xref: /openbmc/linux/kernel/printk/printk.c (revision 53809828)
1 /*
2  *  linux/kernel/printk.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  *
6  * Modified to make sys_syslog() more flexible: added commands to
7  * return the last 4k of kernel messages, regardless of whether
8  * they've been read or not.  Added option to suppress kernel printk's
9  * to the console.  Added hook for sending the console messages
10  * elsewhere, in preparation for a serial line console (someday).
11  * Ted Ts'o, 2/11/93.
12  * Modified for sysctl support, 1/8/97, Chris Horn.
13  * Fixed SMP synchronization, 08/08/99, Manfred Spraul
14  *     manfred@colorfullife.com
15  * Rewrote bits to get rid of console_lock
16  *	01Mar01 Andrew Morton
17  */
18 
19 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
20 
21 #include <linux/kernel.h>
22 #include <linux/mm.h>
23 #include <linux/tty.h>
24 #include <linux/tty_driver.h>
25 #include <linux/console.h>
26 #include <linux/init.h>
27 #include <linux/jiffies.h>
28 #include <linux/nmi.h>
29 #include <linux/module.h>
30 #include <linux/moduleparam.h>
31 #include <linux/delay.h>
32 #include <linux/smp.h>
33 #include <linux/security.h>
34 #include <linux/memblock.h>
35 #include <linux/syscalls.h>
36 #include <linux/crash_core.h>
37 #include <linux/kdb.h>
38 #include <linux/ratelimit.h>
39 #include <linux/kmsg_dump.h>
40 #include <linux/syslog.h>
41 #include <linux/cpu.h>
42 #include <linux/rculist.h>
43 #include <linux/poll.h>
44 #include <linux/irq_work.h>
45 #include <linux/ctype.h>
46 #include <linux/uio.h>
47 #include <linux/sched/clock.h>
48 #include <linux/sched/debug.h>
49 #include <linux/sched/task_stack.h>
50 
51 #include <linux/uaccess.h>
52 #include <asm/sections.h>
53 
54 #include <trace/events/initcall.h>
55 #define CREATE_TRACE_POINTS
56 #include <trace/events/printk.h>
57 
58 #include "console_cmdline.h"
59 #include "braille.h"
60 #include "internal.h"
61 
62 int console_printk[4] = {
63 	CONSOLE_LOGLEVEL_DEFAULT,	/* console_loglevel */
64 	MESSAGE_LOGLEVEL_DEFAULT,	/* default_message_loglevel */
65 	CONSOLE_LOGLEVEL_MIN,		/* minimum_console_loglevel */
66 	CONSOLE_LOGLEVEL_DEFAULT,	/* default_console_loglevel */
67 };
68 
69 atomic_t ignore_console_lock_warning __read_mostly = ATOMIC_INIT(0);
70 EXPORT_SYMBOL(ignore_console_lock_warning);
71 
72 /*
73  * Low level drivers may need that to know if they can schedule in
74  * their unblank() callback or not. So let's export it.
75  */
76 int oops_in_progress;
77 EXPORT_SYMBOL(oops_in_progress);
78 
79 /*
80  * console_sem protects the console_drivers list, and also
81  * provides serialisation for access to the entire console
82  * driver system.
83  */
84 static DEFINE_SEMAPHORE(console_sem);
85 struct console *console_drivers;
86 EXPORT_SYMBOL_GPL(console_drivers);
87 
88 #ifdef CONFIG_LOCKDEP
89 static struct lockdep_map console_lock_dep_map = {
90 	.name = "console_lock"
91 };
92 #endif
93 
94 enum devkmsg_log_bits {
95 	__DEVKMSG_LOG_BIT_ON = 0,
96 	__DEVKMSG_LOG_BIT_OFF,
97 	__DEVKMSG_LOG_BIT_LOCK,
98 };
99 
100 enum devkmsg_log_masks {
101 	DEVKMSG_LOG_MASK_ON             = BIT(__DEVKMSG_LOG_BIT_ON),
102 	DEVKMSG_LOG_MASK_OFF            = BIT(__DEVKMSG_LOG_BIT_OFF),
103 	DEVKMSG_LOG_MASK_LOCK           = BIT(__DEVKMSG_LOG_BIT_LOCK),
104 };
105 
106 /* Keep both the 'on' and 'off' bits clear, i.e. ratelimit by default: */
107 #define DEVKMSG_LOG_MASK_DEFAULT	0
108 
109 static unsigned int __read_mostly devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT;
110 
111 static int __control_devkmsg(char *str)
112 {
113 	if (!str)
114 		return -EINVAL;
115 
116 	if (!strncmp(str, "on", 2)) {
117 		devkmsg_log = DEVKMSG_LOG_MASK_ON;
118 		return 2;
119 	} else if (!strncmp(str, "off", 3)) {
120 		devkmsg_log = DEVKMSG_LOG_MASK_OFF;
121 		return 3;
122 	} else if (!strncmp(str, "ratelimit", 9)) {
123 		devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT;
124 		return 9;
125 	}
126 	return -EINVAL;
127 }
128 
129 static int __init control_devkmsg(char *str)
130 {
131 	if (__control_devkmsg(str) < 0)
132 		return 1;
133 
134 	/*
135 	 * Set sysctl string accordingly:
136 	 */
137 	if (devkmsg_log == DEVKMSG_LOG_MASK_ON)
138 		strcpy(devkmsg_log_str, "on");
139 	else if (devkmsg_log == DEVKMSG_LOG_MASK_OFF)
140 		strcpy(devkmsg_log_str, "off");
141 	/* else "ratelimit" which is set by default. */
142 
143 	/*
144 	 * Sysctl cannot change it anymore. The kernel command line setting of
145 	 * this parameter is to force the setting to be permanent throughout the
146 	 * runtime of the system. This is a precation measure against userspace
147 	 * trying to be a smarta** and attempting to change it up on us.
148 	 */
149 	devkmsg_log |= DEVKMSG_LOG_MASK_LOCK;
150 
151 	return 0;
152 }
153 __setup("printk.devkmsg=", control_devkmsg);
154 
155 char devkmsg_log_str[DEVKMSG_STR_MAX_SIZE] = "ratelimit";
156 
157 int devkmsg_sysctl_set_loglvl(struct ctl_table *table, int write,
158 			      void __user *buffer, size_t *lenp, loff_t *ppos)
159 {
160 	char old_str[DEVKMSG_STR_MAX_SIZE];
161 	unsigned int old;
162 	int err;
163 
164 	if (write) {
165 		if (devkmsg_log & DEVKMSG_LOG_MASK_LOCK)
166 			return -EINVAL;
167 
168 		old = devkmsg_log;
169 		strncpy(old_str, devkmsg_log_str, DEVKMSG_STR_MAX_SIZE);
170 	}
171 
172 	err = proc_dostring(table, write, buffer, lenp, ppos);
173 	if (err)
174 		return err;
175 
176 	if (write) {
177 		err = __control_devkmsg(devkmsg_log_str);
178 
179 		/*
180 		 * Do not accept an unknown string OR a known string with
181 		 * trailing crap...
182 		 */
183 		if (err < 0 || (err + 1 != *lenp)) {
184 
185 			/* ... and restore old setting. */
186 			devkmsg_log = old;
187 			strncpy(devkmsg_log_str, old_str, DEVKMSG_STR_MAX_SIZE);
188 
189 			return -EINVAL;
190 		}
191 	}
192 
193 	return 0;
194 }
195 
196 /* Number of registered extended console drivers. */
197 static int nr_ext_console_drivers;
198 
199 /*
200  * Helper macros to handle lockdep when locking/unlocking console_sem. We use
201  * macros instead of functions so that _RET_IP_ contains useful information.
202  */
203 #define down_console_sem() do { \
204 	down(&console_sem);\
205 	mutex_acquire(&console_lock_dep_map, 0, 0, _RET_IP_);\
206 } while (0)
207 
208 static int __down_trylock_console_sem(unsigned long ip)
209 {
210 	int lock_failed;
211 	unsigned long flags;
212 
213 	/*
214 	 * Here and in __up_console_sem() we need to be in safe mode,
215 	 * because spindump/WARN/etc from under console ->lock will
216 	 * deadlock in printk()->down_trylock_console_sem() otherwise.
217 	 */
218 	printk_safe_enter_irqsave(flags);
219 	lock_failed = down_trylock(&console_sem);
220 	printk_safe_exit_irqrestore(flags);
221 
222 	if (lock_failed)
223 		return 1;
224 	mutex_acquire(&console_lock_dep_map, 0, 1, ip);
225 	return 0;
226 }
227 #define down_trylock_console_sem() __down_trylock_console_sem(_RET_IP_)
228 
229 static void __up_console_sem(unsigned long ip)
230 {
231 	unsigned long flags;
232 
233 	mutex_release(&console_lock_dep_map, 1, ip);
234 
235 	printk_safe_enter_irqsave(flags);
236 	up(&console_sem);
237 	printk_safe_exit_irqrestore(flags);
238 }
239 #define up_console_sem() __up_console_sem(_RET_IP_)
240 
241 /*
242  * This is used for debugging the mess that is the VT code by
243  * keeping track if we have the console semaphore held. It's
244  * definitely not the perfect debug tool (we don't know if _WE_
245  * hold it and are racing, but it helps tracking those weird code
246  * paths in the console code where we end up in places I want
247  * locked without the console sempahore held).
248  */
249 static int console_locked, console_suspended;
250 
251 /*
252  * If exclusive_console is non-NULL then only this console is to be printed to.
253  */
254 static struct console *exclusive_console;
255 
256 /*
257  *	Array of consoles built from command line options (console=)
258  */
259 
260 #define MAX_CMDLINECONSOLES 8
261 
262 static struct console_cmdline console_cmdline[MAX_CMDLINECONSOLES];
263 
264 static int preferred_console = -1;
265 int console_set_on_cmdline;
266 EXPORT_SYMBOL(console_set_on_cmdline);
267 
268 /* Flag: console code may call schedule() */
269 static int console_may_schedule;
270 
271 enum con_msg_format_flags {
272 	MSG_FORMAT_DEFAULT	= 0,
273 	MSG_FORMAT_SYSLOG	= (1 << 0),
274 };
275 
276 static int console_msg_format = MSG_FORMAT_DEFAULT;
277 
278 /*
279  * The printk log buffer consists of a chain of concatenated variable
280  * length records. Every record starts with a record header, containing
281  * the overall length of the record.
282  *
283  * The heads to the first and last entry in the buffer, as well as the
284  * sequence numbers of these entries are maintained when messages are
285  * stored.
286  *
287  * If the heads indicate available messages, the length in the header
288  * tells the start next message. A length == 0 for the next message
289  * indicates a wrap-around to the beginning of the buffer.
290  *
291  * Every record carries the monotonic timestamp in microseconds, as well as
292  * the standard userspace syslog level and syslog facility. The usual
293  * kernel messages use LOG_KERN; userspace-injected messages always carry
294  * a matching syslog facility, by default LOG_USER. The origin of every
295  * message can be reliably determined that way.
296  *
297  * The human readable log message directly follows the message header. The
298  * length of the message text is stored in the header, the stored message
299  * is not terminated.
300  *
301  * Optionally, a message can carry a dictionary of properties (key/value pairs),
302  * to provide userspace with a machine-readable message context.
303  *
304  * Examples for well-defined, commonly used property names are:
305  *   DEVICE=b12:8               device identifier
306  *                                b12:8         block dev_t
307  *                                c127:3        char dev_t
308  *                                n8            netdev ifindex
309  *                                +sound:card0  subsystem:devname
310  *   SUBSYSTEM=pci              driver-core subsystem name
311  *
312  * Valid characters in property names are [a-zA-Z0-9.-_]. The plain text value
313  * follows directly after a '=' character. Every property is terminated by
314  * a '\0' character. The last property is not terminated.
315  *
316  * Example of a message structure:
317  *   0000  ff 8f 00 00 00 00 00 00      monotonic time in nsec
318  *   0008  34 00                        record is 52 bytes long
319  *   000a        0b 00                  text is 11 bytes long
320  *   000c              1f 00            dictionary is 23 bytes long
321  *   000e                    03 00      LOG_KERN (facility) LOG_ERR (level)
322  *   0010  69 74 27 73 20 61 20 6c      "it's a l"
323  *         69 6e 65                     "ine"
324  *   001b           44 45 56 49 43      "DEVIC"
325  *         45 3d 62 38 3a 32 00 44      "E=b8:2\0D"
326  *         52 49 56 45 52 3d 62 75      "RIVER=bu"
327  *         67                           "g"
328  *   0032     00 00 00                  padding to next message header
329  *
330  * The 'struct printk_log' buffer header must never be directly exported to
331  * userspace, it is a kernel-private implementation detail that might
332  * need to be changed in the future, when the requirements change.
333  *
334  * /dev/kmsg exports the structured data in the following line format:
335  *   "<level>,<sequnum>,<timestamp>,<contflag>[,additional_values, ... ];<message text>\n"
336  *
337  * Users of the export format should ignore possible additional values
338  * separated by ',', and find the message after the ';' character.
339  *
340  * The optional key/value pairs are attached as continuation lines starting
341  * with a space character and terminated by a newline. All possible
342  * non-prinatable characters are escaped in the "\xff" notation.
343  */
344 
345 enum log_flags {
346 	LOG_NEWLINE	= 2,	/* text ended with a newline */
347 	LOG_PREFIX	= 4,	/* text started with a prefix */
348 	LOG_CONT	= 8,	/* text is a fragment of a continuation line */
349 };
350 
351 struct printk_log {
352 	u64 ts_nsec;		/* timestamp in nanoseconds */
353 	u16 len;		/* length of entire record */
354 	u16 text_len;		/* length of text buffer */
355 	u16 dict_len;		/* length of dictionary buffer */
356 	u8 facility;		/* syslog facility */
357 	u8 flags:5;		/* internal record flags */
358 	u8 level:3;		/* syslog level */
359 }
360 #ifdef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
361 __packed __aligned(4)
362 #endif
363 ;
364 
365 /*
366  * The logbuf_lock protects kmsg buffer, indices, counters.  This can be taken
367  * within the scheduler's rq lock. It must be released before calling
368  * console_unlock() or anything else that might wake up a process.
369  */
370 DEFINE_RAW_SPINLOCK(logbuf_lock);
371 
372 /*
373  * Helper macros to lock/unlock logbuf_lock and switch between
374  * printk-safe/unsafe modes.
