xref: /openbmc/linux/kernel/printk/printk.c (revision 62e7ca52)
1 /*
2  *  linux/kernel/printk.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  *
6  * Modified to make sys_syslog() more flexible: added commands to
7  * return the last 4k of kernel messages, regardless of whether
8  * they've been read or not.  Added option to suppress kernel printk's
9  * to the console.  Added hook for sending the console messages
10  * elsewhere, in preparation for a serial line console (someday).
11  * Ted Ts'o, 2/11/93.
12  * Modified for sysctl support, 1/8/97, Chris Horn.
13  * Fixed SMP synchronization, 08/08/99, Manfred Spraul
14  *     manfred@colorfullife.com
15  * Rewrote bits to get rid of console_lock
16  *	01Mar01 Andrew Morton
17  */
18 
19 #include <linux/kernel.h>
20 #include <linux/mm.h>
21 #include <linux/tty.h>
22 #include <linux/tty_driver.h>
23 #include <linux/console.h>
24 #include <linux/init.h>
25 #include <linux/jiffies.h>
26 #include <linux/nmi.h>
27 #include <linux/module.h>
28 #include <linux/moduleparam.h>
29 #include <linux/interrupt.h>			/* For in_interrupt() */
30 #include <linux/delay.h>
31 #include <linux/smp.h>
32 #include <linux/security.h>
33 #include <linux/bootmem.h>
34 #include <linux/memblock.h>
35 #include <linux/aio.h>
36 #include <linux/syscalls.h>
37 #include <linux/kexec.h>
38 #include <linux/kdb.h>
39 #include <linux/ratelimit.h>
40 #include <linux/kmsg_dump.h>
41 #include <linux/syslog.h>
42 #include <linux/cpu.h>
43 #include <linux/notifier.h>
44 #include <linux/rculist.h>
45 #include <linux/poll.h>
46 #include <linux/irq_work.h>
47 #include <linux/utsname.h>
48 #include <linux/ctype.h>
49 
50 #include <asm/uaccess.h>
51 
52 #define CREATE_TRACE_POINTS
53 #include <trace/events/printk.h>
54 
55 #include "console_cmdline.h"
56 #include "braille.h"
57 
58 int console_printk[4] = {
59 	CONSOLE_LOGLEVEL_DEFAULT,	/* console_loglevel */
60 	MESSAGE_LOGLEVEL_DEFAULT,	/* default_message_loglevel */
61 	CONSOLE_LOGLEVEL_MIN,		/* minimum_console_loglevel */
62 	CONSOLE_LOGLEVEL_DEFAULT,	/* default_console_loglevel */
63 };
64 
65 /* Deferred messaged from sched code are marked by this special level */
66 #define SCHED_MESSAGE_LOGLEVEL -2
67 
68 /*
69  * Low level drivers may need that to know if they can schedule in
70  * their unblank() callback or not. So let's export it.
71  */
72 int oops_in_progress;
73 EXPORT_SYMBOL(oops_in_progress);
74 
75 /*
76  * console_sem protects the console_drivers list, and also
77  * provides serialisation for access to the entire console
78  * driver system.
79  */
80 static DEFINE_SEMAPHORE(console_sem);
81 struct console *console_drivers;
82 EXPORT_SYMBOL_GPL(console_drivers);
83 
84 #ifdef CONFIG_LOCKDEP
85 static struct lockdep_map console_lock_dep_map = {
86 	.name = "console_lock"
87 };
88 #endif
89 
90 /*
91  * Helper macros to handle lockdep when locking/unlocking console_sem. We use
92  * macros instead of functions so that _RET_IP_ contains useful information.
93  */
94 #define down_console_sem() do { \
95 	down(&console_sem);\
96 	mutex_acquire(&console_lock_dep_map, 0, 0, _RET_IP_);\
97 } while (0)
98 
99 static int __down_trylock_console_sem(unsigned long ip)
100 {
101 	if (down_trylock(&console_sem))
102 		return 1;
103 	mutex_acquire(&console_lock_dep_map, 0, 1, ip);
104 	return 0;
105 }
106 #define down_trylock_console_sem() __down_trylock_console_sem(_RET_IP_)
107 
108 #define up_console_sem() do { \
109 	mutex_release(&console_lock_dep_map, 1, _RET_IP_);\
110 	up(&console_sem);\
111 } while (0)
112 
113 /*
114  * This is used for debugging the mess that is the VT code by
115  * keeping track if we have the console semaphore held. It's
116  * definitely not the perfect debug tool (we don't know if _WE_
117  * hold it and are racing, but it helps tracking those weird code
118  * paths in the console code where we end up in places I want
119  * locked without the console sempahore held).
120  */
121 static int console_locked, console_suspended;
122 
123 /*
124  * If exclusive_console is non-NULL then only this console is to be printed to.
125  */
126 static struct console *exclusive_console;
127 
128 /*
129  *	Array of consoles built from command line options (console=)
130  */
131 
132 #define MAX_CMDLINECONSOLES 8
133 
134 static struct console_cmdline console_cmdline[MAX_CMDLINECONSOLES];
135 
136 static int selected_console = -1;
137 static int preferred_console = -1;
138 int console_set_on_cmdline;
139 EXPORT_SYMBOL(console_set_on_cmdline);
140 
141 /* Flag: console code may call schedule() */
142 static int console_may_schedule;
143 
144 /*
145  * The printk log buffer consists of a chain of concatenated variable
146  * length records. Every record starts with a record header, containing
147  * the overall length of the record.
148  *
149  * The heads to the first and last entry in the buffer, as well as the
150  * sequence numbers of these entries are maintained when messages are
151  * stored.
152  *
153  * If the heads indicate available messages, the length in the header
154  * tells the start next message. A length == 0 for the next message
155  * indicates a wrap-around to the beginning of the buffer.
156  *
157  * Every record carries the monotonic timestamp in microseconds, as well as
158  * the standard userspace syslog level and syslog facility. The usual
159  * kernel messages use LOG_KERN; userspace-injected messages always carry
160  * a matching syslog facility, by default LOG_USER. The origin of every
161  * message can be reliably determined that way.
162  *
163  * The human readable log message directly follows the message header. The
164  * length of the message text is stored in the header, the stored message
165  * is not terminated.
166  *
167  * Optionally, a message can carry a dictionary of properties (key/value pairs),
168  * to provide userspace with a machine-readable message context.
169  *
170  * Examples for well-defined, commonly used property names are:
171  *   DEVICE=b12:8               device identifier
172  *                                b12:8         block dev_t
173  *                                c127:3        char dev_t
174  *                                n8            netdev ifindex
175  *                                +sound:card0  subsystem:devname
176  *   SUBSYSTEM=pci              driver-core subsystem name
177  *
178  * Valid characters in property names are [a-zA-Z0-9.-_]. The plain text value
179  * follows directly after a '=' character. Every property is terminated by
180  * a '\0' character. The last property is not terminated.
181  *
182  * Example of a message structure:
183  *   0000  ff 8f 00 00 00 00 00 00      monotonic time in nsec
184  *   0008  34 00                        record is 52 bytes long
185  *   000a        0b 00                  text is 11 bytes long
186  *   000c              1f 00            dictionary is 23 bytes long
187  *   000e                    03 00      LOG_KERN (facility) LOG_ERR (level)
188  *   0010  69 74 27 73 20 61 20 6c      "it's a l"
189  *         69 6e 65                     "ine"
190  *   001b           44 45 56 49 43      "DEVIC"
191  *         45 3d 62 38 3a 32 00 44      "E=b8:2\0D"
192  *         52 49 56 45 52 3d 62 75      "RIVER=bu"
193  *         67                           "g"
194  *   0032     00 00 00                  padding to next message header
195  *
196  * The 'struct printk_log' buffer header must never be directly exported to
197  * userspace, it is a kernel-private implementation detail that might
198  * need to be changed in the future, when the requirements change.
199  *
200  * /dev/kmsg exports the structured data in the following line format:
201  *   "level,sequnum,timestamp;<message text>\n"
202  *
203  * The optional key/value pairs are attached as continuation lines starting
204  * with a space character and terminated by a newline. All possible
205  * non-prinatable characters are escaped in the "\xff" notation.
206  *
207  * Users of the export format should ignore possible additional values
208  * separated by ',', and find the message after the ';' character.
209  */
210 
211 enum log_flags {
212 	LOG_NOCONS	= 1,	/* already flushed, do not print to console */
213 	LOG_NEWLINE	= 2,	/* text ended with a newline */
214 	LOG_PREFIX	= 4,	/* text started with a prefix */
215 	LOG_CONT	= 8,	/* text is a fragment of a continuation line */
216 };
217 
218 struct printk_log {
219 	u64 ts_nsec;		/* timestamp in nanoseconds */
220 	u16 len;		/* length of entire record */
221 	u16 text_len;		/* length of text buffer */
222 	u16 dict_len;		/* length of dictionary buffer */
223 	u8 facility;		/* syslog facility */
224 	u8 flags:5;		/* internal record flags */
225 	u8 level:3;		/* syslog level */
226 };
227 
228 /*
229  * The logbuf_lock protects kmsg buffer, indices, counters.  This can be taken
230  * within the scheduler's rq lock. It must be released before calling
231  * console_unlock() or anything else that might wake up a process.
232  */
233 static DEFINE_RAW_SPINLOCK(logbuf_lock);
234 
235 #ifdef CONFIG_PRINTK
236 DECLARE_WAIT_QUEUE_HEAD(log_wait);
237 /* the next printk record to read by syslog(READ) or /proc/kmsg */
238 static u64 syslog_seq;
239 static u32 syslog_idx;
240 static enum log_flags syslog_prev;
241 static size_t syslog_partial;
242 
243 /* index and sequence number of the first record stored in the buffer */
244 static u64 log_first_seq;
245 static u32 log_first_idx;
246 
247 /* index and sequence number of the next record to store in the buffer */
248 static u64 log_next_seq;
249 static u32 log_next_idx;
250 
251 /* the next printk record to write to the console */
252 static u64 console_seq;
253 static u32 console_idx;
254 static enum log_flags console_prev;
255 
256 /* the next printk record to read after the last 'clear' command */
257 static u64 clear_seq;
258 static u32 clear_idx;
259 
260 #define PREFIX_MAX		32
261 #define LOG_LINE_MAX		(1024 - PREFIX_MAX)
262 
263 /* record buffer */
264 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)
265 #define LOG_ALIGN 4
266 #else
267 #define LOG_ALIGN __alignof__(struct printk_log)
268 #endif
269 #define __LOG_BUF_LEN (1 << CONFIG_LOG_BUF_SHIFT)
270 #define __LOG_CPU_MAX_BUF_LEN (1 << CONFIG_LOG_CPU_MAX_BUF_SHIFT)
271 static char __log_buf[__LOG_BUF_LEN] __aligned(LOG_ALIGN);
272 static char *log_buf = __log_buf;
273 static u32 log_buf_len = __LOG_BUF_LEN;
274 
275 /* human readable text of the record */
276 static char *log_text(const struct printk_log *msg)
277 {
278 	return (char *)msg + sizeof(struct printk_log);
279 }
280 
281 /* optional key/value pair dictionary attached to the record */
282 static char *log_dict(const struct printk_log *msg)
283 {
284 	return (char *)msg + sizeof(struct printk_log) + msg->text_len;
285 }
286 
287 /* get record by index; idx must point to valid msg */
288 static struct printk_log *log_from_idx(u32 idx)
289 {
290 	struct printk_log *msg = (struct printk_log *)(log_buf + idx);
291 
292 	/*
293 	 * A length == 0 record is the end of buffer marker. Wrap around and
294 	 * read the message at the start of the buffer.
295 	 */
296 	if (!msg->len)
297 		return (struct printk_log *)log_buf;
298 	return msg;
299 }
300 
301 /* get next record; idx must point to valid msg */
302 static u32 log_next(u32 idx)
303 {
304 	struct printk_log *msg = (struct printk_log *)(log_buf + idx);
305 
306 	/* length == 0 indicates the end of the buffer; wrap */
307 	/*
308 	 * A length == 0 record is the end of buffer marker. Wrap around and
309 	 * read the message at the start of the buffer as *this* one, and
310 	 * return the one after that.
311 	 */
312 	if (!msg->len) {
313 		msg = (struct printk_log *)log_buf;
314 		return msg->len;
315 	}
316 	return idx + msg->len;
317 }
318 
319 /*
320  * Check whether there is enough free space for the given message.
321  *
322  * The same values of first_idx and next_idx mean that the buffer
323  * is either empty or full.
324  *
325  * If the buffer is empty, we must respect the position of the indexes.
326  * They cannot be reset to the beginning of the buffer.
327  */
328 static int logbuf_has_space(u32 msg_size, bool empty)
329 {
330 	u32 free;
331 
332 	if (log_next_idx > log_first_idx || empty)
333 		free = max(log_buf_len - log_next_idx, log_first_idx);
334 	else
335 		free = log_first_idx - log_next_idx;
336 
337 	/*
338 	 * We need space also for an empty header that signalizes wrapping
339 	 * of the buffer.
