1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/printk.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 * 7 * Modified to make sys_syslog() more flexible: added commands to 8 * return the last 4k of kernel messages, regardless of whether 9 * they've been read or not. Added option to suppress kernel printk's 10 * to the console. Added hook for sending the console messages 11 * elsewhere, in preparation for a serial line console (someday). 12 * Ted Ts'o, 2/11/93. 13 * Modified for sysctl support, 1/8/97, Chris Horn. 14 * Fixed SMP synchronization, 08/08/99, Manfred Spraul 15 * manfred@colorfullife.com 16 * Rewrote bits to get rid of console_lock 17 * 01Mar01 Andrew Morton 18 */ 19 20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 21 22 #include <linux/kernel.h> 23 #include <linux/mm.h> 24 #include <linux/tty.h> 25 #include <linux/tty_driver.h> 26 #include <linux/console.h> 27 #include <linux/init.h> 28 #include <linux/jiffies.h> 29 #include <linux/nmi.h> 30 #include <linux/module.h> 31 #include <linux/moduleparam.h> 32 #include <linux/delay.h> 33 #include <linux/smp.h> 34 #include <linux/security.h> 35 #include <linux/memblock.h> 36 #include <linux/syscalls.h> 37 #include <linux/crash_core.h> 38 #include <linux/ratelimit.h> 39 #include <linux/kmsg_dump.h> 40 #include <linux/syslog.h> 41 #include <linux/cpu.h> 42 #include <linux/rculist.h> 43 #include <linux/poll.h> 44 #include <linux/irq_work.h> 45 #include <linux/ctype.h> 46 #include <linux/uio.h> 47 #include <linux/sched/clock.h> 48 #include <linux/sched/debug.h> 49 #include <linux/sched/task_stack.h> 50 51 #include <linux/uaccess.h> 52 #include <asm/sections.h> 53 54 #include <trace/events/initcall.h> 55 #define CREATE_TRACE_POINTS 56 #include <trace/events/printk.h> 57 58 #include "console_cmdline.h" 59 #include "braille.h" 60 #include "internal.h" 61 62 int console_printk[4] = { 63 CONSOLE_LOGLEVEL_DEFAULT, /* console_loglevel */ 64 MESSAGE_LOGLEVEL_DEFAULT, /* default_message_loglevel */ 65 CONSOLE_LOGLEVEL_MIN, /* minimum_console_loglevel */ 66 CONSOLE_LOGLEVEL_DEFAULT, /* default_console_loglevel */ 67 }; 68 EXPORT_SYMBOL_GPL(console_printk); 69 70 atomic_t ignore_console_lock_warning __read_mostly = ATOMIC_INIT(0); 71 EXPORT_SYMBOL(ignore_console_lock_warning); 72 73 /* 74 * Low level drivers may need that to know if they can schedule in 75 * their unblank() callback or not. So let's export it. 76 */ 77 int oops_in_progress; 78 EXPORT_SYMBOL(oops_in_progress); 79 80 /* 81 * console_sem protects the console_drivers list, and also 82 * provides serialisation for access to the entire console 83 * driver system. 84 */ 85 static DEFINE_SEMAPHORE(console_sem); 86 struct console *console_drivers; 87 EXPORT_SYMBOL_GPL(console_drivers); 88 89 /* 90 * System may need to suppress printk message under certain 91 * circumstances, like after kernel panic happens. 92 */ 93 int __read_mostly suppress_printk; 94 95 #ifdef CONFIG_LOCKDEP 96 static struct lockdep_map console_lock_dep_map = { 97 .name = "console_lock" 98 }; 99 #endif 100 101 enum devkmsg_log_bits { 102 __DEVKMSG_LOG_BIT_ON = 0, 103 __DEVKMSG_LOG_BIT_OFF, 104 __DEVKMSG_LOG_BIT_LOCK, 105 }; 106 107 enum devkmsg_log_masks { 108 DEVKMSG_LOG_MASK_ON = BIT(__DEVKMSG_LOG_BIT_ON), 109 DEVKMSG_LOG_MASK_OFF = BIT(__DEVKMSG_LOG_BIT_OFF), 110 DEVKMSG_LOG_MASK_LOCK = BIT(__DEVKMSG_LOG_BIT_LOCK), 111 }; 112 113 /* Keep both the 'on' and 'off' bits clear, i.e. ratelimit by default: */ 114 #define DEVKMSG_LOG_MASK_DEFAULT 0 115 116 static unsigned int __read_mostly devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT; 117 118 static int __control_devkmsg(char *str) 119 { 120 size_t len; 121 122 if (!str) 123 return -EINVAL; 124 125 len = str_has_prefix(str, "on"); 126 if (len) { 127 devkmsg_log = DEVKMSG_LOG_MASK_ON; 128 return len; 129 } 130 131 len = str_has_prefix(str, "off"); 132 if (len) { 133 devkmsg_log = DEVKMSG_LOG_MASK_OFF; 134 return len; 135 } 136 137 len = str_has_prefix(str, "ratelimit"); 138 if (len) { 139 devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT; 140 return len; 141 } 142 143 return -EINVAL; 144 } 145 146 static int __init control_devkmsg(char *str) 147 { 148 if (__control_devkmsg(str) < 0) 149 return 1; 150 151 /* 152 * Set sysctl string accordingly: 153 */ 154 if (devkmsg_log == DEVKMSG_LOG_MASK_ON) 155 strcpy(devkmsg_log_str, "on"); 156 else if (devkmsg_log == DEVKMSG_LOG_MASK_OFF) 157 strcpy(devkmsg_log_str, "off"); 158 /* else "ratelimit" which is set by default. */ 159 160 /* 161 * Sysctl cannot change it anymore. The kernel command line setting of 162 * this parameter is to force the setting to be permanent throughout the 163 * runtime of the system. This is a precation measure against userspace 164 * trying to be a smarta** and attempting to change it up on us. 165 */ 166 devkmsg_log |= DEVKMSG_LOG_MASK_LOCK; 167 168 return 0; 169 } 170 __setup("printk.devkmsg=", control_devkmsg); 171 172 char devkmsg_log_str[DEVKMSG_STR_MAX_SIZE] = "ratelimit"; 173 174 int devkmsg_sysctl_set_loglvl(struct ctl_table *table, int write, 175 void *buffer, size_t *lenp, loff_t *ppos) 176 { 177 char old_str[DEVKMSG_STR_MAX_SIZE]; 178 unsigned int old; 179 int err; 180 181 if (write) { 182 if (devkmsg_log & DEVKMSG_LOG_MASK_LOCK) 183 return -EINVAL; 184 185 old = devkmsg_log; 186 strncpy(old_str, devkmsg_log_str, DEVKMSG_STR_MAX_SIZE); 187 } 188 189 err = proc_dostring(table, write, buffer, lenp, ppos); 190 if (err) 191 return err; 192 193 if (write) { 194 err = __control_devkmsg(devkmsg_log_str); 195 196 /* 197 * Do not accept an unknown string OR a known string with 198 * trailing crap... 199 */ 200 if (err < 0 || (err + 1 != *lenp)) { 201 202 /* ... and restore old setting. */ 203 devkmsg_log = old; 204 strncpy(devkmsg_log_str, old_str, DEVKMSG_STR_MAX_SIZE); 205 206 return -EINVAL; 207 } 208 } 209 210 return 0; 211 } 212 213 /* Number of registered extended console drivers. */ 214 static int nr_ext_console_drivers; 215 216 /* 217 * Helper macros to handle lockdep when locking/unlocking console_sem. We use 218 * macros instead of functions so that _RET_IP_ contains useful information. 219 */ 220 #define down_console_sem() do { \ 221 down(&console_sem);\ 222 mutex_acquire(&console_lock_dep_map, 0, 0, _RET_IP_);\ 223 } while (0) 224 225 static int __down_trylock_console_sem(unsigned long ip) 226 { 227 int lock_failed; 228 unsigned long flags; 229 230 /* 231 * Here and in __up_console_sem() we need to be in safe mode, 232 * because spindump/WARN/etc from under console ->lock will 233 * deadlock in printk()->down_trylock_console_sem() otherwise. 234 */ 235 printk_safe_enter_irqsave(flags); 236 lock_failed = down_trylock(&console_sem); 237 printk_safe_exit_irqrestore(flags); 238 239 if (lock_failed) 240 return 1; 241 mutex_acquire(&console_lock_dep_map, 0, 1, ip); 242 return 0; 243 } 244 #define down_trylock_console_sem() __down_trylock_console_sem(_RET_IP_) 245 246 static void __up_console_sem(unsigned long ip) 247 { 248 unsigned long flags; 249 250 mutex_release(&console_lock_dep_map, ip); 251 252 printk_safe_enter_irqsave(flags); 253 up(&console_sem); 254 printk_safe_exit_irqrestore(flags); 255 } 256 #define up_console_sem() __up_console_sem(_RET_IP_) 257 258 /* 259 * This is used for debugging the mess that is the VT code by 260 * keeping track if we have the console semaphore held. It's 261 * definitely not the perfect debug tool (we don't know if _WE_ 262 * hold it and are racing, but it helps tracking those weird code 263 * paths in the console code where we end up in places I want 264 * locked without the console sempahore held). 265 */ 266 static int console_locked, console_suspended; 267 268 /* 269 * If exclusive_console is non-NULL then only this console is to be printed to. 270 */ 271 static struct console *exclusive_console; 272 273 /* 274 * Array of consoles built from command line options (console=) 275 */ 276 277 #define MAX_CMDLINECONSOLES 8 278 279 static struct console_cmdline console_cmdline[MAX_CMDLINECONSOLES]; 280 281 static int preferred_console = -1; 282 static bool has_preferred_console; 283 int console_set_on_cmdline; 284 EXPORT_SYMBOL(console_set_on_cmdline); 285 286 /* Flag: console code may call schedule() */ 287 static int console_may_schedule; 288 289 enum con_msg_format_flags { 290 MSG_FORMAT_DEFAULT = 0, 291 MSG_FORMAT_SYSLOG = (1 << 0), 292 }; 293 294 static int console_msg_format = MSG_FORMAT_DEFAULT; 295 296 /* 297 * The printk log buffer consists of a chain of concatenated variable 298 * length records. Every record starts with a record header, containing 299 * the overall length of the record. 300 * 301 * The heads to the first and last entry in the buffer, as well as the 302 * sequence numbers of these entries are maintained when messages are 303 * stored. 304 * 305 * If the heads indicate available messages, the length in the header 306 * tells the start next message. A length == 0 for the next message 307 * indicates a wrap-around to the beginning of the buffer. 308 * 309 * Every record carries the monotonic timestamp in microseconds, as well as 310 * the standard userspace syslog level and syslog facility. The usual 311 * kernel messages use LOG_KERN; userspace-injected messages always carry 312 * a matching syslog facility, by default LOG_USER. The origin of every 313 * message can be reliably determined that way. 314 * 315 * The human readable log message directly follows the message header. The 316 * length of the message text is stored in the header, the stored message 317 * is not terminated. 318 * 319 * Optionally, a message can carry a dictionary of properties (key/value pairs), 320 * to provide userspace with a machine-readable message context. 321 * 322 * Examples for well-defined, commonly used property names are: 323 * DEVICE=b12:8 device identifier 324 * b12:8 block dev_t 325 * c127:3 char dev_t 326 * n8 netdev ifindex 327 * +sound:card0 subsystem:devname 328 * SUBSYSTEM=pci driver-core subsystem name 329 * 330 * Valid characters in property names are [a-zA-Z0-9.-_]. The plain text value 331 * follows directly after a '=' character. Every property is terminated by 332 * a '\0' character. The last property is not terminated. 333 * 334 * Example of a message structure: 335 * 0000 ff 8f 00 00 00 00 00 00 monotonic time in nsec 336 * 0008 34 00 record is 52 bytes long 337 * 000a 0b 00 text is 11 bytes long 338 * 000c 1f 00 dictionary is 23 bytes long 339 * 000e 03 00 LOG_KERN (facility) LOG_ERR (level) 340 * 0010 69 74 27 73 20 61 20 6c "it's a l" 341 * 69 6e 65 "ine" 342 * 001b 44 45 56 49 43 "DEVIC" 343 * 45 3d 62 38 3a 32 00 44 "E=b8:2\0D" 344 * 52 49 56 45 52 3d 62 75 "RIVER=bu" 345 * 67 "g" 346 * 0032 00 00 00 padding to next message header 347 * 348 * The 'struct printk_log' buffer header must never be directly exported to 349 * userspace, it is a kernel-private implementation detail that might 350 * need to be changed in the future, when the requirements change. 351 * 352 * /dev/kmsg exports the structured data in the following line format: 353 * "<level>,<sequnum>,<timestamp>,<contflag>[,additional_values, ... ];<message text>\n" 354 * 355 * Users of the export format should ignore possible additional values 356 * separated by ',', and find the message after the ';' character. 357 * 358 * The optional key/value pairs are attached as continuation lines starting 359 * with a space character and terminated by a newline. All possible 360 * non-prinatable characters are escaped in the "\xff" notation. 361 */ 362 363 enum log_flags { 364 LOG_NEWLINE = 2, /* text ended with a newline */ 365 LOG_CONT = 8, /* text is a fragment of a continuation line */ 366 }; 367 368 struct printk_log { 369 u64 ts_nsec; /* timestamp in nanoseconds */ 370 u16 len; /* length of entire record */ 371 u16 text_len; /* length of text buffer */ 372 u16 dict_len; /* length of dictionary buffer */ 373 u8 facility; /* syslog facility */ 374 u8 flags:5; /* internal record flags */ 375 u8 level:3; /* syslog level */ 376 #ifdef CONFIG_PRINTK_CALLER 377 u32 caller_id; /* thread id or processor id */ 378 #endif 379 } 380 #ifdef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS 381 __packed __aligned(4) 382 #endif 383 ; 384 385 /* 386 * The logbuf_lock protects kmsg buffer, indices, counters. This can be taken 387 * within the scheduler's rq lock. It must be released before calling 388 * console_unlock() or anything else that might wake up a process. 