xref: /openbmc/linux/kernel/printk/printk.c (revision 6aa7de05)
1 /*
2  *  linux/kernel/printk.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  *
6  * Modified to make sys_syslog() more flexible: added commands to
7  * return the last 4k of kernel messages, regardless of whether
8  * they've been read or not.  Added option to suppress kernel printk's
9  * to the console.  Added hook for sending the console messages
10  * elsewhere, in preparation for a serial line console (someday).
11  * Ted Ts'o, 2/11/93.
12  * Modified for sysctl support, 1/8/97, Chris Horn.
13  * Fixed SMP synchronization, 08/08/99, Manfred Spraul
14  *     manfred@colorfullife.com
15  * Rewrote bits to get rid of console_lock
16  *	01Mar01 Andrew Morton
17  */
18 
19 #include <linux/kernel.h>
20 #include <linux/mm.h>
21 #include <linux/tty.h>
22 #include <linux/tty_driver.h>
23 #include <linux/console.h>
24 #include <linux/init.h>
25 #include <linux/jiffies.h>
26 #include <linux/nmi.h>
27 #include <linux/module.h>
28 #include <linux/moduleparam.h>
29 #include <linux/delay.h>
30 #include <linux/smp.h>
31 #include <linux/security.h>
32 #include <linux/bootmem.h>
33 #include <linux/memblock.h>
34 #include <linux/syscalls.h>
35 #include <linux/crash_core.h>
36 #include <linux/kdb.h>
37 #include <linux/ratelimit.h>
38 #include <linux/kmsg_dump.h>
39 #include <linux/syslog.h>
40 #include <linux/cpu.h>
41 #include <linux/notifier.h>
42 #include <linux/rculist.h>
43 #include <linux/poll.h>
44 #include <linux/irq_work.h>
45 #include <linux/utsname.h>
46 #include <linux/ctype.h>
47 #include <linux/uio.h>
48 #include <linux/sched/clock.h>
49 #include <linux/sched/debug.h>
50 #include <linux/sched/task_stack.h>
51 
52 #include <linux/uaccess.h>
53 #include <asm/sections.h>
54 
55 #define CREATE_TRACE_POINTS
56 #include <trace/events/printk.h>
57 
58 #include "console_cmdline.h"
59 #include "braille.h"
60 #include "internal.h"
61 
62 int console_printk[4] = {
63 	CONSOLE_LOGLEVEL_DEFAULT,	/* console_loglevel */
64 	MESSAGE_LOGLEVEL_DEFAULT,	/* default_message_loglevel */
65 	CONSOLE_LOGLEVEL_MIN,		/* minimum_console_loglevel */
66 	CONSOLE_LOGLEVEL_DEFAULT,	/* default_console_loglevel */
67 };
68 
69 /*
70  * Low level drivers may need that to know if they can schedule in
71  * their unblank() callback or not. So let's export it.
72  */
73 int oops_in_progress;
74 EXPORT_SYMBOL(oops_in_progress);
75 
76 /*
77  * console_sem protects the console_drivers list, and also
78  * provides serialisation for access to the entire console
79  * driver system.
80  */
81 static DEFINE_SEMAPHORE(console_sem);
82 struct console *console_drivers;
83 EXPORT_SYMBOL_GPL(console_drivers);
84 
85 #ifdef CONFIG_LOCKDEP
86 static struct lockdep_map console_lock_dep_map = {
87 	.name = "console_lock"
88 };
89 #endif
90 
91 enum devkmsg_log_bits {
92 	__DEVKMSG_LOG_BIT_ON = 0,
93 	__DEVKMSG_LOG_BIT_OFF,
94 	__DEVKMSG_LOG_BIT_LOCK,
95 };
96 
97 enum devkmsg_log_masks {
98 	DEVKMSG_LOG_MASK_ON             = BIT(__DEVKMSG_LOG_BIT_ON),
99 	DEVKMSG_LOG_MASK_OFF            = BIT(__DEVKMSG_LOG_BIT_OFF),
100 	DEVKMSG_LOG_MASK_LOCK           = BIT(__DEVKMSG_LOG_BIT_LOCK),
101 };
102 
103 /* Keep both the 'on' and 'off' bits clear, i.e. ratelimit by default: */
104 #define DEVKMSG_LOG_MASK_DEFAULT	0
105 
106 static unsigned int __read_mostly devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT;
107 
108 static int __control_devkmsg(char *str)
109 {
110 	if (!str)
111 		return -EINVAL;
112 
113 	if (!strncmp(str, "on", 2)) {
114 		devkmsg_log = DEVKMSG_LOG_MASK_ON;
115 		return 2;
116 	} else if (!strncmp(str, "off", 3)) {
117 		devkmsg_log = DEVKMSG_LOG_MASK_OFF;
118 		return 3;
119 	} else if (!strncmp(str, "ratelimit", 9)) {
120 		devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT;
121 		return 9;
122 	}
123 	return -EINVAL;
124 }
125 
126 static int __init control_devkmsg(char *str)
127 {
128 	if (__control_devkmsg(str) < 0)
129 		return 1;
130 
131 	/*
132 	 * Set sysctl string accordingly:
133 	 */
134 	if (devkmsg_log == DEVKMSG_LOG_MASK_ON) {
135 		memset(devkmsg_log_str, 0, DEVKMSG_STR_MAX_SIZE);
136 		strncpy(devkmsg_log_str, "on", 2);
137 	} else if (devkmsg_log == DEVKMSG_LOG_MASK_OFF) {
138 		memset(devkmsg_log_str, 0, DEVKMSG_STR_MAX_SIZE);
139 		strncpy(devkmsg_log_str, "off", 3);
140 	}
141 	/* else "ratelimit" which is set by default. */
142 
143 	/*
144 	 * Sysctl cannot change it anymore. The kernel command line setting of
145 	 * this parameter is to force the setting to be permanent throughout the
146 	 * runtime of the system. This is a precation measure against userspace
147 	 * trying to be a smarta** and attempting to change it up on us.
148 	 */
149 	devkmsg_log |= DEVKMSG_LOG_MASK_LOCK;
150 
151 	return 0;
152 }
153 __setup("printk.devkmsg=", control_devkmsg);
154 
155 char devkmsg_log_str[DEVKMSG_STR_MAX_SIZE] = "ratelimit";
156 
157 int devkmsg_sysctl_set_loglvl(struct ctl_table *table, int write,
158 			      void __user *buffer, size_t *lenp, loff_t *ppos)
159 {
160 	char old_str[DEVKMSG_STR_MAX_SIZE];
161 	unsigned int old;
162 	int err;
163 
164 	if (write) {
165 		if (devkmsg_log & DEVKMSG_LOG_MASK_LOCK)
166 			return -EINVAL;
167 
168 		old = devkmsg_log;
169 		strncpy(old_str, devkmsg_log_str, DEVKMSG_STR_MAX_SIZE);
170 	}
171 
172 	err = proc_dostring(table, write, buffer, lenp, ppos);
173 	if (err)
174 		return err;
175 
176 	if (write) {
177 		err = __control_devkmsg(devkmsg_log_str);
178 
179 		/*
180 		 * Do not accept an unknown string OR a known string with
181 		 * trailing crap...
182 		 */
183 		if (err < 0 || (err + 1 != *lenp)) {
184 
185 			/* ... and restore old setting. */
186 			devkmsg_log = old;
187 			strncpy(devkmsg_log_str, old_str, DEVKMSG_STR_MAX_SIZE);
188 
189 			return -EINVAL;
190 		}
191 	}
192 
193 	return 0;
194 }
195 
196 /*
197  * Number of registered extended console drivers.
198  *
199  * If extended consoles are present, in-kernel cont reassembly is disabled
200  * and each fragment is stored as a separate log entry with proper
201  * continuation flag so that every emitted message has full metadata.  This
202  * doesn't change the result for regular consoles or /proc/kmsg.  For
203  * /dev/kmsg, as long as the reader concatenates messages according to
204  * consecutive continuation flags, the end result should be the same too.
205  */
206 static int nr_ext_console_drivers;
207 
208 /*
209  * Helper macros to handle lockdep when locking/unlocking console_sem. We use
210  * macros instead of functions so that _RET_IP_ contains useful information.
211  */
212 #define down_console_sem() do { \
213 	down(&console_sem);\
214 	mutex_acquire(&console_lock_dep_map, 0, 0, _RET_IP_);\
215 } while (0)
216 
217 static int __down_trylock_console_sem(unsigned long ip)
218 {
219 	int lock_failed;
220 	unsigned long flags;
221 
222 	/*
223 	 * Here and in __up_console_sem() we need to be in safe mode,
224 	 * because spindump/WARN/etc from under console ->lock will
225 	 * deadlock in printk()->down_trylock_console_sem() otherwise.
226 	 */
227 	printk_safe_enter_irqsave(flags);
228 	lock_failed = down_trylock(&console_sem);
229 	printk_safe_exit_irqrestore(flags);
230 
231 	if (lock_failed)
232 		return 1;
233 	mutex_acquire(&console_lock_dep_map, 0, 1, ip);
234 	return 0;
235 }
236 #define down_trylock_console_sem() __down_trylock_console_sem(_RET_IP_)
237 
238 static void __up_console_sem(unsigned long ip)
239 {
240 	unsigned long flags;
241 
242 	mutex_release(&console_lock_dep_map, 1, ip);
243 
244 	printk_safe_enter_irqsave(flags);
245 	up(&console_sem);
246 	printk_safe_exit_irqrestore(flags);
247 }
248 #define up_console_sem() __up_console_sem(_RET_IP_)
249 
250 /*
251  * This is used for debugging the mess that is the VT code by
252  * keeping track if we have the console semaphore held. It's
253  * definitely not the perfect debug tool (we don't know if _WE_
254  * hold it and are racing, but it helps tracking those weird code
255  * paths in the console code where we end up in places I want
256  * locked without the console sempahore held).
257  */
258 static int console_locked, console_suspended;
259 
260 /*
261  * If exclusive_console is non-NULL then only this console is to be printed to.
262  */
263 static struct console *exclusive_console;
264 
265 /*
266  *	Array of consoles built from command line options (console=)
267  */
268 
269 #define MAX_CMDLINECONSOLES 8
270 
271 static struct console_cmdline console_cmdline[MAX_CMDLINECONSOLES];
272 
273 static int preferred_console = -1;
274 int console_set_on_cmdline;
275 EXPORT_SYMBOL(console_set_on_cmdline);
276 
277 /* Flag: console code may call schedule() */
278 static int console_may_schedule;
279 
280 /*
281  * The printk log buffer consists of a chain of concatenated variable
282  * length records. Every record starts with a record header, containing
283  * the overall length of the record.
284  *
285  * The heads to the first and last entry in the buffer, as well as the
286  * sequence numbers of these entries are maintained when messages are
287  * stored.
288  *
289  * If the heads indicate available messages, the length in the header
290  * tells the start next message. A length == 0 for the next message
291  * indicates a wrap-around to the beginning of the buffer.
292  *
293  * Every record carries the monotonic timestamp in microseconds, as well as
294  * the standard userspace syslog level and syslog facility. The usual
295  * kernel messages use LOG_KERN; userspace-injected messages always carry
296  * a matching syslog facility, by default LOG_USER. The origin of every
297  * message can be reliably determined that way.
298  *
299  * The human readable log message directly follows the message header. The
300  * length of the message text is stored in the header, the stored message
301  * is not terminated.
302  *
303  * Optionally, a message can carry a dictionary of properties (key/value pairs),
304  * to provide userspace with a machine-readable message context.
305  *
306  * Examples for well-defined, commonly used property names are:
307  *   DEVICE=b12:8               device identifier
308  *                                b12:8         block dev_t
309  *                                c127:3        char dev_t
310  *                                n8            netdev ifindex
311  *                                +sound:card0  subsystem:devname
312  *   SUBSYSTEM=pci              driver-core subsystem name
313  *
314  * Valid characters in property names are [a-zA-Z0-9.-_]. The plain text value
315  * follows directly after a '=' character. Every property is terminated by
316  * a '\0' character. The last property is not terminated.
317  *
318  * Example of a message structure:
319  *   0000  ff 8f 00 00 00 00 00 00      monotonic time in nsec
320  *   0008  34 00                        record is 52 bytes long
321  *   000a        0b 00                  text is 11 bytes long
322  *   000c              1f 00            dictionary is 23 bytes long
323  *   000e                    03 00      LOG_KERN (facility) LOG_ERR (level)
324  *   0010  69 74 27 73 20 61 20 6c      "it's a l"
325  *         69 6e 65                     "ine"
326  *   001b           44 45 56 49 43      "DEVIC"
327  *         45 3d 62 38 3a 32 00 44      "E=b8:2\0D"
328  *         52 49 56 45 52 3d 62 75      "RIVER=bu"
329  *         67                           "g"
330  *   0032     00 00 00                  padding to next message header
331  *
332  * The 'struct printk_log' buffer header must never be directly exported to
333  * userspace, it is a kernel-private implementation detail that might
334  * need to be changed in the future, when the requirements change.
335  *
336  * /dev/kmsg exports the structured data in the following line format:
337  *   "<level>,<sequnum>,<timestamp>,<contflag>[,additional_values, ... ];<message text>\n"
338  *
339  * Users of the export format should ignore possible additional values
340  * separated by ',', and find the message after the ';' character.
341  *
342  * The optional key/value pairs are attached as continuation lines starting
343  * with a space character and terminated by a newline. All possible
344  * non-prinatable characters are escaped in the "\xff" notation.
345  */
346 
347 enum log_flags {
348 	LOG_NOCONS	= 1,	/* already flushed, do not print to console */
349 	LOG_NEWLINE	= 2,	/* text ended with a newline */
350 	LOG_PREFIX	= 4,	/* text started with a prefix */
351 	LOG_CONT	= 8,	/* text is a fragment of a continuation line */
352 };
353 
354 struct printk_log {
355 	u64 ts_nsec;		/* timestamp in nanoseconds */
356 	u16 len;		/* length of entire record */
357 	u16 text_len;		/* length of text buffer */
358 	u16 dict_len;		/* length of dictionary buffer */
359 	u8 facility;		/* syslog facility */
360 	u8 flags:5;		/* internal record flags */
361 	u8 level:3;		/* syslog level */
362 }
363 #ifdef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
364 __packed __aligned(4)
365 #endif
366 ;
367 
368 /*
369  * The logbuf_lock protects kmsg buffer, indices, counters.  This can be taken
370  * within the scheduler's rq lock. It must be released before calling
371  * console_unlock() or anything else that might wake up a process.
