preemption to avoid being preempted while holding
2018 		 * console_sem which would prevent anyone from printing to
2019 		 * console
2020 		 */
2021 		preempt_disable();
2022 		/*
2023 		 * Try to acquire and then immediately release the console
2024 		 * semaphore.  The release will print out buffers and wake up
2025 		 * /dev/kmsg and syslog() users.
2026 		 */
2027 		if (console_trylock_spinning())
2028 			console_unlock();
2029 		preempt_enable();
2030 	}
2031 
2032 	wake_up_klogd();
2033 	return printed_len;
2034 }
2035 EXPORT_SYMBOL(vprintk_emit);
2036 
2037 asmlinkage int vprintk(const char *fmt, va_list args)
2038 {
2039 	return vprintk_func(fmt, args);
2040 }
2041 EXPORT_SYMBOL(vprintk);
2042 
2043 int vprintk_default(const char *fmt, va_list args)
2044 {
2045 	return vprintk_emit(0, LOGLEVEL_DEFAULT, NULL, fmt, args);
2046 }
2047 EXPORT_SYMBOL_GPL(vprintk_default);
2048 
2049 /**
2050  * printk - print a kernel message
2051  * @fmt: format string
2052  *
2053  * This is printk(). It can be called from any context. We want it to work.
2054  *
2055  * We try to grab the console_lock. If we succeed, it's easy - we log the
2056  * output and call the console drivers.  If we fail to get the semaphore, we
2057  * place the output into the log buffer and return. The current holder of
2058  * the console_sem will notice the new output in console_unlock(); and will
2059  * send it to the consoles before releasing the lock.
2060  *
2061  * One effect of this deferred printing is that code which calls printk() and
2062  * then changes console_loglevel may break. This is because console_loglevel
2063  * is inspected when the actual printing occurs.
2064  *
2065  * See also:
2066  * printf(3)
2067  *
2068  * See the vsnprintf() documentation for format string extensions over C99.
2069  */
2070 asmlinkage __visible int printk(const char *fmt, ...)
2071 {
2072 	va_list args;
2073 	int r;
2074 
2075 	va_start(args, fmt);
2076 	r = vprintk_func(fmt, args);
2077 	va_end(args);
2078 
2079 	return r;
2080 }
2081 EXPORT_SYMBOL(printk);
2082 
2083 #else /* CONFIG_PRINTK */
2084 
2085 #define LOG_LINE_MAX		0
2086 #define PREFIX_MAX		0
2087 #define printk_time		false
2088 
2089 #define prb_read_valid(rb, seq, r)	false
2090 #define prb_first_valid_seq(rb)		0
2091 
2092 static u64 syslog_seq;
2093 static u64 console_seq;
2094 static u64 exclusive_console_stop_seq;
2095 static unsigned long console_dropped;
2096 
2097 static size_t record_print_text(const struct printk_record *r,
2098 				bool syslog, bool time)
2099 {
2100 	return 0;
2101 }
2102 static ssize_t info_print_ext_header(char *buf, size_t size,
2103 				     struct printk_info *info)
2104 {
2105 	return 0;
2106 }
2107 static ssize_t msg_print_ext_body(char *buf, size_t size,
2108 				  char *text, size_t text_len,
2109 				  struct dev_printk_info *dev_info) { return 0; }
2110 static void console_lock_spinning_enable(void) { }
2111 static int console_lock_spinning_disable_and_check(void) { return 0; }
2112 static void call_console_drivers(const char *ext_text, size_t ext_len,
2113 				 const char *text, size_t len) {}
2114 static bool suppress_message_printing(int level) { return false; }
2115 
2116 #endif /* CONFIG_PRINTK */
2117 
2118 #ifdef CONFIG_EARLY_PRINTK
2119 struct console *early_console;
2120 
2121 asmlinkage __visible void early_printk(const char *fmt, ...)
2122 {
2123 	va_list ap;
2124 	char buf[512];
2125 	int n;
2126 
2127 	if (!early_console)
2128 		return;
2129 
2130 	va_start(ap, fmt);
2131 	n = vscnprintf(buf, sizeof(buf), fmt, ap);
2132 	va_end(ap);
2133 
2134 	early_console->write(early_console, buf, n);
2135 }
2136 #endif
2137 
2138 static int __add_preferred_console(char *name, int idx, char *options,
2139 				   char *brl_options, bool user_specified)
2140 {
2141 	struct console_cmdline *c;
2142 	int i;
2143 
2144 	/*
2145 	 *	See if this tty is not yet registered, and
2146 	 *	if we have a slot free.
2147 	 */
2148 	for (i = 0, c = console_cmdline;
2149 	     i < MAX_CMDLINECONSOLES && c->name[0];
2150 	     i++, c++) {
2151 		if (strcmp(c->name, name) == 0 && c->index == idx) {
2152 			if (!brl_options)
2153 				preferred_console = i;
2154 			if (user_specified)
2155 				c->user_specified = true;
2156 			return 0;
2157 		}
2158 	}
2159 	if (i == MAX_CMDLINECONSOLES)
2160 		return -E2BIG;
2161 	if (!brl_options)
2162 		preferred_console = i;
2163 	strlcpy(c->name, name, sizeof(c->name));
2164 	c->options = options;
2165 	c->user_specified = user_specified;
2166 	braille_set_options(c, brl_options);
2167 
2168 	c->index = idx;
2169 	return 0;
2170 }
2171 
2172 static int __init console_msg_format_setup(char *str)
2173 {
2174 	if (!strcmp(str, "syslog"))
2175 		console_msg_format = MSG_FORMAT_SYSLOG;
2176 	if (!strcmp(str, "default"))
2177 		console_msg_format = MSG_FORMAT_DEFAULT;
2178 	return 1;
2179 }
2180 __setup("console_msg_format=", console_msg_format_setup);
2181 
2182 /*
2183  * Set up a console.  Called via do_early_param() in init/main.c
2184  * for each "console=" parameter in the boot command line.
2185  */
2186 static int __init console_setup(char *str)
2187 {
2188 	char buf[sizeof(console_cmdline[0].name) + 4]; /* 4 for "ttyS" */
2189 	char *s, *options, *brl_options = NULL;
2190 	int idx;
2191 
2192 	if (str[0] == 0)
2193 		return 1;
2194 
2195 	if (_braille_console_setup(&str, &brl_options))
2196 		return 1;
2197 
2198 	/*
2199 	 * Decode str into name, index, options.
