xref: /openbmc/linux/kernel/printk/printk.c (revision 6a613ac6)
1 /*
2  *  linux/kernel/printk.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  *
6  * Modified to make sys_syslog() more flexible: added commands to
7  * return the last 4k of kernel messages, regardless of whether
8  * they've been read or not.  Added option to suppress kernel printk's
9  * to the console.  Added hook for sending the console messages
10  * elsewhere, in preparation for a serial line console (someday).
11  * Ted Ts'o, 2/11/93.
12  * Modified for sysctl support, 1/8/97, Chris Horn.
13  * Fixed SMP synchronization, 08/08/99, Manfred Spraul
14  *     manfred@colorfullife.com
15  * Rewrote bits to get rid of console_lock
16  *	01Mar01 Andrew Morton
17  */
18 
19 #include <linux/kernel.h>
20 #include <linux/mm.h>
21 #include <linux/tty.h>
22 #include <linux/tty_driver.h>
23 #include <linux/console.h>
24 #include <linux/init.h>
25 #include <linux/jiffies.h>
26 #include <linux/nmi.h>
27 #include <linux/module.h>
28 #include <linux/moduleparam.h>
29 #include <linux/interrupt.h>			/* For in_interrupt() */
30 #include <linux/delay.h>
31 #include <linux/smp.h>
32 #include <linux/security.h>
33 #include <linux/bootmem.h>
34 #include <linux/memblock.h>
35 #include <linux/syscalls.h>
36 #include <linux/kexec.h>
37 #include <linux/kdb.h>
38 #include <linux/ratelimit.h>
39 #include <linux/kmsg_dump.h>
40 #include <linux/syslog.h>
41 #include <linux/cpu.h>
42 #include <linux/notifier.h>
43 #include <linux/rculist.h>
44 #include <linux/poll.h>
45 #include <linux/irq_work.h>
46 #include <linux/utsname.h>
47 #include <linux/ctype.h>
48 #include <linux/uio.h>
49 
50 #include <asm/uaccess.h>
51 
52 #define CREATE_TRACE_POINTS
53 #include <trace/events/printk.h>
54 
55 #include "console_cmdline.h"
56 #include "braille.h"
57 
58 int console_printk[4] = {
59 	CONSOLE_LOGLEVEL_DEFAULT,	/* console_loglevel */
60 	MESSAGE_LOGLEVEL_DEFAULT,	/* default_message_loglevel */
61 	CONSOLE_LOGLEVEL_MIN,		/* minimum_console_loglevel */
62 	CONSOLE_LOGLEVEL_DEFAULT,	/* default_console_loglevel */
63 };
64 
65 /*
66  * Low level drivers may need that to know if they can schedule in
67  * their unblank() callback or not. So let's export it.
68  */
69 int oops_in_progress;
70 EXPORT_SYMBOL(oops_in_progress);
71 
72 /*
73  * console_sem protects the console_drivers list, and also
74  * provides serialisation for access to the entire console
75  * driver system.
76  */
77 static DEFINE_SEMAPHORE(console_sem);
78 struct console *console_drivers;
79 EXPORT_SYMBOL_GPL(console_drivers);
80 
81 #ifdef CONFIG_LOCKDEP
82 static struct lockdep_map console_lock_dep_map = {
83 	.name = "console_lock"
84 };
85 #endif
86 
87 /*
88  * Number of registered extended console drivers.
89  *
90  * If extended consoles are present, in-kernel cont reassembly is disabled
91  * and each fragment is stored as a separate log entry with proper
92  * continuation flag so that every emitted message has full metadata.  This
93  * doesn't change the result for regular consoles or /proc/kmsg.  For
94  * /dev/kmsg, as long as the reader concatenates messages according to
95  * consecutive continuation flags, the end result should be the same too.
96  */
97 static int nr_ext_console_drivers;
98 
99 /*
100  * Helper macros to handle lockdep when locking/unlocking console_sem. We use
101  * macros instead of functions so that _RET_IP_ contains useful information.
102  */
103 #define down_console_sem() do { \
104 	down(&console_sem);\
105 	mutex_acquire(&console_lock_dep_map, 0, 0, _RET_IP_);\
106 } while (0)
107 
108 static int __down_trylock_console_sem(unsigned long ip)
109 {
110 	if (down_trylock(&console_sem))
111 		return 1;
112 	mutex_acquire(&console_lock_dep_map, 0, 1, ip);
113 	return 0;
114 }
115 #define down_trylock_console_sem() __down_trylock_console_sem(_RET_IP_)
116 
117 #define up_console_sem() do { \
118 	mutex_release(&console_lock_dep_map, 1, _RET_IP_);\
119 	up(&console_sem);\
120 } while (0)
121 
122 /*
123  * This is used for debugging the mess that is the VT code by
124  * keeping track if we have the console semaphore held. It's
125  * definitely not the perfect debug tool (we don't know if _WE_
126  * hold it and are racing, but it helps tracking those weird code
127  * paths in the console code where we end up in places I want
128  * locked without the console sempahore held).
129  */
130 static int console_locked, console_suspended;
131 
132 /*
133  * If exclusive_console is non-NULL then only this console is to be printed to.
134  */
135 static struct console *exclusive_console;
136 
137 /*
138  *	Array of consoles built from command line options (console=)
139  */
140 
141 #define MAX_CMDLINECONSOLES 8
142 
143 static struct console_cmdline console_cmdline[MAX_CMDLINECONSOLES];
144 
145 static int selected_console = -1;
146 static int preferred_console = -1;
147 int console_set_on_cmdline;
148 EXPORT_SYMBOL(console_set_on_cmdline);
149 
150 /* Flag: console code may call schedule() */
151 static int console_may_schedule;
152 
153 /*
154  * The printk log buffer consists of a chain of concatenated variable
155  * length records. Every record starts with a record header, containing
156  * the overall length of the record.
157  *
158  * The heads to the first and last entry in the buffer, as well as the
159  * sequence numbers of these entries are maintained when messages are
160  * stored.
161  *
162  * If the heads indicate available messages, the length in the header
163  * tells the start next message. A length == 0 for the next message
164  * indicates a wrap-around to the beginning of the buffer.
165  *
166  * Every record carries the monotonic timestamp in microseconds, as well as
167  * the standard userspace syslog level and syslog facility. The usual
168  * kernel messages use LOG_KERN; userspace-injected messages always carry
169  * a matching syslog facility, by default LOG_USER. The origin of every
170  * message can be reliably determined that way.
171  *
172  * The human readable log message directly follows the message header. The
173  * length of the message text is stored in the header, the stored message
174  * is not terminated.
175  *
176  * Optionally, a message can carry a dictionary of properties (key/value pairs),
177  * to provide userspace with a machine-readable message context.
178  *
179  * Examples for well-defined, commonly used property names are:
180  *   DEVICE=b12:8               device identifier
181  *                                b12:8         block dev_t
182  *                                c127:3        char dev_t
183  *                                n8            netdev ifindex
184  *                                +sound:card0  subsystem:devname
185  *   SUBSYSTEM=pci              driver-core subsystem name
186  *
187  * Valid characters in property names are [a-zA-Z0-9.-_]. The plain text value
188  * follows directly after a '=' character. Every property is terminated by
189  * a '\0' character. The last property is not terminated.
190  *
191  * Example of a message structure:
192  *   0000  ff 8f 00 00 00 00 00 00      monotonic time in nsec
193  *   0008  34 00                        record is 52 bytes long
194  *   000a        0b 00                  text is 11 bytes long
195  *   000c              1f 00            dictionary is 23 bytes long
196  *   000e                    03 00      LOG_KERN (facility) LOG_ERR (level)
197  *   0010  69 74 27 73 20 61 20 6c      "it's a l"
198  *         69 6e 65                     "ine"
199  *   001b           44 45 56 49 43      "DEVIC"
200  *         45 3d 62 38 3a 32 00 44      "E=b8:2\0D"
201  *         52 49 56 45 52 3d 62 75      "RIVER=bu"
202  *         67                           "g"
203  *   0032     00 00 00                  padding to next message header
204  *
205  * The 'struct printk_log' buffer header must never be directly exported to
206  * userspace, it is a kernel-private implementation detail that might
207  * need to be changed in the future, when the requirements change.
208  *
209  * /dev/kmsg exports the structured data in the following line format:
210  *   "<level>,<sequnum>,<timestamp>,<contflag>[,additional_values, ... ];<message text>\n"
211  *
212  * Users of the export format should ignore possible additional values
213  * separated by ',', and find the message after the ';' character.
214  *
215  * The optional key/value pairs are attached as continuation lines starting
216  * with a space character and terminated by a newline. All possible
217  * non-prinatable characters are escaped in the "\xff" notation.
218  */
219 
220 enum log_flags {
221 	LOG_NOCONS	= 1,	/* already flushed, do not print to console */
222 	LOG_NEWLINE	= 2,	/* text ended with a newline */
223 	LOG_PREFIX	= 4,	/* text started with a prefix */
224 	LOG_CONT	= 8,	/* text is a fragment of a continuation line */
225 };
226 
227 struct printk_log {
228 	u64 ts_nsec;		/* timestamp in nanoseconds */
229 	u16 len;		/* length of entire record */
230 	u16 text_len;		/* length of text buffer */
231 	u16 dict_len;		/* length of dictionary buffer */
232 	u8 facility;		/* syslog facility */
233 	u8 flags:5;		/* internal record flags */
234 	u8 level:3;		/* syslog level */
235 };
236 
237 /*
238  * The logbuf_lock protects kmsg buffer, indices, counters.  This can be taken
239  * within the scheduler's rq lock. It must be released before calling
240  * console_unlock() or anything else that might wake up a process.
241  */
242 static DEFINE_RAW_SPINLOCK(logbuf_lock);
243 
244 #ifdef CONFIG_PRINTK
245 DECLARE_WAIT_QUEUE_HEAD(log_wait);
246 /* the next printk record to read by syslog(READ) or /proc/kmsg */
247 static u64 syslog_seq;
248 static u32 syslog_idx;
249 static enum log_flags syslog_prev;
250 static size_t syslog_partial;
251 
252 /* index and sequence number of the first record stored in the buffer */
253 static u64 log_first_seq;
254 static u32 log_first_idx;
255 
256 /* index and sequence number of the next record to store in the buffer */
257 static u64 log_next_seq;
258 static u32 log_next_idx;
259 
260 /* the next printk record to write to the console */
261 static u64 console_seq;
262 static u32 console_idx;
263 static enum log_flags console_prev;
264 
265 /* the next printk record to read after the last 'clear' command */
266 static u64 clear_seq;
267 static u32 clear_idx;
268 
269 #define PREFIX_MAX		32
270 #define LOG_LINE_MAX		(1024 - PREFIX_MAX)
271 
272 #define LOG_LEVEL(v)		((v) & 0x07)
273 #define LOG_FACILITY(v)		((v) >> 3 & 0xff)
274 
275 /* record buffer */
276 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)
277 #define LOG_ALIGN 4
278 #else
279 #define LOG_ALIGN __alignof__(struct printk_log)
280 #endif
281 #define __LOG_BUF_LEN (1 << CONFIG_LOG_BUF_SHIFT)
282 static char __log_buf[__LOG_BUF_LEN] __aligned(LOG_ALIGN);
283 static char *log_buf = __log_buf;
284 static u32 log_buf_len = __LOG_BUF_LEN;
285 
286 /* Return log buffer address */
287 char *log_buf_addr_get(void)
288 {
289 	return log_buf;
290 }
291 
292 /* Return log buffer size */
293 u32 log_buf_len_get(void)
294 {
295 	return log_buf_len;
296 }
297 
298 /* human readable text of the record */
299 static char *log_text(const struct printk_log *msg)
300 {
301 	return (char *)msg + sizeof(struct printk_log);
302 }
303 
304 /* optional key/value pair dictionary attached to the record */
305 static char *log_dict(const struct printk_log *msg)
306 {
307 	return (char *)msg + sizeof(struct printk_log) + msg->text_len;
308 }
309 
310 /* get record by index; idx must point to valid msg */
311 static struct printk_log *log_from_idx(u32 idx)
312 {
313 	struct printk_log *msg = (struct printk_log *)(log_buf + idx);
314 
315 	/*
316 	 * A length == 0 record is the end of buffer marker. Wrap around and
317 	 * read the message at the start of the buffer.
318 	 */
319 	if (!msg->len)
320 		return (struct printk_log *)log_buf;
321 	return msg;
322 }
323 
324 /* get next record; idx must point to valid msg */
325 static u32 log_next(u32 idx)
326 {
327 	struct printk_log *msg = (struct printk_log *)(log_buf + idx);
328 
329 	/* length == 0 indicates the end of the buffer; wrap */
330 	/*
331 	 * A length == 0 record is the end of buffer marker. Wrap around and
332 	 * read the message at the start of the buffer as *this* one, and
333 	 * return the one after that.
334 	 */
335 	if (!msg->len) {
336 		msg = (struct printk_log *)log_buf;
337 		return msg->len;
338 	}
339 	return idx + msg->len;
340 }
341 
342 /*
343  * Check whether there is enough free space for the given message.
344  *
345  * The same values of first_idx and next_idx mean that the buffer
346  * is either empty or full.
347  *
348  * If the buffer is empty, we must respect the position of the indexes.
349  * They cannot be reset to the beginning of the buffer.
350  */
351 static int logbuf_has_space(u32 msg_size, bool empty)
352 {
353 	u32 free;
354 
355 	if (log_next_idx > log_first_idx || empty)
356 		free = max(log_buf_len - log_next_idx, log_first_idx);
357 	else
358 		free = log_first_idx - log_next_idx;
359 
360 	/*
361 	 * We need space also for an empty header that signalizes wrapping
362 	 * of the buffer.