389 */ 390 DEFINE_RAW_SPINLOCK(logbuf_lock); 391 392 /* 393 * Helper macros to lock/unlock logbuf_lock and switch between 394 * printk-safe/unsafe modes. 395 */ 396 #define logbuf_lock_irq() \ 397 do { \ 398 printk_safe_enter_irq(); \ 399 raw_spin_lock(&logbuf_lock); \ 400 } while (0) 401 402 #define logbuf_unlock_irq() \ 403 do { \ 404 raw_spin_unlock(&logbuf_lock); \ 405 printk_safe_exit_irq(); \ 406 } while (0) 407 408 #define logbuf_lock_irqsave(flags) \ 409 do { \ 410 printk_safe_enter_irqsave(flags); \ 411 raw_spin_lock(&logbuf_lock); \ 412 } while (0) 413 414 #define logbuf_unlock_irqrestore(flags) \ 415 do { \ 416 raw_spin_unlock(&logbuf_lock); \ 417 printk_safe_exit_irqrestore(flags); \ 418 } while (0) 419 420 #ifdef CONFIG_PRINTK 421 DECLARE_WAIT_QUEUE_HEAD(log_wait); 422 /* the next printk record to read by syslog(READ) or /proc/kmsg */ 423 static u64 syslog_seq; 424 static u32 syslog_idx; 425 static size_t syslog_partial; 426 static bool syslog_time; 427 428 /* index and sequence number of the first record stored in the buffer */ 429 static u64 log_first_seq; 430 static u32 log_first_idx; 431 432 /* index and sequence number of the next record to store in the buffer */ 433 static u64 log_next_seq; 434 static u32 log_next_idx; 435 436 /* the next printk record to write to the console */ 437 static u64 console_seq; 438 static u32 console_idx; 439 static u64 exclusive_console_stop_seq; 440 441 /* the next printk record to read after the last 'clear' command */ 442 static u64 clear_seq; 443 static u32 clear_idx; 444 445 #ifdef CONFIG_PRINTK_CALLER 446 #define PREFIX_MAX 48 447 #else 448 #define PREFIX_MAX 32 449 #endif 450 #define LOG_LINE_MAX (1024 - PREFIX_MAX) 451 452 #define LOG_LEVEL(v) ((v) & 0x07) 453 #define LOG_FACILITY(v) ((v) >> 3 & 0xff) 454 455 /* record buffer */ 456 #define LOG_ALIGN __alignof__(struct printk_log) 457 #define __LOG_BUF_LEN (1 << CONFIG_LOG_BUF_SHIFT) 458 #define LOG_BUF_LEN_MAX (u32)(1 << 31) 459 static char __log_buf[__LOG_BUF_LEN] __aligned(LOG_ALIGN); 460 static char *log_buf = __log_buf; 461 static u32 log_buf_len = __LOG_BUF_LEN; 462 463 /* 464 * We cannot access per-CPU data (e.g. per-CPU flush irq_work) before 465 * per_cpu_areas are initialised. This variable is set to true when 466 * it's safe to access per-CPU data. 467 */ 468 static bool __printk_percpu_data_ready __read_mostly; 469 470 bool printk_percpu_data_ready(void) 471 { 472 return __printk_percpu_data_ready; 473 } 474 475 /* Return log buffer address */ 476 char *log_buf_addr_get(void) 477 { 478 return log_buf; 479 } 480 481 /* Return log buffer size */ 482 u32 log_buf_len_get(void) 483 { 484 return log_buf_len; 485 } 486 487 /* human readable text of the record */ 488 static char *log_text(const struct printk_log *msg) 489 { 490 return (char *)msg + sizeof(struct printk_log); 491 } 492 493 /* optional key/value pair dictionary attached to the record */ 494 static char *log_dict(const struct printk_log *msg) 495 { 496 return (char *)msg + sizeof(struct printk_log) + msg->text_len; 497 } 498 499 /* get record by index; idx must point to valid msg */ 500 static struct printk_log *log_from_idx(u32 idx) 501 { 502 struct printk_log *msg = (struct printk_log *)(log_buf + idx); 503 504 /* 505 * A length == 0 record is the end of buffer marker. Wrap around and 506 * read the message at the start of the buffer. 507 */ 508 if (!msg->len) 509 return (struct printk_log *)log_buf; 510 return msg; 511 } 512 513 /* get next record; idx must point to valid msg */ 514 static u32 log_next(u32 idx) 515 { 516 struct printk_log *msg = (struct printk_log *)(log_buf + idx); 517 518 /* length == 0 indicates the end of the buffer; wrap */ 519 /* 520 * A length == 0 record is the end of buffer marker. Wrap around and 521 * read the message at the start of the buffer as *this* one, and 522 * return the one after that. 523 */ 524 if (!msg->len) { 525 msg = (struct printk_log *)log_buf; 526 return msg->len; 527 } 528 return idx + msg->len; 529 } 530 531 /* 532 * Check whether there is enough free space for the given message. 533 * 534 * The same values of first_idx and next_idx mean that the buffer 535 * is either empty or full. 536 * 537 * If the buffer is empty, we must respect the position of the indexes. 538 * They cannot be reset to the beginning of the buffer. 539 */ 540 static int logbuf_has_space(u32 msg_size, bool empty) 541 { 542 u32 free; 543 544 if (log_next_idx > log_first_idx || empty) 545 free = max(log_buf_len - log_next_idx, log_first_idx); 546 else 547 free = log_first_idx - log_next_idx; 548 549 /* 550 * We need space also for an empty header that signalizes wrapping 551 * of the buffer. 552 */ 553 return free >= msg_size + sizeof(struct printk_log); 554 } 555 556 static int log_make_free_space(u32 msg_size) 557 { 558 while (log_first_seq < log_next_seq && 559 !logbuf_has_space(msg_size, false)) { 560 /* drop old messages until we have enough contiguous space */ 561 log_first_idx = log_next(log_first_idx); 562 log_first_seq++; 563 } 564 565 if (clear_seq < log_first_seq) { 566 clear_seq = log_first_seq; 567 clear_idx = log_first_idx; 568 } 569 570 /* sequence numbers are equal, so the log buffer is empty */ 571 if (logbuf_has_space(msg_size, log_first_seq == log_next_seq)) 572 return 0; 573 574 return -ENOMEM; 575 } 576 577 /* compute the message size including the padding bytes */ 578 static u32 msg_used_size(u16 text_len, u16 dict_len, u32 *pad_len) 579 { 580 u32 size; 581 582 size = sizeof(struct printk_log) + text_len + dict_len; 583 *pad_len = (-size) & (LOG_ALIGN - 1); 584 size += *pad_len; 585 586 return size; 587 } 588 589 /* 590 * Define how much of the log buffer we could take at maximum. The value 591 * must be greater than two. Note that only half of the buffer is available 592 * when the index points to the middle. 593 */ 594 #define MAX_LOG_TAKE_PART 4 595 static const char trunc_msg[] = "<truncated>"; 596 597 static u32 truncate_msg(u16 *text_len, u16 *trunc_msg_len, 598 u16 *dict_len, u32 *pad_len) 599 { 600 /* 601 * The message should not take the whole buffer. Otherwise, it might 602 * get removed too soon. 603 */ 604 u32 max_text_len = log_buf_len / MAX_LOG_TAKE_PART; 605 if (*text_len > max_text_len) 606 *text_len = max_text_len; 607 /* enable the warning message */ 608 *trunc_msg_len = strlen(trunc_msg); 609 /* disable the "dict" completely */ 610 *dict_len = 0; 611 /* compute the size again, count also the warning message */ 612 return msg_used_size(*text_len + *trunc_msg_len, 0, pad_len); 613 } 614 615 /* insert record into the buffer, discard old ones, update heads */ 616 static int log_store(u32 caller_id, int facility, int level, 617 enum log_flags flags, u64 ts_nsec, 618 const char *dict, u16 dict_len, 619 const char *text, u16 text_len) 620 { 621 struct printk_log *msg; 622 u32 size, pad_len; 623 u16 trunc_msg_len = 0; 624 625 /* number of '\0' padding bytes to next message */ 626 size = msg_used_size(text_len, dict_len, &pad_len); 627 628 if (log_make_free_space(size)) { 629 /* truncate the message if it is too long for empty buffer */ 630 size = truncate_msg(&text_len, &trunc_msg_len, 631 &dict_len, &pad_len); 632 /* survive when the log buffer is too small for trunc_msg */ 633 if (log_make_free_space(size)) 634 return 0; 635 } 636 637 if (log_next_idx + size + sizeof(struct printk_log) > log_buf_len) { 638 /* 639 * This message + an additional empty header does not fit 640 * at the end of the buffer. Add an empty header with len == 0 641 * to signify a wrap around. 642 */ 643 memset(log_buf + log_next_idx, 0, sizeof(struct printk_log)); 644 log_next_idx = 0; 645 } 646 647 /* fill message */ 648 msg = (struct printk_log *)(log_buf + log_next_idx); 649 memcpy(log_text(msg), text, text_len); 650 msg->text_len = text_len; 651 if (trunc_msg_len) { 652 memcpy(log_text(msg) + text_len, trunc_msg, trunc_msg_len); 653 msg->text_len += trunc_msg_len; 654 } 655 memcpy(log_dict(msg), dict, dict_len); 656 msg->dict_len = dict_len; 657 msg->facility = facility; 658 msg->level = level & 7; 659 msg->flags = flags & 0x1f; 660 if (ts_nsec > 0) 661 msg->ts_nsec = ts_nsec; 662 else 663 msg->ts_nsec = local_clock(); 664 #ifdef CONFIG_PRINTK_CALLER 665 msg->caller_id = caller_id; 666 #endif 667 memset(log_dict(msg) + dict_len, 0, pad_len); 668 msg->len = size; 669 670 /* insert message */ 671 log_next_idx += msg->len; 672 log_next_seq++; 673 674 return msg->text_len; 675 } 676 677 int dmesg_restrict = IS_ENABLED(CONFIG_SECURITY_DMESG_RESTRICT); 678 679 static int syslog_action_restricted(int type) 680 { 681 if (dmesg_restrict) 682 return 1; 683 /* 684 * Unless restricted, we allow "read all" and "get buffer size" 685 * for everybody. 686 */ 687 return type != SYSLOG_ACTION_READ_ALL && 688 type != SYSLOG_ACTION_SIZE_BUFFER; 689 } 690 691 static int check_syslog_permissions(int type, int source) 692 { 693 /* 694 * If this is from /proc/kmsg and we've already opened it, then we've 695 * already done the capabilities checks at open time. 696 */ 697 if (source == SYSLOG_FROM_PROC && type != SYSLOG_ACTION_OPEN) 698 goto ok; 699 700 if (syslog_action_restricted(type)) { 701 if (capable(CAP_SYSLOG)) 702 goto ok; 703 /* 704 * For historical reasons, accept CAP_SYS_ADMIN too, with 705 * a warning. 706 */ 707 if (capable(CAP_SYS_ADMIN)) { 708 pr_warn_once("%s (%d): Attempt to access syslog with " 709 "CAP_SYS_ADMIN but no CAP_SYSLOG " 710 "(deprecated).\n", 711 current->comm, task_pid_nr(current)); 712 goto ok; 713 } 714 return -EPERM; 715 } 716 ok: 717 return security_syslog(type); 718 } 719 720 static void append_char(char **pp, char *e, char c) 721 { 722 if (*pp < e) 723 *(*pp)++ = c; 724 } 725 726 static ssize_t msg_print_ext_header(char *buf, size_t size, 727 struct printk_log *msg, u64 seq) 728 { 729 u64 ts_usec = msg->ts_nsec; 730 char caller[20]; 731 #ifdef CONFIG_PRINTK_CALLER 732 u32 id = msg->caller_id; 733 734 snprintf(caller, sizeof(caller), ",caller=%c%u", 735 id & 0x80000000 ? 'C' : 'T', id & ~0x80000000); 736 #else 737 caller[0] = '\0'; 738 #endif 739 740 do_div(ts_usec, 1000); 741 742 return scnprintf(buf, size, "%u,%llu,%llu,%c%s;", 743 (msg->facility << 3) | msg->level, seq, ts_usec, 744 msg->flags & LOG_CONT ? 'c' : '-', caller); 745 } 746 747 static ssize_t msg_print_ext_body(char *buf, size_t size, 748 char *dict, size_t dict_len, 749 char *text, size_t text_len) 750 { 751 char *p = buf, *e = buf + size; 752 size_t i; 753 754 /* escape non-printable characters */ 755 for (i = 0; i < text_len; i++) { 756 unsigned char c = text[i]; 757 758 if (c < ' ' || c >= 127 || c == '\\') 759 p += scnprintf(p, e - p, "\\x%02x", c); 760 else 761 append_char(&p, e, c); 762 } 763 append_char(&p, e, '\n'); 764 765 if (dict_len) { 766 bool line = true; 767 768 for (i = 0; i < dict_len; i++) { 769 unsigned char c = dict[i]; 770 771 if (line) { 772 append_char(&p, e, ' '); 773 line = false; 774 } 775 776 if (c == '\0') { 777 append_char(&p, e, '\n'); 778 line = true; 779 continue; 780 } 781 782 if (c < ' ' || c >= 127 || c == '\\') { 783 p += scnprintf(p, e - p, "\\x%02x", c); 784 continue; 785 } 786 787 append_char(&p, e, c); 788 } 789 append_char(&p, e, '\n'); 790 } 791 792 return p - buf; 793 } 794 795 /* /dev/kmsg - userspace message inject/listen interface */ 796 struct devkmsg_user { 797 u64 seq; 798 u32 idx; 799 struct ratelimit_state rs; 800 struct mutex lock; 801 char buf[CONSOLE_EXT_LOG_MAX]; 802 }; 803 804 static __printf(3, 4) __cold 805 int devkmsg_emit(int facility, int level, const char *fmt, ...) 806 { 807 va_list args; 808 int r; 809 810 va_start(args, fmt); 811 r = vprintk_emit(facility, level, NULL, 0, fmt, args); 812 va_end(args); 813 814 return r; 815 } 816 817 static ssize_t devkmsg_write(struct kiocb *iocb, struct iov_iter *from) 818 { 819 char *buf, *line; 820 int level = default_message_loglevel; 821 int facility = 1; /* LOG_USER */ 822 struct file *file = iocb->ki_filp; 823 struct devkmsg_user *user = file->private_data; 824 size_t len = iov_iter_count(from); 825 ssize_t ret = len; 826 827 if (!user || len > LOG_LINE_MAX) 828 return -EINVAL; 829 830 /* Ignore when user logging is disabled. */ 831 if (devkmsg_log & DEVKMSG_LOG_MASK_OFF) 832 return len; 833 834 /* Ratelimit when not explicitly enabled. */ 835 if (!(devkmsg_log & DEVKMSG_LOG_MASK_ON)) { 836 if (!___ratelimit(&user->rs, current->comm)) 837 return ret; 838 } 839 840 buf = kmalloc(len+1, GFP_KERNEL); 841 if (buf == NULL) 842 return -ENOMEM; 843 844 buf[len] = '\0'; 845 if (!copy_from_iter_full(buf, len, from)) { 846 kfree(buf); 847 return -EFAULT; 848 } 849 850 /* 851 * Extract and skip the syslog prefix <[0-9]*>. Coming from userspace 852 * the decimal value represents 32bit, the lower 3 bit are the log 853 * level, the rest are the log facility. 