340 	 */
341 	return free >= msg_size + sizeof(struct printk_log);
342 }
343 
344 static int log_make_free_space(u32 msg_size)
345 {
346 	while (log_first_seq < log_next_seq) {
347 		if (logbuf_has_space(msg_size, false))
348 			return 0;
349 		/* drop old messages until we have enough contiguous space */
350 		log_first_idx = log_next(log_first_idx);
351 		log_first_seq++;
352 	}
353 
354 	/* sequence numbers are equal, so the log buffer is empty */
355 	if (logbuf_has_space(msg_size, true))
356 		return 0;
357 
358 	return -ENOMEM;
359 }
360 
361 /* compute the message size including the padding bytes */
362 static u32 msg_used_size(u16 text_len, u16 dict_len, u32 *pad_len)
363 {
364 	u32 size;
365 
366 	size = sizeof(struct printk_log) + text_len + dict_len;
367 	*pad_len = (-size) & (LOG_ALIGN - 1);
368 	size += *pad_len;
369 
370 	return size;
371 }
372 
373 /*
374  * Define how much of the log buffer we could take at maximum. The value
375  * must be greater than two. Note that only half of the buffer is available
376  * when the index points to the middle.
377  */
378 #define MAX_LOG_TAKE_PART 4
379 static const char trunc_msg[] = "<truncated>";
380 
381 static u32 truncate_msg(u16 *text_len, u16 *trunc_msg_len,
382 			u16 *dict_len, u32 *pad_len)
383 {
384 	/*
385 	 * The message should not take the whole buffer. Otherwise, it might
386 	 * get removed too soon.
387 	 */
388 	u32 max_text_len = log_buf_len / MAX_LOG_TAKE_PART;
389 	if (*text_len > max_text_len)
390 		*text_len = max_text_len;
391 	/* enable the warning message */
392 	*trunc_msg_len = strlen(trunc_msg);
393 	/* disable the "dict" completely */
394 	*dict_len = 0;
395 	/* compute the size again, count also the warning message */
396 	return msg_used_size(*text_len + *trunc_msg_len, 0, pad_len);
397 }
398 
399 /* insert record into the buffer, discard old ones, update heads */
400 static int log_store(int facility, int level,
401 		     enum log_flags flags, u64 ts_nsec,
402 		     const char *dict, u16 dict_len,
403 		     const char *text, u16 text_len)
404 {
405 	struct printk_log *msg;
406 	u32 size, pad_len;
407 	u16 trunc_msg_len = 0;
408 
409 	/* number of '\0' padding bytes to next message */
410 	size = msg_used_size(text_len, dict_len, &pad_len);
411 
412 	if (log_make_free_space(size)) {
413 		/* truncate the message if it is too long for empty buffer */
414 		size = truncate_msg(&text_len, &trunc_msg_len,
415 				    &dict_len, &pad_len);
416 		/* survive when the log buffer is too small for trunc_msg */
417 		if (log_make_free_space(size))
418 			return 0;
419 	}
420 
421 	if (log_next_idx + size + sizeof(struct printk_log) > log_buf_len) {
422 		/*
423 		 * This message + an additional empty header does not fit
424 		 * at the end of the buffer. Add an empty header with len == 0
425 		 * to signify a wrap around.
426 		 */
427 		memset(log_buf + log_next_idx, 0, sizeof(struct printk_log));
428 		log_next_idx = 0;
429 	}
430 
431 	/* fill message */
432 	msg = (struct printk_log *)(log_buf + log_next_idx);
433 	memcpy(log_text(msg), text, text_len);
434 	msg->text_len = text_len;
435 	if (trunc_msg_len) {
436 		memcpy(log_text(msg) + text_len, trunc_msg, trunc_msg_len);
437 		msg->text_len += trunc_msg_len;
438 	}
439 	memcpy(log_dict(msg), dict, dict_len);
440 	msg->dict_len = dict_len;
441 	msg->facility = facility;
442 	msg->level = level & 7;
443 	msg->flags = flags & 0x1f;
444 	if (ts_nsec > 0)
445 		msg->ts_nsec = ts_nsec;
446 	else
447 		msg->ts_nsec = local_clock();
448 	memset(log_dict(msg) + dict_len, 0, pad_len);
449 	msg->len = size;
450 
451 	/* insert message */
452 	log_next_idx += msg->len;
453 	log_next_seq++;
454 
455 	return msg->text_len;
456 }
457 
458 int dmesg_restrict = IS_ENABLED(CONFIG_SECURITY_DMESG_RESTRICT);
459 
460 static int syslog_action_restricted(int type)
461 {
462 	if (dmesg_restrict)
463 		return 1;
464 	/*
465 	 * Unless restricted, we allow "read all" and "get buffer size"
466 	 * for everybody.
467 	 */
468 	return type != SYSLOG_ACTION_READ_ALL &&
469 	       type != SYSLOG_ACTION_SIZE_BUFFER;
470 }
471 
472 static int check_syslog_permissions(int type, bool from_file)
473 {
474 	/*
475 	 * If this is from /proc/kmsg and we've already opened it, then we've
476 	 * already done the capabilities checks at open time.
477 	 */
478 	if (from_file && type != SYSLOG_ACTION_OPEN)
479 		return 0;
480 
481 	if (syslog_action_restricted(type)) {
482 		if (capable(CAP_SYSLOG))
483 			return 0;
484 		/*
485 		 * For historical reasons, accept CAP_SYS_ADMIN too, with
486 		 * a warning.
487 		 */
488 		if (capable(CAP_SYS_ADMIN)) {
489 			pr_warn_once("%s (%d): Attempt to access syslog with "
490 				     "CAP_SYS_ADMIN but no CAP_SYSLOG "
491 				     "(deprecated).\n",
492 				 current->comm, task_pid_nr(current));
493 			return 0;
494 		}
495 		return -EPERM;
496 	}
497 	return security_syslog(type);
498 }
499 
500 
501 /* /dev/kmsg - userspace message inject/listen interface */
502 struct devkmsg_user {
503 	u64 seq;
504 	u32 idx;
505 	enum log_flags prev;
506 	struct mutex lock;
507 	char buf[8192];
508 };
509 
510 static ssize_t devkmsg_writev(struct kiocb *iocb, const struct iovec *iv,
511 			      unsigned long count, loff_t pos)
512 {
513 	char *buf, *line;
514 	int i;
515 	int level = default_message_loglevel;
516 	int facility = 1;	/* LOG_USER */
517 	size_t len = iov_length(iv, count);
518 	ssize_t ret = len;
519 
520 	if (len > LOG_LINE_MAX)
521 		return -EINVAL;
522 	buf = kmalloc(len+1, GFP_KERNEL);
523 	if (buf == NULL)
524 		return -ENOMEM;
525 
526 	line = buf;
527 	for (i = 0; i < count; i++) {
528 		if (copy_from_user(line, iv[i].iov_base, iv[i].iov_len)) {
529 			ret = -EFAULT;
530 			goto out;
531 		}
532 		line += iv[i].iov_len;
533 	}
534 
535 	/*
536 	 * Extract and skip the syslog prefix <[0-9]*>. Coming from userspace
537 	 * the decimal value represents 32bit, the lower 3 bit are the log
538 	 * level, the rest are the log facility.
539 	 *
540 	 * If no prefix or no userspace facility is specified, we
541 	 * enforce LOG_USER, to be able to reliably distinguish
542 	 * kernel-generated messages from userspace-injected ones.
543 	 */
544 	line = buf;
545 	if (line[0] == '<') {
546 		char *endp = NULL;
547 
548 		i = simple_strtoul(line+1, &endp, 10);
549 		if (endp && endp[0] == '>') {
550 			level = i & 7;
551 			if (i >> 3)
552 				facility = i >> 3;
553 			endp++;
554 			len -= endp - line;
555 			line = endp;
556 		}
557 	}
558 	line[len] = '\0';
559 
560 	printk_emit(facility, level, NULL, 0, "%s", line);
561 out:
562 	kfree(buf);
563 	return ret;
564 }
565 
566 static ssize_t devkmsg_read(struct file *file, char __user *buf,
567 			    size_t count, loff_t *ppos)
568 {
569 	struct devkmsg_user *user = file->private_data;
570 	struct printk_log *msg;
571 	u64 ts_usec;
572 	size_t i;
573 	char cont = '-';
574 	size_t len;
575 	ssize_t ret;
576 
577 	if (!user)
578 		return -EBADF;
579 
580 	ret = mutex_lock_interruptible(&user->lock);
581 	if (ret)
582 		return ret;
583 	raw_spin_lock_irq(&logbuf_lock);
584 	while (user->seq == log_next_seq) {
585 		if (file->f_flags & O_NONBLOCK) {
586 			ret = -EAGAIN;
587 			raw_spin_unlock_irq(&logbuf_lock);
588 			goto out;
589 		}
590 
591 		raw_spin_unlock_irq(&logbuf_lock);
592 		ret = wait_event_interruptible(log_wait,
593 					       user->seq != log_next_seq);
594 		if (ret)
595 			goto out;
596 		raw_spin_lock_irq(&logbuf_lock);
597 	}
598 
599 	if (user->seq < log_first_seq) {
600 		/* our last seen message is gone, return error and reset */
601 		user->idx = log_first_idx;
602 		user->seq = log_first_seq;
603 		ret = -EPIPE;
604 		raw_spin_unlock_irq(&logbuf_lock);
605 		goto out;
606 	}
607 
608 	msg = log_from_idx(user->idx);
609 	ts_usec = msg->ts_nsec;
610 	do_div(ts_usec, 1000);
611 
612 	/*
613 	 * If we couldn't merge continuation line fragments during the print,
614 	 * export the stored flags to allow an optional external merge of the
615 	 * records. Merging the records isn't always neccessarily correct, like
616 	 * when we hit a race during printing. In most cases though, it produces
617 	 * better readable output. 'c' in the record flags mark the first
618 	 * fragment of a line, '+' the following.
619 	 */
620 	if (msg->flags & LOG_CONT && !(user->prev & LOG_CONT))
621 		cont = 'c';
622 	else if ((msg->flags & LOG_CONT) ||
623 		 ((user->prev & LOG_CONT) && !(msg->flags & LOG_PREFIX)))
624 		cont = '+';
625 
626 	len = sprintf(user->buf, "%u,%llu,%llu,%c;",
627 		      (msg->facility << 3) | msg->level,
628 		      user->seq, ts_usec, cont);
629 	user->prev = msg->flags;
630 
631 	/* escape non-printable characters */
632 	for (i = 0; i < msg->text_len; i++) {
633 		unsigned char c = log_text(msg)[i];
634 
635 		if (c < ' ' || c >= 127 || c == '\\')
636 			len += sprintf(user->buf + len, "\\x%02x", c);
637 		else
638 			user->buf[len++] = c;
639 	}
640 	user->buf[len++] = '\n';
641 
642 	if (msg->dict_len) {
643 		bool line = true;
644 
645 		for (i = 0; i < msg->dict_len; i++) {
646 			unsigned char c = log_dict(msg)[i];
647 
648 			if (line) {
649 				user->buf[len++] = ' ';
650 				line = false;
651 			}
652 
653 			if (c == '\0') {
654 				user->buf[len++] = '\n';
655 				line = true;
656 				continue;
657 			}
658 
659 			if (c < ' ' || c >= 127 || c == '\\') {
660 				len += sprintf(user->buf + len, "\\x%02x", c);
661 				continue;
662 			}
663 
664 			user->buf[len++] = c;
665 		}
666 		user->buf[len++] = '\n';
667 	}
668 
669 	user->idx = log_next(user->idx);
670 	user->seq++;
671 	raw_spin_unlock_irq(&logbuf_lock);
672 
673 	if (len > count) {
674 		ret = -EINVAL;
675 		goto out;
676 	}
677 
678 	if (copy_to_user(buf, user->buf, len)) {
679 		ret = -EFAULT;
680 		goto out;
681 	}
682 	ret = len;
683 out:
684 	mutex_unlock(&user->lock);
685 	return ret;
686 }
687 
688 static loff_t devkmsg_llseek(struct file *file, loff_t offset, int whence)
689 {
690 	struct devkmsg_user *user = file->private_data;
691 	loff_t ret = 0;
692 
693 	if (!user)
694 		return -EBADF;
695 	if (offset)
696 		return -ESPIPE;
697 
698 	raw_spin_lock_irq(&logbuf_lock);
699 	switch (whence) {
700 	case SEEK_SET:
701 		/* the first record */
702 		user->idx = log_first_idx;
703 		user->seq = log_first_seq;
704 		break;
705 	case SEEK_DATA:
706 		/*
707 		 * The first record after the last SYSLOG_ACTION_CLEAR,
708 		 * like issued by 'dmesg -c'. Reading /dev/kmsg itself
709 		 * changes no global state, and does not clear anything.
