1 /* 2 * linux/kernel/printk.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 * 6 * Modified to make sys_syslog() more flexible: added commands to 7 * return the last 4k of kernel messages, regardless of whether 8 * they've been read or not. Added option to suppress kernel printk's 9 * to the console. Added hook for sending the console messages 10 * elsewhere, in preparation for a serial line console (someday). 11 * Ted Ts'o, 2/11/93. 12 * Modified for sysctl support, 1/8/97, Chris Horn. 13 * Fixed SMP synchronization, 08/08/99, Manfred Spraul 14 * manfred@colorfullife.com 15 * Rewrote bits to get rid of console_lock 16 * 01Mar01 Andrew Morton 17 */ 18 19 #include <linux/kernel.h> 20 #include <linux/mm.h> 21 #include <linux/tty.h> 22 #include <linux/tty_driver.h> 23 #include <linux/console.h> 24 #include <linux/init.h> 25 #include <linux/jiffies.h> 26 #include <linux/nmi.h> 27 #include <linux/module.h> 28 #include <linux/moduleparam.h> 29 #include <linux/interrupt.h> /* For in_interrupt() */ 30 #include <linux/delay.h> 31 #include <linux/smp.h> 32 #include <linux/security.h> 33 #include <linux/bootmem.h> 34 #include <linux/memblock.h> 35 #include <linux/aio.h> 36 #include <linux/syscalls.h> 37 #include <linux/kexec.h> 38 #include <linux/kdb.h> 39 #include <linux/ratelimit.h> 40 #include <linux/kmsg_dump.h> 41 #include <linux/syslog.h> 42 #include <linux/cpu.h> 43 #include <linux/notifier.h> 44 #include <linux/rculist.h> 45 #include <linux/poll.h> 46 #include <linux/irq_work.h> 47 #include <linux/utsname.h> 48 #include <linux/ctype.h> 49 50 #include <asm/uaccess.h> 51 52 #define CREATE_TRACE_POINTS 53 #include <trace/events/printk.h> 54 55 #include "console_cmdline.h" 56 #include "braille.h" 57 58 int console_printk[4] = { 59 CONSOLE_LOGLEVEL_DEFAULT, /* console_loglevel */ 60 MESSAGE_LOGLEVEL_DEFAULT, /* default_message_loglevel */ 61 CONSOLE_LOGLEVEL_MIN, /* minimum_console_loglevel */ 62 CONSOLE_LOGLEVEL_DEFAULT, /* default_console_loglevel */ 63 }; 64 65 /* Deferred messaged from sched code are marked by this special level */ 66 #define SCHED_MESSAGE_LOGLEVEL -2 67 68 /* 69 * Low level drivers may need that to know if they can schedule in 70 * their unblank() callback or not. So let's export it. 71 */ 72 int oops_in_progress; 73 EXPORT_SYMBOL(oops_in_progress); 74 75 /* 76 * console_sem protects the console_drivers list, and also 77 * provides serialisation for access to the entire console 78 * driver system. 79 */ 80 static DEFINE_SEMAPHORE(console_sem); 81 struct console *console_drivers; 82 EXPORT_SYMBOL_GPL(console_drivers); 83 84 #ifdef CONFIG_LOCKDEP 85 static struct lockdep_map console_lock_dep_map = { 86 .name = "console_lock" 87 }; 88 #endif 89 90 /* 91 * Helper macros to handle lockdep when locking/unlocking console_sem. We use 92 * macros instead of functions so that _RET_IP_ contains useful information. 93 */ 94 #define down_console_sem() do { \ 95 down(&console_sem);\ 96 mutex_acquire(&console_lock_dep_map, 0, 0, _RET_IP_);\ 97 } while (0) 98 99 static int __down_trylock_console_sem(unsigned long ip) 100 { 101 if (down_trylock(&console_sem)) 102 return 1; 103 mutex_acquire(&console_lock_dep_map, 0, 1, ip); 104 return 0; 105 } 106 #define down_trylock_console_sem() __down_trylock_console_sem(_RET_IP_) 107 108 #define up_console_sem() do { \ 109 mutex_release(&console_lock_dep_map, 1, _RET_IP_);\ 110 up(&console_sem);\ 111 } while (0) 112 113 /* 114 * This is used for debugging the mess that is the VT code by 115 * keeping track if we have the console semaphore held. It's 116 * definitely not the perfect debug tool (we don't know if _WE_ 117 * hold it and are racing, but it helps tracking those weird code 118 * paths in the console code where we end up in places I want 119 * locked without the console sempahore held). 120 */ 121 static int console_locked, console_suspended; 122 123 /* 124 * If exclusive_console is non-NULL then only this console is to be printed to. 125 */ 126 static struct console *exclusive_console; 127 128 /* 129 * Array of consoles built from command line options (console=) 130 */ 131 132 #define MAX_CMDLINECONSOLES 8 133 134 static struct console_cmdline console_cmdline[MAX_CMDLINECONSOLES]; 135 136 static int selected_console = -1; 137 static int preferred_console = -1; 138 int console_set_on_cmdline; 139 EXPORT_SYMBOL(console_set_on_cmdline); 140 141 /* Flag: console code may call schedule() */ 142 static int console_may_schedule; 143 144 /* 145 * The printk log buffer consists of a chain of concatenated variable 146 * length records. Every record starts with a record header, containing 147 * the overall length of the record. 148 * 149 * The heads to the first and last entry in the buffer, as well as the 150 * sequence numbers of these entries are maintained when messages are 151 * stored. 152 * 153 * If the heads indicate available messages, the length in the header 154 * tells the start next message. A length == 0 for the next message 155 * indicates a wrap-around to the beginning of the buffer. 156 * 157 * Every record carries the monotonic timestamp in microseconds, as well as 158 * the standard userspace syslog level and syslog facility. The usual 159 * kernel messages use LOG_KERN; userspace-injected messages always carry 160 * a matching syslog facility, by default LOG_USER. The origin of every 161 * message can be reliably determined that way. 162 * 163 * The human readable log message directly follows the message header. The 164 * length of the message text is stored in the header, the stored message 165 * is not terminated. 166 * 167 * Optionally, a message can carry a dictionary of properties (key/value pairs), 168 * to provide userspace with a machine-readable message context. 169 * 170 * Examples for well-defined, commonly used property names are: 171 * DEVICE=b12:8 device identifier 172 * b12:8 block dev_t 173 * c127:3 char dev_t 174 * n8 netdev ifindex 175 * +sound:card0 subsystem:devname 176 * SUBSYSTEM=pci driver-core subsystem name 177 * 178 * Valid characters in property names are [a-zA-Z0-9.-_]. The plain text value 179 * follows directly after a '=' character. Every property is terminated by 180 * a '\0' character. The last property is not terminated. 181 * 182 * Example of a message structure: 183 * 0000 ff 8f 00 00 00 00 00 00 monotonic time in nsec 184 * 0008 34 00 record is 52 bytes long 185 * 000a 0b 00 text is 11 bytes long 186 * 000c 1f 00 dictionary is 23 bytes long 187 * 000e 03 00 LOG_KERN (facility) LOG_ERR (level) 188 * 0010 69 74 27 73 20 61 20 6c "it's a l" 189 * 69 6e 65 "ine" 190 * 001b 44 45 56 49 43 "DEVIC" 191 * 45 3d 62 38 3a 32 00 44 "E=b8:2\0D" 192 * 52 49 56 45 52 3d 62 75 "RIVER=bu" 193 * 67 "g" 194 * 0032 00 00 00 padding to next message header 195 * 196 * The 'struct printk_log' buffer header must never be directly exported to 197 * userspace, it is a kernel-private implementation detail that might 198 * need to be changed in the future, when the requirements change. 199 * 200 * /dev/kmsg exports the structured data in the following line format: 201 * "level,sequnum,timestamp;<message text>\n" 202 * 203 * The optional key/value pairs are attached as continuation lines starting 204 * with a space character and terminated by a newline. All possible 205 * non-prinatable characters are escaped in the "\xff" notation. 206 * 207 * Users of the export format should ignore possible additional values 208 * separated by ',', and find the message after the ';' character. 209 */ 210 211 enum log_flags { 212 LOG_NOCONS = 1, /* already flushed, do not print to console */ 213 LOG_NEWLINE = 2, /* text ended with a newline */ 214 LOG_PREFIX = 4, /* text started with a prefix */ 215 LOG_CONT = 8, /* text is a fragment of a continuation line */ 216 }; 217 218 struct printk_log { 219 u64 ts_nsec; /* timestamp in nanoseconds */ 220 u16 len; /* length of entire record */ 221 u16 text_len; /* length of text buffer */ 222 u16 dict_len; /* length of dictionary buffer */ 223 u8 facility; /* syslog facility */ 224 u8 flags:5; /* internal record flags */ 225 u8 level:3; /* syslog level */ 226 }; 227 228 /* 229 * The logbuf_lock protects kmsg buffer, indices, counters. This can be taken 230 * within the scheduler's rq lock. It must be released before calling 231 * console_unlock() or anything else that might wake up a process. 232 */ 233 static DEFINE_RAW_SPINLOCK(logbuf_lock); 234 235 #ifdef CONFIG_PRINTK 236 DECLARE_WAIT_QUEUE_HEAD(log_wait); 237 /* the next printk record to read by syslog(READ) or /proc/kmsg */ 238 static u64 syslog_seq; 239 static u32 syslog_idx; 240 static enum log_flags syslog_prev; 241 static size_t syslog_partial; 242 243 /* index and sequence number of the first record stored in the buffer */ 244 static u64 log_first_seq; 245 static u32 log_first_idx; 246 247 /* index and sequence number of the next record to store in the buffer */ 248 static u64 log_next_seq; 249 static u32 log_next_idx; 250 251 /* the next printk record to write to the console */ 252 static u64 console_seq; 253 static u32 console_idx; 254 static enum log_flags console_prev; 255 256 /* the next printk record to read after the last 'clear' command */ 257 static u64 clear_seq; 258 static u32 clear_idx; 259 260 #define PREFIX_MAX 32 261 #define LOG_LINE_MAX (1024 - PREFIX_MAX) 262 263 /* record buffer */ 264 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) 265 #define LOG_ALIGN 4 266 #else 267 #define LOG_ALIGN __alignof__(struct printk_log) 268 #endif 269 #define __LOG_BUF_LEN (1 << CONFIG_LOG_BUF_SHIFT) 270 #define __LOG_CPU_MAX_BUF_LEN (1 << CONFIG_LOG_CPU_MAX_BUF_SHIFT) 271 static char __log_buf[__LOG_BUF_LEN] __aligned(LOG_ALIGN); 272 static char *log_buf = __log_buf; 273 static u32 log_buf_len = __LOG_BUF_LEN; 274 275 /* human readable text of the record */ 276 static char *log_text(const struct printk_log *msg) 277 { 278 return (char *)msg + sizeof(struct printk_log); 279 } 280 281 /* optional key/value pair dictionary attached to the record */ 282 static char *log_dict(const struct printk_log *msg) 283 { 284 return (char *)msg + sizeof(struct printk_log) + msg->text_len; 285 } 286 287 /* get record by index; idx must point to valid msg */ 288 static struct printk_log *log_from_idx(u32 idx) 289 { 290 struct printk_log *msg = (struct printk_log *)(log_buf + idx); 291 292 /* 293 * A length == 0 record is the end of buffer marker. Wrap around and 294 * read the message at the start of the buffer. 295 */ 296 if (!msg->len) 297 return (struct printk_log *)log_buf; 298 return msg; 299 } 300 301 /* get next record; idx must point to valid msg */ 302 static u32 log_next(u32 idx) 303 { 304 struct printk_log *msg = (struct printk_log *)(log_buf + idx); 305 306 /* length == 0 indicates the end of the buffer; wrap */ 307 /* 308 * A length == 0 record is the end of buffer marker. Wrap around and 309 * read the message at the start of the buffer as *this* one, and 310 * return the one after that. 311 */ 312 if (!msg->len) { 313 msg = (struct printk_log *)log_buf; 314 return msg->len; 315 } 316 return idx + msg->len; 317 } 318 319 /* 320 * Check whether there is enough free space for the given message. 