375  */
376 #define logbuf_lock_irq()				\
377 	do {						\
378 		printk_safe_enter_irq();		\
379 		raw_spin_lock(&logbuf_lock);		\
380 	} while (0)
381 
382 #define logbuf_unlock_irq()				\
383 	do {						\
384 		raw_spin_unlock(&logbuf_lock);		\
385 		printk_safe_exit_irq();			\
386 	} while (0)
387 
388 #define logbuf_lock_irqsave(flags)			\
389 	do {						\
390 		printk_safe_enter_irqsave(flags);	\
391 		raw_spin_lock(&logbuf_lock);		\
392 	} while (0)
393 
394 #define logbuf_unlock_irqrestore(flags)		\
395 	do {						\
396 		raw_spin_unlock(&logbuf_lock);		\
397 		printk_safe_exit_irqrestore(flags);	\
398 	} while (0)
399 
400 #ifdef CONFIG_PRINTK
401 DECLARE_WAIT_QUEUE_HEAD(log_wait);
402 /* the next printk record to read by syslog(READ) or /proc/kmsg */
403 static u64 syslog_seq;
404 static u32 syslog_idx;
405 static size_t syslog_partial;
406 
407 /* index and sequence number of the first record stored in the buffer */
408 static u64 log_first_seq;
409 static u32 log_first_idx;
410 
411 /* index and sequence number of the next record to store in the buffer */
412 static u64 log_next_seq;
413 static u32 log_next_idx;
414 
415 /* the next printk record to write to the console */
416 static u64 console_seq;
417 static u32 console_idx;
418 static u64 exclusive_console_stop_seq;
419 
420 /* the next printk record to read after the last 'clear' command */
421 static u64 clear_seq;
422 static u32 clear_idx;
423 
424 #define PREFIX_MAX		32
425 #define LOG_LINE_MAX		(1024 - PREFIX_MAX)
426 
427 #define LOG_LEVEL(v)		((v) & 0x07)
428 #define LOG_FACILITY(v)		((v) >> 3 & 0xff)
429 
430 /* record buffer */
431 #define LOG_ALIGN __alignof__(struct printk_log)
432 #define __LOG_BUF_LEN (1 << CONFIG_LOG_BUF_SHIFT)
433 #define LOG_BUF_LEN_MAX (u32)(1 << 31)
434 static char __log_buf[__LOG_BUF_LEN] __aligned(LOG_ALIGN);
435 static char *log_buf = __log_buf;
436 static u32 log_buf_len = __LOG_BUF_LEN;
437 
438 /* Return log buffer address */
439 char *log_buf_addr_get(void)
440 {
441 	return log_buf;
442 }
443 
444 /* Return log buffer size */
445 u32 log_buf_len_get(void)
446 {
447 	return log_buf_len;
448 }
449 
450 /* human readable text of the record */
451 static char *log_text(const struct printk_log *msg)
452 {
453 	return (char *)msg + sizeof(struct printk_log);
454 }
455 
456 /* optional key/value pair dictionary attached to the record */
457 static char *log_dict(const struct printk_log *msg)
458 {
459 	return (char *)msg + sizeof(struct printk_log) + msg->text_len;
460 }
461 
462 /* get record by index; idx must point to valid msg */
463 static struct printk_log *log_from_idx(u32 idx)
464 {
465 	struct printk_log *msg = (struct printk_log *)(log_buf + idx);
466 
467 	/*
468 	 * A length == 0 record is the end of buffer marker. Wrap around and
469 	 * read the message at the start of the buffer.
470 	 */
471 	if (!msg->len)
472 		return (struct printk_log *)log_buf;
473 	return msg;
474 }
475 
476 /* get next record; idx must point to valid msg */
477 static u32 log_next(u32 idx)
478 {
479 	struct printk_log *msg = (struct printk_log *)(log_buf + idx);
480 
481 	/* length == 0 indicates the end of the buffer; wrap */
482 	/*
483 	 * A length == 0 record is the end of buffer marker. Wrap around and
484 	 * read the message at the start of the buffer as *this* one, and
485 	 * return the one after that.
486 	 */
487 	if (!msg->len) {
488 		msg = (struct printk_log *)log_buf;
489 		return msg->len;
490 	}
491 	return idx + msg->len;
492 }
493 
494 /*
495  * Check whether there is enough free space for the given message.
496  *
497  * The same values of first_idx and next_idx mean that the buffer
498  * is either empty or full.
499  *
500  * If the buffer is empty, we must respect the position of the indexes.
501  * They cannot be reset to the beginning of the buffer.
502  */
503 static int logbuf_has_space(u32 msg_size, bool empty)
504 {
505 	u32 free;
506 
507 	if (log_next_idx > log_first_idx || empty)
508 		free = max(log_buf_len - log_next_idx, log_first_idx);
509 	else
510 		free = log_first_idx - log_next_idx;
511 
512 	/*
513 	 * We need space also for an empty header that signalizes wrapping
514 	 * of the buffer.
515 	 */
516 	return free >= msg_size + sizeof(struct printk_log);
517 }
518 
519 static int log_make_free_space(u32 msg_size)
520 {
521 	while (log_first_seq < log_next_seq &&
522 	       !logbuf_has_space(msg_size, false)) {
523 		/* drop old messages until we have enough contiguous space */
524 		log_first_idx = log_next(log_first_idx);
525 		log_first_seq++;
526 	}
527 
528 	if (clear_seq < log_first_seq) {
529 		clear_seq = log_first_seq;
530 		clear_idx = log_first_idx;
531 	}
532 
533 	/* sequence numbers are equal, so the log buffer is empty */
534 	if (logbuf_has_space(msg_size, log_first_seq == log_next_seq))
535 		return 0;
536 
537 	return -ENOMEM;
538 }
539 
540 /* compute the message size including the padding bytes */
541 static u32 msg_used_size(u16 text_len, u16 dict_len, u32 *pad_len)
542 {
543 	u32 size;
544 
545 	size = sizeof(struct printk_log) + text_len + dict_len;
546 	*pad_len = (-size) & (LOG_ALIGN - 1);
547 	size += *pad_len;
548 
549 	return size;
550 }
551 
552 /*
553  * Define how much of the log buffer we could take at maximum. The value
554  * must be greater than two. Note that only half of the buffer is available
555  * when the index points to the middle.
556  */
557 #define MAX_LOG_TAKE_PART 4
558 static const char trunc_msg[] = "<truncated>";
559 
560 static u32 truncate_msg(u16 *text_len, u16 *trunc_msg_len,
561 			u16 *dict_len, u32 *pad_len)
562 {
563 	/*
564 	 * The message should not take the whole buffer. Otherwise, it might
565 	 * get removed too soon.
566 	 */
567 	u32 max_text_len = log_buf_len / MAX_LOG_TAKE_PART;
568 	if (*text_len > max_text_len)
569 		*text_len = max_text_len;
570 	/* enable the warning message */
571 	*trunc_msg_len = strlen(trunc_msg);
572 	/* disable the "dict" completely */
573 	*dict_len = 0;
574 	/* compute the size again, count also the warning message */
575 	return msg_used_size(*text_len + *trunc_msg_len, 0, pad_len);
576 }
577 
578 /* insert record into the buffer, discard old ones, update heads */
579 static int log_store(int facility, int level,
580 		     enum log_flags flags, u64 ts_nsec,
581 		     const char *dict, u16 dict_len,
582 		     const char *text, u16 text_len)
583 {
584 	struct printk_log *msg;
585 	u32 size, pad_len;
586 	u16 trunc_msg_len = 0;
587 
588 	/* number of '\0' padding bytes to next message */
589 	size = msg_used_size(text_len, dict_len, &pad_len);
590 
591 	if (log_make_free_space(size)) {
592 		/* truncate the message if it is too long for empty buffer */
593 		size = truncate_msg(&text_len, &trunc_msg_len,
594 				    &dict_len, &pad_len);
595 		/* survive when the log buffer is too small for trunc_msg */
596 		if (log_make_free_space(size))
597 			return 0;
598 	}
599 
600 	if (log_next_idx + size + sizeof(struct printk_log) > log_buf_len) {
601 		/*
602 		 * This message + an additional empty header does not fit
603 		 * at the end of the buffer. Add an empty header with len == 0
604 		 * to signify a wrap around.
605 		 */
606 		memset(log_buf + log_next_idx, 0, sizeof(struct printk_log));
607 		log_next_idx = 0;
608 	}
609 
610 	/* fill message */
611 	msg = (struct printk_log *)(log_buf + log_next_idx);
612 	memcpy(log_text(msg), text, text_len);
613 	msg->text_len = text_len;
614 	if (trunc_msg_len) {
615 		memcpy(log_text(msg) + text_len, trunc_msg, trunc_msg_len);
616 		msg->text_len += trunc_msg_len;
617 	}
618 	memcpy(log_dict(msg), dict, dict_len);
619 	msg->dict_len = dict_len;
620 	msg->facility = facility;
621 	msg->level = level & 7;
622 	msg->flags = flags & 0x1f;
623 	if (ts_nsec > 0)
624 		msg->ts_nsec = ts_nsec;
625 	else
626 		msg->ts_nsec = local_clock();
627 	memset(log_dict(msg) + dict_len, 0, pad_len);
628 	msg->len = size;
629 
630 	/* insert message */
631 	log_next_idx += msg->len;
632 	log_next_seq++;
633 
634 	return msg->text_len;
635 }
636 
637 int dmesg_restrict = IS_ENABLED(CONFIG_SECURITY_DMESG_RESTRICT);
638 
639 static int syslog_action_restricted(int type)
640 {
641 	if (dmesg_restrict)
642 		return 1;
643 	/*
644 	 * Unless restricted, we allow "read all" and "get buffer size"
645 	 * for everybody.
646 	 */
647 	return type != SYSLOG_ACTION_READ_ALL &&
648 	       type != SYSLOG_ACTION_SIZE_BUFFER;
649 }
650 
651 static int check_syslog_permissions(int type, int source)
652 {
653 	/*
654 	 * If this is from /proc/kmsg and we've already opened it, then we've
655 	 * already done the capabilities checks at open time.
656 	 */
657 	if (source == SYSLOG_FROM_PROC && type != SYSLOG_ACTION_OPEN)
658 		goto ok;
659 
660 	if (syslog_action_restricted(type)) {
661 		if (capable(CAP_SYSLOG))
662 			goto ok;
663 		/*
664 		 * For historical reasons, accept CAP_SYS_ADMIN too, with
665 		 * a warning.
666 		 */
667 		if (capable(CAP_SYS_ADMIN)) {
668 			pr_warn_once("%s (%d): Attempt to access syslog with "
669 				     "CAP_SYS_ADMIN but no CAP_SYSLOG "
670 				     "(deprecated).\n",
671 				 current->comm, task_pid_nr(current));
672 			goto ok;
673 		}
674 		return -EPERM;
675 	}
676 ok:
677 	return security_syslog(type);
678 }
679 
680 static void append_char(char **pp, char *e, char c)
681 {
682 	if (*pp < e)
683 		*(*pp)++ = c;
684 }
685 
686 static ssize_t msg_print_ext_header(char *buf, size_t size,
687 				    struct printk_log *msg, u64 seq)
688 {
689 	u64 ts_usec = msg->ts_nsec;
690 
691 	do_div(ts_usec, 1000);
692 
693 	return scnprintf(buf, size, "%u,%llu,%llu,%c;",
694 		       (msg->facility << 3) | msg->level, seq, ts_usec,
695 		       msg->flags & LOG_CONT ? 'c' : '-');
696 }
697 
698 static ssize_t msg_print_ext_body(char *buf, size_t size,
699 				  char *dict, size_t dict_len,
700 				  char *text, size_t text_len)
701 {
702 	char *p = buf, *e = buf + size;
703 	size_t i;
704 
705 	/* escape non-printable characters */
706 	for (i = 0; i < text_len; i++) {
707 		unsigned char c = text[i];
708 
709 		if (c < ' ' || c >= 127 || c == '\\')
710 			p += scnprintf(p, e - p, "\\x%02x", c);
711 		else
712 			append_char(&p, e, c);
713 	}
714 	append_char(&p, e, '\n');
715 
716 	if (dict_len) {
717 		bool line = true;
718 
719 		for (i = 0; i < dict_len; i++) {
720 			unsigned char c = dict[i];
721 
722 			if (line) {
723 				append_char(&p, e, ' ');
724 				line = false;
725 			}
726 
727 			if (c == '\0') {
728 				append_char(&p, e, '\n');
729 				line = true;
730 				continue;
731 			}
732 
733 			if (c < ' ' || c >= 127 || c == '\\') {
734 				p += scnprintf(p, e - p, "\\x%02x", c);
735 				continue;
736 			}
737 
738 			append_char(&p, e, c);
739 		}
740 		append_char(&p, e, '\n');
741 	}
742 
743 	return p - buf;
744 }
745 
746 /* /dev/kmsg - userspace message inject/listen interface */
747 struct devkmsg_user {
748 	u64 seq;
749 	u32 idx;
750 	struct ratelimit_state rs;
751 	struct mutex lock;
752 	char buf[CONSOLE_EXT_LOG_MAX];
753 };
754 
755 static ssize_t devkmsg_write(struct kiocb *iocb, struct iov_iter *from)
756 {
757 	char *buf, *line;
758 	int level = default_message_loglevel;
759 	int facility = 1;	/* LOG_USER */
760 	struct file *file = iocb->ki_filp;
761 	struct devkmsg_user *user = file->private_data;
762 	size_t len = iov_iter_count(from);
763 	ssize_t ret = len;
764 
765 	if (!user || len > LOG_LINE_MAX)
766 		return -EINVAL;
767 
768 	/* Ignore when user logging is disabled. */
769 	if (devkmsg_log & DEVKMSG_LOG_MASK_OFF)
770 		return len;
771 
772 	/* Ratelimit when not explicitly enabled. */
773 	if (!(devkmsg_log & DEVKMSG_LOG_MASK_ON)) {
774 		if (!___ratelimit(&user->rs, current->comm))
775 			return ret;
776 	}
777 
778 	buf = kmalloc(len+1, GFP_KERNEL);
779 	if (buf == NULL)
780 		return -ENOMEM;
781 
782 	buf[len] = '\0';
783 	if (!copy_from_iter_full(buf, len, from)) {
784 		kfree(buf);
785 		return -EFAULT;
786 	}
787 
788 	/*
789 	 * Extract and skip the syslog prefix <[0-9]*>. Coming from userspace
790 	 * the decimal value represents 32bit, the lower 3 bit are the log
791 	 * level, the rest are the log facility.
792 	 *
793 	 * If no prefix or no userspace facility is specified, we
794 	 * enforce LOG_USER, to be able to reliably distinguish
795 	 * kernel-generated messages from userspace-injected ones.
