xref: /openbmc/linux/kernel/printk/printk.c (revision 4464005a12b5c79e1a364e6272ee10a83413f928)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/printk.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  *
7  * Modified to make sys_syslog() more flexible: added commands to
8  * return the last 4k of kernel messages, regardless of whether
9  * they've been read or not.  Added option to suppress kernel printk's
10  * to the console.  Added hook for sending the console messages
11  * elsewhere, in preparation for a serial line console (someday).
12  * Ted Ts'o, 2/11/93.
13  * Modified for sysctl support, 1/8/97, Chris Horn.
14  * Fixed SMP synchronization, 08/08/99, Manfred Spraul
15  *     manfred@colorfullife.com
16  * Rewrote bits to get rid of console_lock
17  *	01Mar01 Andrew Morton
18  */
19 
20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
21 
22 #include <linux/kernel.h>
23 #include <linux/mm.h>
24 #include <linux/tty.h>
25 #include <linux/tty_driver.h>
26 #include <linux/console.h>
27 #include <linux/init.h>
28 #include <linux/jiffies.h>
29 #include <linux/nmi.h>
30 #include <linux/module.h>
31 #include <linux/moduleparam.h>
32 #include <linux/delay.h>
33 #include <linux/smp.h>
34 #include <linux/security.h>
35 #include <linux/memblock.h>
36 #include <linux/syscalls.h>
37 #include <linux/crash_core.h>
38 #include <linux/ratelimit.h>
39 #include <linux/kmsg_dump.h>
40 #include <linux/syslog.h>
41 #include <linux/cpu.h>
42 #include <linux/rculist.h>
43 #include <linux/poll.h>
44 #include <linux/irq_work.h>
45 #include <linux/ctype.h>
46 #include <linux/uio.h>
47 #include <linux/sched/clock.h>
48 #include <linux/sched/debug.h>
49 #include <linux/sched/task_stack.h>
50 
51 #include <linux/uaccess.h>
52 #include <asm/sections.h>
53 
54 #include <trace/events/initcall.h>
55 #define CREATE_TRACE_POINTS
56 #include <trace/events/printk.h>
57 
58 #include "console_cmdline.h"
59 #include "braille.h"
60 #include "internal.h"
61 
62 int console_printk[4] = {
63 	CONSOLE_LOGLEVEL_DEFAULT,	/* console_loglevel */
64 	MESSAGE_LOGLEVEL_DEFAULT,	/* default_message_loglevel */
65 	CONSOLE_LOGLEVEL_MIN,		/* minimum_console_loglevel */
66 	CONSOLE_LOGLEVEL_DEFAULT,	/* default_console_loglevel */
67 };
68 EXPORT_SYMBOL_GPL(console_printk);
69 
70 atomic_t ignore_console_lock_warning __read_mostly = ATOMIC_INIT(0);
71 EXPORT_SYMBOL(ignore_console_lock_warning);
72 
73 /*
74  * Low level drivers may need that to know if they can schedule in
75  * their unblank() callback or not. So let's export it.
76  */
77 int oops_in_progress;
78 EXPORT_SYMBOL(oops_in_progress);
79 
80 /*
81  * console_sem protects the console_drivers list, and also
82  * provides serialisation for access to the entire console
83  * driver system.
84  */
85 static DEFINE_SEMAPHORE(console_sem);
86 struct console *console_drivers;
87 EXPORT_SYMBOL_GPL(console_drivers);
88 
89 /*
90  * System may need to suppress printk message under certain
91  * circumstances, like after kernel panic happens.
92  */
93 int __read_mostly suppress_printk;
94 
95 #ifdef CONFIG_LOCKDEP
96 static struct lockdep_map console_lock_dep_map = {
97 	.name = "console_lock"
98 };
99 #endif
100 
101 enum devkmsg_log_bits {
102 	__DEVKMSG_LOG_BIT_ON = 0,
103 	__DEVKMSG_LOG_BIT_OFF,
104 	__DEVKMSG_LOG_BIT_LOCK,
105 };
106 
107 enum devkmsg_log_masks {
108 	DEVKMSG_LOG_MASK_ON             = BIT(__DEVKMSG_LOG_BIT_ON),
109 	DEVKMSG_LOG_MASK_OFF            = BIT(__DEVKMSG_LOG_BIT_OFF),
110 	DEVKMSG_LOG_MASK_LOCK           = BIT(__DEVKMSG_LOG_BIT_LOCK),
111 };
112 
113 /* Keep both the 'on' and 'off' bits clear, i.e. ratelimit by default: */
114 #define DEVKMSG_LOG_MASK_DEFAULT	0
115 
116 static unsigned int __read_mostly devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT;
117 
118 static int __control_devkmsg(char *str)
119 {
120 	size_t len;
121 
122 	if (!str)
123 		return -EINVAL;
124 
125 	len = str_has_prefix(str, "on");
126 	if (len) {
127 		devkmsg_log = DEVKMSG_LOG_MASK_ON;
128 		return len;
129 	}
130 
131 	len = str_has_prefix(str, "off");
132 	if (len) {
133 		devkmsg_log = DEVKMSG_LOG_MASK_OFF;
134 		return len;
135 	}
136 
137 	len = str_has_prefix(str, "ratelimit");
138 	if (len) {
139 		devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT;
140 		return len;
141 	}
142 
143 	return -EINVAL;
144 }
145 
146 static int __init control_devkmsg(char *str)
147 {
148 	if (__control_devkmsg(str) < 0)
149 		return 1;
150 
151 	/*
152 	 * Set sysctl string accordingly:
153 	 */
154 	if (devkmsg_log == DEVKMSG_LOG_MASK_ON)
155 		strcpy(devkmsg_log_str, "on");
156 	else if (devkmsg_log == DEVKMSG_LOG_MASK_OFF)
157 		strcpy(devkmsg_log_str, "off");
158 	/* else "ratelimit" which is set by default. */
159 
160 	/*
161 	 * Sysctl cannot change it anymore. The kernel command line setting of
162 	 * this parameter is to force the setting to be permanent throughout the
163 	 * runtime of the system. This is a precation measure against userspace
164 	 * trying to be a smarta** and attempting to change it up on us.
165 	 */
166 	devkmsg_log |= DEVKMSG_LOG_MASK_LOCK;
167 
168 	return 0;
169 }
170 __setup("printk.devkmsg=", control_devkmsg);
171 
172 char devkmsg_log_str[DEVKMSG_STR_MAX_SIZE] = "ratelimit";
173 
174 int devkmsg_sysctl_set_loglvl(struct ctl_table *table, int write,
175 			      void *buffer, size_t *lenp, loff_t *ppos)
176 {
177 	char old_str[DEVKMSG_STR_MAX_SIZE];
178 	unsigned int old;
179 	int err;
180 
181 	if (write) {
182 		if (devkmsg_log & DEVKMSG_LOG_MASK_LOCK)
183 			return -EINVAL;
184 
185 		old = devkmsg_log;
186 		strncpy(old_str, devkmsg_log_str, DEVKMSG_STR_MAX_SIZE);
187 	}
188 
189 	err = proc_dostring(table, write, buffer, lenp, ppos);
190 	if (err)
191 		return err;
192 
193 	if (write) {
194 		err = __control_devkmsg(devkmsg_log_str);
195 
196 		/*
197 		 * Do not accept an unknown string OR a known string with
198 		 * trailing crap...
199 		 */
200 		if (err < 0 || (err + 1 != *lenp)) {
201 
202 			/* ... and restore old setting. */
203 			devkmsg_log = old;
204 			strncpy(devkmsg_log_str, old_str, DEVKMSG_STR_MAX_SIZE);
205 
206 			return -EINVAL;
207 		}
208 	}
209 
210 	return 0;
211 }
212 
213 /* Number of registered extended console drivers. */
214 static int nr_ext_console_drivers;
215 
216 /*
217  * Helper macros to handle lockdep when locking/unlocking console_sem. We use
218  * macros instead of functions so that _RET_IP_ contains useful information.
219  */
220 #define down_console_sem() do { \
221 	down(&console_sem);\
222 	mutex_acquire(&console_lock_dep_map, 0, 0, _RET_IP_);\
223 } while (0)
224 
225 static int __down_trylock_console_sem(unsigned long ip)
226 {
227 	int lock_failed;
228 	unsigned long flags;
229 
230 	/*
231 	 * Here and in __up_console_sem() we need to be in safe mode,
232 	 * because spindump/WARN/etc from under console ->lock will
233 	 * deadlock in printk()->down_trylock_console_sem() otherwise.
234 	 */
235 	printk_safe_enter_irqsave(flags);
236 	lock_failed = down_trylock(&console_sem);
237 	printk_safe_exit_irqrestore(flags);
238 
239 	if (lock_failed)
240 		return 1;
241 	mutex_acquire(&console_lock_dep_map, 0, 1, ip);
242 	return 0;
243 }
244 #define down_trylock_console_sem() __down_trylock_console_sem(_RET_IP_)
245 
246 static void __up_console_sem(unsigned long ip)
247 {
248 	unsigned long flags;
249 
250 	mutex_release(&console_lock_dep_map, ip);
251 
252 	printk_safe_enter_irqsave(flags);
253 	up(&console_sem);
254 	printk_safe_exit_irqrestore(flags);
255 }
256 #define up_console_sem() __up_console_sem(_RET_IP_)
257 
258 /*
259  * This is used for debugging the mess that is the VT code by
260  * keeping track if we have the console semaphore held. It's
261  * definitely not the perfect debug tool (we don't know if _WE_
262  * hold it and are racing, but it helps tracking those weird code
263  * paths in the console code where we end up in places I want
264  * locked without the console sempahore held).
265  */
266 static int console_locked, console_suspended;
267 
268 /*
269  * If exclusive_console is non-NULL then only this console is to be printed to.
270  */
271 static struct console *exclusive_console;
272 
273 /*
274  *	Array of consoles built from command line options (console=)
275  */
276 
277 #define MAX_CMDLINECONSOLES 8
278 
279 static struct console_cmdline console_cmdline[MAX_CMDLINECONSOLES];
280 
281 static int preferred_console = -1;
282 static bool has_preferred_console;
283 int console_set_on_cmdline;
284 EXPORT_SYMBOL(console_set_on_cmdline);
285 
286 /* Flag: console code may call schedule() */
287 static int console_may_schedule;
288 
289 enum con_msg_format_flags {
290 	MSG_FORMAT_DEFAULT	= 0,
291 	MSG_FORMAT_SYSLOG	= (1 << 0),
292 };
293 
294 static int console_msg_format = MSG_FORMAT_DEFAULT;
295 
296 /*
297  * The printk log buffer consists of a chain of concatenated variable
298  * length records. Every record starts with a record header, containing
299  * the overall length of the record.
300  *
301  * The heads to the first and last entry in the buffer, as well as the
302  * sequence numbers of these entries are maintained when messages are
303  * stored.
304  *
305  * If the heads indicate available messages, the length in the header
306  * tells the start next message. A length == 0 for the next message
307  * indicates a wrap-around to the beginning of the buffer.
308  *
309  * Every record carries the monotonic timestamp in microseconds, as well as
310  * the standard userspace syslog level and syslog facility. The usual
311  * kernel messages use LOG_KERN; userspace-injected messages always carry
312  * a matching syslog facility, by default LOG_USER. The origin of every
313  * message can be reliably determined that way.
314  *
315  * The human readable log message directly follows the message header. The
316  * length of the message text is stored in the header, the stored message
317  * is not terminated.
318  *
319  * Optionally, a message can carry a dictionary of properties (key/value pairs),
320  * to provide userspace with a machine-readable message context.
321  *
322  * Examples for well-defined, commonly used property names are:
323  *   DEVICE=b12:8               device identifier
324  *                                b12:8         block dev_t
325  *                                c127:3        char dev_t
326  *                                n8            netdev ifindex
327  *                                +sound:card0  subsystem:devname
328  *   SUBSYSTEM=pci              driver-core subsystem name
329  *
330  * Valid characters in property names are [a-zA-Z0-9.-_]. The plain text value
331  * follows directly after a '=' character. Every property is terminated by
332  * a '\0' character. The last property is not terminated.
333  *
334  * Example of a message structure:
335  *   0000  ff 8f 00 00 00 00 00 00      monotonic time in nsec
336  *   0008  34 00                        record is 52 bytes long
337  *   000a        0b 00                  text is 11 bytes long
338  *   000c              1f 00            dictionary is 23 bytes long
339  *   000e                    03 00      LOG_KERN (facility) LOG_ERR (level)
340  *   0010  69 74 27 73 20 61 20 6c      "it's a l"
341  *         69 6e 65                     "ine"
342  *   001b           44 45 56 49 43      "DEVIC"
343  *         45 3d 62 38 3a 32 00 44      "E=b8:2\0D"
344  *         52 49 56 45 52 3d 62 75      "RIVER=bu"
345  *         67                           "g"
346  *   0032     00 00 00                  padding to next message header
347  *
348  * The 'struct printk_log' buffer header must never be directly exported to
349  * userspace, it is a kernel-private implementation detail that might
350  * need to be changed in the future, when the requirements change.
351  *
352  * /dev/kmsg exports the structured data in the following line format:
353  *   "<level>,<sequnum>,<timestamp>,<contflag>[,additional_values, ... ];<message text>\n"
354  *
355  * Users of the export format should ignore possible additional values
356  * separated by ',', and find the message after the ';' character.
357  *
358  * The optional key/value pairs are attached as continuation lines starting
359  * with a space character and terminated by a newline. All possible
360  * non-prinatable characters are escaped in the "\xff" notation.
361  */
362 
363 enum log_flags {
364 	LOG_NEWLINE	= 2,	/* text ended with a newline */
365 	LOG_CONT	= 8,	/* text is a fragment of a continuation line */
366 };
367 
368 struct printk_log {
369 	u64 ts_nsec;		/* timestamp in nanoseconds */
370 	u16 len;		/* length of entire record */
371 	u16 text_len;		/* length of text buffer */
372 	u16 dict_len;		/* length of dictionary buffer */
373 	u8 facility;		/* syslog facility */
374 	u8 flags:5;		/* internal record flags */
375 	u8 level:3;		/* syslog level */
376 #ifdef CONFIG_PRINTK_CALLER
377 	u32 caller_id;            /* thread id or processor id */
378 #endif
379 }
380 #ifdef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
381 __packed __aligned(4)
382 #endif
383 ;
384 
385 /*
386  * The logbuf_lock protects kmsg buffer, indices, counters.  This can be taken
387  * within the scheduler's rq lock. It must be released before calling
388  * console_unlock() or anything else that might wake up a process.