363 	 */
364 	return free >= msg_size + sizeof(struct printk_log);
365 }
366 
367 static int log_make_free_space(u32 msg_size)
368 {
369 	while (log_first_seq < log_next_seq) {
370 		if (logbuf_has_space(msg_size, false))
371 			return 0;
372 		/* drop old messages until we have enough contiguous space */
373 		log_first_idx = log_next(log_first_idx);
374 		log_first_seq++;
375 	}
376 
377 	/* sequence numbers are equal, so the log buffer is empty */
378 	if (logbuf_has_space(msg_size, true))
379 		return 0;
380 
381 	return -ENOMEM;
382 }
383 
384 /* compute the message size including the padding bytes */
385 static u32 msg_used_size(u16 text_len, u16 dict_len, u32 *pad_len)
386 {
387 	u32 size;
388 
389 	size = sizeof(struct printk_log) + text_len + dict_len;
390 	*pad_len = (-size) & (LOG_ALIGN - 1);
391 	size += *pad_len;
392 
393 	return size;
394 }
395 
396 /*
397  * Define how much of the log buffer we could take at maximum. The value
398  * must be greater than two. Note that only half of the buffer is available
399  * when the index points to the middle.
400  */
401 #define MAX_LOG_TAKE_PART 4
402 static const char trunc_msg[] = "<truncated>";
403 
404 static u32 truncate_msg(u16 *text_len, u16 *trunc_msg_len,
405 			u16 *dict_len, u32 *pad_len)
406 {
407 	/*
408 	 * The message should not take the whole buffer. Otherwise, it might
409 	 * get removed too soon.
410 	 */
411 	u32 max_text_len = log_buf_len / MAX_LOG_TAKE_PART;
412 	if (*text_len > max_text_len)
413 		*text_len = max_text_len;
414 	/* enable the warning message */
415 	*trunc_msg_len = strlen(trunc_msg);
416 	/* disable the "dict" completely */
417 	*dict_len = 0;
418 	/* compute the size again, count also the warning message */
419 	return msg_used_size(*text_len + *trunc_msg_len, 0, pad_len);
420 }
421 
422 /* insert record into the buffer, discard old ones, update heads */
423 static int log_store(int facility, int level,
424 		     enum log_flags flags, u64 ts_nsec,
425 		     const char *dict, u16 dict_len,
426 		     const char *text, u16 text_len)
427 {
428 	struct printk_log *msg;
429 	u32 size, pad_len;
430 	u16 trunc_msg_len = 0;
431 
432 	/* number of '\0' padding bytes to next message */
433 	size = msg_used_size(text_len, dict_len, &pad_len);
434 
435 	if (log_make_free_space(size)) {
436 		/* truncate the message if it is too long for empty buffer */
437 		size = truncate_msg(&text_len, &trunc_msg_len,
438 				    &dict_len, &pad_len);
439 		/* survive when the log buffer is too small for trunc_msg */
440 		if (log_make_free_space(size))
441 			return 0;
442 	}
443 
444 	if (log_next_idx + size + sizeof(struct printk_log) > log_buf_len) {
445 		/*
446 		 * This message + an additional empty header does not fit
447 		 * at the end of the buffer. Add an empty header with len == 0
448 		 * to signify a wrap around.
449 		 */
450 		memset(log_buf + log_next_idx, 0, sizeof(struct printk_log));
451 		log_next_idx = 0;
452 	}
453 
454 	/* fill message */
455 	msg = (struct printk_log *)(log_buf + log_next_idx);
456 	memcpy(log_text(msg), text, text_len);
457 	msg->text_len = text_len;
458 	if (trunc_msg_len) {
459 		memcpy(log_text(msg) + text_len, trunc_msg, trunc_msg_len);
460 		msg->text_len += trunc_msg_len;
461 	}
462 	memcpy(log_dict(msg), dict, dict_len);
463 	msg->dict_len = dict_len;
464 	msg->facility = facility;
465 	msg->level = level & 7;
466 	msg->flags = flags & 0x1f;
467 	if (ts_nsec > 0)
468 		msg->ts_nsec = ts_nsec;
469 	else
470 		msg->ts_nsec = local_clock();
471 	memset(log_dict(msg) + dict_len, 0, pad_len);
472 	msg->len = size;
473 
474 	/* insert message */
475 	log_next_idx += msg->len;
476 	log_next_seq++;
477 
478 	return msg->text_len;
479 }
480 
481 int dmesg_restrict = IS_ENABLED(CONFIG_SECURITY_DMESG_RESTRICT);
482 
483 static int syslog_action_restricted(int type)
484 {
485 	if (dmesg_restrict)
486 		return 1;
487 	/*
488 	 * Unless restricted, we allow "read all" and "get buffer size"
489 	 * for everybody.
490 	 */
491 	return type != SYSLOG_ACTION_READ_ALL &&
492 	       type != SYSLOG_ACTION_SIZE_BUFFER;
493 }
494 
495 int check_syslog_permissions(int type, int source)
496 {
497 	/*
498 	 * If this is from /proc/kmsg and we've already opened it, then we've
499 	 * already done the capabilities checks at open time.
500 	 */
501 	if (source == SYSLOG_FROM_PROC && type != SYSLOG_ACTION_OPEN)
502 		goto ok;
503 
504 	if (syslog_action_restricted(type)) {
505 		if (capable(CAP_SYSLOG))
506 			goto ok;
507 		/*
508 		 * For historical reasons, accept CAP_SYS_ADMIN too, with
509 		 * a warning.
510 		 */
511 		if (capable(CAP_SYS_ADMIN)) {
512 			pr_warn_once("%s (%d): Attempt to access syslog with "
513 				     "CAP_SYS_ADMIN but no CAP_SYSLOG "
514 				     "(deprecated).\n",
515 				 current->comm, task_pid_nr(current));
516 			goto ok;
517 		}
518 		return -EPERM;
519 	}
520 ok:
521 	return security_syslog(type);
522 }
523 EXPORT_SYMBOL_GPL(check_syslog_permissions);
524 
525 static void append_char(char **pp, char *e, char c)
526 {
527 	if (*pp < e)
528 		*(*pp)++ = c;
529 }
530 
531 static ssize_t msg_print_ext_header(char *buf, size_t size,
532 				    struct printk_log *msg, u64 seq,
533 				    enum log_flags prev_flags)
534 {
535 	u64 ts_usec = msg->ts_nsec;
536 	char cont = '-';
537 
538 	do_div(ts_usec, 1000);
539 
540 	/*
541 	 * If we couldn't merge continuation line fragments during the print,
542 	 * export the stored flags to allow an optional external merge of the
543 	 * records. Merging the records isn't always neccessarily correct, like
544 	 * when we hit a race during printing. In most cases though, it produces
545 	 * better readable output. 'c' in the record flags mark the first
546 	 * fragment of a line, '+' the following.
547 	 */
548 	if (msg->flags & LOG_CONT && !(prev_flags & LOG_CONT))
549 		cont = 'c';
550 	else if ((msg->flags & LOG_CONT) ||
551 		 ((prev_flags & LOG_CONT) && !(msg->flags & LOG_PREFIX)))
552 		cont = '+';
553 
554 	return scnprintf(buf, size, "%u,%llu,%llu,%c;",
555 		       (msg->facility << 3) | msg->level, seq, ts_usec, cont);
556 }
557 
558 static ssize_t msg_print_ext_body(char *buf, size_t size,
559 				  char *dict, size_t dict_len,
560 				  char *text, size_t text_len)
561 {
562 	char *p = buf, *e = buf + size;
563 	size_t i;
564 
565 	/* escape non-printable characters */
566 	for (i = 0; i < text_len; i++) {
567 		unsigned char c = text[i];
568 
569 		if (c < ' ' || c >= 127 || c == '\\')
570 			p += scnprintf(p, e - p, "\\x%02x", c);
571 		else
572 			append_char(&p, e, c);
573 	}
574 	append_char(&p, e, '\n');
575 
576 	if (dict_len) {
577 		bool line = true;
578 
579 		for (i = 0; i < dict_len; i++) {
580 			unsigned char c = dict[i];
581 
582 			if (line) {
583 				append_char(&p, e, ' ');
584 				line = false;
585 			}
586 
587 			if (c == '\0') {
588 				append_char(&p, e, '\n');
589 				line = true;
590 				continue;
591 			}
592 
593 			if (c < ' ' || c >= 127 || c == '\\') {
594 				p += scnprintf(p, e - p, "\\x%02x", c);
595 				continue;
596 			}
597 
598 			append_char(&p, e, c);
599 		}
600 		append_char(&p, e, '\n');
601 	}
602 
603 	return p - buf;
604 }
605 
606 /* /dev/kmsg - userspace message inject/listen interface */
607 struct devkmsg_user {
608 	u64 seq;
609 	u32 idx;
610 	enum log_flags prev;
611 	struct mutex lock;
612 	char buf[CONSOLE_EXT_LOG_MAX];
613 };
614 
615 static ssize_t devkmsg_write(struct kiocb *iocb, struct iov_iter *from)
616 {
617 	char *buf, *line;
618 	int level = default_message_loglevel;
619 	int facility = 1;	/* LOG_USER */
620 	size_t len = iov_iter_count(from);
621 	ssize_t ret = len;
622 
623 	if (len > LOG_LINE_MAX)
624 		return -EINVAL;
625 	buf = kmalloc(len+1, GFP_KERNEL);
626 	if (buf == NULL)
627 		return -ENOMEM;
628 
629 	buf[len] = '\0';
630 	if (copy_from_iter(buf, len, from) != len) {
631 		kfree(buf);
632 		return -EFAULT;
633 	}
634 
635 	/*
636 	 * Extract and skip the syslog prefix <[0-9]*>. Coming from userspace
637 	 * the decimal value represents 32bit, the lower 3 bit are the log
638 	 * level, the rest are the log facility.
639 	 *
640 	 * If no prefix or no userspace facility is specified, we
641 	 * enforce LOG_USER, to be able to reliably distinguish
642 	 * kernel-generated messages from userspace-injected ones.
643 	 */
644 	line = buf;
645 	if (line[0] == '<') {
646 		char *endp = NULL;
647 		unsigned int u;
648 
649 		u = simple_strtoul(line + 1, &endp, 10);
650 		if (endp && endp[0] == '>') {
651 			level = LOG_LEVEL(u);
652 			if (LOG_FACILITY(u) != 0)
653 				facility = LOG_FACILITY(u);
654 			endp++;
655 			len -= endp - line;
656 			line = endp;
657 		}
658 	}
659 
660 	printk_emit(facility, level, NULL, 0, "%s", line);
661 	kfree(buf);
662 	return ret;
663 }
664 
665 static ssize_t devkmsg_read(struct file *file, char __user *buf,
666 			    size_t count, loff_t *ppos)
667 {
668 	struct devkmsg_user *user = file->private_data;
669 	struct printk_log *msg;
670 	size_t len;
671 	ssize_t ret;
672 
673 	if (!user)
674 		return -EBADF;
675 
676 	ret = mutex_lock_interruptible(&user->lock);
677 	if (ret)
678 		return ret;
679 	raw_spin_lock_irq(&logbuf_lock);
680 	while (user->seq == log_next_seq) {
681 		if (file->f_flags & O_NONBLOCK) {
682 			ret = -EAGAIN;
683 			raw_spin_unlock_irq(&logbuf_lock);
684 			goto out;
685 		}
686 
687 		raw_spin_unlock_irq(&logbuf_lock);
688 		ret = wait_event_interruptible(log_wait,
689 					       user->seq != log_next_seq);
690 		if (ret)
691 			goto out;
692 		raw_spin_lock_irq(&logbuf_lock);
693 	}
694 
695 	if (user->seq < log_first_seq) {
696 		/* our last seen message is gone, return error and reset */
697 		user->idx = log_first_idx;
698 		user->seq = log_first_seq;
699 		ret = -EPIPE;
700 		raw_spin_unlock_irq(&logbuf_lock);
701 		goto out;
702 	}
703 
704 	msg = log_from_idx(user->idx);
705 	len = msg_print_ext_header(user->buf, sizeof(user->buf),
706 				   msg, user->seq, user->prev);
707 	len += msg_print_ext_body(user->buf + len, sizeof(user->buf) - len,
708 				  log_dict(msg), msg->dict_len,
709 				  log_text(msg), msg->text_len);
710 
711 	user->prev = msg->flags;
712 	user->idx = log_next(user->idx);
713 	user->seq++;
714 	raw_spin_unlock_irq(&logbuf_lock);
715 
716 	if (len > count) {
717 		ret = -EINVAL;
718 		goto out;
719 	}
720 
721 	if (copy_to_user(buf, user->buf, len)) {
722 		ret = -EFAULT;
723 		goto out;
724 	}
725 	ret = len;
726 out:
727 	mutex_unlock(&user->lock);
728 	return ret;
729 }
730 
731 static loff_t devkmsg_llseek(struct file *file, loff_t offset, int whence)
732 {
733 	struct devkmsg_user *user = file->private_data;
734 	loff_t ret = 0;
735 
736 	if (!user)
737 		return -EBADF;
738 	if (offset)
739 		return -ESPIPE;
740 
741 	raw_spin_lock_irq(&logbuf_lock);
742 	switch (whence) {
743 	case SEEK_SET:
744 		/* the first record */
745 		user->idx = log_first_idx;
746 		user->seq = log_first_seq;
747 		break;
748 	case SEEK_DATA:
749 		/*
750 		 * The first record after the last SYSLOG_ACTION_CLEAR,
751 		 * like issued by 'dmesg -c'. Reading /dev/kmsg itself
752 		 * changes no global state, and does not clear anything.