372  */
373 DEFINE_RAW_SPINLOCK(logbuf_lock);
374 
375 /*
376  * Helper macros to lock/unlock logbuf_lock and switch between
377  * printk-safe/unsafe modes.
378  */
379 #define logbuf_lock_irq()				\
380 	do {						\
381 		printk_safe_enter_irq();		\
382 		raw_spin_lock(&logbuf_lock);		\
383 	} while (0)
384 
385 #define logbuf_unlock_irq()				\
386 	do {						\
387 		raw_spin_unlock(&logbuf_lock);		\
388 		printk_safe_exit_irq();			\
389 	} while (0)
390 
391 #define logbuf_lock_irqsave(flags)			\
392 	do {						\
393 		printk_safe_enter_irqsave(flags);	\
394 		raw_spin_lock(&logbuf_lock);		\
395 	} while (0)
396 
397 #define logbuf_unlock_irqrestore(flags)		\
398 	do {						\
399 		raw_spin_unlock(&logbuf_lock);		\
400 		printk_safe_exit_irqrestore(flags);	\
401 	} while (0)
402 
403 #ifdef CONFIG_PRINTK
404 DECLARE_WAIT_QUEUE_HEAD(log_wait);
405 /* the next printk record to read by syslog(READ) or /proc/kmsg */
406 static u64 syslog_seq;
407 static u32 syslog_idx;
408 static size_t syslog_partial;
409 
410 /* index and sequence number of the first record stored in the buffer */
411 static u64 log_first_seq;
412 static u32 log_first_idx;
413 
414 /* index and sequence number of the next record to store in the buffer */
415 static u64 log_next_seq;
416 static u32 log_next_idx;
417 
418 /* the next printk record to write to the console */
419 static u64 console_seq;
420 static u32 console_idx;
421 
422 /* the next printk record to read after the last 'clear' command */
423 static u64 clear_seq;
424 static u32 clear_idx;
425 
426 #define PREFIX_MAX		32
427 #define LOG_LINE_MAX		(1024 - PREFIX_MAX)
428 
429 #define LOG_LEVEL(v)		((v) & 0x07)
430 #define LOG_FACILITY(v)		((v) >> 3 & 0xff)
431 
432 /* record buffer */
433 #define LOG_ALIGN __alignof__(struct printk_log)
434 #define __LOG_BUF_LEN (1 << CONFIG_LOG_BUF_SHIFT)
435 static char __log_buf[__LOG_BUF_LEN] __aligned(LOG_ALIGN);
436 static char *log_buf = __log_buf;
437 static u32 log_buf_len = __LOG_BUF_LEN;
438 
439 /* Return log buffer address */
440 char *log_buf_addr_get(void)
441 {
442 	return log_buf;
443 }
444 
445 /* Return log buffer size */
446 u32 log_buf_len_get(void)
447 {
448 	return log_buf_len;
449 }
450 
451 /* human readable text of the record */
452 static char *log_text(const struct printk_log *msg)
453 {
454 	return (char *)msg + sizeof(struct printk_log);
455 }
456 
457 /* optional key/value pair dictionary attached to the record */
458 static char *log_dict(const struct printk_log *msg)
459 {
460 	return (char *)msg + sizeof(struct printk_log) + msg->text_len;
461 }
462 
463 /* get record by index; idx must point to valid msg */
464 static struct printk_log *log_from_idx(u32 idx)
465 {
466 	struct printk_log *msg = (struct printk_log *)(log_buf + idx);
467 
468 	/*
469 	 * A length == 0 record is the end of buffer marker. Wrap around and
470 	 * read the message at the start of the buffer.
471 	 */
472 	if (!msg->len)
473 		return (struct printk_log *)log_buf;
474 	return msg;
475 }
476 
477 /* get next record; idx must point to valid msg */
478 static u32 log_next(u32 idx)
479 {
480 	struct printk_log *msg = (struct printk_log *)(log_buf + idx);
481 
482 	/* length == 0 indicates the end of the buffer; wrap */
483 	/*
484 	 * A length == 0 record is the end of buffer marker. Wrap around and
485 	 * read the message at the start of the buffer as *this* one, and
486 	 * return the one after that.
487 	 */
488 	if (!msg->len) {
489 		msg = (struct printk_log *)log_buf;
490 		return msg->len;
491 	}
492 	return idx + msg->len;
493 }
494 
495 /*
496  * Check whether there is enough free space for the given message.
497  *
498  * The same values of first_idx and next_idx mean that the buffer
499  * is either empty or full.
500  *
501  * If the buffer is empty, we must respect the position of the indexes.
502  * They cannot be reset to the beginning of the buffer.
503  */
504 static int logbuf_has_space(u32 msg_size, bool empty)
505 {
506 	u32 free;
507 
508 	if (log_next_idx > log_first_idx || empty)
509 		free = max(log_buf_len - log_next_idx, log_first_idx);
510 	else
511 		free = log_first_idx - log_next_idx;
512 
513 	/*
514 	 * We need space also for an empty header that signalizes wrapping
515 	 * of the buffer.
516 	 */
517 	return free >= msg_size + sizeof(struct printk_log);
518 }
519 
520 static int log_make_free_space(u32 msg_size)
521 {
522 	while (log_first_seq < log_next_seq &&
523 	       !logbuf_has_space(msg_size, false)) {
524 		/* drop old messages until we have enough contiguous space */
525 		log_first_idx = log_next(log_first_idx);
526 		log_first_seq++;
527 	}
528 
529 	if (clear_seq < log_first_seq) {
530 		clear_seq = log_first_seq;
531 		clear_idx = log_first_idx;
532 	}
533 
534 	/* sequence numbers are equal, so the log buffer is empty */
535 	if (logbuf_has_space(msg_size, log_first_seq == log_next_seq))
536 		return 0;
537 
538 	return -ENOMEM;
539 }
540 
541 /* compute the message size including the padding bytes */
542 static u32 msg_used_size(u16 text_len, u16 dict_len, u32 *pad_len)
543 {
544 	u32 size;
545 
546 	size = sizeof(struct printk_log) + text_len + dict_len;
547 	*pad_len = (-size) & (LOG_ALIGN - 1);
548 	size += *pad_len;
549 
550 	return size;
551 }
552 
553 /*
554  * Define how much of the log buffer we could take at maximum. The value
555  * must be greater than two. Note that only half of the buffer is available
556  * when the index points to the middle.
557  */
558 #define MAX_LOG_TAKE_PART 4
559 static const char trunc_msg[] = "<truncated>";
560 
561 static u32 truncate_msg(u16 *text_len, u16 *trunc_msg_len,
562 			u16 *dict_len, u32 *pad_len)
563 {
564 	/*
565 	 * The message should not take the whole buffer. Otherwise, it might
566 	 * get removed too soon.
567 	 */
568 	u32 max_text_len = log_buf_len / MAX_LOG_TAKE_PART;
569 	if (*text_len > max_text_len)
570 		*text_len = max_text_len;
571 	/* enable the warning message */
572 	*trunc_msg_len = strlen(trunc_msg);
573 	/* disable the "dict" completely */
574 	*dict_len = 0;
575 	/* compute the size again, count also the warning message */
576 	return msg_used_size(*text_len + *trunc_msg_len, 0, pad_len);
577 }
578 
579 /* insert record into the buffer, discard old ones, update heads */
580 static int log_store(int facility, int level,
581 		     enum log_flags flags, u64 ts_nsec,
582 		     const char *dict, u16 dict_len,
583 		     const char *text, u16 text_len)
584 {
585 	struct printk_log *msg;
586 	u32 size, pad_len;
587 	u16 trunc_msg_len = 0;
588 
589 	/* number of '\0' padding bytes to next message */
590 	size = msg_used_size(text_len, dict_len, &pad_len);
591 
592 	if (log_make_free_space(size)) {
593 		/* truncate the message if it is too long for empty buffer */
594 		size = truncate_msg(&text_len, &trunc_msg_len,
595 				    &dict_len, &pad_len);
596 		/* survive when the log buffer is too small for trunc_msg */
597 		if (log_make_free_space(size))
598 			return 0;
599 	}
600 
601 	if (log_next_idx + size + sizeof(struct printk_log) > log_buf_len) {
602 		/*
603 		 * This message + an additional empty header does not fit
604 		 * at the end of the buffer. Add an empty header with len == 0
605 		 * to signify a wrap around.
606 		 */
607 		memset(log_buf + log_next_idx, 0, sizeof(struct printk_log));
608 		log_next_idx = 0;
609 	}
610 
611 	/* fill message */
612 	msg = (struct printk_log *)(log_buf + log_next_idx);
613 	memcpy(log_text(msg), text, text_len);
614 	msg->text_len = text_len;
615 	if (trunc_msg_len) {
616 		memcpy(log_text(msg) + text_len, trunc_msg, trunc_msg_len);
617 		msg->text_len += trunc_msg_len;
618 	}
619 	memcpy(log_dict(msg), dict, dict_len);
620 	msg->dict_len = dict_len;
621 	msg->facility = facility;
622 	msg->level = level & 7;
623 	msg->flags = flags & 0x1f;
624 	if (ts_nsec > 0)
625 		msg->ts_nsec = ts_nsec;
626 	else
627 		msg->ts_nsec = local_clock();
628 	memset(log_dict(msg) + dict_len, 0, pad_len);
629 	msg->len = size;
630 
631 	/* insert message */
632 	log_next_idx += msg->len;
633 	log_next_seq++;
634 
635 	return msg->text_len;
636 }
637 
638 int dmesg_restrict = IS_ENABLED(CONFIG_SECURITY_DMESG_RESTRICT);
639 
640 static int syslog_action_restricted(int type)
641 {
642 	if (dmesg_restrict)
643 		return 1;
644 	/*
645 	 * Unless restricted, we allow "read all" and "get buffer size"
646 	 * for everybody.
647 	 */
648 	return type != SYSLOG_ACTION_READ_ALL &&
649 	       type != SYSLOG_ACTION_SIZE_BUFFER;
650 }
651 
652 static int check_syslog_permissions(int type, int source)
653 {
654 	/*
655 	 * If this is from /proc/kmsg and we've already opened it, then we've
656 	 * already done the capabilities checks at open time.
657 	 */
658 	if (source == SYSLOG_FROM_PROC && type != SYSLOG_ACTION_OPEN)
659 		goto ok;
660 
661 	if (syslog_action_restricted(type)) {
662 		if (capable(CAP_SYSLOG))
663 			goto ok;
664 		/*
665 		 * For historical reasons, accept CAP_SYS_ADMIN too, with
666 		 * a warning.
667 		 */
668 		if (capable(CAP_SYS_ADMIN)) {
669 			pr_warn_once("%s (%d): Attempt to access syslog with "
670 				     "CAP_SYS_ADMIN but no CAP_SYSLOG "
671 				     "(deprecated).\n",
672 				 current->comm, task_pid_nr(current));
673 			goto ok;
674 		}
675 		return -EPERM;
676 	}
677 ok:
678 	return security_syslog(type);
679 }
680 
681 static void append_char(char **pp, char *e, char c)
682 {
683 	if (*pp < e)
684 		*(*pp)++ = c;
685 }
686 
687 static ssize_t msg_print_ext_header(char *buf, size_t size,
688 				    struct printk_log *msg, u64 seq)
689 {
690 	u64 ts_usec = msg->ts_nsec;
691 
692 	do_div(ts_usec, 1000);
693 
694 	return scnprintf(buf, size, "%u,%llu,%llu,%c;",
695 		       (msg->facility << 3) | msg->level, seq, ts_usec,
696 		       msg->flags & LOG_CONT ? 'c' : '-');
697 }
698 
699 static ssize_t msg_print_ext_body(char *buf, size_t size,
700 				  char *dict, size_t dict_len,
701 				  char *text, size_t text_len)
702 {
703 	char *p = buf, *e = buf + size;
704 	size_t i;
705 
706 	/* escape non-printable characters */
707 	for (i = 0; i < text_len; i++) {
708 		unsigned char c = text[i];
709 
710 		if (c < ' ' || c >= 127 || c == '\\')
711 			p += scnprintf(p, e - p, "\\x%02x", c);
712 		else
713 			append_char(&p, e, c);
714 	}
715 	append_char(&p, e, '\n');
716 
717 	if (dict_len) {
718 		bool line = true;
719 
720 		for (i = 0; i < dict_len; i++) {
721 			unsigned char c = dict[i];
722 
723 			if (line) {
724 				append_char(&p, e, ' ');
725 				line = false;
726 			}
727 
728 			if (c == '\0') {
729 				append_char(&p, e, '\n');
730 				line = true;
731 				continue;
732 			}
733 
734 			if (c < ' ' || c >= 127 || c == '\\') {
735 				p += scnprintf(p, e - p, "\\x%02x", c);
736 				continue;
737 			}
738 
739 			append_char(&p, e, c);
740 		}
741 		append_char(&p, e, '\n');
742 	}
743 
744 	return p - buf;
745 }
746 
747 /* /dev/kmsg - userspace message inject/listen interface */
748 struct devkmsg_user {
749 	u64 seq;
750 	u32 idx;
751 	struct ratelimit_state rs;
752 	struct mutex lock;
753 	char buf[CONSOLE_EXT_LOG_MAX];
754 };
755 
756 static ssize_t devkmsg_write(struct kiocb *iocb, struct iov_iter *from)
757 {
758 	char *buf, *line;
759 	int level = default_message_loglevel;
760 	int facility = 1;	/* LOG_USER */
761 	struct file *file = iocb->ki_filp;
762 	struct devkmsg_user *user = file->private_data;
763 	size_t len = iov_iter_count(from);
764 	ssize_t ret = len;
765 
766 	if (!user || len > LOG_LINE_MAX)
767 		return -EINVAL;
768 
769 	/* Ignore when user logging is disabled. */
770 	if (devkmsg_log & DEVKMSG_LOG_MASK_OFF)
771 		return len;
772 
773 	/* Ratelimit when not explicitly enabled. */
774 	if (!(devkmsg_log & DEVKMSG_LOG_MASK_ON)) {
775 		if (!___ratelimit(&user->rs, current->comm))
776 			return ret;
777 	}
778 
779 	buf = kmalloc(len+1, GFP_KERNEL);
780 	if (buf == NULL)
781 		return -ENOMEM;
782 
783 	buf[len] = '\0';
784 	if (!copy_from_iter_full(buf, len, from)) {
785 		kfree(buf);
786 		return -EFAULT;
787 	}
788 
789 	/*
790 	 * Extract and skip the syslog prefix <[0-9]*>. Coming from userspace
791 	 * the decimal value represents 32bit, the lower 3 bit are the log
792 	 * level, the rest are the log facility.