854 * 855 * If no prefix or no userspace facility is specified, we 856 * enforce LOG_USER, to be able to reliably distinguish 857 * kernel-generated messages from userspace-injected ones. 858 */ 859 line = buf; 860 if (line[0] == '<') { 861 char *endp = NULL; 862 unsigned int u; 863 864 u = simple_strtoul(line + 1, &endp, 10); 865 if (endp && endp[0] == '>') { 866 level = LOG_LEVEL(u); 867 if (LOG_FACILITY(u) != 0) 868 facility = LOG_FACILITY(u); 869 endp++; 870 len -= endp - line; 871 line = endp; 872 } 873 } 874 875 devkmsg_emit(facility, level, "%s", line); 876 kfree(buf); 877 return ret; 878 } 879 880 static ssize_t devkmsg_read(struct file *file, char __user *buf, 881 size_t count, loff_t *ppos) 882 { 883 struct devkmsg_user *user = file->private_data; 884 struct printk_log *msg; 885 size_t len; 886 ssize_t ret; 887 888 if (!user) 889 return -EBADF; 890 891 ret = mutex_lock_interruptible(&user->lock); 892 if (ret) 893 return ret; 894 895 logbuf_lock_irq(); 896 while (user->seq == log_next_seq) { 897 if (file->f_flags & O_NONBLOCK) { 898 ret = -EAGAIN; 899 logbuf_unlock_irq(); 900 goto out; 901 } 902 903 logbuf_unlock_irq(); 904 ret = wait_event_interruptible(log_wait, 905 user->seq != log_next_seq); 906 if (ret) 907 goto out; 908 logbuf_lock_irq(); 909 } 910 911 if (user->seq < log_first_seq) { 912 /* our last seen message is gone, return error and reset */ 913 user->idx = log_first_idx; 914 user->seq = log_first_seq; 915 ret = -EPIPE; 916 logbuf_unlock_irq(); 917 goto out; 918 } 919 920 msg = log_from_idx(user->idx); 921 len = msg_print_ext_header(user->buf, sizeof(user->buf), 922 msg, user->seq); 923 len += msg_print_ext_body(user->buf + len, sizeof(user->buf) - len, 924 log_dict(msg), msg->dict_len, 925 log_text(msg), msg->text_len); 926 927 user->idx = log_next(user->idx); 928 user->seq++; 929 logbuf_unlock_irq(); 930 931 if (len > count) { 932 ret = -EINVAL; 933 goto out; 934 } 935 936 if (copy_to_user(buf, user->buf, len)) { 937 ret = -EFAULT; 938 goto out; 939 } 940 ret = len; 941 out: 942 mutex_unlock(&user->lock); 943 return ret; 944 } 945 946 /* 947 * Be careful when modifying this function!!! 948 * 949 * Only few operations are supported because the device works only with the 950 * entire variable length messages (records). Non-standard values are 951 * returned in the other cases and has been this way for quite some time. 952 * User space applications might depend on this behavior. 953 */ 954 static loff_t devkmsg_llseek(struct file *file, loff_t offset, int whence) 955 { 956 struct devkmsg_user *user = file->private_data; 957 loff_t ret = 0; 958 959 if (!user) 960 return -EBADF; 961 if (offset) 962 return -ESPIPE; 963 964 logbuf_lock_irq(); 965 switch (whence) { 966 case SEEK_SET: 967 /* the first record */ 968 user->idx = log_first_idx; 969 user->seq = log_first_seq; 970 break; 971 case SEEK_DATA: 972 /* 973 * The first record after the last SYSLOG_ACTION_CLEAR, 974 * like issued by 'dmesg -c'. Reading /dev/kmsg itself 975 * changes no global state, and does not clear anything. 976 */ 977 user->idx = clear_idx; 978 user->seq = clear_seq; 979 break; 980 case SEEK_END: 981 /* after the last record */ 982 user->idx = log_next_idx; 983 user->seq = log_next_seq; 984 break; 985 default: 986 ret = -EINVAL; 987 } 988 logbuf_unlock_irq(); 989 return ret; 990 } 991 992 static __poll_t devkmsg_poll(struct file *file, poll_table *wait) 993 { 994 struct devkmsg_user *user = file->private_data; 995 __poll_t ret = 0; 996 997 if (!user) 998 return EPOLLERR|EPOLLNVAL; 999 1000 poll_wait(file, &log_wait, wait); 1001 1002 logbuf_lock_irq(); 1003 if (user->seq < log_next_seq) { 1004 /* return error when data has vanished underneath us */ 1005 if (user->seq < log_first_seq) 1006 ret = EPOLLIN|EPOLLRDNORM|EPOLLERR|EPOLLPRI; 1007 else 1008 ret = EPOLLIN|EPOLLRDNORM; 1009 } 1010 logbuf_unlock_irq(); 1011 1012 return ret; 1013 } 1014 1015 static int devkmsg_open(struct inode *inode, struct file *file) 1016 { 1017 struct devkmsg_user *user; 1018 int err; 1019 1020 if (devkmsg_log & DEVKMSG_LOG_MASK_OFF) 1021 return -EPERM; 1022 1023 /* write-only does not need any file context */ 1024 if ((file->f_flags & O_ACCMODE) != O_WRONLY) { 1025 err = check_syslog_permissions(SYSLOG_ACTION_READ_ALL, 1026 SYSLOG_FROM_READER); 1027 if (err) 1028 return err; 1029 } 1030 1031 user = kmalloc(sizeof(struct devkmsg_user), GFP_KERNEL); 1032 if (!user) 1033 return -ENOMEM; 1034 1035 ratelimit_default_init(&user->rs); 1036 ratelimit_set_flags(&user->rs, RATELIMIT_MSG_ON_RELEASE); 1037 1038 mutex_init(&user->lock); 1039 1040 logbuf_lock_irq(); 1041 user->idx = log_first_idx; 1042 user->seq = log_first_seq; 1043 logbuf_unlock_irq(); 1044 1045 file->private_data = user; 1046 return 0; 1047 } 1048 1049 static int devkmsg_release(struct inode *inode, struct file *file) 1050 { 1051 struct devkmsg_user *user = file->private_data; 1052 1053 if (!user) 1054 return 0; 1055 1056 ratelimit_state_exit(&user->rs); 1057 1058 mutex_destroy(&user->lock); 1059 kfree(user); 1060 return 0; 1061 } 1062 1063 const struct file_operations kmsg_fops = { 1064 .open = devkmsg_open, 1065 .read = devkmsg_read, 1066 .write_iter = devkmsg_write, 1067 .llseek = devkmsg_llseek, 1068 .poll = devkmsg_poll, 1069 .release = devkmsg_release, 1070 }; 1071 1072 #ifdef CONFIG_CRASH_CORE 1073 /* 1074 * This appends the listed symbols to /proc/vmcore 1075 * 1076 * /proc/vmcore is used by various utilities, like crash and makedumpfile to 1077 * obtain access to symbols that are otherwise very difficult to locate. These 1078 * symbols are specifically used so that utilities can access and extract the 1079 * dmesg log from a vmcore file after a crash. 1080 */ 1081 void log_buf_vmcoreinfo_setup(void) 1082 { 1083 VMCOREINFO_SYMBOL(log_buf); 1084 VMCOREINFO_SYMBOL(log_buf_len); 1085 VMCOREINFO_SYMBOL(log_first_idx); 1086 VMCOREINFO_SYMBOL(clear_idx); 1087 VMCOREINFO_SYMBOL(log_next_idx); 1088 /* 1089 * Export struct printk_log size and field offsets. User space tools can 1090 * parse it and detect any changes to structure down the line. 1091 */ 1092 VMCOREINFO_STRUCT_SIZE(printk_log); 1093 VMCOREINFO_OFFSET(printk_log, ts_nsec); 1094 VMCOREINFO_OFFSET(printk_log, len); 1095 VMCOREINFO_OFFSET(printk_log, text_len); 1096 VMCOREINFO_OFFSET(printk_log, dict_len); 1097 #ifdef CONFIG_PRINTK_CALLER 1098 VMCOREINFO_OFFSET(printk_log, caller_id); 1099 #endif 1100 } 1101 #endif 1102 1103 /* requested log_buf_len from kernel cmdline */ 1104 static unsigned long __initdata new_log_buf_len; 1105 1106 /* we practice scaling the ring buffer by powers of 2 */ 1107 static void __init log_buf_len_update(u64 size) 1108 { 1109 if (size > (u64)LOG_BUF_LEN_MAX) { 1110 size = (u64)LOG_BUF_LEN_MAX; 1111 pr_err("log_buf over 2G is not supported.\n"); 1112 } 1113 1114 if (size) 1115 size = roundup_pow_of_two(size); 1116 if (size > log_buf_len) 1117 new_log_buf_len = (unsigned long)size; 1118 } 1119 1120 /* save requested log_buf_len since it's too early to process it */ 1121 static int __init log_buf_len_setup(char *str) 1122 { 1123 u64 size; 1124 1125 if (!str) 1126 return -EINVAL; 1127 1128 size = memparse(str, &str); 1129 1130 log_buf_len_update(size); 1131 1132 return 0; 1133 } 1134 early_param("log_buf_len", log_buf_len_setup); 1135 1136 #ifdef CONFIG_SMP 1137 #define __LOG_CPU_MAX_BUF_LEN (1 << CONFIG_LOG_CPU_MAX_BUF_SHIFT) 1138 1139 static void __init log_buf_add_cpu(void) 1140 { 1141 unsigned int cpu_extra; 1142 1143 /* 1144 * archs should set up cpu_possible_bits properly with 1145 * set_cpu_possible() after setup_arch() but just in 1146 * case lets ensure this is valid. 1147 */ 1148 if (num_possible_cpus() == 1) 1149 return; 1150 1151 cpu_extra = (num_possible_cpus() - 1) * __LOG_CPU_MAX_BUF_LEN; 1152 1153 /* by default this will only continue through for large > 64 CPUs */ 1154 if (cpu_extra <= __LOG_BUF_LEN / 2) 1155 return; 1156 1157 pr_info("log_buf_len individual max cpu contribution: %d bytes\n", 1158 __LOG_CPU_MAX_BUF_LEN); 1159 pr_info("log_buf_len total cpu_extra contributions: %d bytes\n", 1160 cpu_extra); 1161 pr_info("log_buf_len min size: %d bytes\n", __LOG_BUF_LEN); 1162 1163 log_buf_len_update(cpu_extra + __LOG_BUF_LEN); 1164 } 1165 #else /* !CONFIG_SMP */ 1166 static inline void log_buf_add_cpu(void) {} 1167 #endif /* CONFIG_SMP */ 1168 1169 static void __init set_percpu_data_ready(void) 1170 { 1171 printk_safe_init(); 1172 /* Make sure we set this flag only after printk_safe() init is done */ 1173 barrier(); 1174 __printk_percpu_data_ready = true; 1175 } 1176 1177 void __init setup_log_buf(int early) 1178 { 1179 unsigned long flags; 1180 char *new_log_buf; 1181 unsigned int free; 1182 1183 /* 1184 * Some archs call setup_log_buf() multiple times - first is very 1185 * early, e.g. from setup_arch(), and second - when percpu_areas 1186 * are initialised. 1187 */ 1188 if (!early) 1189 set_percpu_data_ready(); 1190 1191 if (log_buf != __log_buf) 1192 return; 1193 1194 if (!early && !new_log_buf_len) 1195 log_buf_add_cpu(); 1196 1197 if (!new_log_buf_len) 1198 return; 1199 1200 new_log_buf = memblock_alloc(new_log_buf_len, LOG_ALIGN); 1201 if (unlikely(!new_log_buf)) { 1202 pr_err("log_buf_len: %lu bytes not available\n", 1203 new_log_buf_len); 1204 return; 1205 } 1206 1207 logbuf_lock_irqsave(flags); 1208 log_buf_len = new_log_buf_len; 1209 log_buf = new_log_buf; 1210 new_log_buf_len = 0; 1211 free = __LOG_BUF_LEN - log_next_idx; 1212 memcpy(log_buf, __log_buf, __LOG_BUF_LEN); 1213 logbuf_unlock_irqrestore(flags); 1214 1215 pr_info("log_buf_len: %u bytes\n", log_buf_len); 1216 pr_info("early log buf free: %u(%u%%)\n", 1217 free, (free * 100) / __LOG_BUF_LEN); 1218 } 1219 1220 static bool __read_mostly ignore_loglevel; 1221 1222 static int __init ignore_loglevel_setup(char *str) 1223 { 1224 ignore_loglevel = true; 1225 pr_info("debug: ignoring loglevel setting.\n"); 1226 1227 return 0; 1228 } 1229 1230 early_param("ignore_loglevel", ignore_loglevel_setup); 1231 module_param(ignore_loglevel, bool, S_IRUGO | S_IWUSR); 1232 MODULE_PARM_DESC(ignore_loglevel, 1233 "ignore loglevel setting (prints all kernel messages to the console)"); 1234 1235 static bool suppress_message_printing(int level) 1236 { 1237 return (level >= console_loglevel && !ignore_loglevel); 1238 } 1239 1240 #ifdef CONFIG_BOOT_PRINTK_DELAY 1241 1242 static int boot_delay; /* msecs delay after each printk during bootup */ 1243 static unsigned long long loops_per_msec; /* based on boot_delay */ 1244 1245 static int __init boot_delay_setup(char *str) 1246 { 1247 unsigned long lpj; 1248 1249 lpj = preset_lpj ? preset_lpj : 1000000; /* some guess */ 1250 loops_per_msec = (unsigned long long)lpj / 1000 * HZ; 1251 1252 get_option(&str, &boot_delay); 1253 if (boot_delay > 10 * 1000) 1254 boot_delay = 0; 1255 1256 pr_debug("boot_delay: %u, preset_lpj: %ld, lpj: %lu, " 1257 "HZ: %d, loops_per_msec: %llu\n", 1258 boot_delay, preset_lpj, lpj, HZ, loops_per_msec); 1259 return 0; 1260 } 1261 early_param("boot_delay", boot_delay_setup); 1262 1263 static void boot_delay_msec(int level) 1264 { 1265 unsigned long long k; 1266 unsigned long timeout; 1267 1268 if ((boot_delay == 0 || system_state >= SYSTEM_RUNNING) 1269 || suppress_message_printing(level)) { 1270 return; 1271 } 1272 1273 k = (unsigned long long)loops_per_msec * boot_delay; 1274 1275 timeout = jiffies + msecs_to_jiffies(boot_delay); 1276 while (k) { 1277 k--; 1278 cpu_relax(); 1279 /* 1280 * use (volatile) jiffies to prevent 1281 * compiler reduction; loop termination via jiffies 1282 * is secondary and may or may not happen. 1283 */ 1284 if (time_after(jiffies, timeout)) 1285 break; 1286 touch_nmi_watchdog(); 1287 } 1288 } 1289 #else 1290 static inline void boot_delay_msec(int level) 1291 { 1292 } 1293 #endif 1294 1295 static bool printk_time = IS_ENABLED(CONFIG_PRINTK_TIME); 1296 module_param_named(time, printk_time, bool, S_IRUGO | S_IWUSR); 1297 1298 static size_t print_syslog(unsigned int level, char *buf) 1299 { 1300 return sprintf(buf, "<%u>", level); 1301 } 1302 1303 static size_t print_time(u64 ts, char *buf) 1304 { 1305 unsigned long rem_nsec = do_div(ts, 1000000000); 1306 1307 return sprintf(buf, "[%5lu.%06lu]", 1308 (unsigned long)ts, rem_nsec / 1000); 1309 } 1310 1311 #ifdef CONFIG_PRINTK_CALLER 1312 static size_t print_caller(u32 id, char *buf) 1313 { 1314 char caller[12]; 1315 1316 snprintf(caller, sizeof(caller), "%c%u", 1317 id & 0x80000000 ? 