389  */
390 DEFINE_RAW_SPINLOCK(logbuf_lock);
391 
392 /*
393  * Helper macros to lock/unlock logbuf_lock and switch between
394  * printk-safe/unsafe modes.
395  */
396 #define logbuf_lock_irq()				\
397 	do {						\
398 		printk_safe_enter_irq();		\
399 		raw_spin_lock(&logbuf_lock);		\
400 	} while (0)
401 
402 #define logbuf_unlock_irq()				\
403 	do {						\
404 		raw_spin_unlock(&logbuf_lock);		\
405 		printk_safe_exit_irq();			\
406 	} while (0)
407 
408 #define logbuf_lock_irqsave(flags)			\
409 	do {						\
410 		printk_safe_enter_irqsave(flags);	\
411 		raw_spin_lock(&logbuf_lock);		\
412 	} while (0)
413 
414 #define logbuf_unlock_irqrestore(flags)		\
415 	do {						\
416 		raw_spin_unlock(&logbuf_lock);		\
417 		printk_safe_exit_irqrestore(flags);	\
418 	} while (0)
419 
420 #ifdef CONFIG_PRINTK
421 DECLARE_WAIT_QUEUE_HEAD(log_wait);
422 /* the next printk record to read by syslog(READ) or /proc/kmsg */
423 static u64 syslog_seq;
424 static u32 syslog_idx;
425 static size_t syslog_partial;
426 static bool syslog_time;
427 
428 /* index and sequence number of the first record stored in the buffer */
429 static u64 log_first_seq;
430 static u32 log_first_idx;
431 
432 /* index and sequence number of the next record to store in the buffer */
433 static u64 log_next_seq;
434 static u32 log_next_idx;
435 
436 /* the next printk record to write to the console */
437 static u64 console_seq;
438 static u32 console_idx;
439 static u64 exclusive_console_stop_seq;
440 
441 /* the next printk record to read after the last 'clear' command */
442 static u64 clear_seq;
443 static u32 clear_idx;
444 
445 #ifdef CONFIG_PRINTK_CALLER
446 #define PREFIX_MAX		48
447 #else
448 #define PREFIX_MAX		32
449 #endif
450 #define LOG_LINE_MAX		(1024 - PREFIX_MAX)
451 
452 #define LOG_LEVEL(v)		((v) & 0x07)
453 #define LOG_FACILITY(v)		((v) >> 3 & 0xff)
454 
455 /* record buffer */
456 #define LOG_ALIGN __alignof__(struct printk_log)
457 #define __LOG_BUF_LEN (1 << CONFIG_LOG_BUF_SHIFT)
458 #define LOG_BUF_LEN_MAX (u32)(1 << 31)
459 static char __log_buf[__LOG_BUF_LEN] __aligned(LOG_ALIGN);
460 static char *log_buf = __log_buf;
461 static u32 log_buf_len = __LOG_BUF_LEN;
462 
463 /*
464  * We cannot access per-CPU data (e.g. per-CPU flush irq_work) before
465  * per_cpu_areas are initialised. This variable is set to true when
466  * it's safe to access per-CPU data.
467  */
468 static bool __printk_percpu_data_ready __read_mostly;
469 
470 bool printk_percpu_data_ready(void)
471 {
472 	return __printk_percpu_data_ready;
473 }
474 
475 /* Return log buffer address */
476 char *log_buf_addr_get(void)
477 {
478 	return log_buf;
479 }
480 
481 /* Return log buffer size */
482 u32 log_buf_len_get(void)
483 {
484 	return log_buf_len;
485 }
486 
487 /* human readable text of the record */
488 static char *log_text(const struct printk_log *msg)
489 {
490 	return (char *)msg + sizeof(struct printk_log);
491 }
492 
493 /* optional key/value pair dictionary attached to the record */
494 static char *log_dict(const struct printk_log *msg)
495 {
496 	return (char *)msg + sizeof(struct printk_log) + msg->text_len;
497 }
498 
499 /* get record by index; idx must point to valid msg */
500 static struct printk_log *log_from_idx(u32 idx)
501 {
502 	struct printk_log *msg = (struct printk_log *)(log_buf + idx);
503 
504 	/*
505 	 * A length == 0 record is the end of buffer marker. Wrap around and
506 	 * read the message at the start of the buffer.
507 	 */
508 	if (!msg->len)
509 		return (struct printk_log *)log_buf;
510 	return msg;
511 }
512 
513 /* get next record; idx must point to valid msg */
514 static u32 log_next(u32 idx)
515 {
516 	struct printk_log *msg = (struct printk_log *)(log_buf + idx);
517 
518 	/* length == 0 indicates the end of the buffer; wrap */
519 	/*
520 	 * A length == 0 record is the end of buffer marker. Wrap around and
521 	 * read the message at the start of the buffer as *this* one, and
522 	 * return the one after that.
523 	 */
524 	if (!msg->len) {
525 		msg = (struct printk_log *)log_buf;
526 		return msg->len;
527 	}
528 	return idx + msg->len;
529 }
530 
531 /*
532  * Check whether there is enough free space for the given message.
533  *
534  * The same values of first_idx and next_idx mean that the buffer
535  * is either empty or full.
536  *
537  * If the buffer is empty, we must respect the position of the indexes.
538  * They cannot be reset to the beginning of the buffer.
539  */
540 static int logbuf_has_space(u32 msg_size, bool empty)
541 {
542 	u32 free;
543 
544 	if (log_next_idx > log_first_idx || empty)
545 		free = max(log_buf_len - log_next_idx, log_first_idx);
546 	else
547 		free = log_first_idx - log_next_idx;
548 
549 	/*
550 	 * We need space also for an empty header that signalizes wrapping
551 	 * of the buffer.
552 	 */
553 	return free >= msg_size + sizeof(struct printk_log);
554 }
555 
556 static int log_make_free_space(u32 msg_size)
557 {
558 	while (log_first_seq < log_next_seq &&
559 	       !logbuf_has_space(msg_size, false)) {
560 		/* drop old messages until we have enough contiguous space */
561 		log_first_idx = log_next(log_first_idx);
562 		log_first_seq++;
563 	}
564 
565 	if (clear_seq < log_first_seq) {
566 		clear_seq = log_first_seq;
567 		clear_idx = log_first_idx;
568 	}
569 
570 	/* sequence numbers are equal, so the log buffer is empty */
571 	if (logbuf_has_space(msg_size, log_first_seq == log_next_seq))
572 		return 0;
573 
574 	return -ENOMEM;
575 }
576 
577 /* compute the message size including the padding bytes */
578 static u32 msg_used_size(u16 text_len, u16 dict_len, u32 *pad_len)
579 {
580 	u32 size;
581 
582 	size = sizeof(struct printk_log) + text_len + dict_len;
583 	*pad_len = (-size) & (LOG_ALIGN - 1);
584 	size += *pad_len;
585 
586 	return size;
587 }
588 
589 /*
590  * Define how much of the log buffer we could take at maximum. The value
591  * must be greater than two. Note that only half of the buffer is available
592  * when the index points to the middle.
593  */
594 #define MAX_LOG_TAKE_PART 4
595 static const char trunc_msg[] = "<truncated>";
596 
597 static u32 truncate_msg(u16 *text_len, u16 *trunc_msg_len,
598 			u16 *dict_len, u32 *pad_len)
599 {
600 	/*
601 	 * The message should not take the whole buffer. Otherwise, it might
602 	 * get removed too soon.
603 	 */
604 	u32 max_text_len = log_buf_len / MAX_LOG_TAKE_PART;
605 	if (*text_len > max_text_len)
606 		*text_len = max_text_len;
607 	/* enable the warning message */
608 	*trunc_msg_len = strlen(trunc_msg);
609 	/* disable the "dict" completely */
610 	*dict_len = 0;
611 	/* compute the size again, count also the warning message */
612 	return msg_used_size(*text_len + *trunc_msg_len, 0, pad_len);
613 }
614 
615 /* insert record into the buffer, discard old ones, update heads */
616 static int log_store(u32 caller_id, int facility, int level,
617 		     enum log_flags flags, u64 ts_nsec,
618 		     const char *dict, u16 dict_len,
619 		     const char *text, u16 text_len)
620 {
621 	struct printk_log *msg;
622 	u32 size, pad_len;
623 	u16 trunc_msg_len = 0;
624 
625 	/* number of '\0' padding bytes to next message */
626 	size = msg_used_size(text_len, dict_len, &pad_len);
627 
628 	if (log_make_free_space(size)) {
629 		/* truncate the message if it is too long for empty buffer */
630 		size = truncate_msg(&text_len, &trunc_msg_len,
631 				    &dict_len, &pad_len);
632 		/* survive when the log buffer is too small for trunc_msg */
633 		if (log_make_free_space(size))
634 			return 0;
635 	}
636 
637 	if (log_next_idx + size + sizeof(struct printk_log) > log_buf_len) {
638 		/*
639 		 * This message + an additional empty header does not fit
640 		 * at the end of the buffer. Add an empty header with len == 0
641 		 * to signify a wrap around.
642 		 */
643 		memset(log_buf + log_next_idx, 0, sizeof(struct printk_log));
644 		log_next_idx = 0;
645 	}
646 
647 	/* fill message */
648 	msg = (struct printk_log *)(log_buf + log_next_idx);
649 	memcpy(log_text(msg), text, text_len);
650 	msg->text_len = text_len;
651 	if (trunc_msg_len) {
652 		memcpy(log_text(msg) + text_len, trunc_msg, trunc_msg_len);
653 		msg->text_len += trunc_msg_len;
654 	}
655 	memcpy(log_dict(msg), dict, dict_len);
656 	msg->dict_len = dict_len;
657 	msg->facility = facility;
658 	msg->level = level & 7;
659 	msg->flags = flags & 0x1f;
660 	if (ts_nsec > 0)
661 		msg->ts_nsec = ts_nsec;
662 	else
663 		msg->ts_nsec = local_clock();
664 #ifdef CONFIG_PRINTK_CALLER
665 	msg->caller_id = caller_id;
666 #endif
667 	memset(log_dict(msg) + dict_len, 0, pad_len);
668 	msg->len = size;
669 
670 	/* insert message */
671 	log_next_idx += msg->len;
672 	log_next_seq++;
673 
674 	return msg->text_len;
675 }
676 
677 int dmesg_restrict = IS_ENABLED(CONFIG_SECURITY_DMESG_RESTRICT);
678 
679 static int syslog_action_restricted(int type)
680 {
681 	if (dmesg_restrict)
682 		return 1;
683 	/*
684 	 * Unless restricted, we allow "read all" and "get buffer size"
685 	 * for everybody.
686 	 */
687 	return type != SYSLOG_ACTION_READ_ALL &&
688 	       type != SYSLOG_ACTION_SIZE_BUFFER;
689 }
690 
691 static int check_syslog_permissions(int type, int source)
692 {
693 	/*
694 	 * If this is from /proc/kmsg and we've already opened it, then we've
695 	 * already done the capabilities checks at open time.
696 	 */
697 	if (source == SYSLOG_FROM_PROC && type != SYSLOG_ACTION_OPEN)
698 		goto ok;
699 
700 	if (syslog_action_restricted(type)) {
701 		if (capable(CAP_SYSLOG))
702 			goto ok;
703 		/*
704 		 * For historical reasons, accept CAP_SYS_ADMIN too, with
705 		 * a warning.
706 		 */
707 		if (capable(CAP_SYS_ADMIN)) {
708 			pr_warn_once("%s (%d): Attempt to access syslog with "
709 				     "CAP_SYS_ADMIN but no CAP_SYSLOG "
710 				     "(deprecated).\n",
711 				 current->comm, task_pid_nr(current));
712 			goto ok;
713 		}
714 		return -EPERM;
715 	}
716 ok:
717 	return security_syslog(type);
718 }
719 
720 static void append_char(char **pp, char *e, char c)
721 {
722 	if (*pp < e)
723 		*(*pp)++ = c;
724 }
725 
726 static ssize_t msg_print_ext_header(char *buf, size_t size,
727 				    struct printk_log *msg, u64 seq)
728 {
729 	u64 ts_usec = msg->ts_nsec;
730 	char caller[20];
731 #ifdef CONFIG_PRINTK_CALLER
732 	u32 id = msg->caller_id;
733 
734 	snprintf(caller, sizeof(caller), ",caller=%c%u",
735 		 id & 0x80000000 ? 'C' : 'T', id & ~0x80000000);
736 #else
737 	caller[0] = '\0';
738 #endif
739 
740 	do_div(ts_usec, 1000);
741 
742 	return scnprintf(buf, size, "%u,%llu,%llu,%c%s;",
743 			 (msg->facility << 3) | msg->level, seq, ts_usec,
744 			 msg->flags & LOG_CONT ? 'c' : '-', caller);
745 }
746 
747 static ssize_t msg_print_ext_body(char *buf, size_t size,
748 				  char *dict, size_t dict_len,
749 				  char *text, size_t text_len)
750 {
751 	char *p = buf, *e = buf + size;
752 	size_t i;
753 
754 	/* escape non-printable characters */
755 	for (i = 0; i < text_len; i++) {
756 		unsigned char c = text[i];
757 
758 		if (c < ' ' || c >= 127 || c == '\\')
759 			p += scnprintf(p, e - p, "\\x%02x", c);
760 		else
761 			append_char(&p, e, c);
762 	}
763 	append_char(&p, e, '\n');
764 
765 	if (dict_len) {
766 		bool line = true;
767 
768 		for (i = 0; i < dict_len; i++) {
769 			unsigned char c = dict[i];
770 
771 			if (line) {
772 				append_char(&p, e, ' ');
773 				line = false;
774 			}
775 
776 			if (c == '\0') {
777 				append_char(&p, e, '\n');
778 				line = true;
779 				continue;
780 			}
781 
782 			if (c < ' ' || c >= 127 || c == '\\') {
783 				p += scnprintf(p, e - p, "\\x%02x", c);
784 				continue;
785 			}
786 
787 			append_char(&p, e, c);
788 		}
789 		append_char(&p, e, '\n');
790 	}
791 
792 	return p - buf;
793 }
794 
795 /* /dev/kmsg - userspace message inject/listen interface */
796 struct devkmsg_user {
797 	u64 seq;
798 	u32 idx;
799 	struct ratelimit_state rs;
800 	struct mutex lock;
801 	char buf[CONSOLE_EXT_LOG_MAX];
802 };
803 
804 static __printf(3, 4) __cold
805 int devkmsg_emit(int facility, int level, const char *fmt, ...)