796 	 */
797 	line = buf;
798 	if (line[0] == '<') {
799 		char *endp = NULL;
800 		unsigned int u;
801 
802 		u = simple_strtoul(line + 1, &endp, 10);
803 		if (endp && endp[0] == '>') {
804 			level = LOG_LEVEL(u);
805 			if (LOG_FACILITY(u) != 0)
806 				facility = LOG_FACILITY(u);
807 			endp++;
808 			len -= endp - line;
809 			line = endp;
810 		}
811 	}
812 
813 	printk_emit(facility, level, NULL, 0, "%s", line);
814 	kfree(buf);
815 	return ret;
816 }
817 
818 static ssize_t devkmsg_read(struct file *file, char __user *buf,
819 			    size_t count, loff_t *ppos)
820 {
821 	struct devkmsg_user *user = file->private_data;
822 	struct printk_log *msg;
823 	size_t len;
824 	ssize_t ret;
825 
826 	if (!user)
827 		return -EBADF;
828 
829 	ret = mutex_lock_interruptible(&user->lock);
830 	if (ret)
831 		return ret;
832 
833 	logbuf_lock_irq();
834 	while (user->seq == log_next_seq) {
835 		if (file->f_flags & O_NONBLOCK) {
836 			ret = -EAGAIN;
837 			logbuf_unlock_irq();
838 			goto out;
839 		}
840 
841 		logbuf_unlock_irq();
842 		ret = wait_event_interruptible(log_wait,
843 					       user->seq != log_next_seq);
844 		if (ret)
845 			goto out;
846 		logbuf_lock_irq();
847 	}
848 
849 	if (user->seq < log_first_seq) {
850 		/* our last seen message is gone, return error and reset */
851 		user->idx = log_first_idx;
852 		user->seq = log_first_seq;
853 		ret = -EPIPE;
854 		logbuf_unlock_irq();
855 		goto out;
856 	}
857 
858 	msg = log_from_idx(user->idx);
859 	len = msg_print_ext_header(user->buf, sizeof(user->buf),
860 				   msg, user->seq);
861 	len += msg_print_ext_body(user->buf + len, sizeof(user->buf) - len,
862 				  log_dict(msg), msg->dict_len,
863 				  log_text(msg), msg->text_len);
864 
865 	user->idx = log_next(user->idx);
866 	user->seq++;
867 	logbuf_unlock_irq();
868 
869 	if (len > count) {
870 		ret = -EINVAL;
871 		goto out;
872 	}
873 
874 	if (copy_to_user(buf, user->buf, len)) {
875 		ret = -EFAULT;
876 		goto out;
877 	}
878 	ret = len;
879 out:
880 	mutex_unlock(&user->lock);
881 	return ret;
882 }
883 
884 static loff_t devkmsg_llseek(struct file *file, loff_t offset, int whence)
885 {
886 	struct devkmsg_user *user = file->private_data;
887 	loff_t ret = 0;
888 
889 	if (!user)
890 		return -EBADF;
891 	if (offset)
892 		return -ESPIPE;
893 
894 	logbuf_lock_irq();
895 	switch (whence) {
896 	case SEEK_SET:
897 		/* the first record */
898 		user->idx = log_first_idx;
899 		user->seq = log_first_seq;
900 		break;
901 	case SEEK_DATA:
902 		/*
903 		 * The first record after the last SYSLOG_ACTION_CLEAR,
904 		 * like issued by 'dmesg -c'. Reading /dev/kmsg itself
905 		 * changes no global state, and does not clear anything.
906 		 */
907 		user->idx = clear_idx;
908 		user->seq = clear_seq;
909 		break;
910 	case SEEK_END:
911 		/* after the last record */
912 		user->idx = log_next_idx;
913 		user->seq = log_next_seq;
914 		break;
915 	default:
916 		ret = -EINVAL;
917 	}
918 	logbuf_unlock_irq();
919 	return ret;
920 }
921 
922 static __poll_t devkmsg_poll(struct file *file, poll_table *wait)
923 {
924 	struct devkmsg_user *user = file->private_data;
925 	__poll_t ret = 0;
926 
927 	if (!user)
928 		return EPOLLERR|EPOLLNVAL;
929 
930 	poll_wait(file, &log_wait, wait);
931 
932 	logbuf_lock_irq();
933 	if (user->seq < log_next_seq) {
934 		/* return error when data has vanished underneath us */
935 		if (user->seq < log_first_seq)
936 			ret = EPOLLIN|EPOLLRDNORM|EPOLLERR|EPOLLPRI;
937 		else
938 			ret = EPOLLIN|EPOLLRDNORM;
939 	}
940 	logbuf_unlock_irq();
941 
942 	return ret;
943 }
944 
945 static int devkmsg_open(struct inode *inode, struct file *file)
946 {
947 	struct devkmsg_user *user;
948 	int err;
949 
950 	if (devkmsg_log & DEVKMSG_LOG_MASK_OFF)
951 		return -EPERM;
952 
953 	/* write-only does not need any file context */
954 	if ((file->f_flags & O_ACCMODE) != O_WRONLY) {
955 		err = check_syslog_permissions(SYSLOG_ACTION_READ_ALL,
956 					       SYSLOG_FROM_READER);
957 		if (err)
958 			return err;
959 	}
960 
961 	user = kmalloc(sizeof(struct devkmsg_user), GFP_KERNEL);
962 	if (!user)
963 		return -ENOMEM;
964 
965 	ratelimit_default_init(&user->rs);
966 	ratelimit_set_flags(&user->rs, RATELIMIT_MSG_ON_RELEASE);
967 
968 	mutex_init(&user->lock);
969 
970 	logbuf_lock_irq();
971 	user->idx = log_first_idx;
972 	user->seq = log_first_seq;
973 	logbuf_unlock_irq();
974 
975 	file->private_data = user;
976 	return 0;
977 }
978 
979 static int devkmsg_release(struct inode *inode, struct file *file)
980 {
981 	struct devkmsg_user *user = file->private_data;
982 
983 	if (!user)
984 		return 0;
985 
986 	ratelimit_state_exit(&user->rs);
987 
988 	mutex_destroy(&user->lock);
989 	kfree(user);
990 	return 0;
991 }
992 
993 const struct file_operations kmsg_fops = {
994 	.open = devkmsg_open,
995 	.read = devkmsg_read,
996 	.write_iter = devkmsg_write,
997 	.llseek = devkmsg_llseek,
998 	.poll = devkmsg_poll,
999 	.release = devkmsg_release,
1000 };
1001 
1002 #ifdef CONFIG_CRASH_CORE
1003 /*
1004  * This appends the listed symbols to /proc/vmcore
1005  *
1006  * /proc/vmcore is used by various utilities, like crash and makedumpfile to
1007  * obtain access to symbols that are otherwise very difficult to locate.  These
1008  * symbols are specifically used so that utilities can access and extract the
1009  * dmesg log from a vmcore file after a crash.
1010  */
1011 void log_buf_vmcoreinfo_setup(void)
1012 {
1013 	VMCOREINFO_SYMBOL(log_buf);
1014 	VMCOREINFO_SYMBOL(log_buf_len);
1015 	VMCOREINFO_SYMBOL(log_first_idx);
1016 	VMCOREINFO_SYMBOL(clear_idx);
1017 	VMCOREINFO_SYMBOL(log_next_idx);
1018 	/*
1019 	 * Export struct printk_log size and field offsets. User space tools can
1020 	 * parse it and detect any changes to structure down the line.
1021 	 */
1022 	VMCOREINFO_STRUCT_SIZE(printk_log);
1023 	VMCOREINFO_OFFSET(printk_log, ts_nsec);
1024 	VMCOREINFO_OFFSET(printk_log, len);
1025 	VMCOREINFO_OFFSET(printk_log, text_len);
1026 	VMCOREINFO_OFFSET(printk_log, dict_len);
1027 }
1028 #endif
1029 
1030 /* requested log_buf_len from kernel cmdline */
1031 static unsigned long __initdata new_log_buf_len;
1032 
1033 /* we practice scaling the ring buffer by powers of 2 */
1034 static void __init log_buf_len_update(u64 size)
1035 {
1036 	if (size > (u64)LOG_BUF_LEN_MAX) {
1037 		size = (u64)LOG_BUF_LEN_MAX;
1038 		pr_err("log_buf over 2G is not supported.\n");
1039 	}
1040 
1041 	if (size)
1042 		size = roundup_pow_of_two(size);
1043 	if (size > log_buf_len)
1044 		new_log_buf_len = (unsigned long)size;
1045 }
1046 
1047 /* save requested log_buf_len since it's too early to process it */
1048 static int __init log_buf_len_setup(char *str)
1049 {
1050 	u64 size;
1051 
1052 	if (!str)
1053 		return -EINVAL;
1054 
1055 	size = memparse(str, &str);
1056 
1057 	log_buf_len_update(size);
1058 
1059 	return 0;
1060 }
1061 early_param("log_buf_len", log_buf_len_setup);
1062 
1063 #ifdef CONFIG_SMP
1064 #define __LOG_CPU_MAX_BUF_LEN (1 << CONFIG_LOG_CPU_MAX_BUF_SHIFT)
1065 
1066 static void __init log_buf_add_cpu(void)
1067 {
1068 	unsigned int cpu_extra;
1069 
1070 	/*
1071 	 * archs should set up cpu_possible_bits properly with
1072 	 * set_cpu_possible() after setup_arch() but just in
1073 	 * case lets ensure this is valid.
1074 	 */
1075 	if (num_possible_cpus() == 1)
1076 		return;
1077 
1078 	cpu_extra = (num_possible_cpus() - 1) * __LOG_CPU_MAX_BUF_LEN;
1079 
1080 	/* by default this will only continue through for large > 64 CPUs */
1081 	if (cpu_extra <= __LOG_BUF_LEN / 2)
1082 		return;
1083 
1084 	pr_info("log_buf_len individual max cpu contribution: %d bytes\n",
1085 		__LOG_CPU_MAX_BUF_LEN);
1086 	pr_info("log_buf_len total cpu_extra contributions: %d bytes\n",
1087 		cpu_extra);
1088 	pr_info("log_buf_len min size: %d bytes\n", __LOG_BUF_LEN);
1089 
1090 	log_buf_len_update(cpu_extra + __LOG_BUF_LEN);
1091 }
1092 #else /* !CONFIG_SMP */
1093 static inline void log_buf_add_cpu(void) {}
1094 #endif /* CONFIG_SMP */
1095 
1096 void __init setup_log_buf(int early)
1097 {
1098 	unsigned long flags;
1099 	char *new_log_buf;
1100 	unsigned int free;
1101 
1102 	if (log_buf != __log_buf)
1103 		return;
1104 
1105 	if (!early && !new_log_buf_len)
1106 		log_buf_add_cpu();
1107 
1108 	if (!new_log_buf_len)
1109 		return;
1110 
1111 	if (early) {
1112 		new_log_buf =
1113 			memblock_alloc(new_log_buf_len, LOG_ALIGN);
1114 	} else {
1115 		new_log_buf = memblock_alloc_nopanic(new_log_buf_len,
1116 							  LOG_ALIGN);
1117 	}
1118 
1119 	if (unlikely(!new_log_buf)) {
1120 		pr_err("log_buf_len: %lu bytes not available\n",
1121 			new_log_buf_len);
1122 		return;
1123 	}
1124 
1125 	logbuf_lock_irqsave(flags);
1126 	log_buf_len = new_log_buf_len;
1127 	log_buf = new_log_buf;
1128 	new_log_buf_len = 0;
1129 	free = __LOG_BUF_LEN - log_next_idx;
1130 	memcpy(log_buf, __log_buf, __LOG_BUF_LEN);
1131 	logbuf_unlock_irqrestore(flags);
1132 
1133 	pr_info("log_buf_len: %u bytes\n", log_buf_len);
1134 	pr_info("early log buf free: %u(%u%%)\n",
1135 		free, (free * 100) / __LOG_BUF_LEN);
1136 }
1137 
1138 static bool __read_mostly ignore_loglevel;
1139 
1140 static int __init ignore_loglevel_setup(char *str)
1141 {
1142 	ignore_loglevel = true;
1143 	pr_info("debug: ignoring loglevel setting.\n");
1144 
1145 	return 0;
1146 }
1147 
1148 early_param("ignore_loglevel", ignore_loglevel_setup);
1149 module_param(ignore_loglevel, bool, S_IRUGO | S_IWUSR);
1150 MODULE_PARM_DESC(ignore_loglevel,
1151 		 "ignore loglevel setting (prints all kernel messages to the console)");
1152 
1153 static bool suppress_message_printing(int level)
1154 {
1155 	return (level >= console_loglevel && !ignore_loglevel);
1156 }
1157 
1158 #ifdef CONFIG_BOOT_PRINTK_DELAY
1159 
1160 static int boot_delay; /* msecs delay after each printk during bootup */
1161 static unsigned long long loops_per_msec;	/* based on boot_delay */
1162 
1163 static int __init boot_delay_setup(char *str)
1164 {
1165 	unsigned long lpj;
1166 
1167 	lpj = preset_lpj ? preset_lpj : 1000000;	/* some guess */
1168 	loops_per_msec = (unsigned long long)lpj / 1000 * HZ;
1169 
1170 	get_option(&str, &boot_delay);
1171 	if (boot_delay > 10 * 1000)
1172 		boot_delay = 0;
1173 
1174 	pr_debug("boot_delay: %u, preset_lpj: %ld, lpj: %lu, "
1175 		"HZ: %d, loops_per_msec: %llu\n",
1176 		boot_delay, preset_lpj, lpj, HZ, loops_per_msec);
1177 	return 0;
1178 }
1179 early_param("boot_delay", boot_delay_setup);
1180 
1181 static void boot_delay_msec(int level)
1182 {
1183 	unsigned long long k;
1184 	unsigned long timeout;
1185 
1186 	if ((boot_delay == 0 || system_state >= SYSTEM_RUNNING)
1187 		|| suppress_message_printing(level)) {
1188 		return;
1189 	}
1190 
1191 	k = (unsigned long long)loops_per_msec * boot_delay;
1192 
1193 	timeout = jiffies + msecs_to_jiffies(boot_delay);
1194 	while (k) {
1195 		k--;
1196 		cpu_relax();
1197 		/*
1198 		 * use (volatile) jiffies to prevent
1199 		 * compiler reduction; loop termination via jiffies
1200 		 * is secondary and may or may not happen.