2200 	 */
2201 	if (str[0] >= '0' && str[0] <= '9') {
2202 		strcpy(buf, "ttyS");
2203 		strncpy(buf + 4, str, sizeof(buf) - 5);
2204 	} else {
2205 		strncpy(buf, str, sizeof(buf) - 1);
2206 	}
2207 	buf[sizeof(buf) - 1] = 0;
2208 	options = strchr(str, ',');
2209 	if (options)
2210 		*(options++) = 0;
2211 #ifdef __sparc__
2212 	if (!strcmp(str, "ttya"))
2213 		strcpy(buf, "ttyS0");
2214 	if (!strcmp(str, "ttyb"))
2215 		strcpy(buf, "ttyS1");
2216 #endif
2217 	for (s = buf; *s; s++)
2218 		if (isdigit(*s) || *s == ',')
2219 			break;
2220 	idx = simple_strtoul(s, NULL, 10);
2221 	*s = 0;
2222 
2223 	__add_preferred_console(buf, idx, options, brl_options, true);
2224 	console_set_on_cmdline = 1;
2225 	return 1;
2226 }
2227 __setup("console=", console_setup);
2228 
2229 /**
2230  * add_preferred_console - add a device to the list of preferred consoles.
2231  * @name: device name
2232  * @idx: device index
2233  * @options: options for this console
2234  *
2235  * The last preferred console added will be used for kernel messages
2236  * and stdin/out/err for init.  Normally this is used by console_setup
2237  * above to handle user-supplied console arguments; however it can also
2238  * be used by arch-specific code either to override the user or more
2239  * commonly to provide a default console (ie from PROM variables) when
2240  * the user has not supplied one.
2241  */
2242 int add_preferred_console(char *name, int idx, char *options)
2243 {
2244 	return __add_preferred_console(name, idx, options, NULL, false);
2245 }
2246 
2247 bool console_suspend_enabled = true;
2248 EXPORT_SYMBOL(console_suspend_enabled);
2249 
2250 static int __init console_suspend_disable(char *str)
2251 {
2252 	console_suspend_enabled = false;
2253 	return 1;
2254 }
2255 __setup("no_console_suspend", console_suspend_disable);
2256 module_param_named(console_suspend, console_suspend_enabled,
2257 		bool, S_IRUGO | S_IWUSR);
2258 MODULE_PARM_DESC(console_suspend, "suspend console during suspend"
2259 	" and hibernate operations");
2260 
2261 /**
2262  * suspend_console - suspend the console subsystem
2263  *
2264  * This disables printk() while we go into suspend states
2265  */
2266 void suspend_console(void)
2267 {
2268 	if (!console_suspend_enabled)
2269 		return;
2270 	pr_info("Suspending console(s) (use no_console_suspend to debug)\n");
2271 	console_lock();
2272 	console_suspended = 1;
2273 	up_console_sem();
2274 }
2275 
2276 void resume_console(void)
2277 {
2278 	if (!console_suspend_enabled)
2279 		return;
2280 	down_console_sem();
2281 	console_suspended = 0;
2282 	console_unlock();
2283 }
2284 
2285 /**
2286  * console_cpu_notify - print deferred console messages after CPU hotplug
2287  * @cpu: unused
2288  *
2289  * If printk() is called from a CPU that is not online yet, the messages
2290  * will be printed on the console only if there are CON_ANYTIME consoles.
2291  * This function is called when a new CPU comes online (or fails to come
2292  * up) or goes offline.
2293  */
2294 static int console_cpu_notify(unsigned int cpu)
2295 {
2296 	if (!cpuhp_tasks_frozen) {
2297 		/* If trylock fails, someone else is doing the printing */
2298 		if (console_trylock())
2299 			console_unlock();
2300 	}
2301 	return 0;
2302 }
2303 
2304 /**
2305  * console_lock - lock the console system for exclusive use.
2306  *
2307  * Acquires a lock which guarantees that the caller has
2308  * exclusive access to the console system and the console_drivers list.
2309  *
2310  * Can sleep, returns nothing.
2311  */
2312 void console_lock(void)
2313 {
2314 	might_sleep();
2315 
2316 	down_console_sem();
2317 	if (console_suspended)
2318 		return;
2319 	console_locked = 1;
2320 	console_may_schedule = 1;
2321 }
2322 EXPORT_SYMBOL(console_lock);
2323 
2324 /**
2325  * console_trylock - try to lock the console system for exclusive use.
2326  *
2327  * Try to acquire a lock which guarantees that the caller has exclusive
2328  * access to the console system and the console_drivers list.
2329  *
2330  * returns 1 on success, and 0 on failure to acquire the lock.
2331  */
2332 int console_trylock(void)
2333 {
2334 	if (down_trylock_console_sem())
2335 		return 0;
2336 	if (console_suspended) {
2337 		up_console_sem();
2338 		return 0;
2339 	}
2340 	console_locked = 1;
2341 	console_may_schedule = 0;
2342 	return 1;
2343 }
2344 EXPORT_SYMBOL(console_trylock);
2345 
2346 int is_console_locked(void)
2347 {
2348 	return console_locked;
2349 }
2350 EXPORT_SYMBOL(is_console_locked);
2351 
2352 /*
2353  * Check if we have any console that is capable of printing while cpu is
2354  * booting or shutting down. Requires console_sem.
2355  */
2356 static int have_callable_console(void)
2357 {
2358 	struct console *con;
2359 
2360 	for_each_console(con)
2361 		if ((con->flags & CON_ENABLED) &&
2362 				(con->flags & CON_ANYTIME))
2363 			return 1;
2364 
2365 	return 0;
2366 }
2367 
2368 /*
2369  * Can we actually use the console at this time on this cpu?
2370  *
2371  * Console drivers may assume that per-cpu resources have been allocated. So
2372  * unless they're explicitly marked as being able to cope (CON_ANYTIME) don't
2373  * call them until this CPU is officially up.
2374  */
2375 static inline int can_use_console(void)
2376 {
2377 	return cpu_online(raw_smp_processor_id()) || have_callable_console();
2378 }
2379 
2380 /**
2381  * console_unlock - unlock the console system
2382  *
2383  * Releases the console_lock which the caller holds on the console system
2384  * and the console driver list.
2385  *
2386  * While the console_lock was held, console output may have been buffered
2387  * by printk().  If this is the case, console_unlock(); emits
2388  * the output prior to releasing the lock.
2389  *
2390  * If there is output waiting, we wake /dev/kmsg and syslog() users.
2391  *
2392  * console_unlock(); may be called from any context.