321 * 322 * The same values of first_idx and next_idx mean that the buffer 323 * is either empty or full. 324 * 325 * If the buffer is empty, we must respect the position of the indexes. 326 * They cannot be reset to the beginning of the buffer. 327 */ 328 static int logbuf_has_space(u32 msg_size, bool empty) 329 { 330 u32 free; 331 332 if (log_next_idx > log_first_idx || empty) 333 free = max(log_buf_len - log_next_idx, log_first_idx); 334 else 335 free = log_first_idx - log_next_idx; 336 337 /* 338 * We need space also for an empty header that signalizes wrapping 339 * of the buffer. 340 */ 341 return free >= msg_size + sizeof(struct printk_log); 342 } 343 344 static int log_make_free_space(u32 msg_size) 345 { 346 while (log_first_seq < log_next_seq) { 347 if (logbuf_has_space(msg_size, false)) 348 return 0; 349 /* drop old messages until we have enough contiguous space */ 350 log_first_idx = log_next(log_first_idx); 351 log_first_seq++; 352 } 353 354 /* sequence numbers are equal, so the log buffer is empty */ 355 if (logbuf_has_space(msg_size, true)) 356 return 0; 357 358 return -ENOMEM; 359 } 360 361 /* compute the message size including the padding bytes */ 362 static u32 msg_used_size(u16 text_len, u16 dict_len, u32 *pad_len) 363 { 364 u32 size; 365 366 size = sizeof(struct printk_log) + text_len + dict_len; 367 *pad_len = (-size) & (LOG_ALIGN - 1); 368 size += *pad_len; 369 370 return size; 371 } 372 373 /* 374 * Define how much of the log buffer we could take at maximum. The value 375 * must be greater than two. Note that only half of the buffer is available 376 * when the index points to the middle. 377 */ 378 #define MAX_LOG_TAKE_PART 4 379 static const char trunc_msg[] = "<truncated>"; 380 381 static u32 truncate_msg(u16 *text_len, u16 *trunc_msg_len, 382 u16 *dict_len, u32 *pad_len) 383 { 384 /* 385 * The message should not take the whole buffer. Otherwise, it might 386 * get removed too soon. 387 */ 388 u32 max_text_len = log_buf_len / MAX_LOG_TAKE_PART; 389 if (*text_len > max_text_len) 390 *text_len = max_text_len; 391 /* enable the warning message */ 392 *trunc_msg_len = strlen(trunc_msg); 393 /* disable the "dict" completely */ 394 *dict_len = 0; 395 /* compute the size again, count also the warning message */ 396 return msg_used_size(*text_len + *trunc_msg_len, 0, pad_len); 397 } 398 399 /* insert record into the buffer, discard old ones, update heads */ 400 static int log_store(int facility, int level, 401 enum log_flags flags, u64 ts_nsec, 402 const char *dict, u16 dict_len, 403 const char *text, u16 text_len) 404 { 405 struct printk_log *msg; 406 u32 size, pad_len; 407 u16 trunc_msg_len = 0; 408 409 /* number of '\0' padding bytes to next message */ 410 size = msg_used_size(text_len, dict_len, &pad_len); 411 412 if (log_make_free_space(size)) { 413 /* truncate the message if it is too long for empty buffer */ 414 size = truncate_msg(&text_len, &trunc_msg_len, 415 &dict_len, &pad_len); 416 /* survive when the log buffer is too small for trunc_msg */ 417 if (log_make_free_space(size)) 418 return 0; 419 } 420 421 if (log_next_idx + size + sizeof(struct printk_log) > log_buf_len) { 422 /* 423 * This message + an additional empty header does not fit 424 * at the end of the buffer. Add an empty header with len == 0 425 * to signify a wrap around. 426 */ 427 memset(log_buf + log_next_idx, 0, sizeof(struct printk_log)); 428 log_next_idx = 0; 429 } 430 431 /* fill message */ 432 msg = (struct printk_log *)(log_buf + log_next_idx); 433 memcpy(log_text(msg), text, text_len); 434 msg->text_len = text_len; 435 if (trunc_msg_len) { 436 memcpy(log_text(msg) + text_len, trunc_msg, trunc_msg_len); 437 msg->text_len += trunc_msg_len; 438 } 439 memcpy(log_dict(msg), dict, dict_len); 440 msg->dict_len = dict_len; 441 msg->facility = facility; 442 msg->level = level & 7; 443 msg->flags = flags & 0x1f; 444 if (ts_nsec > 0) 445 msg->ts_nsec = ts_nsec; 446 else 447 msg->ts_nsec = local_clock(); 448 memset(log_dict(msg) + dict_len, 0, pad_len); 449 msg->len = size; 450 451 /* insert message */ 452 log_next_idx += msg->len; 453 log_next_seq++; 454 455 return msg->text_len; 456 } 457 458 int dmesg_restrict = IS_ENABLED(CONFIG_SECURITY_DMESG_RESTRICT); 459 460 static int syslog_action_restricted(int type) 461 { 462 if (dmesg_restrict) 463 return 1; 464 /* 465 * Unless restricted, we allow "read all" and "get buffer size" 466 * for everybody. 467 */ 468 return type != SYSLOG_ACTION_READ_ALL && 469 type != SYSLOG_ACTION_SIZE_BUFFER; 470 } 471 472 static int check_syslog_permissions(int type, bool from_file) 473 { 474 /* 475 * If this is from /proc/kmsg and we've already opened it, then we've 476 * already done the capabilities checks at open time. 477 */ 478 if (from_file && type != SYSLOG_ACTION_OPEN) 479 return 0; 480 481 if (syslog_action_restricted(type)) { 482 if (capable(CAP_SYSLOG)) 483 return 0; 484 /* 485 * For historical reasons, accept CAP_SYS_ADMIN too, with 486 * a warning. 487 */ 488 if (capable(CAP_SYS_ADMIN)) { 489 pr_warn_once("%s (%d): Attempt to access syslog with " 490 "CAP_SYS_ADMIN but no CAP_SYSLOG " 491 "(deprecated).\n", 492 current->comm, task_pid_nr(current)); 493 return 0; 494 } 495 return -EPERM; 496 } 497 return security_syslog(type); 498 } 499 500 501 /* /dev/kmsg - userspace message inject/listen interface */ 502 struct devkmsg_user { 503 u64 seq; 504 u32 idx; 505 enum log_flags prev; 506 struct mutex lock; 507 char buf[8192]; 508 }; 509 510 static ssize_t devkmsg_writev(struct kiocb *iocb, const struct iovec *iv, 511 unsigned long count, loff_t pos) 512 { 513 char *buf, *line; 514 int i; 515 int level = default_message_loglevel; 516 int facility = 1; /* LOG_USER */ 517 size_t len = iov_length(iv, count); 518 ssize_t ret = len; 519 520 if (len > LOG_LINE_MAX) 521 return -EINVAL; 522 buf = kmalloc(len+1, GFP_KERNEL); 523 if (buf == NULL) 524 return -ENOMEM; 525 526 line = buf; 527 for (i = 0; i < count; i++) { 528 if (copy_from_user(line, iv[i].iov_base, iv[i].iov_len)) { 529 ret = -EFAULT; 530 goto out; 531 } 532 line += iv[i].iov_len; 533 } 534 535 /* 536 * Extract and skip the syslog prefix <[0-9]*>. Coming from userspace 537 * the decimal value represents 32bit, the lower 3 bit are the log 538 * level, the rest are the log facility. 539 * 540 * If no prefix or no userspace facility is specified, we 541 * enforce LOG_USER, to be able to reliably distinguish 542 * kernel-generated messages from userspace-injected ones. 543 */ 544 line = buf; 545 if (line[0] == '<') { 546 char *endp = NULL; 547 548 i = simple_strtoul(line+1, &endp, 10); 549 if (endp && endp[0] == '>') { 550 level = i & 7; 551 if (i >> 3) 552 facility = i >> 3; 553 endp++; 554 len -= endp - line; 555 line = endp; 556 } 557 } 558 line[len] = '\0'; 559 560 printk_emit(facility, level, NULL, 0, "%s", line); 561 out: 562 kfree(buf); 563 return ret; 564 } 565 566 static ssize_t devkmsg_read(struct file *file, char __user *buf, 567 size_t count, loff_t *ppos) 568 { 569 struct devkmsg_user *user = file->private_data; 570 struct printk_log *msg; 571 u64 ts_usec; 572 size_t i; 573 char cont = '-'; 574 size_t len; 575 ssize_t ret; 576 577 if (!user) 578 return -EBADF; 579 580 ret = mutex_lock_interruptible(&user->lock); 581 if (ret) 582 return ret; 583 raw_spin_lock_irq(&logbuf_lock); 584 while (user->seq == log_next_seq) { 585 if (file->f_flags & O_NONBLOCK) { 586 ret = -EAGAIN; 587 raw_spin_unlock_irq(&logbuf_lock); 588 goto out; 589 } 590 591 raw_spin_unlock_irq(&logbuf_lock); 592 ret = wait_event_interruptible(log_wait, 593 user->seq != log_next_seq); 594 if (ret) 595 goto out; 596 raw_spin_lock_irq(&logbuf_lock); 597 } 598 599 if (user->seq < log_first_seq) { 600 /* our last seen message is gone, return error and reset */ 601 user->idx = log_first_idx; 602 user->seq = log_first_seq; 603 ret = -EPIPE; 604 raw_spin_unlock_irq(&logbuf_lock); 605 goto out; 606 } 607 608 msg = log_from_idx(user->idx); 609 ts_usec = msg->ts_nsec; 610 do_div(ts_usec, 1000); 611 612 /* 613 * If we couldn't merge continuation line fragments during the print, 614 * export the stored flags to allow an optional external merge of the 615 * records. Merging the records isn't always neccessarily correct, like 616 * when we hit a race during printing. In most cases though, it produces 617 * better readable output. 'c' in the record flags mark the first 618 * fragment of a line, '+' the following. 619 */ 620 if (msg->flags & LOG_CONT && !(user->prev & LOG_CONT)) 621 cont = 'c'; 622 else if ((msg->flags & LOG_CONT) || 623 ((user->prev & LOG_CONT) && !(msg->flags & LOG_PREFIX))) 624 cont = '+'; 625 626 len = sprintf(user->buf, "%u,%llu,%llu,%c;", 627 (msg->facility << 3) | msg->level, 628 user->seq, ts_usec, cont); 629 user->prev = msg->flags; 630 631 /* escape non-printable characters */ 632 for (i = 0; i < msg->text_len; i++) { 633 unsigned char c = log_text(msg)[i]; 634 635 if (c < ' ' || c >= 127 || c == '\\') 636 len += sprintf(user->buf + len, "\\x%02x", c); 637 else 638 user->buf[len++] = c; 639 } 640 user->buf[len++] = '\n'; 641 642 if (msg->dict_len) { 643 bool line = true; 644 645 for (i = 0; i < msg->dict_len; i++) { 646 unsigned char c = log_dict(msg)[i]; 647 648 if (line) { 649 user->buf[len++] = ' '; 650 line = false; 651 } 652 653 if (c == '\0') { 654 user->buf[len++] = '\n'; 655 line = true; 656 continue; 657 } 658 659 if (c < ' ' || c >= 127 || c == '\\') { 660 len += sprintf(user->buf + len, "\\x%02x", c); 661 continue; 662 } 663 664 user->buf[len++] = c; 665 } 666 user->buf[len++] = '\n'; 667 } 668 669 user->idx = log_next(user->idx); 670 user->seq++; 671 raw_spin_unlock_irq(&logbuf_lock); 672 673 if (len > count) { 674 ret = -EINVAL; 675 goto out; 676 } 677 678 if (copy_to_user(buf, user->buf, len)) { 679 ret = -EFAULT; 680 goto out; 681 } 682 ret = len; 683 out: 684 mutex_unlock(&user->lock); 685 return ret; 686 } 687 688 static loff_t devkmsg_llseek(struct file *file, loff_t offset, int whence) 689 { 690 struct devkmsg_user *user = file->private_data; 691 loff_t ret = 0; 692 693 if (!user) 694 return -EBADF; 695 if (offset) 696 return -ESPIPE; 697 698 raw_spin_lock_irq(&logbuf_lock); 699 switch (whence) { 700 case SEEK_SET: 701 /* the first record */ 702 user->idx = log_first_idx; 703 user->seq = log_first_seq; 704 break; 705 case SEEK_DATA: 706 /* 707 * The first record after the last SYSLOG_ACTION_CLEAR, 708 * like issued by 'dmesg -c'. Reading /dev/kmsg itself 709 * changes no global state, and does not clear anything. 