'C' : 'T', id & ~0x80000000); 1318 return sprintf(buf, "[%6s]", caller); 1319 } 1320 #else 1321 #define print_caller(id, buf) 0 1322 #endif 1323 1324 static size_t print_prefix(const struct printk_log *msg, bool syslog, 1325 bool time, char *buf) 1326 { 1327 size_t len = 0; 1328 1329 if (syslog) 1330 len = print_syslog((msg->facility << 3) | msg->level, buf); 1331 1332 if (time) 1333 len += print_time(msg->ts_nsec, buf + len); 1334 1335 len += print_caller(msg->caller_id, buf + len); 1336 1337 if (IS_ENABLED(CONFIG_PRINTK_CALLER) || time) { 1338 buf[len++] = ' '; 1339 buf[len] = '\0'; 1340 } 1341 1342 return len; 1343 } 1344 1345 static size_t msg_print_text(const struct printk_log *msg, bool syslog, 1346 bool time, char *buf, size_t size) 1347 { 1348 const char *text = log_text(msg); 1349 size_t text_size = msg->text_len; 1350 size_t len = 0; 1351 char prefix[PREFIX_MAX]; 1352 const size_t prefix_len = print_prefix(msg, syslog, time, prefix); 1353 1354 do { 1355 const char *next = memchr(text, '\n', text_size); 1356 size_t text_len; 1357 1358 if (next) { 1359 text_len = next - text; 1360 next++; 1361 text_size -= next - text; 1362 } else { 1363 text_len = text_size; 1364 } 1365 1366 if (buf) { 1367 if (prefix_len + text_len + 1 >= size - len) 1368 break; 1369 1370 memcpy(buf + len, prefix, prefix_len); 1371 len += prefix_len; 1372 memcpy(buf + len, text, text_len); 1373 len += text_len; 1374 buf[len++] = '\n'; 1375 } else { 1376 /* SYSLOG_ACTION_* buffer size only calculation */ 1377 len += prefix_len + text_len + 1; 1378 } 1379 1380 text = next; 1381 } while (text); 1382 1383 return len; 1384 } 1385 1386 static int syslog_print(char __user *buf, int size) 1387 { 1388 char *text; 1389 struct printk_log *msg; 1390 int len = 0; 1391 1392 text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL); 1393 if (!text) 1394 return -ENOMEM; 1395 1396 while (size > 0) { 1397 size_t n; 1398 size_t skip; 1399 1400 logbuf_lock_irq(); 1401 if (syslog_seq < log_first_seq) { 1402 /* messages are gone, move to first one */ 1403 syslog_seq = log_first_seq; 1404 syslog_idx = log_first_idx; 1405 syslog_partial = 0; 1406 } 1407 if (syslog_seq == log_next_seq) { 1408 logbuf_unlock_irq(); 1409 break; 1410 } 1411 1412 /* 1413 * To keep reading/counting partial line consistent, 1414 * use printk_time value as of the beginning of a line. 1415 */ 1416 if (!syslog_partial) 1417 syslog_time = printk_time; 1418 1419 skip = syslog_partial; 1420 msg = log_from_idx(syslog_idx); 1421 n = msg_print_text(msg, true, syslog_time, text, 1422 LOG_LINE_MAX + PREFIX_MAX); 1423 if (n - syslog_partial <= size) { 1424 /* message fits into buffer, move forward */ 1425 syslog_idx = log_next(syslog_idx); 1426 syslog_seq++; 1427 n -= syslog_partial; 1428 syslog_partial = 0; 1429 } else if (!len){ 1430 /* partial read(), remember position */ 1431 n = size; 1432 syslog_partial += n; 1433 } else 1434 n = 0; 1435 logbuf_unlock_irq(); 1436 1437 if (!n) 1438 break; 1439 1440 if (copy_to_user(buf, text + skip, n)) { 1441 if (!len) 1442 len = -EFAULT; 1443 break; 1444 } 1445 1446 len += n; 1447 size -= n; 1448 buf += n; 1449 } 1450 1451 kfree(text); 1452 return len; 1453 } 1454 1455 static int syslog_print_all(char __user *buf, int size, bool clear) 1456 { 1457 char *text; 1458 int len = 0; 1459 u64 next_seq; 1460 u64 seq; 1461 u32 idx; 1462 bool time; 1463 1464 text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL); 1465 if (!text) 1466 return -ENOMEM; 1467 1468 time = printk_time; 1469 logbuf_lock_irq(); 1470 /* 1471 * Find first record that fits, including all following records, 1472 * into the user-provided buffer for this dump. 1473 */ 1474 seq = clear_seq; 1475 idx = clear_idx; 1476 while (seq < log_next_seq) { 1477 struct printk_log *msg = log_from_idx(idx); 1478 1479 len += msg_print_text(msg, true, time, NULL, 0); 1480 idx = log_next(idx); 1481 seq++; 1482 } 1483 1484 /* move first record forward until length fits into the buffer */ 1485 seq = clear_seq; 1486 idx = clear_idx; 1487 while (len > size && seq < log_next_seq) { 1488 struct printk_log *msg = log_from_idx(idx); 1489 1490 len -= msg_print_text(msg, true, time, NULL, 0); 1491 idx = log_next(idx); 1492 seq++; 1493 } 1494 1495 /* last message fitting into this dump */ 1496 next_seq = log_next_seq; 1497 1498 len = 0; 1499 while (len >= 0 && seq < next_seq) { 1500 struct printk_log *msg = log_from_idx(idx); 1501 int textlen = msg_print_text(msg, true, time, text, 1502 LOG_LINE_MAX + PREFIX_MAX); 1503 1504 idx = log_next(idx); 1505 seq++; 1506 1507 logbuf_unlock_irq(); 1508 if (copy_to_user(buf + len, text, textlen)) 1509 len = -EFAULT; 1510 else 1511 len += textlen; 1512 logbuf_lock_irq(); 1513 1514 if (seq < log_first_seq) { 1515 /* messages are gone, move to next one */ 1516 seq = log_first_seq; 1517 idx = log_first_idx; 1518 } 1519 } 1520 1521 if (clear) { 1522 clear_seq = log_next_seq; 1523 clear_idx = log_next_idx; 1524 } 1525 logbuf_unlock_irq(); 1526 1527 kfree(text); 1528 return len; 1529 } 1530 1531 static void syslog_clear(void) 1532 { 1533 logbuf_lock_irq(); 1534 clear_seq = log_next_seq; 1535 clear_idx = log_next_idx; 1536 logbuf_unlock_irq(); 1537 } 1538 1539 int do_syslog(int type, char __user *buf, int len, int source) 1540 { 1541 bool clear = false; 1542 static int saved_console_loglevel = LOGLEVEL_DEFAULT; 1543 int error; 1544 1545 error = check_syslog_permissions(type, source); 1546 if (error) 1547 return error; 1548 1549 switch (type) { 1550 case SYSLOG_ACTION_CLOSE: /* Close log */ 1551 break; 1552 case SYSLOG_ACTION_OPEN: /* Open log */ 1553 break; 1554 case SYSLOG_ACTION_READ: /* Read from log */ 1555 if (!buf || len < 0) 1556 return -EINVAL; 1557 if (!len) 1558 return 0; 1559 if (!access_ok(buf, len)) 1560 return -EFAULT; 1561 error = wait_event_interruptible(log_wait, 1562 syslog_seq != log_next_seq); 1563 if (error) 1564 return error; 1565 error = syslog_print(buf, len); 1566 break; 1567 /* Read/clear last kernel messages */ 1568 case SYSLOG_ACTION_READ_CLEAR: 1569 clear = true; 1570 /* FALL THRU */ 1571 /* Read last kernel messages */ 1572 case SYSLOG_ACTION_READ_ALL: 1573 if (!buf || len < 0) 1574 return -EINVAL; 1575 if (!len) 1576 return 0; 1577 if (!access_ok(buf, len)) 1578 return -EFAULT; 1579 error = syslog_print_all(buf, len, clear); 1580 break; 1581 /* Clear ring buffer */ 1582 case SYSLOG_ACTION_CLEAR: 1583 syslog_clear(); 1584 break; 1585 /* Disable logging to console */ 1586 case SYSLOG_ACTION_CONSOLE_OFF: 1587 if (saved_console_loglevel == LOGLEVEL_DEFAULT) 1588 saved_console_loglevel = console_loglevel; 1589 console_loglevel = minimum_console_loglevel; 1590 break; 1591 /* Enable logging to console */ 1592 case SYSLOG_ACTION_CONSOLE_ON: 1593 if (saved_console_loglevel != LOGLEVEL_DEFAULT) { 1594 console_loglevel = saved_console_loglevel; 1595 saved_console_loglevel = LOGLEVEL_DEFAULT; 1596 } 1597 break; 1598 /* Set level of messages printed to console */ 1599 case SYSLOG_ACTION_CONSOLE_LEVEL: 1600 if (len < 1 || len > 8) 1601 return -EINVAL; 1602 if (len < minimum_console_loglevel) 1603 len = minimum_console_loglevel; 1604 console_loglevel = len; 1605 /* Implicitly re-enable logging to console */ 1606 saved_console_loglevel = LOGLEVEL_DEFAULT; 1607 break; 1608 /* Number of chars in the log buffer */ 1609 case SYSLOG_ACTION_SIZE_UNREAD: 1610 logbuf_lock_irq(); 1611 if (syslog_seq < log_first_seq) { 1612 /* messages are gone, move to first one */ 1613 syslog_seq = log_first_seq; 1614 syslog_idx = log_first_idx; 1615 syslog_partial = 0; 1616 } 1617 if (source == SYSLOG_FROM_PROC) { 1618 /* 1619 * Short-cut for poll(/"proc/kmsg") which simply checks 1620 * for pending data, not the size; return the count of 1621 * records, not the length. 1622 */ 1623 error = log_next_seq - syslog_seq; 1624 } else { 1625 u64 seq = syslog_seq; 1626 u32 idx = syslog_idx; 1627 bool time = syslog_partial ? syslog_time : printk_time; 1628 1629 while (seq < log_next_seq) { 1630 struct printk_log *msg = log_from_idx(idx); 1631 1632 error += msg_print_text(msg, true, time, NULL, 1633 0); 1634 time = printk_time; 1635 idx = log_next(idx); 1636 seq++; 1637 } 1638 error -= syslog_partial; 1639 } 1640 logbuf_unlock_irq(); 1641 break; 1642 /* Size of the log buffer */ 1643 case SYSLOG_ACTION_SIZE_BUFFER: 1644 error = log_buf_len; 1645 break; 1646 default: 1647 error = -EINVAL; 1648 break; 1649 } 1650 1651 return error; 1652 } 1653 1654 SYSCALL_DEFINE3(syslog, int, type, char __user *, buf, int, len) 1655 { 1656 return do_syslog(type, buf, len, SYSLOG_FROM_READER); 1657 } 1658 1659 /* 1660 * Special console_lock variants that help to reduce the risk of soft-lockups. 1661 * They allow to pass console_lock to another printk() call using a busy wait. 1662 */ 1663 1664 #ifdef CONFIG_LOCKDEP 1665 static struct lockdep_map console_owner_dep_map = { 1666 .name = "console_owner" 1667 }; 1668 #endif 1669 1670 static DEFINE_RAW_SPINLOCK(console_owner_lock); 1671 static struct task_struct *console_owner; 1672 static bool console_waiter; 1673 1674 /** 1675 * console_lock_spinning_enable - mark beginning of code where another 1676 * thread might safely busy wait 1677 * 1678 * This basically converts console_lock into a spinlock. This marks 1679 * the section where the console_lock owner can not sleep, because 1680 * there may be a waiter spinning (like a spinlock). Also it must be 1681 * ready to hand over the lock at the end of the section. 1682 */ 1683 static void console_lock_spinning_enable(void) 1684 { 1685 raw_spin_lock(&console_owner_lock); 1686 console_owner = current; 1687 raw_spin_unlock(&console_owner_lock); 1688 1689 /* The waiter may spin on us after setting console_owner */ 1690 spin_acquire(&console_owner_dep_map, 0, 0, _THIS_IP_); 1691 } 1692 1693 /** 1694 * console_lock_spinning_disable_and_check - mark end of code where another 1695 * thread was able to busy wait and check if there is a waiter 1696 * 1697 * This is called at the end of the section where spinning is allowed. 1698 * It has two functions. First, it is a signal that it is no longer 1699 * safe to start busy waiting for the lock. Second, it checks if 1700 * there is a busy waiter and passes the lock rights to her. 1701 * 1702 * Important: Callers lose the lock if there was a busy waiter. 1703 * They must not touch items synchronized by console_lock 1704 * in this case. 1705 * 1706 * Return: 1 if the lock rights were passed, 0 otherwise. 1707 */ 1708 static int console_lock_spinning_disable_and_check(void) 1709 { 1710 int waiter; 1711 1712 raw_spin_lock(&console_owner_lock); 1713 waiter = READ_ONCE(console_waiter); 1714 console_owner = NULL; 1715 raw_spin_unlock(&console_owner_lock); 1716 1717 if (!waiter) { 1718 spin_release(&console_owner_dep_map, _THIS_IP_); 1719 return 0; 1720 } 1721 1722 /* The waiter is now free to continue */ 1723 WRITE_ONCE(console_waiter, false); 1724 1725 spin_release(&console_owner_dep_map, _THIS_IP_); 1726 1727 /* 1728 * Hand off console_lock to waiter. The waiter will perform 1729 * the up(). After this, the waiter is the console_lock owner. 1730 */ 1731 mutex_release(&console_lock_dep_map, _THIS_IP_); 1732 return 1; 1733 } 1734 1735 /** 1736 * console_trylock_spinning - try to get console_lock by busy waiting 1737 * 1738 * This allows to busy wait for the console_lock when the current 1739 * owner is running in specially marked sections. It means that 1740 * the current owner is running and cannot reschedule until it 1741 * is ready to lose the lock. 1742 * 1743 * Return: 1 if we got the lock, 0 othrewise 1744 */ 1745 static int console_trylock_spinning(void) 1746 { 1747 struct task_struct *owner = NULL; 1748 bool waiter; 1749 bool spin = false; 1750 unsigned long flags; 1751 1752 if (console_trylock()) 1753 return 1; 1754 1755 printk_safe_enter_irqsave(flags); 1756 1757 raw_spin_lock(&console_owner_lock); 1758 owner = READ_ONCE(console_owner); 1759 waiter = READ_ONCE(console_waiter); 1760 if (!waiter && owner && owner != current) { 1761 WRITE_ONCE(console_waiter, true); 1762 spin = true; 1763 } 1764 raw_spin_unlock(&console_owner_lock); 1765 1766 /* 1767 * If there is an active printk() writing to the 1768 * consoles, instead of having it write our data too, 1769 * see if we can offload that load from the active 1770 * printer, and do some printing ourselves. 1771 * Go into a spin only if there isn't already a waiter 1772 * spinning, and there is an active printer, and 1773 * that active printer isn't us (recursive printk?). 