793 	 *
794 	 * If no prefix or no userspace facility is specified, we
795 	 * enforce LOG_USER, to be able to reliably distinguish
796 	 * kernel-generated messages from userspace-injected ones.
797 	 */
798 	line = buf;
799 	if (line[0] == '<') {
800 		char *endp = NULL;
801 		unsigned int u;
802 
803 		u = simple_strtoul(line + 1, &endp, 10);
804 		if (endp && endp[0] == '>') {
805 			level = LOG_LEVEL(u);
806 			if (LOG_FACILITY(u) != 0)
807 				facility = LOG_FACILITY(u);
808 			endp++;
809 			len -= endp - line;
810 			line = endp;
811 		}
812 	}
813 
814 	printk_emit(facility, level, NULL, 0, "%s", line);
815 	kfree(buf);
816 	return ret;
817 }
818 
819 static ssize_t devkmsg_read(struct file *file, char __user *buf,
820 			    size_t count, loff_t *ppos)
821 {
822 	struct devkmsg_user *user = file->private_data;
823 	struct printk_log *msg;
824 	size_t len;
825 	ssize_t ret;
826 
827 	if (!user)
828 		return -EBADF;
829 
830 	ret = mutex_lock_interruptible(&user->lock);
831 	if (ret)
832 		return ret;
833 
834 	logbuf_lock_irq();
835 	while (user->seq == log_next_seq) {
836 		if (file->f_flags & O_NONBLOCK) {
837 			ret = -EAGAIN;
838 			logbuf_unlock_irq();
839 			goto out;
840 		}
841 
842 		logbuf_unlock_irq();
843 		ret = wait_event_interruptible(log_wait,
844 					       user->seq != log_next_seq);
845 		if (ret)
846 			goto out;
847 		logbuf_lock_irq();
848 	}
849 
850 	if (user->seq < log_first_seq) {
851 		/* our last seen message is gone, return error and reset */
852 		user->idx = log_first_idx;
853 		user->seq = log_first_seq;
854 		ret = -EPIPE;
855 		logbuf_unlock_irq();
856 		goto out;
857 	}
858 
859 	msg = log_from_idx(user->idx);
860 	len = msg_print_ext_header(user->buf, sizeof(user->buf),
861 				   msg, user->seq);
862 	len += msg_print_ext_body(user->buf + len, sizeof(user->buf) - len,
863 				  log_dict(msg), msg->dict_len,
864 				  log_text(msg), msg->text_len);
865 
866 	user->idx = log_next(user->idx);
867 	user->seq++;
868 	logbuf_unlock_irq();
869 
870 	if (len > count) {
871 		ret = -EINVAL;
872 		goto out;
873 	}
874 
875 	if (copy_to_user(buf, user->buf, len)) {
876 		ret = -EFAULT;
877 		goto out;
878 	}
879 	ret = len;
880 out:
881 	mutex_unlock(&user->lock);
882 	return ret;
883 }
884 
885 static loff_t devkmsg_llseek(struct file *file, loff_t offset, int whence)
886 {
887 	struct devkmsg_user *user = file->private_data;
888 	loff_t ret = 0;
889 
890 	if (!user)
891 		return -EBADF;
892 	if (offset)
893 		return -ESPIPE;
894 
895 	logbuf_lock_irq();
896 	switch (whence) {
897 	case SEEK_SET:
898 		/* the first record */
899 		user->idx = log_first_idx;
900 		user->seq = log_first_seq;
901 		break;
902 	case SEEK_DATA:
903 		/*
904 		 * The first record after the last SYSLOG_ACTION_CLEAR,
905 		 * like issued by 'dmesg -c'. Reading /dev/kmsg itself
906 		 * changes no global state, and does not clear anything.
907 		 */
908 		user->idx = clear_idx;
909 		user->seq = clear_seq;
910 		break;
911 	case SEEK_END:
912 		/* after the last record */
913 		user->idx = log_next_idx;
914 		user->seq = log_next_seq;
915 		break;
916 	default:
917 		ret = -EINVAL;
918 	}
919 	logbuf_unlock_irq();
920 	return ret;
921 }
922 
923 static unsigned int devkmsg_poll(struct file *file, poll_table *wait)
924 {
925 	struct devkmsg_user *user = file->private_data;
926 	int ret = 0;
927 
928 	if (!user)
929 		return POLLERR|POLLNVAL;
930 
931 	poll_wait(file, &log_wait, wait);
932 
933 	logbuf_lock_irq();
934 	if (user->seq < log_next_seq) {
935 		/* return error when data has vanished underneath us */
936 		if (user->seq < log_first_seq)
937 			ret = POLLIN|POLLRDNORM|POLLERR|POLLPRI;
938 		else
939 			ret = POLLIN|POLLRDNORM;
940 	}
941 	logbuf_unlock_irq();
942 
943 	return ret;
944 }
945 
946 static int devkmsg_open(struct inode *inode, struct file *file)
947 {
948 	struct devkmsg_user *user;
949 	int err;
950 
951 	if (devkmsg_log & DEVKMSG_LOG_MASK_OFF)
952 		return -EPERM;
953 
954 	/* write-only does not need any file context */
955 	if ((file->f_flags & O_ACCMODE) != O_WRONLY) {
956 		err = check_syslog_permissions(SYSLOG_ACTION_READ_ALL,
957 					       SYSLOG_FROM_READER);
958 		if (err)
959 			return err;
960 	}
961 
962 	user = kmalloc(sizeof(struct devkmsg_user), GFP_KERNEL);
963 	if (!user)
964 		return -ENOMEM;
965 
966 	ratelimit_default_init(&user->rs);
967 	ratelimit_set_flags(&user->rs, RATELIMIT_MSG_ON_RELEASE);
968 
969 	mutex_init(&user->lock);
970 
971 	logbuf_lock_irq();
972 	user->idx = log_first_idx;
973 	user->seq = log_first_seq;
974 	logbuf_unlock_irq();
975 
976 	file->private_data = user;
977 	return 0;
978 }
979 
980 static int devkmsg_release(struct inode *inode, struct file *file)
981 {
982 	struct devkmsg_user *user = file->private_data;
983 
984 	if (!user)
985 		return 0;
986 
987 	ratelimit_state_exit(&user->rs);
988 
989 	mutex_destroy(&user->lock);
990 	kfree(user);
991 	return 0;
992 }
993 
994 const struct file_operations kmsg_fops = {
995 	.open = devkmsg_open,
996 	.read = devkmsg_read,
997 	.write_iter = devkmsg_write,
998 	.llseek = devkmsg_llseek,
999 	.poll = devkmsg_poll,
1000 	.release = devkmsg_release,
1001 };
1002 
1003 #ifdef CONFIG_CRASH_CORE
1004 /*
1005  * This appends the listed symbols to /proc/vmcore
1006  *
1007  * /proc/vmcore is used by various utilities, like crash and makedumpfile to
1008  * obtain access to symbols that are otherwise very difficult to locate.  These
1009  * symbols are specifically used so that utilities can access and extract the
1010  * dmesg log from a vmcore file after a crash.
1011  */
1012 void log_buf_vmcoreinfo_setup(void)
1013 {
1014 	VMCOREINFO_SYMBOL(log_buf);
1015 	VMCOREINFO_SYMBOL(log_buf_len);
1016 	VMCOREINFO_SYMBOL(log_first_idx);
1017 	VMCOREINFO_SYMBOL(clear_idx);
1018 	VMCOREINFO_SYMBOL(log_next_idx);
1019 	/*
1020 	 * Export struct printk_log size and field offsets. User space tools can
1021 	 * parse it and detect any changes to structure down the line.
1022 	 */
1023 	VMCOREINFO_STRUCT_SIZE(printk_log);
1024 	VMCOREINFO_OFFSET(printk_log, ts_nsec);
1025 	VMCOREINFO_OFFSET(printk_log, len);
1026 	VMCOREINFO_OFFSET(printk_log, text_len);
1027 	VMCOREINFO_OFFSET(printk_log, dict_len);
1028 }
1029 #endif
1030 
1031 /* requested log_buf_len from kernel cmdline */
1032 static unsigned long __initdata new_log_buf_len;
1033 
1034 /* we practice scaling the ring buffer by powers of 2 */
1035 static void __init log_buf_len_update(unsigned size)
1036 {
1037 	if (size)
1038 		size = roundup_pow_of_two(size);
1039 	if (size > log_buf_len)
1040 		new_log_buf_len = size;
1041 }
1042 
1043 /* save requested log_buf_len since it's too early to process it */
1044 static int __init log_buf_len_setup(char *str)
1045 {
1046 	unsigned size = memparse(str, &str);
1047 
1048 	log_buf_len_update(size);
1049 
1050 	return 0;
1051 }
1052 early_param("log_buf_len", log_buf_len_setup);
1053 
1054 #ifdef CONFIG_SMP
1055 #define __LOG_CPU_MAX_BUF_LEN (1 << CONFIG_LOG_CPU_MAX_BUF_SHIFT)
1056 
1057 static void __init log_buf_add_cpu(void)
1058 {
1059 	unsigned int cpu_extra;
1060 
1061 	/*
1062 	 * archs should set up cpu_possible_bits properly with
1063 	 * set_cpu_possible() after setup_arch() but just in
1064 	 * case lets ensure this is valid.
1065 	 */
1066 	if (num_possible_cpus() == 1)
1067 		return;
1068 
1069 	cpu_extra = (num_possible_cpus() - 1) * __LOG_CPU_MAX_BUF_LEN;
1070 
1071 	/* by default this will only continue through for large > 64 CPUs */
1072 	if (cpu_extra <= __LOG_BUF_LEN / 2)
1073 		return;
1074 
1075 	pr_info("log_buf_len individual max cpu contribution: %d bytes\n",
1076 		__LOG_CPU_MAX_BUF_LEN);
1077 	pr_info("log_buf_len total cpu_extra contributions: %d bytes\n",
1078 		cpu_extra);
1079 	pr_info("log_buf_len min size: %d bytes\n", __LOG_BUF_LEN);
1080 
1081 	log_buf_len_update(cpu_extra + __LOG_BUF_LEN);
1082 }
1083 #else /* !CONFIG_SMP */
1084 static inline void log_buf_add_cpu(void) {}
1085 #endif /* CONFIG_SMP */
1086 
1087 void __init setup_log_buf(int early)
1088 {
1089 	unsigned long flags;
1090 	char *new_log_buf;
1091 	int free;
1092 
1093 	if (log_buf != __log_buf)
1094 		return;
1095 
1096 	if (!early && !new_log_buf_len)
1097 		log_buf_add_cpu();
1098 
1099 	if (!new_log_buf_len)
1100 		return;
1101 
1102 	if (early) {
1103 		new_log_buf =
1104 			memblock_virt_alloc(new_log_buf_len, LOG_ALIGN);
1105 	} else {
1106 		new_log_buf = memblock_virt_alloc_nopanic(new_log_buf_len,
1107 							  LOG_ALIGN);
1108 	}
1109 
1110 	if (unlikely(!new_log_buf)) {
1111 		pr_err("log_buf_len: %ld bytes not available\n",
1112 			new_log_buf_len);
1113 		return;
1114 	}
1115 
1116 	logbuf_lock_irqsave(flags);
1117 	log_buf_len = new_log_buf_len;
1118 	log_buf = new_log_buf;
1119 	new_log_buf_len = 0;
1120 	free = __LOG_BUF_LEN - log_next_idx;
1121 	memcpy(log_buf, __log_buf, __LOG_BUF_LEN);
1122 	logbuf_unlock_irqrestore(flags);
1123 
1124 	pr_info("log_buf_len: %d bytes\n", log_buf_len);
1125 	pr_info("early log buf free: %d(%d%%)\n",
1126 		free, (free * 100) / __LOG_BUF_LEN);
1127 }
1128 
1129 static bool __read_mostly ignore_loglevel;
1130 
1131 static int __init ignore_loglevel_setup(char *str)
1132 {
1133 	ignore_loglevel = true;
1134 	pr_info("debug: ignoring loglevel setting.\n");
1135 
1136 	return 0;
1137 }
1138 
1139 early_param("ignore_loglevel", ignore_loglevel_setup);
1140 module_param(ignore_loglevel, bool, S_IRUGO | S_IWUSR);
1141 MODULE_PARM_DESC(ignore_loglevel,
1142 		 "ignore loglevel setting (prints all kernel messages to the console)");
1143 
1144 static bool suppress_message_printing(int level)
1145 {
1146 	return (level >= console_loglevel && !ignore_loglevel);
1147 }
1148 
1149 #ifdef CONFIG_BOOT_PRINTK_DELAY
1150 
1151 static int boot_delay; /* msecs delay after each printk during bootup */
1152 static unsigned long long loops_per_msec;	/* based on boot_delay */
1153 
1154 static int __init boot_delay_setup(char *str)
1155 {
1156 	unsigned long lpj;
1157 
1158 	lpj = preset_lpj ? preset_lpj : 1000000;	/* some guess */
1159 	loops_per_msec = (unsigned long long)lpj / 1000 * HZ;
1160 
1161 	get_option(&str, &boot_delay);
1162 	if (boot_delay > 10 * 1000)
1163 		boot_delay = 0;
1164 
1165 	pr_debug("boot_delay: %u, preset_lpj: %ld, lpj: %lu, "
1166 		"HZ: %d, loops_per_msec: %llu\n",
1167 		boot_delay, preset_lpj, lpj, HZ, loops_per_msec);
1168 	return 0;
1169 }
1170 early_param("boot_delay", boot_delay_setup);
1171 
1172 static void boot_delay_msec(int level)
1173 {
1174 	unsigned long long k;
1175 	unsigned long timeout;
1176 
1177 	if ((boot_delay == 0 || system_state >= SYSTEM_RUNNING)
1178 		|| suppress_message_printing(level)) {
1179 		return;
1180 	}
1181 
1182 	k = (unsigned long long)loops_per_msec * boot_delay;
1183 
1184 	timeout = jiffies + msecs_to_jiffies(boot_delay);
1185 	while (k) {
1186 		k--;
1187 		cpu_relax();
1188 		/*
1189 		 * use (volatile) jiffies to prevent
1190 		 * compiler reduction; loop termination via jiffies
1191 		 * is secondary and may or may not happen.