710 		 */
711 		user->idx = clear_idx;
712 		user->seq = clear_seq;
713 		break;
714 	case SEEK_END:
715 		/* after the last record */
716 		user->idx = log_next_idx;
717 		user->seq = log_next_seq;
718 		break;
719 	default:
720 		ret = -EINVAL;
721 	}
722 	raw_spin_unlock_irq(&logbuf_lock);
723 	return ret;
724 }
725 
726 static unsigned int devkmsg_poll(struct file *file, poll_table *wait)
727 {
728 	struct devkmsg_user *user = file->private_data;
729 	int ret = 0;
730 
731 	if (!user)
732 		return POLLERR|POLLNVAL;
733 
734 	poll_wait(file, &log_wait, wait);
735 
736 	raw_spin_lock_irq(&logbuf_lock);
737 	if (user->seq < log_next_seq) {
738 		/* return error when data has vanished underneath us */
739 		if (user->seq < log_first_seq)
740 			ret = POLLIN|POLLRDNORM|POLLERR|POLLPRI;
741 		else
742 			ret = POLLIN|POLLRDNORM;
743 	}
744 	raw_spin_unlock_irq(&logbuf_lock);
745 
746 	return ret;
747 }
748 
749 static int devkmsg_open(struct inode *inode, struct file *file)
750 {
751 	struct devkmsg_user *user;
752 	int err;
753 
754 	/* write-only does not need any file context */
755 	if ((file->f_flags & O_ACCMODE) == O_WRONLY)
756 		return 0;
757 
758 	err = check_syslog_permissions(SYSLOG_ACTION_READ_ALL,
759 				       SYSLOG_FROM_READER);
760 	if (err)
761 		return err;
762 
763 	user = kmalloc(sizeof(struct devkmsg_user), GFP_KERNEL);
764 	if (!user)
765 		return -ENOMEM;
766 
767 	mutex_init(&user->lock);
768 
769 	raw_spin_lock_irq(&logbuf_lock);
770 	user->idx = log_first_idx;
771 	user->seq = log_first_seq;
772 	raw_spin_unlock_irq(&logbuf_lock);
773 
774 	file->private_data = user;
775 	return 0;
776 }
777 
778 static int devkmsg_release(struct inode *inode, struct file *file)
779 {
780 	struct devkmsg_user *user = file->private_data;
781 
782 	if (!user)
783 		return 0;
784 
785 	mutex_destroy(&user->lock);
786 	kfree(user);
787 	return 0;
788 }
789 
790 const struct file_operations kmsg_fops = {
791 	.open = devkmsg_open,
792 	.read = devkmsg_read,
793 	.aio_write = devkmsg_writev,
794 	.llseek = devkmsg_llseek,
795 	.poll = devkmsg_poll,
796 	.release = devkmsg_release,
797 };
798 
799 #ifdef CONFIG_KEXEC
800 /*
801  * This appends the listed symbols to /proc/vmcore
802  *
803  * /proc/vmcore is used by various utilities, like crash and makedumpfile to
804  * obtain access to symbols that are otherwise very difficult to locate.  These
805  * symbols are specifically used so that utilities can access and extract the
806  * dmesg log from a vmcore file after a crash.
807  */
808 void log_buf_kexec_setup(void)
809 {
810 	VMCOREINFO_SYMBOL(log_buf);
811 	VMCOREINFO_SYMBOL(log_buf_len);
812 	VMCOREINFO_SYMBOL(log_first_idx);
813 	VMCOREINFO_SYMBOL(log_next_idx);
814 	/*
815 	 * Export struct printk_log size and field offsets. User space tools can
816 	 * parse it and detect any changes to structure down the line.
817 	 */
818 	VMCOREINFO_STRUCT_SIZE(printk_log);
819 	VMCOREINFO_OFFSET(printk_log, ts_nsec);
820 	VMCOREINFO_OFFSET(printk_log, len);
821 	VMCOREINFO_OFFSET(printk_log, text_len);
822 	VMCOREINFO_OFFSET(printk_log, dict_len);
823 }
824 #endif
825 
826 /* requested log_buf_len from kernel cmdline */
827 static unsigned long __initdata new_log_buf_len;
828 
829 /* we practice scaling the ring buffer by powers of 2 */
830 static void __init log_buf_len_update(unsigned size)
831 {
832 	if (size)
833 		size = roundup_pow_of_two(size);
834 	if (size > log_buf_len)
835 		new_log_buf_len = size;
836 }
837 
838 /* save requested log_buf_len since it's too early to process it */
839 static int __init log_buf_len_setup(char *str)
840 {
841 	unsigned size = memparse(str, &str);
842 
843 	log_buf_len_update(size);
844 
845 	return 0;
846 }
847 early_param("log_buf_len", log_buf_len_setup);
848 
849 static void __init log_buf_add_cpu(void)
850 {
851 	unsigned int cpu_extra;
852 
853 	/*
854 	 * archs should set up cpu_possible_bits properly with
855 	 * set_cpu_possible() after setup_arch() but just in
856 	 * case lets ensure this is valid.
857 	 */
858 	if (num_possible_cpus() == 1)
859 		return;
860 
861 	cpu_extra = (num_possible_cpus() - 1) * __LOG_CPU_MAX_BUF_LEN;
862 
863 	/* by default this will only continue through for large > 64 CPUs */
864 	if (cpu_extra <= __LOG_BUF_LEN / 2)
865 		return;
866 
867 	pr_info("log_buf_len individual max cpu contribution: %d bytes\n",
868 		__LOG_CPU_MAX_BUF_LEN);
869 	pr_info("log_buf_len total cpu_extra contributions: %d bytes\n",
870 		cpu_extra);
871 	pr_info("log_buf_len min size: %d bytes\n", __LOG_BUF_LEN);
872 
873 	log_buf_len_update(cpu_extra + __LOG_BUF_LEN);
874 }
875 
876 void __init setup_log_buf(int early)
877 {
878 	unsigned long flags;
879 	char *new_log_buf;
880 	int free;
881 
882 	if (log_buf != __log_buf)
883 		return;
884 
885 	if (!early && !new_log_buf_len)
886 		log_buf_add_cpu();
887 
888 	if (!new_log_buf_len)
889 		return;
890 
891 	if (early) {
892 		new_log_buf =
893 			memblock_virt_alloc(new_log_buf_len, LOG_ALIGN);
894 	} else {
895 		new_log_buf = memblock_virt_alloc_nopanic(new_log_buf_len,
896 							  LOG_ALIGN);
897 	}
898 
899 	if (unlikely(!new_log_buf)) {
900 		pr_err("log_buf_len: %ld bytes not available\n",
901 			new_log_buf_len);
902 		return;
903 	}
904 
905 	raw_spin_lock_irqsave(&logbuf_lock, flags);
906 	log_buf_len = new_log_buf_len;
907 	log_buf = new_log_buf;
908 	new_log_buf_len = 0;
909 	free = __LOG_BUF_LEN - log_next_idx;
910 	memcpy(log_buf, __log_buf, __LOG_BUF_LEN);
911 	raw_spin_unlock_irqrestore(&logbuf_lock, flags);
912 
913 	pr_info("log_buf_len: %d bytes\n", log_buf_len);
914 	pr_info("early log buf free: %d(%d%%)\n",
915 		free, (free * 100) / __LOG_BUF_LEN);
916 }
917 
918 static bool __read_mostly ignore_loglevel;
919 
920 static int __init ignore_loglevel_setup(char *str)
921 {
922 	ignore_loglevel = true;
923 	pr_info("debug: ignoring loglevel setting.\n");
924 
925 	return 0;
926 }
927 
928 early_param("ignore_loglevel", ignore_loglevel_setup);
929 module_param(ignore_loglevel, bool, S_IRUGO | S_IWUSR);
930 MODULE_PARM_DESC(ignore_loglevel, "ignore loglevel setting, to"
931 	"print all kernel messages to the console.");
932 
933 #ifdef CONFIG_BOOT_PRINTK_DELAY
934 
935 static int boot_delay; /* msecs delay after each printk during bootup */
936 static unsigned long long loops_per_msec;	/* based on boot_delay */
937 
938 static int __init boot_delay_setup(char *str)
939 {
940 	unsigned long lpj;
941 
942 	lpj = preset_lpj ? preset_lpj : 1000000;	/* some guess */
943 	loops_per_msec = (unsigned long long)lpj / 1000 * HZ;
944 
945 	get_option(&str, &boot_delay);
946 	if (boot_delay > 10 * 1000)
947 		boot_delay = 0;
948 
949 	pr_debug("boot_delay: %u, preset_lpj: %ld, lpj: %lu, "
950 		"HZ: %d, loops_per_msec: %llu\n",
951 		boot_delay, preset_lpj, lpj, HZ, loops_per_msec);
952 	return 0;
953 }
954 early_param("boot_delay", boot_delay_setup);
955 
956 static void boot_delay_msec(int level)
957 {
958 	unsigned long long k;
959 	unsigned long timeout;
960 
961 	if ((boot_delay == 0 || system_state != SYSTEM_BOOTING)
962 		|| (level >= console_loglevel && !ignore_loglevel)) {
963 		return;
964 	}
965 
966 	k = (unsigned long long)loops_per_msec * boot_delay;
967 
968 	timeout = jiffies + msecs_to_jiffies(boot_delay);
969 	while (k) {
970 		k--;
971 		cpu_relax();
972 		/*
973 		 * use (volatile) jiffies to prevent
974 		 * compiler reduction; loop termination via jiffies
975 		 * is secondary and may or may not happen.
976 		 */
977 		if (time_after(jiffies, timeout))
978 			break;
979 		touch_nmi_watchdog();
980 	}
981 }
982 #else
983 static inline void boot_delay_msec(int level)
984 {
985 }
986 #endif
987 
988 static bool printk_time = IS_ENABLED(CONFIG_PRINTK_TIME);
989 module_param_named(time, printk_time, bool, S_IRUGO | S_IWUSR);
990 
991 static size_t print_time(u64 ts, char *buf)
992 {
993 	unsigned long rem_nsec;
994 
995 	if (!printk_time)
996 		return 0;
997 
998 	rem_nsec = do_div(ts, 1000000000);
999 
1000 	if (!buf)
1001 		return snprintf(NULL, 0, "[%5lu.000000] ", (unsigned long)ts);
1002 
1003 	return sprintf(buf, "[%5lu.%06lu] ",
1004 		       (unsigned long)ts, rem_nsec / 1000);
1005 }
1006 
1007 static size_t print_prefix(const struct printk_log *msg, bool syslog, char *buf)
1008 {
1009 	size_t len = 0;
1010 	unsigned int prefix = (msg->facility << 3) | msg->level;
1011 
1012 	if (syslog) {
1013 		if (buf) {
1014 			len += sprintf(buf, "<%u>", prefix);
1015 		} else {
1016 			len += 3;
1017 			if (prefix > 999)
1018 				len += 3;
1019 			else if (prefix > 99)
1020 				len += 2;
1021 			else if (prefix > 9)
1022 				len++;
1023 		}
1024 	}
1025 
1026 	len += print_time(msg->ts_nsec, buf ? buf + len : NULL);
1027 	return len;
1028 }
1029 
1030 static size_t msg_print_text(const struct printk_log *msg, enum log_flags prev,
1031 			     bool syslog, char *buf, size_t size)
1032 {
1033 	const char *text = log_text(msg);
1034 	size_t text_size = msg->text_len;
1035 	bool prefix = true;
1036 	bool newline = true;
1037 	size_t len = 0;
1038 
1039 	if ((prev & LOG_CONT) && !(msg->flags & LOG_PREFIX))
1040 		prefix = false;
1041 
1042 	if (msg->flags & LOG_CONT) {
1043 		if ((prev & LOG_CONT) && !(prev & LOG_NEWLINE))
1044 			prefix = false;
1045 
1046 		if (!(msg->flags & LOG_NEWLINE))
1047 			newline = false;
1048 	}
1049 
1050 	do {
1051 		const char *next = memchr(text, '\n', text_size);
1052 		size_t text_len;
1053 
1054 		if (next) {
1055 			text_len = next - text;
1056 			next++;
1057 			text_size -= next - text;
1058 		} else {
1059 			text_len = text_size;
1060 		}
1061 
1062 		if (buf) {
1063 			if (print_prefix(msg, syslog, NULL) +
1064 			    text_len + 1 >= size - len)
1065 				break;
1066 
1067 			if (prefix)
1068 				len += print_prefix(msg, syslog, buf + len);
1069 			memcpy(buf + len, text, text_len);
1070 			len += text_len;
1071 			if (next || newline)
1072 				buf[len++] = '\n';
1073 		} else {
1074 			/* SYSLOG_ACTION_* buffer size only calculation */
1075 			if (prefix)
1076 				len += print_prefix(msg, syslog, NULL);
1077 			len += text_len;
1078 			if (next || newline)
1079 				len++;
1080 		}
1081 
1082 		prefix = true;
1083 		text = next;
1084 	} while (text);
1085 
1086 	return len;
1087 }
1088 
1089 static int syslog_print(char __user *buf, int size)
1090 {
1091 	char *text;
1092 	struct printk_log *msg;
1093 	int len = 0;
1094 
1095 	text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
1096 	if (!text)
1097 		return -ENOMEM;
1098 
1099 	while (size > 0) {
1100 		size_t n;
1101 		size_t skip;
1102 
1103 		raw_spin_lock_irq(&logbuf_lock);
1104 		if (syslog_seq < log_first_seq) {
1105 			/* messages are gone, move to first one */
1106 			syslog_seq = log_first_seq;
1107 			syslog_idx = log_first_idx;
1108 			syslog_prev = 0;
1109 			syslog_partial = 0;
1110 		}
1111 		if (syslog_seq == log_next_seq) {
1112 			raw_spin_unlock_irq(&logbuf_lock);
1113 			break;
1114 		}
1115 
1116 		skip = syslog_partial;
1117 		msg = log_from_idx(syslog_idx);
1118 		n = msg_print_text(msg, syslog_prev, true, text,
1119 				   LOG_LINE_MAX + PREFIX_MAX);
1120 		if (n - syslog_partial <= size) {
1121 			/* message fits into buffer, move forward */
1122 			syslog_idx = log_next(syslog_idx);
1123 			syslog_seq++;
1124 			syslog_prev = msg->flags;
1125 			n -= syslog_partial;
1126 			syslog_partial = 0;
1127 		} else if (!len){
1128 			/* partial read(), remember position */
1129 			n = size;
1130 			syslog_partial += n;
1131 		} else
1132 			n = 0;
1133 		raw_spin_unlock_irq(&logbuf_lock);
1134 
1135 		if (!n)
1136 			break;
1137 
1138 		if (copy_to_user(buf, text + skip, n)) {
1139 			if (!len)
1140 				len = -EFAULT;
1141 			break;
1142 		}
1143 
1144 		len += n;
1145 		size -= n;
1146 		buf += n;
1147 	}
1148 
1149 	kfree(text);
1150 	return len;
1151 }
1152 
1153 static int syslog_print_all(char __user *buf, int size, bool clear)
1154 {
1155 	char *text;
1156 	int len = 0;
1157 
1158 	text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
1159 	if (!text)
1160 		return -ENOMEM;
1161 
1162 	raw_spin_lock_irq(&logbuf_lock);
1163 	if (buf) {
1164 		u64 next_seq;
1165 		u64 seq;
1166 		u32 idx;
1167 		enum log_flags prev;
1168 
1169 		if (clear_seq < log_first_seq) {
1170 			/* messages are gone, move to first available one */
1171 			clear_seq = log_first_seq;
1172 			clear_idx = log_first_idx;
1173 		}
1174 
1175 		/*
1176 		 * Find first record that fits, including all following records,
1177 		 * into the user-provided buffer for this dump.
