xref: /openbmc/linux/kernel/printk/printk.c (revision 4f727ecefefbd180de10e25b3e74c03dce3f1e75)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/printk.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  *
7  * Modified to make sys_syslog() more flexible: added commands to
8  * return the last 4k of kernel messages, regardless of whether
9  * they've been read or not.  Added option to suppress kernel printk's
10  * to the console.  Added hook for sending the console messages
11  * elsewhere, in preparation for a serial line console (someday).
12  * Ted Ts'o, 2/11/93.
13  * Modified for sysctl support, 1/8/97, Chris Horn.
14  * Fixed SMP synchronization, 08/08/99, Manfred Spraul
15  *     manfred@colorfullife.com
16  * Rewrote bits to get rid of console_lock
17  *	01Mar01 Andrew Morton
18  */
19 
20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
21 
22 #include <linux/kernel.h>
23 #include <linux/mm.h>
24 #include <linux/tty.h>
25 #include <linux/tty_driver.h>
26 #include <linux/console.h>
27 #include <linux/init.h>
28 #include <linux/jiffies.h>
29 #include <linux/nmi.h>
30 #include <linux/module.h>
31 #include <linux/moduleparam.h>
32 #include <linux/delay.h>
33 #include <linux/smp.h>
34 #include <linux/security.h>
35 #include <linux/memblock.h>
36 #include <linux/syscalls.h>
37 #include <linux/crash_core.h>
38 #include <linux/kdb.h>
39 #include <linux/ratelimit.h>
40 #include <linux/kmsg_dump.h>
41 #include <linux/syslog.h>
42 #include <linux/cpu.h>
43 #include <linux/rculist.h>
44 #include <linux/poll.h>
45 #include <linux/irq_work.h>
46 #include <linux/ctype.h>
47 #include <linux/uio.h>
48 #include <linux/sched/clock.h>
49 #include <linux/sched/debug.h>
50 #include <linux/sched/task_stack.h>
51 
52 #include <linux/uaccess.h>
53 #include <asm/sections.h>
54 
55 #include <trace/events/initcall.h>
56 #define CREATE_TRACE_POINTS
57 #include <trace/events/printk.h>
58 
59 #include "console_cmdline.h"
60 #include "braille.h"
61 #include "internal.h"
62 
63 int console_printk[4] = {
64 	CONSOLE_LOGLEVEL_DEFAULT,	/* console_loglevel */
65 	MESSAGE_LOGLEVEL_DEFAULT,	/* default_message_loglevel */
66 	CONSOLE_LOGLEVEL_MIN,		/* minimum_console_loglevel */
67 	CONSOLE_LOGLEVEL_DEFAULT,	/* default_console_loglevel */
68 };
69 EXPORT_SYMBOL_GPL(console_printk);
70 
71 atomic_t ignore_console_lock_warning __read_mostly = ATOMIC_INIT(0);
72 EXPORT_SYMBOL(ignore_console_lock_warning);
73 
74 /*
75  * Low level drivers may need that to know if they can schedule in
76  * their unblank() callback or not. So let's export it.
77  */
78 int oops_in_progress;
79 EXPORT_SYMBOL(oops_in_progress);
80 
81 /*
82  * console_sem protects the console_drivers list, and also
83  * provides serialisation for access to the entire console
84  * driver system.
85  */
86 static DEFINE_SEMAPHORE(console_sem);
87 struct console *console_drivers;
88 EXPORT_SYMBOL_GPL(console_drivers);
89 
90 /*
91  * System may need to suppress printk message under certain
92  * circumstances, like after kernel panic happens.
93  */
94 int __read_mostly suppress_printk;
95 
96 #ifdef CONFIG_LOCKDEP
97 static struct lockdep_map console_lock_dep_map = {
98 	.name = "console_lock"
99 };
100 #endif
101 
102 enum devkmsg_log_bits {
103 	__DEVKMSG_LOG_BIT_ON = 0,
104 	__DEVKMSG_LOG_BIT_OFF,
105 	__DEVKMSG_LOG_BIT_LOCK,
106 };
107 
108 enum devkmsg_log_masks {
109 	DEVKMSG_LOG_MASK_ON             = BIT(__DEVKMSG_LOG_BIT_ON),
110 	DEVKMSG_LOG_MASK_OFF            = BIT(__DEVKMSG_LOG_BIT_OFF),
111 	DEVKMSG_LOG_MASK_LOCK           = BIT(__DEVKMSG_LOG_BIT_LOCK),
112 };
113 
114 /* Keep both the 'on' and 'off' bits clear, i.e. ratelimit by default: */
115 #define DEVKMSG_LOG_MASK_DEFAULT	0
116 
117 static unsigned int __read_mostly devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT;
118 
119 static int __control_devkmsg(char *str)
120 {
121 	if (!str)
122 		return -EINVAL;
123 
124 	if (!strncmp(str, "on", 2)) {
125 		devkmsg_log = DEVKMSG_LOG_MASK_ON;
126 		return 2;
127 	} else if (!strncmp(str, "off", 3)) {
128 		devkmsg_log = DEVKMSG_LOG_MASK_OFF;
129 		return 3;
130 	} else if (!strncmp(str, "ratelimit", 9)) {
131 		devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT;
132 		return 9;
133 	}
134 	return -EINVAL;
135 }
136 
137 static int __init control_devkmsg(char *str)
138 {
139 	if (__control_devkmsg(str) < 0)
140 		return 1;
141 
142 	/*
143 	 * Set sysctl string accordingly:
144 	 */
145 	if (devkmsg_log == DEVKMSG_LOG_MASK_ON)
146 		strcpy(devkmsg_log_str, "on");
147 	else if (devkmsg_log == DEVKMSG_LOG_MASK_OFF)
148 		strcpy(devkmsg_log_str, "off");
149 	/* else "ratelimit" which is set by default. */
150 
151 	/*
152 	 * Sysctl cannot change it anymore. The kernel command line setting of
153 	 * this parameter is to force the setting to be permanent throughout the
154 	 * runtime of the system. This is a precation measure against userspace
155 	 * trying to be a smarta** and attempting to change it up on us.
156 	 */
157 	devkmsg_log |= DEVKMSG_LOG_MASK_LOCK;
158 
159 	return 0;
160 }
161 __setup("printk.devkmsg=", control_devkmsg);
162 
163 char devkmsg_log_str[DEVKMSG_STR_MAX_SIZE] = "ratelimit";
164 
165 int devkmsg_sysctl_set_loglvl(struct ctl_table *table, int write,
166 			      void __user *buffer, size_t *lenp, loff_t *ppos)
167 {
168 	char old_str[DEVKMSG_STR_MAX_SIZE];
169 	unsigned int old;
170 	int err;
171 
172 	if (write) {
173 		if (devkmsg_log & DEVKMSG_LOG_MASK_LOCK)
174 			return -EINVAL;
175 
176 		old = devkmsg_log;
177 		strncpy(old_str, devkmsg_log_str, DEVKMSG_STR_MAX_SIZE);
178 	}
179 
180 	err = proc_dostring(table, write, buffer, lenp, ppos);
181 	if (err)
182 		return err;
183 
184 	if (write) {
185 		err = __control_devkmsg(devkmsg_log_str);
186 
187 		/*
188 		 * Do not accept an unknown string OR a known string with
189 		 * trailing crap...
190 		 */
191 		if (err < 0 || (err + 1 != *lenp)) {
192 
193 			/* ... and restore old setting. */
194 			devkmsg_log = old;
195 			strncpy(devkmsg_log_str, old_str, DEVKMSG_STR_MAX_SIZE);
196 
197 			return -EINVAL;
198 		}
199 	}
200 
201 	return 0;
202 }
203 
204 /* Number of registered extended console drivers. */
205 static int nr_ext_console_drivers;
206 
207 /*
208  * Helper macros to handle lockdep when locking/unlocking console_sem. We use
209  * macros instead of functions so that _RET_IP_ contains useful information.
210  */
211 #define down_console_sem() do { \
212 	down(&console_sem);\
213 	mutex_acquire(&console_lock_dep_map, 0, 0, _RET_IP_);\
214 } while (0)
215 
216 static int __down_trylock_console_sem(unsigned long ip)
217 {
218 	int lock_failed;
219 	unsigned long flags;
220 
221 	/*
222 	 * Here and in __up_console_sem() we need to be in safe mode,
223 	 * because spindump/WARN/etc from under console ->lock will
224 	 * deadlock in printk()->down_trylock_console_sem() otherwise.
225 	 */
226 	printk_safe_enter_irqsave(flags);
227 	lock_failed = down_trylock(&console_sem);
228 	printk_safe_exit_irqrestore(flags);
229 
230 	if (lock_failed)
231 		return 1;
232 	mutex_acquire(&console_lock_dep_map, 0, 1, ip);
233 	return 0;
234 }
235 #define down_trylock_console_sem() __down_trylock_console_sem(_RET_IP_)
236 
237 static void __up_console_sem(unsigned long ip)
238 {
239 	unsigned long flags;
240 
241 	mutex_release(&console_lock_dep_map, 1, ip);
242 
243 	printk_safe_enter_irqsave(flags);
244 	up(&console_sem);
245 	printk_safe_exit_irqrestore(flags);
246 }
247 #define up_console_sem() __up_console_sem(_RET_IP_)
248 
249 /*
250  * This is used for debugging the mess that is the VT code by
251  * keeping track if we have the console semaphore held. It's
252  * definitely not the perfect debug tool (we don't know if _WE_
253  * hold it and are racing, but it helps tracking those weird code
254  * paths in the console code where we end up in places I want
255  * locked without the console sempahore held).
256  */
257 static int console_locked, console_suspended;
258 
259 /*
260  * If exclusive_console is non-NULL then only this console is to be printed to.
261  */
262 static struct console *exclusive_console;
263 
264 /*
265  *	Array of consoles built from command line options (console=)
266  */
267 
268 #define MAX_CMDLINECONSOLES 8
269 
270 static struct console_cmdline console_cmdline[MAX_CMDLINECONSOLES];
271 
272 static int preferred_console = -1;
273 int console_set_on_cmdline;
274 EXPORT_SYMBOL(console_set_on_cmdline);
275 
276 /* Flag: console code may call schedule() */
277 static int console_may_schedule;
278 
279 enum con_msg_format_flags {
280 	MSG_FORMAT_DEFAULT	= 0,
281 	MSG_FORMAT_SYSLOG	= (1 << 0),
282 };
283 
284 static int console_msg_format = MSG_FORMAT_DEFAULT;
285 
286 /*
287  * The printk log buffer consists of a chain of concatenated variable
288  * length records. Every record starts with a record header, containing
289  * the overall length of the record.
290  *
291  * The heads to the first and last entry in the buffer, as well as the
292  * sequence numbers of these entries are maintained when messages are
293  * stored.
294  *
295  * If the heads indicate available messages, the length in the header
296  * tells the start next message. A length == 0 for the next message
297  * indicates a wrap-around to the beginning of the buffer.
298  *
299  * Every record carries the monotonic timestamp in microseconds, as well as
300  * the standard userspace syslog level and syslog facility. The usual
301  * kernel messages use LOG_KERN; userspace-injected messages always carry
302  * a matching syslog facility, by default LOG_USER. The origin of every
303  * message can be reliably determined that way.
304  *
305  * The human readable log message directly follows the message header. The
306  * length of the message text is stored in the header, the stored message
307  * is not terminated.
308  *
309  * Optionally, a message can carry a dictionary of properties (key/value pairs),
310  * to provide userspace with a machine-readable message context.
311  *
312  * Examples for well-defined, commonly used property names are:
313  *   DEVICE=b12:8               device identifier
314  *                                b12:8         block dev_t
315  *                                c127:3        char dev_t
316  *                                n8            netdev ifindex
317  *                                +sound:card0  subsystem:devname
318  *   SUBSYSTEM=pci              driver-core subsystem name
319  *
320  * Valid characters in property names are [a-zA-Z0-9.-_]. The plain text value
321  * follows directly after a '=' character. Every property is terminated by
322  * a '\0' character. The last property is not terminated.
323  *
324  * Example of a message structure:
325  *   0000  ff 8f 00 00 00 00 00 00      monotonic time in nsec
326  *   0008  34 00                        record is 52 bytes long
327  *   000a        0b 00                  text is 11 bytes long
328  *   000c              1f 00            dictionary is 23 bytes long
329  *   000e                    03 00      LOG_KERN (facility) LOG_ERR (level)
330  *   0010  69 74 27 73 20 61 20 6c      "it's a l"
331  *         69 6e 65                     "ine"
332  *   001b           44 45 56 49 43      "DEVIC"
333  *         45 3d 62 38 3a 32 00 44      "E=b8:2\0D"
334  *         52 49 56 45 52 3d 62 75      "RIVER=bu"
335  *         67                           "g"
336  *   0032     00 00 00                  padding to next message header
337  *
338  * The 'struct printk_log' buffer header must never be directly exported to
339  * userspace, it is a kernel-private implementation detail that might
340  * need to be changed in the future, when the requirements change.
341  *
342  * /dev/kmsg exports the structured data in the following line format:
343  *   "<level>,<sequnum>,<timestamp>,<contflag>[,additional_values, ... ];<message text>\n"
344  *
345  * Users of the export format should ignore possible additional values
346  * separated by ',', and find the message after the ';' character.
347  *
348  * The optional key/value pairs are attached as continuation lines starting
349  * with a space character and terminated by a newline. All possible
350  * non-prinatable characters are escaped in the "\xff" notation.
351  */
352 
353 enum log_flags {
354 	LOG_NEWLINE	= 2,	/* text ended with a newline */
355 	LOG_CONT	= 8,	/* text is a fragment of a continuation line */
356 };
357 
358 struct printk_log {
359 	u64 ts_nsec;		/* timestamp in nanoseconds */
360 	u16 len;		/* length of entire record */
361 	u16 text_len;		/* length of text buffer */
362 	u16 dict_len;		/* length of dictionary buffer */
363 	u8 facility;		/* syslog facility */
364 	u8 flags:5;		/* internal record flags */
365 	u8 level:3;		/* syslog level */
366 #ifdef CONFIG_PRINTK_CALLER
367 	u32 caller_id;            /* thread id or processor id */
368 #endif
369 }
370 #ifdef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
371 __packed __aligned(4)
372 #endif
373 ;
374 
375 /*
376  * The logbuf_lock protects kmsg buffer, indices, counters.  This can be taken
377  * within the scheduler's rq lock. It must be released before calling
378  * console_unlock() or anything else that might wake up a process.
379  */
380 DEFINE_RAW_SPINLOCK(logbuf_lock);
381 
382 /*
383  * Helper macros to lock/unlock logbuf_lock and switch between
384  * printk-safe/unsafe modes.