2393  */
2394 void console_unlock(void)
2395 {
2396 	static char ext_text[CONSOLE_EXT_LOG_MAX];
2397 	static char text[LOG_LINE_MAX + PREFIX_MAX];
2398 	unsigned long flags;
2399 	bool do_cond_resched, retry;
2400 	struct printk_info info;
2401 	struct printk_record r;
2402 
2403 	if (console_suspended) {
2404 		up_console_sem();
2405 		return;
2406 	}
2407 
2408 	prb_rec_init_rd(&r, &info, text, sizeof(text));
2409 
2410 	/*
2411 	 * Console drivers are called with interrupts disabled, so
2412 	 * @console_may_schedule should be cleared before; however, we may
2413 	 * end up dumping a lot of lines, for example, if called from
2414 	 * console registration path, and should invoke cond_resched()
2415 	 * between lines if allowable.  Not doing so can cause a very long
2416 	 * scheduling stall on a slow console leading to RCU stall and
2417 	 * softlockup warnings which exacerbate the issue with more
2418 	 * messages practically incapacitating the system.
2419 	 *
2420 	 * console_trylock() is not able to detect the preemptive
2421 	 * context reliably. Therefore the value must be stored before
2422 	 * and cleared after the "again" goto label.
2423 	 */
2424 	do_cond_resched = console_may_schedule;
2425 again:
2426 	console_may_schedule = 0;
2427 
2428 	/*
2429 	 * We released the console_sem lock, so we need to recheck if
2430 	 * cpu is online and (if not) is there at least one CON_ANYTIME
2431 	 * console.
2432 	 */
2433 	if (!can_use_console()) {
2434 		console_locked = 0;
2435 		up_console_sem();
2436 		return;
2437 	}
2438 
2439 	for (;;) {
2440 		size_t ext_len = 0;
2441 		size_t len;
2442 
2443 		printk_safe_enter_irqsave(flags);
2444 		raw_spin_lock(&logbuf_lock);
2445 skip:
2446 		if (!prb_read_valid(prb, console_seq, &r))
2447 			break;
2448 
2449 		if (console_seq != r.info->seq) {
2450 			console_dropped += r.info->seq - console_seq;
2451 			console_seq = r.info->seq;
2452 		}
2453 
2454 		if (suppress_message_printing(r.info->level)) {
2455 			/*
2456 			 * Skip record we have buffered and already printed
2457 			 * directly to the console when we received it, and
2458 			 * record that has level above the console loglevel.
2459 			 */
2460 			console_seq++;
2461 			goto skip;
2462 		}
2463 
2464 		/* Output to all consoles once old messages replayed. */
2465 		if (unlikely(exclusive_console &&
2466 			     console_seq >= exclusive_console_stop_seq)) {
2467 			exclusive_console = NULL;
2468 		}
2469 
2470 		/*
2471 		 * Handle extended console text first because later
2472 		 * record_print_text() will modify the record buffer in-place.
2473 		 */
2474 		if (nr_ext_console_drivers) {
2475 			ext_len = info_print_ext_header(ext_text,
2476 						sizeof(ext_text),
2477 						r.info);
2478 			ext_len += msg_print_ext_body(ext_text + ext_len,
2479 						sizeof(ext_text) - ext_len,
2480 						&r.text_buf[0],
2481 						r.info->text_len,
2482 						&r.info->dev_info);
2483 		}
2484 		len = record_print_text(&r,
2485 				console_msg_format & MSG_FORMAT_SYSLOG,
2486 				printk_time);
2487 		console_seq++;
2488 		raw_spin_unlock(&logbuf_lock);
2489 
2490 		/*
2491 		 * While actively printing out messages, if another printk()
2492 		 * were to occur on another CPU, it may wait for this one to
2493 		 * finish. This task can not be preempted if there is a
2494 		 * waiter waiting to take over.
2495 		 */
2496 		console_lock_spinning_enable();
2497 
2498 		stop_critical_timings();	/* don't trace print latency */
2499 		call_console_drivers(ext_text, ext_len, text, len);
2500 		start_critical_timings();
2501 
2502 		if (console_lock_spinning_disable_and_check()) {
2503 			printk_safe_exit_irqrestore(flags);
2504 			return;
2505 		}
2506 
2507 		printk_safe_exit_irqrestore(flags);
2508 
2509 		if (do_cond_resched)
2510 			cond_resched();
2511 	}
2512 
2513 	console_locked = 0;
2514 
2515 	raw_spin_unlock(&logbuf_lock);
2516 
2517 	up_console_sem();
2518 
2519 	/*
2520 	 * Someone could have filled up the buffer again, so re-check if there's
2521 	 * something to flush. In case we cannot trylock the console_sem again,
2522 	 * there's a new owner and the console_unlock() from them will do the
2523 	 * flush, no worries.
2524 	 */
2525 	raw_spin_lock(&logbuf_lock);
2526 	retry = prb_read_valid(prb, console_seq, NULL);
2527 	raw_spin_unlock(&logbuf_lock);
2528 	printk_safe_exit_irqrestore(flags);
2529 
2530 	if (retry && console_trylock())
2531 		goto again;
2532 }
2533 EXPORT_SYMBOL(console_unlock);
2534 
2535 /**
2536  * console_conditional_schedule - yield the CPU if required
2537  *
2538  * If the console code is currently allowed to sleep, and
2539  * if this CPU should yield the CPU to another task, do
2540  * so here.
2541  *
2542  * Must be called within console_lock();.
2543  */
2544 void __sched console_conditional_schedule(void)
2545 {
2546 	if (console_may_schedule)
2547 		cond_resched();
2548 }
2549 EXPORT_SYMBOL(console_conditional_schedule);
2550 
2551 void console_unblank(void)
2552 {
2553 	struct console *c;
2554 
2555 	/*
2556 	 * console_unblank can no longer be called in interrupt context unless
2557 	 * oops_in_progress is set to 1..
2558 	 */
2559 	if (oops_in_progress) {
2560 		if (down_trylock_console_sem() != 0)
2561 			return;
2562 	} else
2563 		console_lock();
2564 
2565 	console_locked = 1;
2566 	console_may_schedule = 0;
2567 	for_each_console(c)
2568 		if ((c->flags & CON_ENABLED) && c->unblank)
2569 			c->unblank();
2570 	console_unlock();
2571 }
2572 
2573 /**
2574  * console_flush_on_panic - flush console content on panic
2575  * @mode: flush all messages in buffer or just the pending ones
2576  *
2577  * Immediately output all pending messages no matter what.