1178 		 */
1179 		seq = clear_seq;
1180 		idx = clear_idx;
1181 		prev = 0;
1182 		while (seq < log_next_seq) {
1183 			struct printk_log *msg = log_from_idx(idx);
1184 
1185 			len += msg_print_text(msg, prev, true, NULL, 0);
1186 			prev = msg->flags;
1187 			idx = log_next(idx);
1188 			seq++;
1189 		}
1190 
1191 		/* move first record forward until length fits into the buffer */
1192 		seq = clear_seq;
1193 		idx = clear_idx;
1194 		prev = 0;
1195 		while (len > size && seq < log_next_seq) {
1196 			struct printk_log *msg = log_from_idx(idx);
1197 
1198 			len -= msg_print_text(msg, prev, true, NULL, 0);
1199 			prev = msg->flags;
1200 			idx = log_next(idx);
1201 			seq++;
1202 		}
1203 
1204 		/* last message fitting into this dump */
1205 		next_seq = log_next_seq;
1206 
1207 		len = 0;
1208 		while (len >= 0 && seq < next_seq) {
1209 			struct printk_log *msg = log_from_idx(idx);
1210 			int textlen;
1211 
1212 			textlen = msg_print_text(msg, prev, true, text,
1213 						 LOG_LINE_MAX + PREFIX_MAX);
1214 			if (textlen < 0) {
1215 				len = textlen;
1216 				break;
1217 			}
1218 			idx = log_next(idx);
1219 			seq++;
1220 			prev = msg->flags;
1221 
1222 			raw_spin_unlock_irq(&logbuf_lock);
1223 			if (copy_to_user(buf + len, text, textlen))
1224 				len = -EFAULT;
1225 			else
1226 				len += textlen;
1227 			raw_spin_lock_irq(&logbuf_lock);
1228 
1229 			if (seq < log_first_seq) {
1230 				/* messages are gone, move to next one */
1231 				seq = log_first_seq;
1232 				idx = log_first_idx;
1233 				prev = 0;
1234 			}
1235 		}
1236 	}
1237 
1238 	if (clear) {
1239 		clear_seq = log_next_seq;
1240 		clear_idx = log_next_idx;
1241 	}
1242 	raw_spin_unlock_irq(&logbuf_lock);
1243 
1244 	kfree(text);
1245 	return len;
1246 }
1247 
1248 int do_syslog(int type, char __user *buf, int len, bool from_file)
1249 {
1250 	bool clear = false;
1251 	static int saved_console_loglevel = -1;
1252 	int error;
1253 
1254 	error = check_syslog_permissions(type, from_file);
1255 	if (error)
1256 		goto out;
1257 
1258 	error = security_syslog(type);
1259 	if (error)
1260 		return error;
1261 
1262 	switch (type) {
1263 	case SYSLOG_ACTION_CLOSE:	/* Close log */
1264 		break;
1265 	case SYSLOG_ACTION_OPEN:	/* Open log */
1266 		break;
1267 	case SYSLOG_ACTION_READ:	/* Read from log */
1268 		error = -EINVAL;
1269 		if (!buf || len < 0)
1270 			goto out;
1271 		error = 0;
1272 		if (!len)
1273 			goto out;
1274 		if (!access_ok(VERIFY_WRITE, buf, len)) {
1275 			error = -EFAULT;
1276 			goto out;
1277 		}
1278 		error = wait_event_interruptible(log_wait,
1279 						 syslog_seq != log_next_seq);
1280 		if (error)
1281 			goto out;
1282 		error = syslog_print(buf, len);
1283 		break;
1284 	/* Read/clear last kernel messages */
1285 	case SYSLOG_ACTION_READ_CLEAR:
1286 		clear = true;
1287 		/* FALL THRU */
1288 	/* Read last kernel messages */
1289 	case SYSLOG_ACTION_READ_ALL:
1290 		error = -EINVAL;
1291 		if (!buf || len < 0)
1292 			goto out;
1293 		error = 0;
1294 		if (!len)
1295 			goto out;
1296 		if (!access_ok(VERIFY_WRITE, buf, len)) {
1297 			error = -EFAULT;
1298 			goto out;
1299 		}
1300 		error = syslog_print_all(buf, len, clear);
1301 		break;
1302 	/* Clear ring buffer */
1303 	case SYSLOG_ACTION_CLEAR:
1304 		syslog_print_all(NULL, 0, true);
1305 		break;
1306 	/* Disable logging to console */
1307 	case SYSLOG_ACTION_CONSOLE_OFF:
1308 		if (saved_console_loglevel == -1)
1309 			saved_console_loglevel = console_loglevel;
1310 		console_loglevel = minimum_console_loglevel;
1311 		break;
1312 	/* Enable logging to console */
1313 	case SYSLOG_ACTION_CONSOLE_ON:
1314 		if (saved_console_loglevel != -1) {
1315 			console_loglevel = saved_console_loglevel;
1316 			saved_console_loglevel = -1;
1317 		}
1318 		break;
1319 	/* Set level of messages printed to console */
1320 	case SYSLOG_ACTION_CONSOLE_LEVEL:
1321 		error = -EINVAL;
1322 		if (len < 1 || len > 8)
1323 			goto out;
1324 		if (len < minimum_console_loglevel)
1325 			len = minimum_console_loglevel;
1326 		console_loglevel = len;
1327 		/* Implicitly re-enable logging to console */
1328 		saved_console_loglevel = -1;
1329 		error = 0;
1330 		break;
1331 	/* Number of chars in the log buffer */
1332 	case SYSLOG_ACTION_SIZE_UNREAD:
1333 		raw_spin_lock_irq(&logbuf_lock);
1334 		if (syslog_seq < log_first_seq) {
1335 			/* messages are gone, move to first one */
1336 			syslog_seq = log_first_seq;
1337 			syslog_idx = log_first_idx;
1338 			syslog_prev = 0;
1339 			syslog_partial = 0;
1340 		}
1341 		if (from_file) {
1342 			/*
1343 			 * Short-cut for poll(/"proc/kmsg") which simply checks
1344 			 * for pending data, not the size; return the count of
1345 			 * records, not the length.
1346 			 */
1347 			error = log_next_seq - syslog_seq;
1348 		} else {
1349 			u64 seq = syslog_seq;
1350 			u32 idx = syslog_idx;
1351 			enum log_flags prev = syslog_prev;
1352 
1353 			error = 0;
1354 			while (seq < log_next_seq) {
1355 				struct printk_log *msg = log_from_idx(idx);
1356 
1357 				error += msg_print_text(msg, prev, true, NULL, 0);
1358 				idx = log_next(idx);
1359 				seq++;
1360 				prev = msg->flags;
1361 			}
1362 			error -= syslog_partial;
1363 		}
1364 		raw_spin_unlock_irq(&logbuf_lock);
1365 		break;
1366 	/* Size of the log buffer */
1367 	case SYSLOG_ACTION_SIZE_BUFFER:
1368 		error = log_buf_len;
1369 		break;
1370 	default:
1371 		error = -EINVAL;
1372 		break;
1373 	}
1374 out:
1375 	return error;
1376 }
1377 
1378 SYSCALL_DEFINE3(syslog, int, type, char __user *, buf, int, len)
1379 {
1380 	return do_syslog(type, buf, len, SYSLOG_FROM_READER);
1381 }
1382 
1383 /*
1384  * Call the console drivers, asking them to write out
1385  * log_buf[start] to log_buf[end - 1].
1386  * The console_lock must be held.
1387  */
1388 static void call_console_drivers(int level, const char *text, size_t len)
1389 {
1390 	struct console *con;
1391 
1392 	trace_console(text, len);
1393 
1394 	if (level >= console_loglevel && !ignore_loglevel)
1395 		return;
1396 	if (!console_drivers)
1397 		return;
1398 
1399 	for_each_console(con) {
1400 		if (exclusive_console && con != exclusive_console)
1401 			continue;
1402 		if (!(con->flags & CON_ENABLED))
1403 			continue;
1404 		if (!con->write)
1405 			continue;
1406 		if (!cpu_online(smp_processor_id()) &&
1407 		    !(con->flags & CON_ANYTIME))
1408 			continue;
1409 		con->write(con, text, len);
1410 	}
1411 }
1412 
1413 /*
1414  * Zap console related locks when oopsing. Only zap at most once
1415  * every 10 seconds, to leave time for slow consoles to print a
1416  * full oops.
1417  */
1418 static void zap_locks(void)
1419 {
1420 	static unsigned long oops_timestamp;
1421 
1422 	if (time_after_eq(jiffies, oops_timestamp) &&
1423 			!time_after(jiffies, oops_timestamp + 30 * HZ))
1424 		return;
1425 
1426 	oops_timestamp = jiffies;
1427 
1428 	debug_locks_off();
1429 	/* If a crash is occurring, make sure we can't deadlock */
1430 	raw_spin_lock_init(&logbuf_lock);
1431 	/* And make sure that we print immediately */
1432 	sema_init(&console_sem, 1);
1433 }
1434 
1435 /*
1436  * Check if we have any console that is capable of printing while cpu is
1437  * booting or shutting down. Requires console_sem.
1438  */
1439 static int have_callable_console(void)
1440 {
1441 	struct console *con;
1442 
1443 	for_each_console(con)
1444 		if (con->flags & CON_ANYTIME)
1445 			return 1;
1446 
1447 	return 0;
1448 }
1449 
1450 /*
1451  * Can we actually use the console at this time on this cpu?
1452  *
1453  * Console drivers may assume that per-cpu resources have been allocated. So
1454  * unless they're explicitly marked as being able to cope (CON_ANYTIME) don't
1455  * call them until this CPU is officially up.
1456  */
1457 static inline int can_use_console(unsigned int cpu)
1458 {
1459 	return cpu_online(cpu) || have_callable_console();
1460 }
1461 
1462 /*
1463  * Try to get console ownership to actually show the kernel
1464  * messages from a 'printk'. Return true (and with the
1465  * console_lock held, and 'console_locked' set) if it
1466  * is successful, false otherwise.
1467  */
1468 static int console_trylock_for_printk(void)
1469 {
1470 	unsigned int cpu = smp_processor_id();
1471 
1472 	if (!console_trylock())
1473 		return 0;
1474 	/*
1475 	 * If we can't use the console, we need to release the console
1476 	 * semaphore by hand to avoid flushing the buffer. We need to hold the
1477 	 * console semaphore in order to do this test safely.
1478 	 */
1479 	if (!can_use_console(cpu)) {
1480 		console_locked = 0;
1481 		up_console_sem();
1482 		return 0;
1483 	}
1484 	return 1;
1485 }
1486 
1487 int printk_delay_msec __read_mostly;
1488 
1489 static inline void printk_delay(void)
1490 {
1491 	if (unlikely(printk_delay_msec)) {
1492 		int m = printk_delay_msec;
1493 
1494 		while (m--) {
1495 			mdelay(1);
1496 			touch_nmi_watchdog();
1497 		}
1498 	}
1499 }
1500 
1501 /*
1502  * Continuation lines are buffered, and not committed to the record buffer
1503  * until the line is complete, or a race forces it. The line fragments
1504  * though, are printed immediately to the consoles to ensure everything has
1505  * reached the console in case of a kernel crash.
1506  */
1507 static struct cont {
1508 	char buf[LOG_LINE_MAX];
1509 	size_t len;			/* length == 0 means unused buffer */
1510 	size_t cons;			/* bytes written to console */
1511 	struct task_struct *owner;	/* task of first print*/
1512 	u64 ts_nsec;			/* time of first print */
1513 	u8 level;			/* log level of first message */
1514 	u8 facility;			/* log facility of first message */
1515 	enum log_flags flags;		/* prefix, newline flags */
1516 	bool flushed:1;			/* buffer sealed and committed */
1517 } cont;
1518 
1519 static void cont_flush(enum log_flags flags)
1520 {
1521 	if (cont.flushed)
1522 		return;
1523 	if (cont.len == 0)
1524 		return;
1525 
1526 	if (cont.cons) {
1527 		/*
1528 		 * If a fragment of this line was directly flushed to the
1529 		 * console; wait for the console to pick up the rest of the
1530 		 * line. LOG_NOCONS suppresses a duplicated output.