806 {
807 	va_list args;
808 	int r;
809 
810 	va_start(args, fmt);
811 	r = vprintk_emit(facility, level, NULL, 0, fmt, args);
812 	va_end(args);
813 
814 	return r;
815 }
816 
817 static ssize_t devkmsg_write(struct kiocb *iocb, struct iov_iter *from)
818 {
819 	char *buf, *line;
820 	int level = default_message_loglevel;
821 	int facility = 1;	/* LOG_USER */
822 	struct file *file = iocb->ki_filp;
823 	struct devkmsg_user *user = file->private_data;
824 	size_t len = iov_iter_count(from);
825 	ssize_t ret = len;
826 
827 	if (!user || len > LOG_LINE_MAX)
828 		return -EINVAL;
829 
830 	/* Ignore when user logging is disabled. */
831 	if (devkmsg_log & DEVKMSG_LOG_MASK_OFF)
832 		return len;
833 
834 	/* Ratelimit when not explicitly enabled. */
835 	if (!(devkmsg_log & DEVKMSG_LOG_MASK_ON)) {
836 		if (!___ratelimit(&user->rs, current->comm))
837 			return ret;
838 	}
839 
840 	buf = kmalloc(len+1, GFP_KERNEL);
841 	if (buf == NULL)
842 		return -ENOMEM;
843 
844 	buf[len] = '\0';
845 	if (!copy_from_iter_full(buf, len, from)) {
846 		kfree(buf);
847 		return -EFAULT;
848 	}
849 
850 	/*
851 	 * Extract and skip the syslog prefix <[0-9]*>. Coming from userspace
852 	 * the decimal value represents 32bit, the lower 3 bit are the log
853 	 * level, the rest are the log facility.
854 	 *
855 	 * If no prefix or no userspace facility is specified, we
856 	 * enforce LOG_USER, to be able to reliably distinguish
857 	 * kernel-generated messages from userspace-injected ones.
858 	 */
859 	line = buf;
860 	if (line[0] == '<') {
861 		char *endp = NULL;
862 		unsigned int u;
863 
864 		u = simple_strtoul(line + 1, &endp, 10);
865 		if (endp && endp[0] == '>') {
866 			level = LOG_LEVEL(u);
867 			if (LOG_FACILITY(u) != 0)
868 				facility = LOG_FACILITY(u);
869 			endp++;
870 			len -= endp - line;
871 			line = endp;
872 		}
873 	}
874 
875 	devkmsg_emit(facility, level, "%s", line);
876 	kfree(buf);
877 	return ret;
878 }
879 
880 static ssize_t devkmsg_read(struct file *file, char __user *buf,
881 			    size_t count, loff_t *ppos)
882 {
883 	struct devkmsg_user *user = file->private_data;
884 	struct printk_log *msg;
885 	size_t len;
886 	ssize_t ret;
887 
888 	if (!user)
889 		return -EBADF;
890 
891 	ret = mutex_lock_interruptible(&user->lock);
892 	if (ret)
893 		return ret;
894 
895 	logbuf_lock_irq();
896 	while (user->seq == log_next_seq) {
897 		if (file->f_flags & O_NONBLOCK) {
898 			ret = -EAGAIN;
899 			logbuf_unlock_irq();
900 			goto out;
901 		}
902 
903 		logbuf_unlock_irq();
904 		ret = wait_event_interruptible(log_wait,
905 					       user->seq != log_next_seq);
906 		if (ret)
907 			goto out;
908 		logbuf_lock_irq();
909 	}
910 
911 	if (user->seq < log_first_seq) {
912 		/* our last seen message is gone, return error and reset */
913 		user->idx = log_first_idx;
914 		user->seq = log_first_seq;
915 		ret = -EPIPE;
916 		logbuf_unlock_irq();
917 		goto out;
918 	}
919 
920 	msg = log_from_idx(user->idx);
921 	len = msg_print_ext_header(user->buf, sizeof(user->buf),
922 				   msg, user->seq);
923 	len += msg_print_ext_body(user->buf + len, sizeof(user->buf) - len,
924 				  log_dict(msg), msg->dict_len,
925 				  log_text(msg), msg->text_len);
926 
927 	user->idx = log_next(user->idx);
928 	user->seq++;
929 	logbuf_unlock_irq();
930 
931 	if (len > count) {
932 		ret = -EINVAL;
933 		goto out;
934 	}
935 
936 	if (copy_to_user(buf, user->buf, len)) {
937 		ret = -EFAULT;
938 		goto out;
939 	}
940 	ret = len;
941 out:
942 	mutex_unlock(&user->lock);
943 	return ret;
944 }
945 
946 static loff_t devkmsg_llseek(struct file *file, loff_t offset, int whence)
947 {
948 	struct devkmsg_user *user = file->private_data;
949 	loff_t ret = 0;
950 
951 	if (!user)
952 		return -EBADF;
953 	if (offset)
954 		return -ESPIPE;
955 
956 	logbuf_lock_irq();
957 	switch (whence) {
958 	case SEEK_SET:
959 		/* the first record */
960 		user->idx = log_first_idx;
961 		user->seq = log_first_seq;
962 		break;
963 	case SEEK_DATA:
964 		/*
965 		 * The first record after the last SYSLOG_ACTION_CLEAR,
966 		 * like issued by 'dmesg -c'. Reading /dev/kmsg itself
967 		 * changes no global state, and does not clear anything.
968 		 */
969 		user->idx = clear_idx;
970 		user->seq = clear_seq;
971 		break;
972 	case SEEK_END:
973 		/* after the last record */
974 		user->idx = log_next_idx;
975 		user->seq = log_next_seq;
976 		break;
977 	case SEEK_CUR:
978 		/*
979 		 * It isn't supported due to the record nature of this
980 		 * interface: _SET _DATA and _END point to very specific
981 		 * record positions, while _CUR would be more useful in case
982 		 * of a byte-based log. Because of that, return the default
983 		 * errno value for invalid seek operation.
984 		 */
985 		ret = -ESPIPE;
986 		break;
987 	default:
988 		ret = -EINVAL;
989 	}
990 	logbuf_unlock_irq();
991 	return ret;
992 }
993 
994 static __poll_t devkmsg_poll(struct file *file, poll_table *wait)
995 {
996 	struct devkmsg_user *user = file->private_data;
997 	__poll_t ret = 0;
998 
999 	if (!user)
1000 		return EPOLLERR|EPOLLNVAL;
1001 
1002 	poll_wait(file, &log_wait, wait);
1003 
1004 	logbuf_lock_irq();
1005 	if (user->seq < log_next_seq) {
1006 		/* return error when data has vanished underneath us */
1007 		if (user->seq < log_first_seq)
1008 			ret = EPOLLIN|EPOLLRDNORM|EPOLLERR|EPOLLPRI;
1009 		else
1010 			ret = EPOLLIN|EPOLLRDNORM;
1011 	}
1012 	logbuf_unlock_irq();
1013 
1014 	return ret;
1015 }
1016 
1017 static int devkmsg_open(struct inode *inode, struct file *file)
1018 {
1019 	struct devkmsg_user *user;
1020 	int err;
1021 
1022 	if (devkmsg_log & DEVKMSG_LOG_MASK_OFF)
1023 		return -EPERM;
1024 
1025 	/* write-only does not need any file context */
1026 	if ((file->f_flags & O_ACCMODE) != O_WRONLY) {
1027 		err = check_syslog_permissions(SYSLOG_ACTION_READ_ALL,
1028 					       SYSLOG_FROM_READER);
1029 		if (err)
1030 			return err;
1031 	}
1032 
1033 	user = kmalloc(sizeof(struct devkmsg_user), GFP_KERNEL);
1034 	if (!user)
1035 		return -ENOMEM;
1036 
1037 	ratelimit_default_init(&user->rs);
1038 	ratelimit_set_flags(&user->rs, RATELIMIT_MSG_ON_RELEASE);
1039 
1040 	mutex_init(&user->lock);
1041 
1042 	logbuf_lock_irq();
1043 	user->idx = log_first_idx;
1044 	user->seq = log_first_seq;
1045 	logbuf_unlock_irq();
1046 
1047 	file->private_data = user;
1048 	return 0;
1049 }
1050 
1051 static int devkmsg_release(struct inode *inode, struct file *file)
1052 {
1053 	struct devkmsg_user *user = file->private_data;
1054 
1055 	if (!user)
1056 		return 0;
1057 
1058 	ratelimit_state_exit(&user->rs);
1059 
1060 	mutex_destroy(&user->lock);
1061 	kfree(user);
1062 	return 0;
1063 }
1064 
1065 const struct file_operations kmsg_fops = {
1066 	.open = devkmsg_open,
1067 	.read = devkmsg_read,
1068 	.write_iter = devkmsg_write,
1069 	.llseek = devkmsg_llseek,
1070 	.poll = devkmsg_poll,
1071 	.release = devkmsg_release,
1072 };
1073 
1074 #ifdef CONFIG_CRASH_CORE
1075 /*
1076  * This appends the listed symbols to /proc/vmcore
1077  *
1078  * /proc/vmcore is used by various utilities, like crash and makedumpfile to
1079  * obtain access to symbols that are otherwise very difficult to locate.  These
1080  * symbols are specifically used so that utilities can access and extract the
1081  * dmesg log from a vmcore file after a crash.
1082  */
1083 void log_buf_vmcoreinfo_setup(void)
1084 {
1085 	VMCOREINFO_SYMBOL(log_buf);
1086 	VMCOREINFO_SYMBOL(log_buf_len);
1087 	VMCOREINFO_SYMBOL(log_first_idx);
1088 	VMCOREINFO_SYMBOL(clear_idx);
1089 	VMCOREINFO_SYMBOL(log_next_idx);
1090 	/*
1091 	 * Export struct printk_log size and field offsets. User space tools can
1092 	 * parse it and detect any changes to structure down the line.
1093 	 */
1094 	VMCOREINFO_STRUCT_SIZE(printk_log);
1095 	VMCOREINFO_OFFSET(printk_log, ts_nsec);
1096 	VMCOREINFO_OFFSET(printk_log, len);
1097 	VMCOREINFO_OFFSET(printk_log, text_len);
1098 	VMCOREINFO_OFFSET(printk_log, dict_len);
1099 #ifdef CONFIG_PRINTK_CALLER
1100 	VMCOREINFO_OFFSET(printk_log, caller_id);
1101 #endif
1102 }
1103 #endif
1104 
1105 /* requested log_buf_len from kernel cmdline */
1106 static unsigned long __initdata new_log_buf_len;
1107 
1108 /* we practice scaling the ring buffer by powers of 2 */
1109 static void __init log_buf_len_update(u64 size)
1110 {
1111 	if (size > (u64)LOG_BUF_LEN_MAX) {
1112 		size = (u64)LOG_BUF_LEN_MAX;
1113 		pr_err("log_buf over 2G is not supported.\n");
1114 	}
1115 
1116 	if (size)
1117 		size = roundup_pow_of_two(size);
1118 	if (size > log_buf_len)
1119 		new_log_buf_len = (unsigned long)size;
1120 }
1121 
1122 /* save requested log_buf_len since it's too early to process it */
1123 static int __init log_buf_len_setup(char *str)
1124 {
1125 	u64 size;
1126 
1127 	if (!str)
1128 		return -EINVAL;
1129 
1130 	size = memparse(str, &str);
1131 
1132 	log_buf_len_update(size);
1133 
1134 	return 0;
1135 }
1136 early_param("log_buf_len", log_buf_len_setup);
1137 
1138 #ifdef CONFIG_SMP
1139 #define __LOG_CPU_MAX_BUF_LEN (1 << CONFIG_LOG_CPU_MAX_BUF_SHIFT)
1140 
1141 static void __init log_buf_add_cpu(void)
1142 {
1143 	unsigned int cpu_extra;
1144 
1145 	/*
1146 	 * archs should set up cpu_possible_bits properly with
1147 	 * set_cpu_possible() after setup_arch() but just in
1148 	 * case lets ensure this is valid.
1149 	 */
1150 	if (num_possible_cpus() == 1)
1151 		return;
1152 
1153 	cpu_extra = (num_possible_cpus() - 1) * __LOG_CPU_MAX_BUF_LEN;
1154 
1155 	/* by default this will only continue through for large > 64 CPUs */
1156 	if (cpu_extra <= __LOG_BUF_LEN / 2)
1157 		return;
1158 
1159 	pr_info("log_buf_len individual max cpu contribution: %d bytes\n",
1160 		__LOG_CPU_MAX_BUF_LEN);
1161 	pr_info("log_buf_len total cpu_extra contributions: %d bytes\n",
1162 		cpu_extra);
1163 	pr_info("log_buf_len min size: %d bytes\n", __LOG_BUF_LEN);
1164 
1165 	log_buf_len_update(cpu_extra + __LOG_BUF_LEN);
1166 }
1167 #else /* !CONFIG_SMP */
1168 static inline void log_buf_add_cpu(void) {}
1169 #endif /* CONFIG_SMP */
1170 
1171 static void __init set_percpu_data_ready(void)
1172 {
1173 	printk_safe_init();
1174 	/* Make sure we set this flag only after printk_safe() init is done */
1175 	barrier();
1176 	__printk_percpu_data_ready = true;
1177 }
1178 
1179 void __init setup_log_buf(int early)
1180 {
1181 	unsigned long flags;
1182 	char *new_log_buf;
1183 	unsigned int free;
1184 
1185 	/*
1186 	 * Some archs call setup_log_buf() multiple times - first is very
1187 	 * early, e.g. from setup_arch(), and second - when percpu_areas
1188 	 * are initialised.