753 		 */
754 		user->idx = clear_idx;
755 		user->seq = clear_seq;
756 		break;
757 	case SEEK_END:
758 		/* after the last record */
759 		user->idx = log_next_idx;
760 		user->seq = log_next_seq;
761 		break;
762 	default:
763 		ret = -EINVAL;
764 	}
765 	raw_spin_unlock_irq(&logbuf_lock);
766 	return ret;
767 }
768 
769 static unsigned int devkmsg_poll(struct file *file, poll_table *wait)
770 {
771 	struct devkmsg_user *user = file->private_data;
772 	int ret = 0;
773 
774 	if (!user)
775 		return POLLERR|POLLNVAL;
776 
777 	poll_wait(file, &log_wait, wait);
778 
779 	raw_spin_lock_irq(&logbuf_lock);
780 	if (user->seq < log_next_seq) {
781 		/* return error when data has vanished underneath us */
782 		if (user->seq < log_first_seq)
783 			ret = POLLIN|POLLRDNORM|POLLERR|POLLPRI;
784 		else
785 			ret = POLLIN|POLLRDNORM;
786 	}
787 	raw_spin_unlock_irq(&logbuf_lock);
788 
789 	return ret;
790 }
791 
792 static int devkmsg_open(struct inode *inode, struct file *file)
793 {
794 	struct devkmsg_user *user;
795 	int err;
796 
797 	/* write-only does not need any file context */
798 	if ((file->f_flags & O_ACCMODE) == O_WRONLY)
799 		return 0;
800 
801 	err = check_syslog_permissions(SYSLOG_ACTION_READ_ALL,
802 				       SYSLOG_FROM_READER);
803 	if (err)
804 		return err;
805 
806 	user = kmalloc(sizeof(struct devkmsg_user), GFP_KERNEL);
807 	if (!user)
808 		return -ENOMEM;
809 
810 	mutex_init(&user->lock);
811 
812 	raw_spin_lock_irq(&logbuf_lock);
813 	user->idx = log_first_idx;
814 	user->seq = log_first_seq;
815 	raw_spin_unlock_irq(&logbuf_lock);
816 
817 	file->private_data = user;
818 	return 0;
819 }
820 
821 static int devkmsg_release(struct inode *inode, struct file *file)
822 {
823 	struct devkmsg_user *user = file->private_data;
824 
825 	if (!user)
826 		return 0;
827 
828 	mutex_destroy(&user->lock);
829 	kfree(user);
830 	return 0;
831 }
832 
833 const struct file_operations kmsg_fops = {
834 	.open = devkmsg_open,
835 	.read = devkmsg_read,
836 	.write_iter = devkmsg_write,
837 	.llseek = devkmsg_llseek,
838 	.poll = devkmsg_poll,
839 	.release = devkmsg_release,
840 };
841 
842 #ifdef CONFIG_KEXEC_CORE
843 /*
844  * This appends the listed symbols to /proc/vmcore
845  *
846  * /proc/vmcore is used by various utilities, like crash and makedumpfile to
847  * obtain access to symbols that are otherwise very difficult to locate.  These
848  * symbols are specifically used so that utilities can access and extract the
849  * dmesg log from a vmcore file after a crash.
850  */
851 void log_buf_kexec_setup(void)
852 {
853 	VMCOREINFO_SYMBOL(log_buf);
854 	VMCOREINFO_SYMBOL(log_buf_len);
855 	VMCOREINFO_SYMBOL(log_first_idx);
856 	VMCOREINFO_SYMBOL(log_next_idx);
857 	/*
858 	 * Export struct printk_log size and field offsets. User space tools can
859 	 * parse it and detect any changes to structure down the line.
860 	 */
861 	VMCOREINFO_STRUCT_SIZE(printk_log);
862 	VMCOREINFO_OFFSET(printk_log, ts_nsec);
863 	VMCOREINFO_OFFSET(printk_log, len);
864 	VMCOREINFO_OFFSET(printk_log, text_len);
865 	VMCOREINFO_OFFSET(printk_log, dict_len);
866 }
867 #endif
868 
869 /* requested log_buf_len from kernel cmdline */
870 static unsigned long __initdata new_log_buf_len;
871 
872 /* we practice scaling the ring buffer by powers of 2 */
873 static void __init log_buf_len_update(unsigned size)
874 {
875 	if (size)
876 		size = roundup_pow_of_two(size);
877 	if (size > log_buf_len)
878 		new_log_buf_len = size;
879 }
880 
881 /* save requested log_buf_len since it's too early to process it */
882 static int __init log_buf_len_setup(char *str)
883 {
884 	unsigned size = memparse(str, &str);
885 
886 	log_buf_len_update(size);
887 
888 	return 0;
889 }
890 early_param("log_buf_len", log_buf_len_setup);
891 
892 #ifdef CONFIG_SMP
893 #define __LOG_CPU_MAX_BUF_LEN (1 << CONFIG_LOG_CPU_MAX_BUF_SHIFT)
894 
895 static void __init log_buf_add_cpu(void)
896 {
897 	unsigned int cpu_extra;
898 
899 	/*
900 	 * archs should set up cpu_possible_bits properly with
901 	 * set_cpu_possible() after setup_arch() but just in
902 	 * case lets ensure this is valid.
903 	 */
904 	if (num_possible_cpus() == 1)
905 		return;
906 
907 	cpu_extra = (num_possible_cpus() - 1) * __LOG_CPU_MAX_BUF_LEN;
908 
909 	/* by default this will only continue through for large > 64 CPUs */
910 	if (cpu_extra <= __LOG_BUF_LEN / 2)
911 		return;
912 
913 	pr_info("log_buf_len individual max cpu contribution: %d bytes\n",
914 		__LOG_CPU_MAX_BUF_LEN);
915 	pr_info("log_buf_len total cpu_extra contributions: %d bytes\n",
916 		cpu_extra);
917 	pr_info("log_buf_len min size: %d bytes\n", __LOG_BUF_LEN);
918 
919 	log_buf_len_update(cpu_extra + __LOG_BUF_LEN);
920 }
921 #else /* !CONFIG_SMP */
922 static inline void log_buf_add_cpu(void) {}
923 #endif /* CONFIG_SMP */
924 
925 void __init setup_log_buf(int early)
926 {
927 	unsigned long flags;
928 	char *new_log_buf;
929 	int free;
930 
931 	if (log_buf != __log_buf)
932 		return;
933 
934 	if (!early && !new_log_buf_len)
935 		log_buf_add_cpu();
936 
937 	if (!new_log_buf_len)
938 		return;
939 
940 	if (early) {
941 		new_log_buf =
942 			memblock_virt_alloc(new_log_buf_len, LOG_ALIGN);
943 	} else {
944 		new_log_buf = memblock_virt_alloc_nopanic(new_log_buf_len,
945 							  LOG_ALIGN);
946 	}
947 
948 	if (unlikely(!new_log_buf)) {
949 		pr_err("log_buf_len: %ld bytes not available\n",
950 			new_log_buf_len);
951 		return;
952 	}
953 
954 	raw_spin_lock_irqsave(&logbuf_lock, flags);
955 	log_buf_len = new_log_buf_len;
956 	log_buf = new_log_buf;
957 	new_log_buf_len = 0;
958 	free = __LOG_BUF_LEN - log_next_idx;
959 	memcpy(log_buf, __log_buf, __LOG_BUF_LEN);
960 	raw_spin_unlock_irqrestore(&logbuf_lock, flags);
961 
962 	pr_info("log_buf_len: %d bytes\n", log_buf_len);
963 	pr_info("early log buf free: %d(%d%%)\n",
964 		free, (free * 100) / __LOG_BUF_LEN);
965 }
966 
967 static bool __read_mostly ignore_loglevel;
968 
969 static int __init ignore_loglevel_setup(char *str)
970 {
971 	ignore_loglevel = true;
972 	pr_info("debug: ignoring loglevel setting.\n");
973 
974 	return 0;
975 }
976 
977 early_param("ignore_loglevel", ignore_loglevel_setup);
978 module_param(ignore_loglevel, bool, S_IRUGO | S_IWUSR);
979 MODULE_PARM_DESC(ignore_loglevel,
980 		 "ignore loglevel setting (prints all kernel messages to the console)");
981 
982 #ifdef CONFIG_BOOT_PRINTK_DELAY
983 
984 static int boot_delay; /* msecs delay after each printk during bootup */
985 static unsigned long long loops_per_msec;	/* based on boot_delay */
986 
987 static int __init boot_delay_setup(char *str)
988 {
989 	unsigned long lpj;
990 
991 	lpj = preset_lpj ? preset_lpj : 1000000;	/* some guess */
992 	loops_per_msec = (unsigned long long)lpj / 1000 * HZ;
993 
994 	get_option(&str, &boot_delay);
995 	if (boot_delay > 10 * 1000)
996 		boot_delay = 0;
997 
998 	pr_debug("boot_delay: %u, preset_lpj: %ld, lpj: %lu, "
999 		"HZ: %d, loops_per_msec: %llu\n",
1000 		boot_delay, preset_lpj, lpj, HZ, loops_per_msec);
1001 	return 0;
1002 }
1003 early_param("boot_delay", boot_delay_setup);
1004 
1005 static void boot_delay_msec(int level)
1006 {
1007 	unsigned long long k;
1008 	unsigned long timeout;
1009 
1010 	if ((boot_delay == 0 || system_state != SYSTEM_BOOTING)
1011 		|| (level >= console_loglevel && !ignore_loglevel)) {
1012 		return;
1013 	}
1014 
1015 	k = (unsigned long long)loops_per_msec * boot_delay;
1016 
1017 	timeout = jiffies + msecs_to_jiffies(boot_delay);
1018 	while (k) {
1019 		k--;
1020 		cpu_relax();
1021 		/*
1022 		 * use (volatile) jiffies to prevent
1023 		 * compiler reduction; loop termination via jiffies
1024 		 * is secondary and may or may not happen.
1025 		 */
1026 		if (time_after(jiffies, timeout))
1027 			break;
1028 		touch_nmi_watchdog();
1029 	}
1030 }
1031 #else
1032 static inline void boot_delay_msec(int level)
1033 {
1034 }
1035 #endif
1036 
1037 static bool printk_time = IS_ENABLED(CONFIG_PRINTK_TIME);
1038 module_param_named(time, printk_time, bool, S_IRUGO | S_IWUSR);
1039 
1040 static size_t print_time(u64 ts, char *buf)
1041 {
1042 	unsigned long rem_nsec;
1043 
1044 	if (!printk_time)
1045 		return 0;
1046 
1047 	rem_nsec = do_div(ts, 1000000000);
1048 
1049 	if (!buf)
1050 		return snprintf(NULL, 0, "[%5lu.000000] ", (unsigned long)ts);
1051 
1052 	return sprintf(buf, "[%5lu.%06lu] ",
1053 		       (unsigned long)ts, rem_nsec / 1000);
1054 }
1055 
1056 static size_t print_prefix(const struct printk_log *msg, bool syslog, char *buf)
1057 {
1058 	size_t len = 0;
1059 	unsigned int prefix = (msg->facility << 3) | msg->level;
1060 
1061 	if (syslog) {
1062 		if (buf) {
1063 			len += sprintf(buf, "<%u>", prefix);
1064 		} else {
1065 			len += 3;
1066 			if (prefix > 999)
1067 				len += 3;
1068 			else if (prefix > 99)
1069 				len += 2;
1070 			else if (prefix > 9)
1071 				len++;
1072 		}
1073 	}
1074 
1075 	len += print_time(msg->ts_nsec, buf ? buf + len : NULL);
1076 	return len;
1077 }
1078 
1079 static size_t msg_print_text(const struct printk_log *msg, enum log_flags prev,
1080 			     bool syslog, char *buf, size_t size)
1081 {
1082 	const char *text = log_text(msg);
1083 	size_t text_size = msg->text_len;
1084 	bool prefix = true;
1085 	bool newline = true;
1086 	size_t len = 0;
1087 
1088 	if ((prev & LOG_CONT) && !(msg->flags & LOG_PREFIX))
1089 		prefix = false;
1090 
1091 	if (msg->flags & LOG_CONT) {
1092 		if ((prev & LOG_CONT) && !(prev & LOG_NEWLINE))
1093 			prefix = false;
1094 
1095 		if (!(msg->flags & LOG_NEWLINE))
1096 			newline = false;
1097 	}
1098 
1099 	do {
1100 		const char *next = memchr(text, '\n', text_size);
1101 		size_t text_len;
1102 
1103 		if (next) {
1104 			text_len = next - text;
1105 			next++;
1106 			text_size -= next - text;
1107 		} else {
1108 			text_len = text_size;
1109 		}
1110 
1111 		if (buf) {
1112 			if (print_prefix(msg, syslog, NULL) +
1113 			    text_len + 1 >= size - len)
1114 				break;
1115 
1116 			if (prefix)
1117 				len += print_prefix(msg, syslog, buf + len);
1118 			memcpy(buf + len, text, text_len);
1119 			len += text_len;
1120 			if (next || newline)
1121 				buf[len++] = '\n';
1122 		} else {
1123 			/* SYSLOG_ACTION_* buffer size only calculation */
1124 			if (prefix)
1125 				len += print_prefix(msg, syslog, NULL);
1126 			len += text_len;
1127 			if (next || newline)
1128 				len++;
1129 		}
1130 
1131 		prefix = true;
1132 		text = next;
1133 	} while (text);
1134 
1135 	return len;
1136 }
1137 
1138 static int syslog_print(char __user *buf, int size)
1139 {
1140 	char *text;
1141 	struct printk_log *msg;
1142 	int len = 0;
1143 
1144 	text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
1145 	if (!text)
1146 		return -ENOMEM;
1147 
1148 	while (size > 0) {
1149 		size_t n;
1150 		size_t skip;
1151 
1152 		raw_spin_lock_irq(&logbuf_lock);
1153 		if (syslog_seq < log_first_seq) {
1154 			/* messages are gone, move to first one */
1155 			syslog_seq = log_first_seq;
1156 			syslog_idx = log_first_idx;
1157 			syslog_prev = 0;
1158 			syslog_partial = 0;
1159 		}
1160 		if (syslog_seq == log_next_seq) {
1161 			raw_spin_unlock_irq(&logbuf_lock);
1162 			break;
1163 		}
1164 
1165 		skip = syslog_partial;
1166 		msg = log_from_idx(syslog_idx);
1167 		n = msg_print_text(msg, syslog_prev, true, text,
1168 				   LOG_LINE_MAX + PREFIX_MAX);
1169 		if (n - syslog_partial <= size) {
1170 			/* message fits into buffer, move forward */
1171 			syslog_idx = log_next(syslog_idx);
1172 			syslog_seq++;
1173 			syslog_prev = msg->flags;
1174 			n -= syslog_partial;
1175 			syslog_partial = 0;
1176 		} else if (!len){
1177 			/* partial read(), remember position */
1178 			n = size;
1179 			syslog_partial += n;
1180 		} else
1181 			n = 0;
1182 		raw_spin_unlock_irq(&logbuf_lock);
1183 
1184 		if (!n)
1185 			break;
1186 
1187 		if (copy_to_user(buf, text + skip, n)) {
1188 			if (!len)
1189 				len = -EFAULT;
1190 			break;
1191 		}
1192 
1193 		len += n;
1194 		size -= n;
1195 		buf += n;
1196 	}
1197 
1198 	kfree(text);
1199 	return len;
1200 }
1201 
1202 static int syslog_print_all(char __user *buf, int size, bool clear)
1203 {
1204 	char *text;
1205 	int len = 0;
1206 
1207 	text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
1208 	if (!text)
1209 		return -ENOMEM;
1210 
1211 	raw_spin_lock_irq(&logbuf_lock);
1212 	if (buf) {
1213 		u64 next_seq;
1214 		u64 seq;
1215 		u32 idx;
1216 		enum log_flags prev;
1217 
1218 		if (clear_seq < log_first_seq) {
1219 			/* messages are gone, move to first available one */
1220 			clear_seq = log_first_seq;
1221 			clear_idx = log_first_idx;
1222 		}
1223 
1224 		/*
1225 		 * Find first record that fits, including all following records,
1226 		 * into the user-provided buffer for this dump.