1531 		 */
1532 		log_store(cont.facility, cont.level, flags | LOG_NOCONS,
1533 			  cont.ts_nsec, NULL, 0, cont.buf, cont.len);
1534 		cont.flags = flags;
1535 		cont.flushed = true;
1536 	} else {
1537 		/*
1538 		 * If no fragment of this line ever reached the console,
1539 		 * just submit it to the store and free the buffer.
1540 		 */
1541 		log_store(cont.facility, cont.level, flags, 0,
1542 			  NULL, 0, cont.buf, cont.len);
1543 		cont.len = 0;
1544 	}
1545 }
1546 
1547 static bool cont_add(int facility, int level, const char *text, size_t len)
1548 {
1549 	if (cont.len && cont.flushed)
1550 		return false;
1551 
1552 	if (cont.len + len > sizeof(cont.buf)) {
1553 		/* the line gets too long, split it up in separate records */
1554 		cont_flush(LOG_CONT);
1555 		return false;
1556 	}
1557 
1558 	if (!cont.len) {
1559 		cont.facility = facility;
1560 		cont.level = level;
1561 		cont.owner = current;
1562 		cont.ts_nsec = local_clock();
1563 		cont.flags = 0;
1564 		cont.cons = 0;
1565 		cont.flushed = false;
1566 	}
1567 
1568 	memcpy(cont.buf + cont.len, text, len);
1569 	cont.len += len;
1570 
1571 	if (cont.len > (sizeof(cont.buf) * 80) / 100)
1572 		cont_flush(LOG_CONT);
1573 
1574 	return true;
1575 }
1576 
1577 static size_t cont_print_text(char *text, size_t size)
1578 {
1579 	size_t textlen = 0;
1580 	size_t len;
1581 
1582 	if (cont.cons == 0 && (console_prev & LOG_NEWLINE)) {
1583 		textlen += print_time(cont.ts_nsec, text);
1584 		size -= textlen;
1585 	}
1586 
1587 	len = cont.len - cont.cons;
1588 	if (len > 0) {
1589 		if (len+1 > size)
1590 			len = size-1;
1591 		memcpy(text + textlen, cont.buf + cont.cons, len);
1592 		textlen += len;
1593 		cont.cons = cont.len;
1594 	}
1595 
1596 	if (cont.flushed) {
1597 		if (cont.flags & LOG_NEWLINE)
1598 			text[textlen++] = '\n';
1599 		/* got everything, release buffer */
1600 		cont.len = 0;
1601 	}
1602 	return textlen;
1603 }
1604 
1605 asmlinkage int vprintk_emit(int facility, int level,
1606 			    const char *dict, size_t dictlen,
1607 			    const char *fmt, va_list args)
1608 {
1609 	static int recursion_bug;
1610 	static char textbuf[LOG_LINE_MAX];
1611 	char *text = textbuf;
1612 	size_t text_len = 0;
1613 	enum log_flags lflags = 0;
1614 	unsigned long flags;
1615 	int this_cpu;
1616 	int printed_len = 0;
1617 	bool in_sched = false;
1618 	/* cpu currently holding logbuf_lock in this function */
1619 	static volatile unsigned int logbuf_cpu = UINT_MAX;
1620 
1621 	if (level == SCHED_MESSAGE_LOGLEVEL) {
1622 		level = -1;
1623 		in_sched = true;
1624 	}
1625 
1626 	boot_delay_msec(level);
1627 	printk_delay();
1628 
1629 	/* This stops the holder of console_sem just where we want him */
1630 	local_irq_save(flags);
1631 	this_cpu = smp_processor_id();
1632 
1633 	/*
1634 	 * Ouch, printk recursed into itself!
1635 	 */
1636 	if (unlikely(logbuf_cpu == this_cpu)) {
1637 		/*
1638 		 * If a crash is occurring during printk() on this CPU,
1639 		 * then try to get the crash message out but make sure
1640 		 * we can't deadlock. Otherwise just return to avoid the
1641 		 * recursion and return - but flag the recursion so that
1642 		 * it can be printed at the next appropriate moment:
1643 		 */
1644 		if (!oops_in_progress && !lockdep_recursing(current)) {
1645 			recursion_bug = 1;
1646 			local_irq_restore(flags);
1647 			return 0;
1648 		}
1649 		zap_locks();
1650 	}
1651 
1652 	lockdep_off();
1653 	raw_spin_lock(&logbuf_lock);
1654 	logbuf_cpu = this_cpu;
1655 
1656 	if (recursion_bug) {
1657 		static const char recursion_msg[] =
1658 			"BUG: recent printk recursion!";
1659 
1660 		recursion_bug = 0;
1661 		text_len = strlen(recursion_msg);
1662 		/* emit KERN_CRIT message */
1663 		printed_len += log_store(0, 2, LOG_PREFIX|LOG_NEWLINE, 0,
1664 					 NULL, 0, recursion_msg, text_len);
1665 	}
1666 
1667 	/*
1668 	 * The printf needs to come first; we need the syslog
1669 	 * prefix which might be passed-in as a parameter.
1670 	 */
1671 	if (in_sched)
1672 		text_len = scnprintf(text, sizeof(textbuf),
1673 				     KERN_WARNING "[sched_delayed] ");
1674 
1675 	text_len += vscnprintf(text + text_len,
1676 			       sizeof(textbuf) - text_len, fmt, args);
1677 
1678 	/* mark and strip a trailing newline */
1679 	if (text_len && text[text_len-1] == '\n') {
1680 		text_len--;
1681 		lflags |= LOG_NEWLINE;
1682 	}
1683 
1684 	/* strip kernel syslog prefix and extract log level or control flags */
1685 	if (facility == 0) {
1686 		int kern_level = printk_get_level(text);
1687 
1688 		if (kern_level) {
1689 			const char *end_of_header = printk_skip_level(text);
1690 			switch (kern_level) {
1691 			case '0' ... '7':
1692 				if (level == -1)
1693 					level = kern_level - '0';
1694 			case 'd':	/* KERN_DEFAULT */
1695 				lflags |= LOG_PREFIX;
1696 			}
1697 			/*
1698 			 * No need to check length here because vscnprintf
1699 			 * put '\0' at the end of the string. Only valid and
1700 			 * newly printed level is detected.
1701 			 */
1702 			text_len -= end_of_header - text;
1703 			text = (char *)end_of_header;
1704 		}
1705 	}
1706 
1707 	if (level == -1)
1708 		level = default_message_loglevel;
1709 
1710 	if (dict)
1711 		lflags |= LOG_PREFIX|LOG_NEWLINE;
1712 
1713 	if (!(lflags & LOG_NEWLINE)) {
1714 		/*
1715 		 * Flush the conflicting buffer. An earlier newline was missing,
1716 		 * or another task also prints continuation lines.
1717 		 */
1718 		if (cont.len && (lflags & LOG_PREFIX || cont.owner != current))
1719 			cont_flush(LOG_NEWLINE);
1720 
1721 		/* buffer line if possible, otherwise store it right away */
1722 		if (cont_add(facility, level, text, text_len))
1723 			printed_len += text_len;
1724 		else
1725 			printed_len += log_store(facility, level,
1726 						 lflags | LOG_CONT, 0,
1727 						 dict, dictlen, text, text_len);
1728 	} else {
1729 		bool stored = false;
1730 
1731 		/*
1732 		 * If an earlier newline was missing and it was the same task,
1733 		 * either merge it with the current buffer and flush, or if
1734 		 * there was a race with interrupts (prefix == true) then just
1735 		 * flush it out and store this line separately.
1736 		 * If the preceding printk was from a different task and missed
1737 		 * a newline, flush and append the newline.
1738 		 */
1739 		if (cont.len) {
1740 			if (cont.owner == current && !(lflags & LOG_PREFIX))
1741 				stored = cont_add(facility, level, text,
1742 						  text_len);
1743 			cont_flush(LOG_NEWLINE);
1744 		}
1745 
1746 		if (stored)
1747 			printed_len += text_len;
1748 		else
1749 			printed_len += log_store(facility, level, lflags, 0,
1750 						 dict, dictlen, text, text_len);
1751 	}
1752 
1753 	logbuf_cpu = UINT_MAX;
1754 	raw_spin_unlock(&logbuf_lock);
1755 	lockdep_on();
1756 	local_irq_restore(flags);
1757 
1758 	/* If called from the scheduler, we can not call up(). */
1759 	if (!in_sched) {
1760 		lockdep_off();
1761 		/*
1762 		 * Disable preemption to avoid being preempted while holding
1763 		 * console_sem which would prevent anyone from printing to
1764 		 * console
1765 		 */
1766 		preempt_disable();
1767 
1768 		/*
1769 		 * Try to acquire and then immediately release the console
1770 		 * semaphore.  The release will print out buffers and wake up
1771 		 * /dev/kmsg and syslog() users.
1772 		 */
1773 		if (console_trylock_for_printk())
1774 			console_unlock();
1775 		preempt_enable();
1776 		lockdep_on();
1777 	}
1778 
1779 	return printed_len;
1780 }
1781 EXPORT_SYMBOL(vprintk_emit);
1782 
1783 asmlinkage int vprintk(const char *fmt, va_list args)
1784 {
1785 	return vprintk_emit(0, -1, NULL, 0, fmt, args);
1786 }
1787 EXPORT_SYMBOL(vprintk);
1788 
1789 asmlinkage int printk_emit(int facility, int level,
1790 			   const char *dict, size_t dictlen,
1791 			   const char *fmt, ...)
1792 {
1793 	va_list args;
1794 	int r;
1795 
1796 	va_start(args, fmt);
1797 	r = vprintk_emit(facility, level, dict, dictlen, fmt, args);
1798 	va_end(args);
1799 
1800 	return r;
1801 }
1802 EXPORT_SYMBOL(printk_emit);
1803 
1804 /**
1805  * printk - print a kernel message
1806  * @fmt: format string
1807  *
1808  * This is printk(). It can be called from any context. We want it to work.
1809  *
1810  * We try to grab the console_lock. If we succeed, it's easy - we log the
1811  * output and call the console drivers.  If we fail to get the semaphore, we
1812  * place the output into the log buffer and return. The current holder of
1813  * the console_sem will notice the new output in console_unlock(); and will
1814  * send it to the consoles before releasing the lock.
1815  *
1816  * One effect of this deferred printing is that code which calls printk() and
1817  * then changes console_loglevel may break. This is because console_loglevel
1818  * is inspected when the actual printing occurs.
1819  *
1820  * See also:
1821  * printf(3)
1822  *
1823  * See the vsnprintf() documentation for format string extensions over C99.
1824  */
1825 asmlinkage __visible int printk(const char *fmt, ...)
1826 {
1827 	va_list args;
1828 	int r;
1829 
1830 #ifdef CONFIG_KGDB_KDB
1831 	if (unlikely(kdb_trap_printk)) {
1832 		va_start(args, fmt);
1833 		r = vkdb_printf(fmt, args);
1834 		va_end(args);
1835 		return r;
1836 	}
1837 #endif
1838 	va_start(args, fmt);
1839 	r = vprintk_emit(0, -1, NULL, 0, fmt, args);
1840 	va_end(args);
1841 
1842 	return r;
1843 }
1844 EXPORT_SYMBOL(printk);
1845 
1846 #else /* CONFIG_PRINTK */
1847 
1848 #define LOG_LINE_MAX		0
1849 #define PREFIX_MAX		0
1850 
1851 static u64 syslog_seq;
1852 static u32 syslog_idx;
1853 static u64 console_seq;
1854 static u32 console_idx;
1855 static enum log_flags syslog_prev;
1856 static u64 log_first_seq;
1857 static u32 log_first_idx;
1858 static u64 log_next_seq;
1859 static enum log_flags console_prev;
1860 static struct cont {
1861 	size_t len;
1862 	size_t cons;
1863 	u8 level;
1864 	bool flushed:1;
1865 } cont;
1866 static struct printk_log *log_from_idx(u32 idx) { return NULL; }
1867 static u32 log_next(u32 idx) { return 0; }
1868 static void call_console_drivers(int level, const char *text, size_t len) {}
1869 static size_t msg_print_text(const struct printk_log *msg, enum log_flags prev,
1870 			     bool syslog, char *buf, size_t size) { return 0; }
1871 static size_t cont_print_text(char *text, size_t size) { return 0; }
1872 
1873 #endif /* CONFIG_PRINTK */
1874 
1875 #ifdef CONFIG_EARLY_PRINTK
1876 struct console *early_console;
1877 
1878 void early_vprintk(const char *fmt, va_list ap)
1879 {
1880 	if (early_console) {
1881 		char buf[512];
1882 		int n = vscnprintf(buf, sizeof(buf), fmt, ap);
1883 
1884 		early_console->write(early_console, buf, n);
1885 	}
1886 }
1887 
1888 asmlinkage __visible void early_printk(const char *fmt, ...)
1889 {
1890 	va_list ap;
1891 
1892 	va_start(ap, fmt);
1893 	early_vprintk(fmt, ap);
1894 	va_end(ap);
1895 }
1896 #endif
1897 
1898 static int __add_preferred_console(char *name, int idx, char *options,
1899 				   char *brl_options)
1900 {
1901 	struct console_cmdline *c;
1902 	int i;
1903 
1904 	/*
1905 	 *	See if this tty is not yet registered, and
1906 	 *	if we have a slot free.