385  */
386 #define logbuf_lock_irq()				\
387 	do {						\
388 		printk_safe_enter_irq();		\
389 		raw_spin_lock(&logbuf_lock);		\
390 	} while (0)
391 
392 #define logbuf_unlock_irq()				\
393 	do {						\
394 		raw_spin_unlock(&logbuf_lock);		\
395 		printk_safe_exit_irq();			\
396 	} while (0)
397 
398 #define logbuf_lock_irqsave(flags)			\
399 	do {						\
400 		printk_safe_enter_irqsave(flags);	\
401 		raw_spin_lock(&logbuf_lock);		\
402 	} while (0)
403 
404 #define logbuf_unlock_irqrestore(flags)		\
405 	do {						\
406 		raw_spin_unlock(&logbuf_lock);		\
407 		printk_safe_exit_irqrestore(flags);	\
408 	} while (0)
409 
410 #ifdef CONFIG_PRINTK
411 DECLARE_WAIT_QUEUE_HEAD(log_wait);
412 /* the next printk record to read by syslog(READ) or /proc/kmsg */
413 static u64 syslog_seq;
414 static u32 syslog_idx;
415 static size_t syslog_partial;
416 static bool syslog_time;
417 
418 /* index and sequence number of the first record stored in the buffer */
419 static u64 log_first_seq;
420 static u32 log_first_idx;
421 
422 /* index and sequence number of the next record to store in the buffer */
423 static u64 log_next_seq;
424 static u32 log_next_idx;
425 
426 /* the next printk record to write to the console */
427 static u64 console_seq;
428 static u32 console_idx;
429 static u64 exclusive_console_stop_seq;
430 
431 /* the next printk record to read after the last 'clear' command */
432 static u64 clear_seq;
433 static u32 clear_idx;
434 
435 #ifdef CONFIG_PRINTK_CALLER
436 #define PREFIX_MAX		48
437 #else
438 #define PREFIX_MAX		32
439 #endif
440 #define LOG_LINE_MAX		(1024 - PREFIX_MAX)
441 
442 #define LOG_LEVEL(v)		((v) & 0x07)
443 #define LOG_FACILITY(v)		((v) >> 3 & 0xff)
444 
445 /* record buffer */
446 #define LOG_ALIGN __alignof__(struct printk_log)
447 #define __LOG_BUF_LEN (1 << CONFIG_LOG_BUF_SHIFT)
448 #define LOG_BUF_LEN_MAX (u32)(1 << 31)
449 static char __log_buf[__LOG_BUF_LEN] __aligned(LOG_ALIGN);
450 static char *log_buf = __log_buf;
451 static u32 log_buf_len = __LOG_BUF_LEN;
452 
453 /* Return log buffer address */
454 char *log_buf_addr_get(void)
455 {
456 	return log_buf;
457 }
458 
459 /* Return log buffer size */
460 u32 log_buf_len_get(void)
461 {
462 	return log_buf_len;
463 }
464 
465 /* human readable text of the record */
466 static char *log_text(const struct printk_log *msg)
467 {
468 	return (char *)msg + sizeof(struct printk_log);
469 }
470 
471 /* optional key/value pair dictionary attached to the record */
472 static char *log_dict(const struct printk_log *msg)
473 {
474 	return (char *)msg + sizeof(struct printk_log) + msg->text_len;
475 }
476 
477 /* get record by index; idx must point to valid msg */
478 static struct printk_log *log_from_idx(u32 idx)
479 {
480 	struct printk_log *msg = (struct printk_log *)(log_buf + idx);
481 
482 	/*
483 	 * A length == 0 record is the end of buffer marker. Wrap around and
484 	 * read the message at the start of the buffer.
485 	 */
486 	if (!msg->len)
487 		return (struct printk_log *)log_buf;
488 	return msg;
489 }
490 
491 /* get next record; idx must point to valid msg */
492 static u32 log_next(u32 idx)
493 {
494 	struct printk_log *msg = (struct printk_log *)(log_buf + idx);
495 
496 	/* length == 0 indicates the end of the buffer; wrap */
497 	/*
498 	 * A length == 0 record is the end of buffer marker. Wrap around and
499 	 * read the message at the start of the buffer as *this* one, and
500 	 * return the one after that.
501 	 */
502 	if (!msg->len) {
503 		msg = (struct printk_log *)log_buf;
504 		return msg->len;
505 	}
506 	return idx + msg->len;
507 }
508 
509 /*
510  * Check whether there is enough free space for the given message.
511  *
512  * The same values of first_idx and next_idx mean that the buffer
513  * is either empty or full.
514  *
515  * If the buffer is empty, we must respect the position of the indexes.
516  * They cannot be reset to the beginning of the buffer.
517  */
518 static int logbuf_has_space(u32 msg_size, bool empty)
519 {
520 	u32 free;
521 
522 	if (log_next_idx > log_first_idx || empty)
523 		free = max(log_buf_len - log_next_idx, log_first_idx);
524 	else
525 		free = log_first_idx - log_next_idx;
526 
527 	/*
528 	 * We need space also for an empty header that signalizes wrapping
529 	 * of the buffer.
530 	 */
531 	return free >= msg_size + sizeof(struct printk_log);
532 }
533 
534 static int log_make_free_space(u32 msg_size)
535 {
536 	while (log_first_seq < log_next_seq &&
537 	       !logbuf_has_space(msg_size, false)) {
538 		/* drop old messages until we have enough contiguous space */
539 		log_first_idx = log_next(log_first_idx);
540 		log_first_seq++;
541 	}
542 
543 	if (clear_seq < log_first_seq) {
544 		clear_seq = log_first_seq;
545 		clear_idx = log_first_idx;
546 	}
547 
548 	/* sequence numbers are equal, so the log buffer is empty */
549 	if (logbuf_has_space(msg_size, log_first_seq == log_next_seq))
550 		return 0;
551 
552 	return -ENOMEM;
553 }
554 
555 /* compute the message size including the padding bytes */
556 static u32 msg_used_size(u16 text_len, u16 dict_len, u32 *pad_len)
557 {
558 	u32 size;
559 
560 	size = sizeof(struct printk_log) + text_len + dict_len;
561 	*pad_len = (-size) & (LOG_ALIGN - 1);
562 	size += *pad_len;
563 
564 	return size;
565 }
566 
567 /*
568  * Define how much of the log buffer we could take at maximum. The value
569  * must be greater than two. Note that only half of the buffer is available
570  * when the index points to the middle.
571  */
572 #define MAX_LOG_TAKE_PART 4
573 static const char trunc_msg[] = "<truncated>";
574 
575 static u32 truncate_msg(u16 *text_len, u16 *trunc_msg_len,
576 			u16 *dict_len, u32 *pad_len)
577 {
578 	/*
579 	 * The message should not take the whole buffer. Otherwise, it might
580 	 * get removed too soon.
581 	 */
582 	u32 max_text_len = log_buf_len / MAX_LOG_TAKE_PART;
583 	if (*text_len > max_text_len)
584 		*text_len = max_text_len;
585 	/* enable the warning message */
586 	*trunc_msg_len = strlen(trunc_msg);
587 	/* disable the "dict" completely */
588 	*dict_len = 0;
589 	/* compute the size again, count also the warning message */
590 	return msg_used_size(*text_len + *trunc_msg_len, 0, pad_len);
591 }
592 
593 /* insert record into the buffer, discard old ones, update heads */
594 static int log_store(u32 caller_id, int facility, int level,
595 		     enum log_flags flags, u64 ts_nsec,
596 		     const char *dict, u16 dict_len,
597 		     const char *text, u16 text_len)
598 {
599 	struct printk_log *msg;
600 	u32 size, pad_len;
601 	u16 trunc_msg_len = 0;
602 
603 	/* number of '\0' padding bytes to next message */
604 	size = msg_used_size(text_len, dict_len, &pad_len);
605 
606 	if (log_make_free_space(size)) {
607 		/* truncate the message if it is too long for empty buffer */
608 		size = truncate_msg(&text_len, &trunc_msg_len,
609 				    &dict_len, &pad_len);
610 		/* survive when the log buffer is too small for trunc_msg */
611 		if (log_make_free_space(size))
612 			return 0;
613 	}
614 
615 	if (log_next_idx + size + sizeof(struct printk_log) > log_buf_len) {
616 		/*
617 		 * This message + an additional empty header does not fit
618 		 * at the end of the buffer. Add an empty header with len == 0
619 		 * to signify a wrap around.
620 		 */
621 		memset(log_buf + log_next_idx, 0, sizeof(struct printk_log));
622 		log_next_idx = 0;
623 	}
624 
625 	/* fill message */
626 	msg = (struct printk_log *)(log_buf + log_next_idx);
627 	memcpy(log_text(msg), text, text_len);
628 	msg->text_len = text_len;
629 	if (trunc_msg_len) {
630 		memcpy(log_text(msg) + text_len, trunc_msg, trunc_msg_len);
631 		msg->text_len += trunc_msg_len;
632 	}
633 	memcpy(log_dict(msg), dict, dict_len);
634 	msg->dict_len = dict_len;
635 	msg->facility = facility;
636 	msg->level = level & 7;
637 	msg->flags = flags & 0x1f;
638 	if (ts_nsec > 0)
639 		msg->ts_nsec = ts_nsec;
640 	else
641 		msg->ts_nsec = local_clock();
642 #ifdef CONFIG_PRINTK_CALLER
643 	msg->caller_id = caller_id;
644 #endif
645 	memset(log_dict(msg) + dict_len, 0, pad_len);
646 	msg->len = size;
647 
648 	/* insert message */
649 	log_next_idx += msg->len;
650 	log_next_seq++;
651 
652 	return msg->text_len;
653 }
654 
655 int dmesg_restrict = IS_ENABLED(CONFIG_SECURITY_DMESG_RESTRICT);
656 
657 static int syslog_action_restricted(int type)
658 {
659 	if (dmesg_restrict)
660 		return 1;
661 	/*
662 	 * Unless restricted, we allow "read all" and "get buffer size"
663 	 * for everybody.
664 	 */
665 	return type != SYSLOG_ACTION_READ_ALL &&
666 	       type != SYSLOG_ACTION_SIZE_BUFFER;
667 }
668 
669 static int check_syslog_permissions(int type, int source)
670 {
671 	/*
672 	 * If this is from /proc/kmsg and we've already opened it, then we've
673 	 * already done the capabilities checks at open time.
674 	 */
675 	if (source == SYSLOG_FROM_PROC && type != SYSLOG_ACTION_OPEN)
676 		goto ok;
677 
678 	if (syslog_action_restricted(type)) {
679 		if (capable(CAP_SYSLOG))
680 			goto ok;
681 		/*
682 		 * For historical reasons, accept CAP_SYS_ADMIN too, with
683 		 * a warning.
684 		 */
685 		if (capable(CAP_SYS_ADMIN)) {
686 			pr_warn_once("%s (%d): Attempt to access syslog with "
687 				     "CAP_SYS_ADMIN but no CAP_SYSLOG "
688 				     "(deprecated).\n",
689 				 current->comm, task_pid_nr(current));
690 			goto ok;
691 		}
692 		return -EPERM;
693 	}
694 ok:
695 	return security_syslog(type);
696 }
697 
698 static void append_char(char **pp, char *e, char c)
699 {
700 	if (*pp < e)
701 		*(*pp)++ = c;
702 }
703 
704 static ssize_t msg_print_ext_header(char *buf, size_t size,
705 				    struct printk_log *msg, u64 seq)
706 {
707 	u64 ts_usec = msg->ts_nsec;
708 	char caller[20];
709 #ifdef CONFIG_PRINTK_CALLER
710 	u32 id = msg->caller_id;
711 
712 	snprintf(caller, sizeof(caller), ",caller=%c%u",
713 		 id & 0x80000000 ? 'C' : 'T', id & ~0x80000000);
714 #else
715 	caller[0] = '\0';
716 #endif
717 
718 	do_div(ts_usec, 1000);
719 
720 	return scnprintf(buf, size, "%u,%llu,%llu,%c%s;",
721 			 (msg->facility << 3) | msg->level, seq, ts_usec,
722 			 msg->flags & LOG_CONT ? 'c' : '-', caller);
723 }
724 
725 static ssize_t msg_print_ext_body(char *buf, size_t size,
726 				  char *dict, size_t dict_len,
727 				  char *text, size_t text_len)
728 {
729 	char *p = buf, *e = buf + size;
730 	size_t i;
731 
732 	/* escape non-printable characters */
733 	for (i = 0; i < text_len; i++) {
734 		unsigned char c = text[i];
735 
736 		if (c < ' ' || c >= 127 || c == '\\')
737 			p += scnprintf(p, e - p, "\\x%02x", c);
738 		else
739 			append_char(&p, e, c);
740 	}
741 	append_char(&p, e, '\n');
742 
743 	if (dict_len) {
744 		bool line = true;
745 
746 		for (i = 0; i < dict_len; i++) {
747 			unsigned char c = dict[i];
748 
749 			if (line) {
750 				append_char(&p, e, ' ');
751 				line = false;
752 			}
753 
754 			if (c == '\0') {
755 				append_char(&p, e, '\n');
756 				line = true;
757 				continue;
758 			}
759 
760 			if (c < ' ' || c >= 127 || c == '\\') {
761 				p += scnprintf(p, e - p, "\\x%02x", c);
762 				continue;
763 			}
764 
765 			append_char(&p, e, c);
766 		}
767 		append_char(&p, e, '\n');
768 	}
769 
770 	return p - buf;
771 }
772 
773 /* /dev/kmsg - userspace message inject/listen interface */
774 struct devkmsg_user {
775 	u64 seq;
776 	u32 idx;
777 	struct ratelimit_state rs;
778 	struct mutex lock;
779 	char buf[CONSOLE_EXT_LOG_MAX];
780 };
781 
782 static __printf(3, 4) __cold
783 int devkmsg_emit(int facility, int level, const char *fmt, ...)
784 {
785 	va_list args;
786 	int r;
787 
788 	va_start(args, fmt);
789 	r = vprintk_emit(facility, level, NULL, 0, fmt, args);
790 	va_end(args);
791 
792 	return r;
793 }
794 
795 static ssize_t devkmsg_write(struct kiocb *iocb, struct iov_iter *from)
796 {
797 	char *buf, *line;
798 	int level = default_message_loglevel;
799 	int facility = 1;	/* LOG_USER */
800 	struct file *file = iocb->ki_filp;
801 	struct devkmsg_user *user = file->private_data;
802 	size_t len = iov_iter_count(from);
803 	ssize_t ret = len;
804 
805 	if (!user || len > LOG_LINE_MAX)
806 		return -EINVAL;
807 
808 	/* Ignore when user logging is disabled. */
809 	if (devkmsg_log & DEVKMSG_LOG_MASK_OFF)
810 		return len;
811 
812 	/* Ratelimit when not explicitly enabled. */
813 	if (!(devkmsg_log & DEVKMSG_LOG_MASK_ON)) {
814 		if (!___ratelimit(&user->rs, current->comm))
815 			return ret;
816 	}
817 
818 	buf = kmalloc(len+1, GFP_KERNEL);
819 	if (buf == NULL)
820 		return -ENOMEM;
821 
822 	buf[len] = '\0';
823 	if (!copy_from_iter_full(buf, len, from)) {
824 		kfree(buf);
825 		return -EFAULT;
826 	}
827 
828 	/*
829 	 * Extract and skip the syslog prefix <[0-9]*>. Coming from userspace
830 	 * the decimal value represents 32bit, the lower 3 bit are the log
831 	 * level, the rest are the log facility.