710 */ 711 user->idx = clear_idx; 712 user->seq = clear_seq; 713 break; 714 case SEEK_END: 715 /* after the last record */ 716 user->idx = log_next_idx; 717 user->seq = log_next_seq; 718 break; 719 default: 720 ret = -EINVAL; 721 } 722 raw_spin_unlock_irq(&logbuf_lock); 723 return ret; 724 } 725 726 static unsigned int devkmsg_poll(struct file *file, poll_table *wait) 727 { 728 struct devkmsg_user *user = file->private_data; 729 int ret = 0; 730 731 if (!user) 732 return POLLERR|POLLNVAL; 733 734 poll_wait(file, &log_wait, wait); 735 736 raw_spin_lock_irq(&logbuf_lock); 737 if (user->seq < log_next_seq) { 738 /* return error when data has vanished underneath us */ 739 if (user->seq < log_first_seq) 740 ret = POLLIN|POLLRDNORM|POLLERR|POLLPRI; 741 else 742 ret = POLLIN|POLLRDNORM; 743 } 744 raw_spin_unlock_irq(&logbuf_lock); 745 746 return ret; 747 } 748 749 static int devkmsg_open(struct inode *inode, struct file *file) 750 { 751 struct devkmsg_user *user; 752 int err; 753 754 /* write-only does not need any file context */ 755 if ((file->f_flags & O_ACCMODE) == O_WRONLY) 756 return 0; 757 758 err = check_syslog_permissions(SYSLOG_ACTION_READ_ALL, 759 SYSLOG_FROM_READER); 760 if (err) 761 return err; 762 763 user = kmalloc(sizeof(struct devkmsg_user), GFP_KERNEL); 764 if (!user) 765 return -ENOMEM; 766 767 mutex_init(&user->lock); 768 769 raw_spin_lock_irq(&logbuf_lock); 770 user->idx = log_first_idx; 771 user->seq = log_first_seq; 772 raw_spin_unlock_irq(&logbuf_lock); 773 774 file->private_data = user; 775 return 0; 776 } 777 778 static int devkmsg_release(struct inode *inode, struct file *file) 779 { 780 struct devkmsg_user *user = file->private_data; 781 782 if (!user) 783 return 0; 784 785 mutex_destroy(&user->lock); 786 kfree(user); 787 return 0; 788 } 789 790 const struct file_operations kmsg_fops = { 791 .open = devkmsg_open, 792 .read = devkmsg_read, 793 .aio_write = devkmsg_writev, 794 .llseek = devkmsg_llseek, 795 .poll = devkmsg_poll, 796 .release = devkmsg_release, 797 }; 798 799 #ifdef CONFIG_KEXEC 800 /* 801 * This appends the listed symbols to /proc/vmcore 802 * 803 * /proc/vmcore is used by various utilities, like crash and makedumpfile to 804 * obtain access to symbols that are otherwise very difficult to locate. These 805 * symbols are specifically used so that utilities can access and extract the 806 * dmesg log from a vmcore file after a crash. 807 */ 808 void log_buf_kexec_setup(void) 809 { 810 VMCOREINFO_SYMBOL(log_buf); 811 VMCOREINFO_SYMBOL(log_buf_len); 812 VMCOREINFO_SYMBOL(log_first_idx); 813 VMCOREINFO_SYMBOL(log_next_idx); 814 /* 815 * Export struct printk_log size and field offsets. User space tools can 816 * parse it and detect any changes to structure down the line. 817 */ 818 VMCOREINFO_STRUCT_SIZE(printk_log); 819 VMCOREINFO_OFFSET(printk_log, ts_nsec); 820 VMCOREINFO_OFFSET(printk_log, len); 821 VMCOREINFO_OFFSET(printk_log, text_len); 822 VMCOREINFO_OFFSET(printk_log, dict_len); 823 } 824 #endif 825 826 /* requested log_buf_len from kernel cmdline */ 827 static unsigned long __initdata new_log_buf_len; 828 829 /* we practice scaling the ring buffer by powers of 2 */ 830 static void __init log_buf_len_update(unsigned size) 831 { 832 if (size) 833 size = roundup_pow_of_two(size); 834 if (size > log_buf_len) 835 new_log_buf_len = size; 836 } 837 838 /* save requested log_buf_len since it's too early to process it */ 839 static int __init log_buf_len_setup(char *str) 840 { 841 unsigned size = memparse(str, &str); 842 843 log_buf_len_update(size); 844 845 return 0; 846 } 847 early_param("log_buf_len", log_buf_len_setup); 848 849 static void __init log_buf_add_cpu(void) 850 { 851 unsigned int cpu_extra; 852 853 /* 854 * archs should set up cpu_possible_bits properly with 855 * set_cpu_possible() after setup_arch() but just in 856 * case lets ensure this is valid. 857 */ 858 if (num_possible_cpus() == 1) 859 return; 860 861 cpu_extra = (num_possible_cpus() - 1) * __LOG_CPU_MAX_BUF_LEN; 862 863 /* by default this will only continue through for large > 64 CPUs */ 864 if (cpu_extra <= __LOG_BUF_LEN / 2) 865 return; 866 867 pr_info("log_buf_len individual max cpu contribution: %d bytes\n", 868 __LOG_CPU_MAX_BUF_LEN); 869 pr_info("log_buf_len total cpu_extra contributions: %d bytes\n", 870 cpu_extra); 871 pr_info("log_buf_len min size: %d bytes\n", __LOG_BUF_LEN); 872 873 log_buf_len_update(cpu_extra + __LOG_BUF_LEN); 874 } 875 876 void __init setup_log_buf(int early) 877 { 878 unsigned long flags; 879 char *new_log_buf; 880 int free; 881 882 if (log_buf != __log_buf) 883 return; 884 885 if (!early && !new_log_buf_len) 886 log_buf_add_cpu(); 887 888 if (!new_log_buf_len) 889 return; 890 891 if (early) { 892 new_log_buf = 893 memblock_virt_alloc(new_log_buf_len, LOG_ALIGN); 894 } else { 895 new_log_buf = memblock_virt_alloc_nopanic(new_log_buf_len, 896 LOG_ALIGN); 897 } 898 899 if (unlikely(!new_log_buf)) { 900 pr_err("log_buf_len: %ld bytes not available\n", 901 new_log_buf_len); 902 return; 903 } 904 905 raw_spin_lock_irqsave(&logbuf_lock, flags); 906 log_buf_len = new_log_buf_len; 907 log_buf = new_log_buf; 908 new_log_buf_len = 0; 909 free = __LOG_BUF_LEN - log_next_idx; 910 memcpy(log_buf, __log_buf, __LOG_BUF_LEN); 911 raw_spin_unlock_irqrestore(&logbuf_lock, flags); 912 913 pr_info("log_buf_len: %d bytes\n", log_buf_len); 914 pr_info("early log buf free: %d(%d%%)\n", 915 free, (free * 100) / __LOG_BUF_LEN); 916 } 917 918 static bool __read_mostly ignore_loglevel; 919 920 static int __init ignore_loglevel_setup(char *str) 921 { 922 ignore_loglevel = true; 923 pr_info("debug: ignoring loglevel setting.\n"); 924 925 return 0; 926 } 927 928 early_param("ignore_loglevel", ignore_loglevel_setup); 929 module_param(ignore_loglevel, bool, S_IRUGO | S_IWUSR); 930 MODULE_PARM_DESC(ignore_loglevel, "ignore loglevel setting, to" 931 "print all kernel messages to the console."); 932 933 #ifdef CONFIG_BOOT_PRINTK_DELAY 934 935 static int boot_delay; /* msecs delay after each printk during bootup */ 936 static unsigned long long loops_per_msec; /* based on boot_delay */ 937 938 static int __init boot_delay_setup(char *str) 939 { 940 unsigned long lpj; 941 942 lpj = preset_lpj ? preset_lpj : 1000000; /* some guess */ 943 loops_per_msec = (unsigned long long)lpj / 1000 * HZ; 944 945 get_option(&str, &boot_delay); 946 if (boot_delay > 10 * 1000) 947 boot_delay = 0; 948 949 pr_debug("boot_delay: %u, preset_lpj: %ld, lpj: %lu, " 950 "HZ: %d, loops_per_msec: %llu\n", 951 boot_delay, preset_lpj, lpj, HZ, loops_per_msec); 952 return 0; 953 } 954 early_param("boot_delay", boot_delay_setup); 955 956 static void boot_delay_msec(int level) 957 { 958 unsigned long long k; 959 unsigned long timeout; 960 961 if ((boot_delay == 0 || system_state != SYSTEM_BOOTING) 962 || (level >= console_loglevel && !ignore_loglevel)) { 963 return; 964 } 965 966 k = (unsigned long long)loops_per_msec * boot_delay; 967 968 timeout = jiffies + msecs_to_jiffies(boot_delay); 969 while (k) { 970 k--; 971 cpu_relax(); 972 /* 973 * use (volatile) jiffies to prevent 974 * compiler reduction; loop termination via jiffies 975 * is secondary and may or may not happen. 976 */ 977 if (time_after(jiffies, timeout)) 978 break; 979 touch_nmi_watchdog(); 980 } 981 } 982 #else 983 static inline void boot_delay_msec(int level) 984 { 985 } 986 #endif 987 988 static bool printk_time = IS_ENABLED(CONFIG_PRINTK_TIME); 989 module_param_named(time, printk_time, bool, S_IRUGO | S_IWUSR); 990 991 static size_t print_time(u64 ts, char *buf) 992 { 993 unsigned long rem_nsec; 994 995 if (!printk_time) 996 return 0; 997 998 rem_nsec = do_div(ts, 1000000000); 999 1000 if (!buf) 1001 return snprintf(NULL, 0, "[%5lu.000000] ", (unsigned long)ts); 1002 1003 return sprintf(buf, "[%5lu.%06lu] ", 1004 (unsigned long)ts, rem_nsec / 1000); 1005 } 1006 1007 static size_t print_prefix(const struct printk_log *msg, bool syslog, char *buf) 1008 { 1009 size_t len = 0; 1010 unsigned int prefix = (msg->facility << 3) | msg->level; 1011 1012 if (syslog) { 1013 if (buf) { 1014 len += sprintf(buf, "<%u>", prefix); 1015 } else { 1016 len += 3; 1017 if (prefix > 999) 1018 len += 3; 1019 else if (prefix > 99) 1020 len += 2; 1021 else if (prefix > 9) 1022 len++; 1023 } 1024 } 1025 1026 len += print_time(msg->ts_nsec, buf ? buf + len : NULL); 1027 return len; 1028 } 1029 1030 static size_t msg_print_text(const struct printk_log *msg, enum log_flags prev, 1031 bool syslog, char *buf, size_t size) 1032 { 1033 const char *text = log_text(msg); 1034 size_t text_size = msg->text_len; 1035 bool prefix = true; 1036 bool newline = true; 1037 size_t len = 0; 1038 1039 if ((prev & LOG_CONT) && !(msg->flags & LOG_PREFIX)) 1040 prefix = false; 1041 1042 if (msg->flags & LOG_CONT) { 1043 if ((prev & LOG_CONT) && !(prev & LOG_NEWLINE)) 1044 prefix = false; 1045 1046 if (!(msg->flags & LOG_NEWLINE)) 1047 newline = false; 1048 } 1049 1050 do { 1051 const char *next = memchr(text, '\n', text_size); 1052 size_t text_len; 1053 1054 if (next) { 1055 text_len = next - text; 1056 next++; 1057 text_size -= next - text; 1058 } else { 1059 text_len = text_size; 1060 } 1061 1062 if (buf) { 1063 if (print_prefix(msg, syslog, NULL) + 1064 text_len + 1 >= size - len) 1065 break; 1066 1067 if (prefix) 1068 len += print_prefix(msg, syslog, buf + len); 1069 memcpy(buf + len, text, text_len); 1070 len += text_len; 1071 if (next || newline) 1072 buf[len++] = '\n'; 1073 } else { 1074 /* SYSLOG_ACTION_* buffer size only calculation */ 1075 if (prefix) 1076 len += print_prefix(msg, syslog, NULL); 1077 len += text_len; 1078 if (next || newline) 1079 len++; 1080 } 1081 1082 prefix = true; 1083 text = next; 1084 } while (text); 1085 1086 return len; 1087 } 1088 1089 static int syslog_print(char __user *buf, int size) 1090 { 1091 char *text; 1092 struct printk_log *msg; 1093 int len = 0; 1094 1095 text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL); 1096 if (!text) 1097 return -ENOMEM; 1098 1099 while (size > 0) { 1100 size_t n; 1101 size_t skip; 1102 1103 raw_spin_lock_irq(&logbuf_lock); 1104 if (syslog_seq < log_first_seq) { 1105 /* messages are gone, move to first one */ 1106 syslog_seq = log_first_seq; 1107 syslog_idx = log_first_idx; 1108 syslog_prev = 0; 1109 syslog_partial = 0; 1110 } 1111 if (syslog_seq == log_next_seq) { 1112 raw_spin_unlock_irq(&logbuf_lock); 1113 break; 1114 } 1115 1116 skip = syslog_partial; 1117 msg = log_from_idx(syslog_idx); 1118 n = msg_print_text(msg, syslog_prev, true, text, 1119 LOG_LINE_MAX + PREFIX_MAX); 1120 if (n - syslog_partial <= size) { 1121 /* message fits into buffer, move forward */ 1122 syslog_idx = log_next(syslog_idx); 1123 syslog_seq++; 1124 syslog_prev = msg->flags; 1125 n -= syslog_partial; 1126 syslog_partial = 0; 1127 } else if (!len){ 1128 /* partial read(), remember position */ 1129 n = size; 1130 syslog_partial += n; 1131 } else 1132 n = 0; 1133 raw_spin_unlock_irq(&logbuf_lock); 1134 1135 if (!n) 1136 break; 1137 1138 if (copy_to_user(buf, text + skip, n)) { 1139 if (!len) 1140 