1189 	 */
1190 	if (!early)
1191 		set_percpu_data_ready();
1192 
1193 	if (log_buf != __log_buf)
1194 		return;
1195 
1196 	if (!early && !new_log_buf_len)
1197 		log_buf_add_cpu();
1198 
1199 	if (!new_log_buf_len)
1200 		return;
1201 
1202 	new_log_buf = memblock_alloc(new_log_buf_len, LOG_ALIGN);
1203 	if (unlikely(!new_log_buf)) {
1204 		pr_err("log_buf_len: %lu bytes not available\n",
1205 			new_log_buf_len);
1206 		return;
1207 	}
1208 
1209 	logbuf_lock_irqsave(flags);
1210 	log_buf_len = new_log_buf_len;
1211 	log_buf = new_log_buf;
1212 	new_log_buf_len = 0;
1213 	free = __LOG_BUF_LEN - log_next_idx;
1214 	memcpy(log_buf, __log_buf, __LOG_BUF_LEN);
1215 	logbuf_unlock_irqrestore(flags);
1216 
1217 	pr_info("log_buf_len: %u bytes\n", log_buf_len);
1218 	pr_info("early log buf free: %u(%u%%)\n",
1219 		free, (free * 100) / __LOG_BUF_LEN);
1220 }
1221 
1222 static bool __read_mostly ignore_loglevel;
1223 
1224 static int __init ignore_loglevel_setup(char *str)
1225 {
1226 	ignore_loglevel = true;
1227 	pr_info("debug: ignoring loglevel setting.\n");
1228 
1229 	return 0;
1230 }
1231 
1232 early_param("ignore_loglevel", ignore_loglevel_setup);
1233 module_param(ignore_loglevel, bool, S_IRUGO | S_IWUSR);
1234 MODULE_PARM_DESC(ignore_loglevel,
1235 		 "ignore loglevel setting (prints all kernel messages to the console)");
1236 
1237 static bool suppress_message_printing(int level)
1238 {
1239 	return (level >= console_loglevel && !ignore_loglevel);
1240 }
1241 
1242 #ifdef CONFIG_BOOT_PRINTK_DELAY
1243 
1244 static int boot_delay; /* msecs delay after each printk during bootup */
1245 static unsigned long long loops_per_msec;	/* based on boot_delay */
1246 
1247 static int __init boot_delay_setup(char *str)
1248 {
1249 	unsigned long lpj;
1250 
1251 	lpj = preset_lpj ? preset_lpj : 1000000;	/* some guess */
1252 	loops_per_msec = (unsigned long long)lpj / 1000 * HZ;
1253 
1254 	get_option(&str, &boot_delay);
1255 	if (boot_delay > 10 * 1000)
1256 		boot_delay = 0;
1257 
1258 	pr_debug("boot_delay: %u, preset_lpj: %ld, lpj: %lu, "
1259 		"HZ: %d, loops_per_msec: %llu\n",
1260 		boot_delay, preset_lpj, lpj, HZ, loops_per_msec);
1261 	return 0;
1262 }
1263 early_param("boot_delay", boot_delay_setup);
1264 
1265 static void boot_delay_msec(int level)
1266 {
1267 	unsigned long long k;
1268 	unsigned long timeout;
1269 
1270 	if ((boot_delay == 0 || system_state >= SYSTEM_RUNNING)
1271 		|| suppress_message_printing(level)) {
1272 		return;
1273 	}
1274 
1275 	k = (unsigned long long)loops_per_msec * boot_delay;
1276 
1277 	timeout = jiffies + msecs_to_jiffies(boot_delay);
1278 	while (k) {
1279 		k--;
1280 		cpu_relax();
1281 		/*
1282 		 * use (volatile) jiffies to prevent
1283 		 * compiler reduction; loop termination via jiffies
1284 		 * is secondary and may or may not happen.
1285 		 */
1286 		if (time_after(jiffies, timeout))
1287 			break;
1288 		touch_nmi_watchdog();
1289 	}
1290 }
1291 #else
1292 static inline void boot_delay_msec(int level)
1293 {
1294 }
1295 #endif
1296 
1297 static bool printk_time = IS_ENABLED(CONFIG_PRINTK_TIME);
1298 module_param_named(time, printk_time, bool, S_IRUGO | S_IWUSR);
1299 
1300 static size_t print_syslog(unsigned int level, char *buf)
1301 {
1302 	return sprintf(buf, "<%u>", level);
1303 }
1304 
1305 static size_t print_time(u64 ts, char *buf)
1306 {
1307 	unsigned long rem_nsec = do_div(ts, 1000000000);
1308 
1309 	return sprintf(buf, "[%5lu.%06lu]",
1310 		       (unsigned long)ts, rem_nsec / 1000);
1311 }
1312 
1313 #ifdef CONFIG_PRINTK_CALLER
1314 static size_t print_caller(u32 id, char *buf)
1315 {
1316 	char caller[12];
1317 
1318 	snprintf(caller, sizeof(caller), "%c%u",
1319 		 id & 0x80000000 ? 'C' : 'T', id & ~0x80000000);
1320 	return sprintf(buf, "[%6s]", caller);
1321 }
1322 #else
1323 #define print_caller(id, buf) 0
1324 #endif
1325 
1326 static size_t print_prefix(const struct printk_log *msg, bool syslog,
1327 			   bool time, char *buf)
1328 {
1329 	size_t len = 0;
1330 
1331 	if (syslog)
1332 		len = print_syslog((msg->facility << 3) | msg->level, buf);
1333 
1334 	if (time)
1335 		len += print_time(msg->ts_nsec, buf + len);
1336 
1337 	len += print_caller(msg->caller_id, buf + len);
1338 
1339 	if (IS_ENABLED(CONFIG_PRINTK_CALLER) || time) {
1340 		buf[len++] = ' ';
1341 		buf[len] = '\0';
1342 	}
1343 
1344 	return len;
1345 }
1346 
1347 static size_t msg_print_text(const struct printk_log *msg, bool syslog,
1348 			     bool time, char *buf, size_t size)
1349 {
1350 	const char *text = log_text(msg);
1351 	size_t text_size = msg->text_len;
1352 	size_t len = 0;
1353 	char prefix[PREFIX_MAX];
1354 	const size_t prefix_len = print_prefix(msg, syslog, time, prefix);
1355 
1356 	do {
1357 		const char *next = memchr(text, '\n', text_size);
1358 		size_t text_len;
1359 
1360 		if (next) {
1361 			text_len = next - text;
1362 			next++;
1363 			text_size -= next - text;
1364 		} else {
1365 			text_len = text_size;
1366 		}
1367 
1368 		if (buf) {
1369 			if (prefix_len + text_len + 1 >= size - len)
1370 				break;
1371 
1372 			memcpy(buf + len, prefix, prefix_len);
1373 			len += prefix_len;
1374 			memcpy(buf + len, text, text_len);
1375 			len += text_len;
1376 			buf[len++] = '\n';
1377 		} else {
1378 			/* SYSLOG_ACTION_* buffer size only calculation */
1379 			len += prefix_len + text_len + 1;
1380 		}
1381 
1382 		text = next;
1383 	} while (text);
1384 
1385 	return len;
1386 }
1387 
1388 static int syslog_print(char __user *buf, int size)
1389 {
1390 	char *text;
1391 	struct printk_log *msg;
1392 	int len = 0;
1393 
1394 	text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
1395 	if (!text)
1396 		return -ENOMEM;
1397 
1398 	while (size > 0) {
1399 		size_t n;
1400 		size_t skip;
1401 
1402 		logbuf_lock_irq();
1403 		if (syslog_seq < log_first_seq) {
1404 			/* messages are gone, move to first one */
1405 			syslog_seq = log_first_seq;
1406 			syslog_idx = log_first_idx;
1407 			syslog_partial = 0;
1408 		}
1409 		if (syslog_seq == log_next_seq) {
1410 			logbuf_unlock_irq();
1411 			break;
1412 		}
1413 
1414 		/*
1415 		 * To keep reading/counting partial line consistent,
1416 		 * use printk_time value as of the beginning of a line.
1417 		 */
1418 		if (!syslog_partial)
1419 			syslog_time = printk_time;
1420 
1421 		skip = syslog_partial;
1422 		msg = log_from_idx(syslog_idx);
1423 		n = msg_print_text(msg, true, syslog_time, text,
1424 				   LOG_LINE_MAX + PREFIX_MAX);
1425 		if (n - syslog_partial <= size) {
1426 			/* message fits into buffer, move forward */
1427 			syslog_idx = log_next(syslog_idx);
1428 			syslog_seq++;
1429 			n -= syslog_partial;
1430 			syslog_partial = 0;
1431 		} else if (!len){
1432 			/* partial read(), remember position */
1433 			n = size;
1434 			syslog_partial += n;
1435 		} else
1436 			n = 0;
1437 		logbuf_unlock_irq();
1438 
1439 		if (!n)
1440 			break;
1441 
1442 		if (copy_to_user(buf, text + skip, n)) {
1443 			if (!len)
1444 				len = -EFAULT;
1445 			break;
1446 		}
1447 
1448 		len += n;
1449 		size -= n;
1450 		buf += n;
1451 	}
1452 
1453 	kfree(text);
1454 	return len;
1455 }
1456 
1457 static int syslog_print_all(char __user *buf, int size, bool clear)
1458 {
1459 	char *text;
1460 	int len = 0;
1461 	u64 next_seq;
1462 	u64 seq;
1463 	u32 idx;
1464 	bool time;
1465 
1466 	text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
1467 	if (!text)
1468 		return -ENOMEM;
1469 
1470 	time = printk_time;
1471 	logbuf_lock_irq();
1472 	/*
1473 	 * Find first record that fits, including all following records,
1474 	 * into the user-provided buffer for this dump.
1475 	 */
1476 	seq = clear_seq;
1477 	idx = clear_idx;
1478 	while (seq < log_next_seq) {
1479 		struct printk_log *msg = log_from_idx(idx);
1480 
1481 		len += msg_print_text(msg, true, time, NULL, 0);
1482 		idx = log_next(idx);
1483 		seq++;
1484 	}
1485 
1486 	/* move first record forward until length fits into the buffer */
1487 	seq = clear_seq;
1488 	idx = clear_idx;
1489 	while (len > size && seq < log_next_seq) {
1490 		struct printk_log *msg = log_from_idx(idx);
1491 
1492 		len -= msg_print_text(msg, true, time, NULL, 0);
1493 		idx = log_next(idx);
1494 		seq++;
1495 	}
1496 
1497 	/* last message fitting into this dump */
1498 	next_seq = log_next_seq;
1499 
1500 	len = 0;
1501 	while (len >= 0 && seq < next_seq) {
1502 		struct printk_log *msg = log_from_idx(idx);
1503 		int textlen = msg_print_text(msg, true, time, text,
1504 					     LOG_LINE_MAX + PREFIX_MAX);
1505 
1506 		idx = log_next(idx);
1507 		seq++;
1508 
1509 		logbuf_unlock_irq();
1510 		if (copy_to_user(buf + len, text, textlen))
1511 			len = -EFAULT;
1512 		else
1513 			len += textlen;
1514 		logbuf_lock_irq();
1515 
1516 		if (seq < log_first_seq) {
1517 			/* messages are gone, move to next one */
1518 			seq = log_first_seq;
1519 			idx = log_first_idx;
1520 		}
1521 	}
1522 
1523 	if (clear) {
1524 		clear_seq = log_next_seq;
1525 		clear_idx = log_next_idx;
1526 	}
1527 	logbuf_unlock_irq();
1528 
1529 	kfree(text);
1530 	return len;
1531 }
1532 
1533 static void syslog_clear(void)
1534 {
1535 	logbuf_lock_irq();
1536 	clear_seq = log_next_seq;
1537 	clear_idx = log_next_idx;
1538 	logbuf_unlock_irq();
1539 }
1540 
1541 int do_syslog(int type, char __user *buf, int len, int source)
1542 {
1543 	bool clear = false;
1544 	static int saved_console_loglevel = LOGLEVEL_DEFAULT;
1545 	int error;
1546 
1547 	error = check_syslog_permissions(type, source);
1548 	if (error)
1549 		return error;
1550 
1551 	switch (type) {
1552 	case SYSLOG_ACTION_CLOSE:	/* Close log */
1553 		break;
1554 	case SYSLOG_ACTION_OPEN:	/* Open log */
1555 		break;
1556 	case SYSLOG_ACTION_READ:	/* Read from log */
1557 		if (!buf || len < 0)
1558 			return -EINVAL;
1559 		if (!len)
1560 			return 0;
1561 		if (!access_ok(buf, len))
1562 			return -EFAULT;
1563 		error = wait_event_interruptible(log_wait,
1564 						 syslog_seq != log_next_seq);
1565 		if (error)
1566 			return error;
1567 		error = syslog_print(buf, len);
1568 		break;
1569 	/* Read/clear last kernel messages */
1570 	case SYSLOG_ACTION_READ_CLEAR:
1571 		clear = true;
1572 		/* FALL THRU */
1573 	/* Read last kernel messages */
1574 	case SYSLOG_ACTION_READ_ALL:
1575 		if (!buf || len < 0)
1576 			return -EINVAL;
1577 		if (!len)
1578 			return 0;
1579 		if (!access_ok(buf, len))
1580 			return -EFAULT;
1581 		error = syslog_print_all(buf, len, clear);
1582 		break;
1583 	/* Clear ring buffer */
1584 	case SYSLOG_ACTION_CLEAR:
1585 		syslog_clear();
1586 		break;
1587 	/* Disable logging to console */
1588 	case SYSLOG_ACTION_CONSOLE_OFF:
1589 		if (saved_console_loglevel == LOGLEVEL_DEFAULT)
1590 			saved_console_loglevel = console_loglevel;
1591 		console_loglevel = minimum_console_loglevel;
1592 		break;
1593 	/* Enable logging to console */
1594 	case SYSLOG_ACTION_CONSOLE_ON:
1595 		if (saved_console_loglevel != LOGLEVEL_DEFAULT) {
1596 			console_loglevel = saved_console_loglevel;
1597 			saved_console_loglevel = LOGLEVEL_DEFAULT;
1598 		}
1599 		break;
1600 	/* Set level of messages printed to console */
1601 	case SYSLOG_ACTION_CONSOLE_LEVEL:
1602 		if (len < 1 || len > 8)
1603 			return -EINVAL;
1604 		if (len < minimum_console_loglevel)
1605 			len = minimum_console_loglevel;
1606 		console_loglevel = len;
1607 		/* Implicitly re-enable logging to console */
1608 		saved_console_loglevel = LOGLEVEL_DEFAULT;
1609 		break;
1610 	/* Number of chars in the log buffer */
1611 	case SYSLOG_ACTION_SIZE_UNREAD:
1612 		logbuf_lock_irq();
1613 		if (syslog_seq < log_first_seq) {
1614 			/* messages are gone, move to first one */
1615 			syslog_seq = log_first_seq;
1616 			syslog_idx = log_first_idx;
1617 			syslog_partial = 0;
1618 		}
1619 		if (source == SYSLOG_FROM_PROC) {
1620 			/*
1621 			 * Short-cut for poll(/"proc/kmsg") which simply checks
1622 			 * for pending data, not the size; return the count of
1623 			 * records, not the length.