1774 */ 1775 if (!spin) { 1776 printk_safe_exit_irqrestore(flags); 1777 return 0; 1778 } 1779 1780 /* We spin waiting for the owner to release us */ 1781 spin_acquire(&console_owner_dep_map, 0, 0, _THIS_IP_); 1782 /* Owner will clear console_waiter on hand off */ 1783 while (READ_ONCE(console_waiter)) 1784 cpu_relax(); 1785 spin_release(&console_owner_dep_map, _THIS_IP_); 1786 1787 printk_safe_exit_irqrestore(flags); 1788 /* 1789 * The owner passed the console lock to us. 1790 * Since we did not spin on console lock, annotate 1791 * this as a trylock. Otherwise lockdep will 1792 * complain. 1793 */ 1794 mutex_acquire(&console_lock_dep_map, 0, 1, _THIS_IP_); 1795 1796 return 1; 1797 } 1798 1799 /* 1800 * Call the console drivers, asking them to write out 1801 * log_buf[start] to log_buf[end - 1]. 1802 * The console_lock must be held. 1803 */ 1804 static void call_console_drivers(const char *ext_text, size_t ext_len, 1805 const char *text, size_t len) 1806 { 1807 struct console *con; 1808 1809 trace_console_rcuidle(text, len); 1810 1811 for_each_console(con) { 1812 if (exclusive_console && con != exclusive_console) 1813 continue; 1814 if (!(con->flags & CON_ENABLED)) 1815 continue; 1816 if (!con->write) 1817 continue; 1818 if (!cpu_online(smp_processor_id()) && 1819 !(con->flags & CON_ANYTIME)) 1820 continue; 1821 if (con->flags & CON_EXTENDED) 1822 con->write(con, ext_text, ext_len); 1823 else 1824 con->write(con, text, len); 1825 } 1826 } 1827 1828 int printk_delay_msec __read_mostly; 1829 1830 static inline void printk_delay(void) 1831 { 1832 if (unlikely(printk_delay_msec)) { 1833 int m = printk_delay_msec; 1834 1835 while (m--) { 1836 mdelay(1); 1837 touch_nmi_watchdog(); 1838 } 1839 } 1840 } 1841 1842 static inline u32 printk_caller_id(void) 1843 { 1844 return in_task() ? task_pid_nr(current) : 1845 0x80000000 + raw_smp_processor_id(); 1846 } 1847 1848 /* 1849 * Continuation lines are buffered, and not committed to the record buffer 1850 * until the line is complete, or a race forces it. The line fragments 1851 * though, are printed immediately to the consoles to ensure everything has 1852 * reached the console in case of a kernel crash. 1853 */ 1854 static struct cont { 1855 char buf[LOG_LINE_MAX]; 1856 size_t len; /* length == 0 means unused buffer */ 1857 u32 caller_id; /* printk_caller_id() of first print */ 1858 u64 ts_nsec; /* time of first print */ 1859 u8 level; /* log level of first message */ 1860 u8 facility; /* log facility of first message */ 1861 enum log_flags flags; /* prefix, newline flags */ 1862 } cont; 1863 1864 static void cont_flush(void) 1865 { 1866 if (cont.len == 0) 1867 return; 1868 1869 log_store(cont.caller_id, cont.facility, cont.level, cont.flags, 1870 cont.ts_nsec, NULL, 0, cont.buf, cont.len); 1871 cont.len = 0; 1872 } 1873 1874 static bool cont_add(u32 caller_id, int facility, int level, 1875 enum log_flags flags, const char *text, size_t len) 1876 { 1877 /* If the line gets too long, split it up in separate records. */ 1878 if (cont.len + len > sizeof(cont.buf)) { 1879 cont_flush(); 1880 return false; 1881 } 1882 1883 if (!cont.len) { 1884 cont.facility = facility; 1885 cont.level = level; 1886 cont.caller_id = caller_id; 1887 cont.ts_nsec = local_clock(); 1888 cont.flags = flags; 1889 } 1890 1891 memcpy(cont.buf + cont.len, text, len); 1892 cont.len += len; 1893 1894 // The original flags come from the first line, 1895 // but later continuations can add a newline. 1896 if (flags & LOG_NEWLINE) { 1897 cont.flags |= LOG_NEWLINE; 1898 cont_flush(); 1899 } 1900 1901 return true; 1902 } 1903 1904 static size_t log_output(int facility, int level, enum log_flags lflags, const char *dict, size_t dictlen, char *text, size_t text_len) 1905 { 1906 const u32 caller_id = printk_caller_id(); 1907 1908 /* 1909 * If an earlier line was buffered, and we're a continuation 1910 * write from the same context, try to add it to the buffer. 1911 */ 1912 if (cont.len) { 1913 if (cont.caller_id == caller_id && (lflags & LOG_CONT)) { 1914 if (cont_add(caller_id, facility, level, lflags, text, text_len)) 1915 return text_len; 1916 } 1917 /* Otherwise, make sure it's flushed */ 1918 cont_flush(); 1919 } 1920 1921 /* Skip empty continuation lines that couldn't be added - they just flush */ 1922 if (!text_len && (lflags & LOG_CONT)) 1923 return 0; 1924 1925 /* If it doesn't end in a newline, try to buffer the current line */ 1926 if (!(lflags & LOG_NEWLINE)) { 1927 if (cont_add(caller_id, facility, level, lflags, text, text_len)) 1928 return text_len; 1929 } 1930 1931 /* Store it in the record log */ 1932 return log_store(caller_id, facility, level, lflags, 0, 1933 dict, dictlen, text, text_len); 1934 } 1935 1936 /* Must be called under logbuf_lock. */ 1937 int vprintk_store(int facility, int level, 1938 const char *dict, size_t dictlen, 1939 const char *fmt, va_list args) 1940 { 1941 static char textbuf[LOG_LINE_MAX]; 1942 char *text = textbuf; 1943 size_t text_len; 1944 enum log_flags lflags = 0; 1945 1946 /* 1947 * The printf needs to come first; we need the syslog 1948 * prefix which might be passed-in as a parameter. 1949 */ 1950 text_len = vscnprintf(text, sizeof(textbuf), fmt, args); 1951 1952 /* mark and strip a trailing newline */ 1953 if (text_len && text[text_len-1] == '\n') { 1954 text_len--; 1955 lflags |= LOG_NEWLINE; 1956 } 1957 1958 /* strip kernel syslog prefix and extract log level or control flags */ 1959 if (facility == 0) { 1960 int kern_level; 1961 1962 while ((kern_level = printk_get_level(text)) != 0) { 1963 switch (kern_level) { 1964 case '0' ... '7': 1965 if (level == LOGLEVEL_DEFAULT) 1966 level = kern_level - '0'; 1967 break; 1968 case 'c': /* KERN_CONT */ 1969 lflags |= LOG_CONT; 1970 } 1971 1972 text_len -= 2; 1973 text += 2; 1974 } 1975 } 1976 1977 if (level == LOGLEVEL_DEFAULT) 1978 level = default_message_loglevel; 1979 1980 if (dict) 1981 lflags |= LOG_NEWLINE; 1982 1983 return log_output(facility, level, lflags, 1984 dict, dictlen, text, text_len); 1985 } 1986 1987 asmlinkage int vprintk_emit(int facility, int level, 1988 const char *dict, size_t dictlen, 1989 const char *fmt, va_list args) 1990 { 1991 int printed_len; 1992 bool in_sched = false, pending_output; 1993 unsigned long flags; 1994 u64 curr_log_seq; 1995 1996 /* Suppress unimportant messages after panic happens */ 1997 if (unlikely(suppress_printk)) 1998 return 0; 1999 2000 if (level == LOGLEVEL_SCHED) { 2001 level = LOGLEVEL_DEFAULT; 2002 in_sched = true; 2003 } 2004 2005 boot_delay_msec(level); 2006 printk_delay(); 2007 2008 /* This stops the holder of console_sem just where we want him */ 2009 logbuf_lock_irqsave(flags); 2010 curr_log_seq = log_next_seq; 2011 printed_len = vprintk_store(facility, level, dict, dictlen, fmt, args); 2012 pending_output = (curr_log_seq != log_next_seq); 2013 logbuf_unlock_irqrestore(flags); 2014 2015 /* If called from the scheduler, we can not call up(). */ 2016 if (!in_sched && pending_output) { 2017 /* 2018 * Disable preemption to avoid being preempted while holding 2019 * console_sem which would prevent anyone from printing to 2020 * console 2021 */ 2022 preempt_disable(); 2023 /* 2024 * Try to acquire and then immediately release the console 2025 * semaphore. The release will print out buffers and wake up 2026 * /dev/kmsg and syslog() users. 2027 */ 2028 if (console_trylock_spinning()) 2029 console_unlock(); 2030 preempt_enable(); 2031 } 2032 2033 if (pending_output) 2034 wake_up_klogd(); 2035 return printed_len; 2036 } 2037 EXPORT_SYMBOL(vprintk_emit); 2038 2039 asmlinkage int vprintk(const char *fmt, va_list args) 2040 { 2041 return vprintk_func(fmt, args); 2042 } 2043 EXPORT_SYMBOL(vprintk); 2044 2045 int vprintk_default(const char *fmt, va_list args) 2046 { 2047 return vprintk_emit(0, LOGLEVEL_DEFAULT, NULL, 0, fmt, args); 2048 } 2049 EXPORT_SYMBOL_GPL(vprintk_default); 2050 2051 /** 2052 * printk - print a kernel message 2053 * @fmt: format string 2054 * 2055 * This is printk(). It can be called from any context. We want it to work. 2056 * 2057 * We try to grab the console_lock. If we succeed, it's easy - we log the 2058 * output and call the console drivers. If we fail to get the semaphore, we 2059 * place the output into the log buffer and return. The current holder of 2060 * the console_sem will notice the new output in console_unlock(); and will 2061 * send it to the consoles before releasing the lock. 2062 * 2063 * One effect of this deferred printing is that code which calls printk() and 2064 * then changes console_loglevel may break. This is because console_loglevel 2065 * is inspected when the actual printing occurs. 2066 * 2067 * See also: 2068 * printf(3) 2069 * 2070 * See the vsnprintf() documentation for format string extensions over C99. 2071 */ 2072 asmlinkage __visible int printk(const char *fmt, ...) 2073 { 2074 va_list args; 2075 int r; 2076 2077 va_start(args, fmt); 2078 r = vprintk_func(fmt, args); 2079 va_end(args); 2080 2081 return r; 2082 } 2083 EXPORT_SYMBOL(printk); 2084 2085 #else /* CONFIG_PRINTK */ 2086 2087 #define LOG_LINE_MAX 0 2088 #define PREFIX_MAX 0 2089 #define printk_time false 2090 2091 static u64 syslog_seq; 2092 static u32 syslog_idx; 2093 static u64 console_seq; 2094 static u32 console_idx; 2095 static u64 exclusive_console_stop_seq; 2096 static u64 log_first_seq; 2097 static u32 log_first_idx; 2098 static u64 log_next_seq; 2099 static char *log_text(const struct printk_log *msg) { return NULL; } 2100 static char *log_dict(const struct printk_log *msg) { return NULL; } 2101 static struct printk_log *log_from_idx(u32 idx) { return NULL; } 2102 static u32 log_next(u32 idx) { return 0; } 2103 static ssize_t msg_print_ext_header(char *buf, size_t size, 2104 struct printk_log *msg, 2105 u64 seq) { return 0; } 2106 static ssize_t msg_print_ext_body(char *buf, size_t size, 2107 char *dict, size_t dict_len, 2108 char *text, size_t text_len) { return 0; } 2109 static void console_lock_spinning_enable(void) { } 2110 static int console_lock_spinning_disable_and_check(void) { return 0; } 2111 static void call_console_drivers(const char *ext_text, size_t ext_len, 2112 const char *text, size_t len) {} 2113 static size_t msg_print_text(const struct printk_log *msg, bool syslog, 2114 bool time, char *buf, size_t size) { return 0; } 2115 static bool suppress_message_printing(int level) { return false; } 2116 2117 #endif /* CONFIG_PRINTK */ 2118 2119 #ifdef CONFIG_EARLY_PRINTK 2120 struct console *early_console; 2121 2122 asmlinkage __visible void early_printk(const char *fmt, ...) 2123 { 2124 va_list ap; 2125 char buf[512]; 2126 int n; 2127 2128 if (!early_console) 2129 return; 2130 2131 va_start(ap, fmt); 2132 n = vscnprintf(buf, sizeof(buf), fmt, ap); 2133 va_end(ap); 2134 2135 early_console->write(early_console, buf, n); 2136 } 2137 #endif 2138 2139 static int __add_preferred_console(char *name, int idx, char *options, 2140 char *brl_options, bool user_specified) 2141 { 2142 struct console_cmdline *c; 2143 int i; 2144 2145 /* 2146 * See if this tty is not yet registered, and 2147 * if we have a slot free. 2148 */ 2149 for (i = 0, c = console_cmdline; 2150 i < MAX_CMDLINECONSOLES && c->name[0]; 2151 i++, c++) { 2152 if (strcmp(c->name, name) == 0 && c->index == idx) { 2153 if (!brl_options) 2154 preferred_console = i; 2155 if (user_specified) 2156 c->user_specified = true; 2157 return 0; 2158 } 2159 } 2160 if (i == MAX_CMDLINECONSOLES) 2161 return -E2BIG; 2162 if (!brl_options) 2163 preferred_console = i; 2164 strlcpy(c->name, name, sizeof(c->name)); 2165 c->options = options; 2166 c->user_specified = user_specified; 2167 braille_set_options(c, brl_options); 2168 2169 c->index = idx; 2170 return 0; 2171 } 2172 2173 static int __init console_msg_format_setup(char *str) 2174 { 2175 if (!strcmp(str, "syslog")) 2176 console_msg_format = MSG_FORMAT_SYSLOG; 2177 if (!strcmp(str, "default")) 2178 console_msg_format = MSG_FORMAT_DEFAULT; 2179 return 1; 2180 } 2181 __setup("console_msg_format=", console_msg_format_setup); 2182 2183 /* 2184 * Set up a console. Called via do_early_param() in init/main.c 2185 * for each "console=" parameter in the boot command line. 2186 */ 2187 static int __init console_setup(char *str) 2188 { 2189 char buf[sizeof(console_cmdline[0].name) + 4]; /* 4 for "ttyS" */ 2190 char *s, *options, *brl_options = NULL; 2191 int idx; 2192 2193 if (str[0] == 0) 2194 return 1; 2195 2196 if (_braille_console_setup(&str, &brl_options)) 2197 return 1; 2198 2199 /* 2200 * Decode str into name, index, options. 