1201 		 */
1202 		if (time_after(jiffies, timeout))
1203 			break;
1204 		touch_nmi_watchdog();
1205 	}
1206 }
1207 #else
1208 static inline void boot_delay_msec(int level)
1209 {
1210 }
1211 #endif
1212 
1213 static bool printk_time = IS_ENABLED(CONFIG_PRINTK_TIME);
1214 module_param_named(time, printk_time, bool, S_IRUGO | S_IWUSR);
1215 
1216 static size_t print_time(u64 ts, char *buf)
1217 {
1218 	unsigned long rem_nsec;
1219 
1220 	if (!printk_time)
1221 		return 0;
1222 
1223 	rem_nsec = do_div(ts, 1000000000);
1224 
1225 	if (!buf)
1226 		return snprintf(NULL, 0, "[%5lu.000000] ", (unsigned long)ts);
1227 
1228 	return sprintf(buf, "[%5lu.%06lu] ",
1229 		       (unsigned long)ts, rem_nsec / 1000);
1230 }
1231 
1232 static size_t print_prefix(const struct printk_log *msg, bool syslog, char *buf)
1233 {
1234 	size_t len = 0;
1235 	unsigned int prefix = (msg->facility << 3) | msg->level;
1236 
1237 	if (syslog) {
1238 		if (buf) {
1239 			len += sprintf(buf, "<%u>", prefix);
1240 		} else {
1241 			len += 3;
1242 			if (prefix > 999)
1243 				len += 3;
1244 			else if (prefix > 99)
1245 				len += 2;
1246 			else if (prefix > 9)
1247 				len++;
1248 		}
1249 	}
1250 
1251 	len += print_time(msg->ts_nsec, buf ? buf + len : NULL);
1252 	return len;
1253 }
1254 
1255 static size_t msg_print_text(const struct printk_log *msg, bool syslog, char *buf, size_t size)
1256 {
1257 	const char *text = log_text(msg);
1258 	size_t text_size = msg->text_len;
1259 	size_t len = 0;
1260 
1261 	do {
1262 		const char *next = memchr(text, '\n', text_size);
1263 		size_t text_len;
1264 
1265 		if (next) {
1266 			text_len = next - text;
1267 			next++;
1268 			text_size -= next - text;
1269 		} else {
1270 			text_len = text_size;
1271 		}
1272 
1273 		if (buf) {
1274 			if (print_prefix(msg, syslog, NULL) +
1275 			    text_len + 1 >= size - len)
1276 				break;
1277 
1278 			len += print_prefix(msg, syslog, buf + len);
1279 			memcpy(buf + len, text, text_len);
1280 			len += text_len;
1281 			buf[len++] = '\n';
1282 		} else {
1283 			/* SYSLOG_ACTION_* buffer size only calculation */
1284 			len += print_prefix(msg, syslog, NULL);
1285 			len += text_len;
1286 			len++;
1287 		}
1288 
1289 		text = next;
1290 	} while (text);
1291 
1292 	return len;
1293 }
1294 
1295 static int syslog_print(char __user *buf, int size)
1296 {
1297 	char *text;
1298 	struct printk_log *msg;
1299 	int len = 0;
1300 
1301 	text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
1302 	if (!text)
1303 		return -ENOMEM;
1304 
1305 	while (size > 0) {
1306 		size_t n;
1307 		size_t skip;
1308 
1309 		logbuf_lock_irq();
1310 		if (syslog_seq < log_first_seq) {
1311 			/* messages are gone, move to first one */
1312 			syslog_seq = log_first_seq;
1313 			syslog_idx = log_first_idx;
1314 			syslog_partial = 0;
1315 		}
1316 		if (syslog_seq == log_next_seq) {
1317 			logbuf_unlock_irq();
1318 			break;
1319 		}
1320 
1321 		skip = syslog_partial;
1322 		msg = log_from_idx(syslog_idx);
1323 		n = msg_print_text(msg, true, text, LOG_LINE_MAX + PREFIX_MAX);
1324 		if (n - syslog_partial <= size) {
1325 			/* message fits into buffer, move forward */
1326 			syslog_idx = log_next(syslog_idx);
1327 			syslog_seq++;
1328 			n -= syslog_partial;
1329 			syslog_partial = 0;
1330 		} else if (!len){
1331 			/* partial read(), remember position */
1332 			n = size;
1333 			syslog_partial += n;
1334 		} else
1335 			n = 0;
1336 		logbuf_unlock_irq();
1337 
1338 		if (!n)
1339 			break;
1340 
1341 		if (copy_to_user(buf, text + skip, n)) {
1342 			if (!len)
1343 				len = -EFAULT;
1344 			break;
1345 		}
1346 
1347 		len += n;
1348 		size -= n;
1349 		buf += n;
1350 	}
1351 
1352 	kfree(text);
1353 	return len;
1354 }
1355 
1356 static int syslog_print_all(char __user *buf, int size, bool clear)
1357 {
1358 	char *text;
1359 	int len = 0;
1360 	u64 next_seq;
1361 	u64 seq;
1362 	u32 idx;
1363 
1364 	text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
1365 	if (!text)
1366 		return -ENOMEM;
1367 
1368 	logbuf_lock_irq();
1369 	/*
1370 	 * Find first record that fits, including all following records,
1371 	 * into the user-provided buffer for this dump.
1372 	 */
1373 	seq = clear_seq;
1374 	idx = clear_idx;
1375 	while (seq < log_next_seq) {
1376 		struct printk_log *msg = log_from_idx(idx);
1377 
1378 		len += msg_print_text(msg, true, NULL, 0);
1379 		idx = log_next(idx);
1380 		seq++;
1381 	}
1382 
1383 	/* move first record forward until length fits into the buffer */
1384 	seq = clear_seq;
1385 	idx = clear_idx;
1386 	while (len > size && seq < log_next_seq) {
1387 		struct printk_log *msg = log_from_idx(idx);
1388 
1389 		len -= msg_print_text(msg, true, NULL, 0);
1390 		idx = log_next(idx);
1391 		seq++;
1392 	}
1393 
1394 	/* last message fitting into this dump */
1395 	next_seq = log_next_seq;
1396 
1397 	len = 0;
1398 	while (len >= 0 && seq < next_seq) {
1399 		struct printk_log *msg = log_from_idx(idx);
1400 		int textlen;
1401 
1402 		textlen = msg_print_text(msg, true, text,
1403 					 LOG_LINE_MAX + PREFIX_MAX);
1404 		if (textlen < 0) {
1405 			len = textlen;
1406 			break;
1407 		}
1408 		idx = log_next(idx);
1409 		seq++;
1410 
1411 		logbuf_unlock_irq();
1412 		if (copy_to_user(buf + len, text, textlen))
1413 			len = -EFAULT;
1414 		else
1415 			len += textlen;
1416 		logbuf_lock_irq();
1417 
1418 		if (seq < log_first_seq) {
1419 			/* messages are gone, move to next one */
1420 			seq = log_first_seq;
1421 			idx = log_first_idx;
1422 		}
1423 	}
1424 
1425 	if (clear) {
1426 		clear_seq = log_next_seq;
1427 		clear_idx = log_next_idx;
1428 	}
1429 	logbuf_unlock_irq();
1430 
1431 	kfree(text);
1432 	return len;
1433 }
1434 
1435 static void syslog_clear(void)
1436 {
1437 	logbuf_lock_irq();
1438 	clear_seq = log_next_seq;
1439 	clear_idx = log_next_idx;
1440 	logbuf_unlock_irq();
1441 }
1442 
1443 int do_syslog(int type, char __user *buf, int len, int source)
1444 {
1445 	bool clear = false;
1446 	static int saved_console_loglevel = LOGLEVEL_DEFAULT;
1447 	int error;
1448 
1449 	error = check_syslog_permissions(type, source);
1450 	if (error)
1451 		return error;
1452 
1453 	switch (type) {
1454 	case SYSLOG_ACTION_CLOSE:	/* Close log */
1455 		break;
1456 	case SYSLOG_ACTION_OPEN:	/* Open log */
1457 		break;
1458 	case SYSLOG_ACTION_READ:	/* Read from log */
1459 		if (!buf || len < 0)
1460 			return -EINVAL;
1461 		if (!len)
1462 			return 0;
1463 		if (!access_ok(VERIFY_WRITE, buf, len))
1464 			return -EFAULT;
1465 		error = wait_event_interruptible(log_wait,
1466 						 syslog_seq != log_next_seq);
1467 		if (error)
1468 			return error;
1469 		error = syslog_print(buf, len);
1470 		break;
1471 	/* Read/clear last kernel messages */
1472 	case SYSLOG_ACTION_READ_CLEAR:
1473 		clear = true;
1474 		/* FALL THRU */
1475 	/* Read last kernel messages */
1476 	case SYSLOG_ACTION_READ_ALL:
1477 		if (!buf || len < 0)
1478 			return -EINVAL;
1479 		if (!len)
1480 			return 0;
1481 		if (!access_ok(VERIFY_WRITE, buf, len))
1482 			return -EFAULT;
1483 		error = syslog_print_all(buf, len, clear);
1484 		break;
1485 	/* Clear ring buffer */
1486 	case SYSLOG_ACTION_CLEAR:
1487 		syslog_clear();
1488 		break;
1489 	/* Disable logging to console */
1490 	case SYSLOG_ACTION_CONSOLE_OFF:
1491 		if (saved_console_loglevel == LOGLEVEL_DEFAULT)
1492 			saved_console_loglevel = console_loglevel;
1493 		console_loglevel = minimum_console_loglevel;
1494 		break;
1495 	/* Enable logging to console */
1496 	case SYSLOG_ACTION_CONSOLE_ON:
1497 		if (saved_console_loglevel != LOGLEVEL_DEFAULT) {
1498 			console_loglevel = saved_console_loglevel;
1499 			saved_console_loglevel = LOGLEVEL_DEFAULT;
1500 		}
1501 		break;
1502 	/* Set level of messages printed to console */
1503 	case SYSLOG_ACTION_CONSOLE_LEVEL:
1504 		if (len < 1 || len > 8)
1505 			return -EINVAL;
1506 		if (len < minimum_console_loglevel)
1507 			len = minimum_console_loglevel;
1508 		console_loglevel = len;
1509 		/* Implicitly re-enable logging to console */
1510 		saved_console_loglevel = LOGLEVEL_DEFAULT;
1511 		break;
1512 	/* Number of chars in the log buffer */
1513 	case SYSLOG_ACTION_SIZE_UNREAD:
1514 		logbuf_lock_irq();
1515 		if (syslog_seq < log_first_seq) {
1516 			/* messages are gone, move to first one */
1517 			syslog_seq = log_first_seq;
1518 			syslog_idx = log_first_idx;
1519 			syslog_partial = 0;
1520 		}
1521 		if (source == SYSLOG_FROM_PROC) {
1522 			/*
1523 			 * Short-cut for poll(/"proc/kmsg") which simply checks
1524 			 * for pending data, not the size; return the count of
1525 			 * records, not the length.
1526 			 */
1527 			error = log_next_seq - syslog_seq;
1528 		} else {
1529 			u64 seq = syslog_seq;
1530 			u32 idx = syslog_idx;
1531 
1532 			while (seq < log_next_seq) {
1533 				struct printk_log *msg = log_from_idx(idx);
1534 
1535 				error += msg_print_text(msg, true, NULL, 0);
1536 				idx = log_next(idx);
1537 				seq++;
1538 			}
1539 			error -= syslog_partial;
1540 		}
1541 		logbuf_unlock_irq();
1542 		break;
1543 	/* Size of the log buffer */
1544 	case SYSLOG_ACTION_SIZE_BUFFER:
1545 		error = log_buf_len;
1546 		break;
1547 	default:
1548 		error = -EINVAL;
1549 		break;
1550 	}
1551 
1552 	return error;
1553 }
1554 
1555 SYSCALL_DEFINE3(syslog, int, type, char __user *, buf, int, len)
1556 {
1557 	return do_syslog(type, buf, len, SYSLOG_FROM_READER);
1558 }
1559 
1560 /*
1561  * Special console_lock variants that help to reduce the risk of soft-lockups.
1562  * They allow to pass console_lock to another printk() call using a busy wait.
1563  */
1564 
1565 #ifdef CONFIG_LOCKDEP
1566 static struct lockdep_map console_owner_dep_map = {
1567 	.name = "console_owner"
1568 };
1569 #endif
1570 
1571 static DEFINE_RAW_SPINLOCK(console_owner_lock);
1572 static struct task_struct *console_owner;
1573 static bool console_waiter;
1574 
1575 /**
1576  * console_lock_spinning_enable - mark beginning of code where another
1577  *	thread might safely busy wait
1578  *
1579  * This basically converts console_lock into a spinlock. This marks
1580  * the section where the console_lock owner can not sleep, because
1581  * there may be a waiter spinning (like a spinlock). Also it must be
1582  * ready to hand over the lock at the end of the section.
1583  */
1584 static void console_lock_spinning_enable(void)
1585 {
1586 	raw_spin_lock(&console_owner_lock);
1587 	console_owner = current;
1588 	raw_spin_unlock(&console_owner_lock);
1589 
1590 	/* The waiter may spin on us after setting console_owner */
1591 	spin_acquire(&console_owner_dep_map, 0, 0, _THIS_IP_);
1592 }
1593 
1594 /**
1595  * console_lock_spinning_disable_and_check - mark end of code where another
1596  *	thread was able to busy wait and check if there is a waiter
1597  *
1598  * This is called at the end of the section where spinning is allowed.
1599  * It has two functions. First, it is a signal that it is no longer
1600  * safe to start busy waiting for the lock. Second, it checks if
1601  * there is a busy waiter and passes the lock rights to her.
1602  *
1603  * Important: Callers lose the lock if there was a busy waiter.
1604  *	They must not touch items synchronized by console_lock
1605  *	in this case.
1606  *
1607  * Return: 1 if the lock rights were passed, 0 otherwise.
1608  */
1609 static int console_lock_spinning_disable_and_check(void)
1610 {
1611 	int waiter;
1612 
1613 	raw_spin_lock(&console_owner_lock);
1614 	waiter = READ_ONCE(console_waiter);
1615 	console_owner = NULL;
1616 	raw_spin_unlock(&console_owner_lock);
1617 
1618 	if (!waiter) {
1619 		spin_release(&console_owner_dep_map, 1, _THIS_IP_);
1620 		return 0;
1621 	}
1622 
1623 	/* The waiter is now free to continue */
1624 	WRITE_ONCE(console_waiter, false);
1625 
1626 	spin_release(&console_owner_dep_map, 1, _THIS_IP_);
1627 
1628 	/*
1629 	 * Hand off console_lock to waiter. The waiter will perform
1630 	 * the up(). After this, the waiter is the console_lock owner.
1631 	 */
1632 	mutex_release(&console_lock_dep_map, 1, _THIS_IP_);
1633 	return 1;
1634 }
1635 
1636 /**
1637  * console_trylock_spinning - try to get console_lock by busy waiting
1638  *
1639  * This allows to busy wait for the console_lock when the current
1640  * owner is running in specially marked sections. It means that
1641  * the current owner is running and cannot reschedule until it
1642  * is ready to lose the lock.