len = -EFAULT; 1141 break; 1142 } 1143 1144 len += n; 1145 size -= n; 1146 buf += n; 1147 } 1148 1149 kfree(text); 1150 return len; 1151 } 1152 1153 static int syslog_print_all(char __user *buf, int size, bool clear) 1154 { 1155 char *text; 1156 int len = 0; 1157 1158 text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL); 1159 if (!text) 1160 return -ENOMEM; 1161 1162 raw_spin_lock_irq(&logbuf_lock); 1163 if (buf) { 1164 u64 next_seq; 1165 u64 seq; 1166 u32 idx; 1167 enum log_flags prev; 1168 1169 if (clear_seq < log_first_seq) { 1170 /* messages are gone, move to first available one */ 1171 clear_seq = log_first_seq; 1172 clear_idx = log_first_idx; 1173 } 1174 1175 /* 1176 * Find first record that fits, including all following records, 1177 * into the user-provided buffer for this dump. 1178 */ 1179 seq = clear_seq; 1180 idx = clear_idx; 1181 prev = 0; 1182 while (seq < log_next_seq) { 1183 struct printk_log *msg = log_from_idx(idx); 1184 1185 len += msg_print_text(msg, prev, true, NULL, 0); 1186 prev = msg->flags; 1187 idx = log_next(idx); 1188 seq++; 1189 } 1190 1191 /* move first record forward until length fits into the buffer */ 1192 seq = clear_seq; 1193 idx = clear_idx; 1194 prev = 0; 1195 while (len > size && seq < log_next_seq) { 1196 struct printk_log *msg = log_from_idx(idx); 1197 1198 len -= msg_print_text(msg, prev, true, NULL, 0); 1199 prev = msg->flags; 1200 idx = log_next(idx); 1201 seq++; 1202 } 1203 1204 /* last message fitting into this dump */ 1205 next_seq = log_next_seq; 1206 1207 len = 0; 1208 while (len >= 0 && seq < next_seq) { 1209 struct printk_log *msg = log_from_idx(idx); 1210 int textlen; 1211 1212 textlen = msg_print_text(msg, prev, true, text, 1213 LOG_LINE_MAX + PREFIX_MAX); 1214 if (textlen < 0) { 1215 len = textlen; 1216 break; 1217 } 1218 idx = log_next(idx); 1219 seq++; 1220 prev = msg->flags; 1221 1222 raw_spin_unlock_irq(&logbuf_lock); 1223 if (copy_to_user(buf + len, text, textlen)) 1224 len = -EFAULT; 1225 else 1226 len += textlen; 1227 raw_spin_lock_irq(&logbuf_lock); 1228 1229 if (seq < log_first_seq) { 1230 /* messages are gone, move to next one */ 1231 seq = log_first_seq; 1232 idx = log_first_idx; 1233 prev = 0; 1234 } 1235 } 1236 } 1237 1238 if (clear) { 1239 clear_seq = log_next_seq; 1240 clear_idx = log_next_idx; 1241 } 1242 raw_spin_unlock_irq(&logbuf_lock); 1243 1244 kfree(text); 1245 return len; 1246 } 1247 1248 int do_syslog(int type, char __user *buf, int len, bool from_file) 1249 { 1250 bool clear = false; 1251 static int saved_console_loglevel = -1; 1252 int error; 1253 1254 error = check_syslog_permissions(type, from_file); 1255 if (error) 1256 goto out; 1257 1258 error = security_syslog(type); 1259 if (error) 1260 return error; 1261 1262 switch (type) { 1263 case SYSLOG_ACTION_CLOSE: /* Close log */ 1264 break; 1265 case SYSLOG_ACTION_OPEN: /* Open log */ 1266 break; 1267 case SYSLOG_ACTION_READ: /* Read from log */ 1268 error = -EINVAL; 1269 if (!buf || len < 0) 1270 goto out; 1271 error = 0; 1272 if (!len) 1273 goto out; 1274 if (!access_ok(VERIFY_WRITE, buf, len)) { 1275 error = -EFAULT; 1276 goto out; 1277 } 1278 error = wait_event_interruptible(log_wait, 1279 syslog_seq != log_next_seq); 1280 if (error) 1281 goto out; 1282 error = syslog_print(buf, len); 1283 break; 1284 /* Read/clear last kernel messages */ 1285 case SYSLOG_ACTION_READ_CLEAR: 1286 clear = true; 1287 /* FALL THRU */ 1288 /* Read last kernel messages */ 1289 case SYSLOG_ACTION_READ_ALL: 1290 error = -EINVAL; 1291 if (!buf || len < 0) 1292 goto out; 1293 error = 0; 1294 if (!len) 1295 goto out; 1296 if (!access_ok(VERIFY_WRITE, buf, len)) { 1297 error = -EFAULT; 1298 goto out; 1299 } 1300 error = syslog_print_all(buf, len, clear); 1301 break; 1302 /* Clear ring buffer */ 1303 case SYSLOG_ACTION_CLEAR: 1304 syslog_print_all(NULL, 0, true); 1305 break; 1306 /* Disable logging to console */ 1307 case SYSLOG_ACTION_CONSOLE_OFF: 1308 if (saved_console_loglevel == -1) 1309 saved_console_loglevel = console_loglevel; 1310 console_loglevel = minimum_console_loglevel; 1311 break; 1312 /* Enable logging to console */ 1313 case SYSLOG_ACTION_CONSOLE_ON: 1314 if (saved_console_loglevel != -1) { 1315 console_loglevel = saved_console_loglevel; 1316 saved_console_loglevel = -1; 1317 } 1318 break; 1319 /* Set level of messages printed to console */ 1320 case SYSLOG_ACTION_CONSOLE_LEVEL: 1321 error = -EINVAL; 1322 if (len < 1 || len > 8) 1323 goto out; 1324 if (len < minimum_console_loglevel) 1325 len = minimum_console_loglevel; 1326 console_loglevel = len; 1327 /* Implicitly re-enable logging to console */ 1328 saved_console_loglevel = -1; 1329 error = 0; 1330 break; 1331 /* Number of chars in the log buffer */ 1332 case SYSLOG_ACTION_SIZE_UNREAD: 1333 raw_spin_lock_irq(&logbuf_lock); 1334 if (syslog_seq < log_first_seq) { 1335 /* messages are gone, move to first one */ 1336 syslog_seq = log_first_seq; 1337 syslog_idx = log_first_idx; 1338 syslog_prev = 0; 1339 syslog_partial = 0; 1340 } 1341 if (from_file) { 1342 /* 1343 * Short-cut for poll(/"proc/kmsg") which simply checks 1344 * for pending data, not the size; return the count of 1345 * records, not the length. 1346 */ 1347 error = log_next_seq - syslog_seq; 1348 } else { 1349 u64 seq = syslog_seq; 1350 u32 idx = syslog_idx; 1351 enum log_flags prev = syslog_prev; 1352 1353 error = 0; 1354 while (seq < log_next_seq) { 1355 struct printk_log *msg = log_from_idx(idx); 1356 1357 error += msg_print_text(msg, prev, true, NULL, 0); 1358 idx = log_next(idx); 1359 seq++; 1360 prev = msg->flags; 1361 } 1362 error -= syslog_partial; 1363 } 1364 raw_spin_unlock_irq(&logbuf_lock); 1365 break; 1366 /* Size of the log buffer */ 1367 case SYSLOG_ACTION_SIZE_BUFFER: 1368 error = log_buf_len; 1369 break; 1370 default: 1371 error = -EINVAL; 1372 break; 1373 } 1374 out: 1375 return error; 1376 } 1377 1378 SYSCALL_DEFINE3(syslog, int, type, char __user *, buf, int, len) 1379 { 1380 return do_syslog(type, buf, len, SYSLOG_FROM_READER); 1381 } 1382 1383 /* 1384 * Call the console drivers, asking them to write out 1385 * log_buf[start] to log_buf[end - 1]. 1386 * The console_lock must be held. 1387 */ 1388 static void call_console_drivers(int level, const char *text, size_t len) 1389 { 1390 struct console *con; 1391 1392 trace_console(text, len); 1393 1394 if (level >= console_loglevel && !ignore_loglevel) 1395 return; 1396 if (!console_drivers) 1397 return; 1398 1399 for_each_console(con) { 1400 if (exclusive_console && con != exclusive_console) 1401 continue; 1402 if (!(con->flags & CON_ENABLED)) 1403 continue; 1404 if (!con->write) 1405 continue; 1406 if (!cpu_online(smp_processor_id()) && 1407 !(con->flags & CON_ANYTIME)) 1408 continue; 1409 con->write(con, text, len); 1410 } 1411 } 1412 1413 /* 1414 * Zap console related locks when oopsing. Only zap at most once 1415 * every 10 seconds, to leave time for slow consoles to print a 1416 * full oops. 1417 */ 1418 static void zap_locks(void) 1419 { 1420 static unsigned long oops_timestamp; 1421 1422 if (time_after_eq(jiffies, oops_timestamp) && 1423 !time_after(jiffies, oops_timestamp + 30 * HZ)) 1424 return; 1425 1426 oops_timestamp = jiffies; 1427 1428 debug_locks_off(); 1429 /* If a crash is occurring, make sure we can't deadlock */ 1430 raw_spin_lock_init(&logbuf_lock); 1431 /* And make sure that we print immediately */ 1432 sema_init(&console_sem, 1); 1433 } 1434 1435 /* 1436 * Check if we have any console that is capable of printing while cpu is 1437 * booting or shutting down. Requires console_sem. 1438 */ 1439 static int have_callable_console(void) 1440 { 1441 struct console *con; 1442 1443 for_each_console(con) 1444 if (con->flags & CON_ANYTIME) 1445 return 1; 1446 1447 return 0; 1448 } 1449 1450 /* 1451 * Can we actually use the console at this time on this cpu? 1452 * 1453 * Console drivers may assume that per-cpu resources have been allocated. So 1454 * unless they're explicitly marked as being able to cope (CON_ANYTIME) don't 1455 * call them until this CPU is officially up. 1456 */ 1457 static inline int can_use_console(unsigned int cpu) 1458 { 1459 return cpu_online(cpu) || have_callable_console(); 1460 } 1461 1462 /* 1463 * Try to get console ownership to actually show the kernel 1464 * messages from a 'printk'. Return true (and with the 1465 * console_lock held, and 'console_locked' set) if it 1466 * is successful, false otherwise. 1467 */ 1468 static int console_trylock_for_printk(void) 1469 { 1470 unsigned int cpu = smp_processor_id(); 1471 1472 if (!console_trylock()) 1473 return 0; 1474 /* 1475 * If we can't use the console, we need to release the console 1476 * semaphore by hand to avoid flushing the buffer. We need to hold the 1477 * console semaphore in order to do this test safely. 1478 */ 1479 if (!can_use_console(cpu)) { 1480 console_locked = 0; 1481 up_console_sem(); 1482 return 0; 1483 } 1484 return 1; 1485 } 1486 1487 int printk_delay_msec __read_mostly; 1488 1489 static inline void printk_delay(void) 1490 { 1491 if (unlikely(printk_delay_msec)) { 1492 int m = printk_delay_msec; 1493 1494 while (m--) { 1495 mdelay(1); 1496 touch_nmi_watchdog(); 1497 } 1498 } 1499 } 1500 1501 /* 1502 * Continuation lines are buffered, and not committed to the record buffer 1503 * until the line is complete, or a race forces it. The line fragments 1504 * though, are printed immediately to the consoles to ensure everything has 1505 * reached the console in case of a kernel crash. 1506 */ 1507 static struct cont { 1508 char buf[LOG_LINE_MAX]; 1509 size_t len; /* length == 0 means unused buffer */ 1510 size_t cons; /* bytes written to console */ 1511 struct task_struct *owner; /* task of first print*/ 1512 u64 ts_nsec; /* time of first print */ 1513 u8 level; /* log level of first message */ 1514 u8 facility; /* log facility of first message */ 1515 enum log_flags flags; /* prefix, newline flags */ 1516 bool flushed:1; /* buffer sealed and committed */ 1517 } cont; 1518 1519 static void cont_flush(enum log_flags flags) 1520 { 1521 if (cont.flushed) 1522 return; 1523 if (cont.len == 0) 1524 return; 1525 1526 if (cont.cons) { 1527 /* 1528 * If a fragment of this line was directly flushed to the 1529 * console; wait for the console to pick up the rest of the 1530 * line. LOG_NOCONS suppresses a duplicated output. 1531 */ 1532 log_store(cont.facility, cont.level, flags | LOG_NOCONS, 1533 cont.ts_nsec, NULL, 0, cont.buf, cont.len); 1534 cont.flags = flags; 1535 cont.flushed = true; 1536 } else { 1537 /* 1538 * If no fragment of this line ever reached the console, 1539 * just submit it to the store and free the buffer. 