1227 		 */
1228 		seq = clear_seq;
1229 		idx = clear_idx;
1230 		prev = 0;
1231 		while (seq < log_next_seq) {
1232 			struct printk_log *msg = log_from_idx(idx);
1233 
1234 			len += msg_print_text(msg, prev, true, NULL, 0);
1235 			prev = msg->flags;
1236 			idx = log_next(idx);
1237 			seq++;
1238 		}
1239 
1240 		/* move first record forward until length fits into the buffer */
1241 		seq = clear_seq;
1242 		idx = clear_idx;
1243 		prev = 0;
1244 		while (len > size && seq < log_next_seq) {
1245 			struct printk_log *msg = log_from_idx(idx);
1246 
1247 			len -= msg_print_text(msg, prev, true, NULL, 0);
1248 			prev = msg->flags;
1249 			idx = log_next(idx);
1250 			seq++;
1251 		}
1252 
1253 		/* last message fitting into this dump */
1254 		next_seq = log_next_seq;
1255 
1256 		len = 0;
1257 		while (len >= 0 && seq < next_seq) {
1258 			struct printk_log *msg = log_from_idx(idx);
1259 			int textlen;
1260 
1261 			textlen = msg_print_text(msg, prev, true, text,
1262 						 LOG_LINE_MAX + PREFIX_MAX);
1263 			if (textlen < 0) {
1264 				len = textlen;
1265 				break;
1266 			}
1267 			idx = log_next(idx);
1268 			seq++;
1269 			prev = msg->flags;
1270 
1271 			raw_spin_unlock_irq(&logbuf_lock);
1272 			if (copy_to_user(buf + len, text, textlen))
1273 				len = -EFAULT;
1274 			else
1275 				len += textlen;
1276 			raw_spin_lock_irq(&logbuf_lock);
1277 
1278 			if (seq < log_first_seq) {
1279 				/* messages are gone, move to next one */
1280 				seq = log_first_seq;
1281 				idx = log_first_idx;
1282 				prev = 0;
1283 			}
1284 		}
1285 	}
1286 
1287 	if (clear) {
1288 		clear_seq = log_next_seq;
1289 		clear_idx = log_next_idx;
1290 	}
1291 	raw_spin_unlock_irq(&logbuf_lock);
1292 
1293 	kfree(text);
1294 	return len;
1295 }
1296 
1297 int do_syslog(int type, char __user *buf, int len, int source)
1298 {
1299 	bool clear = false;
1300 	static int saved_console_loglevel = LOGLEVEL_DEFAULT;
1301 	int error;
1302 
1303 	error = check_syslog_permissions(type, source);
1304 	if (error)
1305 		goto out;
1306 
1307 	switch (type) {
1308 	case SYSLOG_ACTION_CLOSE:	/* Close log */
1309 		break;
1310 	case SYSLOG_ACTION_OPEN:	/* Open log */
1311 		break;
1312 	case SYSLOG_ACTION_READ:	/* Read from log */
1313 		error = -EINVAL;
1314 		if (!buf || len < 0)
1315 			goto out;
1316 		error = 0;
1317 		if (!len)
1318 			goto out;
1319 		if (!access_ok(VERIFY_WRITE, buf, len)) {
1320 			error = -EFAULT;
1321 			goto out;
1322 		}
1323 		error = wait_event_interruptible(log_wait,
1324 						 syslog_seq != log_next_seq);
1325 		if (error)
1326 			goto out;
1327 		error = syslog_print(buf, len);
1328 		break;
1329 	/* Read/clear last kernel messages */
1330 	case SYSLOG_ACTION_READ_CLEAR:
1331 		clear = true;
1332 		/* FALL THRU */
1333 	/* Read last kernel messages */
1334 	case SYSLOG_ACTION_READ_ALL:
1335 		error = -EINVAL;
1336 		if (!buf || len < 0)
1337 			goto out;
1338 		error = 0;
1339 		if (!len)
1340 			goto out;
1341 		if (!access_ok(VERIFY_WRITE, buf, len)) {
1342 			error = -EFAULT;
1343 			goto out;
1344 		}
1345 		error = syslog_print_all(buf, len, clear);
1346 		break;
1347 	/* Clear ring buffer */
1348 	case SYSLOG_ACTION_CLEAR:
1349 		syslog_print_all(NULL, 0, true);
1350 		break;
1351 	/* Disable logging to console */
1352 	case SYSLOG_ACTION_CONSOLE_OFF:
1353 		if (saved_console_loglevel == LOGLEVEL_DEFAULT)
1354 			saved_console_loglevel = console_loglevel;
1355 		console_loglevel = minimum_console_loglevel;
1356 		break;
1357 	/* Enable logging to console */
1358 	case SYSLOG_ACTION_CONSOLE_ON:
1359 		if (saved_console_loglevel != LOGLEVEL_DEFAULT) {
1360 			console_loglevel = saved_console_loglevel;
1361 			saved_console_loglevel = LOGLEVEL_DEFAULT;
1362 		}
1363 		break;
1364 	/* Set level of messages printed to console */
1365 	case SYSLOG_ACTION_CONSOLE_LEVEL:
1366 		error = -EINVAL;
1367 		if (len < 1 || len > 8)
1368 			goto out;
1369 		if (len < minimum_console_loglevel)
1370 			len = minimum_console_loglevel;
1371 		console_loglevel = len;
1372 		/* Implicitly re-enable logging to console */
1373 		saved_console_loglevel = LOGLEVEL_DEFAULT;
1374 		error = 0;
1375 		break;
1376 	/* Number of chars in the log buffer */
1377 	case SYSLOG_ACTION_SIZE_UNREAD:
1378 		raw_spin_lock_irq(&logbuf_lock);
1379 		if (syslog_seq < log_first_seq) {
1380 			/* messages are gone, move to first one */
1381 			syslog_seq = log_first_seq;
1382 			syslog_idx = log_first_idx;
1383 			syslog_prev = 0;
1384 			syslog_partial = 0;
1385 		}
1386 		if (source == SYSLOG_FROM_PROC) {
1387 			/*
1388 			 * Short-cut for poll(/"proc/kmsg") which simply checks
1389 			 * for pending data, not the size; return the count of
1390 			 * records, not the length.
1391 			 */
1392 			error = log_next_seq - syslog_seq;
1393 		} else {
1394 			u64 seq = syslog_seq;
1395 			u32 idx = syslog_idx;
1396 			enum log_flags prev = syslog_prev;
1397 
1398 			error = 0;
1399 			while (seq < log_next_seq) {
1400 				struct printk_log *msg = log_from_idx(idx);
1401 
1402 				error += msg_print_text(msg, prev, true, NULL, 0);
1403 				idx = log_next(idx);
1404 				seq++;
1405 				prev = msg->flags;
1406 			}
1407 			error -= syslog_partial;
1408 		}
1409 		raw_spin_unlock_irq(&logbuf_lock);
1410 		break;
1411 	/* Size of the log buffer */
1412 	case SYSLOG_ACTION_SIZE_BUFFER:
1413 		error = log_buf_len;
1414 		break;
1415 	default:
1416 		error = -EINVAL;
1417 		break;
1418 	}
1419 out:
1420 	return error;
1421 }
1422 
1423 SYSCALL_DEFINE3(syslog, int, type, char __user *, buf, int, len)
1424 {
1425 	return do_syslog(type, buf, len, SYSLOG_FROM_READER);
1426 }
1427 
1428 /*
1429  * Call the console drivers, asking them to write out
1430  * log_buf[start] to log_buf[end - 1].
1431  * The console_lock must be held.
1432  */
1433 static void call_console_drivers(int level,
1434 				 const char *ext_text, size_t ext_len,
1435 				 const char *text, size_t len)
1436 {
1437 	struct console *con;
1438 
1439 	trace_console(text, len);
1440 
1441 	if (level >= console_loglevel && !ignore_loglevel)
1442 		return;
1443 	if (!console_drivers)
1444 		return;
1445 
1446 	for_each_console(con) {
1447 		if (exclusive_console && con != exclusive_console)
1448 			continue;
1449 		if (!(con->flags & CON_ENABLED))
1450 			continue;
1451 		if (!con->write)
1452 			continue;
1453 		if (!cpu_online(smp_processor_id()) &&
1454 		    !(con->flags & CON_ANYTIME))
1455 			continue;
1456 		if (con->flags & CON_EXTENDED)
1457 			con->write(con, ext_text, ext_len);
1458 		else
1459 			con->write(con, text, len);
1460 	}
1461 }
1462 
1463 /*
1464  * Zap console related locks when oopsing.
1465  * To leave time for slow consoles to print a full oops,
1466  * only zap at most once every 30 seconds.
1467  */
1468 static void zap_locks(void)
1469 {
1470 	static unsigned long oops_timestamp;
1471 
1472 	if (time_after_eq(jiffies, oops_timestamp) &&
1473 	    !time_after(jiffies, oops_timestamp + 30 * HZ))
1474 		return;
1475 
1476 	oops_timestamp = jiffies;
1477 
1478 	debug_locks_off();
1479 	/* If a crash is occurring, make sure we can't deadlock */
1480 	raw_spin_lock_init(&logbuf_lock);
1481 	/* And make sure that we print immediately */
1482 	sema_init(&console_sem, 1);
1483 }
1484 
1485 /*
1486  * Check if we have any console that is capable of printing while cpu is
1487  * booting or shutting down. Requires console_sem.
1488  */
1489 static int have_callable_console(void)
1490 {
1491 	struct console *con;
1492 
1493 	for_each_console(con)
1494 		if (con->flags & CON_ANYTIME)
1495 			return 1;
1496 
1497 	return 0;
1498 }
1499 
1500 /*
1501  * Can we actually use the console at this time on this cpu?
1502  *
1503  * Console drivers may assume that per-cpu resources have been allocated. So
1504  * unless they're explicitly marked as being able to cope (CON_ANYTIME) don't
1505  * call them until this CPU is officially up.
1506  */
1507 static inline int can_use_console(unsigned int cpu)
1508 {
1509 	return cpu_online(cpu) || have_callable_console();
1510 }
1511 
1512 /*
1513  * Try to get console ownership to actually show the kernel
1514  * messages from a 'printk'. Return true (and with the
1515  * console_lock held, and 'console_locked' set) if it
1516  * is successful, false otherwise.
1517  */
1518 static int console_trylock_for_printk(void)
1519 {
1520 	unsigned int cpu = smp_processor_id();
1521 
1522 	if (!console_trylock())
1523 		return 0;
1524 	/*
1525 	 * If we can't use the console, we need to release the console
1526 	 * semaphore by hand to avoid flushing the buffer. We need to hold the
1527 	 * console semaphore in order to do this test safely.
1528 	 */
1529 	if (!can_use_console(cpu)) {
1530 		console_locked = 0;
1531 		up_console_sem();
1532 		return 0;
1533 	}
1534 	return 1;
1535 }
1536 
1537 int printk_delay_msec __read_mostly;
1538 
1539 static inline void printk_delay(void)
1540 {
1541 	if (unlikely(printk_delay_msec)) {
1542 		int m = printk_delay_msec;
1543 
1544 		while (m--) {
1545 			mdelay(1);
1546 			touch_nmi_watchdog();
1547 		}
1548 	}
1549 }
1550 
1551 /*
1552  * Continuation lines are buffered, and not committed to the record buffer
1553  * until the line is complete, or a race forces it. The line fragments
1554  * though, are printed immediately to the consoles to ensure everything has
1555  * reached the console in case of a kernel crash.
1556  */
1557 static struct cont {
1558 	char buf[LOG_LINE_MAX];
1559 	size_t len;			/* length == 0 means unused buffer */
1560 	size_t cons;			/* bytes written to console */
1561 	struct task_struct *owner;	/* task of first print*/
1562 	u64 ts_nsec;			/* time of first print */
1563 	u8 level;			/* log level of first message */
1564 	u8 facility;			/* log facility of first message */
1565 	enum log_flags flags;		/* prefix, newline flags */
1566 	bool flushed:1;			/* buffer sealed and committed */
1567 } cont;
1568 
1569 static void cont_flush(enum log_flags flags)
1570 {
1571 	if (cont.flushed)
1572 		return;
1573 	if (cont.len == 0)
1574 		return;
1575 
1576 	if (cont.cons) {
1577 		/*
1578 		 * If a fragment of this line was directly flushed to the
1579 		 * console; wait for the console to pick up the rest of the
1580 		 * line. LOG_NOCONS suppresses a duplicated output.