832 	 *
833 	 * If no prefix or no userspace facility is specified, we
834 	 * enforce LOG_USER, to be able to reliably distinguish
835 	 * kernel-generated messages from userspace-injected ones.
836 	 */
837 	line = buf;
838 	if (line[0] == '<') {
839 		char *endp = NULL;
840 		unsigned int u;
841 
842 		u = simple_strtoul(line + 1, &endp, 10);
843 		if (endp && endp[0] == '>') {
844 			level = LOG_LEVEL(u);
845 			if (LOG_FACILITY(u) != 0)
846 				facility = LOG_FACILITY(u);
847 			endp++;
848 			len -= endp - line;
849 			line = endp;
850 		}
851 	}
852 
853 	devkmsg_emit(facility, level, "%s", line);
854 	kfree(buf);
855 	return ret;
856 }
857 
858 static ssize_t devkmsg_read(struct file *file, char __user *buf,
859 			    size_t count, loff_t *ppos)
860 {
861 	struct devkmsg_user *user = file->private_data;
862 	struct printk_log *msg;
863 	size_t len;
864 	ssize_t ret;
865 
866 	if (!user)
867 		return -EBADF;
868 
869 	ret = mutex_lock_interruptible(&user->lock);
870 	if (ret)
871 		return ret;
872 
873 	logbuf_lock_irq();
874 	while (user->seq == log_next_seq) {
875 		if (file->f_flags & O_NONBLOCK) {
876 			ret = -EAGAIN;
877 			logbuf_unlock_irq();
878 			goto out;
879 		}
880 
881 		logbuf_unlock_irq();
882 		ret = wait_event_interruptible(log_wait,
883 					       user->seq != log_next_seq);
884 		if (ret)
885 			goto out;
886 		logbuf_lock_irq();
887 	}
888 
889 	if (user->seq < log_first_seq) {
890 		/* our last seen message is gone, return error and reset */
891 		user->idx = log_first_idx;
892 		user->seq = log_first_seq;
893 		ret = -EPIPE;
894 		logbuf_unlock_irq();
895 		goto out;
896 	}
897 
898 	msg = log_from_idx(user->idx);
899 	len = msg_print_ext_header(user->buf, sizeof(user->buf),
900 				   msg, user->seq);
901 	len += msg_print_ext_body(user->buf + len, sizeof(user->buf) - len,
902 				  log_dict(msg), msg->dict_len,
903 				  log_text(msg), msg->text_len);
904 
905 	user->idx = log_next(user->idx);
906 	user->seq++;
907 	logbuf_unlock_irq();
908 
909 	if (len > count) {
910 		ret = -EINVAL;
911 		goto out;
912 	}
913 
914 	if (copy_to_user(buf, user->buf, len)) {
915 		ret = -EFAULT;
916 		goto out;
917 	}
918 	ret = len;
919 out:
920 	mutex_unlock(&user->lock);
921 	return ret;
922 }
923 
924 static loff_t devkmsg_llseek(struct file *file, loff_t offset, int whence)
925 {
926 	struct devkmsg_user *user = file->private_data;
927 	loff_t ret = 0;
928 
929 	if (!user)
930 		return -EBADF;
931 	if (offset)
932 		return -ESPIPE;
933 
934 	logbuf_lock_irq();
935 	switch (whence) {
936 	case SEEK_SET:
937 		/* the first record */
938 		user->idx = log_first_idx;
939 		user->seq = log_first_seq;
940 		break;
941 	case SEEK_DATA:
942 		/*
943 		 * The first record after the last SYSLOG_ACTION_CLEAR,
944 		 * like issued by 'dmesg -c'. Reading /dev/kmsg itself
945 		 * changes no global state, and does not clear anything.
946 		 */
947 		user->idx = clear_idx;
948 		user->seq = clear_seq;
949 		break;
950 	case SEEK_END:
951 		/* after the last record */
952 		user->idx = log_next_idx;
953 		user->seq = log_next_seq;
954 		break;
955 	default:
956 		ret = -EINVAL;
957 	}
958 	logbuf_unlock_irq();
959 	return ret;
960 }
961 
962 static __poll_t devkmsg_poll(struct file *file, poll_table *wait)
963 {
964 	struct devkmsg_user *user = file->private_data;
965 	__poll_t ret = 0;
966 
967 	if (!user)
968 		return EPOLLERR|EPOLLNVAL;
969 
970 	poll_wait(file, &log_wait, wait);
971 
972 	logbuf_lock_irq();
973 	if (user->seq < log_next_seq) {
974 		/* return error when data has vanished underneath us */
975 		if (user->seq < log_first_seq)
976 			ret = EPOLLIN|EPOLLRDNORM|EPOLLERR|EPOLLPRI;
977 		else
978 			ret = EPOLLIN|EPOLLRDNORM;
979 	}
980 	logbuf_unlock_irq();
981 
982 	return ret;
983 }
984 
985 static int devkmsg_open(struct inode *inode, struct file *file)
986 {
987 	struct devkmsg_user *user;
988 	int err;
989 
990 	if (devkmsg_log & DEVKMSG_LOG_MASK_OFF)
991 		return -EPERM;
992 
993 	/* write-only does not need any file context */
994 	if ((file->f_flags & O_ACCMODE) != O_WRONLY) {
995 		err = check_syslog_permissions(SYSLOG_ACTION_READ_ALL,
996 					       SYSLOG_FROM_READER);
997 		if (err)
998 			return err;
999 	}
1000 
1001 	user = kmalloc(sizeof(struct devkmsg_user), GFP_KERNEL);
1002 	if (!user)
1003 		return -ENOMEM;
1004 
1005 	ratelimit_default_init(&user->rs);
1006 	ratelimit_set_flags(&user->rs, RATELIMIT_MSG_ON_RELEASE);
1007 
1008 	mutex_init(&user->lock);
1009 
1010 	logbuf_lock_irq();
1011 	user->idx = log_first_idx;
1012 	user->seq = log_first_seq;
1013 	logbuf_unlock_irq();
1014 
1015 	file->private_data = user;
1016 	return 0;
1017 }
1018 
1019 static int devkmsg_release(struct inode *inode, struct file *file)
1020 {
1021 	struct devkmsg_user *user = file->private_data;
1022 
1023 	if (!user)
1024 		return 0;
1025 
1026 	ratelimit_state_exit(&user->rs);
1027 
1028 	mutex_destroy(&user->lock);
1029 	kfree(user);
1030 	return 0;
1031 }
1032 
1033 const struct file_operations kmsg_fops = {
1034 	.open = devkmsg_open,
1035 	.read = devkmsg_read,
1036 	.write_iter = devkmsg_write,
1037 	.llseek = devkmsg_llseek,
1038 	.poll = devkmsg_poll,
1039 	.release = devkmsg_release,
1040 };
1041 
1042 #ifdef CONFIG_CRASH_CORE
1043 /*
1044  * This appends the listed symbols to /proc/vmcore
1045  *
1046  * /proc/vmcore is used by various utilities, like crash and makedumpfile to
1047  * obtain access to symbols that are otherwise very difficult to locate.  These
1048  * symbols are specifically used so that utilities can access and extract the
1049  * dmesg log from a vmcore file after a crash.
1050  */
1051 void log_buf_vmcoreinfo_setup(void)
1052 {
1053 	VMCOREINFO_SYMBOL(log_buf);
1054 	VMCOREINFO_SYMBOL(log_buf_len);
1055 	VMCOREINFO_SYMBOL(log_first_idx);
1056 	VMCOREINFO_SYMBOL(clear_idx);
1057 	VMCOREINFO_SYMBOL(log_next_idx);
1058 	/*
1059 	 * Export struct printk_log size and field offsets. User space tools can
1060 	 * parse it and detect any changes to structure down the line.
1061 	 */
1062 	VMCOREINFO_STRUCT_SIZE(printk_log);
1063 	VMCOREINFO_OFFSET(printk_log, ts_nsec);
1064 	VMCOREINFO_OFFSET(printk_log, len);
1065 	VMCOREINFO_OFFSET(printk_log, text_len);
1066 	VMCOREINFO_OFFSET(printk_log, dict_len);
1067 #ifdef CONFIG_PRINTK_CALLER
1068 	VMCOREINFO_OFFSET(printk_log, caller_id);
1069 #endif
1070 }
1071 #endif
1072 
1073 /* requested log_buf_len from kernel cmdline */
1074 static unsigned long __initdata new_log_buf_len;
1075 
1076 /* we practice scaling the ring buffer by powers of 2 */
1077 static void __init log_buf_len_update(u64 size)
1078 {
1079 	if (size > (u64)LOG_BUF_LEN_MAX) {
1080 		size = (u64)LOG_BUF_LEN_MAX;
1081 		pr_err("log_buf over 2G is not supported.\n");
1082 	}
1083 
1084 	if (size)
1085 		size = roundup_pow_of_two(size);
1086 	if (size > log_buf_len)
1087 		new_log_buf_len = (unsigned long)size;
1088 }
1089 
1090 /* save requested log_buf_len since it's too early to process it */
1091 static int __init log_buf_len_setup(char *str)
1092 {
1093 	u64 size;
1094 
1095 	if (!str)
1096 		return -EINVAL;
1097 
1098 	size = memparse(str, &str);
1099 
1100 	log_buf_len_update(size);
1101 
1102 	return 0;
1103 }
1104 early_param("log_buf_len", log_buf_len_setup);
1105 
1106 #ifdef CONFIG_SMP
1107 #define __LOG_CPU_MAX_BUF_LEN (1 << CONFIG_LOG_CPU_MAX_BUF_SHIFT)
1108 
1109 static void __init log_buf_add_cpu(void)
1110 {
1111 	unsigned int cpu_extra;
1112 
1113 	/*
1114 	 * archs should set up cpu_possible_bits properly with
1115 	 * set_cpu_possible() after setup_arch() but just in
1116 	 * case lets ensure this is valid.
1117 	 */
1118 	if (num_possible_cpus() == 1)
1119 		return;
1120 
1121 	cpu_extra = (num_possible_cpus() - 1) * __LOG_CPU_MAX_BUF_LEN;
1122 
1123 	/* by default this will only continue through for large > 64 CPUs */
1124 	if (cpu_extra <= __LOG_BUF_LEN / 2)
1125 		return;
1126 
1127 	pr_info("log_buf_len individual max cpu contribution: %d bytes\n",
1128 		__LOG_CPU_MAX_BUF_LEN);
1129 	pr_info("log_buf_len total cpu_extra contributions: %d bytes\n",
1130 		cpu_extra);
1131 	pr_info("log_buf_len min size: %d bytes\n", __LOG_BUF_LEN);
1132 
1133 	log_buf_len_update(cpu_extra + __LOG_BUF_LEN);
1134 }
1135 #else /* !CONFIG_SMP */
1136 static inline void log_buf_add_cpu(void) {}
1137 #endif /* CONFIG_SMP */
1138 
1139 void __init setup_log_buf(int early)
1140 {
1141 	unsigned long flags;
1142 	char *new_log_buf;
1143 	unsigned int free;
1144 
1145 	if (log_buf != __log_buf)
1146 		return;
1147 
1148 	if (!early && !new_log_buf_len)
1149 		log_buf_add_cpu();
1150 
1151 	if (!new_log_buf_len)
1152 		return;
1153 
1154 	new_log_buf = memblock_alloc(new_log_buf_len, LOG_ALIGN);
1155 	if (unlikely(!new_log_buf)) {
1156 		pr_err("log_buf_len: %lu bytes not available\n",
1157 			new_log_buf_len);
1158 		return;
1159 	}
1160 
1161 	logbuf_lock_irqsave(flags);
1162 	log_buf_len = new_log_buf_len;
1163 	log_buf = new_log_buf;
1164 	new_log_buf_len = 0;
1165 	free = __LOG_BUF_LEN - log_next_idx;
1166 	memcpy(log_buf, __log_buf, __LOG_BUF_LEN);
1167 	logbuf_unlock_irqrestore(flags);
1168 
1169 	pr_info("log_buf_len: %u bytes\n", log_buf_len);
1170 	pr_info("early log buf free: %u(%u%%)\n",
1171 		free, (free * 100) / __LOG_BUF_LEN);
1172 }
1173 
1174 static bool __read_mostly ignore_loglevel;
1175 
1176 static int __init ignore_loglevel_setup(char *str)
1177 {
1178 	ignore_loglevel = true;
1179 	pr_info("debug: ignoring loglevel setting.\n");
1180 
1181 	return 0;
1182 }
1183 
1184 early_param("ignore_loglevel", ignore_loglevel_setup);
1185 module_param(ignore_loglevel, bool, S_IRUGO | S_IWUSR);
1186 MODULE_PARM_DESC(ignore_loglevel,
1187 		 "ignore loglevel setting (prints all kernel messages to the console)");
1188 
1189 static bool suppress_message_printing(int level)
1190 {
1191 	return (level >= console_loglevel && !ignore_loglevel);
1192 }
1193 
1194 #ifdef CONFIG_BOOT_PRINTK_DELAY
1195 
1196 static int boot_delay; /* msecs delay after each printk during bootup */
1197 static unsigned long long loops_per_msec;	/* based on boot_delay */
1198 
1199 static int __init boot_delay_setup(char *str)
1200 {
1201 	unsigned long lpj;
1202 
1203 	lpj = preset_lpj ? preset_lpj : 1000000;	/* some guess */
1204 	loops_per_msec = (unsigned long long)lpj / 1000 * HZ;
1205 
1206 	get_option(&str, &boot_delay);
1207 	if (boot_delay > 10 * 1000)
1208 		boot_delay = 0;
1209 
1210 	pr_debug("boot_delay: %u, preset_lpj: %ld, lpj: %lu, "
1211 		"HZ: %d, loops_per_msec: %llu\n",
1212 		boot_delay, preset_lpj, lpj, HZ, loops_per_msec);
1213 	return 0;
1214 }
1215 early_param("boot_delay", boot_delay_setup);
1216 
1217 static void boot_delay_msec(int level)
1218 {
1219 	unsigned long long k;
1220 	unsigned long timeout;
1221 
1222 	if ((boot_delay == 0 || system_state >= SYSTEM_RUNNING)
1223 		|| suppress_message_printing(level)) {
1224 		return;
1225 	}
1226 
1227 	k = (unsigned long long)loops_per_msec * boot_delay;
1228 
1229 	timeout = jiffies + msecs_to_jiffies(boot_delay);
1230 	while (k) {
1231 		k--;
1232 		cpu_relax();
1233 		/*
1234 		 * use (volatile) jiffies to prevent
1235 		 * compiler reduction; loop termination via jiffies
1236 		 * is secondary and may or may not happen.
