1 /* 2 * linux/kernel/printk.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 * 6 * Modified to make sys_syslog() more flexible: added commands to 7 * return the last 4k of kernel messages, regardless of whether 8 * they've been read or not. Added option to suppress kernel printk's 9 * to the console. Added hook for sending the console messages 10 * elsewhere, in preparation for a serial line console (someday). 11 * Ted Ts'o, 2/11/93. 12 * Modified for sysctl support, 1/8/97, Chris Horn. 13 * Fixed SMP synchronization, 08/08/99, Manfred Spraul 14 * manfred@colorfullife.com 15 * Rewrote bits to get rid of console_lock 16 * 01Mar01 Andrew Morton 17 */ 18 19 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 20 21 #include <linux/kernel.h> 22 #include <linux/mm.h> 23 #include <linux/tty.h> 24 #include <linux/tty_driver.h> 25 #include <linux/console.h> 26 #include <linux/init.h> 27 #include <linux/jiffies.h> 28 #include <linux/nmi.h> 29 #include <linux/module.h> 30 #include <linux/moduleparam.h> 31 #include <linux/delay.h> 32 #include <linux/smp.h> 33 #include <linux/security.h> 34 #include <linux/memblock.h> 35 #include <linux/syscalls.h> 36 #include <linux/crash_core.h> 37 #include <linux/kdb.h> 38 #include <linux/ratelimit.h> 39 #include <linux/kmsg_dump.h> 40 #include <linux/syslog.h> 41 #include <linux/cpu.h> 42 #include <linux/rculist.h> 43 #include <linux/poll.h> 44 #include <linux/irq_work.h> 45 #include <linux/ctype.h> 46 #include <linux/uio.h> 47 #include <linux/sched/clock.h> 48 #include <linux/sched/debug.h> 49 #include <linux/sched/task_stack.h> 50 51 #include <linux/uaccess.h> 52 #include <asm/sections.h> 53 54 #include <trace/events/initcall.h> 55 #define CREATE_TRACE_POINTS 56 #include <trace/events/printk.h> 57 58 #include "console_cmdline.h" 59 #include "braille.h" 60 #include "internal.h" 61 62 int console_printk[4] = { 63 CONSOLE_LOGLEVEL_DEFAULT, /* console_loglevel */ 64 MESSAGE_LOGLEVEL_DEFAULT, /* default_message_loglevel */ 65 CONSOLE_LOGLEVEL_MIN, /* minimum_console_loglevel */ 66 CONSOLE_LOGLEVEL_DEFAULT, /* default_console_loglevel */ 67 }; 68 69 atomic_t ignore_console_lock_warning __read_mostly = ATOMIC_INIT(0); 70 EXPORT_SYMBOL(ignore_console_lock_warning); 71 72 /* 73 * Low level drivers may need that to know if they can schedule in 74 * their unblank() callback or not. So let's export it. 75 */ 76 int oops_in_progress; 77 EXPORT_SYMBOL(oops_in_progress); 78 79 /* 80 * console_sem protects the console_drivers list, and also 81 * provides serialisation for access to the entire console 82 * driver system. 83 */ 84 static DEFINE_SEMAPHORE(console_sem); 85 struct console *console_drivers; 86 EXPORT_SYMBOL_GPL(console_drivers); 87 88 #ifdef CONFIG_LOCKDEP 89 static struct lockdep_map console_lock_dep_map = { 90 .name = "console_lock" 91 }; 92 #endif 93 94 enum devkmsg_log_bits { 95 __DEVKMSG_LOG_BIT_ON = 0, 96 __DEVKMSG_LOG_BIT_OFF, 97 __DEVKMSG_LOG_BIT_LOCK, 98 }; 99 100 enum devkmsg_log_masks { 101 DEVKMSG_LOG_MASK_ON = BIT(__DEVKMSG_LOG_BIT_ON), 102 DEVKMSG_LOG_MASK_OFF = BIT(__DEVKMSG_LOG_BIT_OFF), 103 DEVKMSG_LOG_MASK_LOCK = BIT(__DEVKMSG_LOG_BIT_LOCK), 104 }; 105 106 /* Keep both the 'on' and 'off' bits clear, i.e. ratelimit by default: */ 107 #define DEVKMSG_LOG_MASK_DEFAULT 0 108 109 static unsigned int __read_mostly devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT; 110 111 static int __control_devkmsg(char *str) 112 { 113 if (!str) 114 return -EINVAL; 115 116 if (!strncmp(str, "on", 2)) { 117 devkmsg_log = DEVKMSG_LOG_MASK_ON; 118 return 2; 119 } else if (!strncmp(str, "off", 3)) { 120 devkmsg_log = DEVKMSG_LOG_MASK_OFF; 121 return 3; 122 } else if (!strncmp(str, "ratelimit", 9)) { 123 devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT; 124 return 9; 125 } 126 return -EINVAL; 127 } 128 129 static int __init control_devkmsg(char *str) 130 { 131 if (__control_devkmsg(str) < 0) 132 return 1; 133 134 /* 135 * Set sysctl string accordingly: 136 */ 137 if (devkmsg_log == DEVKMSG_LOG_MASK_ON) 138 strcpy(devkmsg_log_str, "on"); 139 else if (devkmsg_log == DEVKMSG_LOG_MASK_OFF) 140 strcpy(devkmsg_log_str, "off"); 141 /* else "ratelimit" which is set by default. */ 142 143 /* 144 * Sysctl cannot change it anymore. The kernel command line setting of 145 * this parameter is to force the setting to be permanent throughout the 146 * runtime of the system. This is a precation measure against userspace 147 * trying to be a smarta** and attempting to change it up on us. 148 */ 149 devkmsg_log |= DEVKMSG_LOG_MASK_LOCK; 150 151 return 0; 152 } 153 __setup("printk.devkmsg=", control_devkmsg); 154 155 char devkmsg_log_str[DEVKMSG_STR_MAX_SIZE] = "ratelimit"; 156 157 int devkmsg_sysctl_set_loglvl(struct ctl_table *table, int write, 158 void __user *buffer, size_t *lenp, loff_t *ppos) 159 { 160 char old_str[DEVKMSG_STR_MAX_SIZE]; 161 unsigned int old; 162 int err; 163 164 if (write) { 165 if (devkmsg_log & DEVKMSG_LOG_MASK_LOCK) 166 return -EINVAL; 167 168 old = devkmsg_log; 169 strncpy(old_str, devkmsg_log_str, DEVKMSG_STR_MAX_SIZE); 170 } 171 172 err = proc_dostring(table, write, buffer, lenp, ppos); 173 if (err) 174 return err; 175 176 if (write) { 177 err = __control_devkmsg(devkmsg_log_str); 178 179 /* 180 * Do not accept an unknown string OR a known string with 181 * trailing crap... 182 */ 183 if (err < 0 || (err + 1 != *lenp)) { 184 185 /* ... and restore old setting. */ 186 devkmsg_log = old; 187 strncpy(devkmsg_log_str, old_str, DEVKMSG_STR_MAX_SIZE); 188 189 return -EINVAL; 190 } 191 } 192 193 return 0; 194 } 195 196 /* Number of registered extended console drivers. */ 197 static int nr_ext_console_drivers; 198 199 /* 200 * Helper macros to handle lockdep when locking/unlocking console_sem. We use 201 * macros instead of functions so that _RET_IP_ contains useful information. 202 */ 203 #define down_console_sem() do { \ 204 down(&console_sem);\ 205 mutex_acquire(&console_lock_dep_map, 0, 0, _RET_IP_);\ 206 } while (0) 207 208 static int __down_trylock_console_sem(unsigned long ip) 209 { 210 int lock_failed; 211 unsigned long flags; 212 213 /* 214 * Here and in __up_console_sem() we need to be in safe mode, 215 * because spindump/WARN/etc from under console ->lock will 216 * deadlock in printk()->down_trylock_console_sem() otherwise. 217 */ 218 printk_safe_enter_irqsave(flags); 219 lock_failed = down_trylock(&console_sem); 220 printk_safe_exit_irqrestore(flags); 221 222 if (lock_failed) 223 return 1; 224 mutex_acquire(&console_lock_dep_map, 0, 1, ip); 225 return 0; 226 } 227 #define down_trylock_console_sem() __down_trylock_console_sem(_RET_IP_) 228 229 static void __up_console_sem(unsigned long ip) 230 { 231 unsigned long flags; 232 233 mutex_release(&console_lock_dep_map, 1, ip); 234 235 printk_safe_enter_irqsave(flags); 236 up(&console_sem); 237 printk_safe_exit_irqrestore(flags); 238 } 239 #define up_console_sem() __up_console_sem(_RET_IP_) 240 241 /* 242 * This is used for debugging the mess that is the VT code by 243 * keeping track if we have the console semaphore held. It's 244 * definitely not the perfect debug tool (we don't know if _WE_ 245 * hold it and are racing, but it helps tracking those weird code 246 * paths in the console code where we end up in places I want 247 * locked without the console sempahore held). 248 */ 249 static int console_locked, console_suspended; 250 251 /* 252 * If exclusive_console is non-NULL then only this console is to be printed to. 253 */ 254 static struct console *exclusive_console; 255 256 /* 257 * Array of consoles built from command line options (console=) 258 */ 259 260 #define MAX_CMDLINECONSOLES 8 261 262 static struct console_cmdline console_cmdline[MAX_CMDLINECONSOLES]; 263 264 static int preferred_console = -1; 265 int console_set_on_cmdline; 266 EXPORT_SYMBOL(console_set_on_cmdline); 267 268 /* Flag: console code may call schedule() */ 269 static int console_may_schedule; 270 271 enum con_msg_format_flags { 272 MSG_FORMAT_DEFAULT = 0, 273 MSG_FORMAT_SYSLOG = (1 << 0), 274 }; 275 276 static int console_msg_format = MSG_FORMAT_DEFAULT; 277 278 /* 279 * The printk log buffer consists of a chain of concatenated variable 280 * length records. Every record starts with a record header, containing 281 * the overall length of the record. 282 * 283 * The heads to the first and last entry in the buffer, as well as the 284 * sequence numbers of these entries are maintained when messages are 285 * stored. 286 * 287 * If the heads indicate available messages, the length in the header 288 * tells the start next message. A length == 0 for the next message 289 * indicates a wrap-around to the beginning of the buffer. 290 * 291 * Every record carries the monotonic timestamp in microseconds, as well as 292 * the standard userspace syslog level and syslog facility. The usual 293 * kernel messages use LOG_KERN; userspace-injected messages always carry 294 * a matching syslog facility, by default LOG_USER. The origin of every 295 * message can be reliably determined that way. 296 * 297 * The human readable log message directly follows the message header. The 298 * length of the message text is stored in the header, the stored message 299 * is not terminated. 300 * 301 * Optionally, a message can carry a dictionary of properties (key/value pairs), 302 * to provide userspace with a machine-readable message context. 303 * 304 * Examples for well-defined, commonly used property names are: 305 * DEVICE=b12:8 device identifier 306 * b12:8 block dev_t 307 * c127:3 char dev_t 308 * n8 netdev ifindex 309 * +sound:card0 subsystem:devname 310 * SUBSYSTEM=pci driver-core subsystem name 311 * 312 * Valid characters in property names are [a-zA-Z0-9.-_]. The plain text value 313 * follows directly after a '=' character. Every property is terminated by 314 * a '\0' character. The last property is not terminated. 315 * 316 * Example of a message structure: 317 * 0000 ff 8f 00 00 00 00 00 00 monotonic time in nsec 318 * 0008 34 00 record is 52 bytes long 319 * 000a 0b 00 text is 11 bytes long 320 * 000c 1f 00 dictionary is 23 bytes long 321 * 000e 03 00 LOG_KERN (facility) LOG_ERR (level) 322 * 0010 69 74 27 73 20 61 20 6c "it's a l" 323 * 69 6e 65 "ine" 324 * 001b 44 45 56 49 43 "DEVIC" 325 * 45 3d 62 38 3a 32 00 44 "E=b8:2\0D" 326 * 52 49 56 45 52 3d 62 75 "RIVER=bu" 327 * 67 "g" 328 * 0032 00 00 00 padding to next message header 329 * 330 * The 'struct printk_log' buffer header must never be directly exported to 331 * userspace, it is a kernel-private implementation detail that might 332 * need to be changed in the future, when the requirements change. 333 * 334 * /dev/kmsg exports the structured data in the following line format: 335 * "<level>,<sequnum>,<timestamp>,<contflag>[,additional_values, ... ];<message text>\n" 336 * 337 * Users of the export format should ignore possible additional values 338 * separated by ',', and find the message after the ';' character. 339 * 340 * The optional key/value pairs are attached as continuation lines starting 341 * with a space character and terminated by a newline. All possible 342 * non-prinatable characters are escaped in the "\xff" notation. 343 */ 344 345 enum log_flags { 346 LOG_NEWLINE = 2, /* text ended with a newline */ 347 LOG_PREFIX = 4, /* text started with a prefix */ 348 LOG_CONT = 8, /* text is a fragment of a continuation line */ 349 }; 350 351 struct printk_log { 352 u64 ts_nsec; /* timestamp in nanoseconds */ 353 u16 len; /* length of entire record */ 354 u16 text_len; /* length of text buffer */ 355 u16 dict_len; /* length of dictionary buffer */ 356 u8 facility; /* syslog facility */ 357 u8 flags:5; /* internal record flags */ 358 u8 level:3; /* syslog level */ 359 } 360 #ifdef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS 361 __packed __aligned(4) 362 #endif 363 ; 364 365 /* 366 * The logbuf_lock protects kmsg buffer, indices, counters. This can be taken 367 * within the scheduler's rq lock. It must be released before calling 368 * console_unlock() or anything else that might wake up a process. 