1907 	 */
1908 	for (i = 0, c = console_cmdline;
1909 	     i < MAX_CMDLINECONSOLES && c->name[0];
1910 	     i++, c++) {
1911 		if (strcmp(c->name, name) == 0 && c->index == idx) {
1912 			if (!brl_options)
1913 				selected_console = i;
1914 			return 0;
1915 		}
1916 	}
1917 	if (i == MAX_CMDLINECONSOLES)
1918 		return -E2BIG;
1919 	if (!brl_options)
1920 		selected_console = i;
1921 	strlcpy(c->name, name, sizeof(c->name));
1922 	c->options = options;
1923 	braille_set_options(c, brl_options);
1924 
1925 	c->index = idx;
1926 	return 0;
1927 }
1928 /*
1929  * Set up a console.  Called via do_early_param() in init/main.c
1930  * for each "console=" parameter in the boot command line.
1931  */
1932 static int __init console_setup(char *str)
1933 {
1934 	char buf[sizeof(console_cmdline[0].name) + 4]; /* 4 for "ttyS" */
1935 	char *s, *options, *brl_options = NULL;
1936 	int idx;
1937 
1938 	if (_braille_console_setup(&str, &brl_options))
1939 		return 1;
1940 
1941 	/*
1942 	 * Decode str into name, index, options.
1943 	 */
1944 	if (str[0] >= '0' && str[0] <= '9') {
1945 		strcpy(buf, "ttyS");
1946 		strncpy(buf + 4, str, sizeof(buf) - 5);
1947 	} else {
1948 		strncpy(buf, str, sizeof(buf) - 1);
1949 	}
1950 	buf[sizeof(buf) - 1] = 0;
1951 	options = strchr(str, ',');
1952 	if (options)
1953 		*(options++) = 0;
1954 #ifdef __sparc__
1955 	if (!strcmp(str, "ttya"))
1956 		strcpy(buf, "ttyS0");
1957 	if (!strcmp(str, "ttyb"))
1958 		strcpy(buf, "ttyS1");
1959 #endif
1960 	for (s = buf; *s; s++)
1961 		if (isdigit(*s) || *s == ',')
1962 			break;
1963 	idx = simple_strtoul(s, NULL, 10);
1964 	*s = 0;
1965 
1966 	__add_preferred_console(buf, idx, options, brl_options);
1967 	console_set_on_cmdline = 1;
1968 	return 1;
1969 }
1970 __setup("console=", console_setup);
1971 
1972 /**
1973  * add_preferred_console - add a device to the list of preferred consoles.
1974  * @name: device name
1975  * @idx: device index
1976  * @options: options for this console
1977  *
1978  * The last preferred console added will be used for kernel messages
1979  * and stdin/out/err for init.  Normally this is used by console_setup
1980  * above to handle user-supplied console arguments; however it can also
1981  * be used by arch-specific code either to override the user or more
1982  * commonly to provide a default console (ie from PROM variables) when
1983  * the user has not supplied one.
1984  */
1985 int add_preferred_console(char *name, int idx, char *options)
1986 {
1987 	return __add_preferred_console(name, idx, options, NULL);
1988 }
1989 
1990 int update_console_cmdline(char *name, int idx, char *name_new, int idx_new, char *options)
1991 {
1992 	struct console_cmdline *c;
1993 	int i;
1994 
1995 	for (i = 0, c = console_cmdline;
1996 	     i < MAX_CMDLINECONSOLES && c->name[0];
1997 	     i++, c++)
1998 		if (strcmp(c->name, name) == 0 && c->index == idx) {
1999 			strlcpy(c->name, name_new, sizeof(c->name));
2000 			c->options = options;
2001 			c->index = idx_new;
2002 			return i;
2003 		}
2004 	/* not found */
2005 	return -1;
2006 }
2007 
2008 bool console_suspend_enabled = true;
2009 EXPORT_SYMBOL(console_suspend_enabled);
2010 
2011 static int __init console_suspend_disable(char *str)
2012 {
2013 	console_suspend_enabled = false;
2014 	return 1;
2015 }
2016 __setup("no_console_suspend", console_suspend_disable);
2017 module_param_named(console_suspend, console_suspend_enabled,
2018 		bool, S_IRUGO | S_IWUSR);
2019 MODULE_PARM_DESC(console_suspend, "suspend console during suspend"
2020 	" and hibernate operations");
2021 
2022 /**
2023  * suspend_console - suspend the console subsystem
2024  *
2025  * This disables printk() while we go into suspend states
2026  */
2027 void suspend_console(void)
2028 {
2029 	if (!console_suspend_enabled)
2030 		return;
2031 	printk("Suspending console(s) (use no_console_suspend to debug)\n");
2032 	console_lock();
2033 	console_suspended = 1;
2034 	up_console_sem();
2035 }
2036 
2037 void resume_console(void)
2038 {
2039 	if (!console_suspend_enabled)
2040 		return;
2041 	down_console_sem();
2042 	console_suspended = 0;
2043 	console_unlock();
2044 }
2045 
2046 /**
2047  * console_cpu_notify - print deferred console messages after CPU hotplug
2048  * @self: notifier struct
2049  * @action: CPU hotplug event
2050  * @hcpu: unused
2051  *
2052  * If printk() is called from a CPU that is not online yet, the messages
2053  * will be spooled but will not show up on the console.  This function is
2054  * called when a new CPU comes online (or fails to come up), and ensures
2055  * that any such output gets printed.
2056  */
2057 static int console_cpu_notify(struct notifier_block *self,
2058 	unsigned long action, void *hcpu)
2059 {
2060 	switch (action) {
2061 	case CPU_ONLINE:
2062 	case CPU_DEAD:
2063 	case CPU_DOWN_FAILED:
2064 	case CPU_UP_CANCELED:
2065 		console_lock();
2066 		console_unlock();
2067 	}
2068 	return NOTIFY_OK;
2069 }
2070 
2071 /**
2072  * console_lock - lock the console system for exclusive use.
2073  *
2074  * Acquires a lock which guarantees that the caller has
2075  * exclusive access to the console system and the console_drivers list.
2076  *
2077  * Can sleep, returns nothing.
2078  */
2079 void console_lock(void)
2080 {
2081 	might_sleep();
2082 
2083 	down_console_sem();
2084 	if (console_suspended)
2085 		return;
2086 	console_locked = 1;
2087 	console_may_schedule = 1;
2088 }
2089 EXPORT_SYMBOL(console_lock);
2090 
2091 /**
2092  * console_trylock - try to lock the console system for exclusive use.
2093  *
2094  * Try to acquire a lock which guarantees that the caller has exclusive
2095  * access to the console system and the console_drivers list.
2096  *
2097  * returns 1 on success, and 0 on failure to acquire the lock.
2098  */
2099 int console_trylock(void)
2100 {
2101 	if (down_trylock_console_sem())
2102 		return 0;
2103 	if (console_suspended) {
2104 		up_console_sem();
2105 		return 0;
2106 	}
2107 	console_locked = 1;
2108 	console_may_schedule = 0;
2109 	return 1;
2110 }
2111 EXPORT_SYMBOL(console_trylock);
2112 
2113 int is_console_locked(void)
2114 {
2115 	return console_locked;
2116 }
2117 
2118 static void console_cont_flush(char *text, size_t size)
2119 {
2120 	unsigned long flags;
2121 	size_t len;
2122 
2123 	raw_spin_lock_irqsave(&logbuf_lock, flags);
2124 
2125 	if (!cont.len)
2126 		goto out;
2127 
2128 	/*
2129 	 * We still queue earlier records, likely because the console was
2130 	 * busy. The earlier ones need to be printed before this one, we
2131 	 * did not flush any fragment so far, so just let it queue up.
2132 	 */
2133 	if (console_seq < log_next_seq && !cont.cons)
2134 		goto out;
2135 
2136 	len = cont_print_text(text, size);
2137 	raw_spin_unlock(&logbuf_lock);
2138 	stop_critical_timings();
2139 	call_console_drivers(cont.level, text, len);
2140 	start_critical_timings();
2141 	local_irq_restore(flags);
2142 	return;
2143 out:
2144 	raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2145 }
2146 
2147 /**
2148  * console_unlock - unlock the console system
2149  *
2150  * Releases the console_lock which the caller holds on the console system
2151  * and the console driver list.
2152  *
2153  * While the console_lock was held, console output may have been buffered
2154  * by printk().  If this is the case, console_unlock(); emits
2155  * the output prior to releasing the lock.
2156  *
2157  * If there is output waiting, we wake /dev/kmsg and syslog() users.
2158  *
2159  * console_unlock(); may be called from any context.
2160  */
2161 void console_unlock(void)
2162 {
2163 	static char text[LOG_LINE_MAX + PREFIX_MAX];
2164 	static u64 seen_seq;
2165 	unsigned long flags;
2166 	bool wake_klogd = false;
2167 	bool retry;
2168 
2169 	if (console_suspended) {
2170 		up_console_sem();
2171 		return;
2172 	}
2173 
2174 	console_may_schedule = 0;
2175 
2176 	/* flush buffered message fragment immediately to console */
2177 	console_cont_flush(text, sizeof(text));
2178 again:
2179 	for (;;) {
2180 		struct printk_log *msg;
2181 		size_t len;
2182 		int level;
2183 
2184 		raw_spin_lock_irqsave(&logbuf_lock, flags);
2185 		if (seen_seq != log_next_seq) {
2186 			wake_klogd = true;
2187 			seen_seq = log_next_seq;
2188 		}
2189 
2190 		if (console_seq < log_first_seq) {
2191 			len = sprintf(text, "** %u printk messages dropped ** ",
2192 				      (unsigned)(log_first_seq - console_seq));
2193 
2194 			/* messages are gone, move to first one */
2195 			console_seq = log_first_seq;
2196 			console_idx = log_first_idx;
2197 			console_prev = 0;
2198 		} else {
2199 			len = 0;
2200 		}
2201 skip:
2202 		if (console_seq == log_next_seq)
2203 			break;
2204 
2205 		msg = log_from_idx(console_idx);
2206 		if (msg->flags & LOG_NOCONS) {
2207 			/*
2208 			 * Skip record we have buffered and already printed
2209 			 * directly to the console when we received it.
2210 			 */
2211 			console_idx = log_next(console_idx);
2212 			console_seq++;
2213 			/*
2214 			 * We will get here again when we register a new
2215 			 * CON_PRINTBUFFER console. Clear the flag so we
2216 			 * will properly dump everything later.
2217 			 */
2218 			msg->flags &= ~LOG_NOCONS;
2219 			console_prev = msg->flags;
2220 			goto skip;
2221 		}
2222 
2223 		level = msg->level;
2224 		len += msg_print_text(msg, console_prev, false,
2225 				      text + len, sizeof(text) - len);
2226 		console_idx = log_next(console_idx);
2227 		console_seq++;
2228 		console_prev = msg->flags;
2229 		raw_spin_unlock(&logbuf_lock);
2230 
2231 		stop_critical_timings();	/* don't trace print latency */
2232 		call_console_drivers(level, text, len);
2233 		start_critical_timings();
2234 		local_irq_restore(flags);
2235 	}
2236 	console_locked = 0;
2237 
2238 	/* Release the exclusive_console once it is used */
2239 	if (unlikely(exclusive_console))
2240 		exclusive_console = NULL;
2241 
2242 	raw_spin_unlock(&logbuf_lock);
2243 
2244 	up_console_sem();
2245 
2246 	/*
2247 	 * Someone could have filled up the buffer again, so re-check if there's
2248 	 * something to flush. In case we cannot trylock the console_sem again,
2249 	 * there's a new owner and the console_unlock() from them will do the
2250 	 * flush, no worries.
2251 	 */
2252 	raw_spin_lock(&logbuf_lock);
2253 	retry = console_seq != log_next_seq;
2254 	raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2255 
2256 	if (retry && console_trylock())
2257 		goto again;
2258 
2259 	if (wake_klogd)
2260 		wake_up_klogd();
2261 }
2262 EXPORT_SYMBOL(console_unlock);
2263 
2264 /**
2265  * console_conditional_schedule - yield the CPU if required
2266  *
2267  * If the console code is currently allowed to sleep, and
2268  * if this CPU should yield the CPU to another task, do
2269  * so here.
2270  *
2271  * Must be called within console_lock();.
2272  */
2273 void __sched console_conditional_schedule(void)
2274 {
2275 	if (console_may_schedule)
2276 		cond_resched();
2277 }
2278 EXPORT_SYMBOL(console_conditional_schedule);
2279 
2280 void console_unblank(void)
2281 {
2282 	struct console *c;
2283 
2284 	/*
2285 	 * console_unblank can no longer be called in interrupt context unless
2286 	 * oops_in_progress is set to 1..
2287 	 */
2288 	if (oops_in_progress) {
2289 		if (down_trylock_console_sem() != 0)
2290 			return;
2291 	} else
2292 		console_lock();
2293 
2294 	console_locked = 1;
2295 	console_may_schedule = 0;
2296 	for_each_console(c)
2297 		if ((c->flags & CON_ENABLED) && c->unblank)
2298 			c->unblank();
2299 	console_unlock();
2300 }
2301 
2302 /*
2303  * Return the console tty driver structure and its associated index
2304  */
2305 struct tty_driver *console_device(int *index)
2306 {
2307 	struct console *c;
2308 	struct tty_driver *driver = NULL;
2309 
2310 	console_lock();
2311 	for_each_console(c) {
2312 		if (!c->device)
2313 			continue;
2314 		driver = c->device(c, index);
2315 		if (driver)
2316 			break;
2317 	}
2318 	console_unlock();
2319 	return driver;
2320 }
2321 
2322 /*
2323  * Prevent further output on the passed console device so that (for example)
2324  * serial drivers can disable console output before suspending a port, and can
2325  * re-enable output afterwards.