1540 */ 1541 log_store(cont.facility, cont.level, flags, 0, 1542 NULL, 0, cont.buf, cont.len); 1543 cont.len = 0; 1544 } 1545 } 1546 1547 static bool cont_add(int facility, int level, const char *text, size_t len) 1548 { 1549 if (cont.len && cont.flushed) 1550 return false; 1551 1552 if (cont.len + len > sizeof(cont.buf)) { 1553 /* the line gets too long, split it up in separate records */ 1554 cont_flush(LOG_CONT); 1555 return false; 1556 } 1557 1558 if (!cont.len) { 1559 cont.facility = facility; 1560 cont.level = level; 1561 cont.owner = current; 1562 cont.ts_nsec = local_clock(); 1563 cont.flags = 0; 1564 cont.cons = 0; 1565 cont.flushed = false; 1566 } 1567 1568 memcpy(cont.buf + cont.len, text, len); 1569 cont.len += len; 1570 1571 if (cont.len > (sizeof(cont.buf) * 80) / 100) 1572 cont_flush(LOG_CONT); 1573 1574 return true; 1575 } 1576 1577 static size_t cont_print_text(char *text, size_t size) 1578 { 1579 size_t textlen = 0; 1580 size_t len; 1581 1582 if (cont.cons == 0 && (console_prev & LOG_NEWLINE)) { 1583 textlen += print_time(cont.ts_nsec, text); 1584 size -= textlen; 1585 } 1586 1587 len = cont.len - cont.cons; 1588 if (len > 0) { 1589 if (len+1 > size) 1590 len = size-1; 1591 memcpy(text + textlen, cont.buf + cont.cons, len); 1592 textlen += len; 1593 cont.cons = cont.len; 1594 } 1595 1596 if (cont.flushed) { 1597 if (cont.flags & LOG_NEWLINE) 1598 text[textlen++] = '\n'; 1599 /* got everything, release buffer */ 1600 cont.len = 0; 1601 } 1602 return textlen; 1603 } 1604 1605 asmlinkage int vprintk_emit(int facility, int level, 1606 const char *dict, size_t dictlen, 1607 const char *fmt, va_list args) 1608 { 1609 static int recursion_bug; 1610 static char textbuf[LOG_LINE_MAX]; 1611 char *text = textbuf; 1612 size_t text_len = 0; 1613 enum log_flags lflags = 0; 1614 unsigned long flags; 1615 int this_cpu; 1616 int printed_len = 0; 1617 bool in_sched = false; 1618 /* cpu currently holding logbuf_lock in this function */ 1619 static volatile unsigned int logbuf_cpu = UINT_MAX; 1620 1621 if (level == SCHED_MESSAGE_LOGLEVEL) { 1622 level = -1; 1623 in_sched = true; 1624 } 1625 1626 boot_delay_msec(level); 1627 printk_delay(); 1628 1629 /* This stops the holder of console_sem just where we want him */ 1630 local_irq_save(flags); 1631 this_cpu = smp_processor_id(); 1632 1633 /* 1634 * Ouch, printk recursed into itself! 1635 */ 1636 if (unlikely(logbuf_cpu == this_cpu)) { 1637 /* 1638 * If a crash is occurring during printk() on this CPU, 1639 * then try to get the crash message out but make sure 1640 * we can't deadlock. Otherwise just return to avoid the 1641 * recursion and return - but flag the recursion so that 1642 * it can be printed at the next appropriate moment: 1643 */ 1644 if (!oops_in_progress && !lockdep_recursing(current)) { 1645 recursion_bug = 1; 1646 local_irq_restore(flags); 1647 return 0; 1648 } 1649 zap_locks(); 1650 } 1651 1652 lockdep_off(); 1653 raw_spin_lock(&logbuf_lock); 1654 logbuf_cpu = this_cpu; 1655 1656 if (recursion_bug) { 1657 static const char recursion_msg[] = 1658 "BUG: recent printk recursion!"; 1659 1660 recursion_bug = 0; 1661 text_len = strlen(recursion_msg); 1662 /* emit KERN_CRIT message */ 1663 printed_len += log_store(0, 2, LOG_PREFIX|LOG_NEWLINE, 0, 1664 NULL, 0, recursion_msg, text_len); 1665 } 1666 1667 /* 1668 * The printf needs to come first; we need the syslog 1669 * prefix which might be passed-in as a parameter. 1670 */ 1671 if (in_sched) 1672 text_len = scnprintf(text, sizeof(textbuf), 1673 KERN_WARNING "[sched_delayed] "); 1674 1675 text_len += vscnprintf(text + text_len, 1676 sizeof(textbuf) - text_len, fmt, args); 1677 1678 /* mark and strip a trailing newline */ 1679 if (text_len && text[text_len-1] == '\n') { 1680 text_len--; 1681 lflags |= LOG_NEWLINE; 1682 } 1683 1684 /* strip kernel syslog prefix and extract log level or control flags */ 1685 if (facility == 0) { 1686 int kern_level = printk_get_level(text); 1687 1688 if (kern_level) { 1689 const char *end_of_header = printk_skip_level(text); 1690 switch (kern_level) { 1691 case '0' ... '7': 1692 if (level == -1) 1693 level = kern_level - '0'; 1694 case 'd': /* KERN_DEFAULT */ 1695 lflags |= LOG_PREFIX; 1696 } 1697 /* 1698 * No need to check length here because vscnprintf 1699 * put '\0' at the end of the string. Only valid and 1700 * newly printed level is detected. 1701 */ 1702 text_len -= end_of_header - text; 1703 text = (char *)end_of_header; 1704 } 1705 } 1706 1707 if (level == -1) 1708 level = default_message_loglevel; 1709 1710 if (dict) 1711 lflags |= LOG_PREFIX|LOG_NEWLINE; 1712 1713 if (!(lflags & LOG_NEWLINE)) { 1714 /* 1715 * Flush the conflicting buffer. An earlier newline was missing, 1716 * or another task also prints continuation lines. 1717 */ 1718 if (cont.len && (lflags & LOG_PREFIX || cont.owner != current)) 1719 cont_flush(LOG_NEWLINE); 1720 1721 /* buffer line if possible, otherwise store it right away */ 1722 if (cont_add(facility, level, text, text_len)) 1723 printed_len += text_len; 1724 else 1725 printed_len += log_store(facility, level, 1726 lflags | LOG_CONT, 0, 1727 dict, dictlen, text, text_len); 1728 } else { 1729 bool stored = false; 1730 1731 /* 1732 * If an earlier newline was missing and it was the same task, 1733 * either merge it with the current buffer and flush, or if 1734 * there was a race with interrupts (prefix == true) then just 1735 * flush it out and store this line separately. 1736 * If the preceding printk was from a different task and missed 1737 * a newline, flush and append the newline. 1738 */ 1739 if (cont.len) { 1740 if (cont.owner == current && !(lflags & LOG_PREFIX)) 1741 stored = cont_add(facility, level, text, 1742 text_len); 1743 cont_flush(LOG_NEWLINE); 1744 } 1745 1746 if (stored) 1747 printed_len += text_len; 1748 else 1749 printed_len += log_store(facility, level, lflags, 0, 1750 dict, dictlen, text, text_len); 1751 } 1752 1753 logbuf_cpu = UINT_MAX; 1754 raw_spin_unlock(&logbuf_lock); 1755 lockdep_on(); 1756 local_irq_restore(flags); 1757 1758 /* If called from the scheduler, we can not call up(). */ 1759 if (!in_sched) { 1760 lockdep_off(); 1761 /* 1762 * Disable preemption to avoid being preempted while holding 1763 * console_sem which would prevent anyone from printing to 1764 * console 1765 */ 1766 preempt_disable(); 1767 1768 /* 1769 * Try to acquire and then immediately release the console 1770 * semaphore. The release will print out buffers and wake up 1771 * /dev/kmsg and syslog() users. 1772 */ 1773 if (console_trylock_for_printk()) 1774 console_unlock(); 1775 preempt_enable(); 1776 lockdep_on(); 1777 } 1778 1779 return printed_len; 1780 } 1781 EXPORT_SYMBOL(vprintk_emit); 1782 1783 asmlinkage int vprintk(const char *fmt, va_list args) 1784 { 1785 return vprintk_emit(0, -1, NULL, 0, fmt, args); 1786 } 1787 EXPORT_SYMBOL(vprintk); 1788 1789 asmlinkage int printk_emit(int facility, int level, 1790 const char *dict, size_t dictlen, 1791 const char *fmt, ...) 1792 { 1793 va_list args; 1794 int r; 1795 1796 va_start(args, fmt); 1797 r = vprintk_emit(facility, level, dict, dictlen, fmt, args); 1798 va_end(args); 1799 1800 return r; 1801 } 1802 EXPORT_SYMBOL(printk_emit); 1803 1804 /** 1805 * printk - print a kernel message 1806 * @fmt: format string 1807 * 1808 * This is printk(). It can be called from any context. We want it to work. 1809 * 1810 * We try to grab the console_lock. If we succeed, it's easy - we log the 1811 * output and call the console drivers. If we fail to get the semaphore, we 1812 * place the output into the log buffer and return. The current holder of 1813 * the console_sem will notice the new output in console_unlock(); and will 1814 * send it to the consoles before releasing the lock. 1815 * 1816 * One effect of this deferred printing is that code which calls printk() and 1817 * then changes console_loglevel may break. This is because console_loglevel 1818 * is inspected when the actual printing occurs. 1819 * 1820 * See also: 1821 * printf(3) 1822 * 1823 * See the vsnprintf() documentation for format string extensions over C99. 1824 */ 1825 asmlinkage __visible int printk(const char *fmt, ...) 1826 { 1827 va_list args; 1828 int r; 1829 1830 #ifdef CONFIG_KGDB_KDB 1831 if (unlikely(kdb_trap_printk)) { 1832 va_start(args, fmt); 1833 r = vkdb_printf(fmt, args); 1834 va_end(args); 1835 return r; 1836 } 1837 #endif 1838 va_start(args, fmt); 1839 r = vprintk_emit(0, -1, NULL, 0, fmt, args); 1840 va_end(args); 1841 1842 return r; 1843 } 1844 EXPORT_SYMBOL(printk); 1845 1846 #else /* CONFIG_PRINTK */ 1847 1848 #define LOG_LINE_MAX 0 1849 #define PREFIX_MAX 0 1850 1851 static u64 syslog_seq; 1852 static u32 syslog_idx; 1853 static u64 console_seq; 1854 static u32 console_idx; 1855 static enum log_flags syslog_prev; 1856 static u64 log_first_seq; 1857 static u32 log_first_idx; 1858 static u64 log_next_seq; 1859 static enum log_flags console_prev; 1860 static struct cont { 1861 size_t len; 1862 size_t cons; 1863 u8 level; 1864 bool flushed:1; 1865 } cont; 1866 static struct printk_log *log_from_idx(u32 idx) { return NULL; } 1867 static u32 log_next(u32 idx) { return 0; } 1868 static void call_console_drivers(int level, const char *text, size_t len) {} 1869 static size_t msg_print_text(const struct printk_log *msg, enum log_flags prev, 1870 bool syslog, char *buf, size_t size) { return 0; } 1871 static size_t cont_print_text(char *text, size_t size) { return 0; } 1872 1873 #endif /* CONFIG_PRINTK */ 1874 1875 #ifdef CONFIG_EARLY_PRINTK 1876 struct console *early_console; 1877 1878 void early_vprintk(const char *fmt, va_list ap) 1879 { 1880 if (early_console) { 1881 char buf[512]; 1882 int n = vscnprintf(buf, sizeof(buf), fmt, ap); 1883 1884 early_console->write(early_console, buf, n); 1885 } 1886 } 1887 1888 asmlinkage __visible void early_printk(const char *fmt, ...) 1889 { 1890 va_list ap; 1891 1892 va_start(ap, fmt); 1893 early_vprintk(fmt, ap); 1894 va_end(ap); 1895 } 1896 #endif 1897 1898 static int __add_preferred_console(char *name, int idx, char *options, 1899 char *brl_options) 1900 { 1901 struct console_cmdline *c; 1902 int i; 1903 1904 /* 1905 * See if this tty is not yet registered, and 1906 * if we have a slot free. 1907 */ 1908 for (i = 0, c = console_cmdline; 1909 i < MAX_CMDLINECONSOLES && c->name[0]; 1910 i++, c++) { 1911 if (strcmp(c->name, name) == 0 && c->index == idx) { 1912 if (!brl_options) 1913 selected_console = i; 1914 return 0; 1915 } 1916 } 1917 if (i == MAX_CMDLINECONSOLES) 1918 return -E2BIG; 1919 if (!brl_options) 1920 selected_console = i; 1921 strlcpy(c->name, name, sizeof(c->name)); 1922 c->options = options; 1923 braille_set_options(c, brl_options); 1924 1925 c->index = idx; 1926 return 0; 1927 } 1928 /* 1929 * Set up a console. Called via do_early_param() in init/main.c 1930 * for each "console=" parameter in the boot command line. 1931 */ 1932 static int __init console_setup(char *str) 1933 { 1934 char buf[sizeof(console_cmdline[0].name) + 4]; /* 4 for "ttyS" */ 1935 char *s, *options, *brl_options = NULL; 1936 int idx; 1937 1938 if (_braille_console_setup(&str, &brl_options)) 1939 return 1; 1940 1941 /* 1942 * Decode str into name, index, options. 