1624 			 */
1625 			error = log_next_seq - syslog_seq;
1626 		} else {
1627 			u64 seq = syslog_seq;
1628 			u32 idx = syslog_idx;
1629 			bool time = syslog_partial ? syslog_time : printk_time;
1630 
1631 			while (seq < log_next_seq) {
1632 				struct printk_log *msg = log_from_idx(idx);
1633 
1634 				error += msg_print_text(msg, true, time, NULL,
1635 							0);
1636 				time = printk_time;
1637 				idx = log_next(idx);
1638 				seq++;
1639 			}
1640 			error -= syslog_partial;
1641 		}
1642 		logbuf_unlock_irq();
1643 		break;
1644 	/* Size of the log buffer */
1645 	case SYSLOG_ACTION_SIZE_BUFFER:
1646 		error = log_buf_len;
1647 		break;
1648 	default:
1649 		error = -EINVAL;
1650 		break;
1651 	}
1652 
1653 	return error;
1654 }
1655 
1656 SYSCALL_DEFINE3(syslog, int, type, char __user *, buf, int, len)
1657 {
1658 	return do_syslog(type, buf, len, SYSLOG_FROM_READER);
1659 }
1660 
1661 /*
1662  * Special console_lock variants that help to reduce the risk of soft-lockups.
1663  * They allow to pass console_lock to another printk() call using a busy wait.
1664  */
1665 
1666 #ifdef CONFIG_LOCKDEP
1667 static struct lockdep_map console_owner_dep_map = {
1668 	.name = "console_owner"
1669 };
1670 #endif
1671 
1672 static DEFINE_RAW_SPINLOCK(console_owner_lock);
1673 static struct task_struct *console_owner;
1674 static bool console_waiter;
1675 
1676 /**
1677  * console_lock_spinning_enable - mark beginning of code where another
1678  *	thread might safely busy wait
1679  *
1680  * This basically converts console_lock into a spinlock. This marks
1681  * the section where the console_lock owner can not sleep, because
1682  * there may be a waiter spinning (like a spinlock). Also it must be
1683  * ready to hand over the lock at the end of the section.
1684  */
1685 static void console_lock_spinning_enable(void)
1686 {
1687 	raw_spin_lock(&console_owner_lock);
1688 	console_owner = current;
1689 	raw_spin_unlock(&console_owner_lock);
1690 
1691 	/* The waiter may spin on us after setting console_owner */
1692 	spin_acquire(&console_owner_dep_map, 0, 0, _THIS_IP_);
1693 }
1694 
1695 /**
1696  * console_lock_spinning_disable_and_check - mark end of code where another
1697  *	thread was able to busy wait and check if there is a waiter
1698  *
1699  * This is called at the end of the section where spinning is allowed.
1700  * It has two functions. First, it is a signal that it is no longer
1701  * safe to start busy waiting for the lock. Second, it checks if
1702  * there is a busy waiter and passes the lock rights to her.
1703  *
1704  * Important: Callers lose the lock if there was a busy waiter.
1705  *	They must not touch items synchronized by console_lock
1706  *	in this case.
1707  *
1708  * Return: 1 if the lock rights were passed, 0 otherwise.
1709  */
1710 static int console_lock_spinning_disable_and_check(void)
1711 {
1712 	int waiter;
1713 
1714 	raw_spin_lock(&console_owner_lock);
1715 	waiter = READ_ONCE(console_waiter);
1716 	console_owner = NULL;
1717 	raw_spin_unlock(&console_owner_lock);
1718 
1719 	if (!waiter) {
1720 		spin_release(&console_owner_dep_map, _THIS_IP_);
1721 		return 0;
1722 	}
1723 
1724 	/* The waiter is now free to continue */
1725 	WRITE_ONCE(console_waiter, false);
1726 
1727 	spin_release(&console_owner_dep_map, _THIS_IP_);
1728 
1729 	/*
1730 	 * Hand off console_lock to waiter. The waiter will perform
1731 	 * the up(). After this, the waiter is the console_lock owner.
1732 	 */
1733 	mutex_release(&console_lock_dep_map, _THIS_IP_);
1734 	return 1;
1735 }
1736 
1737 /**
1738  * console_trylock_spinning - try to get console_lock by busy waiting
1739  *
1740  * This allows to busy wait for the console_lock when the current
1741  * owner is running in specially marked sections. It means that
1742  * the current owner is running and cannot reschedule until it
1743  * is ready to lose the lock.
1744  *
1745  * Return: 1 if we got the lock, 0 othrewise
1746  */
1747 static int console_trylock_spinning(void)
1748 {
1749 	struct task_struct *owner = NULL;
1750 	bool waiter;
1751 	bool spin = false;
1752 	unsigned long flags;
1753 
1754 	if (console_trylock())
1755 		return 1;
1756 
1757 	printk_safe_enter_irqsave(flags);
1758 
1759 	raw_spin_lock(&console_owner_lock);
1760 	owner = READ_ONCE(console_owner);
1761 	waiter = READ_ONCE(console_waiter);
1762 	if (!waiter && owner && owner != current) {
1763 		WRITE_ONCE(console_waiter, true);
1764 		spin = true;
1765 	}
1766 	raw_spin_unlock(&console_owner_lock);
1767 
1768 	/*
1769 	 * If there is an active printk() writing to the
1770 	 * consoles, instead of having it write our data too,
1771 	 * see if we can offload that load from the active
1772 	 * printer, and do some printing ourselves.
1773 	 * Go into a spin only if there isn't already a waiter
1774 	 * spinning, and there is an active printer, and
1775 	 * that active printer isn't us (recursive printk?).
1776 	 */
1777 	if (!spin) {
1778 		printk_safe_exit_irqrestore(flags);
1779 		return 0;
1780 	}
1781 
1782 	/* We spin waiting for the owner to release us */
1783 	spin_acquire(&console_owner_dep_map, 0, 0, _THIS_IP_);
1784 	/* Owner will clear console_waiter on hand off */
1785 	while (READ_ONCE(console_waiter))
1786 		cpu_relax();
1787 	spin_release(&console_owner_dep_map, _THIS_IP_);
1788 
1789 	printk_safe_exit_irqrestore(flags);
1790 	/*
1791 	 * The owner passed the console lock to us.
1792 	 * Since we did not spin on console lock, annotate
1793 	 * this as a trylock. Otherwise lockdep will
1794 	 * complain.
1795 	 */
1796 	mutex_acquire(&console_lock_dep_map, 0, 1, _THIS_IP_);
1797 
1798 	return 1;
1799 }
1800 
1801 /*
1802  * Call the console drivers, asking them to write out
1803  * log_buf[start] to log_buf[end - 1].
1804  * The console_lock must be held.
1805  */
1806 static void call_console_drivers(const char *ext_text, size_t ext_len,
1807 				 const char *text, size_t len)
1808 {
1809 	struct console *con;
1810 
1811 	trace_console_rcuidle(text, len);
1812 
1813 	for_each_console(con) {
1814 		if (exclusive_console && con != exclusive_console)
1815 			continue;
1816 		if (!(con->flags & CON_ENABLED))
1817 			continue;
1818 		if (!con->write)
1819 			continue;
1820 		if (!cpu_online(smp_processor_id()) &&
1821 		    !(con->flags & CON_ANYTIME))
1822 			continue;
1823 		if (con->flags & CON_EXTENDED)
1824 			con->write(con, ext_text, ext_len);
1825 		else
1826 			con->write(con, text, len);
1827 	}
1828 }
1829 
1830 int printk_delay_msec __read_mostly;
1831 
1832 static inline void printk_delay(void)
1833 {
1834 	if (unlikely(printk_delay_msec)) {
1835 		int m = printk_delay_msec;
1836 
1837 		while (m--) {
1838 			mdelay(1);
1839 			touch_nmi_watchdog();
1840 		}
1841 	}
1842 }
1843 
1844 static inline u32 printk_caller_id(void)
1845 {
1846 	return in_task() ? task_pid_nr(current) :
1847 		0x80000000 + raw_smp_processor_id();
1848 }
1849 
1850 /*
1851  * Continuation lines are buffered, and not committed to the record buffer
1852  * until the line is complete, or a race forces it. The line fragments
1853  * though, are printed immediately to the consoles to ensure everything has
1854  * reached the console in case of a kernel crash.
1855  */
1856 static struct cont {
1857 	char buf[LOG_LINE_MAX];
1858 	size_t len;			/* length == 0 means unused buffer */
1859 	u32 caller_id;			/* printk_caller_id() of first print */
1860 	u64 ts_nsec;			/* time of first print */
1861 	u8 level;			/* log level of first message */
1862 	u8 facility;			/* log facility of first message */
1863 	enum log_flags flags;		/* prefix, newline flags */
1864 } cont;
1865 
1866 static void cont_flush(void)
1867 {
1868 	if (cont.len == 0)
1869 		return;
1870 
1871 	log_store(cont.caller_id, cont.facility, cont.level, cont.flags,
1872 		  cont.ts_nsec, NULL, 0, cont.buf, cont.len);
1873 	cont.len = 0;
1874 }
1875 
1876 static bool cont_add(u32 caller_id, int facility, int level,
1877 		     enum log_flags flags, const char *text, size_t len)
1878 {
1879 	/* If the line gets too long, split it up in separate records. */
1880 	if (cont.len + len > sizeof(cont.buf)) {
1881 		cont_flush();
1882 		return false;
1883 	}
1884 
1885 	if (!cont.len) {
1886 		cont.facility = facility;
1887 		cont.level = level;
1888 		cont.caller_id = caller_id;
1889 		cont.ts_nsec = local_clock();
1890 		cont.flags = flags;
1891 	}
1892 
1893 	memcpy(cont.buf + cont.len, text, len);
1894 	cont.len += len;
1895 
1896 	// The original flags come from the first line,
1897 	// but later continuations can add a newline.
1898 	if (flags & LOG_NEWLINE) {
1899 		cont.flags |= LOG_NEWLINE;
1900 		cont_flush();
1901 	}
1902 
1903 	return true;
1904 }
1905 
1906 static size_t log_output(int facility, int level, enum log_flags lflags, const char *dict, size_t dictlen, char *text, size_t text_len)
1907 {
1908 	const u32 caller_id = printk_caller_id();
1909 
1910 	/*
1911 	 * If an earlier line was buffered, and we're a continuation
1912 	 * write from the same context, try to add it to the buffer.
1913 	 */
1914 	if (cont.len) {
1915 		if (cont.caller_id == caller_id && (lflags & LOG_CONT)) {
1916 			if (cont_add(caller_id, facility, level, lflags, text, text_len))
1917 				return text_len;
1918 		}
1919 		/* Otherwise, make sure it's flushed */
1920 		cont_flush();
1921 	}
1922 
1923 	/* Skip empty continuation lines that couldn't be added - they just flush */
1924 	if (!text_len && (lflags & LOG_CONT))
1925 		return 0;
1926 
1927 	/* If it doesn't end in a newline, try to buffer the current line */
1928 	if (!(lflags & LOG_NEWLINE)) {
1929 		if (cont_add(caller_id, facility, level, lflags, text, text_len))
1930 			return text_len;
1931 	}
1932 
1933 	/* Store it in the record log */
1934 	return log_store(caller_id, facility, level, lflags, 0,
1935 			 dict, dictlen, text, text_len);
1936 }
1937 
1938 /* Must be called under logbuf_lock. */
1939 int vprintk_store(int facility, int level,
1940 		  const char *dict, size_t dictlen,
1941 		  const char *fmt, va_list args)
1942 {
1943 	static char textbuf[LOG_LINE_MAX];
1944 	char *text = textbuf;
1945 	size_t text_len;
1946 	enum log_flags lflags = 0;
1947 
1948 	/*
1949 	 * The printf needs to come first; we need the syslog
1950 	 * prefix which might be passed-in as a parameter.
1951 	 */
1952 	text_len = vscnprintf(text, sizeof(textbuf), fmt, args);
1953 
1954 	/* mark and strip a trailing newline */
1955 	if (text_len && text[text_len-1] == '\n') {
1956 		text_len--;
1957 		lflags |= LOG_NEWLINE;
1958 	}
1959 
1960 	/* strip kernel syslog prefix and extract log level or control flags */
1961 	if (facility == 0) {
1962 		int kern_level;
1963 
1964 		while ((kern_level = printk_get_level(text)) != 0) {
1965 			switch (kern_level) {
1966 			case '0' ... '7':
1967 				if (level == LOGLEVEL_DEFAULT)
1968 					level = kern_level - '0';
1969 				break;
1970 			case 'c':	/* KERN_CONT */
1971 				lflags |= LOG_CONT;
1972 			}
1973 
1974 			text_len -= 2;
1975 			text += 2;
1976 		}
1977 	}
1978 
1979 	if (level == LOGLEVEL_DEFAULT)
1980 		level = default_message_loglevel;
1981 
1982 	if (dict)
1983 		lflags |= LOG_NEWLINE;
1984 
1985 	return log_output(facility, level, lflags,
1986 			  dict, dictlen, text, text_len);
1987 }
1988 
1989 asmlinkage int vprintk_emit(int facility, int level,
1990 			    const char *dict, size_t dictlen,
1991 			    const char *fmt, va_list args)
1992 {
1993 	int printed_len;
1994 	bool in_sched = false, pending_output;
1995 	unsigned long flags;
1996 	u64 curr_log_seq;
1997 
1998 	/* Suppress unimportant messages after panic happens */
1999 	if (unlikely(suppress_printk))
2000 		return 0;
2001 
2002 	if (level == LOGLEVEL_SCHED) {
2003 		level = LOGLEVEL_DEFAULT;
2004 		in_sched = true;
2005 	}
2006 
2007 	boot_delay_msec(level);
2008 	printk_delay();
2009 
2010 	/* This stops the holder of console_sem just where we want him */
2011 	logbuf_lock_irqsave(flags);
2012 	curr_log_seq = log_next_seq;
2013 	printed_len = vprintk_store(facility, level, dict, dictlen, fmt, args);
2014 	pending_output = (curr_log_seq != log_next_seq);
2015 	logbuf_unlock_irqrestore(flags);
2016 
2017 	/* If called from the scheduler, we can not call up(). */
2018 	if (!in_sched && pending_output) {
2019 		/*
2020 		 * Disable preemption to avoid being preempted while holding
2021 		 * console_sem which would prevent anyone from printing to
2022 		 * console
2023 		 */
2024 		preempt_disable();
2025 		/*
2026 		 * Try to acquire and then immediately release the console
2027 		 * semaphore.  The release will print out buffers and wake up
2028 		 * /dev/kmsg and syslog() users.