1643  *
1644  * Return: 1 if we got the lock, 0 othrewise
1645  */
1646 static int console_trylock_spinning(void)
1647 {
1648 	struct task_struct *owner = NULL;
1649 	bool waiter;
1650 	bool spin = false;
1651 	unsigned long flags;
1652 
1653 	if (console_trylock())
1654 		return 1;
1655 
1656 	printk_safe_enter_irqsave(flags);
1657 
1658 	raw_spin_lock(&console_owner_lock);
1659 	owner = READ_ONCE(console_owner);
1660 	waiter = READ_ONCE(console_waiter);
1661 	if (!waiter && owner && owner != current) {
1662 		WRITE_ONCE(console_waiter, true);
1663 		spin = true;
1664 	}
1665 	raw_spin_unlock(&console_owner_lock);
1666 
1667 	/*
1668 	 * If there is an active printk() writing to the
1669 	 * consoles, instead of having it write our data too,
1670 	 * see if we can offload that load from the active
1671 	 * printer, and do some printing ourselves.
1672 	 * Go into a spin only if there isn't already a waiter
1673 	 * spinning, and there is an active printer, and
1674 	 * that active printer isn't us (recursive printk?).
1675 	 */
1676 	if (!spin) {
1677 		printk_safe_exit_irqrestore(flags);
1678 		return 0;
1679 	}
1680 
1681 	/* We spin waiting for the owner to release us */
1682 	spin_acquire(&console_owner_dep_map, 0, 0, _THIS_IP_);
1683 	/* Owner will clear console_waiter on hand off */
1684 	while (READ_ONCE(console_waiter))
1685 		cpu_relax();
1686 	spin_release(&console_owner_dep_map, 1, _THIS_IP_);
1687 
1688 	printk_safe_exit_irqrestore(flags);
1689 	/*
1690 	 * The owner passed the console lock to us.
1691 	 * Since we did not spin on console lock, annotate
1692 	 * this as a trylock. Otherwise lockdep will
1693 	 * complain.
1694 	 */
1695 	mutex_acquire(&console_lock_dep_map, 0, 1, _THIS_IP_);
1696 
1697 	return 1;
1698 }
1699 
1700 /*
1701  * Call the console drivers, asking them to write out
1702  * log_buf[start] to log_buf[end - 1].
1703  * The console_lock must be held.
1704  */
1705 static void call_console_drivers(const char *ext_text, size_t ext_len,
1706 				 const char *text, size_t len)
1707 {
1708 	struct console *con;
1709 
1710 	trace_console_rcuidle(text, len);
1711 
1712 	if (!console_drivers)
1713 		return;
1714 
1715 	for_each_console(con) {
1716 		if (exclusive_console && con != exclusive_console)
1717 			continue;
1718 		if (!(con->flags & CON_ENABLED))
1719 			continue;
1720 		if (!con->write)
1721 			continue;
1722 		if (!cpu_online(smp_processor_id()) &&
1723 		    !(con->flags & CON_ANYTIME))
1724 			continue;
1725 		if (con->flags & CON_EXTENDED)
1726 			con->write(con, ext_text, ext_len);
1727 		else
1728 			con->write(con, text, len);
1729 	}
1730 }
1731 
1732 int printk_delay_msec __read_mostly;
1733 
1734 static inline void printk_delay(void)
1735 {
1736 	if (unlikely(printk_delay_msec)) {
1737 		int m = printk_delay_msec;
1738 
1739 		while (m--) {
1740 			mdelay(1);
1741 			touch_nmi_watchdog();
1742 		}
1743 	}
1744 }
1745 
1746 /*
1747  * Continuation lines are buffered, and not committed to the record buffer
1748  * until the line is complete, or a race forces it. The line fragments
1749  * though, are printed immediately to the consoles to ensure everything has
1750  * reached the console in case of a kernel crash.
1751  */
1752 static struct cont {
1753 	char buf[LOG_LINE_MAX];
1754 	size_t len;			/* length == 0 means unused buffer */
1755 	struct task_struct *owner;	/* task of first print*/
1756 	u64 ts_nsec;			/* time of first print */
1757 	u8 level;			/* log level of first message */
1758 	u8 facility;			/* log facility of first message */
1759 	enum log_flags flags;		/* prefix, newline flags */
1760 } cont;
1761 
1762 static void cont_flush(void)
1763 {
1764 	if (cont.len == 0)
1765 		return;
1766 
1767 	log_store(cont.facility, cont.level, cont.flags, cont.ts_nsec,
1768 		  NULL, 0, cont.buf, cont.len);
1769 	cont.len = 0;
1770 }
1771 
1772 static bool cont_add(int facility, int level, enum log_flags flags, const char *text, size_t len)
1773 {
1774 	/* If the line gets too long, split it up in separate records. */
1775 	if (cont.len + len > sizeof(cont.buf)) {
1776 		cont_flush();
1777 		return false;
1778 	}
1779 
1780 	if (!cont.len) {
1781 		cont.facility = facility;
1782 		cont.level = level;
1783 		cont.owner = current;
1784 		cont.ts_nsec = local_clock();
1785 		cont.flags = flags;
1786 	}
1787 
1788 	memcpy(cont.buf + cont.len, text, len);
1789 	cont.len += len;
1790 
1791 	// The original flags come from the first line,
1792 	// but later continuations can add a newline.
1793 	if (flags & LOG_NEWLINE) {
1794 		cont.flags |= LOG_NEWLINE;
1795 		cont_flush();
1796 	}
1797 
1798 	return true;
1799 }
1800 
1801 static size_t log_output(int facility, int level, enum log_flags lflags, const char *dict, size_t dictlen, char *text, size_t text_len)
1802 {
1803 	/*
1804 	 * If an earlier line was buffered, and we're a continuation
1805 	 * write from the same process, try to add it to the buffer.
1806 	 */
1807 	if (cont.len) {
1808 		if (cont.owner == current && (lflags & LOG_CONT)) {
1809 			if (cont_add(facility, level, lflags, text, text_len))
1810 				return text_len;
1811 		}
1812 		/* Otherwise, make sure it's flushed */
1813 		cont_flush();
1814 	}
1815 
1816 	/* Skip empty continuation lines that couldn't be added - they just flush */
1817 	if (!text_len && (lflags & LOG_CONT))
1818 		return 0;
1819 
1820 	/* If it doesn't end in a newline, try to buffer the current line */
1821 	if (!(lflags & LOG_NEWLINE)) {
1822 		if (cont_add(facility, level, lflags, text, text_len))
1823 			return text_len;
1824 	}
1825 
1826 	/* Store it in the record log */
1827 	return log_store(facility, level, lflags, 0, dict, dictlen, text, text_len);
1828 }
1829 
1830 /* Must be called under logbuf_lock. */
1831 int vprintk_store(int facility, int level,
1832 		  const char *dict, size_t dictlen,
1833 		  const char *fmt, va_list args)
1834 {
1835 	static char textbuf[LOG_LINE_MAX];
1836 	char *text = textbuf;
1837 	size_t text_len;
1838 	enum log_flags lflags = 0;
1839 
1840 	/*
1841 	 * The printf needs to come first; we need the syslog
1842 	 * prefix which might be passed-in as a parameter.
1843 	 */
1844 	text_len = vscnprintf(text, sizeof(textbuf), fmt, args);
1845 
1846 	/* mark and strip a trailing newline */
1847 	if (text_len && text[text_len-1] == '\n') {
1848 		text_len--;
1849 		lflags |= LOG_NEWLINE;
1850 	}
1851 
1852 	/* strip kernel syslog prefix and extract log level or control flags */
1853 	if (facility == 0) {
1854 		int kern_level;
1855 
1856 		while ((kern_level = printk_get_level(text)) != 0) {
1857 			switch (kern_level) {
1858 			case '0' ... '7':
1859 				if (level == LOGLEVEL_DEFAULT)
1860 					level = kern_level - '0';
1861 				/* fallthrough */
1862 			case 'd':	/* KERN_DEFAULT */
1863 				lflags |= LOG_PREFIX;
1864 				break;
1865 			case 'c':	/* KERN_CONT */
1866 				lflags |= LOG_CONT;
1867 			}
1868 
1869 			text_len -= 2;
1870 			text += 2;
1871 		}
1872 	}
1873 
1874 	if (level == LOGLEVEL_DEFAULT)
1875 		level = default_message_loglevel;
1876 
1877 	if (dict)
1878 		lflags |= LOG_PREFIX|LOG_NEWLINE;
1879 
1880 	return log_output(facility, level, lflags,
1881 			  dict, dictlen, text, text_len);
1882 }
1883 
1884 asmlinkage int vprintk_emit(int facility, int level,
1885 			    const char *dict, size_t dictlen,
1886 			    const char *fmt, va_list args)
1887 {
1888 	int printed_len;
1889 	bool in_sched = false, pending_output;
1890 	unsigned long flags;
1891 	u64 curr_log_seq;
1892 
1893 	if (level == LOGLEVEL_SCHED) {
1894 		level = LOGLEVEL_DEFAULT;
1895 		in_sched = true;
1896 	}
1897 
1898 	boot_delay_msec(level);
1899 	printk_delay();
1900 
1901 	/* This stops the holder of console_sem just where we want him */
1902 	logbuf_lock_irqsave(flags);
1903 	curr_log_seq = log_next_seq;
1904 	printed_len = vprintk_store(facility, level, dict, dictlen, fmt, args);
1905 	pending_output = (curr_log_seq != log_next_seq);
1906 	logbuf_unlock_irqrestore(flags);
1907 
1908 	/* If called from the scheduler, we can not call up(). */
1909 	if (!in_sched && pending_output) {
1910 		/*
1911 		 * Disable preemption to avoid being preempted while holding
1912 		 * console_sem which would prevent anyone from printing to
1913 		 * console
1914 		 */
1915 		preempt_disable();
1916 		/*
1917 		 * Try to acquire and then immediately release the console
1918 		 * semaphore.  The release will print out buffers and wake up
1919 		 * /dev/kmsg and syslog() users.
1920 		 */
1921 		if (console_trylock_spinning())
1922 			console_unlock();
1923 		preempt_enable();
1924 	}
1925 
1926 	if (pending_output)
1927 		wake_up_klogd();
1928 	return printed_len;
1929 }
1930 EXPORT_SYMBOL(vprintk_emit);
1931 
1932 asmlinkage int vprintk(const char *fmt, va_list args)
1933 {
1934 	return vprintk_func(fmt, args);
1935 }
1936 EXPORT_SYMBOL(vprintk);
1937 
1938 asmlinkage int printk_emit(int facility, int level,
1939 			   const char *dict, size_t dictlen,
1940 			   const char *fmt, ...)
1941 {
1942 	va_list args;
1943 	int r;
1944 
1945 	va_start(args, fmt);
1946 	r = vprintk_emit(facility, level, dict, dictlen, fmt, args);
1947 	va_end(args);
1948 
1949 	return r;
1950 }
1951 EXPORT_SYMBOL(printk_emit);
1952 
1953 int vprintk_default(const char *fmt, va_list args)
1954 {
1955 	int r;
1956 
1957 #ifdef CONFIG_KGDB_KDB
1958 	/* Allow to pass printk() to kdb but avoid a recursion. */
1959 	if (unlikely(kdb_trap_printk && kdb_printf_cpu < 0)) {
1960 		r = vkdb_printf(KDB_MSGSRC_PRINTK, fmt, args);
1961 		return r;
1962 	}
1963 #endif
1964 	r = vprintk_emit(0, LOGLEVEL_DEFAULT, NULL, 0, fmt, args);
1965 
1966 	return r;
1967 }
1968 EXPORT_SYMBOL_GPL(vprintk_default);
1969 
1970 /**
1971  * printk - print a kernel message
1972  * @fmt: format string
1973  *
1974  * This is printk(). It can be called from any context. We want it to work.
1975  *
1976  * We try to grab the console_lock. If we succeed, it's easy - we log the
1977  * output and call the console drivers.  If we fail to get the semaphore, we
1978  * place the output into the log buffer and return. The current holder of
1979  * the console_sem will notice the new output in console_unlock(); and will
1980  * send it to the consoles before releasing the lock.
1981  *
1982  * One effect of this deferred printing is that code which calls printk() and
1983  * then changes console_loglevel may break. This is because console_loglevel
1984  * is inspected when the actual printing occurs.
1985  *
1986  * See also:
1987  * printf(3)
1988  *
1989  * See the vsnprintf() documentation for format string extensions over C99.
1990  */
1991 asmlinkage __visible int printk(const char *fmt, ...)
1992 {
1993 	va_list args;
1994 	int r;
1995 
1996 	va_start(args, fmt);
1997 	r = vprintk_func(fmt, args);
1998 	va_end(args);
1999 
2000 	return r;
2001 }
2002 EXPORT_SYMBOL(printk);
2003 
2004 #else /* CONFIG_PRINTK */
2005 
2006 #define LOG_LINE_MAX		0
2007 #define PREFIX_MAX		0
2008 
2009 static u64 syslog_seq;
2010 static u32 syslog_idx;
2011 static u64 console_seq;
2012 static u32 console_idx;
2013 static u64 exclusive_console_stop_seq;
2014 static u64 log_first_seq;
2015 static u32 log_first_idx;
2016 static u64 log_next_seq;
2017 static char *log_text(const struct printk_log *msg) { return NULL; }
2018 static char *log_dict(const struct printk_log *msg) { return NULL; }
2019 static struct printk_log *log_from_idx(u32 idx) { return NULL; }
2020 static u32 log_next(u32 idx) { return 0; }
2021 static ssize_t msg_print_ext_header(char *buf, size_t size,
2022 				    struct printk_log *msg,
2023 				    u64 seq) { return 0; }
2024 static ssize_t msg_print_ext_body(char *buf, size_t size,
2025 				  char *dict, size_t dict_len,
2026 				  char *text, size_t text_len) { return 0; }
2027 static void console_lock_spinning_enable(void) { }
2028 static int console_lock_spinning_disable_and_check(void) { return 0; }
2029 static void call_console_drivers(const char *ext_text, size_t ext_len,
2030 				 const char *text, size_t len) {}
2031 static size_t msg_print_text(const struct printk_log *msg,
2032 			     bool syslog, char *buf, size_t size) { return 0; }
2033 static bool suppress_message_printing(int level) { return false; }
2034 
2035 #endif /* CONFIG_PRINTK */
2036 
2037 #ifdef CONFIG_EARLY_PRINTK
2038 struct console *early_console;
2039 
2040 asmlinkage __visible void early_printk(const char *fmt, ...)