1943 */ 1944 if (str[0] >= '0' && str[0] <= '9') { 1945 strcpy(buf, "ttyS"); 1946 strncpy(buf + 4, str, sizeof(buf) - 5); 1947 } else { 1948 strncpy(buf, str, sizeof(buf) - 1); 1949 } 1950 buf[sizeof(buf) - 1] = 0; 1951 options = strchr(str, ','); 1952 if (options) 1953 *(options++) = 0; 1954 #ifdef __sparc__ 1955 if (!strcmp(str, "ttya")) 1956 strcpy(buf, "ttyS0"); 1957 if (!strcmp(str, "ttyb")) 1958 strcpy(buf, "ttyS1"); 1959 #endif 1960 for (s = buf; *s; s++) 1961 if (isdigit(*s) || *s == ',') 1962 break; 1963 idx = simple_strtoul(s, NULL, 10); 1964 *s = 0; 1965 1966 __add_preferred_console(buf, idx, options, brl_options); 1967 console_set_on_cmdline = 1; 1968 return 1; 1969 } 1970 __setup("console=", console_setup); 1971 1972 /** 1973 * add_preferred_console - add a device to the list of preferred consoles. 1974 * @name: device name 1975 * @idx: device index 1976 * @options: options for this console 1977 * 1978 * The last preferred console added will be used for kernel messages 1979 * and stdin/out/err for init. Normally this is used by console_setup 1980 * above to handle user-supplied console arguments; however it can also 1981 * be used by arch-specific code either to override the user or more 1982 * commonly to provide a default console (ie from PROM variables) when 1983 * the user has not supplied one. 1984 */ 1985 int add_preferred_console(char *name, int idx, char *options) 1986 { 1987 return __add_preferred_console(name, idx, options, NULL); 1988 } 1989 1990 int update_console_cmdline(char *name, int idx, char *name_new, int idx_new, char *options) 1991 { 1992 struct console_cmdline *c; 1993 int i; 1994 1995 for (i = 0, c = console_cmdline; 1996 i < MAX_CMDLINECONSOLES && c->name[0]; 1997 i++, c++) 1998 if (strcmp(c->name, name) == 0 && c->index == idx) { 1999 strlcpy(c->name, name_new, sizeof(c->name)); 2000 c->options = options; 2001 c->index = idx_new; 2002 return i; 2003 } 2004 /* not found */ 2005 return -1; 2006 } 2007 2008 bool console_suspend_enabled = true; 2009 EXPORT_SYMBOL(console_suspend_enabled); 2010 2011 static int __init console_suspend_disable(char *str) 2012 { 2013 console_suspend_enabled = false; 2014 return 1; 2015 } 2016 __setup("no_console_suspend", console_suspend_disable); 2017 module_param_named(console_suspend, console_suspend_enabled, 2018 bool, S_IRUGO | S_IWUSR); 2019 MODULE_PARM_DESC(console_suspend, "suspend console during suspend" 2020 " and hibernate operations"); 2021 2022 /** 2023 * suspend_console - suspend the console subsystem 2024 * 2025 * This disables printk() while we go into suspend states 2026 */ 2027 void suspend_console(void) 2028 { 2029 if (!console_suspend_enabled) 2030 return; 2031 printk("Suspending console(s) (use no_console_suspend to debug)\n"); 2032 console_lock(); 2033 console_suspended = 1; 2034 up_console_sem(); 2035 } 2036 2037 void resume_console(void) 2038 { 2039 if (!console_suspend_enabled) 2040 return; 2041 down_console_sem(); 2042 console_suspended = 0; 2043 console_unlock(); 2044 } 2045 2046 /** 2047 * console_cpu_notify - print deferred console messages after CPU hotplug 2048 * @self: notifier struct 2049 * @action: CPU hotplug event 2050 * @hcpu: unused 2051 * 2052 * If printk() is called from a CPU that is not online yet, the messages 2053 * will be spooled but will not show up on the console. This function is 2054 * called when a new CPU comes online (or fails to come up), and ensures 2055 * that any such output gets printed. 2056 */ 2057 static int console_cpu_notify(struct notifier_block *self, 2058 unsigned long action, void *hcpu) 2059 { 2060 switch (action) { 2061 case CPU_ONLINE: 2062 case CPU_DEAD: 2063 case CPU_DOWN_FAILED: 2064 case CPU_UP_CANCELED: 2065 console_lock(); 2066 console_unlock(); 2067 } 2068 return NOTIFY_OK; 2069 } 2070 2071 /** 2072 * console_lock - lock the console system for exclusive use. 2073 * 2074 * Acquires a lock which guarantees that the caller has 2075 * exclusive access to the console system and the console_drivers list. 2076 * 2077 * Can sleep, returns nothing. 2078 */ 2079 void console_lock(void) 2080 { 2081 might_sleep(); 2082 2083 down_console_sem(); 2084 if (console_suspended) 2085 return; 2086 console_locked = 1; 2087 console_may_schedule = 1; 2088 } 2089 EXPORT_SYMBOL(console_lock); 2090 2091 /** 2092 * console_trylock - try to lock the console system for exclusive use. 2093 * 2094 * Try to acquire a lock which guarantees that the caller has exclusive 2095 * access to the console system and the console_drivers list. 2096 * 2097 * returns 1 on success, and 0 on failure to acquire the lock. 2098 */ 2099 int console_trylock(void) 2100 { 2101 if (down_trylock_console_sem()) 2102 return 0; 2103 if (console_suspended) { 2104 up_console_sem(); 2105 return 0; 2106 } 2107 console_locked = 1; 2108 console_may_schedule = 0; 2109 return 1; 2110 } 2111 EXPORT_SYMBOL(console_trylock); 2112 2113 int is_console_locked(void) 2114 { 2115 return console_locked; 2116 } 2117 2118 static void console_cont_flush(char *text, size_t size) 2119 { 2120 unsigned long flags; 2121 size_t len; 2122 2123 raw_spin_lock_irqsave(&logbuf_lock, flags); 2124 2125 if (!cont.len) 2126 goto out; 2127 2128 /* 2129 * We still queue earlier records, likely because the console was 2130 * busy. The earlier ones need to be printed before this one, we 2131 * did not flush any fragment so far, so just let it queue up. 2132 */ 2133 if (console_seq < log_next_seq && !cont.cons) 2134 goto out; 2135 2136 len = cont_print_text(text, size); 2137 raw_spin_unlock(&logbuf_lock); 2138 stop_critical_timings(); 2139 call_console_drivers(cont.level, text, len); 2140 start_critical_timings(); 2141 local_irq_restore(flags); 2142 return; 2143 out: 2144 raw_spin_unlock_irqrestore(&logbuf_lock, flags); 2145 } 2146 2147 /** 2148 * console_unlock - unlock the console system 2149 * 2150 * Releases the console_lock which the caller holds on the console system 2151 * and the console driver list. 2152 * 2153 * While the console_lock was held, console output may have been buffered 2154 * by printk(). If this is the case, console_unlock(); emits 2155 * the output prior to releasing the lock. 2156 * 2157 * If there is output waiting, we wake /dev/kmsg and syslog() users. 2158 * 2159 * console_unlock(); may be called from any context. 2160 */ 2161 void console_unlock(void) 2162 { 2163 static char text[LOG_LINE_MAX + PREFIX_MAX]; 2164 static u64 seen_seq; 2165 unsigned long flags; 2166 bool wake_klogd = false; 2167 bool retry; 2168 2169 if (console_suspended) { 2170 up_console_sem(); 2171 return; 2172 } 2173 2174 console_may_schedule = 0; 2175 2176 /* flush buffered message fragment immediately to console */ 2177 console_cont_flush(text, sizeof(text)); 2178 again: 2179 for (;;) { 2180 struct printk_log *msg; 2181 size_t len; 2182 int level; 2183 2184 raw_spin_lock_irqsave(&logbuf_lock, flags); 2185 if (seen_seq != log_next_seq) { 2186 wake_klogd = true; 2187 seen_seq = log_next_seq; 2188 } 2189 2190 if (console_seq < log_first_seq) { 2191 len = sprintf(text, "** %u printk messages dropped ** ", 2192 (unsigned)(log_first_seq - console_seq)); 2193 2194 /* messages are gone, move to first one */ 2195 console_seq = log_first_seq; 2196 console_idx = log_first_idx; 2197 console_prev = 0; 2198 } else { 2199 len = 0; 2200 } 2201 skip: 2202 if (console_seq == log_next_seq) 2203 break; 2204 2205 msg = log_from_idx(console_idx); 2206 if (msg->flags & LOG_NOCONS) { 2207 /* 2208 * Skip record we have buffered and already printed 2209 * directly to the console when we received it. 2210 */ 2211 console_idx = log_next(console_idx); 2212 console_seq++; 2213 /* 2214 * We will get here again when we register a new 2215 * CON_PRINTBUFFER console. Clear the flag so we 2216 * will properly dump everything later. 2217 */ 2218 msg->flags &= ~LOG_NOCONS; 2219 console_prev = msg->flags; 2220 goto skip; 2221 } 2222 2223 level = msg->level; 2224 len += msg_print_text(msg, console_prev, false, 2225 text + len, sizeof(text) - len); 2226 console_idx = log_next(console_idx); 2227 console_seq++; 2228 console_prev = msg->flags; 2229 raw_spin_unlock(&logbuf_lock); 2230 2231 stop_critical_timings(); /* don't trace print latency */ 2232 call_console_drivers(level, text, len); 2233 start_critical_timings(); 2234 local_irq_restore(flags); 2235 } 2236 console_locked = 0; 2237 2238 /* Release the exclusive_console once it is used */ 2239 if (unlikely(exclusive_console)) 2240 exclusive_console = NULL; 2241 2242 raw_spin_unlock(&logbuf_lock); 2243 2244 up_console_sem(); 2245 2246 /* 2247 * Someone could have filled up the buffer again, so re-check if there's 2248 * something to flush. In case we cannot trylock the console_sem again, 2249 * there's a new owner and the console_unlock() from them will do the 2250 * flush, no worries. 2251 */ 2252 raw_spin_lock(&logbuf_lock); 2253 retry = console_seq != log_next_seq; 2254 raw_spin_unlock_irqrestore(&logbuf_lock, flags); 2255 2256 if (retry && console_trylock()) 2257 goto again; 2258 2259 if (wake_klogd) 2260 wake_up_klogd(); 2261 } 2262 EXPORT_SYMBOL(console_unlock); 2263 2264 /** 2265 * console_conditional_schedule - yield the CPU if required 2266 * 2267 * If the console code is currently allowed to sleep, and 2268 * if this CPU should yield the CPU to another task, do 2269 * so here. 2270 * 2271 * Must be called within console_lock();. 2272 */ 2273 void __sched console_conditional_schedule(void) 2274 { 2275 if (console_may_schedule) 2276 cond_resched(); 2277 } 2278 EXPORT_SYMBOL(console_conditional_schedule); 2279 2280 void console_unblank(void) 2281 { 2282 struct console *c; 2283 2284 /* 2285 * console_unblank can no longer be called in interrupt context unless 2286 * oops_in_progress is set to 1.. 2287 */ 2288 if (oops_in_progress) { 2289 if (down_trylock_console_sem() != 0) 2290 return; 2291 } else 2292 console_lock(); 2293 2294 console_locked = 1; 2295 console_may_schedule = 0; 2296 for_each_console(c) 2297 if ((c->flags & CON_ENABLED) && c->unblank) 2298 c->unblank(); 2299 console_unlock(); 2300 } 2301 2302 /* 2303 * Return the console tty driver structure and its associated index 2304 */ 2305 struct tty_driver *console_device(int *index) 2306 { 2307 struct console *c; 2308 struct tty_driver *driver = NULL; 2309 2310 console_lock(); 2311 for_each_console(c) { 2312 if (!c->device) 2313 continue; 2314 driver = c->device(c, index); 2315 if (driver) 2316 break; 2317 } 2318 console_unlock(); 2319 return driver; 2320 } 2321 2322 /* 2323 * Prevent further output on the passed console device so that (for example) 2324 * serial drivers can disable console output before suspending a port, and can 2325 * re-enable output afterwards. 