2201 */ 2202 if (str[0] >= '0' && str[0] <= '9') { 2203 strcpy(buf, "ttyS"); 2204 strncpy(buf + 4, str, sizeof(buf) - 5); 2205 } else { 2206 strncpy(buf, str, sizeof(buf) - 1); 2207 } 2208 buf[sizeof(buf) - 1] = 0; 2209 options = strchr(str, ','); 2210 if (options) 2211 *(options++) = 0; 2212 #ifdef __sparc__ 2213 if (!strcmp(str, "ttya")) 2214 strcpy(buf, "ttyS0"); 2215 if (!strcmp(str, "ttyb")) 2216 strcpy(buf, "ttyS1"); 2217 #endif 2218 for (s = buf; *s; s++) 2219 if (isdigit(*s) || *s == ',') 2220 break; 2221 idx = simple_strtoul(s, NULL, 10); 2222 *s = 0; 2223 2224 __add_preferred_console(buf, idx, options, brl_options, true); 2225 console_set_on_cmdline = 1; 2226 return 1; 2227 } 2228 __setup("console=", console_setup); 2229 2230 /** 2231 * add_preferred_console - add a device to the list of preferred consoles. 2232 * @name: device name 2233 * @idx: device index 2234 * @options: options for this console 2235 * 2236 * The last preferred console added will be used for kernel messages 2237 * and stdin/out/err for init. Normally this is used by console_setup 2238 * above to handle user-supplied console arguments; however it can also 2239 * be used by arch-specific code either to override the user or more 2240 * commonly to provide a default console (ie from PROM variables) when 2241 * the user has not supplied one. 2242 */ 2243 int add_preferred_console(char *name, int idx, char *options) 2244 { 2245 return __add_preferred_console(name, idx, options, NULL, false); 2246 } 2247 2248 bool console_suspend_enabled = true; 2249 EXPORT_SYMBOL(console_suspend_enabled); 2250 2251 static int __init console_suspend_disable(char *str) 2252 { 2253 console_suspend_enabled = false; 2254 return 1; 2255 } 2256 __setup("no_console_suspend", console_suspend_disable); 2257 module_param_named(console_suspend, console_suspend_enabled, 2258 bool, S_IRUGO | S_IWUSR); 2259 MODULE_PARM_DESC(console_suspend, "suspend console during suspend" 2260 " and hibernate operations"); 2261 2262 /** 2263 * suspend_console - suspend the console subsystem 2264 * 2265 * This disables printk() while we go into suspend states 2266 */ 2267 void suspend_console(void) 2268 { 2269 if (!console_suspend_enabled) 2270 return; 2271 pr_info("Suspending console(s) (use no_console_suspend to debug)\n"); 2272 console_lock(); 2273 console_suspended = 1; 2274 up_console_sem(); 2275 } 2276 2277 void resume_console(void) 2278 { 2279 if (!console_suspend_enabled) 2280 return; 2281 down_console_sem(); 2282 console_suspended = 0; 2283 console_unlock(); 2284 } 2285 2286 /** 2287 * console_cpu_notify - print deferred console messages after CPU hotplug 2288 * @cpu: unused 2289 * 2290 * If printk() is called from a CPU that is not online yet, the messages 2291 * will be printed on the console only if there are CON_ANYTIME consoles. 2292 * This function is called when a new CPU comes online (or fails to come 2293 * up) or goes offline. 2294 */ 2295 static int console_cpu_notify(unsigned int cpu) 2296 { 2297 if (!cpuhp_tasks_frozen) { 2298 /* If trylock fails, someone else is doing the printing */ 2299 if (console_trylock()) 2300 console_unlock(); 2301 } 2302 return 0; 2303 } 2304 2305 /** 2306 * console_lock - lock the console system for exclusive use. 2307 * 2308 * Acquires a lock which guarantees that the caller has 2309 * exclusive access to the console system and the console_drivers list. 2310 * 2311 * Can sleep, returns nothing. 2312 */ 2313 void console_lock(void) 2314 { 2315 might_sleep(); 2316 2317 down_console_sem(); 2318 if (console_suspended) 2319 return; 2320 console_locked = 1; 2321 console_may_schedule = 1; 2322 } 2323 EXPORT_SYMBOL(console_lock); 2324 2325 /** 2326 * console_trylock - try to lock the console system for exclusive use. 2327 * 2328 * Try to acquire a lock which guarantees that the caller has exclusive 2329 * access to the console system and the console_drivers list. 2330 * 2331 * returns 1 on success, and 0 on failure to acquire the lock. 2332 */ 2333 int console_trylock(void) 2334 { 2335 if (down_trylock_console_sem()) 2336 return 0; 2337 if (console_suspended) { 2338 up_console_sem(); 2339 return 0; 2340 } 2341 console_locked = 1; 2342 console_may_schedule = 0; 2343 return 1; 2344 } 2345 EXPORT_SYMBOL(console_trylock); 2346 2347 int is_console_locked(void) 2348 { 2349 return console_locked; 2350 } 2351 EXPORT_SYMBOL(is_console_locked); 2352 2353 /* 2354 * Check if we have any console that is capable of printing while cpu is 2355 * booting or shutting down. Requires console_sem. 2356 */ 2357 static int have_callable_console(void) 2358 { 2359 struct console *con; 2360 2361 for_each_console(con) 2362 if ((con->flags & CON_ENABLED) && 2363 (con->flags & CON_ANYTIME)) 2364 return 1; 2365 2366 return 0; 2367 } 2368 2369 /* 2370 * Can we actually use the console at this time on this cpu? 2371 * 2372 * Console drivers may assume that per-cpu resources have been allocated. So 2373 * unless they're explicitly marked as being able to cope (CON_ANYTIME) don't 2374 * call them until this CPU is officially up. 2375 */ 2376 static inline int can_use_console(void) 2377 { 2378 return cpu_online(raw_smp_processor_id()) || have_callable_console(); 2379 } 2380 2381 /** 2382 * console_unlock - unlock the console system 2383 * 2384 * Releases the console_lock which the caller holds on the console system 2385 * and the console driver list. 2386 * 2387 * While the console_lock was held, console output may have been buffered 2388 * by printk(). If this is the case, console_unlock(); emits 2389 * the output prior to releasing the lock. 2390 * 2391 * If there is output waiting, we wake /dev/kmsg and syslog() users. 2392 * 2393 * console_unlock(); may be called from any context. 2394 */ 2395 void console_unlock(void) 2396 { 2397 static char ext_text[CONSOLE_EXT_LOG_MAX]; 2398 static char text[LOG_LINE_MAX + PREFIX_MAX]; 2399 unsigned long flags; 2400 bool do_cond_resched, retry; 2401 2402 if (console_suspended) { 2403 up_console_sem(); 2404 return; 2405 } 2406 2407 /* 2408 * Console drivers are called with interrupts disabled, so 2409 * @console_may_schedule should be cleared before; however, we may 2410 * end up dumping a lot of lines, for example, if called from 2411 * console registration path, and should invoke cond_resched() 2412 * between lines if allowable. Not doing so can cause a very long 2413 * scheduling stall on a slow console leading to RCU stall and 2414 * softlockup warnings which exacerbate the issue with more 2415 * messages practically incapacitating the system. 2416 * 2417 * console_trylock() is not able to detect the preemptive 2418 * context reliably. Therefore the value must be stored before 2419 * and cleared after the the "again" goto label. 2420 */ 2421 do_cond_resched = console_may_schedule; 2422 again: 2423 console_may_schedule = 0; 2424 2425 /* 2426 * We released the console_sem lock, so we need to recheck if 2427 * cpu is online and (if not) is there at least one CON_ANYTIME 2428 * console. 2429 */ 2430 if (!can_use_console()) { 2431 console_locked = 0; 2432 up_console_sem(); 2433 return; 2434 } 2435 2436 for (;;) { 2437 struct printk_log *msg; 2438 size_t ext_len = 0; 2439 size_t len; 2440 2441 printk_safe_enter_irqsave(flags); 2442 raw_spin_lock(&logbuf_lock); 2443 if (console_seq < log_first_seq) { 2444 len = snprintf(text, sizeof(text), 2445 "** %llu printk messages dropped **\n", 2446 log_first_seq - console_seq); 2447 2448 /* messages are gone, move to first one */ 2449 console_seq = log_first_seq; 2450 console_idx = log_first_idx; 2451 } else { 2452 len = 0; 2453 } 2454 skip: 2455 if (console_seq == log_next_seq) 2456 break; 2457 2458 msg = log_from_idx(console_idx); 2459 if (suppress_message_printing(msg->level)) { 2460 /* 2461 * Skip record we have buffered and already printed 2462 * directly to the console when we received it, and 2463 * record that has level above the console loglevel. 2464 */ 2465 console_idx = log_next(console_idx); 2466 console_seq++; 2467 goto skip; 2468 } 2469 2470 /* Output to all consoles once old messages replayed. */ 2471 if (unlikely(exclusive_console && 2472 console_seq >= exclusive_console_stop_seq)) { 2473 exclusive_console = NULL; 2474 } 2475 2476 len += msg_print_text(msg, 2477 console_msg_format & MSG_FORMAT_SYSLOG, 2478 printk_time, text + len, sizeof(text) - len); 2479 if (nr_ext_console_drivers) { 2480 ext_len = msg_print_ext_header(ext_text, 2481 sizeof(ext_text), 2482 msg, console_seq); 2483 ext_len += msg_print_ext_body(ext_text + ext_len, 2484 sizeof(ext_text) - ext_len, 2485 log_dict(msg), msg->dict_len, 2486 log_text(msg), msg->text_len); 2487 } 2488 console_idx = log_next(console_idx); 2489 console_seq++; 2490 raw_spin_unlock(&logbuf_lock); 2491 2492 /* 2493 * While actively printing out messages, if another printk() 2494 * were to occur on another CPU, it may wait for this one to 2495 * finish. This task can not be preempted if there is a 2496 * waiter waiting to take over. 2497 */ 2498 console_lock_spinning_enable(); 2499 2500 stop_critical_timings(); /* don't trace print latency */ 2501 call_console_drivers(ext_text, ext_len, text, len); 2502 start_critical_timings(); 2503 2504 if (console_lock_spinning_disable_and_check()) { 2505 printk_safe_exit_irqrestore(flags); 2506 return; 2507 } 2508 2509 printk_safe_exit_irqrestore(flags); 2510 2511 if (do_cond_resched) 2512 cond_resched(); 2513 } 2514 2515 console_locked = 0; 2516 2517 raw_spin_unlock(&logbuf_lock); 2518 2519 up_console_sem(); 2520 2521 /* 2522 * Someone could have filled up the buffer again, so re-check if there's 2523 * something to flush. In case we cannot trylock the console_sem again, 2524 * there's a new owner and the console_unlock() from them will do the 2525 * flush, no worries. 2526 */ 2527 raw_spin_lock(&logbuf_lock); 2528 retry = console_seq != log_next_seq; 2529 raw_spin_unlock(&logbuf_lock); 2530 printk_safe_exit_irqrestore(flags); 2531 2532 if (retry && console_trylock()) 2533 goto again; 2534 } 2535 EXPORT_SYMBOL(console_unlock); 2536 2537 /** 2538 * console_conditional_schedule - yield the CPU if required 2539 * 2540 * If the console code is currently allowed to sleep, and 2541 * if this CPU should yield the CPU to another task, do 2542 * so here. 2543 * 2544 * Must be called within console_lock();. 2545 */ 2546 void __sched console_conditional_schedule(void) 2547 { 2548 if (console_may_schedule) 2549 cond_resched(); 2550 } 2551 EXPORT_SYMBOL(console_conditional_schedule); 2552 2553 void console_unblank(void) 2554 { 2555 struct console *c; 2556 2557 /* 2558 * console_unblank can no longer be called in interrupt context unless 2559 * oops_in_progress is set to 1.. 2560 */ 2561 if (oops_in_progress) { 2562 if (down_trylock_console_sem() != 0) 2563 return; 2564 } else 2565 console_lock(); 2566 2567 console_locked = 1; 2568 console_may_schedule = 0; 2569 for_each_console(c) 2570 if ((c->flags & CON_ENABLED) && c->unblank) 2571 c->unblank(); 2572 console_unlock(); 2573 } 2574 2575 /** 2576 * console_flush_on_panic - flush console content on panic 2577 * @mode: flush all messages in buffer or just the pending ones 2578 * 2579 * Immediately output all pending messages no matter what. 2580 */ 2581 void console_flush_on_panic(enum con_flush_mode mode) 2582 { 2583 /* 2584 * If someone else is holding the console lock, trylock will fail 2585 * and may_schedule may be set. Ignore and proceed to unlock so 2586 * that messages are flushed out. As this can be called from any 2587 * context and we don't want to get preempted while flushing, 2588 * ensure may_schedule is cleared. 2589 */ 2590 console_trylock(); 2591 console_may_schedule = 0; 2592 2593 if (mode == CONSOLE_REPLAY_ALL) { 2594 unsigned long flags; 2595 2596 logbuf_lock_irqsave(flags); 2597 console_seq = log_first_seq; 2598 console_idx = log_first_idx; 2599 logbuf_unlock_irqrestore(flags); 2600 } 2601 console_unlock(); 2602 } 2603 2604 /* 2605 * Return the console tty driver structure and its associated index 2606 */ 2607 struct tty_driver *console_device(int *index) 2608 { 2609 struct console *c; 2610 struct tty_driver *driver = NULL; 2611 2612 console_lock(); 2613 for_each_console(c) { 2614 if (!c->device) 2615 continue; 2616 driver = c->device(c, index); 2617 if (driver) 2618 break; 2619 } 2620 console_unlock(); 2621 return driver; 2622 } 2623 2624 /* 2625 * Prevent further output on the passed console device so that (for example) 2626 * serial drivers can disable console output before suspending a port, and can 2627 * re-enable output afterwards. 