2041 {
2042 	va_list ap;
2043 	char buf[512];
2044 	int n;
2045 
2046 	if (!early_console)
2047 		return;
2048 
2049 	va_start(ap, fmt);
2050 	n = vscnprintf(buf, sizeof(buf), fmt, ap);
2051 	va_end(ap);
2052 
2053 	early_console->write(early_console, buf, n);
2054 }
2055 #endif
2056 
2057 static int __add_preferred_console(char *name, int idx, char *options,
2058 				   char *brl_options)
2059 {
2060 	struct console_cmdline *c;
2061 	int i;
2062 
2063 	/*
2064 	 *	See if this tty is not yet registered, and
2065 	 *	if we have a slot free.
2066 	 */
2067 	for (i = 0, c = console_cmdline;
2068 	     i < MAX_CMDLINECONSOLES && c->name[0];
2069 	     i++, c++) {
2070 		if (strcmp(c->name, name) == 0 && c->index == idx) {
2071 			if (!brl_options)
2072 				preferred_console = i;
2073 			return 0;
2074 		}
2075 	}
2076 	if (i == MAX_CMDLINECONSOLES)
2077 		return -E2BIG;
2078 	if (!brl_options)
2079 		preferred_console = i;
2080 	strlcpy(c->name, name, sizeof(c->name));
2081 	c->options = options;
2082 	braille_set_options(c, brl_options);
2083 
2084 	c->index = idx;
2085 	return 0;
2086 }
2087 
2088 static int __init console_msg_format_setup(char *str)
2089 {
2090 	if (!strcmp(str, "syslog"))
2091 		console_msg_format = MSG_FORMAT_SYSLOG;
2092 	if (!strcmp(str, "default"))
2093 		console_msg_format = MSG_FORMAT_DEFAULT;
2094 	return 1;
2095 }
2096 __setup("console_msg_format=", console_msg_format_setup);
2097 
2098 /*
2099  * Set up a console.  Called via do_early_param() in init/main.c
2100  * for each "console=" parameter in the boot command line.
2101  */
2102 static int __init console_setup(char *str)
2103 {
2104 	char buf[sizeof(console_cmdline[0].name) + 4]; /* 4 for "ttyS" */
2105 	char *s, *options, *brl_options = NULL;
2106 	int idx;
2107 
2108 	if (_braille_console_setup(&str, &brl_options))
2109 		return 1;
2110 
2111 	/*
2112 	 * Decode str into name, index, options.
2113 	 */
2114 	if (str[0] >= '0' && str[0] <= '9') {
2115 		strcpy(buf, "ttyS");
2116 		strncpy(buf + 4, str, sizeof(buf) - 5);
2117 	} else {
2118 		strncpy(buf, str, sizeof(buf) - 1);
2119 	}
2120 	buf[sizeof(buf) - 1] = 0;
2121 	options = strchr(str, ',');
2122 	if (options)
2123 		*(options++) = 0;
2124 #ifdef __sparc__
2125 	if (!strcmp(str, "ttya"))
2126 		strcpy(buf, "ttyS0");
2127 	if (!strcmp(str, "ttyb"))
2128 		strcpy(buf, "ttyS1");
2129 #endif
2130 	for (s = buf; *s; s++)
2131 		if (isdigit(*s) || *s == ',')
2132 			break;
2133 	idx = simple_strtoul(s, NULL, 10);
2134 	*s = 0;
2135 
2136 	__add_preferred_console(buf, idx, options, brl_options);
2137 	console_set_on_cmdline = 1;
2138 	return 1;
2139 }
2140 __setup("console=", console_setup);
2141 
2142 /**
2143  * add_preferred_console - add a device to the list of preferred consoles.
2144  * @name: device name
2145  * @idx: device index
2146  * @options: options for this console
2147  *
2148  * The last preferred console added will be used for kernel messages
2149  * and stdin/out/err for init.  Normally this is used by console_setup
2150  * above to handle user-supplied console arguments; however it can also
2151  * be used by arch-specific code either to override the user or more
2152  * commonly to provide a default console (ie from PROM variables) when
2153  * the user has not supplied one.
2154  */
2155 int add_preferred_console(char *name, int idx, char *options)
2156 {
2157 	return __add_preferred_console(name, idx, options, NULL);
2158 }
2159 
2160 bool console_suspend_enabled = true;
2161 EXPORT_SYMBOL(console_suspend_enabled);
2162 
2163 static int __init console_suspend_disable(char *str)
2164 {
2165 	console_suspend_enabled = false;
2166 	return 1;
2167 }
2168 __setup("no_console_suspend", console_suspend_disable);
2169 module_param_named(console_suspend, console_suspend_enabled,
2170 		bool, S_IRUGO | S_IWUSR);
2171 MODULE_PARM_DESC(console_suspend, "suspend console during suspend"
2172 	" and hibernate operations");
2173 
2174 /**
2175  * suspend_console - suspend the console subsystem
2176  *
2177  * This disables printk() while we go into suspend states
2178  */
2179 void suspend_console(void)
2180 {
2181 	if (!console_suspend_enabled)
2182 		return;
2183 	pr_info("Suspending console(s) (use no_console_suspend to debug)\n");
2184 	console_lock();
2185 	console_suspended = 1;
2186 	up_console_sem();
2187 }
2188 
2189 void resume_console(void)
2190 {
2191 	if (!console_suspend_enabled)
2192 		return;
2193 	down_console_sem();
2194 	console_suspended = 0;
2195 	console_unlock();
2196 }
2197 
2198 /**
2199  * console_cpu_notify - print deferred console messages after CPU hotplug
2200  * @cpu: unused
2201  *
2202  * If printk() is called from a CPU that is not online yet, the messages
2203  * will be printed on the console only if there are CON_ANYTIME consoles.
2204  * This function is called when a new CPU comes online (or fails to come
2205  * up) or goes offline.
2206  */
2207 static int console_cpu_notify(unsigned int cpu)
2208 {
2209 	if (!cpuhp_tasks_frozen) {
2210 		/* If trylock fails, someone else is doing the printing */
2211 		if (console_trylock())
2212 			console_unlock();
2213 	}
2214 	return 0;
2215 }
2216 
2217 /**
2218  * console_lock - lock the console system for exclusive use.
2219  *
2220  * Acquires a lock which guarantees that the caller has
2221  * exclusive access to the console system and the console_drivers list.
2222  *
2223  * Can sleep, returns nothing.
2224  */
2225 void console_lock(void)
2226 {
2227 	might_sleep();
2228 
2229 	down_console_sem();
2230 	if (console_suspended)
2231 		return;
2232 	console_locked = 1;
2233 	console_may_schedule = 1;
2234 }
2235 EXPORT_SYMBOL(console_lock);
2236 
2237 /**
2238  * console_trylock - try to lock the console system for exclusive use.
2239  *
2240  * Try to acquire a lock which guarantees that the caller has exclusive
2241  * access to the console system and the console_drivers list.
2242  *
2243  * returns 1 on success, and 0 on failure to acquire the lock.
2244  */
2245 int console_trylock(void)
2246 {
2247 	if (down_trylock_console_sem())
2248 		return 0;
2249 	if (console_suspended) {
2250 		up_console_sem();
2251 		return 0;
2252 	}
2253 	console_locked = 1;
2254 	console_may_schedule = 0;
2255 	return 1;
2256 }
2257 EXPORT_SYMBOL(console_trylock);
2258 
2259 int is_console_locked(void)
2260 {
2261 	return console_locked;
2262 }
2263 EXPORT_SYMBOL(is_console_locked);
2264 
2265 /*
2266  * Check if we have any console that is capable of printing while cpu is
2267  * booting or shutting down. Requires console_sem.
2268  */
2269 static int have_callable_console(void)
2270 {
2271 	struct console *con;
2272 
2273 	for_each_console(con)
2274 		if ((con->flags & CON_ENABLED) &&
2275 				(con->flags & CON_ANYTIME))
2276 			return 1;
2277 
2278 	return 0;
2279 }
2280 
2281 /*
2282  * Can we actually use the console at this time on this cpu?
2283  *
2284  * Console drivers may assume that per-cpu resources have been allocated. So
2285  * unless they're explicitly marked as being able to cope (CON_ANYTIME) don't
2286  * call them until this CPU is officially up.
2287  */
2288 static inline int can_use_console(void)
2289 {
2290 	return cpu_online(raw_smp_processor_id()) || have_callable_console();
2291 }
2292 
2293 /**
2294  * console_unlock - unlock the console system
2295  *
2296  * Releases the console_lock which the caller holds on the console system
2297  * and the console driver list.
2298  *
2299  * While the console_lock was held, console output may have been buffered
2300  * by printk().  If this is the case, console_unlock(); emits
2301  * the output prior to releasing the lock.
2302  *
2303  * If there is output waiting, we wake /dev/kmsg and syslog() users.
2304  *
2305  * console_unlock(); may be called from any context.
2306  */
2307 void console_unlock(void)
2308 {
2309 	static char ext_text[CONSOLE_EXT_LOG_MAX];
2310 	static char text[LOG_LINE_MAX + PREFIX_MAX];
2311 	unsigned long flags;
2312 	bool do_cond_resched, retry;
2313 
2314 	if (console_suspended) {
2315 		up_console_sem();
2316 		return;
2317 	}
2318 
2319 	/*
2320 	 * Console drivers are called with interrupts disabled, so
2321 	 * @console_may_schedule should be cleared before; however, we may
2322 	 * end up dumping a lot of lines, for example, if called from
2323 	 * console registration path, and should invoke cond_resched()
2324 	 * between lines if allowable.  Not doing so can cause a very long
2325 	 * scheduling stall on a slow console leading to RCU stall and
2326 	 * softlockup warnings which exacerbate the issue with more
2327 	 * messages practically incapacitating the system.
2328 	 *
2329 	 * console_trylock() is not able to detect the preemptive
2330 	 * context reliably. Therefore the value must be stored before
2331 	 * and cleared after the the "again" goto label.
2332 	 */
2333 	do_cond_resched = console_may_schedule;
2334 again:
2335 	console_may_schedule = 0;
2336 
2337 	/*
2338 	 * We released the console_sem lock, so we need to recheck if
2339 	 * cpu is online and (if not) is there at least one CON_ANYTIME
2340 	 * console.
2341 	 */
2342 	if (!can_use_console()) {
2343 		console_locked = 0;
2344 		up_console_sem();
2345 		return;
2346 	}
2347 
2348 	for (;;) {
2349 		struct printk_log *msg;
2350 		size_t ext_len = 0;
2351 		size_t len;
2352 
2353 		printk_safe_enter_irqsave(flags);
2354 		raw_spin_lock(&logbuf_lock);
2355 		if (console_seq < log_first_seq) {
2356 			len = sprintf(text,
2357 				      "** %llu printk messages dropped **\n",
2358 				      log_first_seq - console_seq);
2359 
2360 			/* messages are gone, move to first one */
2361 			console_seq = log_first_seq;
2362 			console_idx = log_first_idx;
2363 		} else {
2364 			len = 0;
2365 		}
2366 skip:
2367 		if (console_seq == log_next_seq)
2368 			break;
2369 
2370 		msg = log_from_idx(console_idx);
2371 		if (suppress_message_printing(msg->level)) {
2372 			/*
2373 			 * Skip record we have buffered and already printed
2374 			 * directly to the console when we received it, and
2375 			 * record that has level above the console loglevel.
2376 			 */
2377 			console_idx = log_next(console_idx);
2378 			console_seq++;
2379 			goto skip;
2380 		}
2381 
2382 		/* Output to all consoles once old messages replayed. */
2383 		if (unlikely(exclusive_console &&
2384 			     console_seq >= exclusive_console_stop_seq)) {
2385 			exclusive_console = NULL;
2386 		}
2387 
2388 		len += msg_print_text(msg,
2389 				console_msg_format & MSG_FORMAT_SYSLOG,
2390 				text + len,
2391 				sizeof(text) - len);
2392 		if (nr_ext_console_drivers) {
2393 			ext_len = msg_print_ext_header(ext_text,
2394 						sizeof(ext_text),
2395 						msg, console_seq);
2396 			ext_len += msg_print_ext_body(ext_text + ext_len,
2397 						sizeof(ext_text) - ext_len,
2398 						log_dict(msg), msg->dict_len,
2399 						log_text(msg), msg->text_len);
2400 		}
2401 		console_idx = log_next(console_idx);
2402 		console_seq++;
2403 		raw_spin_unlock(&logbuf_lock);
2404 
2405 		/*
2406 		 * While actively printing out messages, if another printk()
2407 		 * were to occur on another CPU, it may wait for this one to
2408 		 * finish. This task can not be preempted if there is a
2409 		 * waiter waiting to take over.
2410 		 */
2411 		console_lock_spinning_enable();
2412 
2413 		stop_critical_timings();	/* don't trace print latency */
2414 		call_console_drivers(ext_text, ext_len, text, len);
2415 		start_critical_timings();
2416 
2417 		if (console_lock_spinning_disable_and_check()) {
2418 			printk_safe_exit_irqrestore(flags);
2419 			return;
2420 		}
2421 
2422 		printk_safe_exit_irqrestore(flags);
2423 
2424 		if (do_cond_resched)
2425 			cond_resched();
2426 	}
2427 
2428 	console_locked = 0;
2429 
2430 	raw_spin_unlock(&logbuf_lock);
2431 
2432 	up_console_sem();
2433 
2434 	/*
2435 	 * Someone could have filled up the buffer again, so re-check if there's
2436 	 * something to flush. In case we cannot trylock the console_sem again,
2437 	 * there's a new owner and the console_unlock() from them will do the
2438 	 * flush, no worries.
2439 	 */
2440 	raw_spin_lock(&logbuf_lock);
2441 	retry = console_seq != log_next_seq;
2442 	raw_spin_unlock(&logbuf_lock);
2443 	printk_safe_exit_irqrestore(flags);
2444 
2445 	if (retry && console_trylock())
2446 		goto again;
2447 }
2448 EXPORT_SYMBOL(console_unlock);
2449 
2450 /**
2451  * console_conditional_schedule - yield the CPU if required
2452  *
2453  * If the console code is currently allowed to sleep, and
2454  * if this CPU should yield the CPU to another task, do
2455  * so here.
2456  *
2457  * Must be called within console_lock();.
2458  */
2459 void __sched console_conditional_schedule(void)
2460 {
2461 	if (console_may_schedule)
2462 		cond_resched();
2463 }
2464 EXPORT_SYMBOL(console_conditional_schedule);
2465 
2466 void console_unblank(void)
2467 {
2468 	struct console *c;
2469 
2470 	/*
2471 	 * console_unblank can no longer be called in interrupt context unless
2472 	 * oops_in_progress is set to 1..