369 */ 370 DEFINE_RAW_SPINLOCK(logbuf_lock); 371 372 /* 373 * Helper macros to lock/unlock logbuf_lock and switch between 374 * printk-safe/unsafe modes. 375 */ 376 #define logbuf_lock_irq() \ 377 do { \ 378 printk_safe_enter_irq(); \ 379 raw_spin_lock(&logbuf_lock); \ 380 } while (0) 381 382 #define logbuf_unlock_irq() \ 383 do { \ 384 raw_spin_unlock(&logbuf_lock); \ 385 printk_safe_exit_irq(); \ 386 } while (0) 387 388 #define logbuf_lock_irqsave(flags) \ 389 do { \ 390 printk_safe_enter_irqsave(flags); \ 391 raw_spin_lock(&logbuf_lock); \ 392 } while (0) 393 394 #define logbuf_unlock_irqrestore(flags) \ 395 do { \ 396 raw_spin_unlock(&logbuf_lock); \ 397 printk_safe_exit_irqrestore(flags); \ 398 } while (0) 399 400 #ifdef CONFIG_PRINTK 401 DECLARE_WAIT_QUEUE_HEAD(log_wait); 402 /* the next printk record to read by syslog(READ) or /proc/kmsg */ 403 static u64 syslog_seq; 404 static u32 syslog_idx; 405 static size_t syslog_partial; 406 static bool syslog_time; 407 408 /* index and sequence number of the first record stored in the buffer */ 409 static u64 log_first_seq; 410 static u32 log_first_idx; 411 412 /* index and sequence number of the next record to store in the buffer */ 413 static u64 log_next_seq; 414 static u32 log_next_idx; 415 416 /* the next printk record to write to the console */ 417 static u64 console_seq; 418 static u32 console_idx; 419 static u64 exclusive_console_stop_seq; 420 421 /* the next printk record to read after the last 'clear' command */ 422 static u64 clear_seq; 423 static u32 clear_idx; 424 425 #define PREFIX_MAX 32 426 #define LOG_LINE_MAX (1024 - PREFIX_MAX) 427 428 #define LOG_LEVEL(v) ((v) & 0x07) 429 #define LOG_FACILITY(v) ((v) >> 3 & 0xff) 430 431 /* record buffer */ 432 #define LOG_ALIGN __alignof__(struct printk_log) 433 #define __LOG_BUF_LEN (1 << CONFIG_LOG_BUF_SHIFT) 434 #define LOG_BUF_LEN_MAX (u32)(1 << 31) 435 static char __log_buf[__LOG_BUF_LEN] __aligned(LOG_ALIGN); 436 static char *log_buf = __log_buf; 437 static u32 log_buf_len = __LOG_BUF_LEN; 438 439 /* Return log buffer address */ 440 char *log_buf_addr_get(void) 441 { 442 return log_buf; 443 } 444 445 /* Return log buffer size */ 446 u32 log_buf_len_get(void) 447 { 448 return log_buf_len; 449 } 450 451 /* human readable text of the record */ 452 static char *log_text(const struct printk_log *msg) 453 { 454 return (char *)msg + sizeof(struct printk_log); 455 } 456 457 /* optional key/value pair dictionary attached to the record */ 458 static char *log_dict(const struct printk_log *msg) 459 { 460 return (char *)msg + sizeof(struct printk_log) + msg->text_len; 461 } 462 463 /* get record by index; idx must point to valid msg */ 464 static struct printk_log *log_from_idx(u32 idx) 465 { 466 struct printk_log *msg = (struct printk_log *)(log_buf + idx); 467 468 /* 469 * A length == 0 record is the end of buffer marker. Wrap around and 470 * read the message at the start of the buffer. 471 */ 472 if (!msg->len) 473 return (struct printk_log *)log_buf; 474 return msg; 475 } 476 477 /* get next record; idx must point to valid msg */ 478 static u32 log_next(u32 idx) 479 { 480 struct printk_log *msg = (struct printk_log *)(log_buf + idx); 481 482 /* length == 0 indicates the end of the buffer; wrap */ 483 /* 484 * A length == 0 record is the end of buffer marker. Wrap around and 485 * read the message at the start of the buffer as *this* one, and 486 * return the one after that. 487 */ 488 if (!msg->len) { 489 msg = (struct printk_log *)log_buf; 490 return msg->len; 491 } 492 return idx + msg->len; 493 } 494 495 /* 496 * Check whether there is enough free space for the given message. 497 * 498 * The same values of first_idx and next_idx mean that the buffer 499 * is either empty or full. 500 * 501 * If the buffer is empty, we must respect the position of the indexes. 502 * They cannot be reset to the beginning of the buffer. 503 */ 504 static int logbuf_has_space(u32 msg_size, bool empty) 505 { 506 u32 free; 507 508 if (log_next_idx > log_first_idx || empty) 509 free = max(log_buf_len - log_next_idx, log_first_idx); 510 else 511 free = log_first_idx - log_next_idx; 512 513 /* 514 * We need space also for an empty header that signalizes wrapping 515 * of the buffer. 516 */ 517 return free >= msg_size + sizeof(struct printk_log); 518 } 519 520 static int log_make_free_space(u32 msg_size) 521 { 522 while (log_first_seq < log_next_seq && 523 !logbuf_has_space(msg_size, false)) { 524 /* drop old messages until we have enough contiguous space */ 525 log_first_idx = log_next(log_first_idx); 526 log_first_seq++; 527 } 528 529 if (clear_seq < log_first_seq) { 530 clear_seq = log_first_seq; 531 clear_idx = log_first_idx; 532 } 533 534 /* sequence numbers are equal, so the log buffer is empty */ 535 if (logbuf_has_space(msg_size, log_first_seq == log_next_seq)) 536 return 0; 537 538 return -ENOMEM; 539 } 540 541 /* compute the message size including the padding bytes */ 542 static u32 msg_used_size(u16 text_len, u16 dict_len, u32 *pad_len) 543 { 544 u32 size; 545 546 size = sizeof(struct printk_log) + text_len + dict_len; 547 *pad_len = (-size) & (LOG_ALIGN - 1); 548 size += *pad_len; 549 550 return size; 551 } 552 553 /* 554 * Define how much of the log buffer we could take at maximum. The value 555 * must be greater than two. Note that only half of the buffer is available 556 * when the index points to the middle. 557 */ 558 #define MAX_LOG_TAKE_PART 4 559 static const char trunc_msg[] = "<truncated>"; 560 561 static u32 truncate_msg(u16 *text_len, u16 *trunc_msg_len, 562 u16 *dict_len, u32 *pad_len) 563 { 564 /* 565 * The message should not take the whole buffer. Otherwise, it might 566 * get removed too soon. 567 */ 568 u32 max_text_len = log_buf_len / MAX_LOG_TAKE_PART; 569 if (*text_len > max_text_len) 570 *text_len = max_text_len; 571 /* enable the warning message */ 572 *trunc_msg_len = strlen(trunc_msg); 573 /* disable the "dict" completely */ 574 *dict_len = 0; 575 /* compute the size again, count also the warning message */ 576 return msg_used_size(*text_len + *trunc_msg_len, 0, pad_len); 577 } 578 579 /* insert record into the buffer, discard old ones, update heads */ 580 static int log_store(int facility, int level, 581 enum log_flags flags, u64 ts_nsec, 582 const char *dict, u16 dict_len, 583 const char *text, u16 text_len) 584 { 585 struct printk_log *msg; 586 u32 size, pad_len; 587 u16 trunc_msg_len = 0; 588 589 /* number of '\0' padding bytes to next message */ 590 size = msg_used_size(text_len, dict_len, &pad_len); 591 592 if (log_make_free_space(size)) { 593 /* truncate the message if it is too long for empty buffer */ 594 size = truncate_msg(&text_len, &trunc_msg_len, 595 &dict_len, &pad_len); 596 /* survive when the log buffer is too small for trunc_msg */ 597 if (log_make_free_space(size)) 598 return 0; 599 } 600 601 if (log_next_idx + size + sizeof(struct printk_log) > log_buf_len) { 602 /* 603 * This message + an additional empty header does not fit 604 * at the end of the buffer. Add an empty header with len == 0 605 * to signify a wrap around. 606 */ 607 memset(log_buf + log_next_idx, 0, sizeof(struct printk_log)); 608 log_next_idx = 0; 609 } 610 611 /* fill message */ 612 msg = (struct printk_log *)(log_buf + log_next_idx); 613 memcpy(log_text(msg), text, text_len); 614 msg->text_len = text_len; 615 if (trunc_msg_len) { 616 memcpy(log_text(msg) + text_len, trunc_msg, trunc_msg_len); 617 msg->text_len += trunc_msg_len; 618 } 619 memcpy(log_dict(msg), dict, dict_len); 620 msg->dict_len = dict_len; 621 msg->facility = facility; 622 msg->level = level & 7; 623 msg->flags = flags & 0x1f; 624 if (ts_nsec > 0) 625 msg->ts_nsec = ts_nsec; 626 else 627 msg->ts_nsec = local_clock(); 628 memset(log_dict(msg) + dict_len, 0, pad_len); 629 msg->len = size; 630 631 /* insert message */ 632 log_next_idx += msg->len; 633 log_next_seq++; 634 635 return msg->text_len; 636 } 637 638 int dmesg_restrict = IS_ENABLED(CONFIG_SECURITY_DMESG_RESTRICT); 639 640 static int syslog_action_restricted(int type) 641 { 642 if (dmesg_restrict) 643 return 1; 644 /* 645 * Unless restricted, we allow "read all" and "get buffer size" 646 * for everybody. 647 */ 648 return type != SYSLOG_ACTION_READ_ALL && 649 type != SYSLOG_ACTION_SIZE_BUFFER; 650 } 651 652 static int check_syslog_permissions(int type, int source) 653 { 654 /* 655 * If this is from /proc/kmsg and we've already opened it, then we've 656 * already done the capabilities checks at open time. 657 */ 658 if (source == SYSLOG_FROM_PROC && type != SYSLOG_ACTION_OPEN) 659 goto ok; 660 661 if (syslog_action_restricted(type)) { 662 if (capable(CAP_SYSLOG)) 663 goto ok; 664 /* 665 * For historical reasons, accept CAP_SYS_ADMIN too, with 666 * a warning. 667 */ 668 if (capable(CAP_SYS_ADMIN)) { 669 pr_warn_once("%s (%d): Attempt to access syslog with " 670 "CAP_SYS_ADMIN but no CAP_SYSLOG " 671 "(deprecated).\n", 672 current->comm, task_pid_nr(current)); 673 goto ok; 674 } 675 return -EPERM; 676 } 677 ok: 678 return security_syslog(type); 679 } 680 681 static void append_char(char **pp, char *e, char c) 682 { 683 if (*pp < e) 684 *(*pp)++ = c; 685 } 686 687 static ssize_t msg_print_ext_header(char *buf, size_t size, 688 struct printk_log *msg, u64 seq) 689 { 690 u64 ts_usec = msg->ts_nsec; 691 692 do_div(ts_usec, 1000); 693 694 return scnprintf(buf, size, "%u,%llu,%llu,%c;", 695 (msg->facility << 3) | msg->level, seq, ts_usec, 696 msg->flags & LOG_CONT ? 'c' : '-'); 697 } 698 699 static ssize_t msg_print_ext_body(char *buf, size_t size, 700 char *dict, size_t dict_len, 701 char *text, size_t text_len) 702 { 703 char *p = buf, *e = buf + size; 704 size_t i; 705 706 /* escape non-printable characters */ 707 for (i = 0; i < text_len; i++) { 708 unsigned char c = text[i]; 709 710 if (c < ' ' || c >= 127 || c == '\\') 711 p += scnprintf(p, e - p, "\\x%02x", c); 712 else 713 append_char(&p, e, c); 714 } 715 append_char(&p, e, '\n'); 716 717 if (dict_len) { 718 bool line = true; 719 720 for (i = 0; i < dict_len; i++) { 721 unsigned char c = dict[i]; 722 723 if (line) { 724 append_char(&p, e, ' '); 725 line = false; 726 } 727 728 if (c == '\0') { 729 append_char(&p, e, '\n'); 730 line = true; 731 continue; 732 } 733 734 if (c < ' ' || c >= 127 || c == '\\') { 735 p += scnprintf(p, e - p, "\\x%02x", c); 736 continue; 737 } 738 739 append_char(&p, e, c); 740 } 741 append_char(&p, e, '\n'); 742 } 743 744 return p - buf; 745 } 746 747 /* /dev/kmsg - userspace message inject/listen interface */ 748 struct devkmsg_user { 749 u64 seq; 750 u32 idx; 751 struct ratelimit_state rs; 752 struct mutex lock; 753 char buf[CONSOLE_EXT_LOG_MAX]; 754 }; 755 756 static __printf(3, 4) __cold 757 int devkmsg_emit(int facility, int level, const char *fmt, ...) 758 { 759 va_list args; 760 int r; 761 762 va_start(args, fmt); 763 r = vprintk_emit(facility, level, NULL, 0, fmt, args); 764 va_end(args); 765 766 return r; 767 } 768 769 static ssize_t devkmsg_write(struct kiocb *iocb, struct iov_iter *from) 770 { 771 char *buf, *line; 772 int level = default_message_loglevel; 773 int facility = 1; /* LOG_USER */ 774 struct file *file = iocb->ki_filp; 775 struct devkmsg_user *user = file->private_data; 776 size_t len = iov_iter_count(from); 777 ssize_t ret = len; 778 779 if (!user || len > LOG_LINE_MAX) 780 return -EINVAL; 781 782 /* Ignore when user logging is disabled. */ 783 if (devkmsg_log & DEVKMSG_LOG_MASK_OFF) 784 return len; 785 786 /* Ratelimit when not explicitly enabled. */ 787 if (!(devkmsg_log & DEVKMSG_LOG_MASK_ON)) { 788 if (!