2326 */ 2327 void console_stop(struct console *console) 2328 { 2329 console_lock(); 2330 console->flags &= ~CON_ENABLED; 2331 console_unlock(); 2332 } 2333 EXPORT_SYMBOL(console_stop); 2334 2335 void console_start(struct console *console) 2336 { 2337 console_lock(); 2338 console->flags |= CON_ENABLED; 2339 console_unlock(); 2340 } 2341 EXPORT_SYMBOL(console_start); 2342 2343 static int __read_mostly keep_bootcon; 2344 2345 static int __init keep_bootcon_setup(char *str) 2346 { 2347 keep_bootcon = 1; 2348 pr_info("debug: skip boot console de-registration.\n"); 2349 2350 return 0; 2351 } 2352 2353 early_param("keep_bootcon", keep_bootcon_setup); 2354 2355 /* 2356 * The console driver calls this routine during kernel initialization 2357 * to register the console printing procedure with printk() and to 2358 * print any messages that were printed by the kernel before the 2359 * console driver was initialized. 2360 * 2361 * This can happen pretty early during the boot process (because of 2362 * early_printk) - sometimes before setup_arch() completes - be careful 2363 * of what kernel features are used - they may not be initialised yet. 2364 * 2365 * There are two types of consoles - bootconsoles (early_printk) and 2366 * "real" consoles (everything which is not a bootconsole) which are 2367 * handled differently. 2368 * - Any number of bootconsoles can be registered at any time. 2369 * - As soon as a "real" console is registered, all bootconsoles 2370 * will be unregistered automatically. 2371 * - Once a "real" console is registered, any attempt to register a 2372 * bootconsoles will be rejected 2373 */ 2374 void register_console(struct console *newcon) 2375 { 2376 int i; 2377 unsigned long flags; 2378 struct console *bcon = NULL; 2379 struct console_cmdline *c; 2380 2381 if (console_drivers) 2382 for_each_console(bcon) 2383 if (WARN(bcon == newcon, 2384 "console '%s%d' already registered\n", 2385 bcon->name, bcon->index)) 2386 return; 2387 2388 /* 2389 * before we register a new CON_BOOT console, make sure we don't 2390 * already have a valid console 2391 */ 2392 if (console_drivers && newcon->flags & CON_BOOT) { 2393 /* find the last or real console */ 2394 for_each_console(bcon) { 2395 if (!(bcon->flags & CON_BOOT)) { 2396 pr_info("Too late to register bootconsole %s%d\n", 2397 newcon->name, newcon->index); 2398 return; 2399 } 2400 } 2401 } 2402 2403 if (console_drivers && console_drivers->flags & CON_BOOT) 2404 bcon = console_drivers; 2405 2406 if (preferred_console < 0 || bcon || !console_drivers) 2407 preferred_console = selected_console; 2408 2409 if (newcon->early_setup) 2410 newcon->early_setup(); 2411 2412 /* 2413 * See if we want to use this console driver. If we 2414 * didn't select a console we take the first one 2415 * that registers here. 2416 */ 2417 if (preferred_console < 0) { 2418 if (newcon->index < 0) 2419 newcon->index = 0; 2420 if (newcon->setup == NULL || 2421 newcon->setup(newcon, NULL) == 0) { 2422 newcon->flags |= CON_ENABLED; 2423 if (newcon->device) { 2424 newcon->flags |= CON_CONSDEV; 2425 preferred_console = 0; 2426 } 2427 } 2428 } 2429 2430 /* 2431 * See if this console matches one we selected on 2432 * the command line. 2433 */ 2434 for (i = 0, c = console_cmdline; 2435 i < MAX_CMDLINECONSOLES && c->name[0]; 2436 i++, c++) { 2437 if (strcmp(c->name, newcon->name) != 0) 2438 continue; 2439 if (newcon->index >= 0 && 2440 newcon->index != c->index) 2441 continue; 2442 if (newcon->index < 0) 2443 newcon->index = c->index; 2444 2445 if (_braille_register_console(newcon, c)) 2446 return; 2447 2448 if (newcon->setup && 2449 newcon->setup(newcon, console_cmdline[i].options) != 0) 2450 break; 2451 newcon->flags |= CON_ENABLED; 2452 newcon->index = c->index; 2453 if (i == selected_console) { 2454 newcon->flags |= CON_CONSDEV; 2455 preferred_console = selected_console; 2456 } 2457 break; 2458 } 2459 2460 if (!(newcon->flags & CON_ENABLED)) 2461 return; 2462 2463 /* 2464 * If we have a bootconsole, and are switching to a real console, 2465 * don't print everything out again, since when the boot console, and 2466 * the real console are the same physical device, it's annoying to 2467 * see the beginning boot messages twice 2468 */ 2469 if (bcon && ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV)) 2470 newcon->flags &= ~CON_PRINTBUFFER; 2471 2472 /* 2473 * Put this console in the list - keep the 2474 * preferred driver at the head of the list. 2475 */ 2476 console_lock(); 2477 if ((newcon->flags & CON_CONSDEV) || console_drivers == NULL) { 2478 newcon->next = console_drivers; 2479 console_drivers = newcon; 2480 if (newcon->next) 2481 newcon->next->flags &= ~CON_CONSDEV; 2482 } else { 2483 newcon->next = console_drivers->next; 2484 console_drivers->next = newcon; 2485 } 2486 if (newcon->flags & CON_PRINTBUFFER) { 2487 /* 2488 * console_unlock(); will print out the buffered messages 2489 * for us. 2490 */ 2491 raw_spin_lock_irqsave(&logbuf_lock, flags); 2492 console_seq = syslog_seq; 2493 console_idx = syslog_idx; 2494 console_prev = syslog_prev; 2495 raw_spin_unlock_irqrestore(&logbuf_lock, flags); 2496 /* 2497 * We're about to replay the log buffer. Only do this to the 2498 * just-registered console to avoid excessive message spam to 2499 * the already-registered consoles. 2500 */ 2501 exclusive_console = newcon; 2502 } 2503 console_unlock(); 2504 console_sysfs_notify(); 2505 2506 /* 2507 * By unregistering the bootconsoles after we enable the real console 2508 * we get the "console xxx enabled" message on all the consoles - 2509 * boot consoles, real consoles, etc - this is to ensure that end 2510 * users know there might be something in the kernel's log buffer that 2511 * went to the bootconsole (that they do not see on the real console) 2512 */ 2513 pr_info("%sconsole [%s%d] enabled\n", 2514 (newcon->flags & CON_BOOT) ? "boot" : "" , 2515 newcon->name, newcon->index); 2516 if (bcon && 2517 ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV) && 2518 !keep_bootcon) { 2519 /* We need to iterate through all boot consoles, to make 2520 * sure we print everything out, before we unregister them. 2521 */ 2522 for_each_console(bcon) 2523 if (bcon->flags & CON_BOOT) 2524 unregister_console(bcon); 2525 } 2526 } 2527 EXPORT_SYMBOL(register_console); 2528 2529 int unregister_console(struct console *console) 2530 { 2531 struct console *a, *b; 2532 int res; 2533 2534 pr_info("%sconsole [%s%d] disabled\n", 2535 (console->flags & CON_BOOT) ? "boot" : "" , 2536 console->name, console->index); 2537 2538 res = _braille_unregister_console(console); 2539 if (res) 2540 return res; 2541 2542 res = 1; 2543 console_lock(); 2544 if (console_drivers == console) { 2545 console_drivers=console->next; 2546 res = 0; 2547 } else if (console_drivers) { 2548 for (a=console_drivers->next, b=console_drivers ; 2549 a; b=a, a=b->next) { 2550 if (a == console) { 2551 b->next = a->next; 2552 res = 0; 2553 break; 2554 } 2555 } 2556 } 2557 2558 /* 2559 * If this isn't the last console and it has CON_CONSDEV set, we 2560 * need to set it on the next preferred console. 2561 */ 2562 if (console_drivers != NULL && console->flags & CON_CONSDEV) 2563 console_drivers->flags |= CON_CONSDEV; 2564 2565 console->flags &= ~CON_ENABLED; 2566 console_unlock(); 2567 console_sysfs_notify(); 2568 return res; 2569 } 2570 EXPORT_SYMBOL(unregister_console); 2571 2572 static int __init printk_late_init(void) 2573 { 2574 struct console *con; 2575 2576 for_each_console(con) { 2577 if (!keep_bootcon && con->flags & CON_BOOT) { 2578 unregister_console(con); 2579 } 2580 } 2581 hotcpu_notifier(console_cpu_notify, 0); 2582 return 0; 2583 } 2584 late_initcall(printk_late_init); 2585 2586 #if defined CONFIG_PRINTK 2587 /* 2588 * Delayed printk version, for scheduler-internal messages: 2589 */ 2590 #define PRINTK_PENDING_WAKEUP 0x01 2591 #define PRINTK_PENDING_OUTPUT 0x02 2592 2593 static DEFINE_PER_CPU(int, printk_pending); 2594 2595 static void wake_up_klogd_work_func(struct irq_work *irq_work) 2596 { 2597 int pending = __this_cpu_xchg(printk_pending, 0); 2598 2599 if (pending & PRINTK_PENDING_OUTPUT) { 2600 /* If trylock fails, someone else is doing the printing */ 2601 if (console_trylock()) 2602 console_unlock(); 2603 } 2604 2605 if (pending & PRINTK_PENDING_WAKEUP) 2606 wake_up_interruptible(&log_wait); 2607 } 2608 2609 static DEFINE_PER_CPU(struct irq_work, wake_up_klogd_work) = { 2610 .func = wake_up_klogd_work_func, 2611 .flags = IRQ_WORK_LAZY, 2612 }; 2613 2614 void wake_up_klogd(void) 2615 { 2616 preempt_disable(); 2617 if (waitqueue_active(&log_wait)) { 2618 this_cpu_or(printk_pending, PRINTK_PENDING_WAKEUP); 2619 irq_work_queue(&__get_cpu_var(wake_up_klogd_work)); 2620 } 2621 preempt_enable(); 2622 } 2623 2624 int printk_deferred(const char *fmt, ...) 2625 { 2626 va_list args; 2627 int r; 2628 2629 preempt_disable(); 2630 va_start(args, fmt); 2631 r = vprintk_emit(0, SCHED_MESSAGE_LOGLEVEL, NULL, 0, fmt, args); 2632 va_end(args); 2633 2634 __this_cpu_or(printk_pending, PRINTK_PENDING_OUTPUT); 2635 irq_work_queue(&__get_cpu_var(wake_up_klogd_work)); 2636 preempt_enable(); 2637 2638 return r; 2639 } 2640 2641 /* 2642 * printk rate limiting, lifted from the networking subsystem. 2643 * 2644 * This enforces a rate limit: not more than 10 kernel messages 2645 * every 5s to make a denial-of-service attack impossible. 2646 */ 2647 DEFINE_RATELIMIT_STATE(printk_ratelimit_state, 5 * HZ, 10); 2648 2649 int __printk_ratelimit(const char *func) 2650 { 2651 return ___ratelimit(&printk_ratelimit_state, func); 2652 } 2653 EXPORT_SYMBOL(__printk_ratelimit); 2654 2655 /** 2656 * printk_timed_ratelimit - caller-controlled printk ratelimiting 2657 * @caller_jiffies: pointer to caller's state 2658 * @interval_msecs: minimum interval between prints 2659 * 2660 * printk_timed_ratelimit() returns true if more than @interval_msecs 2661 * milliseconds have elapsed since the last time printk_timed_ratelimit() 2662 * returned true. 2663 */ 2664 bool printk_timed_ratelimit(unsigned long *caller_jiffies, 2665 unsigned int interval_msecs) 2666 { 2667 unsigned long elapsed = jiffies - *caller_jiffies; 2668 2669 if (*caller_jiffies && elapsed <= msecs_to_jiffies(interval_msecs)) 2670 return false; 2671 2672 *caller_jiffies = jiffies; 2673 return true; 2674 } 2675 EXPORT_SYMBOL(printk_timed_ratelimit); 2676 2677 static DEFINE_SPINLOCK(dump_list_lock); 2678 static LIST_HEAD(dump_list); 2679 2680 /** 2681 * kmsg_dump_register - register a kernel log dumper. 2682 * @dumper: pointer to the kmsg_dumper structure 2683 * 2684 * Adds a kernel log dumper to the system. The dump callback in the 2685 * structure will be called when the kernel oopses or panics and must be 2686 * set. Returns zero on success and %-EINVAL or %-EBUSY otherwise. 2687 */ 2688 int kmsg_dump_register(struct kmsg_dumper *dumper) 2689 { 2690 unsigned long flags; 2691 int err = -EBUSY; 2692 2693 /* The dump callback needs to be set */ 2694 if (!dumper->dump) 2695 return -EINVAL; 2696 2697 spin_lock_irqsave(&dump_list_lock, flags); 2698 /* Don't allow registering multiple times */ 2699 if (!dumper->registered) { 2700 dumper->registered = 1; 2701 list_add_tail_rcu(&dumper->list, &dump_list); 2702 err = 0; 2703 } 2704 spin_unlock_irqrestore(&dump_list_lock, flags); 2705 2706 return err; 2707 } 2708 EXPORT_SYMBOL_GPL(kmsg_dump_register); 2709 2710 /** 2711 * kmsg_dump_unregister - unregister a kmsg dumper. 