2326  */
2327 void console_stop(struct console *console)
2328 {
2329 	console_lock();
2330 	console->flags &= ~CON_ENABLED;
2331 	console_unlock();
2332 }
2333 EXPORT_SYMBOL(console_stop);
2334 
2335 void console_start(struct console *console)
2336 {
2337 	console_lock();
2338 	console->flags |= CON_ENABLED;
2339 	console_unlock();
2340 }
2341 EXPORT_SYMBOL(console_start);
2342 
2343 static int __read_mostly keep_bootcon;
2344 
2345 static int __init keep_bootcon_setup(char *str)
2346 {
2347 	keep_bootcon = 1;
2348 	pr_info("debug: skip boot console de-registration.\n");
2349 
2350 	return 0;
2351 }
2352 
2353 early_param("keep_bootcon", keep_bootcon_setup);
2354 
2355 /*
2356  * The console driver calls this routine during kernel initialization
2357  * to register the console printing procedure with printk() and to
2358  * print any messages that were printed by the kernel before the
2359  * console driver was initialized.
2360  *
2361  * This can happen pretty early during the boot process (because of
2362  * early_printk) - sometimes before setup_arch() completes - be careful
2363  * of what kernel features are used - they may not be initialised yet.
2364  *
2365  * There are two types of consoles - bootconsoles (early_printk) and
2366  * "real" consoles (everything which is not a bootconsole) which are
2367  * handled differently.
2368  *  - Any number of bootconsoles can be registered at any time.
2369  *  - As soon as a "real" console is registered, all bootconsoles
2370  *    will be unregistered automatically.
2371  *  - Once a "real" console is registered, any attempt to register a
2372  *    bootconsoles will be rejected
2373  */
2374 void register_console(struct console *newcon)
2375 {
2376 	int i;
2377 	unsigned long flags;
2378 	struct console *bcon = NULL;
2379 	struct console_cmdline *c;
2380 
2381 	if (console_drivers)
2382 		for_each_console(bcon)
2383 			if (WARN(bcon == newcon,
2384 					"console '%s%d' already registered\n",
2385 					bcon->name, bcon->index))
2386 				return;
2387 
2388 	/*
2389 	 * before we register a new CON_BOOT console, make sure we don't
2390 	 * already have a valid console
2391 	 */
2392 	if (console_drivers && newcon->flags & CON_BOOT) {
2393 		/* find the last or real console */
2394 		for_each_console(bcon) {
2395 			if (!(bcon->flags & CON_BOOT)) {
2396 				pr_info("Too late to register bootconsole %s%d\n",
2397 					newcon->name, newcon->index);
2398 				return;
2399 			}
2400 		}
2401 	}
2402 
2403 	if (console_drivers && console_drivers->flags & CON_BOOT)
2404 		bcon = console_drivers;
2405 
2406 	if (preferred_console < 0 || bcon || !console_drivers)
2407 		preferred_console = selected_console;
2408 
2409 	if (newcon->early_setup)
2410 		newcon->early_setup();
2411 
2412 	/*
2413 	 *	See if we want to use this console driver. If we
2414 	 *	didn't select a console we take the first one
2415 	 *	that registers here.
2416 	 */
2417 	if (preferred_console < 0) {
2418 		if (newcon->index < 0)
2419 			newcon->index = 0;
2420 		if (newcon->setup == NULL ||
2421 		    newcon->setup(newcon, NULL) == 0) {
2422 			newcon->flags |= CON_ENABLED;
2423 			if (newcon->device) {
2424 				newcon->flags |= CON_CONSDEV;
2425 				preferred_console = 0;
2426 			}
2427 		}
2428 	}
2429 
2430 	/*
2431 	 *	See if this console matches one we selected on
2432 	 *	the command line.
2433 	 */
2434 	for (i = 0, c = console_cmdline;
2435 	     i < MAX_CMDLINECONSOLES && c->name[0];
2436 	     i++, c++) {
2437 		if (strcmp(c->name, newcon->name) != 0)
2438 			continue;
2439 		if (newcon->index >= 0 &&
2440 		    newcon->index != c->index)
2441 			continue;
2442 		if (newcon->index < 0)
2443 			newcon->index = c->index;
2444 
2445 		if (_braille_register_console(newcon, c))
2446 			return;
2447 
2448 		if (newcon->setup &&
2449 		    newcon->setup(newcon, console_cmdline[i].options) != 0)
2450 			break;
2451 		newcon->flags |= CON_ENABLED;
2452 		newcon->index = c->index;
2453 		if (i == selected_console) {
2454 			newcon->flags |= CON_CONSDEV;
2455 			preferred_console = selected_console;
2456 		}
2457 		break;
2458 	}
2459 
2460 	if (!(newcon->flags & CON_ENABLED))
2461 		return;
2462 
2463 	/*
2464 	 * If we have a bootconsole, and are switching to a real console,
2465 	 * don't print everything out again, since when the boot console, and
2466 	 * the real console are the same physical device, it's annoying to
2467 	 * see the beginning boot messages twice
2468 	 */
2469 	if (bcon && ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV))
2470 		newcon->flags &= ~CON_PRINTBUFFER;
2471 
2472 	/*
2473 	 *	Put this console in the list - keep the
2474 	 *	preferred driver at the head of the list.
2475 	 */
2476 	console_lock();
2477 	if ((newcon->flags & CON_CONSDEV) || console_drivers == NULL) {
2478 		newcon->next = console_drivers;
2479 		console_drivers = newcon;
2480 		if (newcon->next)
2481 			newcon->next->flags &= ~CON_CONSDEV;
2482 	} else {
2483 		newcon->next = console_drivers->next;
2484 		console_drivers->next = newcon;
2485 	}
2486 	if (newcon->flags & CON_PRINTBUFFER) {
2487 		/*
2488 		 * console_unlock(); will print out the buffered messages
2489 		 * for us.
2490 		 */
2491 		raw_spin_lock_irqsave(&logbuf_lock, flags);
2492 		console_seq = syslog_seq;
2493 		console_idx = syslog_idx;
2494 		console_prev = syslog_prev;
2495 		raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2496 		/*
2497 		 * We're about to replay the log buffer.  Only do this to the
2498 		 * just-registered console to avoid excessive message spam to
2499 		 * the already-registered consoles.
2500 		 */
2501 		exclusive_console = newcon;
2502 	}
2503 	console_unlock();
2504 	console_sysfs_notify();
2505 
2506 	/*
2507 	 * By unregistering the bootconsoles after we enable the real console
2508 	 * we get the "console xxx enabled" message on all the consoles -
2509 	 * boot consoles, real consoles, etc - this is to ensure that end
2510 	 * users know there might be something in the kernel's log buffer that
2511 	 * went to the bootconsole (that they do not see on the real console)
2512 	 */
2513 	pr_info("%sconsole [%s%d] enabled\n",
2514 		(newcon->flags & CON_BOOT) ? "boot" : "" ,
2515 		newcon->name, newcon->index);
2516 	if (bcon &&
2517 	    ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV) &&
2518 	    !keep_bootcon) {
2519 		/* We need to iterate through all boot consoles, to make
2520 		 * sure we print everything out, before we unregister them.
2521 		 */
2522 		for_each_console(bcon)
2523 			if (bcon->flags & CON_BOOT)
2524 				unregister_console(bcon);
2525 	}
2526 }
2527 EXPORT_SYMBOL(register_console);
2528 
2529 int unregister_console(struct console *console)
2530 {
2531         struct console *a, *b;
2532 	int res;
2533 
2534 	pr_info("%sconsole [%s%d] disabled\n",
2535 		(console->flags & CON_BOOT) ? "boot" : "" ,
2536 		console->name, console->index);
2537 
2538 	res = _braille_unregister_console(console);
2539 	if (res)
2540 		return res;
2541 
2542 	res = 1;
2543 	console_lock();
2544 	if (console_drivers == console) {
2545 		console_drivers=console->next;
2546 		res = 0;
2547 	} else if (console_drivers) {
2548 		for (a=console_drivers->next, b=console_drivers ;
2549 		     a; b=a, a=b->next) {
2550 			if (a == console) {
2551 				b->next = a->next;
2552 				res = 0;
2553 				break;
2554 			}
2555 		}
2556 	}
2557 
2558 	/*
2559 	 * If this isn't the last console and it has CON_CONSDEV set, we
2560 	 * need to set it on the next preferred console.
2561 	 */
2562 	if (console_drivers != NULL && console->flags & CON_CONSDEV)
2563 		console_drivers->flags |= CON_CONSDEV;
2564 
2565 	console->flags &= ~CON_ENABLED;
2566 	console_unlock();
2567 	console_sysfs_notify();
2568 	return res;
2569 }
2570 EXPORT_SYMBOL(unregister_console);
2571 
2572 static int __init printk_late_init(void)
2573 {
2574 	struct console *con;
2575 
2576 	for_each_console(con) {
2577 		if (!keep_bootcon && con->flags & CON_BOOT) {
2578 			unregister_console(con);
2579 		}
2580 	}
2581 	hotcpu_notifier(console_cpu_notify, 0);
2582 	return 0;
2583 }
2584 late_initcall(printk_late_init);
2585 
2586 #if defined CONFIG_PRINTK
2587 /*
2588  * Delayed printk version, for scheduler-internal messages:
2589  */
2590 #define PRINTK_PENDING_WAKEUP	0x01
2591 #define PRINTK_PENDING_OUTPUT	0x02
2592 
2593 static DEFINE_PER_CPU(int, printk_pending);
2594 
2595 static void wake_up_klogd_work_func(struct irq_work *irq_work)
2596 {
2597 	int pending = __this_cpu_xchg(printk_pending, 0);
2598 
2599 	if (pending & PRINTK_PENDING_OUTPUT) {
2600 		/* If trylock fails, someone else is doing the printing */
2601 		if (console_trylock())
2602 			console_unlock();
2603 	}
2604 
2605 	if (pending & PRINTK_PENDING_WAKEUP)
2606 		wake_up_interruptible(&log_wait);
2607 }
2608 
2609 static DEFINE_PER_CPU(struct irq_work, wake_up_klogd_work) = {
2610 	.func = wake_up_klogd_work_func,
2611 	.flags = IRQ_WORK_LAZY,
2612 };
2613 
2614 void wake_up_klogd(void)
2615 {
2616 	preempt_disable();
2617 	if (waitqueue_active(&log_wait)) {
2618 		this_cpu_or(printk_pending, PRINTK_PENDING_WAKEUP);
2619 		irq_work_queue(&__get_cpu_var(wake_up_klogd_work));
2620 	}
2621 	preempt_enable();
2622 }
2623 
2624 int printk_deferred(const char *fmt, ...)
2625 {
2626 	va_list args;
2627 	int r;
2628 
2629 	preempt_disable();
2630 	va_start(args, fmt);
2631 	r = vprintk_emit(0, SCHED_MESSAGE_LOGLEVEL, NULL, 0, fmt, args);
2632 	va_end(args);
2633 
2634 	__this_cpu_or(printk_pending, PRINTK_PENDING_OUTPUT);
2635 	irq_work_queue(&__get_cpu_var(wake_up_klogd_work));
2636 	preempt_enable();
2637 
2638 	return r;
2639 }
2640 
2641 /*
2642  * printk rate limiting, lifted from the networking subsystem.
2643  *
2644  * This enforces a rate limit: not more than 10 kernel messages
2645  * every 5s to make a denial-of-service attack impossible.
2646  */
2647 DEFINE_RATELIMIT_STATE(printk_ratelimit_state, 5 * HZ, 10);
2648 
2649 int __printk_ratelimit(const char *func)
2650 {
2651 	return ___ratelimit(&printk_ratelimit_state, func);
2652 }
2653 EXPORT_SYMBOL(__printk_ratelimit);
2654 
2655 /**
2656  * printk_timed_ratelimit - caller-controlled printk ratelimiting
2657  * @caller_jiffies: pointer to caller's state
2658  * @interval_msecs: minimum interval between prints
2659  *
2660  * printk_timed_ratelimit() returns true if more than @interval_msecs
2661  * milliseconds have elapsed since the last time printk_timed_ratelimit()
2662  * returned true.
2663  */
2664 bool printk_timed_ratelimit(unsigned long *caller_jiffies,
2665 			unsigned int interval_msecs)
2666 {
2667 	unsigned long elapsed = jiffies - *caller_jiffies;
2668 
2669 	if (*caller_jiffies && elapsed <= msecs_to_jiffies(interval_msecs))
2670 		return false;
2671 
2672 	*caller_jiffies = jiffies;
2673 	return true;
2674 }
2675 EXPORT_SYMBOL(printk_timed_ratelimit);
2676 
2677 static DEFINE_SPINLOCK(dump_list_lock);
2678 static LIST_HEAD(dump_list);
2679 
2680 /**
2681  * kmsg_dump_register - register a kernel log dumper.
2682  * @dumper: pointer to the kmsg_dumper structure
2683  *
2684  * Adds a kernel log dumper to the system. The dump callback in the
2685  * structure will be called when the kernel oopses or panics and must be
2686  * set. Returns zero on success and %-EINVAL or %-EBUSY otherwise.