1581 		 */
1582 		log_store(cont.facility, cont.level, flags | LOG_NOCONS,
1583 			  cont.ts_nsec, NULL, 0, cont.buf, cont.len);
1584 		cont.flags = flags;
1585 		cont.flushed = true;
1586 	} else {
1587 		/*
1588 		 * If no fragment of this line ever reached the console,
1589 		 * just submit it to the store and free the buffer.
1590 		 */
1591 		log_store(cont.facility, cont.level, flags, 0,
1592 			  NULL, 0, cont.buf, cont.len);
1593 		cont.len = 0;
1594 	}
1595 }
1596 
1597 static bool cont_add(int facility, int level, const char *text, size_t len)
1598 {
1599 	if (cont.len && cont.flushed)
1600 		return false;
1601 
1602 	/*
1603 	 * If ext consoles are present, flush and skip in-kernel
1604 	 * continuation.  See nr_ext_console_drivers definition.  Also, if
1605 	 * the line gets too long, split it up in separate records.
1606 	 */
1607 	if (nr_ext_console_drivers || cont.len + len > sizeof(cont.buf)) {
1608 		cont_flush(LOG_CONT);
1609 		return false;
1610 	}
1611 
1612 	if (!cont.len) {
1613 		cont.facility = facility;
1614 		cont.level = level;
1615 		cont.owner = current;
1616 		cont.ts_nsec = local_clock();
1617 		cont.flags = 0;
1618 		cont.cons = 0;
1619 		cont.flushed = false;
1620 	}
1621 
1622 	memcpy(cont.buf + cont.len, text, len);
1623 	cont.len += len;
1624 
1625 	if (cont.len > (sizeof(cont.buf) * 80) / 100)
1626 		cont_flush(LOG_CONT);
1627 
1628 	return true;
1629 }
1630 
1631 static size_t cont_print_text(char *text, size_t size)
1632 {
1633 	size_t textlen = 0;
1634 	size_t len;
1635 
1636 	if (cont.cons == 0 && (console_prev & LOG_NEWLINE)) {
1637 		textlen += print_time(cont.ts_nsec, text);
1638 		size -= textlen;
1639 	}
1640 
1641 	len = cont.len - cont.cons;
1642 	if (len > 0) {
1643 		if (len+1 > size)
1644 			len = size-1;
1645 		memcpy(text + textlen, cont.buf + cont.cons, len);
1646 		textlen += len;
1647 		cont.cons = cont.len;
1648 	}
1649 
1650 	if (cont.flushed) {
1651 		if (cont.flags & LOG_NEWLINE)
1652 			text[textlen++] = '\n';
1653 		/* got everything, release buffer */
1654 		cont.len = 0;
1655 	}
1656 	return textlen;
1657 }
1658 
1659 asmlinkage int vprintk_emit(int facility, int level,
1660 			    const char *dict, size_t dictlen,
1661 			    const char *fmt, va_list args)
1662 {
1663 	static int recursion_bug;
1664 	static char textbuf[LOG_LINE_MAX];
1665 	char *text = textbuf;
1666 	size_t text_len = 0;
1667 	enum log_flags lflags = 0;
1668 	unsigned long flags;
1669 	int this_cpu;
1670 	int printed_len = 0;
1671 	bool in_sched = false;
1672 	/* cpu currently holding logbuf_lock in this function */
1673 	static unsigned int logbuf_cpu = UINT_MAX;
1674 
1675 	if (level == LOGLEVEL_SCHED) {
1676 		level = LOGLEVEL_DEFAULT;
1677 		in_sched = true;
1678 	}
1679 
1680 	boot_delay_msec(level);
1681 	printk_delay();
1682 
1683 	/* This stops the holder of console_sem just where we want him */
1684 	local_irq_save(flags);
1685 	this_cpu = smp_processor_id();
1686 
1687 	/*
1688 	 * Ouch, printk recursed into itself!
1689 	 */
1690 	if (unlikely(logbuf_cpu == this_cpu)) {
1691 		/*
1692 		 * If a crash is occurring during printk() on this CPU,
1693 		 * then try to get the crash message out but make sure
1694 		 * we can't deadlock. Otherwise just return to avoid the
1695 		 * recursion and return - but flag the recursion so that
1696 		 * it can be printed at the next appropriate moment:
1697 		 */
1698 		if (!oops_in_progress && !lockdep_recursing(current)) {
1699 			recursion_bug = 1;
1700 			local_irq_restore(flags);
1701 			return 0;
1702 		}
1703 		zap_locks();
1704 	}
1705 
1706 	lockdep_off();
1707 	raw_spin_lock(&logbuf_lock);
1708 	logbuf_cpu = this_cpu;
1709 
1710 	if (unlikely(recursion_bug)) {
1711 		static const char recursion_msg[] =
1712 			"BUG: recent printk recursion!";
1713 
1714 		recursion_bug = 0;
1715 		/* emit KERN_CRIT message */
1716 		printed_len += log_store(0, 2, LOG_PREFIX|LOG_NEWLINE, 0,
1717 					 NULL, 0, recursion_msg,
1718 					 strlen(recursion_msg));
1719 	}
1720 
1721 	/*
1722 	 * The printf needs to come first; we need the syslog
1723 	 * prefix which might be passed-in as a parameter.
1724 	 */
1725 	text_len = vscnprintf(text, sizeof(textbuf), fmt, args);
1726 
1727 	/* mark and strip a trailing newline */
1728 	if (text_len && text[text_len-1] == '\n') {
1729 		text_len--;
1730 		lflags |= LOG_NEWLINE;
1731 	}
1732 
1733 	/* strip kernel syslog prefix and extract log level or control flags */
1734 	if (facility == 0) {
1735 		int kern_level = printk_get_level(text);
1736 
1737 		if (kern_level) {
1738 			const char *end_of_header = printk_skip_level(text);
1739 			switch (kern_level) {
1740 			case '0' ... '7':
1741 				if (level == LOGLEVEL_DEFAULT)
1742 					level = kern_level - '0';
1743 				/* fallthrough */
1744 			case 'd':	/* KERN_DEFAULT */
1745 				lflags |= LOG_PREFIX;
1746 			}
1747 			/*
1748 			 * No need to check length here because vscnprintf
1749 			 * put '\0' at the end of the string. Only valid and
1750 			 * newly printed level is detected.
1751 			 */
1752 			text_len -= end_of_header - text;
1753 			text = (char *)end_of_header;
1754 		}
1755 	}
1756 
1757 	if (level == LOGLEVEL_DEFAULT)
1758 		level = default_message_loglevel;
1759 
1760 	if (dict)
1761 		lflags |= LOG_PREFIX|LOG_NEWLINE;
1762 
1763 	if (!(lflags & LOG_NEWLINE)) {
1764 		/*
1765 		 * Flush the conflicting buffer. An earlier newline was missing,
1766 		 * or another task also prints continuation lines.
1767 		 */
1768 		if (cont.len && (lflags & LOG_PREFIX || cont.owner != current))
1769 			cont_flush(LOG_NEWLINE);
1770 
1771 		/* buffer line if possible, otherwise store it right away */
1772 		if (cont_add(facility, level, text, text_len))
1773 			printed_len += text_len;
1774 		else
1775 			printed_len += log_store(facility, level,
1776 						 lflags | LOG_CONT, 0,
1777 						 dict, dictlen, text, text_len);
1778 	} else {
1779 		bool stored = false;
1780 
1781 		/*
1782 		 * If an earlier newline was missing and it was the same task,
1783 		 * either merge it with the current buffer and flush, or if
1784 		 * there was a race with interrupts (prefix == true) then just
1785 		 * flush it out and store this line separately.
1786 		 * If the preceding printk was from a different task and missed
1787 		 * a newline, flush and append the newline.
1788 		 */
1789 		if (cont.len) {
1790 			if (cont.owner == current && !(lflags & LOG_PREFIX))
1791 				stored = cont_add(facility, level, text,
1792 						  text_len);
1793 			cont_flush(LOG_NEWLINE);
1794 		}
1795 
1796 		if (stored)
1797 			printed_len += text_len;
1798 		else
1799 			printed_len += log_store(facility, level, lflags, 0,
1800 						 dict, dictlen, text, text_len);
1801 	}
1802 
1803 	logbuf_cpu = UINT_MAX;
1804 	raw_spin_unlock(&logbuf_lock);
1805 	lockdep_on();
1806 	local_irq_restore(flags);
1807 
1808 	/* If called from the scheduler, we can not call up(). */
1809 	if (!in_sched) {
1810 		lockdep_off();
1811 		/*
1812 		 * Disable preemption to avoid being preempted while holding
1813 		 * console_sem which would prevent anyone from printing to
1814 		 * console
1815 		 */
1816 		preempt_disable();
1817 
1818 		/*
1819 		 * Try to acquire and then immediately release the console
1820 		 * semaphore.  The release will print out buffers and wake up
1821 		 * /dev/kmsg and syslog() users.
1822 		 */
1823 		if (console_trylock_for_printk())
1824 			console_unlock();
1825 		preempt_enable();
1826 		lockdep_on();
1827 	}
1828 
1829 	return printed_len;
1830 }
1831 EXPORT_SYMBOL(vprintk_emit);
1832 
1833 asmlinkage int vprintk(const char *fmt, va_list args)
1834 {
1835 	return vprintk_emit(0, LOGLEVEL_DEFAULT, NULL, 0, fmt, args);
1836 }
1837 EXPORT_SYMBOL(vprintk);
1838 
1839 asmlinkage int printk_emit(int facility, int level,
1840 			   const char *dict, size_t dictlen,
1841 			   const char *fmt, ...)
1842 {
1843 	va_list args;
1844 	int r;
1845 
1846 	va_start(args, fmt);
1847 	r = vprintk_emit(facility, level, dict, dictlen, fmt, args);
1848 	va_end(args);
1849 
1850 	return r;
1851 }
1852 EXPORT_SYMBOL(printk_emit);
1853 
1854 int vprintk_default(const char *fmt, va_list args)
1855 {
1856 	int r;
1857 
1858 #ifdef CONFIG_KGDB_KDB
1859 	if (unlikely(kdb_trap_printk)) {
1860 		r = vkdb_printf(KDB_MSGSRC_PRINTK, fmt, args);
1861 		return r;
1862 	}
1863 #endif
1864 	r = vprintk_emit(0, LOGLEVEL_DEFAULT, NULL, 0, fmt, args);
1865 
1866 	return r;
1867 }
1868 EXPORT_SYMBOL_GPL(vprintk_default);
1869 
1870 /*
1871  * This allows printk to be diverted to another function per cpu.
1872  * This is useful for calling printk functions from within NMI
1873  * without worrying about race conditions that can lock up the
1874  * box.
1875  */
1876 DEFINE_PER_CPU(printk_func_t, printk_func) = vprintk_default;
1877 
1878 /**
1879  * printk - print a kernel message
1880  * @fmt: format string
1881  *
1882  * This is printk(). It can be called from any context. We want it to work.
1883  *
1884  * We try to grab the console_lock. If we succeed, it's easy - we log the
1885  * output and call the console drivers.  If we fail to get the semaphore, we
1886  * place the output into the log buffer and return. The current holder of
1887  * the console_sem will notice the new output in console_unlock(); and will
1888  * send it to the consoles before releasing the lock.
1889  *
1890  * One effect of this deferred printing is that code which calls printk() and
1891  * then changes console_loglevel may break. This is because console_loglevel
1892  * is inspected when the actual printing occurs.
1893  *
1894  * See also:
1895  * printf(3)
1896  *
1897  * See the vsnprintf() documentation for format string extensions over C99.
1898  */
1899 asmlinkage __visible int printk(const char *fmt, ...)
1900 {
1901 	printk_func_t vprintk_func;
1902 	va_list args;
1903 	int r;
1904 
1905 	va_start(args, fmt);
1906 
1907 	/*
1908 	 * If a caller overrides the per_cpu printk_func, then it needs
1909 	 * to disable preemption when calling printk(). Otherwise
1910 	 * the printk_func should be set to the default. No need to
1911 	 * disable preemption here.
1912 	 */
1913 	vprintk_func = this_cpu_read(printk_func);
1914 	r = vprintk_func(fmt, args);
1915 
1916 	va_end(args);
1917 
1918 	return r;
1919 }
1920 EXPORT_SYMBOL(printk);
1921 
1922 #else /* CONFIG_PRINTK */
1923 
1924 #define LOG_LINE_MAX		0
1925 #define PREFIX_MAX		0
1926 
1927 static u64 syslog_seq;
1928 static u32 syslog_idx;
1929 static u64 console_seq;
1930 static u32 console_idx;
1931 static enum log_flags syslog_prev;
1932 static u64 log_first_seq;
1933 static u32 log_first_idx;
1934 static u64 log_next_seq;
1935 static enum log_flags console_prev;
1936 static struct cont {
1937 	size_t len;
1938 	size_t cons;
1939 	u8 level;
1940 	bool flushed:1;
1941 } cont;
1942 static char *log_text(const struct printk_log *msg) { return NULL; }
1943 static char *log_dict(const struct printk_log *msg) { return NULL; }
1944 static struct printk_log *log_from_idx(u32 idx) { return NULL; }
1945 static u32 log_next(u32 idx) { return 0; }
1946 static ssize_t msg_print_ext_header(char *buf, size_t size,
1947 				    struct printk_log *msg, u64 seq,
1948 				    enum log_flags prev_flags) { return 0; }
1949 static ssize_t msg_print_ext_body(char *buf, size_t size,
1950 				  char *dict, size_t dict_len,
1951 				  char *text, size_t text_len) { return 0; }
1952 static void call_console_drivers(int level,
1953 				 const char *ext_text, size_t ext_len,
1954 				 const char *text, size_t len) {}
1955 static size_t msg_print_text(const struct printk_log *msg, enum log_flags prev,
1956 			     bool syslog, char *buf, size_t size) { return 0; }
1957 static size_t cont_print_text(char *text, size_t size) { return 0; }
1958 
1959 /* Still needs to be defined for users */
1960 DEFINE_PER_CPU(printk_func_t, printk_func);
1961 
1962 #endif /* CONFIG_PRINTK */
1963 
1964 #ifdef CONFIG_EARLY_PRINTK
1965 struct console *early_console;
1966 
1967 asmlinkage __visible void early_printk(const char *fmt, ...)