2578  */
2579 void console_flush_on_panic(enum con_flush_mode mode)
2580 {
2581 	/*
2582 	 * If someone else is holding the console lock, trylock will fail
2583 	 * and may_schedule may be set.  Ignore and proceed to unlock so
2584 	 * that messages are flushed out.  As this can be called from any
2585 	 * context and we don't want to get preempted while flushing,
2586 	 * ensure may_schedule is cleared.
2587 	 */
2588 	console_trylock();
2589 	console_may_schedule = 0;
2590 
2591 	if (mode == CONSOLE_REPLAY_ALL) {
2592 		unsigned long flags;
2593 
2594 		logbuf_lock_irqsave(flags);
2595 		console_seq = prb_first_valid_seq(prb);
2596 		logbuf_unlock_irqrestore(flags);
2597 	}
2598 	console_unlock();
2599 }
2600 
2601 /*
2602  * Return the console tty driver structure and its associated index
2603  */
2604 struct tty_driver *console_device(int *index)
2605 {
2606 	struct console *c;
2607 	struct tty_driver *driver = NULL;
2608 
2609 	console_lock();
2610 	for_each_console(c) {
2611 		if (!c->device)
2612 			continue;
2613 		driver = c->device(c, index);
2614 		if (driver)
2615 			break;
2616 	}
2617 	console_unlock();
2618 	return driver;
2619 }
2620 
2621 /*
2622  * Prevent further output on the passed console device so that (for example)
2623  * serial drivers can disable console output before suspending a port, and can
2624  * re-enable output afterwards.
2625  */
2626 void console_stop(struct console *console)
2627 {
2628 	console_lock();
2629 	console->flags &= ~CON_ENABLED;
2630 	console_unlock();
2631 }
2632 EXPORT_SYMBOL(console_stop);
2633 
2634 void console_start(struct console *console)
2635 {
2636 	console_lock();
2637 	console->flags |= CON_ENABLED;
2638 	console_unlock();
2639 }
2640 EXPORT_SYMBOL(console_start);
2641 
2642 static int __read_mostly keep_bootcon;
2643 
2644 static int __init keep_bootcon_setup(char *str)
2645 {
2646 	keep_bootcon = 1;
2647 	pr_info("debug: skip boot console de-registration.\n");
2648 
2649 	return 0;
2650 }
2651 
2652 early_param("keep_bootcon", keep_bootcon_setup);
2653 
2654 /*
2655  * This is called by register_console() to try to match
2656  * the newly registered console with any of the ones selected
2657  * by either the command line or add_preferred_console() and
2658  * setup/enable it.
2659  *
2660  * Care need to be taken with consoles that are statically
2661  * enabled such as netconsole
2662  */
2663 static int try_enable_new_console(struct console *newcon, bool user_specified)
2664 {
2665 	struct console_cmdline *c;
2666 	int i, err;
2667 
2668 	for (i = 0, c = console_cmdline;
2669 	     i < MAX_CMDLINECONSOLES && c->name[0];
2670 	     i++, c++) {
2671 		if (c->user_specified != user_specified)
2672 			continue;
2673 		if (!newcon->match ||
2674 		    newcon->match(newcon, c->name, c->index, c->options) != 0) {
2675 			/* default matching */
2676 			BUILD_BUG_ON(sizeof(c->name) != sizeof(newcon->name));
2677 			if (strcmp(c->name, newcon->name) != 0)
2678 				continue;
2679 			if (newcon->index >= 0 &&
2680 			    newcon->index != c->index)
2681 				continue;
2682 			if (newcon->index < 0)
2683 				newcon->index = c->index;
2684 
2685 			if (_braille_register_console(newcon, c))
2686 				return 0;
2687 
2688 			if (newcon->setup &&
2689 			    (err = newcon->setup(newcon, c->options)) != 0)
2690 				return err;
2691 		}
2692 		newcon->flags |= CON_ENABLED;
2693 		if (i == preferred_console) {
2694 			newcon->flags |= CON_CONSDEV;
2695 			has_preferred_console = true;
2696 		}
2697 		return 0;
2698 	}
2699 
2700 	/*
2701 	 * Some consoles, such as pstore and netconsole, can be enabled even
2702 	 * without matching. Accept the pre-enabled consoles only when match()
2703 	 * and setup() had a chance to be called.
2704 	 */
2705 	if (newcon->flags & CON_ENABLED && c->user_specified ==	user_specified)
2706 		return 0;
2707 
2708 	return -ENOENT;
2709 }
2710 
2711 /*
2712  * The console driver calls this routine during kernel initialization
2713  * to register the console printing procedure with printk() and to
2714  * print any messages that were printed by the kernel before the
2715  * console driver was initialized.
2716  *
2717  * This can happen pretty early during the boot process (because of
2718  * early_printk) - sometimes before setup_arch() completes - be careful
2719  * of what kernel features are used - they may not be initialised yet.
2720  *
2721  * There are two types of consoles - bootconsoles (early_printk) and
2722  * "real" consoles (everything which is not a bootconsole) which are
2723  * handled differently.
2724  *  - Any number of bootconsoles can be registered at any time.
2725  *  - As soon as a "real" console is registered, all bootconsoles
2726  *    will be unregistered automatically.
2727  *  - Once a "real" console is registered, any attempt to register a
2728  *    bootconsoles will be rejected
2729  */
2730 void register_console(struct console *newcon)
2731 {
2732 	unsigned long flags;
2733 	struct console *bcon = NULL;
2734 	int err;
2735 
2736 	for_each_console(bcon) {
2737 		if (WARN(bcon == newcon, "console '%s%d' already registered\n",
2738 					 bcon->name, bcon->index))
2739 			return;
2740 	}
2741 
2742 	/*
2743 	 * before we register a new CON_BOOT console, make sure we don't
2744 	 * already have a valid console
2745 	 */
2746 	if (newcon->flags & CON_BOOT) {
2747 		for_each_console(bcon) {
2748 			if (!(bcon->flags & CON_BOOT)) {
2749 				pr_info("Too late to register bootconsole %s%d\n",
2750 					newcon->name, newcon->index);
2751 				return;
2752 			}
2753 		}
2754 	}
2755 
2756 	if (console_drivers && console_drivers->flags & CON_BOOT)
2757 		bcon = console_drivers;
2758 
2759 	if (!has_preferred_console || bcon || !console_drivers)
2760 		has_preferred_console = preferred_console >= 0;
2761 
2762 	/*
2763 	 *	See if we want to use this console driver. If we
2764 	 *	didn't select a console we take the first one
2765 	 *	that registers here.