2473 	 */
2474 	if (oops_in_progress) {
2475 		if (down_trylock_console_sem() != 0)
2476 			return;
2477 	} else
2478 		console_lock();
2479 
2480 	console_locked = 1;
2481 	console_may_schedule = 0;
2482 	for_each_console(c)
2483 		if ((c->flags & CON_ENABLED) && c->unblank)
2484 			c->unblank();
2485 	console_unlock();
2486 }
2487 
2488 /**
2489  * console_flush_on_panic - flush console content on panic
2490  *
2491  * Immediately output all pending messages no matter what.
2492  */
2493 void console_flush_on_panic(void)
2494 {
2495 	/*
2496 	 * If someone else is holding the console lock, trylock will fail
2497 	 * and may_schedule may be set.  Ignore and proceed to unlock so
2498 	 * that messages are flushed out.  As this can be called from any
2499 	 * context and we don't want to get preempted while flushing,
2500 	 * ensure may_schedule is cleared.
2501 	 */
2502 	console_trylock();
2503 	console_may_schedule = 0;
2504 	console_unlock();
2505 }
2506 
2507 /*
2508  * Return the console tty driver structure and its associated index
2509  */
2510 struct tty_driver *console_device(int *index)
2511 {
2512 	struct console *c;
2513 	struct tty_driver *driver = NULL;
2514 
2515 	console_lock();
2516 	for_each_console(c) {
2517 		if (!c->device)
2518 			continue;
2519 		driver = c->device(c, index);
2520 		if (driver)
2521 			break;
2522 	}
2523 	console_unlock();
2524 	return driver;
2525 }
2526 
2527 /*
2528  * Prevent further output on the passed console device so that (for example)
2529  * serial drivers can disable console output before suspending a port, and can
2530  * re-enable output afterwards.
2531  */
2532 void console_stop(struct console *console)
2533 {
2534 	console_lock();
2535 	console->flags &= ~CON_ENABLED;
2536 	console_unlock();
2537 }
2538 EXPORT_SYMBOL(console_stop);
2539 
2540 void console_start(struct console *console)
2541 {
2542 	console_lock();
2543 	console->flags |= CON_ENABLED;
2544 	console_unlock();
2545 }
2546 EXPORT_SYMBOL(console_start);
2547 
2548 static int __read_mostly keep_bootcon;
2549 
2550 static int __init keep_bootcon_setup(char *str)
2551 {
2552 	keep_bootcon = 1;
2553 	pr_info("debug: skip boot console de-registration.\n");
2554 
2555 	return 0;
2556 }
2557 
2558 early_param("keep_bootcon", keep_bootcon_setup);
2559 
2560 /*
2561  * The console driver calls this routine during kernel initialization
2562  * to register the console printing procedure with printk() and to
2563  * print any messages that were printed by the kernel before the
2564  * console driver was initialized.
2565  *
2566  * This can happen pretty early during the boot process (because of
2567  * early_printk) - sometimes before setup_arch() completes - be careful
2568  * of what kernel features are used - they may not be initialised yet.
2569  *
2570  * There are two types of consoles - bootconsoles (early_printk) and
2571  * "real" consoles (everything which is not a bootconsole) which are
2572  * handled differently.
2573  *  - Any number of bootconsoles can be registered at any time.
2574  *  - As soon as a "real" console is registered, all bootconsoles
2575  *    will be unregistered automatically.
2576  *  - Once a "real" console is registered, any attempt to register a
2577  *    bootconsoles will be rejected
2578  */
2579 void register_console(struct console *newcon)
2580 {
2581 	int i;
2582 	unsigned long flags;
2583 	struct console *bcon = NULL;
2584 	struct console_cmdline *c;
2585 	static bool has_preferred;
2586 
2587 	if (console_drivers)
2588 		for_each_console(bcon)
2589 			if (WARN(bcon == newcon,
2590 					"console '%s%d' already registered\n",
2591 					bcon->name, bcon->index))
2592 				return;
2593 
2594 	/*
2595 	 * before we register a new CON_BOOT console, make sure we don't
2596 	 * already have a valid console
2597 	 */
2598 	if (console_drivers && newcon->flags & CON_BOOT) {
2599 		/* find the last or real console */
2600 		for_each_console(bcon) {
2601 			if (!(bcon->flags & CON_BOOT)) {
2602 				pr_info("Too late to register bootconsole %s%d\n",
2603 					newcon->name, newcon->index);
2604 				return;
2605 			}
2606 		}
2607 	}
2608 
2609 	if (console_drivers && console_drivers->flags & CON_BOOT)
2610 		bcon = console_drivers;
2611 
2612 	if (!has_preferred || bcon || !console_drivers)
2613 		has_preferred = preferred_console >= 0;
2614 
2615 	/*
2616 	 *	See if we want to use this console driver. If we
2617 	 *	didn't select a console we take the first one
2618 	 *	that registers here.
2619 	 */
2620 	if (!has_preferred) {
2621 		if (newcon->index < 0)
2622 			newcon->index = 0;
2623 		if (newcon->setup == NULL ||
2624 		    newcon->setup(newcon, NULL) == 0) {
2625 			newcon->flags |= CON_ENABLED;
2626 			if (newcon->device) {
2627 				newcon->flags |= CON_CONSDEV;
2628 				has_preferred = true;
2629 			}
2630 		}
2631 	}
2632 
2633 	/*
2634 	 *	See if this console matches one we selected on
2635 	 *	the command line.
2636 	 */
2637 	for (i = 0, c = console_cmdline;
2638 	     i < MAX_CMDLINECONSOLES && c->name[0];
2639 	     i++, c++) {
2640 		if (!newcon->match ||
2641 		    newcon->match(newcon, c->name, c->index, c->options) != 0) {
2642 			/* default matching */
2643 			BUILD_BUG_ON(sizeof(c->name) != sizeof(newcon->name));
2644 			if (strcmp(c->name, newcon->name) != 0)
2645 				continue;
2646 			if (newcon->index >= 0 &&
2647 			    newcon->index != c->index)
2648 				continue;
2649 			if (newcon->index < 0)
2650 				newcon->index = c->index;
2651 
2652 			if (_braille_register_console(newcon, c))
2653 				return;
2654 
2655 			if (newcon->setup &&
2656 			    newcon->setup(newcon, c->options) != 0)
2657 				break;
2658 		}
2659 
2660 		newcon->flags |= CON_ENABLED;
2661 		if (i == preferred_console) {
2662 			newcon->flags |= CON_CONSDEV;
2663 			has_preferred = true;
2664 		}
2665 		break;
2666 	}
2667 
2668 	if (!(newcon->flags & CON_ENABLED))
2669 		return;
2670 
2671 	/*
2672 	 * If we have a bootconsole, and are switching to a real console,
2673 	 * don't print everything out again, since when the boot console, and
2674 	 * the real console are the same physical device, it's annoying to
2675 	 * see the beginning boot messages twice
2676 	 */
2677 	if (bcon && ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV))
2678 		newcon->flags &= ~CON_PRINTBUFFER;
2679 
2680 	/*
2681 	 *	Put this console in the list - keep the
2682 	 *	preferred driver at the head of the list.
2683 	 */
2684 	console_lock();
2685 	if ((newcon->flags & CON_CONSDEV) || console_drivers == NULL) {
2686 		newcon->next = console_drivers;
2687 		console_drivers = newcon;
2688 		if (newcon->next)
2689 			newcon->next->flags &= ~CON_CONSDEV;
2690 	} else {
2691 		newcon->next = console_drivers->next;
2692 		console_drivers->next = newcon;
2693 	}
2694 
2695 	if (newcon->flags & CON_EXTENDED)
2696 		nr_ext_console_drivers++;
2697 
2698 	if (newcon->flags & CON_PRINTBUFFER) {
2699 		/*
2700 		 * console_unlock(); will print out the buffered messages
2701 		 * for us.
2702 		 */
2703 		logbuf_lock_irqsave(flags);
2704 		console_seq = syslog_seq;
2705 		console_idx = syslog_idx;
2706 		/*
2707 		 * We're about to replay the log buffer.  Only do this to the
2708 		 * just-registered console to avoid excessive message spam to
2709 		 * the already-registered consoles.
2710 		 *
2711 		 * Set exclusive_console with disabled interrupts to reduce
2712 		 * race window with eventual console_flush_on_panic() that
2713 		 * ignores console_lock.
2714 		 */
2715 		exclusive_console = newcon;
2716 		exclusive_console_stop_seq = console_seq;
2717 		logbuf_unlock_irqrestore(flags);
2718 	}
2719 	console_unlock();
2720 	console_sysfs_notify();
2721 
2722 	/*
2723 	 * By unregistering the bootconsoles after we enable the real console
2724 	 * we get the "console xxx enabled" message on all the consoles -
2725 	 * boot consoles, real consoles, etc - this is to ensure that end
2726 	 * users know there might be something in the kernel's log buffer that
2727 	 * went to the bootconsole (that they do not see on the real console)
2728 	 */
2729 	pr_info("%sconsole [%s%d] enabled\n",
2730 		(newcon->flags & CON_BOOT) ? "boot" : "" ,
2731 		newcon->name, newcon->index);
2732 	if (bcon &&
2733 	    ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV) &&
2734 	    !keep_bootcon) {
2735 		/* We need to iterate through all boot consoles, to make
2736 		 * sure we print everything out, before we unregister them.
2737 		 */
2738 		for_each_console(bcon)
2739 			if (bcon->flags & CON_BOOT)
2740 				unregister_console(bcon);
2741 	}
2742 }
2743 EXPORT_SYMBOL(register_console);
2744 
2745 int unregister_console(struct console *console)
2746 {
2747         struct console *a, *b;
2748 	int res;
2749 
2750 	pr_info("%sconsole [%s%d] disabled\n",
2751 		(console->flags & CON_BOOT) ? "boot" : "" ,
2752 		console->name, console->index);
2753 
2754 	res = _braille_unregister_console(console);
2755 	if (res)
2756 		return res;
2757 
2758 	res = 1;
2759 	console_lock();
2760 	if (console_drivers == console) {
2761 		console_drivers=console->next;
2762 		res = 0;
2763 	} else if (console_drivers) {
2764 		for (a=console_drivers->next, b=console_drivers ;
2765 		     a; b=a, a=b->next) {
2766 			if (a == console) {
2767 				b->next = a->next;
2768 				res = 0;
2769 				break;
2770 			}
2771 		}
2772 	}
2773 
2774 	if (!res && (console->flags & CON_EXTENDED))
2775 		nr_ext_console_drivers--;
2776 
2777 	/*
2778 	 * If this isn't the last console and it has CON_CONSDEV set, we
2779 	 * need to set it on the next preferred console.
2780 	 */
2781 	if (console_drivers != NULL && console->flags & CON_CONSDEV)
2782 		console_drivers->flags |= CON_CONSDEV;
2783 
2784 	console->flags &= ~CON_ENABLED;
2785 	console_unlock();
2786 	console_sysfs_notify();
2787 	return res;
2788 }
2789 EXPORT_SYMBOL(unregister_console);
2790 
2791 /*
2792  * Initialize the console device. This is called *early*, so
2793  * we can't necessarily depend on lots of kernel help here.
2794  * Just do some early initializations, and do the complex setup
2795  * later.
2796  */
2797 void __init console_init(void)
2798 {
2799 	int ret;
2800 	initcall_t call;
2801 	initcall_entry_t *ce;
2802 
2803 	/* Setup the default TTY line discipline. */
2804 	n_tty_init();
2805 
2806 	/*
2807 	 * set up the console device so that later boot sequences can
2808 	 * inform about problems etc..
2809 	 */
2810 	ce = __con_initcall_start;
2811 	trace_initcall_level("console");
2812 	while (ce < __con_initcall_end) {
2813 		call = initcall_from_entry(ce);
2814 		trace_initcall_start(call);
2815 		ret = call();
2816 		trace_initcall_finish(call, ret);
2817 		ce++;
2818 	}
2819 }
2820 
2821 /*
2822  * Some boot consoles access data that is in the init section and which will
2823  * be discarded after the initcalls have been run. To make sure that no code
2824  * will access this data, unregister the boot consoles in a late initcall.
2825  *
2826  * If for some reason, such as deferred probe or the driver being a loadable
2827  * module, the real console hasn't registered yet at this point, there will
2828  * be a brief interval in which no messages are logged to the console, which
2829  * makes it difficult to diagnose problems that occur during this time.
2830  *
2831  * To mitigate this problem somewhat, only unregister consoles whose memory
2832  * intersects with the init section. Note that all other boot consoles will
2833  * get unregistred when the real preferred console is registered.
2834  */
2835 static int __init printk_late_init(void)
2836 {
2837 	struct console *con;
2838 	int ret;
2839 
2840 	for_each_console(con) {
2841 		if (!(con->flags & CON_BOOT))
2842 			continue;
2843 
2844 		/* Check addresses that might be used for enabled consoles. */
2845 		if (init_section_intersects(con, sizeof(*con)) ||
2846 		    init_section_contains(con->write, 0) ||
2847 		    init_section_contains(con->read, 0) ||
2848 		    init_section_contains(con->device, 0) ||
2849 		    init_section_contains(con->unblank, 0) ||
2850 		    init_section_contains(con->data, 0)) {
2851 			/*
2852 			 * Please, consider moving the reported consoles out
2853 			 * of the init section.
2854 			 */
2855 			pr_warn("bootconsole [%s%d] uses init memory and must be disabled even before the real one is ready\n",
2856 				con->name, con->index);
2857 			unregister_console(con);
2858 		}
2859 	}
2860 	ret = cpuhp_setup_state_nocalls(CPUHP_PRINTK_DEAD, "printk:dead", NULL,
2861 					console_cpu_notify);
2862 	WARN_ON(ret < 0);
2863 	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "printk:online",
2864 					console_cpu_notify, NULL);
2865 	WARN_ON(ret < 0);
2866 	return 0;
2867 }
2868 late_initcall(printk_late_init);
2869 
2870 #if defined CONFIG_PRINTK
2871 /*
2872  * Delayed printk version, for scheduler-internal messages:
2873  */
2874 #define PRINTK_PENDING_WAKEUP	0x01
2875 #define PRINTK_PENDING_OUTPUT	0x02
2876 
2877 static DEFINE_PER_CPU(int, printk_pending);
2878 
2879 static void wake_up_klogd_work_func(struct irq_work *irq_work)
2880 {
2881 	int pending = __this_cpu_xchg(printk_pending, 0);
2882 
2883 	if (pending & PRINTK_PENDING_OUTPUT) {
2884 		/* If trylock fails, someone else is doing the printing */
2885 		if (console_trylock())
2886 			console_unlock();
2887 	}
2888 
2889 	if (pending & PRINTK_PENDING_WAKEUP)
2890 		wake_up_interruptible(&log_wait);
2891 }
2892 
2893 static DEFINE_PER_CPU(struct irq_work, wake_up_klogd_work) = {
2894 	.func = wake_up_klogd_work_func,
2895 	.flags = IRQ_WORK_LAZY,
2896 };
2897 
2898 void wake_up_klogd(void)
2899 {
2900 	preempt_disable();
2901 	if (waitqueue_active(&log_wait)) {
2902 		this_cpu_or(printk_pending, PRINTK_PENDING_WAKEUP);
2903 		irq_work_queue(this_cpu_ptr(&wake_up_klogd_work));
2904 	}
2905 	preempt_enable();
2906 }
2907 
2908 void defer_console_output(void)
2909 {
2910 	preempt_disable();
2911 	__this_cpu_or(printk_pending, PRINTK_PENDING_OUTPUT);
2912 	irq_work_queue(this_cpu_ptr(&wake_up_klogd_work));
2913 	preempt_enable();
2914 }
2915 
2916 int vprintk_deferred(const char *fmt, va_list args)
2917 {
2918 	int r;
2919 
2920 	r = vprintk_emit(0, LOGLEVEL_SCHED, NULL, 0, fmt, args);
2921 	defer_console_output();
2922 
2923 	return r;
2924 }
2925 
2926 int printk_deferred(const char *fmt, ...)