1192 		 */
1193 		if (time_after(jiffies, timeout))
1194 			break;
1195 		touch_nmi_watchdog();
1196 	}
1197 }
1198 #else
1199 static inline void boot_delay_msec(int level)
1200 {
1201 }
1202 #endif
1203 
1204 static bool printk_time = IS_ENABLED(CONFIG_PRINTK_TIME);
1205 module_param_named(time, printk_time, bool, S_IRUGO | S_IWUSR);
1206 
1207 static size_t print_time(u64 ts, char *buf)
1208 {
1209 	unsigned long rem_nsec;
1210 
1211 	if (!printk_time)
1212 		return 0;
1213 
1214 	rem_nsec = do_div(ts, 1000000000);
1215 
1216 	if (!buf)
1217 		return snprintf(NULL, 0, "[%5lu.000000] ", (unsigned long)ts);
1218 
1219 	return sprintf(buf, "[%5lu.%06lu] ",
1220 		       (unsigned long)ts, rem_nsec / 1000);
1221 }
1222 
1223 static size_t print_prefix(const struct printk_log *msg, bool syslog, char *buf)
1224 {
1225 	size_t len = 0;
1226 	unsigned int prefix = (msg->facility << 3) | msg->level;
1227 
1228 	if (syslog) {
1229 		if (buf) {
1230 			len += sprintf(buf, "<%u>", prefix);
1231 		} else {
1232 			len += 3;
1233 			if (prefix > 999)
1234 				len += 3;
1235 			else if (prefix > 99)
1236 				len += 2;
1237 			else if (prefix > 9)
1238 				len++;
1239 		}
1240 	}
1241 
1242 	len += print_time(msg->ts_nsec, buf ? buf + len : NULL);
1243 	return len;
1244 }
1245 
1246 static size_t msg_print_text(const struct printk_log *msg, bool syslog, char *buf, size_t size)
1247 {
1248 	const char *text = log_text(msg);
1249 	size_t text_size = msg->text_len;
1250 	size_t len = 0;
1251 
1252 	do {
1253 		const char *next = memchr(text, '\n', text_size);
1254 		size_t text_len;
1255 
1256 		if (next) {
1257 			text_len = next - text;
1258 			next++;
1259 			text_size -= next - text;
1260 		} else {
1261 			text_len = text_size;
1262 		}
1263 
1264 		if (buf) {
1265 			if (print_prefix(msg, syslog, NULL) +
1266 			    text_len + 1 >= size - len)
1267 				break;
1268 
1269 			len += print_prefix(msg, syslog, buf + len);
1270 			memcpy(buf + len, text, text_len);
1271 			len += text_len;
1272 			buf[len++] = '\n';
1273 		} else {
1274 			/* SYSLOG_ACTION_* buffer size only calculation */
1275 			len += print_prefix(msg, syslog, NULL);
1276 			len += text_len;
1277 			len++;
1278 		}
1279 
1280 		text = next;
1281 	} while (text);
1282 
1283 	return len;
1284 }
1285 
1286 static int syslog_print(char __user *buf, int size)
1287 {
1288 	char *text;
1289 	struct printk_log *msg;
1290 	int len = 0;
1291 
1292 	text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
1293 	if (!text)
1294 		return -ENOMEM;
1295 
1296 	while (size > 0) {
1297 		size_t n;
1298 		size_t skip;
1299 
1300 		logbuf_lock_irq();
1301 		if (syslog_seq < log_first_seq) {
1302 			/* messages are gone, move to first one */
1303 			syslog_seq = log_first_seq;
1304 			syslog_idx = log_first_idx;
1305 			syslog_partial = 0;
1306 		}
1307 		if (syslog_seq == log_next_seq) {
1308 			logbuf_unlock_irq();
1309 			break;
1310 		}
1311 
1312 		skip = syslog_partial;
1313 		msg = log_from_idx(syslog_idx);
1314 		n = msg_print_text(msg, true, text, LOG_LINE_MAX + PREFIX_MAX);
1315 		if (n - syslog_partial <= size) {
1316 			/* message fits into buffer, move forward */
1317 			syslog_idx = log_next(syslog_idx);
1318 			syslog_seq++;
1319 			n -= syslog_partial;
1320 			syslog_partial = 0;
1321 		} else if (!len){
1322 			/* partial read(), remember position */
1323 			n = size;
1324 			syslog_partial += n;
1325 		} else
1326 			n = 0;
1327 		logbuf_unlock_irq();
1328 
1329 		if (!n)
1330 			break;
1331 
1332 		if (copy_to_user(buf, text + skip, n)) {
1333 			if (!len)
1334 				len = -EFAULT;
1335 			break;
1336 		}
1337 
1338 		len += n;
1339 		size -= n;
1340 		buf += n;
1341 	}
1342 
1343 	kfree(text);
1344 	return len;
1345 }
1346 
1347 static int syslog_print_all(char __user *buf, int size, bool clear)
1348 {
1349 	char *text;
1350 	int len = 0;
1351 
1352 	text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
1353 	if (!text)
1354 		return -ENOMEM;
1355 
1356 	logbuf_lock_irq();
1357 	if (buf) {
1358 		u64 next_seq;
1359 		u64 seq;
1360 		u32 idx;
1361 
1362 		/*
1363 		 * Find first record that fits, including all following records,
1364 		 * into the user-provided buffer for this dump.
1365 		 */
1366 		seq = clear_seq;
1367 		idx = clear_idx;
1368 		while (seq < log_next_seq) {
1369 			struct printk_log *msg = log_from_idx(idx);
1370 
1371 			len += msg_print_text(msg, true, NULL, 0);
1372 			idx = log_next(idx);
1373 			seq++;
1374 		}
1375 
1376 		/* move first record forward until length fits into the buffer */
1377 		seq = clear_seq;
1378 		idx = clear_idx;
1379 		while (len > size && seq < log_next_seq) {
1380 			struct printk_log *msg = log_from_idx(idx);
1381 
1382 			len -= msg_print_text(msg, true, NULL, 0);
1383 			idx = log_next(idx);
1384 			seq++;
1385 		}
1386 
1387 		/* last message fitting into this dump */
1388 		next_seq = log_next_seq;
1389 
1390 		len = 0;
1391 		while (len >= 0 && seq < next_seq) {
1392 			struct printk_log *msg = log_from_idx(idx);
1393 			int textlen;
1394 
1395 			textlen = msg_print_text(msg, true, text,
1396 						 LOG_LINE_MAX + PREFIX_MAX);
1397 			if (textlen < 0) {
1398 				len = textlen;
1399 				break;
1400 			}
1401 			idx = log_next(idx);
1402 			seq++;
1403 
1404 			logbuf_unlock_irq();
1405 			if (copy_to_user(buf + len, text, textlen))
1406 				len = -EFAULT;
1407 			else
1408 				len += textlen;
1409 			logbuf_lock_irq();
1410 
1411 			if (seq < log_first_seq) {
1412 				/* messages are gone, move to next one */
1413 				seq = log_first_seq;
1414 				idx = log_first_idx;
1415 			}
1416 		}
1417 	}
1418 
1419 	if (clear) {
1420 		clear_seq = log_next_seq;
1421 		clear_idx = log_next_idx;
1422 	}
1423 	logbuf_unlock_irq();
1424 
1425 	kfree(text);
1426 	return len;
1427 }
1428 
1429 int do_syslog(int type, char __user *buf, int len, int source)
1430 {
1431 	bool clear = false;
1432 	static int saved_console_loglevel = LOGLEVEL_DEFAULT;
1433 	int error;
1434 
1435 	error = check_syslog_permissions(type, source);
1436 	if (error)
1437 		return error;
1438 
1439 	switch (type) {
1440 	case SYSLOG_ACTION_CLOSE:	/* Close log */
1441 		break;
1442 	case SYSLOG_ACTION_OPEN:	/* Open log */
1443 		break;
1444 	case SYSLOG_ACTION_READ:	/* Read from log */
1445 		if (!buf || len < 0)
1446 			return -EINVAL;
1447 		if (!len)
1448 			return 0;
1449 		if (!access_ok(VERIFY_WRITE, buf, len))
1450 			return -EFAULT;
1451 		error = wait_event_interruptible(log_wait,
1452 						 syslog_seq != log_next_seq);
1453 		if (error)
1454 			return error;
1455 		error = syslog_print(buf, len);
1456 		break;
1457 	/* Read/clear last kernel messages */
1458 	case SYSLOG_ACTION_READ_CLEAR:
1459 		clear = true;
1460 		/* FALL THRU */
1461 	/* Read last kernel messages */
1462 	case SYSLOG_ACTION_READ_ALL:
1463 		if (!buf || len < 0)
1464 			return -EINVAL;
1465 		if (!len)
1466 			return 0;
1467 		if (!access_ok(VERIFY_WRITE, buf, len))
1468 			return -EFAULT;
1469 		error = syslog_print_all(buf, len, clear);
1470 		break;
1471 	/* Clear ring buffer */
1472 	case SYSLOG_ACTION_CLEAR:
1473 		syslog_print_all(NULL, 0, true);
1474 		break;
1475 	/* Disable logging to console */
1476 	case SYSLOG_ACTION_CONSOLE_OFF:
1477 		if (saved_console_loglevel == LOGLEVEL_DEFAULT)
1478 			saved_console_loglevel = console_loglevel;
1479 		console_loglevel = minimum_console_loglevel;
1480 		break;
1481 	/* Enable logging to console */
1482 	case SYSLOG_ACTION_CONSOLE_ON:
1483 		if (saved_console_loglevel != LOGLEVEL_DEFAULT) {
1484 			console_loglevel = saved_console_loglevel;
1485 			saved_console_loglevel = LOGLEVEL_DEFAULT;
1486 		}
1487 		break;
1488 	/* Set level of messages printed to console */
1489 	case SYSLOG_ACTION_CONSOLE_LEVEL:
1490 		if (len < 1 || len > 8)
1491 			return -EINVAL;
1492 		if (len < minimum_console_loglevel)
1493 			len = minimum_console_loglevel;
1494 		console_loglevel = len;
1495 		/* Implicitly re-enable logging to console */
1496 		saved_console_loglevel = LOGLEVEL_DEFAULT;
1497 		break;
1498 	/* Number of chars in the log buffer */
1499 	case SYSLOG_ACTION_SIZE_UNREAD:
1500 		logbuf_lock_irq();
1501 		if (syslog_seq < log_first_seq) {
1502 			/* messages are gone, move to first one */
1503 			syslog_seq = log_first_seq;
1504 			syslog_idx = log_first_idx;
1505 			syslog_partial = 0;
1506 		}
1507 		if (source == SYSLOG_FROM_PROC) {
1508 			/*
1509 			 * Short-cut for poll(/"proc/kmsg") which simply checks
1510 			 * for pending data, not the size; return the count of
1511 			 * records, not the length.
1512 			 */
1513 			error = log_next_seq - syslog_seq;
1514 		} else {
1515 			u64 seq = syslog_seq;
1516 			u32 idx = syslog_idx;
1517 
1518 			while (seq < log_next_seq) {
1519 				struct printk_log *msg = log_from_idx(idx);
1520 
1521 				error += msg_print_text(msg, true, NULL, 0);
1522 				idx = log_next(idx);
1523 				seq++;
1524 			}
1525 			error -= syslog_partial;
1526 		}
1527 		logbuf_unlock_irq();
1528 		break;
1529 	/* Size of the log buffer */
1530 	case SYSLOG_ACTION_SIZE_BUFFER:
1531 		error = log_buf_len;
1532 		break;
1533 	default:
1534 		error = -EINVAL;
1535 		break;
1536 	}
1537 
1538 	return error;
1539 }
1540 
1541 SYSCALL_DEFINE3(syslog, int, type, char __user *, buf, int, len)
1542 {
1543 	return do_syslog(type, buf, len, SYSLOG_FROM_READER);
1544 }
1545 
1546 /*
1547  * Call the console drivers, asking them to write out
1548  * log_buf[start] to log_buf[end - 1].
1549  * The console_lock must be held.
1550  */
1551 static void call_console_drivers(const char *ext_text, size_t ext_len,
1552 				 const char *text, size_t len)
1553 {
1554 	struct console *con;
1555 
1556 	trace_console_rcuidle(text, len);
1557 
1558 	if (!console_drivers)
1559 		return;
1560 
1561 	for_each_console(con) {
1562 		if (exclusive_console && con != exclusive_console)
1563 			continue;
1564 		if (!(con->flags & CON_ENABLED))
1565 			continue;
1566 		if (!con->write)
1567 			continue;
1568 		if (!cpu_online(smp_processor_id()) &&
1569 		    !(con->flags & CON_ANYTIME))
1570 			continue;
1571 		if (con->flags & CON_EXTENDED)
1572 			con->write(con, ext_text, ext_len);
1573 		else
1574 			con->write(con, text, len);
1575 	}
1576 }
1577 
1578 int printk_delay_msec __read_mostly;
1579 
1580 static inline void printk_delay(void)
1581 {
1582 	if (unlikely(printk_delay_msec)) {
1583 		int m = printk_delay_msec;
1584 
1585 		while (m--) {
1586 			mdelay(1);
1587 			touch_nmi_watchdog();
1588 		}
1589 	}
1590 }
1591 
1592 /*
1593  * Continuation lines are buffered, and not committed to the record buffer
1594  * until the line is complete, or a race forces it. The line fragments
1595  * though, are printed immediately to the consoles to ensure everything has
1596  * reached the console in case of a kernel crash.