2029 		 */
2030 		if (console_trylock_spinning())
2031 			console_unlock();
2032 		preempt_enable();
2033 	}
2034 
2035 	if (pending_output)
2036 		wake_up_klogd();
2037 	return printed_len;
2038 }
2039 EXPORT_SYMBOL(vprintk_emit);
2040 
2041 asmlinkage int vprintk(const char *fmt, va_list args)
2042 {
2043 	return vprintk_func(fmt, args);
2044 }
2045 EXPORT_SYMBOL(vprintk);
2046 
2047 int vprintk_default(const char *fmt, va_list args)
2048 {
2049 	return vprintk_emit(0, LOGLEVEL_DEFAULT, NULL, 0, fmt, args);
2050 }
2051 EXPORT_SYMBOL_GPL(vprintk_default);
2052 
2053 /**
2054  * printk - print a kernel message
2055  * @fmt: format string
2056  *
2057  * This is printk(). It can be called from any context. We want it to work.
2058  *
2059  * We try to grab the console_lock. If we succeed, it's easy - we log the
2060  * output and call the console drivers.  If we fail to get the semaphore, we
2061  * place the output into the log buffer and return. The current holder of
2062  * the console_sem will notice the new output in console_unlock(); and will
2063  * send it to the consoles before releasing the lock.
2064  *
2065  * One effect of this deferred printing is that code which calls printk() and
2066  * then changes console_loglevel may break. This is because console_loglevel
2067  * is inspected when the actual printing occurs.
2068  *
2069  * See also:
2070  * printf(3)
2071  *
2072  * See the vsnprintf() documentation for format string extensions over C99.
2073  */
2074 asmlinkage __visible int printk(const char *fmt, ...)
2075 {
2076 	va_list args;
2077 	int r;
2078 
2079 	va_start(args, fmt);
2080 	r = vprintk_func(fmt, args);
2081 	va_end(args);
2082 
2083 	return r;
2084 }
2085 EXPORT_SYMBOL(printk);
2086 
2087 #else /* CONFIG_PRINTK */
2088 
2089 #define LOG_LINE_MAX		0
2090 #define PREFIX_MAX		0
2091 #define printk_time		false
2092 
2093 static u64 syslog_seq;
2094 static u32 syslog_idx;
2095 static u64 console_seq;
2096 static u32 console_idx;
2097 static u64 exclusive_console_stop_seq;
2098 static u64 log_first_seq;
2099 static u32 log_first_idx;
2100 static u64 log_next_seq;
2101 static char *log_text(const struct printk_log *msg) { return NULL; }
2102 static char *log_dict(const struct printk_log *msg) { return NULL; }
2103 static struct printk_log *log_from_idx(u32 idx) { return NULL; }
2104 static u32 log_next(u32 idx) { return 0; }
2105 static ssize_t msg_print_ext_header(char *buf, size_t size,
2106 				    struct printk_log *msg,
2107 				    u64 seq) { return 0; }
2108 static ssize_t msg_print_ext_body(char *buf, size_t size,
2109 				  char *dict, size_t dict_len,
2110 				  char *text, size_t text_len) { return 0; }
2111 static void console_lock_spinning_enable(void) { }
2112 static int console_lock_spinning_disable_and_check(void) { return 0; }
2113 static void call_console_drivers(const char *ext_text, size_t ext_len,
2114 				 const char *text, size_t len) {}
2115 static size_t msg_print_text(const struct printk_log *msg, bool syslog,
2116 			     bool time, char *buf, size_t size) { return 0; }
2117 static bool suppress_message_printing(int level) { return false; }
2118 
2119 #endif /* CONFIG_PRINTK */
2120 
2121 #ifdef CONFIG_EARLY_PRINTK
2122 struct console *early_console;
2123 
2124 asmlinkage __visible void early_printk(const char *fmt, ...)
2125 {
2126 	va_list ap;
2127 	char buf[512];
2128 	int n;
2129 
2130 	if (!early_console)
2131 		return;
2132 
2133 	va_start(ap, fmt);
2134 	n = vscnprintf(buf, sizeof(buf), fmt, ap);
2135 	va_end(ap);
2136 
2137 	early_console->write(early_console, buf, n);
2138 }
2139 #endif
2140 
2141 static int __add_preferred_console(char *name, int idx, char *options,
2142 				   char *brl_options, bool user_specified)
2143 {
2144 	struct console_cmdline *c;
2145 	int i;
2146 
2147 	/*
2148 	 *	See if this tty is not yet registered, and
2149 	 *	if we have a slot free.
2150 	 */
2151 	for (i = 0, c = console_cmdline;
2152 	     i < MAX_CMDLINECONSOLES && c->name[0];
2153 	     i++, c++) {
2154 		if (strcmp(c->name, name) == 0 && c->index == idx) {
2155 			if (!brl_options)
2156 				preferred_console = i;
2157 			if (user_specified)
2158 				c->user_specified = true;
2159 			return 0;
2160 		}
2161 	}
2162 	if (i == MAX_CMDLINECONSOLES)
2163 		return -E2BIG;
2164 	if (!brl_options)
2165 		preferred_console = i;
2166 	strlcpy(c->name, name, sizeof(c->name));
2167 	c->options = options;
2168 	c->user_specified = user_specified;
2169 	braille_set_options(c, brl_options);
2170 
2171 	c->index = idx;
2172 	return 0;
2173 }
2174 
2175 static int __init console_msg_format_setup(char *str)
2176 {
2177 	if (!strcmp(str, "syslog"))
2178 		console_msg_format = MSG_FORMAT_SYSLOG;
2179 	if (!strcmp(str, "default"))
2180 		console_msg_format = MSG_FORMAT_DEFAULT;
2181 	return 1;
2182 }
2183 __setup("console_msg_format=", console_msg_format_setup);
2184 
2185 /*
2186  * Set up a console.  Called via do_early_param() in init/main.c
2187  * for each "console=" parameter in the boot command line.
2188  */
2189 static int __init console_setup(char *str)
2190 {
2191 	char buf[sizeof(console_cmdline[0].name) + 4]; /* 4 for "ttyS" */
2192 	char *s, *options, *brl_options = NULL;
2193 	int idx;
2194 
2195 	if (str[0] == 0)
2196 		return 1;
2197 
2198 	if (_braille_console_setup(&str, &brl_options))
2199 		return 1;
2200 
2201 	/*
2202 	 * Decode str into name, index, options.
2203 	 */
2204 	if (str[0] >= '0' && str[0] <= '9') {
2205 		strcpy(buf, "ttyS");
2206 		strncpy(buf + 4, str, sizeof(buf) - 5);
2207 	} else {
2208 		strncpy(buf, str, sizeof(buf) - 1);
2209 	}
2210 	buf[sizeof(buf) - 1] = 0;
2211 	options = strchr(str, ',');
2212 	if (options)
2213 		*(options++) = 0;
2214 #ifdef __sparc__
2215 	if (!strcmp(str, "ttya"))
2216 		strcpy(buf, "ttyS0");
2217 	if (!strcmp(str, "ttyb"))
2218 		strcpy(buf, "ttyS1");
2219 #endif
2220 	for (s = buf; *s; s++)
2221 		if (isdigit(*s) || *s == ',')
2222 			break;
2223 	idx = simple_strtoul(s, NULL, 10);
2224 	*s = 0;
2225 
2226 	__add_preferred_console(buf, idx, options, brl_options, true);
2227 	console_set_on_cmdline = 1;
2228 	return 1;
2229 }
2230 __setup("console=", console_setup);
2231 
2232 /**
2233  * add_preferred_console - add a device to the list of preferred consoles.
2234  * @name: device name
2235  * @idx: device index
2236  * @options: options for this console
2237  *
2238  * The last preferred console added will be used for kernel messages
2239  * and stdin/out/err for init.  Normally this is used by console_setup
2240  * above to handle user-supplied console arguments; however it can also
2241  * be used by arch-specific code either to override the user or more
2242  * commonly to provide a default console (ie from PROM variables) when
2243  * the user has not supplied one.
2244  */
2245 int add_preferred_console(char *name, int idx, char *options)
2246 {
2247 	return __add_preferred_console(name, idx, options, NULL, false);
2248 }
2249 
2250 bool console_suspend_enabled = true;
2251 EXPORT_SYMBOL(console_suspend_enabled);
2252 
2253 static int __init console_suspend_disable(char *str)
2254 {
2255 	console_suspend_enabled = false;
2256 	return 1;
2257 }
2258 __setup("no_console_suspend", console_suspend_disable);
2259 module_param_named(console_suspend, console_suspend_enabled,
2260 		bool, S_IRUGO | S_IWUSR);
2261 MODULE_PARM_DESC(console_suspend, "suspend console during suspend"
2262 	" and hibernate operations");
2263 
2264 /**
2265  * suspend_console - suspend the console subsystem
2266  *
2267  * This disables printk() while we go into suspend states
2268  */
2269 void suspend_console(void)
2270 {
2271 	if (!console_suspend_enabled)
2272 		return;
2273 	pr_info("Suspending console(s) (use no_console_suspend to debug)\n");
2274 	console_lock();
2275 	console_suspended = 1;
2276 	up_console_sem();
2277 }
2278 
2279 void resume_console(void)
2280 {
2281 	if (!console_suspend_enabled)
2282 		return;
2283 	down_console_sem();
2284 	console_suspended = 0;
2285 	console_unlock();
2286 }
2287 
2288 /**
2289  * console_cpu_notify - print deferred console messages after CPU hotplug
2290  * @cpu: unused
2291  *
2292  * If printk() is called from a CPU that is not online yet, the messages
2293  * will be printed on the console only if there are CON_ANYTIME consoles.
2294  * This function is called when a new CPU comes online (or fails to come
2295  * up) or goes offline.
2296  */
2297 static int console_cpu_notify(unsigned int cpu)
2298 {
2299 	if (!cpuhp_tasks_frozen) {
2300 		/* If trylock fails, someone else is doing the printing */
2301 		if (console_trylock())
2302 			console_unlock();
2303 	}
2304 	return 0;
2305 }
2306 
2307 /**
2308  * console_lock - lock the console system for exclusive use.
2309  *
2310  * Acquires a lock which guarantees that the caller has
2311  * exclusive access to the console system and the console_drivers list.
2312  *
2313  * Can sleep, returns nothing.
2314  */
2315 void console_lock(void)
2316 {
2317 	might_sleep();
2318 
2319 	down_console_sem();
2320 	if (console_suspended)
2321 		return;
2322 	console_locked = 1;
2323 	console_may_schedule = 1;
2324 }
2325 EXPORT_SYMBOL(console_lock);
2326 
2327 /**
2328  * console_trylock - try to lock the console system for exclusive use.
2329  *
2330  * Try to acquire a lock which guarantees that the caller has exclusive
2331  * access to the console system and the console_drivers list.
2332  *
2333  * returns 1 on success, and 0 on failure to acquire the lock.
2334  */
2335 int console_trylock(void)
2336 {
2337 	if (down_trylock_console_sem())
2338 		return 0;
2339 	if (console_suspended) {
2340 		up_console_sem();
2341 		return 0;
2342 	}
2343 	console_locked = 1;
2344 	console_may_schedule = 0;
2345 	return 1;
2346 }
2347 EXPORT_SYMBOL(console_trylock);
2348 
2349 int is_console_locked(void)
2350 {
2351 	return console_locked;
2352 }
2353 EXPORT_SYMBOL(is_console_locked);
2354 
2355 /*
2356  * Check if we have any console that is capable of printing while cpu is
2357  * booting or shutting down. Requires console_sem.
2358  */
2359 static int have_callable_console(void)
2360 {
2361 	struct console *con;
2362 
2363 	for_each_console(con)
2364 		if ((con->flags & CON_ENABLED) &&
2365 				(con->flags & CON_ANYTIME))
2366 			return 1;
2367 
2368 	return 0;
2369 }
2370 
2371 /*
2372  * Can we actually use the console at this time on this cpu?
2373  *
2374  * Console drivers may assume that per-cpu resources have been allocated. So
2375  * unless they're explicitly marked as being able to cope (CON_ANYTIME) don't
2376  * call them until this CPU is officially up.
2377  */
2378 static inline int can_use_console(void)
2379 {
2380 	return cpu_online(raw_smp_processor_id()) || have_callable_console();
2381 }
2382 
2383 /**
2384  * console_unlock - unlock the console system
2385  *
2386  * Releases the console_lock which the caller holds on the console system
2387  * and the console driver list.
2388  *
2389  * While the console_lock was held, console output may have been buffered
2390  * by printk().  If this is the case, console_unlock(); emits
2391  * the output prior to releasing the lock.
2392  *
2393  * If there is output waiting, we wake /dev/kmsg and syslog() users.
2394  *
2395  * console_unlock(); may be called from any context.