___ratelimit(&user->rs, current->comm)) 789 return ret; 790 } 791 792 buf = kmalloc(len+1, GFP_KERNEL); 793 if (buf == NULL) 794 return -ENOMEM; 795 796 buf[len] = '\0'; 797 if (!copy_from_iter_full(buf, len, from)) { 798 kfree(buf); 799 return -EFAULT; 800 } 801 802 /* 803 * Extract and skip the syslog prefix <[0-9]*>. Coming from userspace 804 * the decimal value represents 32bit, the lower 3 bit are the log 805 * level, the rest are the log facility. 806 * 807 * If no prefix or no userspace facility is specified, we 808 * enforce LOG_USER, to be able to reliably distinguish 809 * kernel-generated messages from userspace-injected ones. 810 */ 811 line = buf; 812 if (line[0] == '<') { 813 char *endp = NULL; 814 unsigned int u; 815 816 u = simple_strtoul(line + 1, &endp, 10); 817 if (endp && endp[0] == '>') { 818 level = LOG_LEVEL(u); 819 if (LOG_FACILITY(u) != 0) 820 facility = LOG_FACILITY(u); 821 endp++; 822 len -= endp - line; 823 line = endp; 824 } 825 } 826 827 devkmsg_emit(facility, level, "%s", line); 828 kfree(buf); 829 return ret; 830 } 831 832 static ssize_t devkmsg_read(struct file *file, char __user *buf, 833 size_t count, loff_t *ppos) 834 { 835 struct devkmsg_user *user = file->private_data; 836 struct printk_log *msg; 837 size_t len; 838 ssize_t ret; 839 840 if (!user) 841 return -EBADF; 842 843 ret = mutex_lock_interruptible(&user->lock); 844 if (ret) 845 return ret; 846 847 logbuf_lock_irq(); 848 while (user->seq == log_next_seq) { 849 if (file->f_flags & O_NONBLOCK) { 850 ret = -EAGAIN; 851 logbuf_unlock_irq(); 852 goto out; 853 } 854 855 logbuf_unlock_irq(); 856 ret = wait_event_interruptible(log_wait, 857 user->seq != log_next_seq); 858 if (ret) 859 goto out; 860 logbuf_lock_irq(); 861 } 862 863 if (user->seq < log_first_seq) { 864 /* our last seen message is gone, return error and reset */ 865 user->idx = log_first_idx; 866 user->seq = log_first_seq; 867 ret = -EPIPE; 868 logbuf_unlock_irq(); 869 goto out; 870 } 871 872 msg = log_from_idx(user->idx); 873 len = msg_print_ext_header(user->buf, sizeof(user->buf), 874 msg, user->seq); 875 len += msg_print_ext_body(user->buf + len, sizeof(user->buf) - len, 876 log_dict(msg), msg->dict_len, 877 log_text(msg), msg->text_len); 878 879 user->idx = log_next(user->idx); 880 user->seq++; 881 logbuf_unlock_irq(); 882 883 if (len > count) { 884 ret = -EINVAL; 885 goto out; 886 } 887 888 if (copy_to_user(buf, user->buf, len)) { 889 ret = -EFAULT; 890 goto out; 891 } 892 ret = len; 893 out: 894 mutex_unlock(&user->lock); 895 return ret; 896 } 897 898 static loff_t devkmsg_llseek(struct file *file, loff_t offset, int whence) 899 { 900 struct devkmsg_user *user = file->private_data; 901 loff_t ret = 0; 902 903 if (!user) 904 return -EBADF; 905 if (offset) 906 return -ESPIPE; 907 908 logbuf_lock_irq(); 909 switch (whence) { 910 case SEEK_SET: 911 /* the first record */ 912 user->idx = log_first_idx; 913 user->seq = log_first_seq; 914 break; 915 case SEEK_DATA: 916 /* 917 * The first record after the last SYSLOG_ACTION_CLEAR, 918 * like issued by 'dmesg -c'. Reading /dev/kmsg itself 919 * changes no global state, and does not clear anything. 920 */ 921 user->idx = clear_idx; 922 user->seq = clear_seq; 923 break; 924 case SEEK_END: 925 /* after the last record */ 926 user->idx = log_next_idx; 927 user->seq = log_next_seq; 928 break; 929 default: 930 ret = -EINVAL; 931 } 932 logbuf_unlock_irq(); 933 return ret; 934 } 935 936 static __poll_t devkmsg_poll(struct file *file, poll_table *wait) 937 { 938 struct devkmsg_user *user = file->private_data; 939 __poll_t ret = 0; 940 941 if (!user) 942 return EPOLLERR|EPOLLNVAL; 943 944 poll_wait(file, &log_wait, wait); 945 946 logbuf_lock_irq(); 947 if (user->seq < log_next_seq) { 948 /* return error when data has vanished underneath us */ 949 if (user->seq < log_first_seq) 950 ret = EPOLLIN|EPOLLRDNORM|EPOLLERR|EPOLLPRI; 951 else 952 ret = EPOLLIN|EPOLLRDNORM; 953 } 954 logbuf_unlock_irq(); 955 956 return ret; 957 } 958 959 static int devkmsg_open(struct inode *inode, struct file *file) 960 { 961 struct devkmsg_user *user; 962 int err; 963 964 if (devkmsg_log & DEVKMSG_LOG_MASK_OFF) 965 return -EPERM; 966 967 /* write-only does not need any file context */ 968 if ((file->f_flags & O_ACCMODE) != O_WRONLY) { 969 err = check_syslog_permissions(SYSLOG_ACTION_READ_ALL, 970 SYSLOG_FROM_READER); 971 if (err) 972 return err; 973 } 974 975 user = kmalloc(sizeof(struct devkmsg_user), GFP_KERNEL); 976 if (!user) 977 return -ENOMEM; 978 979 ratelimit_default_init(&user->rs); 980 ratelimit_set_flags(&user->rs, RATELIMIT_MSG_ON_RELEASE); 981 982 mutex_init(&user->lock); 983 984 logbuf_lock_irq(); 985 user->idx = log_first_idx; 986 user->seq = log_first_seq; 987 logbuf_unlock_irq(); 988 989 file->private_data = user; 990 return 0; 991 } 992 993 static int devkmsg_release(struct inode *inode, struct file *file) 994 { 995 struct devkmsg_user *user = file->private_data; 996 997 if (!user) 998 return 0; 999 1000 ratelimit_state_exit(&user->rs); 1001 1002 mutex_destroy(&user->lock); 1003 kfree(user); 1004 return 0; 1005 } 1006 1007 const struct file_operations kmsg_fops = { 1008 .open = devkmsg_open, 1009 .read = devkmsg_read, 1010 .write_iter = devkmsg_write, 1011 .llseek = devkmsg_llseek, 1012 .poll = devkmsg_poll, 1013 .release = devkmsg_release, 1014 }; 1015 1016 #ifdef CONFIG_CRASH_CORE 1017 /* 1018 * This appends the listed symbols to /proc/vmcore 1019 * 1020 * /proc/vmcore is used by various utilities, like crash and makedumpfile to 1021 * obtain access to symbols that are otherwise very difficult to locate. These 1022 * symbols are specifically used so that utilities can access and extract the 1023 * dmesg log from a vmcore file after a crash. 1024 */ 1025 void log_buf_vmcoreinfo_setup(void) 1026 { 1027 VMCOREINFO_SYMBOL(log_buf); 1028 VMCOREINFO_SYMBOL(log_buf_len); 1029 VMCOREINFO_SYMBOL(log_first_idx); 1030 VMCOREINFO_SYMBOL(clear_idx); 1031 VMCOREINFO_SYMBOL(log_next_idx); 1032 /* 1033 * Export struct printk_log size and field offsets. User space tools can 1034 * parse it and detect any changes to structure down the line. 1035 */ 1036 VMCOREINFO_STRUCT_SIZE(printk_log); 1037 VMCOREINFO_OFFSET(printk_log, ts_nsec); 1038 VMCOREINFO_OFFSET(printk_log, len); 1039 VMCOREINFO_OFFSET(printk_log, text_len); 1040 VMCOREINFO_OFFSET(printk_log, dict_len); 1041 } 1042 #endif 1043 1044 /* requested log_buf_len from kernel cmdline */ 1045 static unsigned long __initdata new_log_buf_len; 1046 1047 /* we practice scaling the ring buffer by powers of 2 */ 1048 static void __init log_buf_len_update(u64 size) 1049 { 1050 if (size > (u64)LOG_BUF_LEN_MAX) { 1051 size = (u64)LOG_BUF_LEN_MAX; 1052 pr_err("log_buf over 2G is not supported.\n"); 1053 } 1054 1055 if (size) 1056 size = roundup_pow_of_two(size); 1057 if (size > log_buf_len) 1058 new_log_buf_len = (unsigned long)size; 1059 } 1060 1061 /* save requested log_buf_len since it's too early to process it */ 1062 static int __init log_buf_len_setup(char *str) 1063 { 1064 u64 size; 1065 1066 if (!str) 1067 return -EINVAL; 1068 1069 size = memparse(str, &str); 1070 1071 log_buf_len_update(size); 1072 1073 return 0; 1074 } 1075 early_param("log_buf_len", log_buf_len_setup); 1076 1077 #ifdef CONFIG_SMP 1078 #define __LOG_CPU_MAX_BUF_LEN (1 << CONFIG_LOG_CPU_MAX_BUF_SHIFT) 1079 1080 static void __init log_buf_add_cpu(void) 1081 { 1082 unsigned int cpu_extra; 1083 1084 /* 1085 * archs should set up cpu_possible_bits properly with 1086 * set_cpu_possible() after setup_arch() but just in 1087 * case lets ensure this is valid. 1088 */ 1089 if (num_possible_cpus() == 1) 1090 return; 1091 1092 cpu_extra = (num_possible_cpus() - 1) * __LOG_CPU_MAX_BUF_LEN; 1093 1094 /* by default this will only continue through for large > 64 CPUs */ 1095 if (cpu_extra <= __LOG_BUF_LEN / 2) 1096 return; 1097 1098 pr_info("log_buf_len individual max cpu contribution: %d bytes\n", 1099 __LOG_CPU_MAX_BUF_LEN); 1100 pr_info("log_buf_len total cpu_extra contributions: %d bytes\n", 1101 cpu_extra); 1102 pr_info("log_buf_len min size: %d bytes\n", __LOG_BUF_LEN); 1103 1104 log_buf_len_update(cpu_extra + __LOG_BUF_LEN); 1105 } 1106 #else /* !CONFIG_SMP */ 1107 static inline void log_buf_add_cpu(void) {} 1108 #endif /* CONFIG_SMP */ 1109 1110 void __init setup_log_buf(int early) 1111 { 1112 unsigned long flags; 1113 char *new_log_buf; 1114 unsigned int free; 1115 1116 if (log_buf != __log_buf) 1117 return; 1118 1119 if (!early && !new_log_buf_len) 1120 log_buf_add_cpu(); 1121 1122 if (!new_log_buf_len) 1123 return; 1124 1125 if (early) { 1126 new_log_buf = 1127 memblock_alloc(new_log_buf_len, LOG_ALIGN); 1128 } else { 1129 new_log_buf = memblock_alloc_nopanic(new_log_buf_len, 1130 LOG_ALIGN); 1131 } 1132 1133 if (unlikely(!new_log_buf)) { 1134 pr_err("log_buf_len: %lu bytes not available\n", 1135 new_log_buf_len); 1136 return; 1137 } 1138 1139 logbuf_lock_irqsave(flags); 1140 log_buf_len = new_log_buf_len; 1141 log_buf = new_log_buf; 1142 new_log_buf_len = 0; 1143 free = __LOG_BUF_LEN - log_next_idx; 1144 memcpy(log_buf, __log_buf, __LOG_BUF_LEN); 1145 logbuf_unlock_irqrestore(flags); 1146 1147 pr_info("log_buf_len: %u bytes\n", log_buf_len); 1148 pr_info("early log buf free: %u(%u%%)\n", 1149 free, (free * 100) / __LOG_BUF_LEN); 1150 } 1151 1152 static bool __read_mostly ignore_loglevel; 1153 1154 static int __init ignore_loglevel_setup(char *str) 1155 { 1156 ignore_loglevel = true; 1157 pr_info("debug: ignoring loglevel setting.\n"); 1158 1159 return 0; 1160 } 1161 1162 early_param("ignore_loglevel", ignore_loglevel_setup); 1163 module_param(ignore_loglevel, bool, S_IRUGO | S_IWUSR); 1164 MODULE_PARM_DESC(ignore_loglevel, 1165 "ignore loglevel setting (prints all kernel messages to the console)"); 1166 1167 static bool suppress_message_printing(int level) 1168 { 1169 return (level >= console_loglevel && !ignore_loglevel); 1170 } 1171 1172 #ifdef CONFIG_BOOT_PRINTK_DELAY 1173 1174 static int boot_delay; /* msecs delay after each printk during bootup */ 1175 static unsigned long long loops_per_msec; /* based on boot_delay */ 1176 1177 static int __init boot_delay_setup(char *str) 1178 { 1179 unsigned long lpj; 1180 1181 lpj = preset_lpj ? preset_lpj : 1000000; /* some guess */ 1182 loops_per_msec = (unsigned long long)lpj / 1000 * HZ; 1183 1184 get_option(&str, &boot_delay); 1185 if (boot_delay > 10 * 1000) 1186 boot_delay = 0; 1187 1188 pr_debug("boot_delay: %u, preset_lpj: %ld, lpj: %lu, " 1189 "HZ: %d, loops_per_msec: %llu\n", 1190 boot_delay, preset_lpj, lpj, HZ, loops_per_msec); 1191 return 0; 1192 } 1193 early_param("boot_delay", boot_delay_setup); 1194 1195 static void boot_delay_msec(int level) 1196 { 1197 unsigned long long k; 1198 unsigned long timeout; 1199 1200 if ((boot_delay == 0 || system_state >= SYSTEM_RUNNING) 1201 || suppress_message_printing(level)) { 1202 return; 1203 } 1204 1205 k = (unsigned long long)loops_per_msec * boot_delay; 1206 1207 timeout = jiffies + msecs_to_jiffies(boot_delay); 1208 while (k) { 1209 k--; 1210 cpu_relax(); 1211 /* 1212 * use (volatile) jiffies to prevent 1213 * compiler reduction; loop termination via jiffies 1214 * is secondary and may or may not happen. 1215 */ 1216 if (time_after(jiffies, timeout)) 1217 break; 1218 touch_nmi_watchdog(); 1219 } 1220 } 1221 #else 1222 static inline void boot_delay_msec(int level) 1223 { 1224 } 1225 #endif 1226 1227 static bool printk_time = IS_ENABLED(CONFIG_PRINTK_TIME); 1228 module_param_named(time, printk_time, bool, S_IRUGO | S_IWUSR); 1229 1230 static size_t print_syslog(unsigned int level, char *buf) 1231 { 1232 return sprintf(buf, "<%u>", level); 1233 } 1234 1235 static size_t print_time(u64 ts, char *buf) 1236 { 1237 unsigned long rem_nsec = do_div(ts, 1000000000); 1238 1239 return sprintf(buf, "[%5lu.