1237 		 */
1238 		if (time_after(jiffies, timeout))
1239 			break;
1240 		touch_nmi_watchdog();
1241 	}
1242 }
1243 #else
1244 static inline void boot_delay_msec(int level)
1245 {
1246 }
1247 #endif
1248 
1249 static bool printk_time = IS_ENABLED(CONFIG_PRINTK_TIME);
1250 module_param_named(time, printk_time, bool, S_IRUGO | S_IWUSR);
1251 
1252 static size_t print_syslog(unsigned int level, char *buf)
1253 {
1254 	return sprintf(buf, "<%u>", level);
1255 }
1256 
1257 static size_t print_time(u64 ts, char *buf)
1258 {
1259 	unsigned long rem_nsec = do_div(ts, 1000000000);
1260 
1261 	return sprintf(buf, "[%5lu.%06lu]",
1262 		       (unsigned long)ts, rem_nsec / 1000);
1263 }
1264 
1265 #ifdef CONFIG_PRINTK_CALLER
1266 static size_t print_caller(u32 id, char *buf)
1267 {
1268 	char caller[12];
1269 
1270 	snprintf(caller, sizeof(caller), "%c%u",
1271 		 id & 0x80000000 ? 'C' : 'T', id & ~0x80000000);
1272 	return sprintf(buf, "[%6s]", caller);
1273 }
1274 #else
1275 #define print_caller(id, buf) 0
1276 #endif
1277 
1278 static size_t print_prefix(const struct printk_log *msg, bool syslog,
1279 			   bool time, char *buf)
1280 {
1281 	size_t len = 0;
1282 
1283 	if (syslog)
1284 		len = print_syslog((msg->facility << 3) | msg->level, buf);
1285 
1286 	if (time)
1287 		len += print_time(msg->ts_nsec, buf + len);
1288 
1289 	len += print_caller(msg->caller_id, buf + len);
1290 
1291 	if (IS_ENABLED(CONFIG_PRINTK_CALLER) || time) {
1292 		buf[len++] = ' ';
1293 		buf[len] = '\0';
1294 	}
1295 
1296 	return len;
1297 }
1298 
1299 static size_t msg_print_text(const struct printk_log *msg, bool syslog,
1300 			     bool time, char *buf, size_t size)
1301 {
1302 	const char *text = log_text(msg);
1303 	size_t text_size = msg->text_len;
1304 	size_t len = 0;
1305 	char prefix[PREFIX_MAX];
1306 	const size_t prefix_len = print_prefix(msg, syslog, time, prefix);
1307 
1308 	do {
1309 		const char *next = memchr(text, '\n', text_size);
1310 		size_t text_len;
1311 
1312 		if (next) {
1313 			text_len = next - text;
1314 			next++;
1315 			text_size -= next - text;
1316 		} else {
1317 			text_len = text_size;
1318 		}
1319 
1320 		if (buf) {
1321 			if (prefix_len + text_len + 1 >= size - len)
1322 				break;
1323 
1324 			memcpy(buf + len, prefix, prefix_len);
1325 			len += prefix_len;
1326 			memcpy(buf + len, text, text_len);
1327 			len += text_len;
1328 			buf[len++] = '\n';
1329 		} else {
1330 			/* SYSLOG_ACTION_* buffer size only calculation */
1331 			len += prefix_len + text_len + 1;
1332 		}
1333 
1334 		text = next;
1335 	} while (text);
1336 
1337 	return len;
1338 }
1339 
1340 static int syslog_print(char __user *buf, int size)
1341 {
1342 	char *text;
1343 	struct printk_log *msg;
1344 	int len = 0;
1345 
1346 	text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
1347 	if (!text)
1348 		return -ENOMEM;
1349 
1350 	while (size > 0) {
1351 		size_t n;
1352 		size_t skip;
1353 
1354 		logbuf_lock_irq();
1355 		if (syslog_seq < log_first_seq) {
1356 			/* messages are gone, move to first one */
1357 			syslog_seq = log_first_seq;
1358 			syslog_idx = log_first_idx;
1359 			syslog_partial = 0;
1360 		}
1361 		if (syslog_seq == log_next_seq) {
1362 			logbuf_unlock_irq();
1363 			break;
1364 		}
1365 
1366 		/*
1367 		 * To keep reading/counting partial line consistent,
1368 		 * use printk_time value as of the beginning of a line.
1369 		 */
1370 		if (!syslog_partial)
1371 			syslog_time = printk_time;
1372 
1373 		skip = syslog_partial;
1374 		msg = log_from_idx(syslog_idx);
1375 		n = msg_print_text(msg, true, syslog_time, text,
1376 				   LOG_LINE_MAX + PREFIX_MAX);
1377 		if (n - syslog_partial <= size) {
1378 			/* message fits into buffer, move forward */
1379 			syslog_idx = log_next(syslog_idx);
1380 			syslog_seq++;
1381 			n -= syslog_partial;
1382 			syslog_partial = 0;
1383 		} else if (!len){
1384 			/* partial read(), remember position */
1385 			n = size;
1386 			syslog_partial += n;
1387 		} else
1388 			n = 0;
1389 		logbuf_unlock_irq();
1390 
1391 		if (!n)
1392 			break;
1393 
1394 		if (copy_to_user(buf, text + skip, n)) {
1395 			if (!len)
1396 				len = -EFAULT;
1397 			break;
1398 		}
1399 
1400 		len += n;
1401 		size -= n;
1402 		buf += n;
1403 	}
1404 
1405 	kfree(text);
1406 	return len;
1407 }
1408 
1409 static int syslog_print_all(char __user *buf, int size, bool clear)
1410 {
1411 	char *text;
1412 	int len = 0;
1413 	u64 next_seq;
1414 	u64 seq;
1415 	u32 idx;
1416 	bool time;
1417 
1418 	text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
1419 	if (!text)
1420 		return -ENOMEM;
1421 
1422 	time = printk_time;
1423 	logbuf_lock_irq();
1424 	/*
1425 	 * Find first record that fits, including all following records,
1426 	 * into the user-provided buffer for this dump.
1427 	 */
1428 	seq = clear_seq;
1429 	idx = clear_idx;
1430 	while (seq < log_next_seq) {
1431 		struct printk_log *msg = log_from_idx(idx);
1432 
1433 		len += msg_print_text(msg, true, time, NULL, 0);
1434 		idx = log_next(idx);
1435 		seq++;
1436 	}
1437 
1438 	/* move first record forward until length fits into the buffer */
1439 	seq = clear_seq;
1440 	idx = clear_idx;
1441 	while (len > size && seq < log_next_seq) {
1442 		struct printk_log *msg = log_from_idx(idx);
1443 
1444 		len -= msg_print_text(msg, true, time, NULL, 0);
1445 		idx = log_next(idx);
1446 		seq++;
1447 	}
1448 
1449 	/* last message fitting into this dump */
1450 	next_seq = log_next_seq;
1451 
1452 	len = 0;
1453 	while (len >= 0 && seq < next_seq) {
1454 		struct printk_log *msg = log_from_idx(idx);
1455 		int textlen = msg_print_text(msg, true, time, text,
1456 					     LOG_LINE_MAX + PREFIX_MAX);
1457 
1458 		idx = log_next(idx);
1459 		seq++;
1460 
1461 		logbuf_unlock_irq();
1462 		if (copy_to_user(buf + len, text, textlen))
1463 			len = -EFAULT;
1464 		else
1465 			len += textlen;
1466 		logbuf_lock_irq();
1467 
1468 		if (seq < log_first_seq) {
1469 			/* messages are gone, move to next one */
1470 			seq = log_first_seq;
1471 			idx = log_first_idx;
1472 		}
1473 	}
1474 
1475 	if (clear) {
1476 		clear_seq = log_next_seq;
1477 		clear_idx = log_next_idx;
1478 	}
1479 	logbuf_unlock_irq();
1480 
1481 	kfree(text);
1482 	return len;
1483 }
1484 
1485 static void syslog_clear(void)
1486 {
1487 	logbuf_lock_irq();
1488 	clear_seq = log_next_seq;
1489 	clear_idx = log_next_idx;
1490 	logbuf_unlock_irq();
1491 }
1492 
1493 int do_syslog(int type, char __user *buf, int len, int source)
1494 {
1495 	bool clear = false;
1496 	static int saved_console_loglevel = LOGLEVEL_DEFAULT;
1497 	int error;
1498 
1499 	error = check_syslog_permissions(type, source);
1500 	if (error)
1501 		return error;
1502 
1503 	switch (type) {
1504 	case SYSLOG_ACTION_CLOSE:	/* Close log */
1505 		break;
1506 	case SYSLOG_ACTION_OPEN:	/* Open log */
1507 		break;
1508 	case SYSLOG_ACTION_READ:	/* Read from log */
1509 		if (!buf || len < 0)
1510 			return -EINVAL;
1511 		if (!len)
1512 			return 0;
1513 		if (!access_ok(buf, len))
1514 			return -EFAULT;
1515 		error = wait_event_interruptible(log_wait,
1516 						 syslog_seq != log_next_seq);
1517 		if (error)
1518 			return error;
1519 		error = syslog_print(buf, len);
1520 		break;
1521 	/* Read/clear last kernel messages */
1522 	case SYSLOG_ACTION_READ_CLEAR:
1523 		clear = true;
1524 		/* FALL THRU */
1525 	/* Read last kernel messages */
1526 	case SYSLOG_ACTION_READ_ALL:
1527 		if (!buf || len < 0)
1528 			return -EINVAL;
1529 		if (!len)
1530 			return 0;
1531 		if (!access_ok(buf, len))
1532 			return -EFAULT;
1533 		error = syslog_print_all(buf, len, clear);
1534 		break;
1535 	/* Clear ring buffer */
1536 	case SYSLOG_ACTION_CLEAR:
1537 		syslog_clear();
1538 		break;
1539 	/* Disable logging to console */
1540 	case SYSLOG_ACTION_CONSOLE_OFF:
1541 		if (saved_console_loglevel == LOGLEVEL_DEFAULT)
1542 			saved_console_loglevel = console_loglevel;
1543 		console_loglevel = minimum_console_loglevel;
1544 		break;
1545 	/* Enable logging to console */
1546 	case SYSLOG_ACTION_CONSOLE_ON:
1547 		if (saved_console_loglevel != LOGLEVEL_DEFAULT) {
1548 			console_loglevel = saved_console_loglevel;
1549 			saved_console_loglevel = LOGLEVEL_DEFAULT;
1550 		}
1551 		break;
1552 	/* Set level of messages printed to console */
1553 	case SYSLOG_ACTION_CONSOLE_LEVEL:
1554 		if (len < 1 || len > 8)
1555 			return -EINVAL;
1556 		if (len < minimum_console_loglevel)
1557 			len = minimum_console_loglevel;
1558 		console_loglevel = len;
1559 		/* Implicitly re-enable logging to console */
1560 		saved_console_loglevel = LOGLEVEL_DEFAULT;
1561 		break;
1562 	/* Number of chars in the log buffer */
1563 	case SYSLOG_ACTION_SIZE_UNREAD:
1564 		logbuf_lock_irq();
1565 		if (syslog_seq < log_first_seq) {
1566 			/* messages are gone, move to first one */
1567 			syslog_seq = log_first_seq;
1568 			syslog_idx = log_first_idx;
1569 			syslog_partial = 0;
1570 		}
1571 		if (source == SYSLOG_FROM_PROC) {
1572 			/*
1573 			 * Short-cut for poll(/"proc/kmsg") which simply checks
1574 			 * for pending data, not the size; return the count of
1575 			 * records, not the length.
1576 			 */
1577 			error = log_next_seq - syslog_seq;
1578 		} else {
1579 			u64 seq = syslog_seq;
1580 			u32 idx = syslog_idx;
1581 			bool time = syslog_partial ? syslog_time : printk_time;
1582 
1583 			while (seq < log_next_seq) {
1584 				struct printk_log *msg = log_from_idx(idx);
1585 
1586 				error += msg_print_text(msg, true, time, NULL,
1587 							0);
1588 				time = printk_time;
1589 				idx = log_next(idx);
1590 				seq++;
1591 			}
1592 			error -= syslog_partial;
1593 		}
1594 		logbuf_unlock_irq();
1595 		break;
1596 	/* Size of the log buffer */
1597 	case SYSLOG_ACTION_SIZE_BUFFER:
1598 		error = log_buf_len;
1599 		break;
1600 	default:
1601 		error = -EINVAL;
1602 		break;
1603 	}
1604 
1605 	return error;
1606 }
1607 
1608 SYSCALL_DEFINE3(syslog, int, type, char __user *, buf, int, len)
1609 {
1610 	return do_syslog(type, buf, len, SYSLOG_FROM_READER);
1611 }
1612 
1613 /*
1614  * Special console_lock variants that help to reduce the risk of soft-lockups.
1615  * They allow to pass console_lock to another printk() call using a busy wait.
1616  */
1617 
1618 #ifdef CONFIG_LOCKDEP
1619 static struct lockdep_map console_owner_dep_map = {
1620 	.name = "console_owner"
1621 };
1622 #endif
1623 
1624 static DEFINE_RAW_SPINLOCK(console_owner_lock);
1625 static struct task_struct *console_owner;
1626 static bool console_waiter;
1627 
1628 /**
1629  * console_lock_spinning_enable - mark beginning of code where another
1630  *	thread might safely busy wait
1631  *
1632  * This basically converts console_lock into a spinlock. This marks
1633  * the section where the console_lock owner can not sleep, because
1634  * there may be a waiter spinning (like a spinlock). Also it must be
1635  * ready to hand over the lock at the end of the section.
1636  */
1637 static void console_lock_spinning_enable(void)
1638 {
1639 	raw_spin_lock(&console_owner_lock);
1640 	console_owner = current;
1641 	raw_spin_unlock(&console_owner_lock);
1642 
1643 	/* The waiter may spin on us after setting console_owner */
1644 	spin_acquire(&console_owner_dep_map, 0, 0, _THIS_IP_);
1645 }
1646 
1647 /**
1648  * console_lock_spinning_disable_and_check - mark end of code where another
1649  *	thread was able to busy wait and check if there is a waiter
1650  *
1651  * This is called at the end of the section where spinning is allowed.
1652  * It has two functions. First, it is a signal that it is no longer
1653  * safe to start busy waiting for the lock. Second, it checks if
1654  * there is a busy waiter and passes the lock rights to her.
1655  *
1656  * Important: Callers lose the lock if there was a busy waiter.
1657  *	They must not touch items synchronized by console_lock
1658  *	in this case.
1659  *
1660  * Return: 1 if the lock rights were passed, 0 otherwise.
1661  */
1662 static int console_lock_spinning_disable_and_check(void)
1663 {
1664 	int waiter;
1665 
1666 	raw_spin_lock(&console_owner_lock);
1667 	waiter = READ_ONCE(console_waiter);
1668 	console_owner = NULL;
1669 	raw_spin_unlock(&console_owner_lock);
1670 
1671 	if (!waiter) {
1672 		spin_release(&console_owner_dep_map, 1, _THIS_IP_);
1673 		return 0;
1674 	}
1675 
1676 	/* The waiter is now free to continue */
1677 	WRITE_ONCE(console_waiter, false);
1678 
1679 	spin_release(&console_owner_dep_map, 1, _THIS_IP_);
1680 
1681 	/*
1682 	 * Hand off console_lock to waiter. The waiter will perform
1683 	 * the up(). After this, the waiter is the console_lock owner.