2927 {
2928 	va_list args;
2929 	int r;
2930 
2931 	va_start(args, fmt);
2932 	r = vprintk_deferred(fmt, args);
2933 	va_end(args);
2934 
2935 	return r;
2936 }
2937 
2938 /*
2939  * printk rate limiting, lifted from the networking subsystem.
2940  *
2941  * This enforces a rate limit: not more than 10 kernel messages
2942  * every 5s to make a denial-of-service attack impossible.
2943  */
2944 DEFINE_RATELIMIT_STATE(printk_ratelimit_state, 5 * HZ, 10);
2945 
2946 int __printk_ratelimit(const char *func)
2947 {
2948 	return ___ratelimit(&printk_ratelimit_state, func);
2949 }
2950 EXPORT_SYMBOL(__printk_ratelimit);
2951 
2952 /**
2953  * printk_timed_ratelimit - caller-controlled printk ratelimiting
2954  * @caller_jiffies: pointer to caller's state
2955  * @interval_msecs: minimum interval between prints
2956  *
2957  * printk_timed_ratelimit() returns true if more than @interval_msecs
2958  * milliseconds have elapsed since the last time printk_timed_ratelimit()
2959  * returned true.
2960  */
2961 bool printk_timed_ratelimit(unsigned long *caller_jiffies,
2962 			unsigned int interval_msecs)
2963 {
2964 	unsigned long elapsed = jiffies - *caller_jiffies;
2965 
2966 	if (*caller_jiffies && elapsed <= msecs_to_jiffies(interval_msecs))
2967 		return false;
2968 
2969 	*caller_jiffies = jiffies;
2970 	return true;
2971 }
2972 EXPORT_SYMBOL(printk_timed_ratelimit);
2973 
2974 static DEFINE_SPINLOCK(dump_list_lock);
2975 static LIST_HEAD(dump_list);
2976 
2977 /**
2978  * kmsg_dump_register - register a kernel log dumper.
2979  * @dumper: pointer to the kmsg_dumper structure
2980  *
2981  * Adds a kernel log dumper to the system. The dump callback in the
2982  * structure will be called when the kernel oopses or panics and must be
2983  * set. Returns zero on success and %-EINVAL or %-EBUSY otherwise.
2984  */
2985 int kmsg_dump_register(struct kmsg_dumper *dumper)
2986 {
2987 	unsigned long flags;
2988 	int err = -EBUSY;
2989 
2990 	/* The dump callback needs to be set */
2991 	if (!dumper->dump)
2992 		return -EINVAL;
2993 
2994 	spin_lock_irqsave(&dump_list_lock, flags);
2995 	/* Don't allow registering multiple times */
2996 	if (!dumper->registered) {
2997 		dumper->registered = 1;
2998 		list_add_tail_rcu(&dumper->list, &dump_list);
2999 		err = 0;
3000 	}
3001 	spin_unlock_irqrestore(&dump_list_lock, flags);
3002 
3003 	return err;
3004 }
3005 EXPORT_SYMBOL_GPL(kmsg_dump_register);
3006 
3007 /**
3008  * kmsg_dump_unregister - unregister a kmsg dumper.
3009  * @dumper: pointer to the kmsg_dumper structure
3010  *
3011  * Removes a dump device from the system. Returns zero on success and
3012  * %-EINVAL otherwise.
3013  */
3014 int kmsg_dump_unregister(struct kmsg_dumper *dumper)
3015 {
3016 	unsigned long flags;
3017 	int err = -EINVAL;
3018 
3019 	spin_lock_irqsave(&dump_list_lock, flags);
3020 	if (dumper->registered) {
3021 		dumper->registered = 0;
3022 		list_del_rcu(&dumper->list);
3023 		err = 0;
3024 	}
3025 	spin_unlock_irqrestore(&dump_list_lock, flags);
3026 	synchronize_rcu();
3027 
3028 	return err;
3029 }
3030 EXPORT_SYMBOL_GPL(kmsg_dump_unregister);
3031 
3032 static bool always_kmsg_dump;
3033 module_param_named(always_kmsg_dump, always_kmsg_dump, bool, S_IRUGO | S_IWUSR);
3034 
3035 /**
3036  * kmsg_dump - dump kernel log to kernel message dumpers.
3037  * @reason: the reason (oops, panic etc) for dumping
3038  *
3039  * Call each of the registered dumper's dump() callback, which can
3040  * retrieve the kmsg records with kmsg_dump_get_line() or
3041  * kmsg_dump_get_buffer().
3042  */
3043 void kmsg_dump(enum kmsg_dump_reason reason)
3044 {
3045 	struct kmsg_dumper *dumper;
3046 	unsigned long flags;
3047 
3048 	if ((reason > KMSG_DUMP_OOPS) && !always_kmsg_dump)
3049 		return;
3050 
3051 	rcu_read_lock();
3052 	list_for_each_entry_rcu(dumper, &dump_list, list) {
3053 		if (dumper->max_reason && reason > dumper->max_reason)
3054 			continue;
3055 
3056 		/* initialize iterator with data about the stored records */
3057 		dumper->active = true;
3058 
3059 		logbuf_lock_irqsave(flags);
3060 		dumper->cur_seq = clear_seq;
3061 		dumper->cur_idx = clear_idx;
3062 		dumper->next_seq = log_next_seq;
3063 		dumper->next_idx = log_next_idx;
3064 		logbuf_unlock_irqrestore(flags);
3065 
3066 		/* invoke dumper which will iterate over records */
3067 		dumper->dump(dumper, reason);
3068 
3069 		/* reset iterator */
3070 		dumper->active = false;
3071 	}
3072 	rcu_read_unlock();
3073 }
3074 
3075 /**
3076  * kmsg_dump_get_line_nolock - retrieve one kmsg log line (unlocked version)
3077  * @dumper: registered kmsg dumper
3078  * @syslog: include the "<4>" prefixes
3079  * @line: buffer to copy the line to
3080  * @size: maximum size of the buffer
3081  * @len: length of line placed into buffer
3082  *
3083  * Start at the beginning of the kmsg buffer, with the oldest kmsg
3084  * record, and copy one record into the provided buffer.
3085  *
3086  * Consecutive calls will return the next available record moving
3087  * towards the end of the buffer with the youngest messages.
3088  *
3089  * A return value of FALSE indicates that there are no more records to
3090  * read.
3091  *
3092  * The function is similar to kmsg_dump_get_line(), but grabs no locks.
3093  */
3094 bool kmsg_dump_get_line_nolock(struct kmsg_dumper *dumper, bool syslog,
3095 			       char *line, size_t size, size_t *len)
3096 {
3097 	struct printk_log *msg;
3098 	size_t l = 0;
3099 	bool ret = false;
3100 
3101 	if (!dumper->active)
3102 		goto out;
3103 
3104 	if (dumper->cur_seq < log_first_seq) {
3105 		/* messages are gone, move to first available one */
3106 		dumper->cur_seq = log_first_seq;
3107 		dumper->cur_idx = log_first_idx;
3108 	}
3109 
3110 	/* last entry */
3111 	if (dumper->cur_seq >= log_next_seq)
3112 		goto out;
3113 
3114 	msg = log_from_idx(dumper->cur_idx);
3115 	l = msg_print_text(msg, syslog, line, size);
3116 
3117 	dumper->cur_idx = log_next(dumper->cur_idx);
3118 	dumper->cur_seq++;
3119 	ret = true;
3120 out:
3121 	if (len)
3122 		*len = l;
3123 	return ret;
3124 }
3125 
3126 /**
3127  * kmsg_dump_get_line - retrieve one kmsg log line
3128  * @dumper: registered kmsg dumper
3129  * @syslog: include the "<4>" prefixes
3130  * @line: buffer to copy the line to
3131  * @size: maximum size of the buffer
3132  * @len: length of line placed into buffer
3133  *
3134  * Start at the beginning of the kmsg buffer, with the oldest kmsg
3135  * record, and copy one record into the provided buffer.
3136  *
3137  * Consecutive calls will return the next available record moving
3138  * towards the end of the buffer with the youngest messages.
3139  *
3140  * A return value of FALSE indicates that there are no more records to
3141  * read.
3142  */
3143 bool kmsg_dump_get_line(struct kmsg_dumper *dumper, bool syslog,
3144 			char *line, size_t size, size_t *len)
3145 {
3146 	unsigned long flags;
3147 	bool ret;
3148 
3149 	logbuf_lock_irqsave(flags);
3150 	ret = kmsg_dump_get_line_nolock(dumper, syslog, line, size, len);
3151 	logbuf_unlock_irqrestore(flags);
3152 
3153 	return ret;
3154 }
3155 EXPORT_SYMBOL_GPL(kmsg_dump_get_line);
3156 
3157 /**
3158  * kmsg_dump_get_buffer - copy kmsg log lines
3159  * @dumper: registered kmsg dumper
3160  * @syslog: include the "<4>" prefixes
3161  * @buf: buffer to copy the line to
3162  * @size: maximum size of the buffer
3163  * @len: length of line placed into buffer
3164  *
3165  * Start at the end of the kmsg buffer and fill the provided buffer
3166  * with as many of the the *youngest* kmsg records that fit into it.
3167  * If the buffer is large enough, all available kmsg records will be
3168  * copied with a single call.
3169  *
3170  * Consecutive calls will fill the buffer with the next block of
3171  * available older records, not including the earlier retrieved ones.
3172  *
3173  * A return value of FALSE indicates that there are no more records to
3174  * read.
3175  */
3176 bool kmsg_dump_get_buffer(struct kmsg_dumper *dumper, bool syslog,
3177 			  char *buf, size_t size, size_t *len)
3178 {
3179 	unsigned long flags;
3180 	u64 seq;
3181 	u32 idx;
3182 	u64 next_seq;
3183 	u32 next_idx;
3184 	size_t l = 0;
3185 	bool ret = false;
3186 
3187 	if (!dumper->active)
3188 		goto out;
3189 
3190 	logbuf_lock_irqsave(flags);
3191 	if (dumper->cur_seq < log_first_seq) {
3192 		/* messages are gone, move to first available one */
3193 		dumper->cur_seq = log_first_seq;
3194 		dumper->cur_idx = log_first_idx;
3195 	}
3196 
3197 	/* last entry */
3198 	if (dumper->cur_seq >= dumper->next_seq) {
3199 		logbuf_unlock_irqrestore(flags);
3200 		goto out;
3201 	}
3202 
3203 	/* calculate length of entire buffer */
3204 	seq = dumper->cur_seq;
3205 	idx = dumper->cur_idx;
3206 	while (seq < dumper->next_seq) {
3207 		struct printk_log *msg = log_from_idx(idx);
3208 
3209 		l += msg_print_text(msg, true, NULL, 0);
3210 		idx = log_next(idx);
3211 		seq++;
3212 	}
3213 
3214 	/* move first record forward until length fits into the buffer */
3215 	seq = dumper->cur_seq;
3216 	idx = dumper->cur_idx;
3217 	while (l > size && seq < dumper->next_seq) {
3218 		struct printk_log *msg = log_from_idx(idx);
3219 
3220 		l -= msg_print_text(msg, true, NULL, 0);
3221 		idx = log_next(idx);
3222 		seq++;
3223 	}
3224 
3225 	/* last message in next interation */
3226 	next_seq = seq;
3227 	next_idx = idx;
3228 
3229 	l = 0;
3230 	while (seq < dumper->next_seq) {
3231 		struct printk_log *msg = log_from_idx(idx);
3232 
3233 		l += msg_print_text(msg, syslog, buf + l, size - l);
3234 		idx = log_next(idx);
3235 		seq++;
3236 	}
3237 
3238 	dumper->next_seq = next_seq;
3239 	dumper->next_idx = next_idx;
3240 	ret = true;
3241 	logbuf_unlock_irqrestore(flags);
3242 out:
3243 	if (len)
3244 		*len = l;
3245 	return ret;
3246 }
3247 EXPORT_SYMBOL_GPL(kmsg_dump_get_buffer);
3248 
3249 /**
3250  * kmsg_dump_rewind_nolock - reset the interator (unlocked version)
3251  * @dumper: registered kmsg dumper
3252  *
3253  * Reset the dumper's iterator so that kmsg_dump_get_line() and
3254  * kmsg_dump_get_buffer() can be called again and used multiple
3255  * times within the same dumper.dump() callback.
3256  *
3257  * The function is similar to kmsg_dump_rewind(), but grabs no locks.
3258  */
3259 void kmsg_dump_rewind_nolock(struct kmsg_dumper *dumper)
3260 {
3261 	dumper->cur_seq = clear_seq;
3262 	dumper->cur_idx = clear_idx;
3263 	dumper->next_seq = log_next_seq;
3264 	dumper->next_idx = log_next_idx;
3265 }
3266 
3267 /**
3268  * kmsg_dump_rewind - reset the interator
3269  * @dumper: registered kmsg dumper
3270  *
3271  * Reset the dumper's iterator so that kmsg_dump_get_line() and
3272  * kmsg_dump_get_buffer() can be called again and used multiple
3273  * times within the same dumper.dump() callback.
3274  */
3275 void kmsg_dump_rewind(struct kmsg_dumper *dumper)
3276 {
3277 	unsigned long flags;
3278 
3279 	logbuf_lock_irqsave(flags);
3280 	kmsg_dump_rewind_nolock(dumper);
3281 	logbuf_unlock_irqrestore(flags);
3282 }
3283 EXPORT_SYMBOL_GPL(kmsg_dump_rewind);
3284 
3285 #endif
3286