%06lu] ", 1240 (unsigned long)ts, rem_nsec / 1000); 1241 } 1242 1243 static size_t print_prefix(const struct printk_log *msg, bool syslog, 1244 bool time, char *buf) 1245 { 1246 size_t len = 0; 1247 1248 if (syslog) 1249 len = print_syslog((msg->facility << 3) | msg->level, buf); 1250 if (time) 1251 len += print_time(msg->ts_nsec, buf + len); 1252 return len; 1253 } 1254 1255 static size_t msg_print_text(const struct printk_log *msg, bool syslog, 1256 bool time, char *buf, size_t size) 1257 { 1258 const char *text = log_text(msg); 1259 size_t text_size = msg->text_len; 1260 size_t len = 0; 1261 char prefix[PREFIX_MAX]; 1262 const size_t prefix_len = print_prefix(msg, syslog, time, prefix); 1263 1264 do { 1265 const char *next = memchr(text, '\n', text_size); 1266 size_t text_len; 1267 1268 if (next) { 1269 text_len = next - text; 1270 next++; 1271 text_size -= next - text; 1272 } else { 1273 text_len = text_size; 1274 } 1275 1276 if (buf) { 1277 if (prefix_len + text_len + 1 >= size - len) 1278 break; 1279 1280 memcpy(buf + len, prefix, prefix_len); 1281 len += prefix_len; 1282 memcpy(buf + len, text, text_len); 1283 len += text_len; 1284 buf[len++] = '\n'; 1285 } else { 1286 /* SYSLOG_ACTION_* buffer size only calculation */ 1287 len += prefix_len + text_len + 1; 1288 } 1289 1290 text = next; 1291 } while (text); 1292 1293 return len; 1294 } 1295 1296 static int syslog_print(char __user *buf, int size) 1297 { 1298 char *text; 1299 struct printk_log *msg; 1300 int len = 0; 1301 1302 text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL); 1303 if (!text) 1304 return -ENOMEM; 1305 1306 while (size > 0) { 1307 size_t n; 1308 size_t skip; 1309 1310 logbuf_lock_irq(); 1311 if (syslog_seq < log_first_seq) { 1312 /* messages are gone, move to first one */ 1313 syslog_seq = log_first_seq; 1314 syslog_idx = log_first_idx; 1315 syslog_partial = 0; 1316 } 1317 if (syslog_seq == log_next_seq) { 1318 logbuf_unlock_irq(); 1319 break; 1320 } 1321 1322 /* 1323 * To keep reading/counting partial line consistent, 1324 * use printk_time value as of the beginning of a line. 1325 */ 1326 if (!syslog_partial) 1327 syslog_time = printk_time; 1328 1329 skip = syslog_partial; 1330 msg = log_from_idx(syslog_idx); 1331 n = msg_print_text(msg, true, syslog_time, text, 1332 LOG_LINE_MAX + PREFIX_MAX); 1333 if (n - syslog_partial <= size) { 1334 /* message fits into buffer, move forward */ 1335 syslog_idx = log_next(syslog_idx); 1336 syslog_seq++; 1337 n -= syslog_partial; 1338 syslog_partial = 0; 1339 } else if (!len){ 1340 /* partial read(), remember position */ 1341 n = size; 1342 syslog_partial += n; 1343 } else 1344 n = 0; 1345 logbuf_unlock_irq(); 1346 1347 if (!n) 1348 break; 1349 1350 if (copy_to_user(buf, text + skip, n)) { 1351 if (!len) 1352 len = -EFAULT; 1353 break; 1354 } 1355 1356 len += n; 1357 size -= n; 1358 buf += n; 1359 } 1360 1361 kfree(text); 1362 return len; 1363 } 1364 1365 static int syslog_print_all(char __user *buf, int size, bool clear) 1366 { 1367 char *text; 1368 int len = 0; 1369 u64 next_seq; 1370 u64 seq; 1371 u32 idx; 1372 bool time; 1373 1374 text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL); 1375 if (!text) 1376 return -ENOMEM; 1377 1378 time = printk_time; 1379 logbuf_lock_irq(); 1380 /* 1381 * Find first record that fits, including all following records, 1382 * into the user-provided buffer for this dump. 1383 */ 1384 seq = clear_seq; 1385 idx = clear_idx; 1386 while (seq < log_next_seq) { 1387 struct printk_log *msg = log_from_idx(idx); 1388 1389 len += msg_print_text(msg, true, time, NULL, 0); 1390 idx = log_next(idx); 1391 seq++; 1392 } 1393 1394 /* move first record forward until length fits into the buffer */ 1395 seq = clear_seq; 1396 idx = clear_idx; 1397 while (len > size && seq < log_next_seq) { 1398 struct printk_log *msg = log_from_idx(idx); 1399 1400 len -= msg_print_text(msg, true, time, NULL, 0); 1401 idx = log_next(idx); 1402 seq++; 1403 } 1404 1405 /* last message fitting into this dump */ 1406 next_seq = log_next_seq; 1407 1408 len = 0; 1409 while (len >= 0 && seq < next_seq) { 1410 struct printk_log *msg = log_from_idx(idx); 1411 int textlen = msg_print_text(msg, true, time, text, 1412 LOG_LINE_MAX + PREFIX_MAX); 1413 1414 idx = log_next(idx); 1415 seq++; 1416 1417 logbuf_unlock_irq(); 1418 if (copy_to_user(buf + len, text, textlen)) 1419 len = -EFAULT; 1420 else 1421 len += textlen; 1422 logbuf_lock_irq(); 1423 1424 if (seq < log_first_seq) { 1425 /* messages are gone, move to next one */ 1426 seq = log_first_seq; 1427 idx = log_first_idx; 1428 } 1429 } 1430 1431 if (clear) { 1432 clear_seq = log_next_seq; 1433 clear_idx = log_next_idx; 1434 } 1435 logbuf_unlock_irq(); 1436 1437 kfree(text); 1438 return len; 1439 } 1440 1441 static void syslog_clear(void) 1442 { 1443 logbuf_lock_irq(); 1444 clear_seq = log_next_seq; 1445 clear_idx = log_next_idx; 1446 logbuf_unlock_irq(); 1447 } 1448 1449 int do_syslog(int type, char __user *buf, int len, int source) 1450 { 1451 bool clear = false; 1452 static int saved_console_loglevel = LOGLEVEL_DEFAULT; 1453 int error; 1454 1455 error = check_syslog_permissions(type, source); 1456 if (error) 1457 return error; 1458 1459 switch (type) { 1460 case SYSLOG_ACTION_CLOSE: /* Close log */ 1461 break; 1462 case SYSLOG_ACTION_OPEN: /* Open log */ 1463 break; 1464 case SYSLOG_ACTION_READ: /* Read from log */ 1465 if (!buf || len < 0) 1466 return -EINVAL; 1467 if (!len) 1468 return 0; 1469 if (!access_ok(buf, len)) 1470 return -EFAULT; 1471 error = wait_event_interruptible(log_wait, 1472 syslog_seq != log_next_seq); 1473 if (error) 1474 return error; 1475 error = syslog_print(buf, len); 1476 break; 1477 /* Read/clear last kernel messages */ 1478 case SYSLOG_ACTION_READ_CLEAR: 1479 clear = true; 1480 /* FALL THRU */ 1481 /* Read last kernel messages */ 1482 case SYSLOG_ACTION_READ_ALL: 1483 if (!buf || len < 0) 1484 return -EINVAL; 1485 if (!len) 1486 return 0; 1487 if (!access_ok(buf, len)) 1488 return -EFAULT; 1489 error = syslog_print_all(buf, len, clear); 1490 break; 1491 /* Clear ring buffer */ 1492 case SYSLOG_ACTION_CLEAR: 1493 syslog_clear(); 1494 break; 1495 /* Disable logging to console */ 1496 case SYSLOG_ACTION_CONSOLE_OFF: 1497 if (saved_console_loglevel == LOGLEVEL_DEFAULT) 1498 saved_console_loglevel = console_loglevel; 1499 console_loglevel = minimum_console_loglevel; 1500 break; 1501 /* Enable logging to console */ 1502 case SYSLOG_ACTION_CONSOLE_ON: 1503 if (saved_console_loglevel != LOGLEVEL_DEFAULT) { 1504 console_loglevel = saved_console_loglevel; 1505 saved_console_loglevel = LOGLEVEL_DEFAULT; 1506 } 1507 break; 1508 /* Set level of messages printed to console */ 1509 case SYSLOG_ACTION_CONSOLE_LEVEL: 1510 if (len < 1 || len > 8) 1511 return -EINVAL; 1512 if (len < minimum_console_loglevel) 1513 len = minimum_console_loglevel; 1514 console_loglevel = len; 1515 /* Implicitly re-enable logging to console */ 1516 saved_console_loglevel = LOGLEVEL_DEFAULT; 1517 break; 1518 /* Number of chars in the log buffer */ 1519 case SYSLOG_ACTION_SIZE_UNREAD: 1520 logbuf_lock_irq(); 1521 if (syslog_seq < log_first_seq) { 1522 /* messages are gone, move to first one */ 1523 syslog_seq = log_first_seq; 1524 syslog_idx = log_first_idx; 1525 syslog_partial = 0; 1526 } 1527 if (source == SYSLOG_FROM_PROC) { 1528 /* 1529 * Short-cut for poll(/"proc/kmsg") which simply checks 1530 * for pending data, not the size; return the count of 1531 * records, not the length. 1532 */ 1533 error = log_next_seq - syslog_seq; 1534 } else { 1535 u64 seq = syslog_seq; 1536 u32 idx = syslog_idx; 1537 bool time = syslog_partial ? syslog_time : printk_time; 1538 1539 while (seq < log_next_seq) { 1540 struct printk_log *msg = log_from_idx(idx); 1541 1542 error += msg_print_text(msg, true, time, NULL, 1543 0); 1544 time = printk_time; 1545 idx = log_next(idx); 1546 seq++; 1547 } 1548 error -= syslog_partial; 1549 } 1550 logbuf_unlock_irq(); 1551 break; 1552 /* Size of the log buffer */ 1553 case SYSLOG_ACTION_SIZE_BUFFER: 1554 error = log_buf_len; 1555 break; 1556 default: 1557 error = -EINVAL; 1558 break; 1559 } 1560 1561 return error; 1562 } 1563 1564 SYSCALL_DEFINE3(syslog, int, type, char __user *, buf, int, len) 1565 { 1566 return do_syslog(type, buf, len, SYSLOG_FROM_READER); 1567 } 1568 1569 /* 1570 * Special console_lock variants that help to reduce the risk of soft-lockups. 1571 * They allow to pass console_lock to another printk() call using a busy wait. 1572 */ 1573 1574 #ifdef CONFIG_LOCKDEP 1575 static struct lockdep_map console_owner_dep_map = { 1576 .name = "console_owner" 1577 }; 1578 #endif 1579 1580 static DEFINE_RAW_SPINLOCK(console_owner_lock); 1581 static struct task_struct *console_owner; 1582 static bool console_waiter; 1583 1584 /** 1585 * console_lock_spinning_enable - mark beginning of code where another 1586 * thread might safely busy wait 1587 * 1588 * This basically converts console_lock into a spinlock. This marks 1589 * the section where the console_lock owner can not sleep, because 1590 * there may be a waiter spinning (like a spinlock). Also it must be 1591 * ready to hand over the lock at the end of the section. 1592 */ 1593 static void console_lock_spinning_enable(void) 1594 { 1595 raw_spin_lock(&console_owner_lock); 1596 console_owner = current; 1597 raw_spin_unlock(&console_owner_lock); 1598 1599 /* The waiter may spin on us after setting console_owner */ 1600 spin_acquire(&console_owner_dep_map, 0, 0, _THIS_IP_); 1601 } 1602 1603 /** 1604 * console_lock_spinning_disable_and_check - mark end of code where another 1605 * thread was able to busy wait and check if there is a waiter 1606 * 1607 * This is called at the end of the section where spinning is allowed. 1608 * It has two functions. First, it is a signal that it is no longer 1609 * safe to start busy waiting for the lock. Second, it checks if 1610 * there is a busy waiter and passes the lock rights to her. 1611 * 1612 * Important: Callers lose the lock if there was a busy waiter. 1613 * They must not touch items synchronized by console_lock 1614 * in this case. 1615 * 1616 * Return: 1 if the lock rights were passed, 0 otherwise. 1617 */ 1618 static int console_lock_spinning_disable_and_check(void) 1619 { 1620 int waiter; 1621 1622 raw_spin_lock(&console_owner_lock); 1623 waiter = READ_ONCE(console_waiter); 1624 console_owner = NULL; 1625 raw_spin_unlock(&console_owner_lock); 1626 1627 if (!waiter) { 1628 spin_release(&console_owner_dep_map, 1, _THIS_IP_); 1629 return 0; 1630 } 1631 1632 /* The waiter is now free to continue */ 1633 WRITE_ONCE(console_waiter, false); 1634 1635 spin_release(&console_owner_dep_map, 1, _THIS_IP_); 1636 1637 /* 1638 * Hand off console_lock to waiter. The waiter will perform 1639 * the up(). After this, the waiter is the console_lock owner. 1640 */ 1641 mutex_release(&console_lock_dep_map, 1, _THIS_IP_); 1642 return 1; 1643 } 1644 1645 /** 1646 * console_trylock_spinning - try to get console_lock by busy waiting 1647 * 1648 * This allows to busy wait for the console_lock when the current 1649 * owner is running in specially marked sections. It means that 1650 * the current owner is running and cannot reschedule until it 1651 * is ready to lose the lock. 1652 * 1653 * Return: 1 if we got the lock, 0 othrewise 1654 */ 1655 static int console_trylock_spinning(void) 1656 { 1657 struct task_struct *owner = NULL; 1658 bool waiter; 1659 bool spin = false; 1660 unsigned long flags; 1661 1662 if (console_trylock()) 1663 return 1; 1664 1665 printk_safe_enter_irqsave(flags); 1666 1667 raw_spin_lock(&console_owner_lock); 1668 owner = READ_ONCE(console_owner); 1669 waiter = READ_ONCE(console_waiter); 1670 if (!waiter && owner && owner != current) { 1671 WRITE_ONCE(console_waiter, true); 1672 spin = true; 1673 } 1674 raw_spin_unlock(&console_owner_lock); 1675 1676 /* 1677 * If there is an active printk() writing to the 1678 * consoles, instead of having it write our data too, 1679 * see if we can offload that load from the active 1680 * printer, and do some printing ourselves. 