1968 {
1969 	va_list ap;
1970 	char buf[512];
1971 	int n;
1972 
1973 	if (!early_console)
1974 		return;
1975 
1976 	va_start(ap, fmt);
1977 	n = vscnprintf(buf, sizeof(buf), fmt, ap);
1978 	va_end(ap);
1979 
1980 	early_console->write(early_console, buf, n);
1981 }
1982 #endif
1983 
1984 static int __add_preferred_console(char *name, int idx, char *options,
1985 				   char *brl_options)
1986 {
1987 	struct console_cmdline *c;
1988 	int i;
1989 
1990 	/*
1991 	 *	See if this tty is not yet registered, and
1992 	 *	if we have a slot free.
1993 	 */
1994 	for (i = 0, c = console_cmdline;
1995 	     i < MAX_CMDLINECONSOLES && c->name[0];
1996 	     i++, c++) {
1997 		if (strcmp(c->name, name) == 0 && c->index == idx) {
1998 			if (!brl_options)
1999 				selected_console = i;
2000 			return 0;
2001 		}
2002 	}
2003 	if (i == MAX_CMDLINECONSOLES)
2004 		return -E2BIG;
2005 	if (!brl_options)
2006 		selected_console = i;
2007 	strlcpy(c->name, name, sizeof(c->name));
2008 	c->options = options;
2009 	braille_set_options(c, brl_options);
2010 
2011 	c->index = idx;
2012 	return 0;
2013 }
2014 /*
2015  * Set up a console.  Called via do_early_param() in init/main.c
2016  * for each "console=" parameter in the boot command line.
2017  */
2018 static int __init console_setup(char *str)
2019 {
2020 	char buf[sizeof(console_cmdline[0].name) + 4]; /* 4 for "ttyS" */
2021 	char *s, *options, *brl_options = NULL;
2022 	int idx;
2023 
2024 	if (_braille_console_setup(&str, &brl_options))
2025 		return 1;
2026 
2027 	/*
2028 	 * Decode str into name, index, options.
2029 	 */
2030 	if (str[0] >= '0' && str[0] <= '9') {
2031 		strcpy(buf, "ttyS");
2032 		strncpy(buf + 4, str, sizeof(buf) - 5);
2033 	} else {
2034 		strncpy(buf, str, sizeof(buf) - 1);
2035 	}
2036 	buf[sizeof(buf) - 1] = 0;
2037 	options = strchr(str, ',');
2038 	if (options)
2039 		*(options++) = 0;
2040 #ifdef __sparc__
2041 	if (!strcmp(str, "ttya"))
2042 		strcpy(buf, "ttyS0");
2043 	if (!strcmp(str, "ttyb"))
2044 		strcpy(buf, "ttyS1");
2045 #endif
2046 	for (s = buf; *s; s++)
2047 		if (isdigit(*s) || *s == ',')
2048 			break;
2049 	idx = simple_strtoul(s, NULL, 10);
2050 	*s = 0;
2051 
2052 	__add_preferred_console(buf, idx, options, brl_options);
2053 	console_set_on_cmdline = 1;
2054 	return 1;
2055 }
2056 __setup("console=", console_setup);
2057 
2058 /**
2059  * add_preferred_console - add a device to the list of preferred consoles.
2060  * @name: device name
2061  * @idx: device index
2062  * @options: options for this console
2063  *
2064  * The last preferred console added will be used for kernel messages
2065  * and stdin/out/err for init.  Normally this is used by console_setup
2066  * above to handle user-supplied console arguments; however it can also
2067  * be used by arch-specific code either to override the user or more
2068  * commonly to provide a default console (ie from PROM variables) when
2069  * the user has not supplied one.
2070  */
2071 int add_preferred_console(char *name, int idx, char *options)
2072 {
2073 	return __add_preferred_console(name, idx, options, NULL);
2074 }
2075 
2076 bool console_suspend_enabled = true;
2077 EXPORT_SYMBOL(console_suspend_enabled);
2078 
2079 static int __init console_suspend_disable(char *str)
2080 {
2081 	console_suspend_enabled = false;
2082 	return 1;
2083 }
2084 __setup("no_console_suspend", console_suspend_disable);
2085 module_param_named(console_suspend, console_suspend_enabled,
2086 		bool, S_IRUGO | S_IWUSR);
2087 MODULE_PARM_DESC(console_suspend, "suspend console during suspend"
2088 	" and hibernate operations");
2089 
2090 /**
2091  * suspend_console - suspend the console subsystem
2092  *
2093  * This disables printk() while we go into suspend states
2094  */
2095 void suspend_console(void)
2096 {
2097 	if (!console_suspend_enabled)
2098 		return;
2099 	printk("Suspending console(s) (use no_console_suspend to debug)\n");
2100 	console_lock();
2101 	console_suspended = 1;
2102 	up_console_sem();
2103 }
2104 
2105 void resume_console(void)
2106 {
2107 	if (!console_suspend_enabled)
2108 		return;
2109 	down_console_sem();
2110 	console_suspended = 0;
2111 	console_unlock();
2112 }
2113 
2114 /**
2115  * console_cpu_notify - print deferred console messages after CPU hotplug
2116  * @self: notifier struct
2117  * @action: CPU hotplug event
2118  * @hcpu: unused
2119  *
2120  * If printk() is called from a CPU that is not online yet, the messages
2121  * will be spooled but will not show up on the console.  This function is
2122  * called when a new CPU comes online (or fails to come up), and ensures
2123  * that any such output gets printed.
2124  */
2125 static int console_cpu_notify(struct notifier_block *self,
2126 	unsigned long action, void *hcpu)
2127 {
2128 	switch (action) {
2129 	case CPU_ONLINE:
2130 	case CPU_DEAD:
2131 	case CPU_DOWN_FAILED:
2132 	case CPU_UP_CANCELED:
2133 		console_lock();
2134 		console_unlock();
2135 	}
2136 	return NOTIFY_OK;
2137 }
2138 
2139 /**
2140  * console_lock - lock the console system for exclusive use.
2141  *
2142  * Acquires a lock which guarantees that the caller has
2143  * exclusive access to the console system and the console_drivers list.
2144  *
2145  * Can sleep, returns nothing.
2146  */
2147 void console_lock(void)
2148 {
2149 	might_sleep();
2150 
2151 	down_console_sem();
2152 	if (console_suspended)
2153 		return;
2154 	console_locked = 1;
2155 	console_may_schedule = 1;
2156 }
2157 EXPORT_SYMBOL(console_lock);
2158 
2159 /**
2160  * console_trylock - try to lock the console system for exclusive use.
2161  *
2162  * Try to acquire a lock which guarantees that the caller has exclusive
2163  * access to the console system and the console_drivers list.
2164  *
2165  * returns 1 on success, and 0 on failure to acquire the lock.
2166  */
2167 int console_trylock(void)
2168 {
2169 	if (down_trylock_console_sem())
2170 		return 0;
2171 	if (console_suspended) {
2172 		up_console_sem();
2173 		return 0;
2174 	}
2175 	console_locked = 1;
2176 	console_may_schedule = 0;
2177 	return 1;
2178 }
2179 EXPORT_SYMBOL(console_trylock);
2180 
2181 int is_console_locked(void)
2182 {
2183 	return console_locked;
2184 }
2185 
2186 static void console_cont_flush(char *text, size_t size)
2187 {
2188 	unsigned long flags;
2189 	size_t len;
2190 
2191 	raw_spin_lock_irqsave(&logbuf_lock, flags);
2192 
2193 	if (!cont.len)
2194 		goto out;
2195 
2196 	/*
2197 	 * We still queue earlier records, likely because the console was
2198 	 * busy. The earlier ones need to be printed before this one, we
2199 	 * did not flush any fragment so far, so just let it queue up.
2200 	 */
2201 	if (console_seq < log_next_seq && !cont.cons)
2202 		goto out;
2203 
2204 	len = cont_print_text(text, size);
2205 	raw_spin_unlock(&logbuf_lock);
2206 	stop_critical_timings();
2207 	call_console_drivers(cont.level, NULL, 0, text, len);
2208 	start_critical_timings();
2209 	local_irq_restore(flags);
2210 	return;
2211 out:
2212 	raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2213 }
2214 
2215 /**
2216  * console_unlock - unlock the console system
2217  *
2218  * Releases the console_lock which the caller holds on the console system
2219  * and the console driver list.
2220  *
2221  * While the console_lock was held, console output may have been buffered
2222  * by printk().  If this is the case, console_unlock(); emits
2223  * the output prior to releasing the lock.
2224  *
2225  * If there is output waiting, we wake /dev/kmsg and syslog() users.
2226  *
2227  * console_unlock(); may be called from any context.
2228  */
2229 void console_unlock(void)
2230 {
2231 	static char ext_text[CONSOLE_EXT_LOG_MAX];
2232 	static char text[LOG_LINE_MAX + PREFIX_MAX];
2233 	static u64 seen_seq;
2234 	unsigned long flags;
2235 	bool wake_klogd = false;
2236 	bool retry;
2237 
2238 	if (console_suspended) {
2239 		up_console_sem();
2240 		return;
2241 	}
2242 
2243 	console_may_schedule = 0;
2244 
2245 	/* flush buffered message fragment immediately to console */
2246 	console_cont_flush(text, sizeof(text));
2247 again:
2248 	for (;;) {
2249 		struct printk_log *msg;
2250 		size_t ext_len = 0;
2251 		size_t len;
2252 		int level;
2253 
2254 		raw_spin_lock_irqsave(&logbuf_lock, flags);
2255 		if (seen_seq != log_next_seq) {
2256 			wake_klogd = true;
2257 			seen_seq = log_next_seq;
2258 		}
2259 
2260 		if (console_seq < log_first_seq) {
2261 			len = sprintf(text, "** %u printk messages dropped ** ",
2262 				      (unsigned)(log_first_seq - console_seq));
2263 
2264 			/* messages are gone, move to first one */
2265 			console_seq = log_first_seq;
2266 			console_idx = log_first_idx;
2267 			console_prev = 0;
2268 		} else {
2269 			len = 0;
2270 		}
2271 skip:
2272 		if (console_seq == log_next_seq)
2273 			break;
2274 
2275 		msg = log_from_idx(console_idx);
2276 		if (msg->flags & LOG_NOCONS) {
2277 			/*
2278 			 * Skip record we have buffered and already printed
2279 			 * directly to the console when we received it.
2280 			 */
2281 			console_idx = log_next(console_idx);
2282 			console_seq++;
2283 			/*
2284 			 * We will get here again when we register a new
2285 			 * CON_PRINTBUFFER console. Clear the flag so we
2286 			 * will properly dump everything later.
2287 			 */
2288 			msg->flags &= ~LOG_NOCONS;
2289 			console_prev = msg->flags;
2290 			goto skip;
2291 		}
2292 
2293 		level = msg->level;
2294 		len += msg_print_text(msg, console_prev, false,
2295 				      text + len, sizeof(text) - len);
2296 		if (nr_ext_console_drivers) {
2297 			ext_len = msg_print_ext_header(ext_text,
2298 						sizeof(ext_text),
2299 						msg, console_seq, console_prev);
2300 			ext_len += msg_print_ext_body(ext_text + ext_len,
2301 						sizeof(ext_text) - ext_len,
2302 						log_dict(msg), msg->dict_len,
2303 						log_text(msg), msg->text_len);
2304 		}
2305 		console_idx = log_next(console_idx);
2306 		console_seq++;
2307 		console_prev = msg->flags;
2308 		raw_spin_unlock(&logbuf_lock);
2309 
2310 		stop_critical_timings();	/* don't trace print latency */
2311 		call_console_drivers(level, ext_text, ext_len, text, len);
2312 		start_critical_timings();
2313 		local_irq_restore(flags);
2314 	}
2315 	console_locked = 0;
2316 
2317 	/* Release the exclusive_console once it is used */
2318 	if (unlikely(exclusive_console))
2319 		exclusive_console = NULL;
2320 
2321 	raw_spin_unlock(&logbuf_lock);
2322 
2323 	up_console_sem();
2324 
2325 	/*
2326 	 * Someone could have filled up the buffer again, so re-check if there's
2327 	 * something to flush. In case we cannot trylock the console_sem again,
2328 	 * there's a new owner and the console_unlock() from them will do the
2329 	 * flush, no worries.
2330 	 */
2331 	raw_spin_lock(&logbuf_lock);
2332 	retry = console_seq != log_next_seq;
2333 	raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2334 
2335 	if (retry && console_trylock())
2336 		goto again;
2337 
2338 	if (wake_klogd)
2339 		wake_up_klogd();
2340 }
2341 EXPORT_SYMBOL(console_unlock);
2342 
2343 /**
2344  * console_conditional_schedule - yield the CPU if required
2345  *
2346  * If the console code is currently allowed to sleep, and
2347  * if this CPU should yield the CPU to another task, do
2348  * so here.
2349  *
2350  * Must be called within console_lock();.
2351  */
2352 void __sched console_conditional_schedule(void)
2353 {
2354 	if (console_may_schedule)
2355 		cond_resched();
2356 }
2357 EXPORT_SYMBOL(console_conditional_schedule);
2358 
2359 void console_unblank(void)
2360 {
2361 	struct console *c;
2362 
2363 	/*
2364 	 * console_unblank can no longer be called in interrupt context unless
2365 	 * oops_in_progress is set to 1..