2628 */ 2629 void console_stop(struct console *console) 2630 { 2631 console_lock(); 2632 console->flags &= ~CON_ENABLED; 2633 console_unlock(); 2634 } 2635 EXPORT_SYMBOL(console_stop); 2636 2637 void console_start(struct console *console) 2638 { 2639 console_lock(); 2640 console->flags |= CON_ENABLED; 2641 console_unlock(); 2642 } 2643 EXPORT_SYMBOL(console_start); 2644 2645 static int __read_mostly keep_bootcon; 2646 2647 static int __init keep_bootcon_setup(char *str) 2648 { 2649 keep_bootcon = 1; 2650 pr_info("debug: skip boot console de-registration.\n"); 2651 2652 return 0; 2653 } 2654 2655 early_param("keep_bootcon", keep_bootcon_setup); 2656 2657 /* 2658 * This is called by register_console() to try to match 2659 * the newly registered console with any of the ones selected 2660 * by either the command line or add_preferred_console() and 2661 * setup/enable it. 2662 * 2663 * Care need to be taken with consoles that are statically 2664 * enabled such as netconsole 2665 */ 2666 static int try_enable_new_console(struct console *newcon, bool user_specified) 2667 { 2668 struct console_cmdline *c; 2669 int i, err; 2670 2671 for (i = 0, c = console_cmdline; 2672 i < MAX_CMDLINECONSOLES && c->name[0]; 2673 i++, c++) { 2674 if (c->user_specified != user_specified) 2675 continue; 2676 if (!newcon->match || 2677 newcon->match(newcon, c->name, c->index, c->options) != 0) { 2678 /* default matching */ 2679 BUILD_BUG_ON(sizeof(c->name) != sizeof(newcon->name)); 2680 if (strcmp(c->name, newcon->name) != 0) 2681 continue; 2682 if (newcon->index >= 0 && 2683 newcon->index != c->index) 2684 continue; 2685 if (newcon->index < 0) 2686 newcon->index = c->index; 2687 2688 if (_braille_register_console(newcon, c)) 2689 return 0; 2690 2691 if (newcon->setup && 2692 (err = newcon->setup(newcon, c->options)) != 0) 2693 return err; 2694 } 2695 newcon->flags |= CON_ENABLED; 2696 if (i == preferred_console) { 2697 newcon->flags |= CON_CONSDEV; 2698 has_preferred_console = true; 2699 } 2700 return 0; 2701 } 2702 2703 /* 2704 * Some consoles, such as pstore and netconsole, can be enabled even 2705 * without matching. Accept the pre-enabled consoles only when match() 2706 * and setup() had a chance to be called. 2707 */ 2708 if (newcon->flags & CON_ENABLED && c->user_specified == user_specified) 2709 return 0; 2710 2711 return -ENOENT; 2712 } 2713 2714 /* 2715 * The console driver calls this routine during kernel initialization 2716 * to register the console printing procedure with printk() and to 2717 * print any messages that were printed by the kernel before the 2718 * console driver was initialized. 2719 * 2720 * This can happen pretty early during the boot process (because of 2721 * early_printk) - sometimes before setup_arch() completes - be careful 2722 * of what kernel features are used - they may not be initialised yet. 2723 * 2724 * There are two types of consoles - bootconsoles (early_printk) and 2725 * "real" consoles (everything which is not a bootconsole) which are 2726 * handled differently. 2727 * - Any number of bootconsoles can be registered at any time. 2728 * - As soon as a "real" console is registered, all bootconsoles 2729 * will be unregistered automatically. 2730 * - Once a "real" console is registered, any attempt to register a 2731 * bootconsoles will be rejected 2732 */ 2733 void register_console(struct console *newcon) 2734 { 2735 unsigned long flags; 2736 struct console *bcon = NULL; 2737 int err; 2738 2739 for_each_console(bcon) { 2740 if (WARN(bcon == newcon, "console '%s%d' already registered\n", 2741 bcon->name, bcon->index)) 2742 return; 2743 } 2744 2745 /* 2746 * before we register a new CON_BOOT console, make sure we don't 2747 * already have a valid console 2748 */ 2749 if (newcon->flags & CON_BOOT) { 2750 for_each_console(bcon) { 2751 if (!(bcon->flags & CON_BOOT)) { 2752 pr_info("Too late to register bootconsole %s%d\n", 2753 newcon->name, newcon->index); 2754 return; 2755 } 2756 } 2757 } 2758 2759 if (console_drivers && console_drivers->flags & CON_BOOT) 2760 bcon = console_drivers; 2761 2762 if (!has_preferred_console || bcon || !console_drivers) 2763 has_preferred_console = preferred_console >= 0; 2764 2765 /* 2766 * See if we want to use this console driver. If we 2767 * didn't select a console we take the first one 2768 * that registers here. 2769 */ 2770 if (!has_preferred_console) { 2771 if (newcon->index < 0) 2772 newcon->index = 0; 2773 if (newcon->setup == NULL || 2774 newcon->setup(newcon, NULL) == 0) { 2775 newcon->flags |= CON_ENABLED; 2776 if (newcon->device) { 2777 newcon->flags |= CON_CONSDEV; 2778 has_preferred_console = true; 2779 } 2780 } 2781 } 2782 2783 /* See if this console matches one we selected on the command line */ 2784 err = try_enable_new_console(newcon, true); 2785 2786 /* If not, try to match against the platform default(s) */ 2787 if (err == -ENOENT) 2788 err = try_enable_new_console(newcon, false); 2789 2790 /* printk() messages are not printed to the Braille console. */ 2791 if (err || newcon->flags & CON_BRL) 2792 return; 2793 2794 /* 2795 * If we have a bootconsole, and are switching to a real console, 2796 * don't print everything out again, since when the boot console, and 2797 * the real console are the same physical device, it's annoying to 2798 * see the beginning boot messages twice 2799 */ 2800 if (bcon && ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV)) 2801 newcon->flags &= ~CON_PRINTBUFFER; 2802 2803 /* 2804 * Put this console in the list - keep the 2805 * preferred driver at the head of the list. 2806 */ 2807 console_lock(); 2808 if ((newcon->flags & CON_CONSDEV) || console_drivers == NULL) { 2809 newcon->next = console_drivers; 2810 console_drivers = newcon; 2811 if (newcon->next) 2812 newcon->next->flags &= ~CON_CONSDEV; 2813 /* Ensure this flag is always set for the head of the list */ 2814 newcon->flags |= CON_CONSDEV; 2815 } else { 2816 newcon->next = console_drivers->next; 2817 console_drivers->next = newcon; 2818 } 2819 2820 if (newcon->flags & CON_EXTENDED) 2821 nr_ext_console_drivers++; 2822 2823 if (newcon->flags & CON_PRINTBUFFER) { 2824 /* 2825 * console_unlock(); will print out the buffered messages 2826 * for us. 2827 */ 2828 logbuf_lock_irqsave(flags); 2829 /* 2830 * We're about to replay the log buffer. Only do this to the 2831 * just-registered console to avoid excessive message spam to 2832 * the already-registered consoles. 2833 * 2834 * Set exclusive_console with disabled interrupts to reduce 2835 * race window with eventual console_flush_on_panic() that 2836 * ignores console_lock. 2837 */ 2838 exclusive_console = newcon; 2839 exclusive_console_stop_seq = console_seq; 2840 console_seq = syslog_seq; 2841 console_idx = syslog_idx; 2842 logbuf_unlock_irqrestore(flags); 2843 } 2844 console_unlock(); 2845 console_sysfs_notify(); 2846 2847 /* 2848 * By unregistering the bootconsoles after we enable the real console 2849 * we get the "console xxx enabled" message on all the consoles - 2850 * boot consoles, real consoles, etc - this is to ensure that end 2851 * users know there might be something in the kernel's log buffer that 2852 * went to the bootconsole (that they do not see on the real console) 2853 */ 2854 pr_info("%sconsole [%s%d] enabled\n", 2855 (newcon->flags & CON_BOOT) ? "boot" : "" , 2856 newcon->name, newcon->index); 2857 if (bcon && 2858 ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV) && 2859 !keep_bootcon) { 2860 /* We need to iterate through all boot consoles, to make 2861 * sure we print everything out, before we unregister them. 2862 */ 2863 for_each_console(bcon) 2864 if (bcon->flags & CON_BOOT) 2865 unregister_console(bcon); 2866 } 2867 } 2868 EXPORT_SYMBOL(register_console); 2869 2870 int unregister_console(struct console *console) 2871 { 2872 struct console *con; 2873 int res; 2874 2875 pr_info("%sconsole [%s%d] disabled\n", 2876 (console->flags & CON_BOOT) ? "boot" : "" , 2877 console->name, console->index); 2878 2879 res = _braille_unregister_console(console); 2880 if (res < 0) 2881 return res; 2882 if (res > 0) 2883 return 0; 2884 2885 res = -ENODEV; 2886 console_lock(); 2887 if (console_drivers == console) { 2888 console_drivers=console->next; 2889 res = 0; 2890 } else { 2891 for_each_console(con) { 2892 if (con->next == console) { 2893 con->next = console->next; 2894 res = 0; 2895 break; 2896 } 2897 } 2898 } 2899 2900 if (res) 2901 goto out_disable_unlock; 2902 2903 if (console->flags & CON_EXTENDED) 2904 nr_ext_console_drivers--; 2905 2906 /* 2907 * If this isn't the last console and it has CON_CONSDEV set, we 2908 * need to set it on the next preferred console. 2909 */ 2910 if (console_drivers != NULL && console->flags & CON_CONSDEV) 2911 console_drivers->flags |= CON_CONSDEV; 2912 2913 console->flags &= ~CON_ENABLED; 2914 console_unlock(); 2915 console_sysfs_notify(); 2916 2917 if (console->exit) 2918 res = console->exit(console); 2919 2920 return res; 2921 2922 out_disable_unlock: 2923 console->flags &= ~CON_ENABLED; 2924 console_unlock(); 2925 2926 return res; 2927 } 2928 EXPORT_SYMBOL(unregister_console); 2929 2930 /* 2931 * Initialize the console device. This is called *early*, so 2932 * we can't necessarily depend on lots of kernel help here. 2933 * Just do some early initializations, and do the complex setup 2934 * later. 2935 */ 2936 void __init console_init(void) 2937 { 2938 int ret; 2939 initcall_t call; 2940 initcall_entry_t *ce; 2941 2942 /* Setup the default TTY line discipline. */ 2943 n_tty_init(); 2944 2945 /* 2946 * set up the console device so that later boot sequences can 2947 * inform about problems etc.. 2948 */ 2949 ce = __con_initcall_start; 2950 trace_initcall_level("console"); 2951 while (ce < __con_initcall_end) { 2952 call = initcall_from_entry(ce); 2953 trace_initcall_start(call); 2954 ret = call(); 2955 trace_initcall_finish(call, ret); 2956 ce++; 2957 } 2958 } 2959 2960 /* 2961 * Some boot consoles access data that is in the init section and which will 2962 * be discarded after the initcalls have been run. To make sure that no code 2963 * will access this data, unregister the boot consoles in a late initcall. 2964 * 2965 * If for some reason, such as deferred probe or the driver being a loadable 2966 * module, the real console hasn't registered yet at this point, there will 2967 * be a brief interval in which no messages are logged to the console, which 2968 * makes it difficult to diagnose problems that occur during this time. 2969 * 2970 * To mitigate this problem somewhat, only unregister consoles whose memory 2971 * intersects with the init section. Note that all other boot consoles will 2972 * get unregistred when the real preferred console is registered. 2973 */ 2974 static int __init printk_late_init(void) 2975 { 2976 struct console *con; 2977 int ret; 2978 2979 for_each_console(con) { 2980 if (!(con->flags & CON_BOOT)) 2981 continue; 2982 2983 /* Check addresses that might be used for enabled consoles. */ 2984 if (init_section_intersects(con, sizeof(*con)) || 2985 init_section_contains(con->write, 0) || 2986 init_section_contains(con->read, 0) || 2987 init_section_contains(con->device, 0) || 2988 init_section_contains(con->unblank, 0) || 2989 init_section_contains(con->data, 0)) { 2990 /* 2991 * Please, consider moving the reported consoles out 2992 * of the init section. 