1681 * Go into a spin only if there isn't already a waiter 1682 * spinning, and there is an active printer, and 1683 * that active printer isn't us (recursive printk?). 1684 */ 1685 if (!spin) { 1686 printk_safe_exit_irqrestore(flags); 1687 return 0; 1688 } 1689 1690 /* We spin waiting for the owner to release us */ 1691 spin_acquire(&console_owner_dep_map, 0, 0, _THIS_IP_); 1692 /* Owner will clear console_waiter on hand off */ 1693 while (READ_ONCE(console_waiter)) 1694 cpu_relax(); 1695 spin_release(&console_owner_dep_map, 1, _THIS_IP_); 1696 1697 printk_safe_exit_irqrestore(flags); 1698 /* 1699 * The owner passed the console lock to us. 1700 * Since we did not spin on console lock, annotate 1701 * this as a trylock. Otherwise lockdep will 1702 * complain. 1703 */ 1704 mutex_acquire(&console_lock_dep_map, 0, 1, _THIS_IP_); 1705 1706 return 1; 1707 } 1708 1709 /* 1710 * Call the console drivers, asking them to write out 1711 * log_buf[start] to log_buf[end - 1]. 1712 * The console_lock must be held. 1713 */ 1714 static void call_console_drivers(const char *ext_text, size_t ext_len, 1715 const char *text, size_t len) 1716 { 1717 struct console *con; 1718 1719 trace_console_rcuidle(text, len); 1720 1721 if (!console_drivers) 1722 return; 1723 1724 for_each_console(con) { 1725 if (exclusive_console && con != exclusive_console) 1726 continue; 1727 if (!(con->flags & CON_ENABLED)) 1728 continue; 1729 if (!con->write) 1730 continue; 1731 if (!cpu_online(smp_processor_id()) && 1732 !(con->flags & CON_ANYTIME)) 1733 continue; 1734 if (con->flags & CON_EXTENDED) 1735 con->write(con, ext_text, ext_len); 1736 else 1737 con->write(con, text, len); 1738 } 1739 } 1740 1741 int printk_delay_msec __read_mostly; 1742 1743 static inline void printk_delay(void) 1744 { 1745 if (unlikely(printk_delay_msec)) { 1746 int m = printk_delay_msec; 1747 1748 while (m--) { 1749 mdelay(1); 1750 touch_nmi_watchdog(); 1751 } 1752 } 1753 } 1754 1755 /* 1756 * Continuation lines are buffered, and not committed to the record buffer 1757 * until the line is complete, or a race forces it. The line fragments 1758 * though, are printed immediately to the consoles to ensure everything has 1759 * reached the console in case of a kernel crash. 1760 */ 1761 static struct cont { 1762 char buf[LOG_LINE_MAX]; 1763 size_t len; /* length == 0 means unused buffer */ 1764 struct task_struct *owner; /* task of first print*/ 1765 u64 ts_nsec; /* time of first print */ 1766 u8 level; /* log level of first message */ 1767 u8 facility; /* log facility of first message */ 1768 enum log_flags flags; /* prefix, newline flags */ 1769 } cont; 1770 1771 static void cont_flush(void) 1772 { 1773 if (cont.len == 0) 1774 return; 1775 1776 log_store(cont.facility, cont.level, cont.flags, cont.ts_nsec, 1777 NULL, 0, cont.buf, cont.len); 1778 cont.len = 0; 1779 } 1780 1781 static bool cont_add(int facility, int level, enum log_flags flags, const char *text, size_t len) 1782 { 1783 /* If the line gets too long, split it up in separate records. */ 1784 if (cont.len + len > sizeof(cont.buf)) { 1785 cont_flush(); 1786 return false; 1787 } 1788 1789 if (!cont.len) { 1790 cont.facility = facility; 1791 cont.level = level; 1792 cont.owner = current; 1793 cont.ts_nsec = local_clock(); 1794 cont.flags = flags; 1795 } 1796 1797 memcpy(cont.buf + cont.len, text, len); 1798 cont.len += len; 1799 1800 // The original flags come from the first line, 1801 // but later continuations can add a newline. 1802 if (flags & LOG_NEWLINE) { 1803 cont.flags |= LOG_NEWLINE; 1804 cont_flush(); 1805 } 1806 1807 return true; 1808 } 1809 1810 static size_t log_output(int facility, int level, enum log_flags lflags, const char *dict, size_t dictlen, char *text, size_t text_len) 1811 { 1812 /* 1813 * If an earlier line was buffered, and we're a continuation 1814 * write from the same process, try to add it to the buffer. 1815 */ 1816 if (cont.len) { 1817 if (cont.owner == current && (lflags & LOG_CONT)) { 1818 if (cont_add(facility, level, lflags, text, text_len)) 1819 return text_len; 1820 } 1821 /* Otherwise, make sure it's flushed */ 1822 cont_flush(); 1823 } 1824 1825 /* Skip empty continuation lines that couldn't be added - they just flush */ 1826 if (!text_len && (lflags & LOG_CONT)) 1827 return 0; 1828 1829 /* If it doesn't end in a newline, try to buffer the current line */ 1830 if (!(lflags & LOG_NEWLINE)) { 1831 if (cont_add(facility, level, lflags, text, text_len)) 1832 return text_len; 1833 } 1834 1835 /* Store it in the record log */ 1836 return log_store(facility, level, lflags, 0, dict, dictlen, text, text_len); 1837 } 1838 1839 /* Must be called under logbuf_lock. */ 1840 int vprintk_store(int facility, int level, 1841 const char *dict, size_t dictlen, 1842 const char *fmt, va_list args) 1843 { 1844 static char textbuf[LOG_LINE_MAX]; 1845 char *text = textbuf; 1846 size_t text_len; 1847 enum log_flags lflags = 0; 1848 1849 /* 1850 * The printf needs to come first; we need the syslog 1851 * prefix which might be passed-in as a parameter. 1852 */ 1853 text_len = vscnprintf(text, sizeof(textbuf), fmt, args); 1854 1855 /* mark and strip a trailing newline */ 1856 if (text_len && text[text_len-1] == '\n') { 1857 text_len--; 1858 lflags |= LOG_NEWLINE; 1859 } 1860 1861 /* strip kernel syslog prefix and extract log level or control flags */ 1862 if (facility == 0) { 1863 int kern_level; 1864 1865 while ((kern_level = printk_get_level(text)) != 0) { 1866 switch (kern_level) { 1867 case '0' ... '7': 1868 if (level == LOGLEVEL_DEFAULT) 1869 level = kern_level - '0'; 1870 /* fallthrough */ 1871 case 'd': /* KERN_DEFAULT */ 1872 lflags |= LOG_PREFIX; 1873 break; 1874 case 'c': /* KERN_CONT */ 1875 lflags |= LOG_CONT; 1876 } 1877 1878 text_len -= 2; 1879 text += 2; 1880 } 1881 } 1882 1883 if (level == LOGLEVEL_DEFAULT) 1884 level = default_message_loglevel; 1885 1886 if (dict) 1887 lflags |= LOG_PREFIX|LOG_NEWLINE; 1888 1889 return log_output(facility, level, lflags, 1890 dict, dictlen, text, text_len); 1891 } 1892 1893 asmlinkage int vprintk_emit(int facility, int level, 1894 const char *dict, size_t dictlen, 1895 const char *fmt, va_list args) 1896 { 1897 int printed_len; 1898 bool in_sched = false, pending_output; 1899 unsigned long flags; 1900 u64 curr_log_seq; 1901 1902 if (level == LOGLEVEL_SCHED) { 1903 level = LOGLEVEL_DEFAULT; 1904 in_sched = true; 1905 } 1906 1907 boot_delay_msec(level); 1908 printk_delay(); 1909 1910 /* This stops the holder of console_sem just where we want him */ 1911 logbuf_lock_irqsave(flags); 1912 curr_log_seq = log_next_seq; 1913 printed_len = vprintk_store(facility, level, dict, dictlen, fmt, args); 1914 pending_output = (curr_log_seq != log_next_seq); 1915 logbuf_unlock_irqrestore(flags); 1916 1917 /* If called from the scheduler, we can not call up(). */ 1918 if (!in_sched && pending_output) { 1919 /* 1920 * Disable preemption to avoid being preempted while holding 1921 * console_sem which would prevent anyone from printing to 1922 * console 1923 */ 1924 preempt_disable(); 1925 /* 1926 * Try to acquire and then immediately release the console 1927 * semaphore. The release will print out buffers and wake up 1928 * /dev/kmsg and syslog() users. 1929 */ 1930 if (console_trylock_spinning()) 1931 console_unlock(); 1932 preempt_enable(); 1933 } 1934 1935 if (pending_output) 1936 wake_up_klogd(); 1937 return printed_len; 1938 } 1939 EXPORT_SYMBOL(vprintk_emit); 1940 1941 asmlinkage int vprintk(const char *fmt, va_list args) 1942 { 1943 return vprintk_func(fmt, args); 1944 } 1945 EXPORT_SYMBOL(vprintk); 1946 1947 int vprintk_default(const char *fmt, va_list args) 1948 { 1949 int r; 1950 1951 #ifdef CONFIG_KGDB_KDB 1952 /* Allow to pass printk() to kdb but avoid a recursion. */ 1953 if (unlikely(kdb_trap_printk && kdb_printf_cpu < 0)) { 1954 r = vkdb_printf(KDB_MSGSRC_PRINTK, fmt, args); 1955 return r; 1956 } 1957 #endif 1958 r = vprintk_emit(0, LOGLEVEL_DEFAULT, NULL, 0, fmt, args); 1959 1960 return r; 1961 } 1962 EXPORT_SYMBOL_GPL(vprintk_default); 1963 1964 /** 1965 * printk - print a kernel message 1966 * @fmt: format string 1967 * 1968 * This is printk(). It can be called from any context. We want it to work. 1969 * 1970 * We try to grab the console_lock. If we succeed, it's easy - we log the 1971 * output and call the console drivers. If we fail to get the semaphore, we 1972 * place the output into the log buffer and return. The current holder of 1973 * the console_sem will notice the new output in console_unlock(); and will 1974 * send it to the consoles before releasing the lock. 1975 * 1976 * One effect of this deferred printing is that code which calls printk() and 1977 * then changes console_loglevel may break. This is because console_loglevel 1978 * is inspected when the actual printing occurs. 1979 * 1980 * See also: 1981 * printf(3) 1982 * 1983 * See the vsnprintf() documentation for format string extensions over C99. 1984 */ 1985 asmlinkage __visible int printk(const char *fmt, ...) 1986 { 1987 va_list args; 1988 int r; 1989 1990 va_start(args, fmt); 1991 r = vprintk_func(fmt, args); 1992 va_end(args); 1993 1994 return r; 1995 } 1996 EXPORT_SYMBOL(printk); 1997 1998 #else /* CONFIG_PRINTK */ 1999 2000 #define LOG_LINE_MAX 0 2001 #define PREFIX_MAX 0 2002 #define printk_time false 2003 2004 static u64 syslog_seq; 2005 static u32 syslog_idx; 2006 static u64 console_seq; 2007 static u32 console_idx; 2008 static u64 exclusive_console_stop_seq; 2009 static u64 log_first_seq; 2010 static u32 log_first_idx; 2011 static u64 log_next_seq; 2012 static char *log_text(const struct printk_log *msg) { return NULL; } 2013 static char *log_dict(const struct printk_log *msg) { return NULL; } 2014 static struct printk_log *log_from_idx(u32 idx) { return NULL; } 2015 static u32 log_next(u32 idx) { return 0; } 2016 static ssize_t msg_print_ext_header(char *buf, size_t size, 2017 struct printk_log *msg, 2018 u64 seq) { return 0; } 2019 static ssize_t msg_print_ext_body(char *buf, size_t size, 2020 char *dict, size_t dict_len, 2021 char *text, size_t text_len) { return 0; } 2022 static void console_lock_spinning_enable(void) { } 2023 static int console_lock_spinning_disable_and_check(void) { return 0; } 2024 static void call_console_drivers(const char *ext_text, size_t ext_len, 2025 const char *text, size_t len) {} 2026 static size_t msg_print_text(const struct printk_log *msg, bool syslog, 2027 bool time, char *buf, size_t size) { return 0; } 2028 static bool suppress_message_printing(int level) { return false; } 2029 2030 #endif /* CONFIG_PRINTK */ 2031 2032 #ifdef CONFIG_EARLY_PRINTK 2033 struct console *early_console; 2034 2035 asmlinkage __visible void early_printk(const char *fmt, ...) 2036 { 2037 va_list ap; 2038 char buf[512]; 2039 int n; 2040 2041 if (!early_console) 2042 return; 2043 2044 va_start(ap, fmt); 2045 n = vscnprintf(buf, sizeof(buf), fmt, ap); 2046 va_end(ap); 2047 2048 early_console->write(early_console, buf, n); 2049 } 2050 #endif 2051 2052 static int __add_preferred_console(char *name, int idx, char *options, 2053 char *brl_options) 2054 { 2055 struct console_cmdline *c; 2056 int i; 2057 2058 /* 2059 * See if this tty is not yet registered, and 2060 * if we have a slot free. 2061 */ 2062 for (i = 0, c = console_cmdline; 2063 i < MAX_CMDLINECONSOLES && c->name[0]; 2064 i++, c++) { 2065 if (strcmp(c->name, name) == 0 && c->index == idx) { 2066 if (!brl_options) 2067 preferred_console = i; 2068 return 0; 2069 } 2070 } 2071 if (i == MAX_CMDLINECONSOLES) 2072 return -E2BIG; 2073 if (!brl_options) 2074 preferred_console = i; 2075 strlcpy(c->name, name, sizeof(c->name)); 2076 c->options = options; 2077 braille_set_options(c, brl_options); 2078 2079 c->index = idx; 2080 return 0; 2081 } 2082 2083 static int __init console_msg_format_setup(char *str) 2084 { 2085 if (!strcmp(str, "syslog")) 2086 console_msg_format = MSG_FORMAT_SYSLOG; 2087 if (!strcmp(str, "default")) 2088 console_msg_format = MSG_FORMAT_DEFAULT; 2089 return 1; 2090 } 2091 __setup("console_msg_format=", console_msg_format_setup); 2092 2093 /* 2094 * Set up a console. Called via do_early_param() in init/main.c 2095 * for each "console=" parameter in the boot command line. 2096 */ 2097 static int __init console_setup(char *str) 2098 { 2099 char buf[sizeof(console_cmdline[0].name) + 4]; /* 4 for "ttyS" */ 2100 char *s, *options, *brl_options = NULL; 2101 int idx; 2102 2103 if (_braille_console_setup(&str, &brl_options)) 2104 return 1; 2105 2106 /* 2107 * Decode str into name, index, options. 