1597  */
1598 static struct cont {
1599 	char buf[LOG_LINE_MAX];
1600 	size_t len;			/* length == 0 means unused buffer */
1601 	struct task_struct *owner;	/* task of first print*/
1602 	u64 ts_nsec;			/* time of first print */
1603 	u8 level;			/* log level of first message */
1604 	u8 facility;			/* log facility of first message */
1605 	enum log_flags flags;		/* prefix, newline flags */
1606 } cont;
1607 
1608 static void cont_flush(void)
1609 {
1610 	if (cont.len == 0)
1611 		return;
1612 
1613 	log_store(cont.facility, cont.level, cont.flags, cont.ts_nsec,
1614 		  NULL, 0, cont.buf, cont.len);
1615 	cont.len = 0;
1616 }
1617 
1618 static bool cont_add(int facility, int level, enum log_flags flags, const char *text, size_t len)
1619 {
1620 	/*
1621 	 * If ext consoles are present, flush and skip in-kernel
1622 	 * continuation.  See nr_ext_console_drivers definition.  Also, if
1623 	 * the line gets too long, split it up in separate records.
1624 	 */
1625 	if (nr_ext_console_drivers || cont.len + len > sizeof(cont.buf)) {
1626 		cont_flush();
1627 		return false;
1628 	}
1629 
1630 	if (!cont.len) {
1631 		cont.facility = facility;
1632 		cont.level = level;
1633 		cont.owner = current;
1634 		cont.ts_nsec = local_clock();
1635 		cont.flags = flags;
1636 	}
1637 
1638 	memcpy(cont.buf + cont.len, text, len);
1639 	cont.len += len;
1640 
1641 	// The original flags come from the first line,
1642 	// but later continuations can add a newline.
1643 	if (flags & LOG_NEWLINE) {
1644 		cont.flags |= LOG_NEWLINE;
1645 		cont_flush();
1646 	}
1647 
1648 	if (cont.len > (sizeof(cont.buf) * 80) / 100)
1649 		cont_flush();
1650 
1651 	return true;
1652 }
1653 
1654 static size_t log_output(int facility, int level, enum log_flags lflags, const char *dict, size_t dictlen, char *text, size_t text_len)
1655 {
1656 	/*
1657 	 * If an earlier line was buffered, and we're a continuation
1658 	 * write from the same process, try to add it to the buffer.
1659 	 */
1660 	if (cont.len) {
1661 		if (cont.owner == current && (lflags & LOG_CONT)) {
1662 			if (cont_add(facility, level, lflags, text, text_len))
1663 				return text_len;
1664 		}
1665 		/* Otherwise, make sure it's flushed */
1666 		cont_flush();
1667 	}
1668 
1669 	/* Skip empty continuation lines that couldn't be added - they just flush */
1670 	if (!text_len && (lflags & LOG_CONT))
1671 		return 0;
1672 
1673 	/* If it doesn't end in a newline, try to buffer the current line */
1674 	if (!(lflags & LOG_NEWLINE)) {
1675 		if (cont_add(facility, level, lflags, text, text_len))
1676 			return text_len;
1677 	}
1678 
1679 	/* Store it in the record log */
1680 	return log_store(facility, level, lflags, 0, dict, dictlen, text, text_len);
1681 }
1682 
1683 asmlinkage int vprintk_emit(int facility, int level,
1684 			    const char *dict, size_t dictlen,
1685 			    const char *fmt, va_list args)
1686 {
1687 	static char textbuf[LOG_LINE_MAX];
1688 	char *text = textbuf;
1689 	size_t text_len;
1690 	enum log_flags lflags = 0;
1691 	unsigned long flags;
1692 	int printed_len;
1693 	bool in_sched = false;
1694 
1695 	if (level == LOGLEVEL_SCHED) {
1696 		level = LOGLEVEL_DEFAULT;
1697 		in_sched = true;
1698 	}
1699 
1700 	boot_delay_msec(level);
1701 	printk_delay();
1702 
1703 	/* This stops the holder of console_sem just where we want him */
1704 	logbuf_lock_irqsave(flags);
1705 	/*
1706 	 * The printf needs to come first; we need the syslog
1707 	 * prefix which might be passed-in as a parameter.
1708 	 */
1709 	text_len = vscnprintf(text, sizeof(textbuf), fmt, args);
1710 
1711 	/* mark and strip a trailing newline */
1712 	if (text_len && text[text_len-1] == '\n') {
1713 		text_len--;
1714 		lflags |= LOG_NEWLINE;
1715 	}
1716 
1717 	/* strip kernel syslog prefix and extract log level or control flags */
1718 	if (facility == 0) {
1719 		int kern_level;
1720 
1721 		while ((kern_level = printk_get_level(text)) != 0) {
1722 			switch (kern_level) {
1723 			case '0' ... '7':
1724 				if (level == LOGLEVEL_DEFAULT)
1725 					level = kern_level - '0';
1726 				/* fallthrough */
1727 			case 'd':	/* KERN_DEFAULT */
1728 				lflags |= LOG_PREFIX;
1729 				break;
1730 			case 'c':	/* KERN_CONT */
1731 				lflags |= LOG_CONT;
1732 			}
1733 
1734 			text_len -= 2;
1735 			text += 2;
1736 		}
1737 	}
1738 
1739 	if (level == LOGLEVEL_DEFAULT)
1740 		level = default_message_loglevel;
1741 
1742 	if (dict)
1743 		lflags |= LOG_PREFIX|LOG_NEWLINE;
1744 
1745 	printed_len = log_output(facility, level, lflags, dict, dictlen, text, text_len);
1746 
1747 	logbuf_unlock_irqrestore(flags);
1748 
1749 	/* If called from the scheduler, we can not call up(). */
1750 	if (!in_sched) {
1751 		/*
1752 		 * Try to acquire and then immediately release the console
1753 		 * semaphore.  The release will print out buffers and wake up
1754 		 * /dev/kmsg and syslog() users.
1755 		 */
1756 		if (console_trylock())
1757 			console_unlock();
1758 	}
1759 
1760 	return printed_len;
1761 }
1762 EXPORT_SYMBOL(vprintk_emit);
1763 
1764 asmlinkage int vprintk(const char *fmt, va_list args)
1765 {
1766 	return vprintk_func(fmt, args);
1767 }
1768 EXPORT_SYMBOL(vprintk);
1769 
1770 asmlinkage int printk_emit(int facility, int level,
1771 			   const char *dict, size_t dictlen,
1772 			   const char *fmt, ...)
1773 {
1774 	va_list args;
1775 	int r;
1776 
1777 	va_start(args, fmt);
1778 	r = vprintk_emit(facility, level, dict, dictlen, fmt, args);
1779 	va_end(args);
1780 
1781 	return r;
1782 }
1783 EXPORT_SYMBOL(printk_emit);
1784 
1785 int vprintk_default(const char *fmt, va_list args)
1786 {
1787 	int r;
1788 
1789 #ifdef CONFIG_KGDB_KDB
1790 	/* Allow to pass printk() to kdb but avoid a recursion. */
1791 	if (unlikely(kdb_trap_printk && kdb_printf_cpu < 0)) {
1792 		r = vkdb_printf(KDB_MSGSRC_PRINTK, fmt, args);
1793 		return r;
1794 	}
1795 #endif
1796 	r = vprintk_emit(0, LOGLEVEL_DEFAULT, NULL, 0, fmt, args);
1797 
1798 	return r;
1799 }
1800 EXPORT_SYMBOL_GPL(vprintk_default);
1801 
1802 /**
1803  * printk - print a kernel message
1804  * @fmt: format string
1805  *
1806  * This is printk(). It can be called from any context. We want it to work.
1807  *
1808  * We try to grab the console_lock. If we succeed, it's easy - we log the
1809  * output and call the console drivers.  If we fail to get the semaphore, we
1810  * place the output into the log buffer and return. The current holder of
1811  * the console_sem will notice the new output in console_unlock(); and will
1812  * send it to the consoles before releasing the lock.
1813  *
1814  * One effect of this deferred printing is that code which calls printk() and
1815  * then changes console_loglevel may break. This is because console_loglevel
1816  * is inspected when the actual printing occurs.
1817  *
1818  * See also:
1819  * printf(3)
1820  *
1821  * See the vsnprintf() documentation for format string extensions over C99.
1822  */
1823 asmlinkage __visible int printk(const char *fmt, ...)
1824 {
1825 	va_list args;
1826 	int r;
1827 
1828 	va_start(args, fmt);
1829 	r = vprintk_func(fmt, args);
1830 	va_end(args);
1831 
1832 	return r;
1833 }
1834 EXPORT_SYMBOL(printk);
1835 
1836 #else /* CONFIG_PRINTK */
1837 
1838 #define LOG_LINE_MAX		0
1839 #define PREFIX_MAX		0
1840 
1841 static u64 syslog_seq;
1842 static u32 syslog_idx;
1843 static u64 console_seq;
1844 static u32 console_idx;
1845 static u64 log_first_seq;
1846 static u32 log_first_idx;
1847 static u64 log_next_seq;
1848 static char *log_text(const struct printk_log *msg) { return NULL; }
1849 static char *log_dict(const struct printk_log *msg) { return NULL; }
1850 static struct printk_log *log_from_idx(u32 idx) { return NULL; }
1851 static u32 log_next(u32 idx) { return 0; }
1852 static ssize_t msg_print_ext_header(char *buf, size_t size,
1853 				    struct printk_log *msg,
1854 				    u64 seq) { return 0; }
1855 static ssize_t msg_print_ext_body(char *buf, size_t size,
1856 				  char *dict, size_t dict_len,
1857 				  char *text, size_t text_len) { return 0; }
1858 static void call_console_drivers(const char *ext_text, size_t ext_len,
1859 				 const char *text, size_t len) {}
1860 static size_t msg_print_text(const struct printk_log *msg,
1861 			     bool syslog, char *buf, size_t size) { return 0; }
1862 static bool suppress_message_printing(int level) { return false; }
1863 
1864 #endif /* CONFIG_PRINTK */
1865 
1866 #ifdef CONFIG_EARLY_PRINTK
1867 struct console *early_console;
1868 
1869 asmlinkage __visible void early_printk(const char *fmt, ...)
1870 {
1871 	va_list ap;
1872 	char buf[512];
1873 	int n;
1874 
1875 	if (!early_console)
1876 		return;
1877 
1878 	va_start(ap, fmt);
1879 	n = vscnprintf(buf, sizeof(buf), fmt, ap);
1880 	va_end(ap);
1881 
1882 	early_console->write(early_console, buf, n);
1883 }
1884 #endif
1885 
1886 static int __add_preferred_console(char *name, int idx, char *options,
1887 				   char *brl_options)
1888 {
1889 	struct console_cmdline *c;
1890 	int i;
1891 
1892 	/*
1893 	 *	See if this tty is not yet registered, and
1894 	 *	if we have a slot free.
1895 	 */
1896 	for (i = 0, c = console_cmdline;
1897 	     i < MAX_CMDLINECONSOLES && c->name[0];
1898 	     i++, c++) {
1899 		if (strcmp(c->name, name) == 0 && c->index == idx) {
1900 			if (!brl_options)
1901 				preferred_console = i;
1902 			return 0;
1903 		}
1904 	}
1905 	if (i == MAX_CMDLINECONSOLES)
1906 		return -E2BIG;
1907 	if (!brl_options)
1908 		preferred_console = i;
1909 	strlcpy(c->name, name, sizeof(c->name));
1910 	c->options = options;
1911 	braille_set_options(c, brl_options);
1912 
1913 	c->index = idx;
1914 	return 0;
1915 }
1916 /*
1917  * Set up a console.  Called via do_early_param() in init/main.c
1918  * for each "console=" parameter in the boot command line.
1919  */
1920 static int __init console_setup(char *str)
1921 {
1922 	char buf[sizeof(console_cmdline[0].name) + 4]; /* 4 for "ttyS" */
1923 	char *s, *options, *brl_options = NULL;
1924 	int idx;
1925 
1926 	if (_braille_console_setup(&str, &brl_options))
1927 		return 1;
1928 
1929 	/*
1930 	 * Decode str into name, index, options.
1931 	 */
1932 	if (str[0] >= '0' && str[0] <= '9') {
1933 		strcpy(buf, "ttyS");
1934 		strncpy(buf + 4, str, sizeof(buf) - 5);
1935 	} else {
1936 		strncpy(buf, str, sizeof(buf) - 1);
1937 	}
1938 	buf[sizeof(buf) - 1] = 0;
1939 	options = strchr(str, ',');
1940 	if (options)
1941 		*(options++) = 0;
1942 #ifdef __sparc__
1943 	if (!strcmp(str, "ttya"))
1944 		strcpy(buf, "ttyS0");
1945 	if (!strcmp(str, "ttyb"))
1946 		strcpy(buf, "ttyS1");
1947 #endif
1948 	for (s = buf; *s; s++)
1949 		if (isdigit(*s) || *s == ',')
1950 			break;
1951 	idx = simple_strtoul(s, NULL, 10);
1952 	*s = 0;
1953 
1954 	__add_preferred_console(buf, idx, options, brl_options);
1955 	console_set_on_cmdline = 1;
1956 	return 1;
1957 }
1958 __setup("console=", console_setup);
1959 
1960 /**
1961  * add_preferred_console - add a device to the list of preferred consoles.
1962  * @name: device name
1963  * @idx: device index
1964  * @options: options for this console
1965  *
1966  * The last preferred console added will be used for kernel messages
1967  * and stdin/out/err for init.  Normally this is used by console_setup
1968  * above to handle user-supplied console arguments; however it can also
1969  * be used by arch-specific code either to override the user or more
1970  * commonly to provide a default console (ie from PROM variables) when
1971  * the user has not supplied one.