2993 */ 2994 pr_warn("bootconsole [%s%d] uses init memory and must be disabled even before the real one is ready\n", 2995 con->name, con->index); 2996 unregister_console(con); 2997 } 2998 } 2999 ret = cpuhp_setup_state_nocalls(CPUHP_PRINTK_DEAD, "printk:dead", NULL, 3000 console_cpu_notify); 3001 WARN_ON(ret < 0); 3002 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "printk:online", 3003 console_cpu_notify, NULL); 3004 WARN_ON(ret < 0); 3005 return 0; 3006 } 3007 late_initcall(printk_late_init); 3008 3009 #if defined CONFIG_PRINTK 3010 /* 3011 * Delayed printk version, for scheduler-internal messages: 3012 */ 3013 #define PRINTK_PENDING_WAKEUP 0x01 3014 #define PRINTK_PENDING_OUTPUT 0x02 3015 3016 static DEFINE_PER_CPU(int, printk_pending); 3017 3018 static void wake_up_klogd_work_func(struct irq_work *irq_work) 3019 { 3020 int pending = __this_cpu_xchg(printk_pending, 0); 3021 3022 if (pending & PRINTK_PENDING_OUTPUT) { 3023 /* If trylock fails, someone else is doing the printing */ 3024 if (console_trylock()) 3025 console_unlock(); 3026 } 3027 3028 if (pending & PRINTK_PENDING_WAKEUP) 3029 wake_up_interruptible(&log_wait); 3030 } 3031 3032 static DEFINE_PER_CPU(struct irq_work, wake_up_klogd_work) = { 3033 .func = wake_up_klogd_work_func, 3034 .flags = ATOMIC_INIT(IRQ_WORK_LAZY), 3035 }; 3036 3037 void wake_up_klogd(void) 3038 { 3039 if (!printk_percpu_data_ready()) 3040 return; 3041 3042 preempt_disable(); 3043 if (waitqueue_active(&log_wait)) { 3044 this_cpu_or(printk_pending, PRINTK_PENDING_WAKEUP); 3045 irq_work_queue(this_cpu_ptr(&wake_up_klogd_work)); 3046 } 3047 preempt_enable(); 3048 } 3049 3050 void defer_console_output(void) 3051 { 3052 if (!printk_percpu_data_ready()) 3053 return; 3054 3055 preempt_disable(); 3056 __this_cpu_or(printk_pending, PRINTK_PENDING_OUTPUT); 3057 irq_work_queue(this_cpu_ptr(&wake_up_klogd_work)); 3058 preempt_enable(); 3059 } 3060 3061 int vprintk_deferred(const char *fmt, va_list args) 3062 { 3063 int r; 3064 3065 r = vprintk_emit(0, LOGLEVEL_SCHED, NULL, 0, fmt, args); 3066 defer_console_output(); 3067 3068 return r; 3069 } 3070 3071 int printk_deferred(const char *fmt, ...) 3072 { 3073 va_list args; 3074 int r; 3075 3076 va_start(args, fmt); 3077 r = vprintk_deferred(fmt, args); 3078 va_end(args); 3079 3080 return r; 3081 } 3082 3083 /* 3084 * printk rate limiting, lifted from the networking subsystem. 3085 * 3086 * This enforces a rate limit: not more than 10 kernel messages 3087 * every 5s to make a denial-of-service attack impossible. 3088 */ 3089 DEFINE_RATELIMIT_STATE(printk_ratelimit_state, 5 * HZ, 10); 3090 3091 int __printk_ratelimit(const char *func) 3092 { 3093 return ___ratelimit(&printk_ratelimit_state, func); 3094 } 3095 EXPORT_SYMBOL(__printk_ratelimit); 3096 3097 /** 3098 * printk_timed_ratelimit - caller-controlled printk ratelimiting 3099 * @caller_jiffies: pointer to caller's state 3100 * @interval_msecs: minimum interval between prints 3101 * 3102 * printk_timed_ratelimit() returns true if more than @interval_msecs 3103 * milliseconds have elapsed since the last time printk_timed_ratelimit() 3104 * returned true. 3105 */ 3106 bool printk_timed_ratelimit(unsigned long *caller_jiffies, 3107 unsigned int interval_msecs) 3108 { 3109 unsigned long elapsed = jiffies - *caller_jiffies; 3110 3111 if (*caller_jiffies && elapsed <= msecs_to_jiffies(interval_msecs)) 3112 return false; 3113 3114 *caller_jiffies = jiffies; 3115 return true; 3116 } 3117 EXPORT_SYMBOL(printk_timed_ratelimit); 3118 3119 static DEFINE_SPINLOCK(dump_list_lock); 3120 static LIST_HEAD(dump_list); 3121 3122 /** 3123 * kmsg_dump_register - register a kernel log dumper. 3124 * @dumper: pointer to the kmsg_dumper structure 3125 * 3126 * Adds a kernel log dumper to the system. The dump callback in the 3127 * structure will be called when the kernel oopses or panics and must be 3128 * set. Returns zero on success and %-EINVAL or %-EBUSY otherwise. 3129 */ 3130 int kmsg_dump_register(struct kmsg_dumper *dumper) 3131 { 3132 unsigned long flags; 3133 int err = -EBUSY; 3134 3135 /* The dump callback needs to be set */ 3136 if (!dumper->dump) 3137 return -EINVAL; 3138 3139 spin_lock_irqsave(&dump_list_lock, flags); 3140 /* Don't allow registering multiple times */ 3141 if (!dumper->registered) { 3142 dumper->registered = 1; 3143 list_add_tail_rcu(&dumper->list, &dump_list); 3144 err = 0; 3145 } 3146 spin_unlock_irqrestore(&dump_list_lock, flags); 3147 3148 return err; 3149 } 3150 EXPORT_SYMBOL_GPL(kmsg_dump_register); 3151 3152 /** 3153 * kmsg_dump_unregister - unregister a kmsg dumper. 3154 * @dumper: pointer to the kmsg_dumper structure 3155 * 3156 * Removes a dump device from the system. Returns zero on success and 3157 * %-EINVAL otherwise. 3158 */ 3159 int kmsg_dump_unregister(struct kmsg_dumper *dumper) 3160 { 3161 unsigned long flags; 3162 int err = -EINVAL; 3163 3164 spin_lock_irqsave(&dump_list_lock, flags); 3165 if (dumper->registered) { 3166 dumper->registered = 0; 3167 list_del_rcu(&dumper->list); 3168 err = 0; 3169 } 3170 spin_unlock_irqrestore(&dump_list_lock, flags); 3171 synchronize_rcu(); 3172 3173 return err; 3174 } 3175 EXPORT_SYMBOL_GPL(kmsg_dump_unregister); 3176 3177 static bool always_kmsg_dump; 3178 module_param_named(always_kmsg_dump, always_kmsg_dump, bool, S_IRUGO | S_IWUSR); 3179 3180 const char *kmsg_dump_reason_str(enum kmsg_dump_reason reason) 3181 { 3182 switch (reason) { 3183 case KMSG_DUMP_PANIC: 3184 return "Panic"; 3185 case KMSG_DUMP_OOPS: 3186 return "Oops"; 3187 case KMSG_DUMP_EMERG: 3188 return "Emergency"; 3189 case KMSG_DUMP_SHUTDOWN: 3190 return "Shutdown"; 3191 default: 3192 return "Unknown"; 3193 } 3194 } 3195 EXPORT_SYMBOL_GPL(kmsg_dump_reason_str); 3196 3197 /** 3198 * kmsg_dump - dump kernel log to kernel message dumpers. 3199 * @reason: the reason (oops, panic etc) for dumping 3200 * 3201 * Call each of the registered dumper's dump() callback, which can 3202 * retrieve the kmsg records with kmsg_dump_get_line() or 3203 * kmsg_dump_get_buffer(). 3204 */ 3205 void kmsg_dump(enum kmsg_dump_reason reason) 3206 { 3207 struct kmsg_dumper *dumper; 3208 unsigned long flags; 3209 3210 rcu_read_lock(); 3211 list_for_each_entry_rcu(dumper, &dump_list, list) { 3212 enum kmsg_dump_reason max_reason = dumper->max_reason; 3213 3214 /* 3215 * If client has not provided a specific max_reason, default 3216 * to KMSG_DUMP_OOPS, unless always_kmsg_dump was set. 3217 */ 3218 if (max_reason == KMSG_DUMP_UNDEF) { 3219 max_reason = always_kmsg_dump ? KMSG_DUMP_MAX : 3220 KMSG_DUMP_OOPS; 3221 } 3222 if (reason > max_reason) 3223 continue; 3224 3225 /* initialize iterator with data about the stored records */ 3226 dumper->active = true; 3227 3228 logbuf_lock_irqsave(flags); 3229 dumper->cur_seq = clear_seq; 3230 dumper->cur_idx = clear_idx; 3231 dumper->next_seq = log_next_seq; 3232 dumper->next_idx = log_next_idx; 3233 logbuf_unlock_irqrestore(flags); 3234 3235 /* invoke dumper which will iterate over records */ 3236 dumper->dump(dumper, reason); 3237 3238 /* reset iterator */ 3239 dumper->active = false; 3240 } 3241 rcu_read_unlock(); 3242 } 3243 3244 /** 3245 * kmsg_dump_get_line_nolock - retrieve one kmsg log line (unlocked version) 3246 * @dumper: registered kmsg dumper 3247 * @syslog: include the "<4>" prefixes 3248 * @line: buffer to copy the line to 3249 * @size: maximum size of the buffer 3250 * @len: length of line placed into buffer 3251 * 3252 * Start at the beginning of the kmsg buffer, with the oldest kmsg 3253 * record, and copy one record into the provided buffer. 3254 * 3255 * Consecutive calls will return the next available record moving 3256 * towards the end of the buffer with the youngest messages. 3257 * 3258 * A return value of FALSE indicates that there are no more records to 3259 * read. 3260 * 3261 * The function is similar to kmsg_dump_get_line(), but grabs no locks. 3262 */ 3263 bool kmsg_dump_get_line_nolock(struct kmsg_dumper *dumper, bool syslog, 3264 char *line, size_t size, size_t *len) 3265 { 3266 struct printk_log *msg; 3267 size_t l = 0; 3268 bool ret = false; 3269 3270 if (!dumper->active) 3271 goto out; 3272 3273 if (dumper->cur_seq < log_first_seq) { 3274 /* messages are gone, move to first available one */ 3275 dumper->cur_seq = log_first_seq; 3276 dumper->cur_idx = log_first_idx; 3277 } 3278 3279 /* last entry */ 3280 if (dumper->cur_seq >= log_next_seq) 3281 goto out; 3282 3283 msg = log_from_idx(dumper->cur_idx); 3284 l = msg_print_text(msg, syslog, printk_time, line, size); 3285 3286 dumper->cur_idx = log_next(dumper->cur_idx); 3287 dumper->cur_seq++; 3288 ret = true; 3289 out: 3290 if (len) 3291 *len = l; 3292 return ret; 3293 } 3294 3295 /** 3296 * kmsg_dump_get_line - retrieve one kmsg log line 3297 * @dumper: registered kmsg dumper 3298 * @syslog: include the "<4>" prefixes 3299 * @line: buffer to copy the line to 3300 * @size: maximum size of the buffer 3301 * @len: length of line placed into buffer 3302 * 3303 * Start at the beginning of the kmsg buffer, with the oldest kmsg 3304 * record, and copy one record into the provided buffer. 3305 * 3306 * Consecutive calls will return the next available record moving 3307 * towards the end of the buffer with the youngest messages. 3308 * 3309 * A return value of FALSE indicates that there are no more records to 3310 * read. 3311 */ 3312 bool kmsg_dump_get_line(struct kmsg_dumper *dumper, bool syslog, 3313 char *line, size_t size, size_t *len) 3314 { 3315 unsigned long flags; 3316 bool ret; 3317 3318 logbuf_lock_irqsave(flags); 3319 ret = kmsg_dump_get_line_nolock(dumper, syslog, line, size, len); 3320 logbuf_unlock_irqrestore(flags); 3321 3322 return ret; 3323 } 3324 EXPORT_SYMBOL_GPL(kmsg_dump_get_line); 3325 3326 /** 3327 * kmsg_dump_get_buffer - copy kmsg log lines 3328 * @dumper: registered kmsg dumper 3329 * @syslog: include the "<4>" prefixes 3330 * @buf: buffer to copy the line to 3331 * @size: maximum size of the buffer 3332 * @len: length of line placed into buffer 3333 * 3334 * Start at the end of the kmsg buffer and fill the provided buffer 3335 * with as many of the the *youngest* kmsg records that fit into it. 3336 * If the buffer is large enough, all available kmsg records will be 3337 * copied with a single call. 3338 * 3339 * Consecutive calls will fill the buffer with the next block of 3340 * available older records, not including the earlier retrieved ones. 3341 * 3342 * A return value of FALSE indicates that there are no more records to 3343 * read. 3344 */ 3345 bool kmsg_dump_get_buffer(struct kmsg_dumper *dumper, bool syslog, 3346 char *buf, size_t size, size_t *len) 3347 { 3348 unsigned long flags; 3349 u64 seq; 3350 u32 idx; 3351 u64 next_seq; 3352 u32 next_idx; 3353 size_t l = 0; 3354 bool ret = false; 3355 bool time = printk_time; 3356 3357 if (!dumper->active) 3358 goto out; 3359 3360 logbuf_lock_irqsave(flags); 3361 if (dumper->cur_seq < log_first_seq) { 3362 /* messages are gone, move to first available one */ 3363 dumper->cur_seq = log_first_seq; 3364 dumper->cur_idx = log_first_idx; 3365 } 3366 3367 /* last entry */ 3368 if (dumper->cur_seq >= dumper->next_seq) { 3369 logbuf_unlock_irqrestore(flags); 3370 goto out; 3371 } 3372 3373 /* calculate length of entire buffer */ 3374 seq = dumper->cur_seq; 3375 idx = dumper->cur_idx; 3376 while (seq < dumper->next_seq) { 3377 struct printk_log *msg = log_from_idx(idx); 3378 3379 l += msg_print_text(msg, true, time, NULL, 0); 3380 idx = log_next(idx); 3381 seq++; 3382 } 3383 3384 /* move first record forward until length fits into the buffer */ 3385 seq = dumper->cur_seq; 3386 idx = dumper->cur_idx; 3387 while (l >= size && seq < dumper->next_seq) { 3388 struct printk_log *msg = log_from_idx(idx); 3389 3390 l -= msg_print_text(msg, true, time, NULL, 0); 3391 idx = log_next(idx); 3392 seq++; 3393 } 3394 3395 /* last message in next interation */ 3396 next_seq = seq; 3397 next_idx = idx; 3398 3399 l = 0; 3400 while (seq < dumper->next_seq) { 3401 struct printk_log *msg = log_from_idx(idx); 3402 3403 l += msg_print_text(msg, syslog, time, buf + l, size - l); 3404 idx = log_next(idx); 3405 seq++; 3406 } 3407 3408 dumper->next_seq = next_seq; 3409 dumper->next_idx = next_idx; 3410 ret = true; 3411 logbuf_unlock_irqrestore(flags); 3412 out: 3413 if (len) 3414 *len = l; 3415 return ret; 3416 } 3417 EXPORT_SYMBOL_GPL(kmsg_dump_get_buffer); 3418 3419 /** 3420 * kmsg_dump_rewind_nolock - reset the iterator (unlocked version) 3421 * @dumper: registered kmsg dumper 3422 * 3423 * Reset the dumper's iterator so that kmsg_dump_get_line() and 3424 * kmsg_dump_get_buffer() can be called again and used multiple 3425 * times within the same dumper.dump() callback. 3426 * 3427 * The function is similar to kmsg_dump_rewind(), but grabs no locks. 3428 */ 3429 void kmsg_dump_rewind_nolock(struct kmsg_dumper *dumper) 3430 { 3431 dumper->cur_seq = clear_seq; 3432 dumper->cur_idx = clear_idx; 3433 dumper->next_seq = log_next_seq; 3434 dumper->next_idx = log_next_idx; 3435 } 3436 3437 /** 3438 * kmsg_dump_rewind - reset the iterator 3439 * @dumper: registered kmsg dumper 3440 * 3441 * Reset the dumper's iterator so that kmsg_dump_get_line() and 3442 * kmsg_dump_get_buffer() can be called again and used multiple 3443 * times within the same dumper.dump() callback. 3444 */ 3445 void kmsg_dump_rewind(struct kmsg_dumper *dumper) 3446 { 3447 unsigned long flags; 3448 3449 logbuf_lock_irqsave(flags); 3450 kmsg_dump_rewind_nolock(dumper); 3451 logbuf_unlock_irqrestore(flags); 3452 } 3453 EXPORT_SYMBOL_GPL(kmsg_dump_rewind); 3454 3455 #endif 3456