1684 	 */
1685 	mutex_release(&console_lock_dep_map, 1, _THIS_IP_);
1686 	return 1;
1687 }
1688 
1689 /**
1690  * console_trylock_spinning - try to get console_lock by busy waiting
1691  *
1692  * This allows to busy wait for the console_lock when the current
1693  * owner is running in specially marked sections. It means that
1694  * the current owner is running and cannot reschedule until it
1695  * is ready to lose the lock.
1696  *
1697  * Return: 1 if we got the lock, 0 othrewise
1698  */
1699 static int console_trylock_spinning(void)
1700 {
1701 	struct task_struct *owner = NULL;
1702 	bool waiter;
1703 	bool spin = false;
1704 	unsigned long flags;
1705 
1706 	if (console_trylock())
1707 		return 1;
1708 
1709 	printk_safe_enter_irqsave(flags);
1710 
1711 	raw_spin_lock(&console_owner_lock);
1712 	owner = READ_ONCE(console_owner);
1713 	waiter = READ_ONCE(console_waiter);
1714 	if (!waiter && owner && owner != current) {
1715 		WRITE_ONCE(console_waiter, true);
1716 		spin = true;
1717 	}
1718 	raw_spin_unlock(&console_owner_lock);
1719 
1720 	/*
1721 	 * If there is an active printk() writing to the
1722 	 * consoles, instead of having it write our data too,
1723 	 * see if we can offload that load from the active
1724 	 * printer, and do some printing ourselves.
1725 	 * Go into a spin only if there isn't already a waiter
1726 	 * spinning, and there is an active printer, and
1727 	 * that active printer isn't us (recursive printk?).
1728 	 */
1729 	if (!spin) {
1730 		printk_safe_exit_irqrestore(flags);
1731 		return 0;
1732 	}
1733 
1734 	/* We spin waiting for the owner to release us */
1735 	spin_acquire(&console_owner_dep_map, 0, 0, _THIS_IP_);
1736 	/* Owner will clear console_waiter on hand off */
1737 	while (READ_ONCE(console_waiter))
1738 		cpu_relax();
1739 	spin_release(&console_owner_dep_map, 1, _THIS_IP_);
1740 
1741 	printk_safe_exit_irqrestore(flags);
1742 	/*
1743 	 * The owner passed the console lock to us.
1744 	 * Since we did not spin on console lock, annotate
1745 	 * this as a trylock. Otherwise lockdep will
1746 	 * complain.
1747 	 */
1748 	mutex_acquire(&console_lock_dep_map, 0, 1, _THIS_IP_);
1749 
1750 	return 1;
1751 }
1752 
1753 /*
1754  * Call the console drivers, asking them to write out
1755  * log_buf[start] to log_buf[end - 1].
1756  * The console_lock must be held.
1757  */
1758 static void call_console_drivers(const char *ext_text, size_t ext_len,
1759 				 const char *text, size_t len)
1760 {
1761 	struct console *con;
1762 
1763 	trace_console_rcuidle(text, len);
1764 
1765 	if (!console_drivers)
1766 		return;
1767 
1768 	for_each_console(con) {
1769 		if (exclusive_console && con != exclusive_console)
1770 			continue;
1771 		if (!(con->flags & CON_ENABLED))
1772 			continue;
1773 		if (!con->write)
1774 			continue;
1775 		if (!cpu_online(smp_processor_id()) &&
1776 		    !(con->flags & CON_ANYTIME))
1777 			continue;
1778 		if (con->flags & CON_EXTENDED)
1779 			con->write(con, ext_text, ext_len);
1780 		else
1781 			con->write(con, text, len);
1782 	}
1783 }
1784 
1785 int printk_delay_msec __read_mostly;
1786 
1787 static inline void printk_delay(void)
1788 {
1789 	if (unlikely(printk_delay_msec)) {
1790 		int m = printk_delay_msec;
1791 
1792 		while (m--) {
1793 			mdelay(1);
1794 			touch_nmi_watchdog();
1795 		}
1796 	}
1797 }
1798 
1799 static inline u32 printk_caller_id(void)
1800 {
1801 	return in_task() ? task_pid_nr(current) :
1802 		0x80000000 + raw_smp_processor_id();
1803 }
1804 
1805 /*
1806  * Continuation lines are buffered, and not committed to the record buffer
1807  * until the line is complete, or a race forces it. The line fragments
1808  * though, are printed immediately to the consoles to ensure everything has
1809  * reached the console in case of a kernel crash.
1810  */
1811 static struct cont {
1812 	char buf[LOG_LINE_MAX];
1813 	size_t len;			/* length == 0 means unused buffer */
1814 	u32 caller_id;			/* printk_caller_id() of first print */
1815 	u64 ts_nsec;			/* time of first print */
1816 	u8 level;			/* log level of first message */
1817 	u8 facility;			/* log facility of first message */
1818 	enum log_flags flags;		/* prefix, newline flags */
1819 } cont;
1820 
1821 static void cont_flush(void)
1822 {
1823 	if (cont.len == 0)
1824 		return;
1825 
1826 	log_store(cont.caller_id, cont.facility, cont.level, cont.flags,
1827 		  cont.ts_nsec, NULL, 0, cont.buf, cont.len);
1828 	cont.len = 0;
1829 }
1830 
1831 static bool cont_add(u32 caller_id, int facility, int level,
1832 		     enum log_flags flags, const char *text, size_t len)
1833 {
1834 	/* If the line gets too long, split it up in separate records. */
1835 	if (cont.len + len > sizeof(cont.buf)) {
1836 		cont_flush();
1837 		return false;
1838 	}
1839 
1840 	if (!cont.len) {
1841 		cont.facility = facility;
1842 		cont.level = level;
1843 		cont.caller_id = caller_id;
1844 		cont.ts_nsec = local_clock();
1845 		cont.flags = flags;
1846 	}
1847 
1848 	memcpy(cont.buf + cont.len, text, len);
1849 	cont.len += len;
1850 
1851 	// The original flags come from the first line,
1852 	// but later continuations can add a newline.
1853 	if (flags & LOG_NEWLINE) {
1854 		cont.flags |= LOG_NEWLINE;
1855 		cont_flush();
1856 	}
1857 
1858 	return true;
1859 }
1860 
1861 static size_t log_output(int facility, int level, enum log_flags lflags, const char *dict, size_t dictlen, char *text, size_t text_len)
1862 {
1863 	const u32 caller_id = printk_caller_id();
1864 
1865 	/*
1866 	 * If an earlier line was buffered, and we're a continuation
1867 	 * write from the same context, try to add it to the buffer.
1868 	 */
1869 	if (cont.len) {
1870 		if (cont.caller_id == caller_id && (lflags & LOG_CONT)) {
1871 			if (cont_add(caller_id, facility, level, lflags, text, text_len))
1872 				return text_len;
1873 		}
1874 		/* Otherwise, make sure it's flushed */
1875 		cont_flush();
1876 	}
1877 
1878 	/* Skip empty continuation lines that couldn't be added - they just flush */
1879 	if (!text_len && (lflags & LOG_CONT))
1880 		return 0;
1881 
1882 	/* If it doesn't end in a newline, try to buffer the current line */
1883 	if (!(lflags & LOG_NEWLINE)) {
1884 		if (cont_add(caller_id, facility, level, lflags, text, text_len))
1885 			return text_len;
1886 	}
1887 
1888 	/* Store it in the record log */
1889 	return log_store(caller_id, facility, level, lflags, 0,
1890 			 dict, dictlen, text, text_len);
1891 }
1892 
1893 /* Must be called under logbuf_lock. */
1894 int vprintk_store(int facility, int level,
1895 		  const char *dict, size_t dictlen,
1896 		  const char *fmt, va_list args)
1897 {
1898 	static char textbuf[LOG_LINE_MAX];
1899 	char *text = textbuf;
1900 	size_t text_len;
1901 	enum log_flags lflags = 0;
1902 
1903 	/*
1904 	 * The printf needs to come first; we need the syslog
1905 	 * prefix which might be passed-in as a parameter.
1906 	 */
1907 	text_len = vscnprintf(text, sizeof(textbuf), fmt, args);
1908 
1909 	/* mark and strip a trailing newline */
1910 	if (text_len && text[text_len-1] == '\n') {
1911 		text_len--;
1912 		lflags |= LOG_NEWLINE;
1913 	}
1914 
1915 	/* strip kernel syslog prefix and extract log level or control flags */
1916 	if (facility == 0) {
1917 		int kern_level;
1918 
1919 		while ((kern_level = printk_get_level(text)) != 0) {
1920 			switch (kern_level) {
1921 			case '0' ... '7':
1922 				if (level == LOGLEVEL_DEFAULT)
1923 					level = kern_level - '0';
1924 				break;
1925 			case 'c':	/* KERN_CONT */
1926 				lflags |= LOG_CONT;
1927 			}
1928 
1929 			text_len -= 2;
1930 			text += 2;
1931 		}
1932 	}
1933 
1934 	if (level == LOGLEVEL_DEFAULT)
1935 		level = default_message_loglevel;
1936 
1937 	if (dict)
1938 		lflags |= LOG_NEWLINE;
1939 
1940 	return log_output(facility, level, lflags,
1941 			  dict, dictlen, text, text_len);
1942 }
1943 
1944 asmlinkage int vprintk_emit(int facility, int level,
1945 			    const char *dict, size_t dictlen,
1946 			    const char *fmt, va_list args)
1947 {
1948 	int printed_len;
1949 	bool in_sched = false, pending_output;
1950 	unsigned long flags;
1951 	u64 curr_log_seq;
1952 
1953 	/* Suppress unimportant messages after panic happens */
1954 	if (unlikely(suppress_printk))
1955 		return 0;
1956 
1957 	if (level == LOGLEVEL_SCHED) {
1958 		level = LOGLEVEL_DEFAULT;
1959 		in_sched = true;
1960 	}
1961 
1962 	boot_delay_msec(level);
1963 	printk_delay();
1964 
1965 	/* This stops the holder of console_sem just where we want him */
1966 	logbuf_lock_irqsave(flags);
1967 	curr_log_seq = log_next_seq;
1968 	printed_len = vprintk_store(facility, level, dict, dictlen, fmt, args);
1969 	pending_output = (curr_log_seq != log_next_seq);
1970 	logbuf_unlock_irqrestore(flags);
1971 
1972 	/* If called from the scheduler, we can not call up(). */
1973 	if (!in_sched && pending_output) {
1974 		/*
1975 		 * Disable preemption to avoid being preempted while holding
1976 		 * console_sem which would prevent anyone from printing to
1977 		 * console
1978 		 */
1979 		preempt_disable();
1980 		/*
1981 		 * Try to acquire and then immediately release the console
1982 		 * semaphore.  The release will print out buffers and wake up
1983 		 * /dev/kmsg and syslog() users.
1984 		 */
1985 		if (console_trylock_spinning())
1986 			console_unlock();
1987 		preempt_enable();
1988 	}
1989 
1990 	if (pending_output)
1991 		wake_up_klogd();
1992 	return printed_len;
1993 }
1994 EXPORT_SYMBOL(vprintk_emit);
1995 
1996 asmlinkage int vprintk(const char *fmt, va_list args)
1997 {
1998 	return vprintk_func(fmt, args);
1999 }
2000 EXPORT_SYMBOL(vprintk);
2001 
2002 int vprintk_default(const char *fmt, va_list args)
2003 {
2004 	int r;
2005 
2006 #ifdef CONFIG_KGDB_KDB
2007 	/* Allow to pass printk() to kdb but avoid a recursion. */
2008 	if (unlikely(kdb_trap_printk && kdb_printf_cpu < 0)) {
2009 		r = vkdb_printf(KDB_MSGSRC_PRINTK, fmt, args);
2010 		return r;
2011 	}
2012 #endif
2013 	r = vprintk_emit(0, LOGLEVEL_DEFAULT, NULL, 0, fmt, args);
2014 
2015 	return r;
2016 }
2017 EXPORT_SYMBOL_GPL(vprintk_default);
2018 
2019 /**
2020  * printk - print a kernel message
2021  * @fmt: format string
2022  *
2023  * This is printk(). It can be called from any context. We want it to work.
2024  *
2025  * We try to grab the console_lock. If we succeed, it's easy - we log the
2026  * output and call the console drivers.  If we fail to get the semaphore, we
2027  * place the output into the log buffer and return. The current holder of
2028  * the console_sem will notice the new output in console_unlock(); and will
2029  * send it to the consoles before releasing the lock.
2030  *
2031  * One effect of this deferred printing is that code which calls printk() and
2032  * then changes console_loglevel may break. This is because console_loglevel
2033  * is inspected when the actual printing occurs.
2034  *
2035  * See also:
2036  * printf(3)
2037  *
2038  * See the vsnprintf() documentation for format string extensions over C99.
2039  */
2040 asmlinkage __visible int printk(const char *fmt, ...)
2041 {
2042 	va_list args;
2043 	int r;
2044 
2045 	va_start(args, fmt);
2046 	r = vprintk_func(fmt, args);
2047 	va_end(args);
2048 
2049 	return r;
2050 }
2051 EXPORT_SYMBOL(printk);
2052 
2053 #else /* CONFIG_PRINTK */
2054 
2055 #define LOG_LINE_MAX		0
2056 #define PREFIX_MAX		0
2057 #define printk_time		false
2058 
2059 static u64 syslog_seq;
2060 static u32 syslog_idx;
2061 static u64 console_seq;
2062 static u32 console_idx;
2063 static u64 exclusive_console_stop_seq;
2064 static u64 log_first_seq;
2065 static u32 log_first_idx;
2066 static u64 log_next_seq;
2067 static char *log_text(const struct printk_log *msg) { return NULL; }
2068 static char *log_dict(const struct printk_log *msg) { return NULL; }
2069 static struct printk_log *log_from_idx(u32 idx) { return NULL; }
2070 static u32 log_next(u32 idx) { return 0; }
2071 static ssize_t msg_print_ext_header(char *buf, size_t size,
2072 				    struct printk_log *msg,
2073 				    u64 seq) { return 0; }
2074 static ssize_t msg_print_ext_body(char *buf, size_t size,
2075 				  char *dict, size_t dict_len,
2076 				  char *text, size_t text_len) { return 0; }
2077 static void console_lock_spinning_enable(void) { }
2078 static int console_lock_spinning_disable_and_check(void) { return 0; }
2079 static void call_console_drivers(const char *ext_text, size_t ext_len,
2080 				 const char *text, size_t len) {}
2081 static size_t msg_print_text(const struct printk_log *msg, bool syslog,
2082 			     bool time, char *buf, size_t size) { return 0; }
2083 static bool suppress_message_printing(int level) { return false; }
2084 
2085 #endif /* CONFIG_PRINTK */
2086 
2087 #ifdef CONFIG_EARLY_PRINTK
2088 struct console *early_console;
2089 
2090 asmlinkage __visible void early_printk(const char *fmt, ...)