2396  */
2397 void console_unlock(void)
2398 {
2399 	static char ext_text[CONSOLE_EXT_LOG_MAX];
2400 	static char text[LOG_LINE_MAX + PREFIX_MAX];
2401 	unsigned long flags;
2402 	bool do_cond_resched, retry;
2403 
2404 	if (console_suspended) {
2405 		up_console_sem();
2406 		return;
2407 	}
2408 
2409 	/*
2410 	 * Console drivers are called with interrupts disabled, so
2411 	 * @console_may_schedule should be cleared before; however, we may
2412 	 * end up dumping a lot of lines, for example, if called from
2413 	 * console registration path, and should invoke cond_resched()
2414 	 * between lines if allowable.  Not doing so can cause a very long
2415 	 * scheduling stall on a slow console leading to RCU stall and
2416 	 * softlockup warnings which exacerbate the issue with more
2417 	 * messages practically incapacitating the system.
2418 	 *
2419 	 * console_trylock() is not able to detect the preemptive
2420 	 * context reliably. Therefore the value must be stored before
2421 	 * and cleared after the the "again" goto label.
2422 	 */
2423 	do_cond_resched = console_may_schedule;
2424 again:
2425 	console_may_schedule = 0;
2426 
2427 	/*
2428 	 * We released the console_sem lock, so we need to recheck if
2429 	 * cpu is online and (if not) is there at least one CON_ANYTIME
2430 	 * console.
2431 	 */
2432 	if (!can_use_console()) {
2433 		console_locked = 0;
2434 		up_console_sem();
2435 		return;
2436 	}
2437 
2438 	for (;;) {
2439 		struct printk_log *msg;
2440 		size_t ext_len = 0;
2441 		size_t len;
2442 
2443 		printk_safe_enter_irqsave(flags);
2444 		raw_spin_lock(&logbuf_lock);
2445 		if (console_seq < log_first_seq) {
2446 			len = snprintf(text, sizeof(text),
2447 				       "** %llu printk messages dropped **\n",
2448 				       log_first_seq - console_seq);
2449 
2450 			/* messages are gone, move to first one */
2451 			console_seq = log_first_seq;
2452 			console_idx = log_first_idx;
2453 		} else {
2454 			len = 0;
2455 		}
2456 skip:
2457 		if (console_seq == log_next_seq)
2458 			break;
2459 
2460 		msg = log_from_idx(console_idx);
2461 		if (suppress_message_printing(msg->level)) {
2462 			/*
2463 			 * Skip record we have buffered and already printed
2464 			 * directly to the console when we received it, and
2465 			 * record that has level above the console loglevel.
2466 			 */
2467 			console_idx = log_next(console_idx);
2468 			console_seq++;
2469 			goto skip;
2470 		}
2471 
2472 		/* Output to all consoles once old messages replayed. */
2473 		if (unlikely(exclusive_console &&
2474 			     console_seq >= exclusive_console_stop_seq)) {
2475 			exclusive_console = NULL;
2476 		}
2477 
2478 		len += msg_print_text(msg,
2479 				console_msg_format & MSG_FORMAT_SYSLOG,
2480 				printk_time, text + len, sizeof(text) - len);
2481 		if (nr_ext_console_drivers) {
2482 			ext_len = msg_print_ext_header(ext_text,
2483 						sizeof(ext_text),
2484 						msg, console_seq);
2485 			ext_len += msg_print_ext_body(ext_text + ext_len,
2486 						sizeof(ext_text) - ext_len,
2487 						log_dict(msg), msg->dict_len,
2488 						log_text(msg), msg->text_len);
2489 		}
2490 		console_idx = log_next(console_idx);
2491 		console_seq++;
2492 		raw_spin_unlock(&logbuf_lock);
2493 
2494 		/*
2495 		 * While actively printing out messages, if another printk()
2496 		 * were to occur on another CPU, it may wait for this one to
2497 		 * finish. This task can not be preempted if there is a
2498 		 * waiter waiting to take over.
2499 		 */
2500 		console_lock_spinning_enable();
2501 
2502 		stop_critical_timings();	/* don't trace print latency */
2503 		call_console_drivers(ext_text, ext_len, text, len);
2504 		start_critical_timings();
2505 
2506 		if (console_lock_spinning_disable_and_check()) {
2507 			printk_safe_exit_irqrestore(flags);
2508 			return;
2509 		}
2510 
2511 		printk_safe_exit_irqrestore(flags);
2512 
2513 		if (do_cond_resched)
2514 			cond_resched();
2515 	}
2516 
2517 	console_locked = 0;
2518 
2519 	raw_spin_unlock(&logbuf_lock);
2520 
2521 	up_console_sem();
2522 
2523 	/*
2524 	 * Someone could have filled up the buffer again, so re-check if there's
2525 	 * something to flush. In case we cannot trylock the console_sem again,
2526 	 * there's a new owner and the console_unlock() from them will do the
2527 	 * flush, no worries.
2528 	 */
2529 	raw_spin_lock(&logbuf_lock);
2530 	retry = console_seq != log_next_seq;
2531 	raw_spin_unlock(&logbuf_lock);
2532 	printk_safe_exit_irqrestore(flags);
2533 
2534 	if (retry && console_trylock())
2535 		goto again;
2536 }
2537 EXPORT_SYMBOL(console_unlock);
2538 
2539 /**
2540  * console_conditional_schedule - yield the CPU if required
2541  *
2542  * If the console code is currently allowed to sleep, and
2543  * if this CPU should yield the CPU to another task, do
2544  * so here.
2545  *
2546  * Must be called within console_lock();.
2547  */
2548 void __sched console_conditional_schedule(void)
2549 {
2550 	if (console_may_schedule)
2551 		cond_resched();
2552 }
2553 EXPORT_SYMBOL(console_conditional_schedule);
2554 
2555 void console_unblank(void)
2556 {
2557 	struct console *c;
2558 
2559 	/*
2560 	 * console_unblank can no longer be called in interrupt context unless
2561 	 * oops_in_progress is set to 1..
2562 	 */
2563 	if (oops_in_progress) {
2564 		if (down_trylock_console_sem() != 0)
2565 			return;
2566 	} else
2567 		console_lock();
2568 
2569 	console_locked = 1;
2570 	console_may_schedule = 0;
2571 	for_each_console(c)
2572 		if ((c->flags & CON_ENABLED) && c->unblank)
2573 			c->unblank();
2574 	console_unlock();
2575 }
2576 
2577 /**
2578  * console_flush_on_panic - flush console content on panic
2579  * @mode: flush all messages in buffer or just the pending ones
2580  *
2581  * Immediately output all pending messages no matter what.
2582  */
2583 void console_flush_on_panic(enum con_flush_mode mode)
2584 {
2585 	/*
2586 	 * If someone else is holding the console lock, trylock will fail
2587 	 * and may_schedule may be set.  Ignore and proceed to unlock so
2588 	 * that messages are flushed out.  As this can be called from any
2589 	 * context and we don't want to get preempted while flushing,
2590 	 * ensure may_schedule is cleared.
2591 	 */
2592 	console_trylock();
2593 	console_may_schedule = 0;
2594 
2595 	if (mode == CONSOLE_REPLAY_ALL) {
2596 		unsigned long flags;
2597 
2598 		logbuf_lock_irqsave(flags);
2599 		console_seq = log_first_seq;
2600 		console_idx = log_first_idx;
2601 		logbuf_unlock_irqrestore(flags);
2602 	}
2603 	console_unlock();
2604 }
2605 
2606 /*
2607  * Return the console tty driver structure and its associated index
2608  */
2609 struct tty_driver *console_device(int *index)
2610 {
2611 	struct console *c;
2612 	struct tty_driver *driver = NULL;
2613 
2614 	console_lock();
2615 	for_each_console(c) {
2616 		if (!c->device)
2617 			continue;
2618 		driver = c->device(c, index);
2619 		if (driver)
2620 			break;
2621 	}
2622 	console_unlock();
2623 	return driver;
2624 }
2625 
2626 /*
2627  * Prevent further output on the passed console device so that (for example)
2628  * serial drivers can disable console output before suspending a port, and can
2629  * re-enable output afterwards.
2630  */
2631 void console_stop(struct console *console)
2632 {
2633 	console_lock();
2634 	console->flags &= ~CON_ENABLED;
2635 	console_unlock();
2636 }
2637 EXPORT_SYMBOL(console_stop);
2638 
2639 void console_start(struct console *console)
2640 {
2641 	console_lock();
2642 	console->flags |= CON_ENABLED;
2643 	console_unlock();
2644 }
2645 EXPORT_SYMBOL(console_start);
2646 
2647 static int __read_mostly keep_bootcon;
2648 
2649 static int __init keep_bootcon_setup(char *str)
2650 {
2651 	keep_bootcon = 1;
2652 	pr_info("debug: skip boot console de-registration.\n");
2653 
2654 	return 0;
2655 }
2656 
2657 early_param("keep_bootcon", keep_bootcon_setup);
2658 
2659 /*
2660  * This is called by register_console() to try to match
2661  * the newly registered console with any of the ones selected
2662  * by either the command line or add_preferred_console() and
2663  * setup/enable it.
2664  *
2665  * Care need to be taken with consoles that are statically
2666  * enabled such as netconsole
2667  */
2668 static int try_enable_new_console(struct console *newcon, bool user_specified)
2669 {
2670 	struct console_cmdline *c;
2671 	int i;
2672 
2673 	for (i = 0, c = console_cmdline;
2674 	     i < MAX_CMDLINECONSOLES && c->name[0];
2675 	     i++, c++) {
2676 		if (c->user_specified != user_specified)
2677 			continue;
2678 		if (!newcon->match ||
2679 		    newcon->match(newcon, c->name, c->index, c->options) != 0) {
2680 			/* default matching */
2681 			BUILD_BUG_ON(sizeof(c->name) != sizeof(newcon->name));
2682 			if (strcmp(c->name, newcon->name) != 0)
2683 				continue;
2684 			if (newcon->index >= 0 &&
2685 			    newcon->index != c->index)
2686 				continue;
2687 			if (newcon->index < 0)
2688 				newcon->index = c->index;
2689 
2690 			if (_braille_register_console(newcon, c))
2691 				return 0;
2692 
2693 			if (newcon->setup &&
2694 			    newcon->setup(newcon, c->options) != 0)
2695 				return -EIO;
2696 		}
2697 		newcon->flags |= CON_ENABLED;
2698 		if (i == preferred_console) {
2699 			newcon->flags |= CON_CONSDEV;
2700 			has_preferred_console = true;
2701 		}
2702 		return 0;
2703 	}
2704 
2705 	/*
2706 	 * Some consoles, such as pstore and netconsole, can be enabled even
2707 	 * without matching. Accept the pre-enabled consoles only when match()
2708 	 * and setup() had a change to be called.
2709 	 */
2710 	if (newcon->flags & CON_ENABLED && c->user_specified ==	user_specified)
2711 		return 0;
2712 
2713 	return -ENOENT;
2714 }
2715 
2716 /*
2717  * The console driver calls this routine during kernel initialization
2718  * to register the console printing procedure with printk() and to
2719  * print any messages that were printed by the kernel before the
2720  * console driver was initialized.
2721  *
2722  * This can happen pretty early during the boot process (because of
2723  * early_printk) - sometimes before setup_arch() completes - be careful
2724  * of what kernel features are used - they may not be initialised yet.
2725  *
2726  * There are two types of consoles - bootconsoles (early_printk) and
2727  * "real" consoles (everything which is not a bootconsole) which are
2728  * handled differently.
2729  *  - Any number of bootconsoles can be registered at any time.
2730  *  - As soon as a "real" console is registered, all bootconsoles
2731  *    will be unregistered automatically.
2732  *  - Once a "real" console is registered, any attempt to register a
2733  *    bootconsoles will be rejected
2734  */
2735 void register_console(struct console *newcon)
2736 {
2737 	unsigned long flags;
2738 	struct console *bcon = NULL;
2739 	int err;
2740 
2741 	for_each_console(bcon) {
2742 		if (WARN(bcon == newcon, "console '%s%d' already registered\n",
2743 					 bcon->name, bcon->index))
2744 			return;
2745 	}
2746 
2747 	/*
2748 	 * before we register a new CON_BOOT console, make sure we don't
2749 	 * already have a valid console
2750 	 */
2751 	if (newcon->flags & CON_BOOT) {
2752 		for_each_console(bcon) {
2753 			if (!(bcon->flags & CON_BOOT)) {
2754 				pr_info("Too late to register bootconsole %s%d\n",
2755 					newcon->name, newcon->index);
2756 				return;
2757 			}
2758 		}
2759 	}
2760 
2761 	if (console_drivers && console_drivers->flags & CON_BOOT)
2762 		bcon = console_drivers;
2763 
2764 	if (!has_preferred_console || bcon || !console_drivers)
2765 		has_preferred_console = preferred_console >= 0;
2766 
2767 	/*
2768 	 *	See if we want to use this console driver. If we
2769 	 *	didn't select a console we take the first one
2770 	 *	that registers here.
2771 	 */
2772 	if (!has_preferred_console) {
2773 		if (newcon->index < 0)
2774 			newcon->index = 0;
2775 		if (newcon->setup == NULL ||
2776 		    newcon->setup(newcon, NULL) == 0) {
2777 			newcon->flags |= CON_ENABLED;
2778 			if (newcon->device) {
2779 				newcon->flags |= CON_CONSDEV;
2780 				has_preferred_console = true;
2781 			}
2782 		}
2783 	}
2784 
2785 	/* See if this console matches one we selected on the command line */
2786 	err = try_enable_new_console(newcon, true);
2787 
2788 	/* If not, try to match against the platform default(s) */
2789 	if (err == -ENOENT)
2790 		err = try_enable_new_console(newcon, false);
2791 
2792 	/* printk() messages are not printed to the Braille console. */
2793 	if (err || newcon->flags & CON_BRL)
2794 		return;
2795 
2796 	/*
2797 	 * If we have a bootconsole, and are switching to a real console,
2798 	 * don't print everything out again, since when the boot console, and
2799 	 * the real console are the same physical device, it's annoying to
2800 	 * see the beginning boot messages twice
2801 	 */
2802 	if (bcon && ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV))
2803 		newcon->flags &= ~CON_PRINTBUFFER;
2804 
2805 	/*
2806 	 *	Put this console in the list - keep the
2807 	 *	preferred driver at the head of the list.