2712 * @dumper: pointer to the kmsg_dumper structure 2713 * 2714 * Removes a dump device from the system. Returns zero on success and 2715 * %-EINVAL otherwise. 2716 */ 2717 int kmsg_dump_unregister(struct kmsg_dumper *dumper) 2718 { 2719 unsigned long flags; 2720 int err = -EINVAL; 2721 2722 spin_lock_irqsave(&dump_list_lock, flags); 2723 if (dumper->registered) { 2724 dumper->registered = 0; 2725 list_del_rcu(&dumper->list); 2726 err = 0; 2727 } 2728 spin_unlock_irqrestore(&dump_list_lock, flags); 2729 synchronize_rcu(); 2730 2731 return err; 2732 } 2733 EXPORT_SYMBOL_GPL(kmsg_dump_unregister); 2734 2735 static bool always_kmsg_dump; 2736 module_param_named(always_kmsg_dump, always_kmsg_dump, bool, S_IRUGO | S_IWUSR); 2737 2738 /** 2739 * kmsg_dump - dump kernel log to kernel message dumpers. 2740 * @reason: the reason (oops, panic etc) for dumping 2741 * 2742 * Call each of the registered dumper's dump() callback, which can 2743 * retrieve the kmsg records with kmsg_dump_get_line() or 2744 * kmsg_dump_get_buffer(). 2745 */ 2746 void kmsg_dump(enum kmsg_dump_reason reason) 2747 { 2748 struct kmsg_dumper *dumper; 2749 unsigned long flags; 2750 2751 if ((reason > KMSG_DUMP_OOPS) && !always_kmsg_dump) 2752 return; 2753 2754 rcu_read_lock(); 2755 list_for_each_entry_rcu(dumper, &dump_list, list) { 2756 if (dumper->max_reason && reason > dumper->max_reason) 2757 continue; 2758 2759 /* initialize iterator with data about the stored records */ 2760 dumper->active = true; 2761 2762 raw_spin_lock_irqsave(&logbuf_lock, flags); 2763 dumper->cur_seq = clear_seq; 2764 dumper->cur_idx = clear_idx; 2765 dumper->next_seq = log_next_seq; 2766 dumper->next_idx = log_next_idx; 2767 raw_spin_unlock_irqrestore(&logbuf_lock, flags); 2768 2769 /* invoke dumper which will iterate over records */ 2770 dumper->dump(dumper, reason); 2771 2772 /* reset iterator */ 2773 dumper->active = false; 2774 } 2775 rcu_read_unlock(); 2776 } 2777 2778 /** 2779 * kmsg_dump_get_line_nolock - retrieve one kmsg log line (unlocked version) 2780 * @dumper: registered kmsg dumper 2781 * @syslog: include the "<4>" prefixes 2782 * @line: buffer to copy the line to 2783 * @size: maximum size of the buffer 2784 * @len: length of line placed into buffer 2785 * 2786 * Start at the beginning of the kmsg buffer, with the oldest kmsg 2787 * record, and copy one record into the provided buffer. 2788 * 2789 * Consecutive calls will return the next available record moving 2790 * towards the end of the buffer with the youngest messages. 2791 * 2792 * A return value of FALSE indicates that there are no more records to 2793 * read. 2794 * 2795 * The function is similar to kmsg_dump_get_line(), but grabs no locks. 2796 */ 2797 bool kmsg_dump_get_line_nolock(struct kmsg_dumper *dumper, bool syslog, 2798 char *line, size_t size, size_t *len) 2799 { 2800 struct printk_log *msg; 2801 size_t l = 0; 2802 bool ret = false; 2803 2804 if (!dumper->active) 2805 goto out; 2806 2807 if (dumper->cur_seq < log_first_seq) { 2808 /* messages are gone, move to first available one */ 2809 dumper->cur_seq = log_first_seq; 2810 dumper->cur_idx = log_first_idx; 2811 } 2812 2813 /* last entry */ 2814 if (dumper->cur_seq >= log_next_seq) 2815 goto out; 2816 2817 msg = log_from_idx(dumper->cur_idx); 2818 l = msg_print_text(msg, 0, syslog, line, size); 2819 2820 dumper->cur_idx = log_next(dumper->cur_idx); 2821 dumper->cur_seq++; 2822 ret = true; 2823 out: 2824 if (len) 2825 *len = l; 2826 return ret; 2827 } 2828 2829 /** 2830 * kmsg_dump_get_line - retrieve one kmsg log line 2831 * @dumper: registered kmsg dumper 2832 * @syslog: include the "<4>" prefixes 2833 * @line: buffer to copy the line to 2834 * @size: maximum size of the buffer 2835 * @len: length of line placed into buffer 2836 * 2837 * Start at the beginning of the kmsg buffer, with the oldest kmsg 2838 * record, and copy one record into the provided buffer. 2839 * 2840 * Consecutive calls will return the next available record moving 2841 * towards the end of the buffer with the youngest messages. 2842 * 2843 * A return value of FALSE indicates that there are no more records to 2844 * read. 2845 */ 2846 bool kmsg_dump_get_line(struct kmsg_dumper *dumper, bool syslog, 2847 char *line, size_t size, size_t *len) 2848 { 2849 unsigned long flags; 2850 bool ret; 2851 2852 raw_spin_lock_irqsave(&logbuf_lock, flags); 2853 ret = kmsg_dump_get_line_nolock(dumper, syslog, line, size, len); 2854 raw_spin_unlock_irqrestore(&logbuf_lock, flags); 2855 2856 return ret; 2857 } 2858 EXPORT_SYMBOL_GPL(kmsg_dump_get_line); 2859 2860 /** 2861 * kmsg_dump_get_buffer - copy kmsg log lines 2862 * @dumper: registered kmsg dumper 2863 * @syslog: include the "<4>" prefixes 2864 * @buf: buffer to copy the line to 2865 * @size: maximum size of the buffer 2866 * @len: length of line placed into buffer 2867 * 2868 * Start at the end of the kmsg buffer and fill the provided buffer 2869 * with as many of the the *youngest* kmsg records that fit into it. 2870 * If the buffer is large enough, all available kmsg records will be 2871 * copied with a single call. 2872 * 2873 * Consecutive calls will fill the buffer with the next block of 2874 * available older records, not including the earlier retrieved ones. 2875 * 2876 * A return value of FALSE indicates that there are no more records to 2877 * read. 2878 */ 2879 bool kmsg_dump_get_buffer(struct kmsg_dumper *dumper, bool syslog, 2880 char *buf, size_t size, size_t *len) 2881 { 2882 unsigned long flags; 2883 u64 seq; 2884 u32 idx; 2885 u64 next_seq; 2886 u32 next_idx; 2887 enum log_flags prev; 2888 size_t l = 0; 2889 bool ret = false; 2890 2891 if (!dumper->active) 2892 goto out; 2893 2894 raw_spin_lock_irqsave(&logbuf_lock, flags); 2895 if (dumper->cur_seq < log_first_seq) { 2896 /* messages are gone, move to first available one */ 2897 dumper->cur_seq = log_first_seq; 2898 dumper->cur_idx = log_first_idx; 2899 } 2900 2901 /* last entry */ 2902 if (dumper->cur_seq >= dumper->next_seq) { 2903 raw_spin_unlock_irqrestore(&logbuf_lock, flags); 2904 goto out; 2905 } 2906 2907 /* calculate length of entire buffer */ 2908 seq = dumper->cur_seq; 2909 idx = dumper->cur_idx; 2910 prev = 0; 2911 while (seq < dumper->next_seq) { 2912 struct printk_log *msg = log_from_idx(idx); 2913 2914 l += msg_print_text(msg, prev, true, NULL, 0); 2915 idx = log_next(idx); 2916 seq++; 2917 prev = msg->flags; 2918 } 2919 2920 /* move first record forward until length fits into the buffer */ 2921 seq = dumper->cur_seq; 2922 idx = dumper->cur_idx; 2923 prev = 0; 2924 while (l > size && seq < dumper->next_seq) { 2925 struct printk_log *msg = log_from_idx(idx); 2926 2927 l -= msg_print_text(msg, prev, true, NULL, 0); 2928 idx = log_next(idx); 2929 seq++; 2930 prev = msg->flags; 2931 } 2932 2933 /* last message in next interation */ 2934 next_seq = seq; 2935 next_idx = idx; 2936 2937 l = 0; 2938 while (seq < dumper->next_seq) { 2939 struct printk_log *msg = log_from_idx(idx); 2940 2941 l += msg_print_text(msg, prev, syslog, buf + l, size - l); 2942 idx = log_next(idx); 2943 seq++; 2944 prev = msg->flags; 2945 } 2946 2947 dumper->next_seq = next_seq; 2948 dumper->next_idx = next_idx; 2949 ret = true; 2950 raw_spin_unlock_irqrestore(&logbuf_lock, flags); 2951 out: 2952 if (len) 2953 *len = l; 2954 return ret; 2955 } 2956 EXPORT_SYMBOL_GPL(kmsg_dump_get_buffer); 2957 2958 /** 2959 * kmsg_dump_rewind_nolock - reset the interator (unlocked version) 2960 * @dumper: registered kmsg dumper 2961 * 2962 * Reset the dumper's iterator so that kmsg_dump_get_line() and 2963 * kmsg_dump_get_buffer() can be called again and used multiple 2964 * times within the same dumper.dump() callback. 2965 * 2966 * The function is similar to kmsg_dump_rewind(), but grabs no locks. 2967 */ 2968 void kmsg_dump_rewind_nolock(struct kmsg_dumper *dumper) 2969 { 2970 dumper->cur_seq = clear_seq; 2971 dumper->cur_idx = clear_idx; 2972 dumper->next_seq = log_next_seq; 2973 dumper->next_idx = log_next_idx; 2974 } 2975 2976 /** 2977 * kmsg_dump_rewind - reset the interator 2978 * @dumper: registered kmsg dumper 2979 * 2980 * Reset the dumper's iterator so that kmsg_dump_get_line() and 2981 * kmsg_dump_get_buffer() can be called again and used multiple 2982 * times within the same dumper.dump() callback. 2983 */ 2984 void kmsg_dump_rewind(struct kmsg_dumper *dumper) 2985 { 2986 unsigned long flags; 2987 2988 raw_spin_lock_irqsave(&logbuf_lock, flags); 2989 kmsg_dump_rewind_nolock(dumper); 2990 raw_spin_unlock_irqrestore(&logbuf_lock, flags); 2991 } 2992 EXPORT_SYMBOL_GPL(kmsg_dump_rewind); 2993 2994 static char dump_stack_arch_desc_str[128]; 2995 2996 /** 2997 * dump_stack_set_arch_desc - set arch-specific str to show with task dumps 2998 * @fmt: printf-style format string 2999 * @...: arguments for the format string 3000 * 3001 * The configured string will be printed right after utsname during task 3002 * dumps. Usually used to add arch-specific system identifiers. If an 3003 * arch wants to make use of such an ID string, it should initialize this 3004 * as soon as possible during boot. 3005 */ 3006 void __init dump_stack_set_arch_desc(const char *fmt, ...) 3007 { 3008 va_list args; 3009 3010 va_start(args, fmt); 3011 vsnprintf(dump_stack_arch_desc_str, sizeof(dump_stack_arch_desc_str), 3012 fmt, args); 3013 va_end(args); 3014 } 3015 3016 /** 3017 * dump_stack_print_info - print generic debug info for dump_stack() 3018 * @log_lvl: log level 3019 * 3020 * Arch-specific dump_stack() implementations can use this function to 3021 * print out the same debug information as the generic dump_stack(). 3022 */ 3023 void dump_stack_print_info(const char *log_lvl) 3024 { 3025 printk("%sCPU: %d PID: %d Comm: %.20s %s %s %.*s\n", 3026 log_lvl, raw_smp_processor_id(), current->pid, current->comm, 3027 print_tainted(), init_utsname()->release, 3028 (int)strcspn(init_utsname()->version, " "), 3029 init_utsname()->version); 3030 3031 if (dump_stack_arch_desc_str[0] != '\0') 3032 printk("%sHardware name: %s\n", 3033 log_lvl, dump_stack_arch_desc_str); 3034 3035 print_worker_info(log_lvl, current); 3036 } 3037 3038 /** 3039 * show_regs_print_info - print generic debug info for show_regs() 3040 * @log_lvl: log level 3041 * 3042 * show_regs() implementations can use this function to print out generic 3043 * debug information. 3044 */ 3045 void show_regs_print_info(const char *log_lvl) 3046 { 3047 dump_stack_print_info(log_lvl); 3048 3049 printk("%stask: %p ti: %p task.ti: %p\n", 3050 log_lvl, current, current_thread_info(), 3051 task_thread_info(current)); 3052 } 3053 3054 #endif 3055