1972  */
1973 int add_preferred_console(char *name, int idx, char *options)
1974 {
1975 	return __add_preferred_console(name, idx, options, NULL);
1976 }
1977 
1978 bool console_suspend_enabled = true;
1979 EXPORT_SYMBOL(console_suspend_enabled);
1980 
1981 static int __init console_suspend_disable(char *str)
1982 {
1983 	console_suspend_enabled = false;
1984 	return 1;
1985 }
1986 __setup("no_console_suspend", console_suspend_disable);
1987 module_param_named(console_suspend, console_suspend_enabled,
1988 		bool, S_IRUGO | S_IWUSR);
1989 MODULE_PARM_DESC(console_suspend, "suspend console during suspend"
1990 	" and hibernate operations");
1991 
1992 /**
1993  * suspend_console - suspend the console subsystem
1994  *
1995  * This disables printk() while we go into suspend states
1996  */
1997 void suspend_console(void)
1998 {
1999 	if (!console_suspend_enabled)
2000 		return;
2001 	printk("Suspending console(s) (use no_console_suspend to debug)\n");
2002 	console_lock();
2003 	console_suspended = 1;
2004 	up_console_sem();
2005 }
2006 
2007 void resume_console(void)
2008 {
2009 	if (!console_suspend_enabled)
2010 		return;
2011 	down_console_sem();
2012 	console_suspended = 0;
2013 	console_unlock();
2014 }
2015 
2016 /**
2017  * console_cpu_notify - print deferred console messages after CPU hotplug
2018  * @cpu: unused
2019  *
2020  * If printk() is called from a CPU that is not online yet, the messages
2021  * will be printed on the console only if there are CON_ANYTIME consoles.
2022  * This function is called when a new CPU comes online (or fails to come
2023  * up) or goes offline.
2024  */
2025 static int console_cpu_notify(unsigned int cpu)
2026 {
2027 	if (!cpuhp_tasks_frozen) {
2028 		/* If trylock fails, someone else is doing the printing */
2029 		if (console_trylock())
2030 			console_unlock();
2031 	}
2032 	return 0;
2033 }
2034 
2035 /**
2036  * console_lock - lock the console system for exclusive use.
2037  *
2038  * Acquires a lock which guarantees that the caller has
2039  * exclusive access to the console system and the console_drivers list.
2040  *
2041  * Can sleep, returns nothing.
2042  */
2043 void console_lock(void)
2044 {
2045 	might_sleep();
2046 
2047 	down_console_sem();
2048 	if (console_suspended)
2049 		return;
2050 	console_locked = 1;
2051 	console_may_schedule = 1;
2052 }
2053 EXPORT_SYMBOL(console_lock);
2054 
2055 /**
2056  * console_trylock - try to lock the console system for exclusive use.
2057  *
2058  * Try to acquire a lock which guarantees that the caller has exclusive
2059  * access to the console system and the console_drivers list.
2060  *
2061  * returns 1 on success, and 0 on failure to acquire the lock.
2062  */
2063 int console_trylock(void)
2064 {
2065 	if (down_trylock_console_sem())
2066 		return 0;
2067 	if (console_suspended) {
2068 		up_console_sem();
2069 		return 0;
2070 	}
2071 	console_locked = 1;
2072 	/*
2073 	 * When PREEMPT_COUNT disabled we can't reliably detect if it's
2074 	 * safe to schedule (e.g. calling printk while holding a spin_lock),
2075 	 * because preempt_disable()/preempt_enable() are just barriers there
2076 	 * and preempt_count() is always 0.
2077 	 *
2078 	 * RCU read sections have a separate preemption counter when
2079 	 * PREEMPT_RCU enabled thus we must take extra care and check
2080 	 * rcu_preempt_depth(), otherwise RCU read sections modify
2081 	 * preempt_count().
2082 	 */
2083 	console_may_schedule = !oops_in_progress &&
2084 			preemptible() &&
2085 			!rcu_preempt_depth();
2086 	return 1;
2087 }
2088 EXPORT_SYMBOL(console_trylock);
2089 
2090 int is_console_locked(void)
2091 {
2092 	return console_locked;
2093 }
2094 
2095 /*
2096  * Check if we have any console that is capable of printing while cpu is
2097  * booting or shutting down. Requires console_sem.
2098  */
2099 static int have_callable_console(void)
2100 {
2101 	struct console *con;
2102 
2103 	for_each_console(con)
2104 		if ((con->flags & CON_ENABLED) &&
2105 				(con->flags & CON_ANYTIME))
2106 			return 1;
2107 
2108 	return 0;
2109 }
2110 
2111 /*
2112  * Can we actually use the console at this time on this cpu?
2113  *
2114  * Console drivers may assume that per-cpu resources have been allocated. So
2115  * unless they're explicitly marked as being able to cope (CON_ANYTIME) don't
2116  * call them until this CPU is officially up.
2117  */
2118 static inline int can_use_console(void)
2119 {
2120 	return cpu_online(raw_smp_processor_id()) || have_callable_console();
2121 }
2122 
2123 /**
2124  * console_unlock - unlock the console system
2125  *
2126  * Releases the console_lock which the caller holds on the console system
2127  * and the console driver list.
2128  *
2129  * While the console_lock was held, console output may have been buffered
2130  * by printk().  If this is the case, console_unlock(); emits
2131  * the output prior to releasing the lock.
2132  *
2133  * If there is output waiting, we wake /dev/kmsg and syslog() users.
2134  *
2135  * console_unlock(); may be called from any context.
2136  */
2137 void console_unlock(void)
2138 {
2139 	static char ext_text[CONSOLE_EXT_LOG_MAX];
2140 	static char text[LOG_LINE_MAX + PREFIX_MAX];
2141 	static u64 seen_seq;
2142 	unsigned long flags;
2143 	bool wake_klogd = false;
2144 	bool do_cond_resched, retry;
2145 
2146 	if (console_suspended) {
2147 		up_console_sem();
2148 		return;
2149 	}
2150 
2151 	/*
2152 	 * Console drivers are called with interrupts disabled, so
2153 	 * @console_may_schedule should be cleared before; however, we may
2154 	 * end up dumping a lot of lines, for example, if called from
2155 	 * console registration path, and should invoke cond_resched()
2156 	 * between lines if allowable.  Not doing so can cause a very long
2157 	 * scheduling stall on a slow console leading to RCU stall and
2158 	 * softlockup warnings which exacerbate the issue with more
2159 	 * messages practically incapacitating the system.
2160 	 *
2161 	 * console_trylock() is not able to detect the preemptive
2162 	 * context reliably. Therefore the value must be stored before
2163 	 * and cleared after the the "again" goto label.
2164 	 */
2165 	do_cond_resched = console_may_schedule;
2166 again:
2167 	console_may_schedule = 0;
2168 
2169 	/*
2170 	 * We released the console_sem lock, so we need to recheck if
2171 	 * cpu is online and (if not) is there at least one CON_ANYTIME
2172 	 * console.
2173 	 */
2174 	if (!can_use_console()) {
2175 		console_locked = 0;
2176 		up_console_sem();
2177 		return;
2178 	}
2179 
2180 	for (;;) {
2181 		struct printk_log *msg;
2182 		size_t ext_len = 0;
2183 		size_t len;
2184 
2185 		printk_safe_enter_irqsave(flags);
2186 		raw_spin_lock(&logbuf_lock);
2187 		if (seen_seq != log_next_seq) {
2188 			wake_klogd = true;
2189 			seen_seq = log_next_seq;
2190 		}
2191 
2192 		if (console_seq < log_first_seq) {
2193 			len = sprintf(text, "** %u printk messages dropped ** ",
2194 				      (unsigned)(log_first_seq - console_seq));
2195 
2196 			/* messages are gone, move to first one */
2197 			console_seq = log_first_seq;
2198 			console_idx = log_first_idx;
2199 		} else {
2200 			len = 0;
2201 		}
2202 skip:
2203 		if (console_seq == log_next_seq)
2204 			break;
2205 
2206 		msg = log_from_idx(console_idx);
2207 		if (suppress_message_printing(msg->level)) {
2208 			/*
2209 			 * Skip record we have buffered and already printed
2210 			 * directly to the console when we received it, and
2211 			 * record that has level above the console loglevel.
2212 			 */
2213 			console_idx = log_next(console_idx);
2214 			console_seq++;
2215 			goto skip;
2216 		}
2217 
2218 		len += msg_print_text(msg, false, text + len, sizeof(text) - len);
2219 		if (nr_ext_console_drivers) {
2220 			ext_len = msg_print_ext_header(ext_text,
2221 						sizeof(ext_text),
2222 						msg, console_seq);
2223 			ext_len += msg_print_ext_body(ext_text + ext_len,
2224 						sizeof(ext_text) - ext_len,
2225 						log_dict(msg), msg->dict_len,
2226 						log_text(msg), msg->text_len);
2227 		}
2228 		console_idx = log_next(console_idx);
2229 		console_seq++;
2230 		raw_spin_unlock(&logbuf_lock);
2231 
2232 		stop_critical_timings();	/* don't trace print latency */
2233 		call_console_drivers(ext_text, ext_len, text, len);
2234 		start_critical_timings();
2235 		printk_safe_exit_irqrestore(flags);
2236 
2237 		if (do_cond_resched)
2238 			cond_resched();
2239 	}
2240 	console_locked = 0;
2241 
2242 	/* Release the exclusive_console once it is used */
2243 	if (unlikely(exclusive_console))
2244 		exclusive_console = NULL;
2245 
2246 	raw_spin_unlock(&logbuf_lock);
2247 
2248 	up_console_sem();
2249 
2250 	/*
2251 	 * Someone could have filled up the buffer again, so re-check if there's
2252 	 * something to flush. In case we cannot trylock the console_sem again,
2253 	 * there's a new owner and the console_unlock() from them will do the
2254 	 * flush, no worries.
2255 	 */
2256 	raw_spin_lock(&logbuf_lock);
2257 	retry = console_seq != log_next_seq;
2258 	raw_spin_unlock(&logbuf_lock);
2259 	printk_safe_exit_irqrestore(flags);
2260 
2261 	if (retry && console_trylock())
2262 		goto again;
2263 
2264 	if (wake_klogd)
2265 		wake_up_klogd();
2266 }
2267 EXPORT_SYMBOL(console_unlock);
2268 
2269 /**
2270  * console_conditional_schedule - yield the CPU if required
2271  *
2272  * If the console code is currently allowed to sleep, and
2273  * if this CPU should yield the CPU to another task, do
2274  * so here.
2275  *
2276  * Must be called within console_lock();.
2277  */
2278 void __sched console_conditional_schedule(void)
2279 {
2280 	if (console_may_schedule)
2281 		cond_resched();
2282 }
2283 EXPORT_SYMBOL(console_conditional_schedule);
2284 
2285 void console_unblank(void)
2286 {
2287 	struct console *c;
2288 
2289 	/*
2290 	 * console_unblank can no longer be called in interrupt context unless
2291 	 * oops_in_progress is set to 1..
2292 	 */
2293 	if (oops_in_progress) {
2294 		if (down_trylock_console_sem() != 0)
2295 			return;
2296 	} else
2297 		console_lock();
2298 
2299 	console_locked = 1;
2300 	console_may_schedule = 0;
2301 	for_each_console(c)
2302 		if ((c->flags & CON_ENABLED) && c->unblank)
2303 			c->unblank();
2304 	console_unlock();
2305 }
2306 
2307 /**
2308  * console_flush_on_panic - flush console content on panic
2309  *
2310  * Immediately output all pending messages no matter what.
2311  */
2312 void console_flush_on_panic(void)
2313 {
2314 	/*
2315 	 * If someone else is holding the console lock, trylock will fail
2316 	 * and may_schedule may be set.  Ignore and proceed to unlock so
2317 	 * that messages are flushed out.  As this can be called from any
2318 	 * context and we don't want to get preempted while flushing,
2319 	 * ensure may_schedule is cleared.
2320 	 */
2321 	console_trylock();
2322 	console_may_schedule = 0;
2323 	console_unlock();
2324 }
2325 
2326 /*
2327  * Return the console tty driver structure and its associated index
2328  */
2329 struct tty_driver *console_device(int *index)
2330 {
2331 	struct console *c;
2332 	struct tty_driver *driver = NULL;
2333 
2334 	console_lock();
2335 	for_each_console(c) {
2336 		if (!c->device)
2337 			continue;
2338 		driver = c->device(c, index);
2339 		if (driver)
2340 			break;
2341 	}
2342 	console_unlock();
2343 	return driver;
2344 }
2345 
2346 /*
2347  * Prevent further output on the passed console device so that (for example)
2348  * serial drivers can disable console output before suspending a port, and can
2349  * re-enable output afterwards.
2350  */
2351 void console_stop(struct console *console)
2352 {
2353 	console_lock();
2354 	console->flags &= ~CON_ENABLED;
2355 	console_unlock();
2356 }
2357 EXPORT_SYMBOL(console_stop);
2358 
2359 void console_start(struct console *console)
2360 {
2361 	console_lock();
2362 	console->flags |= CON_ENABLED;
2363 	console_unlock();
2364 }
2365 EXPORT_SYMBOL(console_start);
2366 
2367 static int __read_mostly keep_bootcon;
2368 
2369 static int __init keep_bootcon_setup(char *str)
2370 {
2371 	keep_bootcon = 1;
2372 	pr_info("debug: skip boot console de-registration.\n");
2373 
2374 	return 0;
2375 }
2376 
2377 early_param("keep_bootcon", keep_bootcon_setup);
2378 
2379 /*
2380  * The console driver calls this routine during kernel initialization
2381  * to register the console printing procedure with printk() and to
2382  * print any messages that were printed by the kernel before the
2383  * console driver was initialized.
2384  *
2385  * This can happen pretty early during the boot process (because of
2386  * early_printk) - sometimes before setup_arch() completes - be careful
2387  * of what kernel features are used - they may not be initialised yet.
2388  *
2389  * There are two types of consoles - bootconsoles (early_printk) and
2390  * "real" consoles (everything which is not a bootconsole) which are
2391  * handled differently.