2108 */ 2109 if (str[0] >= '0' && str[0] <= '9') { 2110 strcpy(buf, "ttyS"); 2111 strncpy(buf + 4, str, sizeof(buf) - 5); 2112 } else { 2113 strncpy(buf, str, sizeof(buf) - 1); 2114 } 2115 buf[sizeof(buf) - 1] = 0; 2116 options = strchr(str, ','); 2117 if (options) 2118 *(options++) = 0; 2119 #ifdef __sparc__ 2120 if (!strcmp(str, "ttya")) 2121 strcpy(buf, "ttyS0"); 2122 if (!strcmp(str, "ttyb")) 2123 strcpy(buf, "ttyS1"); 2124 #endif 2125 for (s = buf; *s; s++) 2126 if (isdigit(*s) || *s == ',') 2127 break; 2128 idx = simple_strtoul(s, NULL, 10); 2129 *s = 0; 2130 2131 __add_preferred_console(buf, idx, options, brl_options); 2132 console_set_on_cmdline = 1; 2133 return 1; 2134 } 2135 __setup("console=", console_setup); 2136 2137 /** 2138 * add_preferred_console - add a device to the list of preferred consoles. 2139 * @name: device name 2140 * @idx: device index 2141 * @options: options for this console 2142 * 2143 * The last preferred console added will be used for kernel messages 2144 * and stdin/out/err for init. Normally this is used by console_setup 2145 * above to handle user-supplied console arguments; however it can also 2146 * be used by arch-specific code either to override the user or more 2147 * commonly to provide a default console (ie from PROM variables) when 2148 * the user has not supplied one. 2149 */ 2150 int add_preferred_console(char *name, int idx, char *options) 2151 { 2152 return __add_preferred_console(name, idx, options, NULL); 2153 } 2154 2155 bool console_suspend_enabled = true; 2156 EXPORT_SYMBOL(console_suspend_enabled); 2157 2158 static int __init console_suspend_disable(char *str) 2159 { 2160 console_suspend_enabled = false; 2161 return 1; 2162 } 2163 __setup("no_console_suspend", console_suspend_disable); 2164 module_param_named(console_suspend, console_suspend_enabled, 2165 bool, S_IRUGO | S_IWUSR); 2166 MODULE_PARM_DESC(console_suspend, "suspend console during suspend" 2167 " and hibernate operations"); 2168 2169 /** 2170 * suspend_console - suspend the console subsystem 2171 * 2172 * This disables printk() while we go into suspend states 2173 */ 2174 void suspend_console(void) 2175 { 2176 if (!console_suspend_enabled) 2177 return; 2178 pr_info("Suspending console(s) (use no_console_suspend to debug)\n"); 2179 console_lock(); 2180 console_suspended = 1; 2181 up_console_sem(); 2182 } 2183 2184 void resume_console(void) 2185 { 2186 if (!console_suspend_enabled) 2187 return; 2188 down_console_sem(); 2189 console_suspended = 0; 2190 console_unlock(); 2191 } 2192 2193 /** 2194 * console_cpu_notify - print deferred console messages after CPU hotplug 2195 * @cpu: unused 2196 * 2197 * If printk() is called from a CPU that is not online yet, the messages 2198 * will be printed on the console only if there are CON_ANYTIME consoles. 2199 * This function is called when a new CPU comes online (or fails to come 2200 * up) or goes offline. 2201 */ 2202 static int console_cpu_notify(unsigned int cpu) 2203 { 2204 if (!cpuhp_tasks_frozen) { 2205 /* If trylock fails, someone else is doing the printing */ 2206 if (console_trylock()) 2207 console_unlock(); 2208 } 2209 return 0; 2210 } 2211 2212 /** 2213 * console_lock - lock the console system for exclusive use. 2214 * 2215 * Acquires a lock which guarantees that the caller has 2216 * exclusive access to the console system and the console_drivers list. 2217 * 2218 * Can sleep, returns nothing. 2219 */ 2220 void console_lock(void) 2221 { 2222 might_sleep(); 2223 2224 down_console_sem(); 2225 if (console_suspended) 2226 return; 2227 console_locked = 1; 2228 console_may_schedule = 1; 2229 } 2230 EXPORT_SYMBOL(console_lock); 2231 2232 /** 2233 * console_trylock - try to lock the console system for exclusive use. 2234 * 2235 * Try to acquire a lock which guarantees that the caller has exclusive 2236 * access to the console system and the console_drivers list. 2237 * 2238 * returns 1 on success, and 0 on failure to acquire the lock. 2239 */ 2240 int console_trylock(void) 2241 { 2242 if (down_trylock_console_sem()) 2243 return 0; 2244 if (console_suspended) { 2245 up_console_sem(); 2246 return 0; 2247 } 2248 console_locked = 1; 2249 console_may_schedule = 0; 2250 return 1; 2251 } 2252 EXPORT_SYMBOL(console_trylock); 2253 2254 int is_console_locked(void) 2255 { 2256 return console_locked; 2257 } 2258 EXPORT_SYMBOL(is_console_locked); 2259 2260 /* 2261 * Check if we have any console that is capable of printing while cpu is 2262 * booting or shutting down. Requires console_sem. 2263 */ 2264 static int have_callable_console(void) 2265 { 2266 struct console *con; 2267 2268 for_each_console(con) 2269 if ((con->flags & CON_ENABLED) && 2270 (con->flags & CON_ANYTIME)) 2271 return 1; 2272 2273 return 0; 2274 } 2275 2276 /* 2277 * Can we actually use the console at this time on this cpu? 2278 * 2279 * Console drivers may assume that per-cpu resources have been allocated. So 2280 * unless they're explicitly marked as being able to cope (CON_ANYTIME) don't 2281 * call them until this CPU is officially up. 2282 */ 2283 static inline int can_use_console(void) 2284 { 2285 return cpu_online(raw_smp_processor_id()) || have_callable_console(); 2286 } 2287 2288 /** 2289 * console_unlock - unlock the console system 2290 * 2291 * Releases the console_lock which the caller holds on the console system 2292 * and the console driver list. 2293 * 2294 * While the console_lock was held, console output may have been buffered 2295 * by printk(). If this is the case, console_unlock(); emits 2296 * the output prior to releasing the lock. 2297 * 2298 * If there is output waiting, we wake /dev/kmsg and syslog() users. 2299 * 2300 * console_unlock(); may be called from any context. 2301 */ 2302 void console_unlock(void) 2303 { 2304 static char ext_text[CONSOLE_EXT_LOG_MAX]; 2305 static char text[LOG_LINE_MAX + PREFIX_MAX]; 2306 unsigned long flags; 2307 bool do_cond_resched, retry; 2308 2309 if (console_suspended) { 2310 up_console_sem(); 2311 return; 2312 } 2313 2314 /* 2315 * Console drivers are called with interrupts disabled, so 2316 * @console_may_schedule should be cleared before; however, we may 2317 * end up dumping a lot of lines, for example, if called from 2318 * console registration path, and should invoke cond_resched() 2319 * between lines if allowable. Not doing so can cause a very long 2320 * scheduling stall on a slow console leading to RCU stall and 2321 * softlockup warnings which exacerbate the issue with more 2322 * messages practically incapacitating the system. 2323 * 2324 * console_trylock() is not able to detect the preemptive 2325 * context reliably. Therefore the value must be stored before 2326 * and cleared after the the "again" goto label. 2327 */ 2328 do_cond_resched = console_may_schedule; 2329 again: 2330 console_may_schedule = 0; 2331 2332 /* 2333 * We released the console_sem lock, so we need to recheck if 2334 * cpu is online and (if not) is there at least one CON_ANYTIME 2335 * console. 2336 */ 2337 if (!can_use_console()) { 2338 console_locked = 0; 2339 up_console_sem(); 2340 return; 2341 } 2342 2343 for (;;) { 2344 struct printk_log *msg; 2345 size_t ext_len = 0; 2346 size_t len; 2347 2348 printk_safe_enter_irqsave(flags); 2349 raw_spin_lock(&logbuf_lock); 2350 if (console_seq < log_first_seq) { 2351 len = sprintf(text, 2352 "** %llu printk messages dropped **\n", 2353 log_first_seq - console_seq); 2354 2355 /* messages are gone, move to first one */ 2356 console_seq = log_first_seq; 2357 console_idx = log_first_idx; 2358 } else { 2359 len = 0; 2360 } 2361 skip: 2362 if (console_seq == log_next_seq) 2363 break; 2364 2365 msg = log_from_idx(console_idx); 2366 if (suppress_message_printing(msg->level)) { 2367 /* 2368 * Skip record we have buffered and already printed 2369 * directly to the console when we received it, and 2370 * record that has level above the console loglevel. 2371 */ 2372 console_idx = log_next(console_idx); 2373 console_seq++; 2374 goto skip; 2375 } 2376 2377 /* Output to all consoles once old messages replayed. */ 2378 if (unlikely(exclusive_console && 2379 console_seq >= exclusive_console_stop_seq)) { 2380 exclusive_console = NULL; 2381 } 2382 2383 len += msg_print_text(msg, 2384 console_msg_format & MSG_FORMAT_SYSLOG, 2385 printk_time, text + len, sizeof(text) - len); 2386 if (nr_ext_console_drivers) { 2387 ext_len = msg_print_ext_header(ext_text, 2388 sizeof(ext_text), 2389 msg, console_seq); 2390 ext_len += msg_print_ext_body(ext_text + ext_len, 2391 sizeof(ext_text) - ext_len, 2392 log_dict(msg), msg->dict_len, 2393 log_text(msg), msg->text_len); 2394 } 2395 console_idx = log_next(console_idx); 2396 console_seq++; 2397 raw_spin_unlock(&logbuf_lock); 2398 2399 /* 2400 * While actively printing out messages, if another printk() 2401 * were to occur on another CPU, it may wait for this one to 2402 * finish. This task can not be preempted if there is a 2403 * waiter waiting to take over. 2404 */ 2405 console_lock_spinning_enable(); 2406 2407 stop_critical_timings(); /* don't trace print latency */ 2408 call_console_drivers(ext_text, ext_len, text, len); 2409 start_critical_timings(); 2410 2411 if (console_lock_spinning_disable_and_check()) { 2412 printk_safe_exit_irqrestore(flags); 2413 return; 2414 } 2415 2416 printk_safe_exit_irqrestore(flags); 2417 2418 if (do_cond_resched) 2419 cond_resched(); 2420 } 2421 2422 console_locked = 0; 2423 2424 raw_spin_unlock(&logbuf_lock); 2425 2426 up_console_sem(); 2427 2428 /* 2429 * Someone could have filled up the buffer again, so re-check if there's 2430 * something to flush. In case we cannot trylock the console_sem again, 2431 * there's a new owner and the console_unlock() from them will do the 2432 * flush, no worries. 2433 */ 2434 raw_spin_lock(&logbuf_lock); 2435 retry = console_seq != log_next_seq; 2436 raw_spin_unlock(&logbuf_lock); 2437 printk_safe_exit_irqrestore(flags); 2438 2439 if (retry && console_trylock()) 2440 goto again; 2441 } 2442 EXPORT_SYMBOL(console_unlock); 2443 2444 /** 2445 * console_conditional_schedule - yield the CPU if required 2446 * 2447 * If the console code is currently allowed to sleep, and 2448 * if this CPU should yield the CPU to another task, do 2449 * so here. 2450 * 2451 * Must be called within console_lock();. 2452 */ 2453 void __sched console_conditional_schedule(void) 2454 { 2455 if (console_may_schedule) 2456 cond_resched(); 2457 } 2458 EXPORT_SYMBOL(console_conditional_schedule); 2459 2460 void console_unblank(void) 2461 { 2462 struct console *c; 2463 2464 /* 2465 * console_unblank can no longer be called in interrupt context unless 2466 * oops_in_progress is set to 1.. 2467 */ 2468 if (oops_in_progress) { 2469 if (down_trylock_console_sem() != 0) 2470 return; 2471 } else 2472 console_lock(); 2473 2474 console_locked = 1; 2475 console_may_schedule = 0; 2476 for_each_console(c) 2477 if ((c->flags & CON_ENABLED) && c->unblank) 2478 c->unblank(); 2479 console_unlock(); 2480 } 2481 2482 /** 2483 * console_flush_on_panic - flush console content on panic 2484 * 2485 * Immediately output all pending messages no matter what. 2486 */ 2487 void console_flush_on_panic(void) 2488 { 2489 /* 2490 * If someone else is holding the console lock, trylock will fail 2491 * and may_schedule may be set. Ignore and proceed to unlock so 2492 * that messages are flushed out. As this can be called from any 2493 * context and we don't want to get preempted while flushing, 2494 * ensure may_schedule is cleared. 