2091 {
2092 	va_list ap;
2093 	char buf[512];
2094 	int n;
2095 
2096 	if (!early_console)
2097 		return;
2098 
2099 	va_start(ap, fmt);
2100 	n = vscnprintf(buf, sizeof(buf), fmt, ap);
2101 	va_end(ap);
2102 
2103 	early_console->write(early_console, buf, n);
2104 }
2105 #endif
2106 
2107 static int __add_preferred_console(char *name, int idx, char *options,
2108 				   char *brl_options)
2109 {
2110 	struct console_cmdline *c;
2111 	int i;
2112 
2113 	/*
2114 	 *	See if this tty is not yet registered, and
2115 	 *	if we have a slot free.
2116 	 */
2117 	for (i = 0, c = console_cmdline;
2118 	     i < MAX_CMDLINECONSOLES && c->name[0];
2119 	     i++, c++) {
2120 		if (strcmp(c->name, name) == 0 && c->index == idx) {
2121 			if (!brl_options)
2122 				preferred_console = i;
2123 			return 0;
2124 		}
2125 	}
2126 	if (i == MAX_CMDLINECONSOLES)
2127 		return -E2BIG;
2128 	if (!brl_options)
2129 		preferred_console = i;
2130 	strlcpy(c->name, name, sizeof(c->name));
2131 	c->options = options;
2132 	braille_set_options(c, brl_options);
2133 
2134 	c->index = idx;
2135 	return 0;
2136 }
2137 
2138 static int __init console_msg_format_setup(char *str)
2139 {
2140 	if (!strcmp(str, "syslog"))
2141 		console_msg_format = MSG_FORMAT_SYSLOG;
2142 	if (!strcmp(str, "default"))
2143 		console_msg_format = MSG_FORMAT_DEFAULT;
2144 	return 1;
2145 }
2146 __setup("console_msg_format=", console_msg_format_setup);
2147 
2148 /*
2149  * Set up a console.  Called via do_early_param() in init/main.c
2150  * for each "console=" parameter in the boot command line.
2151  */
2152 static int __init console_setup(char *str)
2153 {
2154 	char buf[sizeof(console_cmdline[0].name) + 4]; /* 4 for "ttyS" */
2155 	char *s, *options, *brl_options = NULL;
2156 	int idx;
2157 
2158 	if (_braille_console_setup(&str, &brl_options))
2159 		return 1;
2160 
2161 	/*
2162 	 * Decode str into name, index, options.
2163 	 */
2164 	if (str[0] >= '0' && str[0] <= '9') {
2165 		strcpy(buf, "ttyS");
2166 		strncpy(buf + 4, str, sizeof(buf) - 5);
2167 	} else {
2168 		strncpy(buf, str, sizeof(buf) - 1);
2169 	}
2170 	buf[sizeof(buf) - 1] = 0;
2171 	options = strchr(str, ',');
2172 	if (options)
2173 		*(options++) = 0;
2174 #ifdef __sparc__
2175 	if (!strcmp(str, "ttya"))
2176 		strcpy(buf, "ttyS0");
2177 	if (!strcmp(str, "ttyb"))
2178 		strcpy(buf, "ttyS1");
2179 #endif
2180 	for (s = buf; *s; s++)
2181 		if (isdigit(*s) || *s == ',')
2182 			break;
2183 	idx = simple_strtoul(s, NULL, 10);
2184 	*s = 0;
2185 
2186 	__add_preferred_console(buf, idx, options, brl_options);
2187 	console_set_on_cmdline = 1;
2188 	return 1;
2189 }
2190 __setup("console=", console_setup);
2191 
2192 /**
2193  * add_preferred_console - add a device to the list of preferred consoles.
2194  * @name: device name
2195  * @idx: device index
2196  * @options: options for this console
2197  *
2198  * The last preferred console added will be used for kernel messages
2199  * and stdin/out/err for init.  Normally this is used by console_setup
2200  * above to handle user-supplied console arguments; however it can also
2201  * be used by arch-specific code either to override the user or more
2202  * commonly to provide a default console (ie from PROM variables) when
2203  * the user has not supplied one.
2204  */
2205 int add_preferred_console(char *name, int idx, char *options)
2206 {
2207 	return __add_preferred_console(name, idx, options, NULL);
2208 }
2209 
2210 bool console_suspend_enabled = true;
2211 EXPORT_SYMBOL(console_suspend_enabled);
2212 
2213 static int __init console_suspend_disable(char *str)
2214 {
2215 	console_suspend_enabled = false;
2216 	return 1;
2217 }
2218 __setup("no_console_suspend", console_suspend_disable);
2219 module_param_named(console_suspend, console_suspend_enabled,
2220 		bool, S_IRUGO | S_IWUSR);
2221 MODULE_PARM_DESC(console_suspend, "suspend console during suspend"
2222 	" and hibernate operations");
2223 
2224 /**
2225  * suspend_console - suspend the console subsystem
2226  *
2227  * This disables printk() while we go into suspend states
2228  */
2229 void suspend_console(void)
2230 {
2231 	if (!console_suspend_enabled)
2232 		return;
2233 	pr_info("Suspending console(s) (use no_console_suspend to debug)\n");
2234 	console_lock();
2235 	console_suspended = 1;
2236 	up_console_sem();
2237 }
2238 
2239 void resume_console(void)
2240 {
2241 	if (!console_suspend_enabled)
2242 		return;
2243 	down_console_sem();
2244 	console_suspended = 0;
2245 	console_unlock();
2246 }
2247 
2248 /**
2249  * console_cpu_notify - print deferred console messages after CPU hotplug
2250  * @cpu: unused
2251  *
2252  * If printk() is called from a CPU that is not online yet, the messages
2253  * will be printed on the console only if there are CON_ANYTIME consoles.
2254  * This function is called when a new CPU comes online (or fails to come
2255  * up) or goes offline.
2256  */
2257 static int console_cpu_notify(unsigned int cpu)
2258 {
2259 	if (!cpuhp_tasks_frozen) {
2260 		/* If trylock fails, someone else is doing the printing */
2261 		if (console_trylock())
2262 			console_unlock();
2263 	}
2264 	return 0;
2265 }
2266 
2267 /**
2268  * console_lock - lock the console system for exclusive use.
2269  *
2270  * Acquires a lock which guarantees that the caller has
2271  * exclusive access to the console system and the console_drivers list.
2272  *
2273  * Can sleep, returns nothing.
2274  */
2275 void console_lock(void)
2276 {
2277 	might_sleep();
2278 
2279 	down_console_sem();
2280 	if (console_suspended)
2281 		return;
2282 	console_locked = 1;
2283 	console_may_schedule = 1;
2284 }
2285 EXPORT_SYMBOL(console_lock);
2286 
2287 /**
2288  * console_trylock - try to lock the console system for exclusive use.
2289  *
2290  * Try to acquire a lock which guarantees that the caller has exclusive
2291  * access to the console system and the console_drivers list.
2292  *
2293  * returns 1 on success, and 0 on failure to acquire the lock.
2294  */
2295 int console_trylock(void)
2296 {
2297 	if (down_trylock_console_sem())
2298 		return 0;
2299 	if (console_suspended) {
2300 		up_console_sem();
2301 		return 0;
2302 	}
2303 	console_locked = 1;
2304 	console_may_schedule = 0;
2305 	return 1;
2306 }
2307 EXPORT_SYMBOL(console_trylock);
2308 
2309 int is_console_locked(void)
2310 {
2311 	return console_locked;
2312 }
2313 EXPORT_SYMBOL(is_console_locked);
2314 
2315 /*
2316  * Check if we have any console that is capable of printing while cpu is
2317  * booting or shutting down. Requires console_sem.
2318  */
2319 static int have_callable_console(void)
2320 {
2321 	struct console *con;
2322 
2323 	for_each_console(con)
2324 		if ((con->flags & CON_ENABLED) &&
2325 				(con->flags & CON_ANYTIME))
2326 			return 1;
2327 
2328 	return 0;
2329 }
2330 
2331 /*
2332  * Can we actually use the console at this time on this cpu?
2333  *
2334  * Console drivers may assume that per-cpu resources have been allocated. So
2335  * unless they're explicitly marked as being able to cope (CON_ANYTIME) don't
2336  * call them until this CPU is officially up.
2337  */
2338 static inline int can_use_console(void)
2339 {
2340 	return cpu_online(raw_smp_processor_id()) || have_callable_console();
2341 }
2342 
2343 /**
2344  * console_unlock - unlock the console system
2345  *
2346  * Releases the console_lock which the caller holds on the console system
2347  * and the console driver list.
2348  *
2349  * While the console_lock was held, console output may have been buffered
2350  * by printk().  If this is the case, console_unlock(); emits
2351  * the output prior to releasing the lock.
2352  *
2353  * If there is output waiting, we wake /dev/kmsg and syslog() users.
2354  *
2355  * console_unlock(); may be called from any context.
2356  */
2357 void console_unlock(void)
2358 {
2359 	static char ext_text[CONSOLE_EXT_LOG_MAX];
2360 	static char text[LOG_LINE_MAX + PREFIX_MAX];
2361 	unsigned long flags;
2362 	bool do_cond_resched, retry;
2363 
2364 	if (console_suspended) {
2365 		up_console_sem();
2366 		return;
2367 	}
2368 
2369 	/*
2370 	 * Console drivers are called with interrupts disabled, so
2371 	 * @console_may_schedule should be cleared before; however, we may
2372 	 * end up dumping a lot of lines, for example, if called from
2373 	 * console registration path, and should invoke cond_resched()
2374 	 * between lines if allowable.  Not doing so can cause a very long
2375 	 * scheduling stall on a slow console leading to RCU stall and
2376 	 * softlockup warnings which exacerbate the issue with more
2377 	 * messages practically incapacitating the system.
2378 	 *
2379 	 * console_trylock() is not able to detect the preemptive
2380 	 * context reliably. Therefore the value must be stored before
2381 	 * and cleared after the the "again" goto label.
2382 	 */
2383 	do_cond_resched = console_may_schedule;
2384 again:
2385 	console_may_schedule = 0;
2386 
2387 	/*
2388 	 * We released the console_sem lock, so we need to recheck if
2389 	 * cpu is online and (if not) is there at least one CON_ANYTIME
2390 	 * console.
2391 	 */
2392 	if (!can_use_console()) {
2393 		console_locked = 0;
2394 		up_console_sem();
2395 		return;
2396 	}
2397 
2398 	for (;;) {
2399 		struct printk_log *msg;
2400 		size_t ext_len = 0;
2401 		size_t len;
2402 
2403 		printk_safe_enter_irqsave(flags);
2404 		raw_spin_lock(&logbuf_lock);
2405 		if (console_seq < log_first_seq) {
2406 			len = sprintf(text,
2407 				      "** %llu printk messages dropped **\n",
2408 				      log_first_seq - console_seq);
2409 
2410 			/* messages are gone, move to first one */
2411 			console_seq = log_first_seq;
2412 			console_idx = log_first_idx;
2413 		} else {
2414 			len = 0;
2415 		}
2416 skip:
2417 		if (console_seq == log_next_seq)
2418 			break;
2419 
2420 		msg = log_from_idx(console_idx);
2421 		if (suppress_message_printing(msg->level)) {
2422 			/*
2423 			 * Skip record we have buffered and already printed
2424 			 * directly to the console when we received it, and
2425 			 * record that has level above the console loglevel.
2426 			 */
2427 			console_idx = log_next(console_idx);
2428 			console_seq++;
2429 			goto skip;
2430 		}
2431 
2432 		/* Output to all consoles once old messages replayed. */
2433 		if (unlikely(exclusive_console &&
2434 			     console_seq >= exclusive_console_stop_seq)) {
2435 			exclusive_console = NULL;
2436 		}
2437 
2438 		len += msg_print_text(msg,
2439 				console_msg_format & MSG_FORMAT_SYSLOG,
2440 				printk_time, text + len, sizeof(text) - len);
2441 		if (nr_ext_console_drivers) {
2442 			ext_len = msg_print_ext_header(ext_text,
2443 						sizeof(ext_text),
2444 						msg, console_seq);
2445 			ext_len += msg_print_ext_body(ext_text + ext_len,
2446 						sizeof(ext_text) - ext_len,
2447 						log_dict(msg), msg->dict_len,
2448 						log_text(msg), msg->text_len);
2449 		}
2450 		console_idx = log_next(console_idx);
2451 		console_seq++;
2452 		raw_spin_unlock(&logbuf_lock);
2453 
2454 		/*
2455 		 * While actively printing out messages, if another printk()
2456 		 * were to occur on another CPU, it may wait for this one to
2457 		 * finish. This task can not be preempted if there is a
2458 		 * waiter waiting to take over.
2459 		 */
2460 		console_lock_spinning_enable();
2461 
2462 		stop_critical_timings();	/* don't trace print latency */
2463 		call_console_drivers(ext_text, ext_len, text, len);
2464 		start_critical_timings();
2465 
2466 		if (console_lock_spinning_disable_and_check()) {
2467 			printk_safe_exit_irqrestore(flags);
2468 			return;
2469 		}
2470 
2471 		printk_safe_exit_irqrestore(flags);
2472 
2473 		if (do_cond_resched)
2474 			cond_resched();
2475 	}
2476 
2477 	console_locked = 0;
2478 
2479 	raw_spin_unlock(&logbuf_lock);
2480 
2481 	up_console_sem();
2482 
2483 	/*
2484 	 * Someone could have filled up the buffer again, so re-check if there's
2485 	 * something to flush. In case we cannot trylock the console_sem again,
2486 	 * there's a new owner and the console_unlock() from them will do the
2487 	 * flush, no worries.
2488 	 */
2489 	raw_spin_lock(&logbuf_lock);
2490 	retry = console_seq != log_next_seq;
2491 	raw_spin_unlock(&logbuf_lock);
2492 	printk_safe_exit_irqrestore(flags);
2493 
2494 	if (retry && console_trylock())
2495 		goto again;
2496 }
2497 EXPORT_SYMBOL(console_unlock);
2498 
2499 /**
2500  * console_conditional_schedule - yield the CPU if required
2501  *
2502  * If the console code is currently allowed to sleep, and
2503  * if this CPU should yield the CPU to another task, do
2504  * so here.
2505  *
2506  * Must be called within console_lock();.
2507  */
2508 void __sched console_conditional_schedule(void)
2509 {
2510 	if (console_may_schedule)
2511 		cond_resched();
2512 }
2513 EXPORT_SYMBOL(console_conditional_schedule);
2514 
2515 void console_unblank(void)
2516 {
2517 	struct console *c;
2518 
2519 	/*
2520 	 * console_unblank can no longer be called in interrupt context unless
2521 	 * oops_in_progress is set to 1..