2392  *  - Any number of bootconsoles can be registered at any time.
2393  *  - As soon as a "real" console is registered, all bootconsoles
2394  *    will be unregistered automatically.
2395  *  - Once a "real" console is registered, any attempt to register a
2396  *    bootconsoles will be rejected
2397  */
2398 void register_console(struct console *newcon)
2399 {
2400 	int i;
2401 	unsigned long flags;
2402 	struct console *bcon = NULL;
2403 	struct console_cmdline *c;
2404 	static bool has_preferred;
2405 
2406 	if (console_drivers)
2407 		for_each_console(bcon)
2408 			if (WARN(bcon == newcon,
2409 					"console '%s%d' already registered\n",
2410 					bcon->name, bcon->index))
2411 				return;
2412 
2413 	/*
2414 	 * before we register a new CON_BOOT console, make sure we don't
2415 	 * already have a valid console
2416 	 */
2417 	if (console_drivers && newcon->flags & CON_BOOT) {
2418 		/* find the last or real console */
2419 		for_each_console(bcon) {
2420 			if (!(bcon->flags & CON_BOOT)) {
2421 				pr_info("Too late to register bootconsole %s%d\n",
2422 					newcon->name, newcon->index);
2423 				return;
2424 			}
2425 		}
2426 	}
2427 
2428 	if (console_drivers && console_drivers->flags & CON_BOOT)
2429 		bcon = console_drivers;
2430 
2431 	if (!has_preferred || bcon || !console_drivers)
2432 		has_preferred = preferred_console >= 0;
2433 
2434 	/*
2435 	 *	See if we want to use this console driver. If we
2436 	 *	didn't select a console we take the first one
2437 	 *	that registers here.
2438 	 */
2439 	if (!has_preferred) {
2440 		if (newcon->index < 0)
2441 			newcon->index = 0;
2442 		if (newcon->setup == NULL ||
2443 		    newcon->setup(newcon, NULL) == 0) {
2444 			newcon->flags |= CON_ENABLED;
2445 			if (newcon->device) {
2446 				newcon->flags |= CON_CONSDEV;
2447 				has_preferred = true;
2448 			}
2449 		}
2450 	}
2451 
2452 	/*
2453 	 *	See if this console matches one we selected on
2454 	 *	the command line.
2455 	 */
2456 	for (i = 0, c = console_cmdline;
2457 	     i < MAX_CMDLINECONSOLES && c->name[0];
2458 	     i++, c++) {
2459 		if (!newcon->match ||
2460 		    newcon->match(newcon, c->name, c->index, c->options) != 0) {
2461 			/* default matching */
2462 			BUILD_BUG_ON(sizeof(c->name) != sizeof(newcon->name));
2463 			if (strcmp(c->name, newcon->name) != 0)
2464 				continue;
2465 			if (newcon->index >= 0 &&
2466 			    newcon->index != c->index)
2467 				continue;
2468 			if (newcon->index < 0)
2469 				newcon->index = c->index;
2470 
2471 			if (_braille_register_console(newcon, c))
2472 				return;
2473 
2474 			if (newcon->setup &&
2475 			    newcon->setup(newcon, c->options) != 0)
2476 				break;
2477 		}
2478 
2479 		newcon->flags |= CON_ENABLED;
2480 		if (i == preferred_console) {
2481 			newcon->flags |= CON_CONSDEV;
2482 			has_preferred = true;
2483 		}
2484 		break;
2485 	}
2486 
2487 	if (!(newcon->flags & CON_ENABLED))
2488 		return;
2489 
2490 	/*
2491 	 * If we have a bootconsole, and are switching to a real console,
2492 	 * don't print everything out again, since when the boot console, and
2493 	 * the real console are the same physical device, it's annoying to
2494 	 * see the beginning boot messages twice
2495 	 */
2496 	if (bcon && ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV))
2497 		newcon->flags &= ~CON_PRINTBUFFER;
2498 
2499 	/*
2500 	 *	Put this console in the list - keep the
2501 	 *	preferred driver at the head of the list.
2502 	 */
2503 	console_lock();
2504 	if ((newcon->flags & CON_CONSDEV) || console_drivers == NULL) {
2505 		newcon->next = console_drivers;
2506 		console_drivers = newcon;
2507 		if (newcon->next)
2508 			newcon->next->flags &= ~CON_CONSDEV;
2509 	} else {
2510 		newcon->next = console_drivers->next;
2511 		console_drivers->next = newcon;
2512 	}
2513 
2514 	if (newcon->flags & CON_EXTENDED)
2515 		if (!nr_ext_console_drivers++)
2516 			pr_info("printk: continuation disabled due to ext consoles, expect more fragments in /dev/kmsg\n");
2517 
2518 	if (newcon->flags & CON_PRINTBUFFER) {
2519 		/*
2520 		 * console_unlock(); will print out the buffered messages
2521 		 * for us.
2522 		 */
2523 		logbuf_lock_irqsave(flags);
2524 		console_seq = syslog_seq;
2525 		console_idx = syslog_idx;
2526 		logbuf_unlock_irqrestore(flags);
2527 		/*
2528 		 * We're about to replay the log buffer.  Only do this to the
2529 		 * just-registered console to avoid excessive message spam to
2530 		 * the already-registered consoles.
2531 		 */
2532 		exclusive_console = newcon;
2533 	}
2534 	console_unlock();
2535 	console_sysfs_notify();
2536 
2537 	/*
2538 	 * By unregistering the bootconsoles after we enable the real console
2539 	 * we get the "console xxx enabled" message on all the consoles -
2540 	 * boot consoles, real consoles, etc - this is to ensure that end
2541 	 * users know there might be something in the kernel's log buffer that
2542 	 * went to the bootconsole (that they do not see on the real console)
2543 	 */
2544 	pr_info("%sconsole [%s%d] enabled\n",
2545 		(newcon->flags & CON_BOOT) ? "boot" : "" ,
2546 		newcon->name, newcon->index);
2547 	if (bcon &&
2548 	    ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV) &&
2549 	    !keep_bootcon) {
2550 		/* We need to iterate through all boot consoles, to make
2551 		 * sure we print everything out, before we unregister them.
2552 		 */
2553 		for_each_console(bcon)
2554 			if (bcon->flags & CON_BOOT)
2555 				unregister_console(bcon);
2556 	}
2557 }
2558 EXPORT_SYMBOL(register_console);
2559 
2560 int unregister_console(struct console *console)
2561 {
2562         struct console *a, *b;
2563 	int res;
2564 
2565 	pr_info("%sconsole [%s%d] disabled\n",
2566 		(console->flags & CON_BOOT) ? "boot" : "" ,
2567 		console->name, console->index);
2568 
2569 	res = _braille_unregister_console(console);
2570 	if (res)
2571 		return res;
2572 
2573 	res = 1;
2574 	console_lock();
2575 	if (console_drivers == console) {
2576 		console_drivers=console->next;
2577 		res = 0;
2578 	} else if (console_drivers) {
2579 		for (a=console_drivers->next, b=console_drivers ;
2580 		     a; b=a, a=b->next) {
2581 			if (a == console) {
2582 				b->next = a->next;
2583 				res = 0;
2584 				break;
2585 			}
2586 		}
2587 	}
2588 
2589 	if (!res && (console->flags & CON_EXTENDED))
2590 		nr_ext_console_drivers--;
2591 
2592 	/*
2593 	 * If this isn't the last console and it has CON_CONSDEV set, we
2594 	 * need to set it on the next preferred console.
2595 	 */
2596 	if (console_drivers != NULL && console->flags & CON_CONSDEV)
2597 		console_drivers->flags |= CON_CONSDEV;
2598 
2599 	console->flags &= ~CON_ENABLED;
2600 	console_unlock();
2601 	console_sysfs_notify();
2602 	return res;
2603 }
2604 EXPORT_SYMBOL(unregister_console);
2605 
2606 /*
2607  * Initialize the console device. This is called *early*, so
2608  * we can't necessarily depend on lots of kernel help here.
2609  * Just do some early initializations, and do the complex setup
2610  * later.
2611  */
2612 void __init console_init(void)
2613 {
2614 	initcall_t *call;
2615 
2616 	/* Setup the default TTY line discipline. */
2617 	n_tty_init();
2618 
2619 	/*
2620 	 * set up the console device so that later boot sequences can
2621 	 * inform about problems etc..
2622 	 */
2623 	call = __con_initcall_start;
2624 	while (call < __con_initcall_end) {
2625 		(*call)();
2626 		call++;
2627 	}
2628 }
2629 
2630 /*
2631  * Some boot consoles access data that is in the init section and which will
2632  * be discarded after the initcalls have been run. To make sure that no code
2633  * will access this data, unregister the boot consoles in a late initcall.
2634  *
2635  * If for some reason, such as deferred probe or the driver being a loadable
2636  * module, the real console hasn't registered yet at this point, there will
2637  * be a brief interval in which no messages are logged to the console, which
2638  * makes it difficult to diagnose problems that occur during this time.
2639  *
2640  * To mitigate this problem somewhat, only unregister consoles whose memory
2641  * intersects with the init section. Note that all other boot consoles will
2642  * get unregistred when the real preferred console is registered.
2643  */
2644 static int __init printk_late_init(void)
2645 {
2646 	struct console *con;
2647 	int ret;
2648 
2649 	for_each_console(con) {
2650 		if (!(con->flags & CON_BOOT))
2651 			continue;
2652 
2653 		/* Check addresses that might be used for enabled consoles. */
2654 		if (init_section_intersects(con, sizeof(*con)) ||
2655 		    init_section_contains(con->write, 0) ||
2656 		    init_section_contains(con->read, 0) ||
2657 		    init_section_contains(con->device, 0) ||
2658 		    init_section_contains(con->unblank, 0) ||
2659 		    init_section_contains(con->data, 0)) {
2660 			/*
2661 			 * Please, consider moving the reported consoles out
2662 			 * of the init section.
2663 			 */
2664 			pr_warn("bootconsole [%s%d] uses init memory and must be disabled even before the real one is ready\n",
2665 				con->name, con->index);
2666 			unregister_console(con);
2667 		}
2668 	}
2669 	ret = cpuhp_setup_state_nocalls(CPUHP_PRINTK_DEAD, "printk:dead", NULL,
2670 					console_cpu_notify);
2671 	WARN_ON(ret < 0);
2672 	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "printk:online",
2673 					console_cpu_notify, NULL);
2674 	WARN_ON(ret < 0);
2675 	return 0;
2676 }
2677 late_initcall(printk_late_init);
2678 
2679 #if defined CONFIG_PRINTK
2680 /*
2681  * Delayed printk version, for scheduler-internal messages:
2682  */
2683 #define PRINTK_PENDING_WAKEUP	0x01
2684 #define PRINTK_PENDING_OUTPUT	0x02
2685 
2686 static DEFINE_PER_CPU(int, printk_pending);
2687 
2688 static void wake_up_klogd_work_func(struct irq_work *irq_work)
2689 {
2690 	int pending = __this_cpu_xchg(printk_pending, 0);
2691 
2692 	if (pending & PRINTK_PENDING_OUTPUT) {
2693 		/* If trylock fails, someone else is doing the printing */
2694 		if (console_trylock())
2695 			console_unlock();
2696 	}
2697 
2698 	if (pending & PRINTK_PENDING_WAKEUP)
2699 		wake_up_interruptible(&log_wait);
2700 }
2701 
2702 static DEFINE_PER_CPU(struct irq_work, wake_up_klogd_work) = {
2703 	.func = wake_up_klogd_work_func,
2704 	.flags = IRQ_WORK_LAZY,
2705 };
2706 
2707 void wake_up_klogd(void)
2708 {
2709 	preempt_disable();
2710 	if (waitqueue_active(&log_wait)) {
2711 		this_cpu_or(printk_pending, PRINTK_PENDING_WAKEUP);
2712 		irq_work_queue(this_cpu_ptr(&wake_up_klogd_work));
2713 	}
2714 	preempt_enable();
2715 }
2716 
2717 int vprintk_deferred(const char *fmt, va_list args)
2718 {
2719 	int r;
2720 
2721 	r = vprintk_emit(0, LOGLEVEL_SCHED, NULL, 0, fmt, args);
2722 
2723 	preempt_disable();
2724 	__this_cpu_or(printk_pending, PRINTK_PENDING_OUTPUT);
2725 	irq_work_queue(this_cpu_ptr(&wake_up_klogd_work));
2726 	preempt_enable();
2727 
2728 	return r;
2729 }
2730 
2731 int printk_deferred(const char *fmt, ...)
2732 {
2733 	va_list args;
2734 	int r;
2735 
2736 	va_start(args, fmt);
2737 	r = vprintk_deferred(fmt, args);
2738 	va_end(args);
2739 
2740 	return r;
2741 }
2742 
2743 /*
2744  * printk rate limiting, lifted from the networking subsystem.
2745  *
2746  * This enforces a rate limit: not more than 10 kernel messages
2747  * every 5s to make a denial-of-service attack impossible.
2748  */
2749 DEFINE_RATELIMIT_STATE(printk_ratelimit_state, 5 * HZ, 10);
2750 
2751 int __printk_ratelimit(const char *func)
2752 {
2753 	return ___ratelimit(&printk_ratelimit_state, func);
2754 }
2755 EXPORT_SYMBOL(__printk_ratelimit);
2756 
2757 /**
2758  * printk_timed_ratelimit - caller-controlled printk ratelimiting
2759  * @caller_jiffies: pointer to caller's state
2760  * @interval_msecs: minimum interval between prints
2761  *
2762  * printk_timed_ratelimit() returns true if more than @interval_msecs
2763  * milliseconds have elapsed since the last time printk_timed_ratelimit()
2764  * returned true.
2765  */
2766 bool printk_timed_ratelimit(unsigned long *caller_jiffies,
2767 			unsigned int interval_msecs)
2768 {
2769 	unsigned long elapsed = jiffies - *caller_jiffies;
2770 
2771 	if (*caller_jiffies && elapsed <= msecs_to_jiffies(interval_msecs))
2772 		return false;
2773 
2774 	*caller_jiffies = jiffies;
2775 	return true;
2776 }
2777 EXPORT_SYMBOL(printk_timed_ratelimit);
2778 
2779 static DEFINE_SPINLOCK(dump_list_lock);
2780 static LIST_HEAD(dump_list);
2781 
2782 /**
2783  * kmsg_dump_register - register a kernel log dumper.