2766 	 */
2767 	if (!has_preferred_console) {
2768 		if (newcon->index < 0)
2769 			newcon->index = 0;
2770 		if (newcon->setup == NULL ||
2771 		    newcon->setup(newcon, NULL) == 0) {
2772 			newcon->flags |= CON_ENABLED;
2773 			if (newcon->device) {
2774 				newcon->flags |= CON_CONSDEV;
2775 				has_preferred_console = true;
2776 			}
2777 		}
2778 	}
2779 
2780 	/* See if this console matches one we selected on the command line */
2781 	err = try_enable_new_console(newcon, true);
2782 
2783 	/* If not, try to match against the platform default(s) */
2784 	if (err == -ENOENT)
2785 		err = try_enable_new_console(newcon, false);
2786 
2787 	/* printk() messages are not printed to the Braille console. */
2788 	if (err || newcon->flags & CON_BRL)
2789 		return;
2790 
2791 	/*
2792 	 * If we have a bootconsole, and are switching to a real console,
2793 	 * don't print everything out again, since when the boot console, and
2794 	 * the real console are the same physical device, it's annoying to
2795 	 * see the beginning boot messages twice
2796 	 */
2797 	if (bcon && ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV))
2798 		newcon->flags &= ~CON_PRINTBUFFER;
2799 
2800 	/*
2801 	 *	Put this console in the list - keep the
2802 	 *	preferred driver at the head of the list.
2803 	 */
2804 	console_lock();
2805 	if ((newcon->flags & CON_CONSDEV) || console_drivers == NULL) {
2806 		newcon->next = console_drivers;
2807 		console_drivers = newcon;
2808 		if (newcon->next)
2809 			newcon->next->flags &= ~CON_CONSDEV;
2810 		/* Ensure this flag is always set for the head of the list */
2811 		newcon->flags |= CON_CONSDEV;
2812 	} else {
2813 		newcon->next = console_drivers->next;
2814 		console_drivers->next = newcon;
2815 	}
2816 
2817 	if (newcon->flags & CON_EXTENDED)
2818 		nr_ext_console_drivers++;
2819 
2820 	if (newcon->flags & CON_PRINTBUFFER) {
2821 		/*
2822 		 * console_unlock(); will print out the buffered messages
2823 		 * for us.
2824 		 */
2825 		logbuf_lock_irqsave(flags);
2826 		/*
2827 		 * We're about to replay the log buffer.  Only do this to the
2828 		 * just-registered console to avoid excessive message spam to
2829 		 * the already-registered consoles.
2830 		 *
2831 		 * Set exclusive_console with disabled interrupts to reduce
2832 		 * race window with eventual console_flush_on_panic() that
2833 		 * ignores console_lock.
2834 		 */
2835 		exclusive_console = newcon;
2836 		exclusive_console_stop_seq = console_seq;
2837 		console_seq = syslog_seq;
2838 		logbuf_unlock_irqrestore(flags);
2839 	}
2840 	console_unlock();
2841 	console_sysfs_notify();
2842 
2843 	/*
2844 	 * By unregistering the bootconsoles after we enable the real console
2845 	 * we get the "console xxx enabled" message on all the consoles -
2846 	 * boot consoles, real consoles, etc - this is to ensure that end
2847 	 * users know there might be something in the kernel's log buffer that
2848 	 * went to the bootconsole (that they do not see on the real console)
2849 	 */
2850 	pr_info("%sconsole [%s%d] enabled\n",
2851 		(newcon->flags & CON_BOOT) ? "boot" : "" ,
2852 		newcon->name, newcon->index);
2853 	if (bcon &&
2854 	    ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV) &&
2855 	    !keep_bootcon) {
2856 		/* We need to iterate through all boot consoles, to make
2857 		 * sure we print everything out, before we unregister them.
2858 		 */
2859 		for_each_console(bcon)
2860 			if (bcon->flags & CON_BOOT)
2861 				unregister_console(bcon);
2862 	}
2863 }
2864 EXPORT_SYMBOL(register_console);
2865 
2866 int unregister_console(struct console *console)
2867 {
2868 	struct console *con;
2869 	int res;
2870 
2871 	pr_info("%sconsole [%s%d] disabled\n",
2872 		(console->flags & CON_BOOT) ? "boot" : "" ,
2873 		console->name, console->index);
2874 
2875 	res = _braille_unregister_console(console);
2876 	if (res < 0)
2877 		return res;
2878 	if (res > 0)
2879 		return 0;
2880 
2881 	res = -ENODEV;
2882 	console_lock();
2883 	if (console_drivers == console) {
2884 		console_drivers=console->next;
2885 		res = 0;
2886 	} else {
2887 		for_each_console(con) {
2888 			if (con->next == console) {
2889 				con->next = console->next;
2890 				res = 0;
2891 				break;
2892 			}
2893 		}
2894 	}
2895 
2896 	if (res)
2897 		goto out_disable_unlock;
2898 
2899 	if (console->flags & CON_EXTENDED)
2900 		nr_ext_console_drivers--;
2901 
2902 	/*
2903 	 * If this isn't the last console and it has CON_CONSDEV set, we
2904 	 * need to set it on the next preferred console.
2905 	 */
2906 	if (console_drivers != NULL && console->flags & CON_CONSDEV)
2907 		console_drivers->flags |= CON_CONSDEV;
2908 
2909 	console->flags &= ~CON_ENABLED;
2910 	console_unlock();
2911 	console_sysfs_notify();
2912 
2913 	if (console->exit)
2914 		res = console->exit(console);
2915 
2916 	return res;
2917 
2918 out_disable_unlock:
2919 	console->flags &= ~CON_ENABLED;
2920 	console_unlock();
2921 
2922 	return res;
2923 }
2924 EXPORT_SYMBOL(unregister_console);
2925 
2926 /*
2927  * Initialize the console device. This is called *early*, so
2928  * we can't necessarily depend on lots of kernel help here.
2929  * Just do some early initializations, and do the complex setup
2930  * later.
2931  */
2932 void __init console_init(void)
2933 {
2934 	int ret;
2935 	initcall_t call;
2936 	initcall_entry_t *ce;
2937 
2938 	/* Setup the default TTY line discipline. */
2939 	n_tty_init();
2940 
2941 	/*
2942 	 * set up the console device so that later boot sequences can
2943 	 * inform about problems etc..