2366 	 */
2367 	if (oops_in_progress) {
2368 		if (down_trylock_console_sem() != 0)
2369 			return;
2370 	} else
2371 		console_lock();
2372 
2373 	console_locked = 1;
2374 	console_may_schedule = 0;
2375 	for_each_console(c)
2376 		if ((c->flags & CON_ENABLED) && c->unblank)
2377 			c->unblank();
2378 	console_unlock();
2379 }
2380 
2381 /*
2382  * Return the console tty driver structure and its associated index
2383  */
2384 struct tty_driver *console_device(int *index)
2385 {
2386 	struct console *c;
2387 	struct tty_driver *driver = NULL;
2388 
2389 	console_lock();
2390 	for_each_console(c) {
2391 		if (!c->device)
2392 			continue;
2393 		driver = c->device(c, index);
2394 		if (driver)
2395 			break;
2396 	}
2397 	console_unlock();
2398 	return driver;
2399 }
2400 
2401 /*
2402  * Prevent further output on the passed console device so that (for example)
2403  * serial drivers can disable console output before suspending a port, and can
2404  * re-enable output afterwards.
2405  */
2406 void console_stop(struct console *console)
2407 {
2408 	console_lock();
2409 	console->flags &= ~CON_ENABLED;
2410 	console_unlock();
2411 }
2412 EXPORT_SYMBOL(console_stop);
2413 
2414 void console_start(struct console *console)
2415 {
2416 	console_lock();
2417 	console->flags |= CON_ENABLED;
2418 	console_unlock();
2419 }
2420 EXPORT_SYMBOL(console_start);
2421 
2422 static int __read_mostly keep_bootcon;
2423 
2424 static int __init keep_bootcon_setup(char *str)
2425 {
2426 	keep_bootcon = 1;
2427 	pr_info("debug: skip boot console de-registration.\n");
2428 
2429 	return 0;
2430 }
2431 
2432 early_param("keep_bootcon", keep_bootcon_setup);
2433 
2434 /*
2435  * The console driver calls this routine during kernel initialization
2436  * to register the console printing procedure with printk() and to
2437  * print any messages that were printed by the kernel before the
2438  * console driver was initialized.
2439  *
2440  * This can happen pretty early during the boot process (because of
2441  * early_printk) - sometimes before setup_arch() completes - be careful
2442  * of what kernel features are used - they may not be initialised yet.
2443  *
2444  * There are two types of consoles - bootconsoles (early_printk) and
2445  * "real" consoles (everything which is not a bootconsole) which are
2446  * handled differently.
2447  *  - Any number of bootconsoles can be registered at any time.
2448  *  - As soon as a "real" console is registered, all bootconsoles
2449  *    will be unregistered automatically.
2450  *  - Once a "real" console is registered, any attempt to register a
2451  *    bootconsoles will be rejected
2452  */
2453 void register_console(struct console *newcon)
2454 {
2455 	int i;
2456 	unsigned long flags;
2457 	struct console *bcon = NULL;
2458 	struct console_cmdline *c;
2459 
2460 	if (console_drivers)
2461 		for_each_console(bcon)
2462 			if (WARN(bcon == newcon,
2463 					"console '%s%d' already registered\n",
2464 					bcon->name, bcon->index))
2465 				return;
2466 
2467 	/*
2468 	 * before we register a new CON_BOOT console, make sure we don't
2469 	 * already have a valid console
2470 	 */
2471 	if (console_drivers && newcon->flags & CON_BOOT) {
2472 		/* find the last or real console */
2473 		for_each_console(bcon) {
2474 			if (!(bcon->flags & CON_BOOT)) {
2475 				pr_info("Too late to register bootconsole %s%d\n",
2476 					newcon->name, newcon->index);
2477 				return;
2478 			}
2479 		}
2480 	}
2481 
2482 	if (console_drivers && console_drivers->flags & CON_BOOT)
2483 		bcon = console_drivers;
2484 
2485 	if (preferred_console < 0 || bcon || !console_drivers)
2486 		preferred_console = selected_console;
2487 
2488 	/*
2489 	 *	See if we want to use this console driver. If we
2490 	 *	didn't select a console we take the first one
2491 	 *	that registers here.
2492 	 */
2493 	if (preferred_console < 0) {
2494 		if (newcon->index < 0)
2495 			newcon->index = 0;
2496 		if (newcon->setup == NULL ||
2497 		    newcon->setup(newcon, NULL) == 0) {
2498 			newcon->flags |= CON_ENABLED;
2499 			if (newcon->device) {
2500 				newcon->flags |= CON_CONSDEV;
2501 				preferred_console = 0;
2502 			}
2503 		}
2504 	}
2505 
2506 	/*
2507 	 *	See if this console matches one we selected on
2508 	 *	the command line.
2509 	 */
2510 	for (i = 0, c = console_cmdline;
2511 	     i < MAX_CMDLINECONSOLES && c->name[0];
2512 	     i++, c++) {
2513 		if (!newcon->match ||
2514 		    newcon->match(newcon, c->name, c->index, c->options) != 0) {
2515 			/* default matching */
2516 			BUILD_BUG_ON(sizeof(c->name) != sizeof(newcon->name));
2517 			if (strcmp(c->name, newcon->name) != 0)
2518 				continue;
2519 			if (newcon->index >= 0 &&
2520 			    newcon->index != c->index)
2521 				continue;
2522 			if (newcon->index < 0)
2523 				newcon->index = c->index;
2524 
2525 			if (_braille_register_console(newcon, c))
2526 				return;
2527 
2528 			if (newcon->setup &&
2529 			    newcon->setup(newcon, c->options) != 0)
2530 				break;
2531 		}
2532 
2533 		newcon->flags |= CON_ENABLED;
2534 		if (i == selected_console) {
2535 			newcon->flags |= CON_CONSDEV;
2536 			preferred_console = selected_console;
2537 		}
2538 		break;
2539 	}
2540 
2541 	if (!(newcon->flags & CON_ENABLED))
2542 		return;
2543 
2544 	/*
2545 	 * If we have a bootconsole, and are switching to a real console,
2546 	 * don't print everything out again, since when the boot console, and
2547 	 * the real console are the same physical device, it's annoying to
2548 	 * see the beginning boot messages twice
2549 	 */
2550 	if (bcon && ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV))
2551 		newcon->flags &= ~CON_PRINTBUFFER;
2552 
2553 	/*
2554 	 *	Put this console in the list - keep the
2555 	 *	preferred driver at the head of the list.
2556 	 */
2557 	console_lock();
2558 	if ((newcon->flags & CON_CONSDEV) || console_drivers == NULL) {
2559 		newcon->next = console_drivers;
2560 		console_drivers = newcon;
2561 		if (newcon->next)
2562 			newcon->next->flags &= ~CON_CONSDEV;
2563 	} else {
2564 		newcon->next = console_drivers->next;
2565 		console_drivers->next = newcon;
2566 	}
2567 
2568 	if (newcon->flags & CON_EXTENDED)
2569 		if (!nr_ext_console_drivers++)
2570 			pr_info("printk: continuation disabled due to ext consoles, expect more fragments in /dev/kmsg\n");
2571 
2572 	if (newcon->flags & CON_PRINTBUFFER) {
2573 		/*
2574 		 * console_unlock(); will print out the buffered messages
2575 		 * for us.
2576 		 */
2577 		raw_spin_lock_irqsave(&logbuf_lock, flags);
2578 		console_seq = syslog_seq;
2579 		console_idx = syslog_idx;
2580 		console_prev = syslog_prev;
2581 		raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2582 		/*
2583 		 * We're about to replay the log buffer.  Only do this to the
2584 		 * just-registered console to avoid excessive message spam to
2585 		 * the already-registered consoles.
2586 		 */
2587 		exclusive_console = newcon;
2588 	}
2589 	console_unlock();
2590 	console_sysfs_notify();
2591 
2592 	/*
2593 	 * By unregistering the bootconsoles after we enable the real console
2594 	 * we get the "console xxx enabled" message on all the consoles -
2595 	 * boot consoles, real consoles, etc - this is to ensure that end
2596 	 * users know there might be something in the kernel's log buffer that
2597 	 * went to the bootconsole (that they do not see on the real console)
2598 	 */
2599 	pr_info("%sconsole [%s%d] enabled\n",
2600 		(newcon->flags & CON_BOOT) ? "boot" : "" ,
2601 		newcon->name, newcon->index);
2602 	if (bcon &&
2603 	    ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV) &&
2604 	    !keep_bootcon) {
2605 		/* We need to iterate through all boot consoles, to make
2606 		 * sure we print everything out, before we unregister them.
2607 		 */
2608 		for_each_console(bcon)
2609 			if (bcon->flags & CON_BOOT)
2610 				unregister_console(bcon);
2611 	}
2612 }
2613 EXPORT_SYMBOL(register_console);
2614 
2615 int unregister_console(struct console *console)
2616 {
2617         struct console *a, *b;
2618 	int res;
2619 
2620 	pr_info("%sconsole [%s%d] disabled\n",
2621 		(console->flags & CON_BOOT) ? "boot" : "" ,
2622 		console->name, console->index);
2623 
2624 	res = _braille_unregister_console(console);
2625 	if (res)
2626 		return res;
2627 
2628 	res = 1;
2629 	console_lock();
2630 	if (console_drivers == console) {
2631 		console_drivers=console->next;
2632 		res = 0;
2633 	} else if (console_drivers) {
2634 		for (a=console_drivers->next, b=console_drivers ;
2635 		     a; b=a, a=b->next) {
2636 			if (a == console) {
2637 				b->next = a->next;
2638 				res = 0;
2639 				break;
2640 			}
2641 		}
2642 	}
2643 
2644 	if (!res && (console->flags & CON_EXTENDED))
2645 		nr_ext_console_drivers--;
2646 
2647 	/*
2648 	 * If this isn't the last console and it has CON_CONSDEV set, we
2649 	 * need to set it on the next preferred console.
2650 	 */
2651 	if (console_drivers != NULL && console->flags & CON_CONSDEV)
2652 		console_drivers->flags |= CON_CONSDEV;
2653 
2654 	console->flags &= ~CON_ENABLED;
2655 	console_unlock();
2656 	console_sysfs_notify();
2657 	return res;
2658 }
2659 EXPORT_SYMBOL(unregister_console);
2660 
2661 static int __init printk_late_init(void)
2662 {
2663 	struct console *con;
2664 
2665 	for_each_console(con) {
2666 		if (!keep_bootcon && con->flags & CON_BOOT) {
2667 			unregister_console(con);
2668 		}
2669 	}
2670 	hotcpu_notifier(console_cpu_notify, 0);
2671 	return 0;
2672 }
2673 late_initcall(printk_late_init);
2674 
2675 #if defined CONFIG_PRINTK
2676 /*
2677  * Delayed printk version, for scheduler-internal messages:
2678  */
2679 #define PRINTK_PENDING_WAKEUP	0x01
2680 #define PRINTK_PENDING_OUTPUT	0x02
2681 
2682 static DEFINE_PER_CPU(int, printk_pending);
2683 
2684 static void wake_up_klogd_work_func(struct irq_work *irq_work)
2685 {
2686 	int pending = __this_cpu_xchg(printk_pending, 0);
2687 
2688 	if (pending & PRINTK_PENDING_OUTPUT) {
2689 		/* If trylock fails, someone else is doing the printing */
2690 		if (console_trylock())
2691 			console_unlock();
2692 	}
2693 
2694 	if (pending & PRINTK_PENDING_WAKEUP)
2695 		wake_up_interruptible(&log_wait);
2696 }
2697 
2698 static DEFINE_PER_CPU(struct irq_work, wake_up_klogd_work) = {
2699 	.func = wake_up_klogd_work_func,
2700 	.flags = IRQ_WORK_LAZY,
2701 };
2702 
2703 void wake_up_klogd(void)
2704 {
2705 	preempt_disable();
2706 	if (waitqueue_active(&log_wait)) {
2707 		this_cpu_or(printk_pending, PRINTK_PENDING_WAKEUP);
2708 		irq_work_queue(this_cpu_ptr(&wake_up_klogd_work));
2709 	}
2710 	preempt_enable();
2711 }
2712 
2713 int printk_deferred(const char *fmt, ...)
2714 {
2715 	va_list args;
2716 	int r;
2717 
2718 	preempt_disable();
2719 	va_start(args, fmt);
2720 	r = vprintk_emit(0, LOGLEVEL_SCHED, NULL, 0, fmt, args);
2721 	va_end(args);
2722 
2723 	__this_cpu_or(printk_pending, PRINTK_PENDING_OUTPUT);
2724 	irq_work_queue(this_cpu_ptr(&wake_up_klogd_work));
2725 	preempt_enable();
2726 
2727 	return r;
2728 }
2729 
2730 /*
2731  * printk rate limiting, lifted from the networking subsystem.
2732  *
2733  * This enforces a rate limit: not more than 10 kernel messages
2734  * every 5s to make a denial-of-service attack impossible.
2735  */
2736 DEFINE_RATELIMIT_STATE(printk_ratelimit_state, 5 * HZ, 10);
2737 
2738 int __printk_ratelimit(const char *func)
2739 {
2740 	return ___ratelimit(&printk_ratelimit_state, func);
2741 }
2742 EXPORT_SYMBOL(__printk_ratelimit);
2743 
2744 /**
2745  * printk_timed_ratelimit - caller-controlled printk ratelimiting
2746  * @caller_jiffies: pointer to caller's state
2747  * @interval_msecs: minimum interval between prints
2748  *
2749  * printk_timed_ratelimit() returns true if more than @interval_msecs
2750  * milliseconds have elapsed since the last time printk_timed_ratelimit()
2751  * returned true.
2752  */
2753 bool printk_timed_ratelimit(unsigned long *caller_jiffies,
2754 			unsigned int interval_msecs)
2755 {
2756 	unsigned long elapsed = jiffies - *caller_jiffies;
2757 
2758 	if (*caller_jiffies && elapsed <= msecs_to_jiffies(interval_msecs))
2759 		return false;
2760 
2761 	*caller_jiffies = jiffies;
2762 	return true;
2763 }
2764 EXPORT_SYMBOL(printk_timed_ratelimit);
2765 
2766 static DEFINE_SPINLOCK(dump_list_lock);
2767 static LIST_HEAD(dump_list);
2768 
2769 /**
2770  * kmsg_dump_register - register a kernel log dumper.