2784  * @dumper: pointer to the kmsg_dumper structure
2785  *
2786  * Adds a kernel log dumper to the system. The dump callback in the
2787  * structure will be called when the kernel oopses or panics and must be
2788  * set. Returns zero on success and %-EINVAL or %-EBUSY otherwise.
2789  */
2790 int kmsg_dump_register(struct kmsg_dumper *dumper)
2791 {
2792 	unsigned long flags;
2793 	int err = -EBUSY;
2794 
2795 	/* The dump callback needs to be set */
2796 	if (!dumper->dump)
2797 		return -EINVAL;
2798 
2799 	spin_lock_irqsave(&dump_list_lock, flags);
2800 	/* Don't allow registering multiple times */
2801 	if (!dumper->registered) {
2802 		dumper->registered = 1;
2803 		list_add_tail_rcu(&dumper->list, &dump_list);
2804 		err = 0;
2805 	}
2806 	spin_unlock_irqrestore(&dump_list_lock, flags);
2807 
2808 	return err;
2809 }
2810 EXPORT_SYMBOL_GPL(kmsg_dump_register);
2811 
2812 /**
2813  * kmsg_dump_unregister - unregister a kmsg dumper.
2814  * @dumper: pointer to the kmsg_dumper structure
2815  *
2816  * Removes a dump device from the system. Returns zero on success and
2817  * %-EINVAL otherwise.
2818  */
2819 int kmsg_dump_unregister(struct kmsg_dumper *dumper)
2820 {
2821 	unsigned long flags;
2822 	int err = -EINVAL;
2823 
2824 	spin_lock_irqsave(&dump_list_lock, flags);
2825 	if (dumper->registered) {
2826 		dumper->registered = 0;
2827 		list_del_rcu(&dumper->list);
2828 		err = 0;
2829 	}
2830 	spin_unlock_irqrestore(&dump_list_lock, flags);
2831 	synchronize_rcu();
2832 
2833 	return err;
2834 }
2835 EXPORT_SYMBOL_GPL(kmsg_dump_unregister);
2836 
2837 static bool always_kmsg_dump;
2838 module_param_named(always_kmsg_dump, always_kmsg_dump, bool, S_IRUGO | S_IWUSR);
2839 
2840 /**
2841  * kmsg_dump - dump kernel log to kernel message dumpers.
2842  * @reason: the reason (oops, panic etc) for dumping
2843  *
2844  * Call each of the registered dumper's dump() callback, which can
2845  * retrieve the kmsg records with kmsg_dump_get_line() or
2846  * kmsg_dump_get_buffer().
2847  */
2848 void kmsg_dump(enum kmsg_dump_reason reason)
2849 {
2850 	struct kmsg_dumper *dumper;
2851 	unsigned long flags;
2852 
2853 	if ((reason > KMSG_DUMP_OOPS) && !always_kmsg_dump)
2854 		return;
2855 
2856 	rcu_read_lock();
2857 	list_for_each_entry_rcu(dumper, &dump_list, list) {
2858 		if (dumper->max_reason && reason > dumper->max_reason)
2859 			continue;
2860 
2861 		/* initialize iterator with data about the stored records */
2862 		dumper->active = true;
2863 
2864 		logbuf_lock_irqsave(flags);
2865 		dumper->cur_seq = clear_seq;
2866 		dumper->cur_idx = clear_idx;
2867 		dumper->next_seq = log_next_seq;
2868 		dumper->next_idx = log_next_idx;
2869 		logbuf_unlock_irqrestore(flags);
2870 
2871 		/* invoke dumper which will iterate over records */
2872 		dumper->dump(dumper, reason);
2873 
2874 		/* reset iterator */
2875 		dumper->active = false;
2876 	}
2877 	rcu_read_unlock();
2878 }
2879 
2880 /**
2881  * kmsg_dump_get_line_nolock - retrieve one kmsg log line (unlocked version)
2882  * @dumper: registered kmsg dumper
2883  * @syslog: include the "<4>" prefixes
2884  * @line: buffer to copy the line to
2885  * @size: maximum size of the buffer
2886  * @len: length of line placed into buffer
2887  *
2888  * Start at the beginning of the kmsg buffer, with the oldest kmsg
2889  * record, and copy one record into the provided buffer.
2890  *
2891  * Consecutive calls will return the next available record moving
2892  * towards the end of the buffer with the youngest messages.
2893  *
2894  * A return value of FALSE indicates that there are no more records to
2895  * read.
2896  *
2897  * The function is similar to kmsg_dump_get_line(), but grabs no locks.
2898  */
2899 bool kmsg_dump_get_line_nolock(struct kmsg_dumper *dumper, bool syslog,
2900 			       char *line, size_t size, size_t *len)
2901 {
2902 	struct printk_log *msg;
2903 	size_t l = 0;
2904 	bool ret = false;
2905 
2906 	if (!dumper->active)
2907 		goto out;
2908 
2909 	if (dumper->cur_seq < log_first_seq) {
2910 		/* messages are gone, move to first available one */
2911 		dumper->cur_seq = log_first_seq;
2912 		dumper->cur_idx = log_first_idx;
2913 	}
2914 
2915 	/* last entry */
2916 	if (dumper->cur_seq >= log_next_seq)
2917 		goto out;
2918 
2919 	msg = log_from_idx(dumper->cur_idx);
2920 	l = msg_print_text(msg, syslog, line, size);
2921 
2922 	dumper->cur_idx = log_next(dumper->cur_idx);
2923 	dumper->cur_seq++;
2924 	ret = true;
2925 out:
2926 	if (len)
2927 		*len = l;
2928 	return ret;
2929 }
2930 
2931 /**
2932  * kmsg_dump_get_line - retrieve one kmsg log line
2933  * @dumper: registered kmsg dumper
2934  * @syslog: include the "<4>" prefixes
2935  * @line: buffer to copy the line to
2936  * @size: maximum size of the buffer
2937  * @len: length of line placed into buffer
2938  *
2939  * Start at the beginning of the kmsg buffer, with the oldest kmsg
2940  * record, and copy one record into the provided buffer.
2941  *
2942  * Consecutive calls will return the next available record moving
2943  * towards the end of the buffer with the youngest messages.
2944  *
2945  * A return value of FALSE indicates that there are no more records to
2946  * read.
2947  */
2948 bool kmsg_dump_get_line(struct kmsg_dumper *dumper, bool syslog,
2949 			char *line, size_t size, size_t *len)
2950 {
2951 	unsigned long flags;
2952 	bool ret;
2953 
2954 	logbuf_lock_irqsave(flags);
2955 	ret = kmsg_dump_get_line_nolock(dumper, syslog, line, size, len);
2956 	logbuf_unlock_irqrestore(flags);
2957 
2958 	return ret;
2959 }
2960 EXPORT_SYMBOL_GPL(kmsg_dump_get_line);
2961 
2962 /**
2963  * kmsg_dump_get_buffer - copy kmsg log lines
2964  * @dumper: registered kmsg dumper
2965  * @syslog: include the "<4>" prefixes
2966  * @buf: buffer to copy the line to
2967  * @size: maximum size of the buffer
2968  * @len: length of line placed into buffer
2969  *
2970  * Start at the end of the kmsg buffer and fill the provided buffer
2971  * with as many of the the *youngest* kmsg records that fit into it.
2972  * If the buffer is large enough, all available kmsg records will be
2973  * copied with a single call.
2974  *
2975  * Consecutive calls will fill the buffer with the next block of
2976  * available older records, not including the earlier retrieved ones.
2977  *
2978  * A return value of FALSE indicates that there are no more records to
2979  * read.
2980  */
2981 bool kmsg_dump_get_buffer(struct kmsg_dumper *dumper, bool syslog,
2982 			  char *buf, size_t size, size_t *len)
2983 {
2984 	unsigned long flags;
2985 	u64 seq;
2986 	u32 idx;
2987 	u64 next_seq;
2988 	u32 next_idx;
2989 	size_t l = 0;
2990 	bool ret = false;
2991 
2992 	if (!dumper->active)
2993 		goto out;
2994 
2995 	logbuf_lock_irqsave(flags);
2996 	if (dumper->cur_seq < log_first_seq) {
2997 		/* messages are gone, move to first available one */
2998 		dumper->cur_seq = log_first_seq;
2999 		dumper->cur_idx = log_first_idx;
3000 	}
3001 
3002 	/* last entry */
3003 	if (dumper->cur_seq >= dumper->next_seq) {
3004 		logbuf_unlock_irqrestore(flags);
3005 		goto out;
3006 	}
3007 
3008 	/* calculate length of entire buffer */
3009 	seq = dumper->cur_seq;
3010 	idx = dumper->cur_idx;
3011 	while (seq < dumper->next_seq) {
3012 		struct printk_log *msg = log_from_idx(idx);
3013 
3014 		l += msg_print_text(msg, true, NULL, 0);
3015 		idx = log_next(idx);
3016 		seq++;
3017 	}
3018 
3019 	/* move first record forward until length fits into the buffer */
3020 	seq = dumper->cur_seq;
3021 	idx = dumper->cur_idx;
3022 	while (l > size && seq < dumper->next_seq) {
3023 		struct printk_log *msg = log_from_idx(idx);
3024 
3025 		l -= msg_print_text(msg, true, NULL, 0);
3026 		idx = log_next(idx);
3027 		seq++;
3028 	}
3029 
3030 	/* last message in next interation */
3031 	next_seq = seq;
3032 	next_idx = idx;
3033 
3034 	l = 0;
3035 	while (seq < dumper->next_seq) {
3036 		struct printk_log *msg = log_from_idx(idx);
3037 
3038 		l += msg_print_text(msg, syslog, buf + l, size - l);
3039 		idx = log_next(idx);
3040 		seq++;
3041 	}
3042 
3043 	dumper->next_seq = next_seq;
3044 	dumper->next_idx = next_idx;
3045 	ret = true;
3046 	logbuf_unlock_irqrestore(flags);
3047 out:
3048 	if (len)
3049 		*len = l;
3050 	return ret;
3051 }
3052 EXPORT_SYMBOL_GPL(kmsg_dump_get_buffer);
3053 
3054 /**
3055  * kmsg_dump_rewind_nolock - reset the interator (unlocked version)
3056  * @dumper: registered kmsg dumper
3057  *
3058  * Reset the dumper's iterator so that kmsg_dump_get_line() and
3059  * kmsg_dump_get_buffer() can be called again and used multiple
3060  * times within the same dumper.dump() callback.
3061  *
3062  * The function is similar to kmsg_dump_rewind(), but grabs no locks.
3063  */
3064 void kmsg_dump_rewind_nolock(struct kmsg_dumper *dumper)
3065 {
3066 	dumper->cur_seq = clear_seq;
3067 	dumper->cur_idx = clear_idx;
3068 	dumper->next_seq = log_next_seq;
3069 	dumper->next_idx = log_next_idx;
3070 }
3071 
3072 /**
3073  * kmsg_dump_rewind - reset the interator
3074  * @dumper: registered kmsg dumper
3075  *
3076  * Reset the dumper's iterator so that kmsg_dump_get_line() and
3077  * kmsg_dump_get_buffer() can be called again and used multiple
3078  * times within the same dumper.dump() callback.
3079  */
3080 void kmsg_dump_rewind(struct kmsg_dumper *dumper)
3081 {
3082 	unsigned long flags;
3083 
3084 	logbuf_lock_irqsave(flags);
3085 	kmsg_dump_rewind_nolock(dumper);
3086 	logbuf_unlock_irqrestore(flags);
3087 }
3088 EXPORT_SYMBOL_GPL(kmsg_dump_rewind);
3089 
3090 static char dump_stack_arch_desc_str[128];
3091 
3092 /**
3093  * dump_stack_set_arch_desc - set arch-specific str to show with task dumps
3094  * @fmt: printf-style format string
3095  * @...: arguments for the format string
3096  *
3097  * The configured string will be printed right after utsname during task
3098  * dumps.  Usually used to add arch-specific system identifiers.  If an
3099  * arch wants to make use of such an ID string, it should initialize this
3100  * as soon as possible during boot.
3101  */
3102 void __init dump_stack_set_arch_desc(const char *fmt, ...)
3103 {
3104 	va_list args;
3105 
3106 	va_start(args, fmt);
3107 	vsnprintf(dump_stack_arch_desc_str, sizeof(dump_stack_arch_desc_str),
3108 		  fmt, args);
3109 	va_end(args);
3110 }
3111 
3112 /**
3113  * dump_stack_print_info - print generic debug info for dump_stack()
3114  * @log_lvl: log level
3115  *
3116  * Arch-specific dump_stack() implementations can use this function to
3117  * print out the same debug information as the generic dump_stack().
3118  */
3119 void dump_stack_print_info(const char *log_lvl)
3120 {
3121 	printk("%sCPU: %d PID: %d Comm: %.20s %s %s %.*s\n",
3122 	       log_lvl, raw_smp_processor_id(), current->pid, current->comm,
3123 	       print_tainted(), init_utsname()->release,
3124 	       (int)strcspn(init_utsname()->version, " "),
3125 	       init_utsname()->version);
3126 
3127 	if (dump_stack_arch_desc_str[0] != '\0')
3128 		printk("%sHardware name: %s\n",
3129 		       log_lvl, dump_stack_arch_desc_str);
3130 
3131 	print_worker_info(log_lvl, current);
3132 }
3133 
3134 /**
3135  * show_regs_print_info - print generic debug info for show_regs()
3136  * @log_lvl: log level
3137  *
3138  * show_regs() implementations can use this function to print out generic
3139  * debug information.
3140  */
3141 void show_regs_print_info(const char *log_lvl)
3142 {
3143 	dump_stack_print_info(log_lvl);
3144 
3145 	printk("%stask: %p task.stack: %p\n",
3146 	       log_lvl, current, task_stack_page(current));
3147 }
3148 
3149 #endif
3150