2944 	 */
2945 	ce = __con_initcall_start;
2946 	trace_initcall_level("console");
2947 	while (ce < __con_initcall_end) {
2948 		call = initcall_from_entry(ce);
2949 		trace_initcall_start(call);
2950 		ret = call();
2951 		trace_initcall_finish(call, ret);
2952 		ce++;
2953 	}
2954 }
2955 
2956 /*
2957  * Some boot consoles access data that is in the init section and which will
2958  * be discarded after the initcalls have been run. To make sure that no code
2959  * will access this data, unregister the boot consoles in a late initcall.
2960  *
2961  * If for some reason, such as deferred probe or the driver being a loadable
2962  * module, the real console hasn't registered yet at this point, there will
2963  * be a brief interval in which no messages are logged to the console, which
2964  * makes it difficult to diagnose problems that occur during this time.
2965  *
2966  * To mitigate this problem somewhat, only unregister consoles whose memory
2967  * intersects with the init section. Note that all other boot consoles will
2968  * get unregistred when the real preferred console is registered.
2969  */
2970 static int __init printk_late_init(void)
2971 {
2972 	struct console *con;
2973 	int ret;
2974 
2975 	for_each_console(con) {
2976 		if (!(con->flags & CON_BOOT))
2977 			continue;
2978 
2979 		/* Check addresses that might be used for enabled consoles. */
2980 		if (init_section_intersects(con, sizeof(*con)) ||
2981 		    init_section_contains(con->write, 0) ||
2982 		    init_section_contains(con->read, 0) ||
2983 		    init_section_contains(con->device, 0) ||
2984 		    init_section_contains(con->unblank, 0) ||
2985 		    init_section_contains(con->data, 0)) {
2986 			/*
2987 			 * Please, consider moving the reported consoles out
2988 			 * of the init section.
2989 			 */
2990 			pr_warn("bootconsole [%s%d] uses init memory and must be disabled even before the real one is ready\n",
2991 				con->name, con->index);
2992 			unregister_console(con);
2993 		}
2994 	}
2995 	ret = cpuhp_setup_state_nocalls(CPUHP_PRINTK_DEAD, "printk:dead", NULL,
2996 					console_cpu_notify);
2997 	WARN_ON(ret < 0);
2998 	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "printk:online",
2999 					console_cpu_notify, NULL);
3000 	WARN_ON(ret < 0);
3001 	return 0;
3002 }
3003 late_initcall(printk_late_init);
3004 
3005 #if defined CONFIG_PRINTK
3006 /*
3007  * Delayed printk version, for scheduler-internal messages:
3008  */
3009 #define PRINTK_PENDING_WAKEUP	0x01
3010 #define PRINTK_PENDING_OUTPUT	0x02
3011 
3012 static DEFINE_PER_CPU(int, printk_pending);
3013 
3014 static void wake_up_klogd_work_func(struct irq_work *irq_work)
3015 {
3016 	int pending = __this_cpu_xchg(printk_pending, 0);
3017 
3018 	if (pending & PRINTK_PENDING_OUTPUT) {
3019 		/* If trylock fails, someone else is doing the printing */
3020 		if (console_trylock())
3021 			console_unlock();
3022 	}
3023 
3024 	if (pending & PRINTK_PENDING_WAKEUP)
3025 		wake_up_interruptible(&log_wait);
3026 }
3027 
3028 static DEFINE_PER_CPU(struct irq_work, wake_up_klogd_work) = {
3029 	.func = wake_up_klogd_work_func,
3030 	.flags = ATOMIC_INIT(IRQ_WORK_LAZY),
3031 };
3032 
3033 void wake_up_klogd(void)
3034 {
3035 	if (!printk_percpu_data_ready())
3036 		return;
3037 
3038 	preempt_disable();
3039 	if (waitqueue_active(&log_wait)) {
3040 		this_cpu_or(printk_pending, PRINTK_PENDING_WAKEUP);
3041 		irq_work_queue(this_cpu_ptr(&wake_up_klogd_work));
3042 	}
3043 	preempt_enable();
3044 }
3045 
3046 void defer_console_output(void)
3047 {
3048 	if (!printk_percpu_data_ready())
3049 		return;
3050 
3051 	preempt_disable();
3052 	__this_cpu_or(printk_pending, PRINTK_PENDING_OUTPUT);
3053 	irq_work_queue(this_cpu_ptr(&wake_up_klogd_work));
3054 	preempt_enable();
3055 }
3056 
3057 int vprintk_deferred(const char *fmt, va_list args)
3058 {
3059 	int r;
3060 
3061 	r = vprintk_emit(0, LOGLEVEL_SCHED, NULL, fmt, args);
3062 	defer_console_output();
3063 
3064 	return r;
3065 }
3066 
3067 int printk_deferred(const char *fmt, ...)
3068 {
3069 	va_list args;
3070 	int r;
3071 
3072 	va_start(args, fmt);
3073 	r = vprintk_deferred(fmt, args);
3074 	va_end(args);
3075 
3076 	return r;
3077 }
3078 
3079 /*
3080  * printk rate limiting, lifted from the networking subsystem.
3081  *
3082  * This enforces a rate limit: not more than 10 kernel messages
3083  * every 5s to make a denial-of-service attack impossible.
3084  */
3085 DEFINE_RATELIMIT_STATE(printk_ratelimit_state, 5 * HZ, 10);
3086 
3087 int __printk_ratelimit(const char *func)
3088 {
3089 	return ___ratelimit(&printk_ratelimit_state, func);
3090 }
3091 EXPORT_SYMBOL(__printk_ratelimit);
3092 
3093 /**
3094  * printk_timed_ratelimit - caller-controlled printk ratelimiting
3095  * @caller_jiffies: pointer to caller's state
3096  * @interval_msecs: minimum interval between prints
3097  *
3098  * printk_timed_ratelimit() returns true if more than @interval_msecs
3099  * milliseconds have elapsed since the last time printk_timed_ratelimit()
3100  * returned true.
3101  */
3102 bool printk_timed_ratelimit(unsigned long *caller_jiffies,
3103 			unsigned int interval_msecs)
3104 {
3105 	unsigned long elapsed = jiffies - *caller_jiffies;
3106 
3107 	if (*caller_jiffies && elapsed <= msecs_to_jiffies(interval_msecs))
3108 		return false;
3109 
3110 	*caller_jiffies = jiffies;
3111 	return true;
3112 }
3113 EXPORT_SYMBOL(printk_timed_ratelimit);
3114 
3115 static DEFINE_SPINLOCK(dump_list_lock);
3116 static LIST_HEAD(dump_list);
3117 
3118 /**
3119  * kmsg_dump_register - register a kernel log dumper.