2495 */ 2496 console_trylock(); 2497 console_may_schedule = 0; 2498 console_unlock(); 2499 } 2500 2501 /* 2502 * Return the console tty driver structure and its associated index 2503 */ 2504 struct tty_driver *console_device(int *index) 2505 { 2506 struct console *c; 2507 struct tty_driver *driver = NULL; 2508 2509 console_lock(); 2510 for_each_console(c) { 2511 if (!c->device) 2512 continue; 2513 driver = c->device(c, index); 2514 if (driver) 2515 break; 2516 } 2517 console_unlock(); 2518 return driver; 2519 } 2520 2521 /* 2522 * Prevent further output on the passed console device so that (for example) 2523 * serial drivers can disable console output before suspending a port, and can 2524 * re-enable output afterwards. 2525 */ 2526 void console_stop(struct console *console) 2527 { 2528 console_lock(); 2529 console->flags &= ~CON_ENABLED; 2530 console_unlock(); 2531 } 2532 EXPORT_SYMBOL(console_stop); 2533 2534 void console_start(struct console *console) 2535 { 2536 console_lock(); 2537 console->flags |= CON_ENABLED; 2538 console_unlock(); 2539 } 2540 EXPORT_SYMBOL(console_start); 2541 2542 static int __read_mostly keep_bootcon; 2543 2544 static int __init keep_bootcon_setup(char *str) 2545 { 2546 keep_bootcon = 1; 2547 pr_info("debug: skip boot console de-registration.\n"); 2548 2549 return 0; 2550 } 2551 2552 early_param("keep_bootcon", keep_bootcon_setup); 2553 2554 /* 2555 * The console driver calls this routine during kernel initialization 2556 * to register the console printing procedure with printk() and to 2557 * print any messages that were printed by the kernel before the 2558 * console driver was initialized. 2559 * 2560 * This can happen pretty early during the boot process (because of 2561 * early_printk) - sometimes before setup_arch() completes - be careful 2562 * of what kernel features are used - they may not be initialised yet. 2563 * 2564 * There are two types of consoles - bootconsoles (early_printk) and 2565 * "real" consoles (everything which is not a bootconsole) which are 2566 * handled differently. 2567 * - Any number of bootconsoles can be registered at any time. 2568 * - As soon as a "real" console is registered, all bootconsoles 2569 * will be unregistered automatically. 2570 * - Once a "real" console is registered, any attempt to register a 2571 * bootconsoles will be rejected 2572 */ 2573 void register_console(struct console *newcon) 2574 { 2575 int i; 2576 unsigned long flags; 2577 struct console *bcon = NULL; 2578 struct console_cmdline *c; 2579 static bool has_preferred; 2580 2581 if (console_drivers) 2582 for_each_console(bcon) 2583 if (WARN(bcon == newcon, 2584 "console '%s%d' already registered\n", 2585 bcon->name, bcon->index)) 2586 return; 2587 2588 /* 2589 * before we register a new CON_BOOT console, make sure we don't 2590 * already have a valid console 2591 */ 2592 if (console_drivers && newcon->flags & CON_BOOT) { 2593 /* find the last or real console */ 2594 for_each_console(bcon) { 2595 if (!(bcon->flags & CON_BOOT)) { 2596 pr_info("Too late to register bootconsole %s%d\n", 2597 newcon->name, newcon->index); 2598 return; 2599 } 2600 } 2601 } 2602 2603 if (console_drivers && console_drivers->flags & CON_BOOT) 2604 bcon = console_drivers; 2605 2606 if (!has_preferred || bcon || !console_drivers) 2607 has_preferred = preferred_console >= 0; 2608 2609 /* 2610 * See if we want to use this console driver. If we 2611 * didn't select a console we take the first one 2612 * that registers here. 2613 */ 2614 if (!has_preferred) { 2615 if (newcon->index < 0) 2616 newcon->index = 0; 2617 if (newcon->setup == NULL || 2618 newcon->setup(newcon, NULL) == 0) { 2619 newcon->flags |= CON_ENABLED; 2620 if (newcon->device) { 2621 newcon->flags |= CON_CONSDEV; 2622 has_preferred = true; 2623 } 2624 } 2625 } 2626 2627 /* 2628 * See if this console matches one we selected on 2629 * the command line. 2630 */ 2631 for (i = 0, c = console_cmdline; 2632 i < MAX_CMDLINECONSOLES && c->name[0]; 2633 i++, c++) { 2634 if (!newcon->match || 2635 newcon->match(newcon, c->name, c->index, c->options) != 0) { 2636 /* default matching */ 2637 BUILD_BUG_ON(sizeof(c->name) != sizeof(newcon->name)); 2638 if (strcmp(c->name, newcon->name) != 0) 2639 continue; 2640 if (newcon->index >= 0 && 2641 newcon->index != c->index) 2642 continue; 2643 if (newcon->index < 0) 2644 newcon->index = c->index; 2645 2646 if (_braille_register_console(newcon, c)) 2647 return; 2648 2649 if (newcon->setup && 2650 newcon->setup(newcon, c->options) != 0) 2651 break; 2652 } 2653 2654 newcon->flags |= CON_ENABLED; 2655 if (i == preferred_console) { 2656 newcon->flags |= CON_CONSDEV; 2657 has_preferred = true; 2658 } 2659 break; 2660 } 2661 2662 if (!(newcon->flags & CON_ENABLED)) 2663 return; 2664 2665 /* 2666 * If we have a bootconsole, and are switching to a real console, 2667 * don't print everything out again, since when the boot console, and 2668 * the real console are the same physical device, it's annoying to 2669 * see the beginning boot messages twice 2670 */ 2671 if (bcon && ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV)) 2672 newcon->flags &= ~CON_PRINTBUFFER; 2673 2674 /* 2675 * Put this console in the list - keep the 2676 * preferred driver at the head of the list. 2677 */ 2678 console_lock(); 2679 if ((newcon->flags & CON_CONSDEV) || console_drivers == NULL) { 2680 newcon->next = console_drivers; 2681 console_drivers = newcon; 2682 if (newcon->next) 2683 newcon->next->flags &= ~CON_CONSDEV; 2684 } else { 2685 newcon->next = console_drivers->next; 2686 console_drivers->next = newcon; 2687 } 2688 2689 if (newcon->flags & CON_EXTENDED) 2690 nr_ext_console_drivers++; 2691 2692 if (newcon->flags & CON_PRINTBUFFER) { 2693 /* 2694 * console_unlock(); will print out the buffered messages 2695 * for us. 2696 */ 2697 logbuf_lock_irqsave(flags); 2698 console_seq = syslog_seq; 2699 console_idx = syslog_idx; 2700 /* 2701 * We're about to replay the log buffer. Only do this to the 2702 * just-registered console to avoid excessive message spam to 2703 * the already-registered consoles. 2704 * 2705 * Set exclusive_console with disabled interrupts to reduce 2706 * race window with eventual console_flush_on_panic() that 2707 * ignores console_lock. 2708 */ 2709 exclusive_console = newcon; 2710 exclusive_console_stop_seq = console_seq; 2711 logbuf_unlock_irqrestore(flags); 2712 } 2713 console_unlock(); 2714 console_sysfs_notify(); 2715 2716 /* 2717 * By unregistering the bootconsoles after we enable the real console 2718 * we get the "console xxx enabled" message on all the consoles - 2719 * boot consoles, real consoles, etc - this is to ensure that end 2720 * users know there might be something in the kernel's log buffer that 2721 * went to the bootconsole (that they do not see on the real console) 2722 */ 2723 pr_info("%sconsole [%s%d] enabled\n", 2724 (newcon->flags & CON_BOOT) ? "boot" : "" , 2725 newcon->name, newcon->index); 2726 if (bcon && 2727 ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV) && 2728 !keep_bootcon) { 2729 /* We need to iterate through all boot consoles, to make 2730 * sure we print everything out, before we unregister them. 2731 */ 2732 for_each_console(bcon) 2733 if (bcon->flags & CON_BOOT) 2734 unregister_console(bcon); 2735 } 2736 } 2737 EXPORT_SYMBOL(register_console); 2738 2739 int unregister_console(struct console *console) 2740 { 2741 struct console *a, *b; 2742 int res; 2743 2744 pr_info("%sconsole [%s%d] disabled\n", 2745 (console->flags & CON_BOOT) ? "boot" : "" , 2746 console->name, console->index); 2747 2748 res = _braille_unregister_console(console); 2749 if (res) 2750 return res; 2751 2752 res = 1; 2753 console_lock(); 2754 if (console_drivers == console) { 2755 console_drivers=console->next; 2756 res = 0; 2757 } else if (console_drivers) { 2758 for (a=console_drivers->next, b=console_drivers ; 2759 a; b=a, a=b->next) { 2760 if (a == console) { 2761 b->next = a->next; 2762 res = 0; 2763 break; 2764 } 2765 } 2766 } 2767 2768 if (!res && (console->flags & CON_EXTENDED)) 2769 nr_ext_console_drivers--; 2770 2771 /* 2772 * If this isn't the last console and it has CON_CONSDEV set, we 2773 * need to set it on the next preferred console. 2774 */ 2775 if (console_drivers != NULL && console->flags & CON_CONSDEV) 2776 console_drivers->flags |= CON_CONSDEV; 2777 2778 console->flags &= ~CON_ENABLED; 2779 console_unlock(); 2780 console_sysfs_notify(); 2781 return res; 2782 } 2783 EXPORT_SYMBOL(unregister_console); 2784 2785 /* 2786 * Initialize the console device. This is called *early*, so 2787 * we can't necessarily depend on lots of kernel help here. 2788 * Just do some early initializations, and do the complex setup 2789 * later. 2790 */ 2791 void __init console_init(void) 2792 { 2793 int ret; 2794 initcall_t call; 2795 initcall_entry_t *ce; 2796 2797 /* Setup the default TTY line discipline. */ 2798 n_tty_init(); 2799 2800 /* 2801 * set up the console device so that later boot sequences can 2802 * inform about problems etc.. 2803 */ 2804 ce = __con_initcall_start; 2805 trace_initcall_level("console"); 2806 while (ce < __con_initcall_end) { 2807 call = initcall_from_entry(ce); 2808 trace_initcall_start(call); 2809 ret = call(); 2810 trace_initcall_finish(call, ret); 2811 ce++; 2812 } 2813 } 2814 2815 /* 2816 * Some boot consoles access data that is in the init section and which will 2817 * be discarded after the initcalls have been run. To make sure that no code 2818 * will access this data, unregister the boot consoles in a late initcall. 2819 * 2820 * If for some reason, such as deferred probe or the driver being a loadable 2821 * module, the real console hasn't registered yet at this point, there will 2822 * be a brief interval in which no messages are logged to the console, which 2823 * makes it difficult to diagnose problems that occur during this time. 2824 * 2825 * To mitigate this problem somewhat, only unregister consoles whose memory 2826 * intersects with the init section. Note that all other boot consoles will 2827 * get unregistred when the real preferred console is registered. 2828 */ 2829 static int __init printk_late_init(void) 2830 { 2831 struct console *con; 2832 int ret; 2833 2834 for_each_console(con) { 2835 if (!(con->flags & CON_BOOT)) 2836 continue; 2837 2838 /* Check addresses that might be used for enabled consoles. */ 2839 if (init_section_intersects(con, sizeof(*con)) || 2840 init_section_contains(con->write, 0) || 2841 init_section_contains(con->read, 0) || 2842 init_section_contains(con->device, 0) || 2843 init_section_contains(con->unblank, 0) || 2844 init_section_contains(con->data, 0)) { 2845 /* 2846 * Please, consider moving the reported consoles out 2847 * of the init section. 