2687  */
2688 int kmsg_dump_register(struct kmsg_dumper *dumper)
2689 {
2690 	unsigned long flags;
2691 	int err = -EBUSY;
2692 
2693 	/* The dump callback needs to be set */
2694 	if (!dumper->dump)
2695 		return -EINVAL;
2696 
2697 	spin_lock_irqsave(&dump_list_lock, flags);
2698 	/* Don't allow registering multiple times */
2699 	if (!dumper->registered) {
2700 		dumper->registered = 1;
2701 		list_add_tail_rcu(&dumper->list, &dump_list);
2702 		err = 0;
2703 	}
2704 	spin_unlock_irqrestore(&dump_list_lock, flags);
2705 
2706 	return err;
2707 }
2708 EXPORT_SYMBOL_GPL(kmsg_dump_register);
2709 
2710 /**
2711  * kmsg_dump_unregister - unregister a kmsg dumper.
2712  * @dumper: pointer to the kmsg_dumper structure
2713  *
2714  * Removes a dump device from the system. Returns zero on success and
2715  * %-EINVAL otherwise.
2716  */
2717 int kmsg_dump_unregister(struct kmsg_dumper *dumper)
2718 {
2719 	unsigned long flags;
2720 	int err = -EINVAL;
2721 
2722 	spin_lock_irqsave(&dump_list_lock, flags);
2723 	if (dumper->registered) {
2724 		dumper->registered = 0;
2725 		list_del_rcu(&dumper->list);
2726 		err = 0;
2727 	}
2728 	spin_unlock_irqrestore(&dump_list_lock, flags);
2729 	synchronize_rcu();
2730 
2731 	return err;
2732 }
2733 EXPORT_SYMBOL_GPL(kmsg_dump_unregister);
2734 
2735 static bool always_kmsg_dump;
2736 module_param_named(always_kmsg_dump, always_kmsg_dump, bool, S_IRUGO | S_IWUSR);
2737 
2738 /**
2739  * kmsg_dump - dump kernel log to kernel message dumpers.
2740  * @reason: the reason (oops, panic etc) for dumping
2741  *
2742  * Call each of the registered dumper's dump() callback, which can
2743  * retrieve the kmsg records with kmsg_dump_get_line() or
2744  * kmsg_dump_get_buffer().
2745  */
2746 void kmsg_dump(enum kmsg_dump_reason reason)
2747 {
2748 	struct kmsg_dumper *dumper;
2749 	unsigned long flags;
2750 
2751 	if ((reason > KMSG_DUMP_OOPS) && !always_kmsg_dump)
2752 		return;
2753 
2754 	rcu_read_lock();
2755 	list_for_each_entry_rcu(dumper, &dump_list, list) {
2756 		if (dumper->max_reason && reason > dumper->max_reason)
2757 			continue;
2758 
2759 		/* initialize iterator with data about the stored records */
2760 		dumper->active = true;
2761 
2762 		raw_spin_lock_irqsave(&logbuf_lock, flags);
2763 		dumper->cur_seq = clear_seq;
2764 		dumper->cur_idx = clear_idx;
2765 		dumper->next_seq = log_next_seq;
2766 		dumper->next_idx = log_next_idx;
2767 		raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2768 
2769 		/* invoke dumper which will iterate over records */
2770 		dumper->dump(dumper, reason);
2771 
2772 		/* reset iterator */
2773 		dumper->active = false;
2774 	}
2775 	rcu_read_unlock();
2776 }
2777 
2778 /**
2779  * kmsg_dump_get_line_nolock - retrieve one kmsg log line (unlocked version)
2780  * @dumper: registered kmsg dumper
2781  * @syslog: include the "<4>" prefixes
2782  * @line: buffer to copy the line to
2783  * @size: maximum size of the buffer
2784  * @len: length of line placed into buffer
2785  *
2786  * Start at the beginning of the kmsg buffer, with the oldest kmsg
2787  * record, and copy one record into the provided buffer.
2788  *
2789  * Consecutive calls will return the next available record moving
2790  * towards the end of the buffer with the youngest messages.
2791  *
2792  * A return value of FALSE indicates that there are no more records to
2793  * read.
2794  *
2795  * The function is similar to kmsg_dump_get_line(), but grabs no locks.
2796  */
2797 bool kmsg_dump_get_line_nolock(struct kmsg_dumper *dumper, bool syslog,
2798 			       char *line, size_t size, size_t *len)
2799 {
2800 	struct printk_log *msg;
2801 	size_t l = 0;
2802 	bool ret = false;
2803 
2804 	if (!dumper->active)
2805 		goto out;
2806 
2807 	if (dumper->cur_seq < log_first_seq) {
2808 		/* messages are gone, move to first available one */
2809 		dumper->cur_seq = log_first_seq;
2810 		dumper->cur_idx = log_first_idx;
2811 	}
2812 
2813 	/* last entry */
2814 	if (dumper->cur_seq >= log_next_seq)
2815 		goto out;
2816 
2817 	msg = log_from_idx(dumper->cur_idx);
2818 	l = msg_print_text(msg, 0, syslog, line, size);
2819 
2820 	dumper->cur_idx = log_next(dumper->cur_idx);
2821 	dumper->cur_seq++;
2822 	ret = true;
2823 out:
2824 	if (len)
2825 		*len = l;
2826 	return ret;
2827 }
2828 
2829 /**
2830  * kmsg_dump_get_line - retrieve one kmsg log line
2831  * @dumper: registered kmsg dumper
2832  * @syslog: include the "<4>" prefixes
2833  * @line: buffer to copy the line to
2834  * @size: maximum size of the buffer
2835  * @len: length of line placed into buffer
2836  *
2837  * Start at the beginning of the kmsg buffer, with the oldest kmsg
2838  * record, and copy one record into the provided buffer.
2839  *
2840  * Consecutive calls will return the next available record moving
2841  * towards the end of the buffer with the youngest messages.
2842  *
2843  * A return value of FALSE indicates that there are no more records to
2844  * read.
2845  */
2846 bool kmsg_dump_get_line(struct kmsg_dumper *dumper, bool syslog,
2847 			char *line, size_t size, size_t *len)
2848 {
2849 	unsigned long flags;
2850 	bool ret;
2851 
2852 	raw_spin_lock_irqsave(&logbuf_lock, flags);
2853 	ret = kmsg_dump_get_line_nolock(dumper, syslog, line, size, len);
2854 	raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2855 
2856 	return ret;
2857 }
2858 EXPORT_SYMBOL_GPL(kmsg_dump_get_line);
2859 
2860 /**
2861  * kmsg_dump_get_buffer - copy kmsg log lines
2862  * @dumper: registered kmsg dumper
2863  * @syslog: include the "<4>" prefixes
2864  * @buf: buffer to copy the line to
2865  * @size: maximum size of the buffer
2866  * @len: length of line placed into buffer
2867  *
2868  * Start at the end of the kmsg buffer and fill the provided buffer
2869  * with as many of the the *youngest* kmsg records that fit into it.
2870  * If the buffer is large enough, all available kmsg records will be
2871  * copied with a single call.
2872  *
2873  * Consecutive calls will fill the buffer with the next block of
2874  * available older records, not including the earlier retrieved ones.
2875  *
2876  * A return value of FALSE indicates that there are no more records to
2877  * read.
2878  */
2879 bool kmsg_dump_get_buffer(struct kmsg_dumper *dumper, bool syslog,
2880 			  char *buf, size_t size, size_t *len)
2881 {
2882 	unsigned long flags;
2883 	u64 seq;
2884 	u32 idx;
2885 	u64 next_seq;
2886 	u32 next_idx;
2887 	enum log_flags prev;
2888 	size_t l = 0;
2889 	bool ret = false;
2890 
2891 	if (!dumper->active)
2892 		goto out;
2893 
2894 	raw_spin_lock_irqsave(&logbuf_lock, flags);
2895 	if (dumper->cur_seq < log_first_seq) {
2896 		/* messages are gone, move to first available one */
2897 		dumper->cur_seq = log_first_seq;
2898 		dumper->cur_idx = log_first_idx;
2899 	}
2900 
2901 	/* last entry */
2902 	if (dumper->cur_seq >= dumper->next_seq) {
2903 		raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2904 		goto out;
2905 	}
2906 
2907 	/* calculate length of entire buffer */
2908 	seq = dumper->cur_seq;
2909 	idx = dumper->cur_idx;
2910 	prev = 0;
2911 	while (seq < dumper->next_seq) {
2912 		struct printk_log *msg = log_from_idx(idx);
2913 
2914 		l += msg_print_text(msg, prev, true, NULL, 0);
2915 		idx = log_next(idx);
2916 		seq++;
2917 		prev = msg->flags;
2918 	}
2919 
2920 	/* move first record forward until length fits into the buffer */
2921 	seq = dumper->cur_seq;
2922 	idx = dumper->cur_idx;
2923 	prev = 0;
2924 	while (l > size && seq < dumper->next_seq) {
2925 		struct printk_log *msg = log_from_idx(idx);
2926 
2927 		l -= msg_print_text(msg, prev, true, NULL, 0);
2928 		idx = log_next(idx);
2929 		seq++;
2930 		prev = msg->flags;
2931 	}
2932 
2933 	/* last message in next interation */
2934 	next_seq = seq;
2935 	next_idx = idx;
2936 
2937 	l = 0;
2938 	while (seq < dumper->next_seq) {
2939 		struct printk_log *msg = log_from_idx(idx);
2940 
2941 		l += msg_print_text(msg, prev, syslog, buf + l, size - l);
2942 		idx = log_next(idx);
2943 		seq++;
2944 		prev = msg->flags;
2945 	}
2946 
2947 	dumper->next_seq = next_seq;
2948 	dumper->next_idx = next_idx;
2949 	ret = true;
2950 	raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2951 out:
2952 	if (len)
2953 		*len = l;
2954 	return ret;
2955 }
2956 EXPORT_SYMBOL_GPL(kmsg_dump_get_buffer);
2957 
2958 /**
2959  * kmsg_dump_rewind_nolock - reset the interator (unlocked version)
2960  * @dumper: registered kmsg dumper
2961  *
2962  * Reset the dumper's iterator so that kmsg_dump_get_line() and
2963  * kmsg_dump_get_buffer() can be called again and used multiple
2964  * times within the same dumper.dump() callback.
2965  *
2966  * The function is similar to kmsg_dump_rewind(), but grabs no locks.
2967  */
2968 void kmsg_dump_rewind_nolock(struct kmsg_dumper *dumper)
2969 {
2970 	dumper->cur_seq = clear_seq;
2971 	dumper->cur_idx = clear_idx;
2972 	dumper->next_seq = log_next_seq;
2973 	dumper->next_idx = log_next_idx;
2974 }
2975 
2976 /**
2977  * kmsg_dump_rewind - reset the interator
2978  * @dumper: registered kmsg dumper
2979  *
2980  * Reset the dumper's iterator so that kmsg_dump_get_line() and
2981  * kmsg_dump_get_buffer() can be called again and used multiple
2982  * times within the same dumper.dump() callback.
2983  */
2984 void kmsg_dump_rewind(struct kmsg_dumper *dumper)
2985 {
2986 	unsigned long flags;
2987 
2988 	raw_spin_lock_irqsave(&logbuf_lock, flags);
2989 	kmsg_dump_rewind_nolock(dumper);
2990 	raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2991 }
2992 EXPORT_SYMBOL_GPL(kmsg_dump_rewind);
2993 
2994 static char dump_stack_arch_desc_str[128];
2995 
2996 /**
2997  * dump_stack_set_arch_desc - set arch-specific str to show with task dumps
2998  * @fmt: printf-style format string
2999  * @...: arguments for the format string
3000  *
3001  * The configured string will be printed right after utsname during task
3002  * dumps.  Usually used to add arch-specific system identifiers.  If an
3003  * arch wants to make use of such an ID string, it should initialize this
3004  * as soon as possible during boot.
3005  */
3006 void __init dump_stack_set_arch_desc(const char *fmt, ...)
3007 {
3008 	va_list args;
3009 
3010 	va_start(args, fmt);
3011 	vsnprintf(dump_stack_arch_desc_str, sizeof(dump_stack_arch_desc_str),
3012 		  fmt, args);
3013 	va_end(args);
3014 }
3015 
3016 /**
3017  * dump_stack_print_info - print generic debug info for dump_stack()
3018  * @log_lvl: log level
3019  *
3020  * Arch-specific dump_stack() implementations can use this function to
3021  * print out the same debug information as the generic dump_stack().
3022  */
3023 void dump_stack_print_info(const char *log_lvl)
3024 {
3025 	printk("%sCPU: %d PID: %d Comm: %.20s %s %s %.*s\n",
3026 	       log_lvl, raw_smp_processor_id(), current->pid, current->comm,
3027 	       print_tainted(), init_utsname()->release,
3028 	       (int)strcspn(init_utsname()->version, " "),
3029 	       init_utsname()->version);
3030 
3031 	if (dump_stack_arch_desc_str[0] != '\0')
3032 		printk("%sHardware name: %s\n",
3033 		       log_lvl, dump_stack_arch_desc_str);
3034 
3035 	print_worker_info(log_lvl, current);
3036 }
3037 
3038 /**
3039  * show_regs_print_info - print generic debug info for show_regs()
3040  * @log_lvl: log level
3041  *
3042  * show_regs() implementations can use this function to print out generic
3043  * debug information.
3044  */
3045 void show_regs_print_info(const char *log_lvl)
3046 {
3047 	dump_stack_print_info(log_lvl);
3048 
3049 	printk("%stask: %p ti: %p task.ti: %p\n",
3050 	       log_lvl, current, current_thread_info(),
3051 	       task_thread_info(current));
3052 }
3053 
3054 #endif
3055