3120  * @dumper: pointer to the kmsg_dumper structure
3121  *
3122  * Adds a kernel log dumper to the system. The dump callback in the
3123  * structure will be called when the kernel oopses or panics and must be
3124  * set. Returns zero on success and %-EINVAL or %-EBUSY otherwise.
3125  */
3126 int kmsg_dump_register(struct kmsg_dumper *dumper)
3127 {
3128 	unsigned long flags;
3129 	int err = -EBUSY;
3130 
3131 	/* The dump callback needs to be set */
3132 	if (!dumper->dump)
3133 		return -EINVAL;
3134 
3135 	spin_lock_irqsave(&dump_list_lock, flags);
3136 	/* Don't allow registering multiple times */
3137 	if (!dumper->registered) {
3138 		dumper->registered = 1;
3139 		list_add_tail_rcu(&dumper->list, &dump_list);
3140 		err = 0;
3141 	}
3142 	spin_unlock_irqrestore(&dump_list_lock, flags);
3143 
3144 	return err;
3145 }
3146 EXPORT_SYMBOL_GPL(kmsg_dump_register);
3147 
3148 /**
3149  * kmsg_dump_unregister - unregister a kmsg dumper.
3150  * @dumper: pointer to the kmsg_dumper structure
3151  *
3152  * Removes a dump device from the system. Returns zero on success and
3153  * %-EINVAL otherwise.
3154  */
3155 int kmsg_dump_unregister(struct kmsg_dumper *dumper)
3156 {
3157 	unsigned long flags;
3158 	int err = -EINVAL;
3159 
3160 	spin_lock_irqsave(&dump_list_lock, flags);
3161 	if (dumper->registered) {
3162 		dumper->registered = 0;
3163 		list_del_rcu(&dumper->list);
3164 		err = 0;
3165 	}
3166 	spin_unlock_irqrestore(&dump_list_lock, flags);
3167 	synchronize_rcu();
3168 
3169 	return err;
3170 }
3171 EXPORT_SYMBOL_GPL(kmsg_dump_unregister);
3172 
3173 static bool always_kmsg_dump;
3174 module_param_named(always_kmsg_dump, always_kmsg_dump, bool, S_IRUGO | S_IWUSR);
3175 
3176 const char *kmsg_dump_reason_str(enum kmsg_dump_reason reason)
3177 {
3178 	switch (reason) {
3179 	case KMSG_DUMP_PANIC:
3180 		return "Panic";
3181 	case KMSG_DUMP_OOPS:
3182 		return "Oops";
3183 	case KMSG_DUMP_EMERG:
3184 		return "Emergency";
3185 	case KMSG_DUMP_SHUTDOWN:
3186 		return "Shutdown";
3187 	default:
3188 		return "Unknown";
3189 	}
3190 }
3191 EXPORT_SYMBOL_GPL(kmsg_dump_reason_str);
3192 
3193 /**
3194  * kmsg_dump - dump kernel log to kernel message dumpers.
3195  * @reason: the reason (oops, panic etc) for dumping
3196  *
3197  * Call each of the registered dumper's dump() callback, which can
3198  * retrieve the kmsg records with kmsg_dump_get_line() or
3199  * kmsg_dump_get_buffer().
3200  */
3201 void kmsg_dump(enum kmsg_dump_reason reason)
3202 {
3203 	struct kmsg_dumper *dumper;
3204 	unsigned long flags;
3205 
3206 	rcu_read_lock();
3207 	list_for_each_entry_rcu(dumper, &dump_list, list) {
3208 		enum kmsg_dump_reason max_reason = dumper->max_reason;
3209 
3210 		/*
3211 		 * If client has not provided a specific max_reason, default
3212 		 * to KMSG_DUMP_OOPS, unless always_kmsg_dump was set.
3213 		 */
3214 		if (max_reason == KMSG_DUMP_UNDEF) {
3215 			max_reason = always_kmsg_dump ? KMSG_DUMP_MAX :
3216 							KMSG_DUMP_OOPS;
3217 		}
3218 		if (reason > max_reason)
3219 			continue;
3220 
3221 		/* initialize iterator with data about the stored records */
3222 		dumper->active = true;
3223 
3224 		logbuf_lock_irqsave(flags);
3225 		dumper->cur_seq = clear_seq;
3226 		dumper->next_seq = prb_next_seq(prb);
3227 		logbuf_unlock_irqrestore(flags);
3228 
3229 		/* invoke dumper which will iterate over records */
3230 		dumper->dump(dumper, reason);
3231 
3232 		/* reset iterator */
3233 		dumper->active = false;
3234 	}
3235 	rcu_read_unlock();
3236 }
3237 
3238 /**
3239  * kmsg_dump_get_line_nolock - retrieve one kmsg log line (unlocked version)
3240  * @dumper: registered kmsg dumper
3241  * @syslog: include the "<4>" prefixes
3242  * @line: buffer to copy the line to
3243  * @size: maximum size of the buffer
3244  * @len: length of line placed into buffer
3245  *
3246  * Start at the beginning of the kmsg buffer, with the oldest kmsg
3247  * record, and copy one record into the provided buffer.
3248  *
3249  * Consecutive calls will return the next available record moving
3250  * towards the end of the buffer with the youngest messages.
3251  *
3252  * A return value of FALSE indicates that there are no more records to
3253  * read.
3254  *
3255  * The function is similar to kmsg_dump_get_line(), but grabs no locks.
3256  */
3257 bool kmsg_dump_get_line_nolock(struct kmsg_dumper *dumper, bool syslog,
3258 			       char *line, size_t size, size_t *len)
3259 {
3260 	struct printk_info info;
3261 	unsigned int line_count;
3262 	struct printk_record r;
3263 	size_t l = 0;
3264 	bool ret = false;
3265 
3266 	prb_rec_init_rd(&r, &info, line, size);
3267 
3268 	if (!dumper->active)
3269 		goto out;
3270 
3271 	/* Read text or count text lines? */
3272 	if (line) {
3273 		if (!prb_read_valid(prb, dumper->cur_seq, &r))
3274 			goto out;
3275 		l = record_print_text(&r, syslog, printk_time);
3276 	} else {
3277 		if (!prb_read_valid_info(prb, dumper->cur_seq,
3278 					 &info, &line_count)) {
3279 			goto out;
3280 		}
3281 		l = get_record_print_text_size(&info, line_count, syslog,
3282 					       printk_time);
3283 
3284 	}
3285 
3286 	dumper->cur_seq = r.info->seq + 1;
3287 	ret = true;
3288 out:
3289 	if (len)
3290 		*len = l;
3291 	return ret;
3292 }
3293 
3294 /**
3295  * kmsg_dump_get_line - retrieve one kmsg log line
3296  * @dumper: registered kmsg dumper
3297  * @syslog: include the "<4>" prefixes
3298  * @line: buffer to copy the line to
3299  * @size: maximum size of the buffer
3300  * @len: length of line placed into buffer
3301  *
3302  * Start at the beginning of the kmsg buffer, with the oldest kmsg
3303  * record, and copy one record into the provided buffer.