2522 	 */
2523 	if (oops_in_progress) {
2524 		if (down_trylock_console_sem() != 0)
2525 			return;
2526 	} else
2527 		console_lock();
2528 
2529 	console_locked = 1;
2530 	console_may_schedule = 0;
2531 	for_each_console(c)
2532 		if ((c->flags & CON_ENABLED) && c->unblank)
2533 			c->unblank();
2534 	console_unlock();
2535 }
2536 
2537 /**
2538  * console_flush_on_panic - flush console content on panic
2539  * @mode: flush all messages in buffer or just the pending ones
2540  *
2541  * Immediately output all pending messages no matter what.
2542  */
2543 void console_flush_on_panic(enum con_flush_mode mode)
2544 {
2545 	/*
2546 	 * If someone else is holding the console lock, trylock will fail
2547 	 * and may_schedule may be set.  Ignore and proceed to unlock so
2548 	 * that messages are flushed out.  As this can be called from any
2549 	 * context and we don't want to get preempted while flushing,
2550 	 * ensure may_schedule is cleared.
2551 	 */
2552 	console_trylock();
2553 	console_may_schedule = 0;
2554 
2555 	if (mode == CONSOLE_REPLAY_ALL) {
2556 		unsigned long flags;
2557 
2558 		logbuf_lock_irqsave(flags);
2559 		console_seq = log_first_seq;
2560 		console_idx = log_first_idx;
2561 		logbuf_unlock_irqrestore(flags);
2562 	}
2563 	console_unlock();
2564 }
2565 
2566 /*
2567  * Return the console tty driver structure and its associated index
2568  */
2569 struct tty_driver *console_device(int *index)
2570 {
2571 	struct console *c;
2572 	struct tty_driver *driver = NULL;
2573 
2574 	console_lock();
2575 	for_each_console(c) {
2576 		if (!c->device)
2577 			continue;
2578 		driver = c->device(c, index);
2579 		if (driver)
2580 			break;
2581 	}
2582 	console_unlock();
2583 	return driver;
2584 }
2585 
2586 /*
2587  * Prevent further output on the passed console device so that (for example)
2588  * serial drivers can disable console output before suspending a port, and can
2589  * re-enable output afterwards.
2590  */
2591 void console_stop(struct console *console)
2592 {
2593 	console_lock();
2594 	console->flags &= ~CON_ENABLED;
2595 	console_unlock();
2596 }
2597 EXPORT_SYMBOL(console_stop);
2598 
2599 void console_start(struct console *console)
2600 {
2601 	console_lock();
2602 	console->flags |= CON_ENABLED;
2603 	console_unlock();
2604 }
2605 EXPORT_SYMBOL(console_start);
2606 
2607 static int __read_mostly keep_bootcon;
2608 
2609 static int __init keep_bootcon_setup(char *str)
2610 {
2611 	keep_bootcon = 1;
2612 	pr_info("debug: skip boot console de-registration.\n");
2613 
2614 	return 0;
2615 }
2616 
2617 early_param("keep_bootcon", keep_bootcon_setup);
2618 
2619 /*
2620  * The console driver calls this routine during kernel initialization
2621  * to register the console printing procedure with printk() and to
2622  * print any messages that were printed by the kernel before the
2623  * console driver was initialized.
2624  *
2625  * This can happen pretty early during the boot process (because of
2626  * early_printk) - sometimes before setup_arch() completes - be careful
2627  * of what kernel features are used - they may not be initialised yet.
2628  *
2629  * There are two types of consoles - bootconsoles (early_printk) and
2630  * "real" consoles (everything which is not a bootconsole) which are
2631  * handled differently.
2632  *  - Any number of bootconsoles can be registered at any time.
2633  *  - As soon as a "real" console is registered, all bootconsoles
2634  *    will be unregistered automatically.
2635  *  - Once a "real" console is registered, any attempt to register a
2636  *    bootconsoles will be rejected
2637  */
2638 void register_console(struct console *newcon)
2639 {
2640 	int i;
2641 	unsigned long flags;
2642 	struct console *bcon = NULL;
2643 	struct console_cmdline *c;
2644 	static bool has_preferred;
2645 
2646 	if (console_drivers)
2647 		for_each_console(bcon)
2648 			if (WARN(bcon == newcon,
2649 					"console '%s%d' already registered\n",
2650 					bcon->name, bcon->index))
2651 				return;
2652 
2653 	/*
2654 	 * before we register a new CON_BOOT console, make sure we don't
2655 	 * already have a valid console
2656 	 */
2657 	if (console_drivers && newcon->flags & CON_BOOT) {
2658 		/* find the last or real console */
2659 		for_each_console(bcon) {
2660 			if (!(bcon->flags & CON_BOOT)) {
2661 				pr_info("Too late to register bootconsole %s%d\n",
2662 					newcon->name, newcon->index);
2663 				return;
2664 			}
2665 		}
2666 	}
2667 
2668 	if (console_drivers && console_drivers->flags & CON_BOOT)
2669 		bcon = console_drivers;
2670 
2671 	if (!has_preferred || bcon || !console_drivers)
2672 		has_preferred = preferred_console >= 0;
2673 
2674 	/*
2675 	 *	See if we want to use this console driver. If we
2676 	 *	didn't select a console we take the first one
2677 	 *	that registers here.
2678 	 */
2679 	if (!has_preferred) {
2680 		if (newcon->index < 0)
2681 			newcon->index = 0;
2682 		if (newcon->setup == NULL ||
2683 		    newcon->setup(newcon, NULL) == 0) {
2684 			newcon->flags |= CON_ENABLED;
2685 			if (newcon->device) {
2686 				newcon->flags |= CON_CONSDEV;
2687 				has_preferred = true;
2688 			}
2689 		}
2690 	}
2691 
2692 	/*
2693 	 *	See if this console matches one we selected on
2694 	 *	the command line.
2695 	 */
2696 	for (i = 0, c = console_cmdline;
2697 	     i < MAX_CMDLINECONSOLES && c->name[0];
2698 	     i++, c++) {
2699 		if (!newcon->match ||
2700 		    newcon->match(newcon, c->name, c->index, c->options) != 0) {
2701 			/* default matching */
2702 			BUILD_BUG_ON(sizeof(c->name) != sizeof(newcon->name));
2703 			if (strcmp(c->name, newcon->name) != 0)
2704 				continue;
2705 			if (newcon->index >= 0 &&
2706 			    newcon->index != c->index)
2707 				continue;
2708 			if (newcon->index < 0)
2709 				newcon->index = c->index;
2710 
2711 			if (_braille_register_console(newcon, c))
2712 				return;
2713 
2714 			if (newcon->setup &&
2715 			    newcon->setup(newcon, c->options) != 0)
2716 				break;
2717 		}
2718 
2719 		newcon->flags |= CON_ENABLED;
2720 		if (i == preferred_console) {
2721 			newcon->flags |= CON_CONSDEV;
2722 			has_preferred = true;
2723 		}
2724 		break;
2725 	}
2726 
2727 	if (!(newcon->flags & CON_ENABLED))
2728 		return;
2729 
2730 	/*
2731 	 * If we have a bootconsole, and are switching to a real console,
2732 	 * don't print everything out again, since when the boot console, and
2733 	 * the real console are the same physical device, it's annoying to
2734 	 * see the beginning boot messages twice
2735 	 */
2736 	if (bcon && ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV))
2737 		newcon->flags &= ~CON_PRINTBUFFER;
2738 
2739 	/*
2740 	 *	Put this console in the list - keep the
2741 	 *	preferred driver at the head of the list.
2742 	 */
2743 	console_lock();
2744 	if ((newcon->flags & CON_CONSDEV) || console_drivers == NULL) {
2745 		newcon->next = console_drivers;
2746 		console_drivers = newcon;
2747 		if (newcon->next)
2748 			newcon->next->flags &= ~CON_CONSDEV;
2749 	} else {
2750 		newcon->next = console_drivers->next;
2751 		console_drivers->next = newcon;
2752 	}
2753 
2754 	if (newcon->flags & CON_EXTENDED)
2755 		nr_ext_console_drivers++;
2756 
2757 	if (newcon->flags & CON_PRINTBUFFER) {
2758 		/*
2759 		 * console_unlock(); will print out the buffered messages
2760 		 * for us.
2761 		 */
2762 		logbuf_lock_irqsave(flags);
2763 		console_seq = syslog_seq;
2764 		console_idx = syslog_idx;
2765 		/*
2766 		 * We're about to replay the log buffer.  Only do this to the
2767 		 * just-registered console to avoid excessive message spam to
2768 		 * the already-registered consoles.
2769 		 *
2770 		 * Set exclusive_console with disabled interrupts to reduce
2771 		 * race window with eventual console_flush_on_panic() that
2772 		 * ignores console_lock.
2773 		 */
2774 		exclusive_console = newcon;
2775 		exclusive_console_stop_seq = console_seq;
2776 		logbuf_unlock_irqrestore(flags);
2777 	}
2778 	console_unlock();
2779 	console_sysfs_notify();
2780 
2781 	/*
2782 	 * By unregistering the bootconsoles after we enable the real console
2783 	 * we get the "console xxx enabled" message on all the consoles -
2784 	 * boot consoles, real consoles, etc - this is to ensure that end
2785 	 * users know there might be something in the kernel's log buffer that
2786 	 * went to the bootconsole (that they do not see on the real console)
2787 	 */
2788 	pr_info("%sconsole [%s%d] enabled\n",
2789 		(newcon->flags & CON_BOOT) ? "boot" : "" ,
2790 		newcon->name, newcon->index);
2791 	if (bcon &&
2792 	    ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV) &&
2793 	    !keep_bootcon) {
2794 		/* We need to iterate through all boot consoles, to make
2795 		 * sure we print everything out, before we unregister them.
2796 		 */
2797 		for_each_console(bcon)
2798 			if (bcon->flags & CON_BOOT)
2799 				unregister_console(bcon);
2800 	}
2801 }
2802 EXPORT_SYMBOL(register_console);
2803 
2804 int unregister_console(struct console *console)
2805 {
2806         struct console *a, *b;
2807 	int res;
2808 
2809 	pr_info("%sconsole [%s%d] disabled\n",
2810 		(console->flags & CON_BOOT) ? "boot" : "" ,
2811 		console->name, console->index);
2812 
2813 	res = _braille_unregister_console(console);
2814 	if (res)
2815 		return res;
2816 
2817 	res = 1;
2818 	console_lock();
2819 	if (console_drivers == console) {
2820 		console_drivers=console->next;
2821 		res = 0;
2822 	} else if (console_drivers) {
2823 		for (a=console_drivers->next, b=console_drivers ;
2824 		     a; b=a, a=b->next) {
2825 			if (a == console) {
2826 				b->next = a->next;
2827 				res = 0;
2828 				break;
2829 			}
2830 		}
2831 	}
2832 
2833 	if (!res && (console->flags & CON_EXTENDED))
2834 		nr_ext_console_drivers--;
2835 
2836 	/*
2837 	 * If this isn't the last console and it has CON_CONSDEV set, we
2838 	 * need to set it on the next preferred console.
2839 	 */
2840 	if (console_drivers != NULL && console->flags & CON_CONSDEV)
2841 		console_drivers->flags |= CON_CONSDEV;
2842 
2843 	console->flags &= ~CON_ENABLED;
2844 	console_unlock();
2845 	console_sysfs_notify();
2846 	return res;
2847 }
2848 EXPORT_SYMBOL(unregister_console);
2849 
2850 /*
2851  * Initialize the console device. This is called *early*, so
2852  * we can't necessarily depend on lots of kernel help here.
2853  * Just do some early initializations, and do the complex setup
2854  * later.
2855  */
2856 void __init console_init(void)
2857 {
2858 	int ret;
2859 	initcall_t call;
2860 	initcall_entry_t *ce;
2861 
2862 	/* Setup the default TTY line discipline. */
2863 	n_tty_init();
2864 
2865 	/*
2866 	 * set up the console device so that later boot sequences can
2867 	 * inform about problems etc..
2868 	 */
2869 	ce = __con_initcall_start;
2870 	trace_initcall_level("console");
2871 	while (ce < __con_initcall_end) {
2872 		call = initcall_from_entry(ce);
2873 		trace_initcall_start(call);
2874 		ret = call();
2875 		trace_initcall_finish(call, ret);
2876 		ce++;
2877 	}
2878 }
2879 
2880 /*
2881  * Some boot consoles access data that is in the init section and which will
2882  * be discarded after the initcalls have been run. To make sure that no code
2883  * will access this data, unregister the boot consoles in a late initcall.
2884  *
2885  * If for some reason, such as deferred probe or the driver being a loadable
2886  * module, the real console hasn't registered yet at this point, there will
2887  * be a brief interval in which no messages are logged to the console, which
2888  * makes it difficult to diagnose problems that occur during this time.
2889  *
2890  * To mitigate this problem somewhat, only unregister consoles whose memory
2891  * intersects with the init section. Note that all other boot consoles will
2892  * get unregistred when the real preferred console is registered.
2893  */
2894 static int __init printk_late_init(void)
2895 {
2896 	struct console *con;
2897 	int ret;
2898 
2899 	for_each_console(con) {
2900 		if (!(con->flags & CON_BOOT))
2901 			continue;
2902 
2903 		/* Check addresses that might be used for enabled consoles. */
2904 		if (init_section_intersects(con, sizeof(*con)) ||
2905 		    init_section_contains(con->write, 0) ||
2906 		    init_section_contains(con->read, 0) ||
2907 		    init_section_contains(con->device, 0) ||
2908 		    init_section_contains(con->unblank, 0) ||
2909 		    init_section_contains(con->data, 0)) {
2910 			/*
2911 			 * Please, consider moving the reported consoles out
2912 			 * of the init section.