2848 */ 2849 pr_warn("bootconsole [%s%d] uses init memory and must be disabled even before the real one is ready\n", 2850 con->name, con->index); 2851 unregister_console(con); 2852 } 2853 } 2854 ret = cpuhp_setup_state_nocalls(CPUHP_PRINTK_DEAD, "printk:dead", NULL, 2855 console_cpu_notify); 2856 WARN_ON(ret < 0); 2857 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "printk:online", 2858 console_cpu_notify, NULL); 2859 WARN_ON(ret < 0); 2860 return 0; 2861 } 2862 late_initcall(printk_late_init); 2863 2864 #if defined CONFIG_PRINTK 2865 /* 2866 * Delayed printk version, for scheduler-internal messages: 2867 */ 2868 #define PRINTK_PENDING_WAKEUP 0x01 2869 #define PRINTK_PENDING_OUTPUT 0x02 2870 2871 static DEFINE_PER_CPU(int, printk_pending); 2872 2873 static void wake_up_klogd_work_func(struct irq_work *irq_work) 2874 { 2875 int pending = __this_cpu_xchg(printk_pending, 0); 2876 2877 if (pending & PRINTK_PENDING_OUTPUT) { 2878 /* If trylock fails, someone else is doing the printing */ 2879 if (console_trylock()) 2880 console_unlock(); 2881 } 2882 2883 if (pending & PRINTK_PENDING_WAKEUP) 2884 wake_up_interruptible(&log_wait); 2885 } 2886 2887 static DEFINE_PER_CPU(struct irq_work, wake_up_klogd_work) = { 2888 .func = wake_up_klogd_work_func, 2889 .flags = IRQ_WORK_LAZY, 2890 }; 2891 2892 void wake_up_klogd(void) 2893 { 2894 preempt_disable(); 2895 if (waitqueue_active(&log_wait)) { 2896 this_cpu_or(printk_pending, PRINTK_PENDING_WAKEUP); 2897 irq_work_queue(this_cpu_ptr(&wake_up_klogd_work)); 2898 } 2899 preempt_enable(); 2900 } 2901 2902 void defer_console_output(void) 2903 { 2904 preempt_disable(); 2905 __this_cpu_or(printk_pending, PRINTK_PENDING_OUTPUT); 2906 irq_work_queue(this_cpu_ptr(&wake_up_klogd_work)); 2907 preempt_enable(); 2908 } 2909 2910 int vprintk_deferred(const char *fmt, va_list args) 2911 { 2912 int r; 2913 2914 r = vprintk_emit(0, LOGLEVEL_SCHED, NULL, 0, fmt, args); 2915 defer_console_output(); 2916 2917 return r; 2918 } 2919 2920 int printk_deferred(const char *fmt, ...) 2921 { 2922 va_list args; 2923 int r; 2924 2925 va_start(args, fmt); 2926 r = vprintk_deferred(fmt, args); 2927 va_end(args); 2928 2929 return r; 2930 } 2931 2932 /* 2933 * printk rate limiting, lifted from the networking subsystem. 2934 * 2935 * This enforces a rate limit: not more than 10 kernel messages 2936 * every 5s to make a denial-of-service attack impossible. 2937 */ 2938 DEFINE_RATELIMIT_STATE(printk_ratelimit_state, 5 * HZ, 10); 2939 2940 int __printk_ratelimit(const char *func) 2941 { 2942 return ___ratelimit(&printk_ratelimit_state, func); 2943 } 2944 EXPORT_SYMBOL(__printk_ratelimit); 2945 2946 /** 2947 * printk_timed_ratelimit - caller-controlled printk ratelimiting 2948 * @caller_jiffies: pointer to caller's state 2949 * @interval_msecs: minimum interval between prints 2950 * 2951 * printk_timed_ratelimit() returns true if more than @interval_msecs 2952 * milliseconds have elapsed since the last time printk_timed_ratelimit() 2953 * returned true. 2954 */ 2955 bool printk_timed_ratelimit(unsigned long *caller_jiffies, 2956 unsigned int interval_msecs) 2957 { 2958 unsigned long elapsed = jiffies - *caller_jiffies; 2959 2960 if (*caller_jiffies && elapsed <= msecs_to_jiffies(interval_msecs)) 2961 return false; 2962 2963 *caller_jiffies = jiffies; 2964 return true; 2965 } 2966 EXPORT_SYMBOL(printk_timed_ratelimit); 2967 2968 static DEFINE_SPINLOCK(dump_list_lock); 2969 static LIST_HEAD(dump_list); 2970 2971 /** 2972 * kmsg_dump_register - register a kernel log dumper. 2973 * @dumper: pointer to the kmsg_dumper structure 2974 * 2975 * Adds a kernel log dumper to the system. The dump callback in the 2976 * structure will be called when the kernel oopses or panics and must be 2977 * set. Returns zero on success and %-EINVAL or %-EBUSY otherwise. 2978 */ 2979 int kmsg_dump_register(struct kmsg_dumper *dumper) 2980 { 2981 unsigned long flags; 2982 int err = -EBUSY; 2983 2984 /* The dump callback needs to be set */ 2985 if (!dumper->dump) 2986 return -EINVAL; 2987 2988 spin_lock_irqsave(&dump_list_lock, flags); 2989 /* Don't allow registering multiple times */ 2990 if (!dumper->registered) { 2991 dumper->registered = 1; 2992 list_add_tail_rcu(&dumper->list, &dump_list); 2993 err = 0; 2994 } 2995 spin_unlock_irqrestore(&dump_list_lock, flags); 2996 2997 return err; 2998 } 2999 EXPORT_SYMBOL_GPL(kmsg_dump_register); 3000 3001 /** 3002 * kmsg_dump_unregister - unregister a kmsg dumper. 3003 * @dumper: pointer to the kmsg_dumper structure 3004 * 3005 * Removes a dump device from the system. Returns zero on success and 3006 * %-EINVAL otherwise. 3007 */ 3008 int kmsg_dump_unregister(struct kmsg_dumper *dumper) 3009 { 3010 unsigned long flags; 3011 int err = -EINVAL; 3012 3013 spin_lock_irqsave(&dump_list_lock, flags); 3014 if (dumper->registered) { 3015 dumper->registered = 0; 3016 list_del_rcu(&dumper->list); 3017 err = 0; 3018 } 3019 spin_unlock_irqrestore(&dump_list_lock, flags); 3020 synchronize_rcu(); 3021 3022 return err; 3023 } 3024 EXPORT_SYMBOL_GPL(kmsg_dump_unregister); 3025 3026 static bool always_kmsg_dump; 3027 module_param_named(always_kmsg_dump, always_kmsg_dump, bool, S_IRUGO | S_IWUSR); 3028 3029 /** 3030 * kmsg_dump - dump kernel log to kernel message dumpers. 3031 * @reason: the reason (oops, panic etc) for dumping 3032 * 3033 * Call each of the registered dumper's dump() callback, which can 3034 * retrieve the kmsg records with kmsg_dump_get_line() or 3035 * kmsg_dump_get_buffer(). 3036 */ 3037 void kmsg_dump(enum kmsg_dump_reason reason) 3038 { 3039 struct kmsg_dumper *dumper; 3040 unsigned long flags; 3041 3042 if ((reason > KMSG_DUMP_OOPS) && !always_kmsg_dump) 3043 return; 3044 3045 rcu_read_lock(); 3046 list_for_each_entry_rcu(dumper, &dump_list, list) { 3047 if (dumper->max_reason && reason > dumper->max_reason) 3048 continue; 3049 3050 /* initialize iterator with data about the stored records */ 3051 dumper->active = true; 3052 3053 logbuf_lock_irqsave(flags); 3054 dumper->cur_seq = clear_seq; 3055 dumper->cur_idx = clear_idx; 3056 dumper->next_seq = log_next_seq; 3057 dumper->next_idx = log_next_idx; 3058 logbuf_unlock_irqrestore(flags); 3059 3060 /* invoke dumper which will iterate over records */ 3061 dumper->dump(dumper, reason); 3062 3063 /* reset iterator */ 3064 dumper->active = false; 3065 } 3066 rcu_read_unlock(); 3067 } 3068 3069 /** 3070 * kmsg_dump_get_line_nolock - retrieve one kmsg log line (unlocked version) 3071 * @dumper: registered kmsg dumper 3072 * @syslog: include the "<4>" prefixes 3073 * @line: buffer to copy the line to 3074 * @size: maximum size of the buffer 3075 * @len: length of line placed into buffer 3076 * 3077 * Start at the beginning of the kmsg buffer, with the oldest kmsg 3078 * record, and copy one record into the provided buffer. 3079 * 3080 * Consecutive calls will return the next available record moving 3081 * towards the end of the buffer with the youngest messages. 3082 * 3083 * A return value of FALSE indicates that there are no more records to 3084 * read. 3085 * 3086 * The function is similar to kmsg_dump_get_line(), but grabs no locks. 3087 */ 3088 bool kmsg_dump_get_line_nolock(struct kmsg_dumper *dumper, bool syslog, 3089 char *line, size_t size, size_t *len) 3090 { 3091 struct printk_log *msg; 3092 size_t l = 0; 3093 bool ret = false; 3094 3095 if (!dumper->active) 3096 goto out; 3097 3098 if (dumper->cur_seq < log_first_seq) { 3099 /* messages are gone, move to first available one */ 3100 dumper->cur_seq = log_first_seq; 3101 dumper->cur_idx = log_first_idx; 3102 } 3103 3104 /* last entry */ 3105 if (dumper->cur_seq >= log_next_seq) 3106 goto out; 3107 3108 msg = log_from_idx(dumper->cur_idx); 3109 l = msg_print_text(msg, syslog, printk_time, line, size); 3110 3111 dumper->cur_idx = log_next(dumper->cur_idx); 3112 dumper->cur_seq++; 3113 ret = true; 3114 out: 3115 if (len) 3116 *len = l; 3117 return ret; 3118 } 3119 3120 /** 3121 * kmsg_dump_get_line - retrieve one kmsg log line 3122 * @dumper: registered kmsg dumper 3123 * @syslog: include the "<4>" prefixes 3124 * @line: buffer to copy the line to 3125 * @size: maximum size of the buffer 3126 * @len: length of line placed into buffer 3127 * 3128 * Start at the beginning of the kmsg buffer, with the oldest kmsg 3129 * record, and copy one record into the provided buffer. 3130 * 3131 * Consecutive calls will return the next available record moving 3132 * towards the end of the buffer with the youngest messages. 3133 * 3134 * A return value of FALSE indicates that there are no more records to 3135 * read. 3136 */ 3137 bool kmsg_dump_get_line(struct kmsg_dumper *dumper, bool syslog, 3138 char *line, size_t size, size_t *len) 3139 { 3140 unsigned long flags; 3141 bool ret; 3142 3143 logbuf_lock_irqsave(flags); 3144 ret = kmsg_dump_get_line_nolock(dumper, syslog, line, size, len); 3145 logbuf_unlock_irqrestore(flags); 3146 3147 return ret; 3148 } 3149 EXPORT_SYMBOL_GPL(kmsg_dump_get_line); 3150 3151 /** 3152 * kmsg_dump_get_buffer - copy kmsg log lines 3153 * @dumper: registered kmsg dumper 3154 * @syslog: include the "<4>" prefixes 3155 * @buf: buffer to copy the line to 3156 * @size: maximum size of the buffer 3157 * @len: length of line placed into buffer 3158 * 3159 * Start at the end of the kmsg buffer and fill the provided buffer 3160 * with as many of the the *youngest* kmsg records that fit into it. 3161 * If the buffer is large enough, all available kmsg records will be 3162 * copied with a single call. 3163 * 3164 * Consecutive calls will fill the buffer with the next block of 3165 * available older records, not including the earlier retrieved ones. 3166 * 3167 * A return value of FALSE indicates that there are no more records to 3168 * read. 3169 */ 3170 bool kmsg_dump_get_buffer(struct kmsg_dumper *dumper, bool syslog, 3171 char *buf, size_t size, size_t *len) 3172 { 3173 unsigned long flags; 3174 u64 seq; 3175 u32 idx; 3176 u64 next_seq; 3177 u32 next_idx; 3178 size_t l = 0; 3179 bool ret = false; 3180 bool time = printk_time; 3181 3182 if (!dumper->active) 3183 goto out; 3184 3185 logbuf_lock_irqsave(flags); 3186 if (dumper->cur_seq < log_first_seq) { 3187 /* messages are gone, move to first available one */ 3188 dumper->cur_seq = log_first_seq; 3189 dumper->cur_idx = log_first_idx; 3190 } 3191 3192 /* last entry */ 3193 if (dumper->cur_seq >= dumper->next_seq) { 3194 logbuf_unlock_irqrestore(flags); 3195 goto out; 3196 } 3197 3198 /* calculate length of entire buffer */ 3199 seq = dumper->cur_seq; 3200 idx = dumper->cur_idx; 3201 while (seq < dumper->next_seq) { 3202 struct printk_log *msg = log_from_idx(idx); 3203 3204 l += msg_print_text(msg, true, time, NULL, 0); 3205 idx = log_next(idx); 3206 seq++; 3207 } 3208 3209 /* move first record forward until length fits into the buffer */ 3210 seq = dumper->cur_seq; 3211 idx = dumper->cur_idx; 3212 while (l > size && seq < dumper->next_seq) { 3213 struct printk_log *msg = log_from_idx(idx); 3214 3215 l -= msg_print_text(msg, true, time, NULL, 0); 3216 idx = log_next(idx); 3217 seq++; 3218 } 3219 3220 /* last message in next interation */ 3221 next_seq = seq; 3222 next_idx = idx; 3223 3224 l = 0; 3225 while (seq < dumper->next_seq) { 3226 struct printk_log *msg = log_from_idx(idx); 3227 3228 l += msg_print_text(msg, syslog, time, buf + l, size - l); 3229 idx = log_next(idx); 3230 seq++; 3231 } 3232 3233 dumper->next_seq = next_seq; 3234 dumper->next_idx = next_idx; 3235 ret = true; 3236 logbuf_unlock_irqrestore(flags); 3237 out: 3238 if (len) 3239 *len = l; 3240 return ret; 3241 } 3242 EXPORT_SYMBOL_GPL(kmsg_dump_get_buffer); 3243 3244 /** 3245 * kmsg_dump_rewind_nolock - reset the interator (unlocked version) 3246 * @dumper: registered kmsg dumper 3247 * 3248 * Reset the dumper's iterator so that kmsg_dump_get_line() and 3249 * kmsg_dump_get_buffer() can be called again and used multiple 3250 * times within the same dumper.dump() callback. 3251 * 3252 * The function is similar to kmsg_dump_rewind(), but grabs no locks. 3253 */ 3254 void kmsg_dump_rewind_nolock(struct kmsg_dumper *dumper) 3255 { 3256 dumper->cur_seq = clear_seq; 3257 dumper->cur_idx = clear_idx; 3258 dumper->next_seq = log_next_seq; 3259 dumper->next_idx = log_next_idx; 3260 } 3261 3262 /** 3263 * kmsg_dump_rewind - reset the interator 3264 * @dumper: registered kmsg dumper 3265 * 3266 * Reset the dumper's iterator so that kmsg_dump_get_line() and 3267 * kmsg_dump_get_buffer() can be called again and used multiple 3268 * times within the same dumper.dump() callback. 3269 */ 3270 void kmsg_dump_rewind(struct kmsg_dumper *dumper) 3271 { 3272 unsigned long flags; 3273 3274 logbuf_lock_irqsave(flags); 3275 kmsg_dump_rewind_nolock(dumper); 3276 logbuf_unlock_irqrestore(flags); 3277 } 3278 EXPORT_SYMBOL_GPL(kmsg_dump_rewind); 3279 3280 #endif 3281