3304  *
3305  * Consecutive calls will return the next available record moving
3306  * towards the end of the buffer with the youngest messages.
3307  *
3308  * A return value of FALSE indicates that there are no more records to
3309  * read.
3310  */
3311 bool kmsg_dump_get_line(struct kmsg_dumper *dumper, bool syslog,
3312 			char *line, size_t size, size_t *len)
3313 {
3314 	unsigned long flags;
3315 	bool ret;
3316 
3317 	logbuf_lock_irqsave(flags);
3318 	ret = kmsg_dump_get_line_nolock(dumper, syslog, line, size, len);
3319 	logbuf_unlock_irqrestore(flags);
3320 
3321 	return ret;
3322 }
3323 EXPORT_SYMBOL_GPL(kmsg_dump_get_line);
3324 
3325 /**
3326  * kmsg_dump_get_buffer - copy kmsg log lines
3327  * @dumper: registered kmsg dumper
3328  * @syslog: include the "<4>" prefixes
3329  * @buf: buffer to copy the line to
3330  * @size: maximum size of the buffer
3331  * @len: length of line placed into buffer
3332  *
3333  * Start at the end of the kmsg buffer and fill the provided buffer
3334  * with as many of the *youngest* kmsg records that fit into it.
3335  * If the buffer is large enough, all available kmsg records will be
3336  * copied with a single call.
3337  *
3338  * Consecutive calls will fill the buffer with the next block of
3339  * available older records, not including the earlier retrieved ones.
3340  *
3341  * A return value of FALSE indicates that there are no more records to
3342  * read.
3343  */
3344 bool kmsg_dump_get_buffer(struct kmsg_dumper *dumper, bool syslog,
3345 			  char *buf, size_t size, size_t *len)
3346 {
3347 	struct printk_info info;
3348 	unsigned int line_count;
3349 	struct printk_record r;
3350 	unsigned long flags;
3351 	u64 seq;
3352 	u64 next_seq;
3353 	size_t l = 0;
3354 	bool ret = false;
3355 	bool time = printk_time;
3356 
3357 	prb_rec_init_rd(&r, &info, buf, size);
3358 
3359 	if (!dumper->active || !buf || !size)
3360 		goto out;
3361 
3362 	logbuf_lock_irqsave(flags);
3363 	if (dumper->cur_seq < prb_first_valid_seq(prb)) {
3364 		/* messages are gone, move to first available one */
3365 		dumper->cur_seq = prb_first_valid_seq(prb);
3366 	}
3367 
3368 	/* last entry */
3369 	if (dumper->cur_seq >= dumper->next_seq) {
3370 		logbuf_unlock_irqrestore(flags);
3371 		goto out;
3372 	}
3373 
3374 	/* calculate length of entire buffer */
3375 	seq = dumper->cur_seq;
3376 	while (prb_read_valid_info(prb, seq, &info, &line_count)) {
3377 		if (r.info->seq >= dumper->next_seq)
3378 			break;
3379 		l += get_record_print_text_size(&info, line_count, true, time);
3380 		seq = r.info->seq + 1;
3381 	}
3382 
3383 	/* move first record forward until length fits into the buffer */
3384 	seq = dumper->cur_seq;
3385 	while (l >= size && prb_read_valid_info(prb, seq,
3386 						&info, &line_count)) {
3387 		if (r.info->seq >= dumper->next_seq)
3388 			break;
3389 		l -= get_record_print_text_size(&info, line_count, true, time);
3390 		seq = r.info->seq + 1;
3391 	}
3392 
3393 	/* last message in next interation */
3394 	next_seq = seq;
3395 
3396 	/* actually read text into the buffer now */
3397 	l = 0;
3398 	while (prb_read_valid(prb, seq, &r)) {
3399 		if (r.info->seq >= dumper->next_seq)
3400 			break;
3401 
3402 		l += record_print_text(&r, syslog, time);
3403 
3404 		/* adjust record to store to remaining buffer space */
3405 		prb_rec_init_rd(&r, &info, buf + l, size - l);
3406 
3407 		seq = r.info->seq + 1;
3408 	}
3409 
3410 	dumper->next_seq = next_seq;
3411 	ret = true;
3412 	logbuf_unlock_irqrestore(flags);
3413 out:
3414 	if (len)
3415 		*len = l;
3416 	return ret;
3417 }
3418 EXPORT_SYMBOL_GPL(kmsg_dump_get_buffer);
3419 
3420 /**
3421  * kmsg_dump_rewind_nolock - reset the iterator (unlocked version)
3422  * @dumper: registered kmsg dumper
3423  *
3424  * Reset the dumper's iterator so that kmsg_dump_get_line() and
3425  * kmsg_dump_get_buffer() can be called again and used multiple
3426  * times within the same dumper.dump() callback.
3427  *
3428  * The function is similar to kmsg_dump_rewind(), but grabs no locks.
3429  */
3430 void kmsg_dump_rewind_nolock(struct kmsg_dumper *dumper)
3431 {
3432 	dumper->cur_seq = clear_seq;
3433 	dumper->next_seq = prb_next_seq(prb);
3434 }
3435 
3436 /**
3437  * kmsg_dump_rewind - reset the iterator
3438  * @dumper: registered kmsg dumper
3439  *
3440  * Reset the dumper's iterator so that kmsg_dump_get_line() and
3441  * kmsg_dump_get_buffer() can be called again and used multiple
3442  * times within the same dumper.dump() callback.
3443  */
3444 void kmsg_dump_rewind(struct kmsg_dumper *dumper)
3445 {
3446 	unsigned long flags;
3447 
3448 	logbuf_lock_irqsave(flags);
3449 	kmsg_dump_rewind_nolock(dumper);
3450 	logbuf_unlock_irqrestore(flags);
3451 }
3452 EXPORT_SYMBOL_GPL(kmsg_dump_rewind);
3453 
3454 #endif
3455