2913 			 */
2914 			pr_warn("bootconsole [%s%d] uses init memory and must be disabled even before the real one is ready\n",
2915 				con->name, con->index);
2916 			unregister_console(con);
2917 		}
2918 	}
2919 	ret = cpuhp_setup_state_nocalls(CPUHP_PRINTK_DEAD, "printk:dead", NULL,
2920 					console_cpu_notify);
2921 	WARN_ON(ret < 0);
2922 	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "printk:online",
2923 					console_cpu_notify, NULL);
2924 	WARN_ON(ret < 0);
2925 	return 0;
2926 }
2927 late_initcall(printk_late_init);
2928 
2929 #if defined CONFIG_PRINTK
2930 /*
2931  * Delayed printk version, for scheduler-internal messages:
2932  */
2933 #define PRINTK_PENDING_WAKEUP	0x01
2934 #define PRINTK_PENDING_OUTPUT	0x02
2935 
2936 static DEFINE_PER_CPU(int, printk_pending);
2937 
2938 static void wake_up_klogd_work_func(struct irq_work *irq_work)
2939 {
2940 	int pending = __this_cpu_xchg(printk_pending, 0);
2941 
2942 	if (pending & PRINTK_PENDING_OUTPUT) {
2943 		/* If trylock fails, someone else is doing the printing */
2944 		if (console_trylock())
2945 			console_unlock();
2946 	}
2947 
2948 	if (pending & PRINTK_PENDING_WAKEUP)
2949 		wake_up_interruptible(&log_wait);
2950 }
2951 
2952 static DEFINE_PER_CPU(struct irq_work, wake_up_klogd_work) = {
2953 	.func = wake_up_klogd_work_func,
2954 	.flags = IRQ_WORK_LAZY,
2955 };
2956 
2957 void wake_up_klogd(void)
2958 {
2959 	preempt_disable();
2960 	if (waitqueue_active(&log_wait)) {
2961 		this_cpu_or(printk_pending, PRINTK_PENDING_WAKEUP);
2962 		irq_work_queue(this_cpu_ptr(&wake_up_klogd_work));
2963 	}
2964 	preempt_enable();
2965 }
2966 
2967 void defer_console_output(void)
2968 {
2969 	preempt_disable();
2970 	__this_cpu_or(printk_pending, PRINTK_PENDING_OUTPUT);
2971 	irq_work_queue(this_cpu_ptr(&wake_up_klogd_work));
2972 	preempt_enable();
2973 }
2974 
2975 int vprintk_deferred(const char *fmt, va_list args)
2976 {
2977 	int r;
2978 
2979 	r = vprintk_emit(0, LOGLEVEL_SCHED, NULL, 0, fmt, args);
2980 	defer_console_output();
2981 
2982 	return r;
2983 }
2984 
2985 int printk_deferred(const char *fmt, ...)
2986 {
2987 	va_list args;
2988 	int r;
2989 
2990 	va_start(args, fmt);
2991 	r = vprintk_deferred(fmt, args);
2992 	va_end(args);
2993 
2994 	return r;
2995 }
2996 
2997 /*
2998  * printk rate limiting, lifted from the networking subsystem.
2999  *
3000  * This enforces a rate limit: not more than 10 kernel messages
3001  * every 5s to make a denial-of-service attack impossible.
3002  */
3003 DEFINE_RATELIMIT_STATE(printk_ratelimit_state, 5 * HZ, 10);
3004 
3005 int __printk_ratelimit(const char *func)
3006 {
3007 	return ___ratelimit(&printk_ratelimit_state, func);
3008 }
3009 EXPORT_SYMBOL(__printk_ratelimit);
3010 
3011 /**
3012  * printk_timed_ratelimit - caller-controlled printk ratelimiting
3013  * @caller_jiffies: pointer to caller's state
3014  * @interval_msecs: minimum interval between prints
3015  *
3016  * printk_timed_ratelimit() returns true if more than @interval_msecs
3017  * milliseconds have elapsed since the last time printk_timed_ratelimit()
3018  * returned true.
3019  */
3020 bool printk_timed_ratelimit(unsigned long *caller_jiffies,
3021 			unsigned int interval_msecs)
3022 {
3023 	unsigned long elapsed = jiffies - *caller_jiffies;
3024 
3025 	if (*caller_jiffies && elapsed <= msecs_to_jiffies(interval_msecs))
3026 		return false;
3027 
3028 	*caller_jiffies = jiffies;
3029 	return true;
3030 }
3031 EXPORT_SYMBOL(printk_timed_ratelimit);
3032 
3033 static DEFINE_SPINLOCK(dump_list_lock);
3034 static LIST_HEAD(dump_list);
3035 
3036 /**
3037  * kmsg_dump_register - register a kernel log dumper.
3038  * @dumper: pointer to the kmsg_dumper structure
3039  *
3040  * Adds a kernel log dumper to the system. The dump callback in the
3041  * structure will be called when the kernel oopses or panics and must be
3042  * set. Returns zero on success and %-EINVAL or %-EBUSY otherwise.
3043  */
3044 int kmsg_dump_register(struct kmsg_dumper *dumper)
3045 {
3046 	unsigned long flags;
3047 	int err = -EBUSY;
3048 
3049 	/* The dump callback needs to be set */
3050 	if (!dumper->dump)
3051 		return -EINVAL;
3052 
3053 	spin_lock_irqsave(&dump_list_lock, flags);
3054 	/* Don't allow registering multiple times */
3055 	if (!dumper->registered) {
3056 		dumper->registered = 1;
3057 		list_add_tail_rcu(&dumper->list, &dump_list);
3058 		err = 0;
3059 	}
3060 	spin_unlock_irqrestore(&dump_list_lock, flags);
3061 
3062 	return err;
3063 }
3064 EXPORT_SYMBOL_GPL(kmsg_dump_register);
3065 
3066 /**
3067  * kmsg_dump_unregister - unregister a kmsg dumper.
3068  * @dumper: pointer to the kmsg_dumper structure
3069  *
3070  * Removes a dump device from the system. Returns zero on success and
3071  * %-EINVAL otherwise.
3072  */
3073 int kmsg_dump_unregister(struct kmsg_dumper *dumper)
3074 {
3075 	unsigned long flags;
3076 	int err = -EINVAL;
3077 
3078 	spin_lock_irqsave(&dump_list_lock, flags);
3079 	if (dumper->registered) {
3080 		dumper->registered = 0;
3081 		list_del_rcu(&dumper->list);
3082 		err = 0;
3083 	}
3084 	spin_unlock_irqrestore(&dump_list_lock, flags);
3085 	synchronize_rcu();
3086 
3087 	return err;
3088 }
3089 EXPORT_SYMBOL_GPL(kmsg_dump_unregister);
3090 
3091 static bool always_kmsg_dump;
3092 module_param_named(always_kmsg_dump, always_kmsg_dump, bool, S_IRUGO | S_IWUSR);
3093 
3094 /**
3095  * kmsg_dump - dump kernel log to kernel message dumpers.
3096  * @reason: the reason (oops, panic etc) for dumping
3097  *
3098  * Call each of the registered dumper's dump() callback, which can
3099  * retrieve the kmsg records with kmsg_dump_get_line() or
3100  * kmsg_dump_get_buffer().
3101  */
3102 void kmsg_dump(enum kmsg_dump_reason reason)
3103 {
3104 	struct kmsg_dumper *dumper;
3105 	unsigned long flags;
3106 
3107 	if ((reason > KMSG_DUMP_OOPS) && !always_kmsg_dump)
3108 		return;
3109 
3110 	rcu_read_lock();
3111 	list_for_each_entry_rcu(dumper, &dump_list, list) {
3112 		if (dumper->max_reason && reason > dumper->max_reason)
3113 			continue;
3114 
3115 		/* initialize iterator with data about the stored records */
3116 		dumper->active = true;
3117 
3118 		logbuf_lock_irqsave(flags);
3119 		dumper->cur_seq = clear_seq;
3120 		dumper->cur_idx = clear_idx;
3121 		dumper->next_seq = log_next_seq;
3122 		dumper->next_idx = log_next_idx;
3123 		logbuf_unlock_irqrestore(flags);
3124 
3125 		/* invoke dumper which will iterate over records */
3126 		dumper->dump(dumper, reason);
3127 
3128 		/* reset iterator */
3129 		dumper->active = false;
3130 	}
3131 	rcu_read_unlock();
3132 }
3133 
3134 /**
3135  * kmsg_dump_get_line_nolock - retrieve one kmsg log line (unlocked version)
3136  * @dumper: registered kmsg dumper
3137  * @syslog: include the "<4>" prefixes
3138  * @line: buffer to copy the line to
3139  * @size: maximum size of the buffer
3140  * @len: length of line placed into buffer
3141  *
3142  * Start at the beginning of the kmsg buffer, with the oldest kmsg
3143  * record, and copy one record into the provided buffer.
3144  *
3145  * Consecutive calls will return the next available record moving
3146  * towards the end of the buffer with the youngest messages.
3147  *
3148  * A return value of FALSE indicates that there are no more records to
3149  * read.
3150  *
3151  * The function is similar to kmsg_dump_get_line(), but grabs no locks.
3152  */
3153 bool kmsg_dump_get_line_nolock(struct kmsg_dumper *dumper, bool syslog,
3154 			       char *line, size_t size, size_t *len)
3155 {
3156 	struct printk_log *msg;
3157 	size_t l = 0;
3158 	bool ret = false;
3159 
3160 	if (!dumper->active)
3161 		goto out;
3162 
3163 	if (dumper->cur_seq < log_first_seq) {
3164 		/* messages are gone, move to first available one */
3165 		dumper->cur_seq = log_first_seq;
3166 		dumper->cur_idx = log_first_idx;
3167 	}
3168 
3169 	/* last entry */
3170 	if (dumper->cur_seq >= log_next_seq)
3171 		goto out;
3172 
3173 	msg = log_from_idx(dumper->cur_idx);
3174 	l = msg_print_text(msg, syslog, printk_time, line, size);
3175 
3176 	dumper->cur_idx = log_next(dumper->cur_idx);
3177 	dumper->cur_seq++;
3178 	ret = true;
3179 out:
3180 	if (len)
3181 		*len = l;
3182 	return ret;
3183 }
3184 
3185 /**
3186  * kmsg_dump_get_line - retrieve one kmsg log line
3187  * @dumper: registered kmsg dumper
3188  * @syslog: include the "<4>" prefixes
3189  * @line: buffer to copy the line to
3190  * @size: maximum size of the buffer
3191  * @len: length of line placed into buffer
3192  *
3193  * Start at the beginning of the kmsg buffer, with the oldest kmsg
3194  * record, and copy one record into the provided buffer.
3195  *
3196  * Consecutive calls will return the next available record moving
3197  * towards the end of the buffer with the youngest messages.
3198  *
3199  * A return value of FALSE indicates that there are no more records to
3200  * read.
3201  */
3202 bool kmsg_dump_get_line(struct kmsg_dumper *dumper, bool syslog,
3203 			char *line, size_t size, size_t *len)
3204 {
3205 	unsigned long flags;
3206 	bool ret;
3207 
3208 	logbuf_lock_irqsave(flags);
3209 	ret = kmsg_dump_get_line_nolock(dumper, syslog, line, size, len);
3210 	logbuf_unlock_irqrestore(flags);
3211 
3212 	return ret;
3213 }
3214 EXPORT_SYMBOL_GPL(kmsg_dump_get_line);
3215 
3216 /**
3217  * kmsg_dump_get_buffer - copy kmsg log lines
3218  * @dumper: registered kmsg dumper
3219  * @syslog: include the "<4>" prefixes
3220  * @buf: buffer to copy the line to
3221  * @size: maximum size of the buffer
3222  * @len: length of line placed into buffer
3223  *
3224  * Start at the end of the kmsg buffer and fill the provided buffer
3225  * with as many of the the *youngest* kmsg records that fit into it.
3226  * If the buffer is large enough, all available kmsg records will be
3227  * copied with a single call.
3228  *
3229  * Consecutive calls will fill the buffer with the next block of
3230  * available older records, not including the earlier retrieved ones.
3231  *
3232  * A return value of FALSE indicates that there are no more records to
3233  * read.
3234  */
3235 bool kmsg_dump_get_buffer(struct kmsg_dumper *dumper, bool syslog,
3236 			  char *buf, size_t size, size_t *len)
3237 {
3238 	unsigned long flags;
3239 	u64 seq;
3240 	u32 idx;
3241 	u64 next_seq;
3242 	u32 next_idx;
3243 	size_t l = 0;
3244 	bool ret = false;
3245 	bool time = printk_time;
3246 
3247 	if (!dumper->active)
3248 		goto out;
3249 
3250 	logbuf_lock_irqsave(flags);
3251 	if (dumper->cur_seq < log_first_seq) {
3252 		/* messages are gone, move to first available one */
3253 		dumper->cur_seq = log_first_seq;
3254 		dumper->cur_idx = log_first_idx;
3255 	}
3256 
3257 	/* last entry */
3258 	if (dumper->cur_seq >= dumper->next_seq) {
3259 		logbuf_unlock_irqrestore(flags);
3260 		goto out;
3261 	}
3262 
3263 	/* calculate length of entire buffer */
3264 	seq = dumper->cur_seq;
3265 	idx = dumper->cur_idx;
3266 	while (seq < dumper->next_seq) {
3267 		struct printk_log *msg = log_from_idx(idx);
3268 
3269 		l += msg_print_text(msg, true, time, NULL, 0);
3270 		idx = log_next(idx);
3271 		seq++;
3272 	}
3273 
3274 	/* move first record forward until length fits into the buffer */
3275 	seq = dumper->cur_seq;
3276 	idx = dumper->cur_idx;
3277 	while (l > size && seq < dumper->next_seq) {
3278 		struct printk_log *msg = log_from_idx(idx);
3279 
3280 		l -= msg_print_text(msg, true, time, NULL, 0);
3281 		idx = log_next(idx);
3282 		seq++;
3283 	}
3284 
3285 	/* last message in next interation */
3286 	next_seq = seq;
3287 	next_idx = idx;
3288 
3289 	l = 0;
3290 	while (seq < dumper->next_seq) {
3291 		struct printk_log *msg = log_from_idx(idx);
3292 
3293 		l += msg_print_text(msg, syslog, time, buf + l, size - l);
3294 		idx = log_next(idx);
3295 		seq++;
3296 	}
3297 
3298 	dumper->next_seq = next_seq;
3299 	dumper->next_idx = next_idx;
3300 	ret = true;
3301 	logbuf_unlock_irqrestore(flags);
3302 out:
3303 	if (len)
3304 		*len = l;
3305 	return ret;
3306 }
3307 EXPORT_SYMBOL_GPL(kmsg_dump_get_buffer);
3308 
3309 /**
3310  * kmsg_dump_rewind_nolock - reset the interator (unlocked version)
3311  * @dumper: registered kmsg dumper
3312  *
3313  * Reset the dumper's iterator so that kmsg_dump_get_line() and
3314  * kmsg_dump_get_buffer() can be called again and used multiple
3315  * times within the same dumper.dump() callback.
3316  *
3317  * The function is similar to kmsg_dump_rewind(), but grabs no locks.
3318  */
3319 void kmsg_dump_rewind_nolock(struct kmsg_dumper *dumper)
3320 {
3321 	dumper->cur_seq = clear_seq;
3322 	dumper->cur_idx = clear_idx;
3323 	dumper->next_seq = log_next_seq;
3324 	dumper->next_idx = log_next_idx;
3325 }
3326 
3327 /**
3328  * kmsg_dump_rewind - reset the interator
3329  * @dumper: registered kmsg dumper
3330  *
3331  * Reset the dumper's iterator so that kmsg_dump_get_line() and
3332  * kmsg_dump_get_buffer() can be called again and used multiple
3333  * times within the same dumper.dump() callback.
3334  */
3335 void kmsg_dump_rewind(struct kmsg_dumper *dumper)
3336 {
3337 	unsigned long flags;
3338 
3339 	logbuf_lock_irqsave(flags);
3340 	kmsg_dump_rewind_nolock(dumper);
3341 	logbuf_unlock_irqrestore(flags);
3342 }
3343 EXPORT_SYMBOL_GPL(kmsg_dump_rewind);
3344 
3345 #endif
3346