2771  * @dumper: pointer to the kmsg_dumper structure
2772  *
2773  * Adds a kernel log dumper to the system. The dump callback in the
2774  * structure will be called when the kernel oopses or panics and must be
2775  * set. Returns zero on success and %-EINVAL or %-EBUSY otherwise.
2776  */
2777 int kmsg_dump_register(struct kmsg_dumper *dumper)
2778 {
2779 	unsigned long flags;
2780 	int err = -EBUSY;
2781 
2782 	/* The dump callback needs to be set */
2783 	if (!dumper->dump)
2784 		return -EINVAL;
2785 
2786 	spin_lock_irqsave(&dump_list_lock, flags);
2787 	/* Don't allow registering multiple times */
2788 	if (!dumper->registered) {
2789 		dumper->registered = 1;
2790 		list_add_tail_rcu(&dumper->list, &dump_list);
2791 		err = 0;
2792 	}
2793 	spin_unlock_irqrestore(&dump_list_lock, flags);
2794 
2795 	return err;
2796 }
2797 EXPORT_SYMBOL_GPL(kmsg_dump_register);
2798 
2799 /**
2800  * kmsg_dump_unregister - unregister a kmsg dumper.
2801  * @dumper: pointer to the kmsg_dumper structure
2802  *
2803  * Removes a dump device from the system. Returns zero on success and
2804  * %-EINVAL otherwise.
2805  */
2806 int kmsg_dump_unregister(struct kmsg_dumper *dumper)
2807 {
2808 	unsigned long flags;
2809 	int err = -EINVAL;
2810 
2811 	spin_lock_irqsave(&dump_list_lock, flags);
2812 	if (dumper->registered) {
2813 		dumper->registered = 0;
2814 		list_del_rcu(&dumper->list);
2815 		err = 0;
2816 	}
2817 	spin_unlock_irqrestore(&dump_list_lock, flags);
2818 	synchronize_rcu();
2819 
2820 	return err;
2821 }
2822 EXPORT_SYMBOL_GPL(kmsg_dump_unregister);
2823 
2824 static bool always_kmsg_dump;
2825 module_param_named(always_kmsg_dump, always_kmsg_dump, bool, S_IRUGO | S_IWUSR);
2826 
2827 /**
2828  * kmsg_dump - dump kernel log to kernel message dumpers.
2829  * @reason: the reason (oops, panic etc) for dumping
2830  *
2831  * Call each of the registered dumper's dump() callback, which can
2832  * retrieve the kmsg records with kmsg_dump_get_line() or
2833  * kmsg_dump_get_buffer().
2834  */
2835 void kmsg_dump(enum kmsg_dump_reason reason)
2836 {
2837 	struct kmsg_dumper *dumper;
2838 	unsigned long flags;
2839 
2840 	if ((reason > KMSG_DUMP_OOPS) && !always_kmsg_dump)
2841 		return;
2842 
2843 	rcu_read_lock();
2844 	list_for_each_entry_rcu(dumper, &dump_list, list) {
2845 		if (dumper->max_reason && reason > dumper->max_reason)
2846 			continue;
2847 
2848 		/* initialize iterator with data about the stored records */
2849 		dumper->active = true;
2850 
2851 		raw_spin_lock_irqsave(&logbuf_lock, flags);
2852 		dumper->cur_seq = clear_seq;
2853 		dumper->cur_idx = clear_idx;
2854 		dumper->next_seq = log_next_seq;
2855 		dumper->next_idx = log_next_idx;
2856 		raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2857 
2858 		/* invoke dumper which will iterate over records */
2859 		dumper->dump(dumper, reason);
2860 
2861 		/* reset iterator */
2862 		dumper->active = false;
2863 	}
2864 	rcu_read_unlock();
2865 }
2866 
2867 /**
2868  * kmsg_dump_get_line_nolock - retrieve one kmsg log line (unlocked version)
2869  * @dumper: registered kmsg dumper
2870  * @syslog: include the "<4>" prefixes
2871  * @line: buffer to copy the line to
2872  * @size: maximum size of the buffer
2873  * @len: length of line placed into buffer
2874  *
2875  * Start at the beginning of the kmsg buffer, with the oldest kmsg
2876  * record, and copy one record into the provided buffer.
2877  *
2878  * Consecutive calls will return the next available record moving
2879  * towards the end of the buffer with the youngest messages.
2880  *
2881  * A return value of FALSE indicates that there are no more records to
2882  * read.
2883  *
2884  * The function is similar to kmsg_dump_get_line(), but grabs no locks.
2885  */
2886 bool kmsg_dump_get_line_nolock(struct kmsg_dumper *dumper, bool syslog,
2887 			       char *line, size_t size, size_t *len)
2888 {
2889 	struct printk_log *msg;
2890 	size_t l = 0;
2891 	bool ret = false;
2892 
2893 	if (!dumper->active)
2894 		goto out;
2895 
2896 	if (dumper->cur_seq < log_first_seq) {
2897 		/* messages are gone, move to first available one */
2898 		dumper->cur_seq = log_first_seq;
2899 		dumper->cur_idx = log_first_idx;
2900 	}
2901 
2902 	/* last entry */
2903 	if (dumper->cur_seq >= log_next_seq)
2904 		goto out;
2905 
2906 	msg = log_from_idx(dumper->cur_idx);
2907 	l = msg_print_text(msg, 0, syslog, line, size);
2908 
2909 	dumper->cur_idx = log_next(dumper->cur_idx);
2910 	dumper->cur_seq++;
2911 	ret = true;
2912 out:
2913 	if (len)
2914 		*len = l;
2915 	return ret;
2916 }
2917 
2918 /**
2919  * kmsg_dump_get_line - retrieve one kmsg log line
2920  * @dumper: registered kmsg dumper
2921  * @syslog: include the "<4>" prefixes
2922  * @line: buffer to copy the line to
2923  * @size: maximum size of the buffer
2924  * @len: length of line placed into buffer
2925  *
2926  * Start at the beginning of the kmsg buffer, with the oldest kmsg
2927  * record, and copy one record into the provided buffer.
2928  *
2929  * Consecutive calls will return the next available record moving
2930  * towards the end of the buffer with the youngest messages.
2931  *
2932  * A return value of FALSE indicates that there are no more records to
2933  * read.
2934  */
2935 bool kmsg_dump_get_line(struct kmsg_dumper *dumper, bool syslog,
2936 			char *line, size_t size, size_t *len)
2937 {
2938 	unsigned long flags;
2939 	bool ret;
2940 
2941 	raw_spin_lock_irqsave(&logbuf_lock, flags);
2942 	ret = kmsg_dump_get_line_nolock(dumper, syslog, line, size, len);
2943 	raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2944 
2945 	return ret;
2946 }
2947 EXPORT_SYMBOL_GPL(kmsg_dump_get_line);
2948 
2949 /**
2950  * kmsg_dump_get_buffer - copy kmsg log lines
2951  * @dumper: registered kmsg dumper
2952  * @syslog: include the "<4>" prefixes
2953  * @buf: buffer to copy the line to
2954  * @size: maximum size of the buffer
2955  * @len: length of line placed into buffer
2956  *
2957  * Start at the end of the kmsg buffer and fill the provided buffer
2958  * with as many of the the *youngest* kmsg records that fit into it.
2959  * If the buffer is large enough, all available kmsg records will be
2960  * copied with a single call.
2961  *
2962  * Consecutive calls will fill the buffer with the next block of
2963  * available older records, not including the earlier retrieved ones.
2964  *
2965  * A return value of FALSE indicates that there are no more records to
2966  * read.
2967  */
2968 bool kmsg_dump_get_buffer(struct kmsg_dumper *dumper, bool syslog,
2969 			  char *buf, size_t size, size_t *len)
2970 {
2971 	unsigned long flags;
2972 	u64 seq;
2973 	u32 idx;
2974 	u64 next_seq;
2975 	u32 next_idx;
2976 	enum log_flags prev;
2977 	size_t l = 0;
2978 	bool ret = false;
2979 
2980 	if (!dumper->active)
2981 		goto out;
2982 
2983 	raw_spin_lock_irqsave(&logbuf_lock, flags);
2984 	if (dumper->cur_seq < log_first_seq) {
2985 		/* messages are gone, move to first available one */
2986 		dumper->cur_seq = log_first_seq;
2987 		dumper->cur_idx = log_first_idx;
2988 	}
2989 
2990 	/* last entry */
2991 	if (dumper->cur_seq >= dumper->next_seq) {
2992 		raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2993 		goto out;
2994 	}
2995 
2996 	/* calculate length of entire buffer */
2997 	seq = dumper->cur_seq;
2998 	idx = dumper->cur_idx;
2999 	prev = 0;
3000 	while (seq < dumper->next_seq) {
3001 		struct printk_log *msg = log_from_idx(idx);
3002 
3003 		l += msg_print_text(msg, prev, true, NULL, 0);
3004 		idx = log_next(idx);
3005 		seq++;
3006 		prev = msg->flags;
3007 	}
3008 
3009 	/* move first record forward until length fits into the buffer */
3010 	seq = dumper->cur_seq;
3011 	idx = dumper->cur_idx;
3012 	prev = 0;
3013 	while (l > size && seq < dumper->next_seq) {
3014 		struct printk_log *msg = log_from_idx(idx);
3015 
3016 		l -= msg_print_text(msg, prev, true, NULL, 0);
3017 		idx = log_next(idx);
3018 		seq++;
3019 		prev = msg->flags;
3020 	}
3021 
3022 	/* last message in next interation */
3023 	next_seq = seq;
3024 	next_idx = idx;
3025 
3026 	l = 0;
3027 	while (seq < dumper->next_seq) {
3028 		struct printk_log *msg = log_from_idx(idx);
3029 
3030 		l += msg_print_text(msg, prev, syslog, buf + l, size - l);
3031 		idx = log_next(idx);
3032 		seq++;
3033 		prev = msg->flags;
3034 	}
3035 
3036 	dumper->next_seq = next_seq;
3037 	dumper->next_idx = next_idx;
3038 	ret = true;
3039 	raw_spin_unlock_irqrestore(&logbuf_lock, flags);
3040 out:
3041 	if (len)
3042 		*len = l;
3043 	return ret;
3044 }
3045 EXPORT_SYMBOL_GPL(kmsg_dump_get_buffer);
3046 
3047 /**
3048  * kmsg_dump_rewind_nolock - reset the interator (unlocked version)
3049  * @dumper: registered kmsg dumper
3050  *
3051  * Reset the dumper's iterator so that kmsg_dump_get_line() and
3052  * kmsg_dump_get_buffer() can be called again and used multiple
3053  * times within the same dumper.dump() callback.
3054  *
3055  * The function is similar to kmsg_dump_rewind(), but grabs no locks.
3056  */
3057 void kmsg_dump_rewind_nolock(struct kmsg_dumper *dumper)
3058 {
3059 	dumper->cur_seq = clear_seq;
3060 	dumper->cur_idx = clear_idx;
3061 	dumper->next_seq = log_next_seq;
3062 	dumper->next_idx = log_next_idx;
3063 }
3064 
3065 /**
3066  * kmsg_dump_rewind - reset the interator
3067  * @dumper: registered kmsg dumper
3068  *
3069  * Reset the dumper's iterator so that kmsg_dump_get_line() and
3070  * kmsg_dump_get_buffer() can be called again and used multiple
3071  * times within the same dumper.dump() callback.
3072  */
3073 void kmsg_dump_rewind(struct kmsg_dumper *dumper)
3074 {
3075 	unsigned long flags;
3076 
3077 	raw_spin_lock_irqsave(&logbuf_lock, flags);
3078 	kmsg_dump_rewind_nolock(dumper);
3079 	raw_spin_unlock_irqrestore(&logbuf_lock, flags);
3080 }
3081 EXPORT_SYMBOL_GPL(kmsg_dump_rewind);
3082 
3083 static char dump_stack_arch_desc_str[128];
3084 
3085 /**
3086  * dump_stack_set_arch_desc - set arch-specific str to show with task dumps
3087  * @fmt: printf-style format string
3088  * @...: arguments for the format string
3089  *
3090  * The configured string will be printed right after utsname during task
3091  * dumps.  Usually used to add arch-specific system identifiers.  If an
3092  * arch wants to make use of such an ID string, it should initialize this
3093  * as soon as possible during boot.
3094  */
3095 void __init dump_stack_set_arch_desc(const char *fmt, ...)
3096 {
3097 	va_list args;
3098 
3099 	va_start(args, fmt);
3100 	vsnprintf(dump_stack_arch_desc_str, sizeof(dump_stack_arch_desc_str),
3101 		  fmt, args);
3102 	va_end(args);
3103 }
3104 
3105 /**
3106  * dump_stack_print_info - print generic debug info for dump_stack()
3107  * @log_lvl: log level
3108  *
3109  * Arch-specific dump_stack() implementations can use this function to
3110  * print out the same debug information as the generic dump_stack().
3111  */
3112 void dump_stack_print_info(const char *log_lvl)
3113 {
3114 	printk("%sCPU: %d PID: %d Comm: %.20s %s %s %.*s\n",
3115 	       log_lvl, raw_smp_processor_id(), current->pid, current->comm,
3116 	       print_tainted(), init_utsname()->release,
3117 	       (int)strcspn(init_utsname()->version, " "),
3118 	       init_utsname()->version);
3119 
3120 	if (dump_stack_arch_desc_str[0] != '\0')
3121 		printk("%sHardware name: %s\n",
3122 		       log_lvl, dump_stack_arch_desc_str);
3123 
3124 	print_worker_info(log_lvl, current);
3125 }
3126 
3127 /**
3128  * show_regs_print_info - print generic debug info for show_regs()
3129  * @log_lvl: log level
3130  *
3131  * show_regs() implementations can use this function to print out generic
3132  * debug information.
3133  */
3134 void show_regs_print_info(const char *log_lvl)
3135 {
3136 	dump_stack_print_info(log_lvl);
3137 
3138 	printk("%stask: %p ti: %p task.ti: %p\n",
3139 	       log_lvl, current, current_thread_info(),
3140 	       task_thread_info(current));
3141 }
3142 
3143 #endif
3144