2808 	 */
2809 	console_lock();
2810 	if ((newcon->flags & CON_CONSDEV) || console_drivers == NULL) {
2811 		newcon->next = console_drivers;
2812 		console_drivers = newcon;
2813 		if (newcon->next)
2814 			newcon->next->flags &= ~CON_CONSDEV;
2815 		/* Ensure this flag is always set for the head of the list */
2816 		newcon->flags |= CON_CONSDEV;
2817 	} else {
2818 		newcon->next = console_drivers->next;
2819 		console_drivers->next = newcon;
2820 	}
2821 
2822 	if (newcon->flags & CON_EXTENDED)
2823 		nr_ext_console_drivers++;
2824 
2825 	if (newcon->flags & CON_PRINTBUFFER) {
2826 		/*
2827 		 * console_unlock(); will print out the buffered messages
2828 		 * for us.
2829 		 */
2830 		logbuf_lock_irqsave(flags);
2831 		/*
2832 		 * We're about to replay the log buffer.  Only do this to the
2833 		 * just-registered console to avoid excessive message spam to
2834 		 * the already-registered consoles.
2835 		 *
2836 		 * Set exclusive_console with disabled interrupts to reduce
2837 		 * race window with eventual console_flush_on_panic() that
2838 		 * ignores console_lock.
2839 		 */
2840 		exclusive_console = newcon;
2841 		exclusive_console_stop_seq = console_seq;
2842 		console_seq = syslog_seq;
2843 		console_idx = syslog_idx;
2844 		logbuf_unlock_irqrestore(flags);
2845 	}
2846 	console_unlock();
2847 	console_sysfs_notify();
2848 
2849 	/*
2850 	 * By unregistering the bootconsoles after we enable the real console
2851 	 * we get the "console xxx enabled" message on all the consoles -
2852 	 * boot consoles, real consoles, etc - this is to ensure that end
2853 	 * users know there might be something in the kernel's log buffer that
2854 	 * went to the bootconsole (that they do not see on the real console)
2855 	 */
2856 	pr_info("%sconsole [%s%d] enabled\n",
2857 		(newcon->flags & CON_BOOT) ? "boot" : "" ,
2858 		newcon->name, newcon->index);
2859 	if (bcon &&
2860 	    ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV) &&
2861 	    !keep_bootcon) {
2862 		/* We need to iterate through all boot consoles, to make
2863 		 * sure we print everything out, before we unregister them.
2864 		 */
2865 		for_each_console(bcon)
2866 			if (bcon->flags & CON_BOOT)
2867 				unregister_console(bcon);
2868 	}
2869 }
2870 EXPORT_SYMBOL(register_console);
2871 
2872 int unregister_console(struct console *console)
2873 {
2874 	struct console *con;
2875 	int res;
2876 
2877 	pr_info("%sconsole [%s%d] disabled\n",
2878 		(console->flags & CON_BOOT) ? "boot" : "" ,
2879 		console->name, console->index);
2880 
2881 	res = _braille_unregister_console(console);
2882 	if (res < 0)
2883 		return res;
2884 	if (res > 0)
2885 		return 0;
2886 
2887 	res = -ENODEV;
2888 	console_lock();
2889 	if (console_drivers == console) {
2890 		console_drivers=console->next;
2891 		res = 0;
2892 	} else {
2893 		for_each_console(con) {
2894 			if (con->next == console) {
2895 				con->next = console->next;
2896 				res = 0;
2897 				break;
2898 			}
2899 		}
2900 	}
2901 
2902 	if (res)
2903 		goto out_disable_unlock;
2904 
2905 	if (console->flags & CON_EXTENDED)
2906 		nr_ext_console_drivers--;
2907 
2908 	/*
2909 	 * If this isn't the last console and it has CON_CONSDEV set, we
2910 	 * need to set it on the next preferred console.
2911 	 */
2912 	if (console_drivers != NULL && console->flags & CON_CONSDEV)
2913 		console_drivers->flags |= CON_CONSDEV;
2914 
2915 	console->flags &= ~CON_ENABLED;
2916 	console_unlock();
2917 	console_sysfs_notify();
2918 
2919 	if (console->exit)
2920 		res = console->exit(console);
2921 
2922 	return res;
2923 
2924 out_disable_unlock:
2925 	console->flags &= ~CON_ENABLED;
2926 	console_unlock();
2927 
2928 	return res;
2929 }
2930 EXPORT_SYMBOL(unregister_console);
2931 
2932 /*
2933  * Initialize the console device. This is called *early*, so
2934  * we can't necessarily depend on lots of kernel help here.
2935  * Just do some early initializations, and do the complex setup
2936  * later.
2937  */
2938 void __init console_init(void)
2939 {
2940 	int ret;
2941 	initcall_t call;
2942 	initcall_entry_t *ce;
2943 
2944 	/* Setup the default TTY line discipline. */
2945 	n_tty_init();
2946 
2947 	/*
2948 	 * set up the console device so that later boot sequences can
2949 	 * inform about problems etc..
2950 	 */
2951 	ce = __con_initcall_start;
2952 	trace_initcall_level("console");
2953 	while (ce < __con_initcall_end) {
2954 		call = initcall_from_entry(ce);
2955 		trace_initcall_start(call);
2956 		ret = call();
2957 		trace_initcall_finish(call, ret);
2958 		ce++;
2959 	}
2960 }
2961 
2962 /*
2963  * Some boot consoles access data that is in the init section and which will
2964  * be discarded after the initcalls have been run. To make sure that no code
2965  * will access this data, unregister the boot consoles in a late initcall.
2966  *
2967  * If for some reason, such as deferred probe or the driver being a loadable
2968  * module, the real console hasn't registered yet at this point, there will
2969  * be a brief interval in which no messages are logged to the console, which
2970  * makes it difficult to diagnose problems that occur during this time.
2971  *
2972  * To mitigate this problem somewhat, only unregister consoles whose memory
2973  * intersects with the init section. Note that all other boot consoles will
2974  * get unregistred when the real preferred console is registered.
2975  */
2976 static int __init printk_late_init(void)
2977 {
2978 	struct console *con;
2979 	int ret;
2980 
2981 	for_each_console(con) {
2982 		if (!(con->flags & CON_BOOT))
2983 			continue;
2984 
2985 		/* Check addresses that might be used for enabled consoles. */
2986 		if (init_section_intersects(con, sizeof(*con)) ||
2987 		    init_section_contains(con->write, 0) ||
2988 		    init_section_contains(con->read, 0) ||
2989 		    init_section_contains(con->device, 0) ||
2990 		    init_section_contains(con->unblank, 0) ||
2991 		    init_section_contains(con->data, 0)) {
2992 			/*
2993 			 * Please, consider moving the reported consoles out
2994 			 * of the init section.
2995 			 */
2996 			pr_warn("bootconsole [%s%d] uses init memory and must be disabled even before the real one is ready\n",
2997 				con->name, con->index);
2998 			unregister_console(con);
2999 		}
3000 	}
3001 	ret = cpuhp_setup_state_nocalls(CPUHP_PRINTK_DEAD, "printk:dead", NULL,
3002 					console_cpu_notify);
3003 	WARN_ON(ret < 0);
3004 	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "printk:online",
3005 					console_cpu_notify, NULL);
3006 	WARN_ON(ret < 0);
3007 	return 0;
3008 }
3009 late_initcall(printk_late_init);
3010 
3011 #if defined CONFIG_PRINTK
3012 /*
3013  * Delayed printk version, for scheduler-internal messages:
3014  */
3015 #define PRINTK_PENDING_WAKEUP	0x01
3016 #define PRINTK_PENDING_OUTPUT	0x02
3017 
3018 static DEFINE_PER_CPU(int, printk_pending);
3019 
3020 static void wake_up_klogd_work_func(struct irq_work *irq_work)
3021 {
3022 	int pending = __this_cpu_xchg(printk_pending, 0);
3023 
3024 	if (pending & PRINTK_PENDING_OUTPUT) {
3025 		/* If trylock fails, someone else is doing the printing */
3026 		if (console_trylock())
3027 			console_unlock();
3028 	}
3029 
3030 	if (pending & PRINTK_PENDING_WAKEUP)
3031 		wake_up_interruptible(&log_wait);
3032 }
3033 
3034 static DEFINE_PER_CPU(struct irq_work, wake_up_klogd_work) = {
3035 	.func = wake_up_klogd_work_func,
3036 	.flags = ATOMIC_INIT(IRQ_WORK_LAZY),
3037 };
3038 
3039 void wake_up_klogd(void)
3040 {
3041 	if (!printk_percpu_data_ready())
3042 		return;
3043 
3044 	preempt_disable();
3045 	if (waitqueue_active(&log_wait)) {
3046 		this_cpu_or(printk_pending, PRINTK_PENDING_WAKEUP);
3047 		irq_work_queue(this_cpu_ptr(&wake_up_klogd_work));
3048 	}
3049 	preempt_enable();
3050 }
3051 
3052 void defer_console_output(void)
3053 {
3054 	if (!printk_percpu_data_ready())
3055 		return;
3056 
3057 	preempt_disable();
3058 	__this_cpu_or(printk_pending, PRINTK_PENDING_OUTPUT);
3059 	irq_work_queue(this_cpu_ptr(&wake_up_klogd_work));
3060 	preempt_enable();
3061 }
3062 
3063 int vprintk_deferred(const char *fmt, va_list args)
3064 {
3065 	int r;
3066 
3067 	r = vprintk_emit(0, LOGLEVEL_SCHED, NULL, 0, fmt, args);
3068 	defer_console_output();
3069 
3070 	return r;
3071 }
3072 
3073 int printk_deferred(const char *fmt, ...)
3074 {
3075 	va_list args;
3076 	int r;
3077 
3078 	va_start(args, fmt);
3079 	r = vprintk_deferred(fmt, args);
3080 	va_end(args);
3081 
3082 	return r;
3083 }
3084 
3085 /*
3086  * printk rate limiting, lifted from the networking subsystem.
3087  *
3088  * This enforces a rate limit: not more than 10 kernel messages
3089  * every 5s to make a denial-of-service attack impossible.
3090  */
3091 DEFINE_RATELIMIT_STATE(printk_ratelimit_state, 5 * HZ, 10);
3092 
3093 int __printk_ratelimit(const char *func)
3094 {
3095 	return ___ratelimit(&printk_ratelimit_state, func);
3096 }
3097 EXPORT_SYMBOL(__printk_ratelimit);
3098 
3099 /**
3100  * printk_timed_ratelimit - caller-controlled printk ratelimiting
3101  * @caller_jiffies: pointer to caller's state
3102  * @interval_msecs: minimum interval between prints
3103  *
3104  * printk_timed_ratelimit() returns true if more than @interval_msecs
3105  * milliseconds have elapsed since the last time printk_timed_ratelimit()
3106  * returned true.
3107  */
3108 bool printk_timed_ratelimit(unsigned long *caller_jiffies,
3109 			unsigned int interval_msecs)
3110 {
3111 	unsigned long elapsed = jiffies - *caller_jiffies;
3112 
3113 	if (*caller_jiffies && elapsed <= msecs_to_jiffies(interval_msecs))
3114 		return false;
3115 
3116 	*caller_jiffies = jiffies;
3117 	return true;
3118 }
3119 EXPORT_SYMBOL(printk_timed_ratelimit);
3120 
3121 static DEFINE_SPINLOCK(dump_list_lock);
3122 static LIST_HEAD(dump_list);
3123 
3124 /**
3125  * kmsg_dump_register - register a kernel log dumper.
3126  * @dumper: pointer to the kmsg_dumper structure
3127  *
3128  * Adds a kernel log dumper to the system. The dump callback in the
3129  * structure will be called when the kernel oopses or panics and must be
3130  * set. Returns zero on success and %-EINVAL or %-EBUSY otherwise.
3131  */
3132 int kmsg_dump_register(struct kmsg_dumper *dumper)
3133 {
3134 	unsigned long flags;
3135 	int err = -EBUSY;
3136 
3137 	/* The dump callback needs to be set */
3138 	if (!dumper->dump)
3139 		return -EINVAL;
3140 
3141 	spin_lock_irqsave(&dump_list_lock, flags);
3142 	/* Don't allow registering multiple times */
3143 	if (!dumper->registered) {
3144 		dumper->registered = 1;
3145 		list_add_tail_rcu(&dumper->list, &dump_list);
3146 		err = 0;
3147 	}
3148 	spin_unlock_irqrestore(&dump_list_lock, flags);
3149 
3150 	return err;
3151 }
3152 EXPORT_SYMBOL_GPL(kmsg_dump_register);
3153 
3154 /**
3155  * kmsg_dump_unregister - unregister a kmsg dumper.
3156  * @dumper: pointer to the kmsg_dumper structure
3157  *
3158  * Removes a dump device from the system. Returns zero on success and
3159  * %-EINVAL otherwise.
3160  */
3161 int kmsg_dump_unregister(struct kmsg_dumper *dumper)
3162 {
3163 	unsigned long flags;
3164 	int err = -EINVAL;
3165 
3166 	spin_lock_irqsave(&dump_list_lock, flags);
3167 	if (dumper->registered) {
3168 		dumper->registered = 0;
3169 		list_del_rcu(&dumper->list);
3170 		err = 0;
3171 	}
3172 	spin_unlock_irqrestore(&dump_list_lock, flags);
3173 	synchronize_rcu();
3174 
3175 	return err;
3176 }
3177 EXPORT_SYMBOL_GPL(kmsg_dump_unregister);
3178 
3179 static bool always_kmsg_dump;
3180 module_param_named(always_kmsg_dump, always_kmsg_dump, bool, S_IRUGO | S_IWUSR);
3181 
3182 const char *kmsg_dump_reason_str(enum kmsg_dump_reason reason)
3183 {
3184 	switch (reason) {
3185 	case KMSG_DUMP_PANIC:
3186 		return "Panic";
3187 	case KMSG_DUMP_OOPS:
3188 		return "Oops";
3189 	case KMSG_DUMP_EMERG:
3190 		return "Emergency";
3191 	case KMSG_DUMP_SHUTDOWN:
3192 		return "Shutdown";
3193 	default:
3194 		return "Unknown";
3195 	}
3196 }
3197 EXPORT_SYMBOL_GPL(kmsg_dump_reason_str);
3198 
3199 /**
3200  * kmsg_dump - dump kernel log to kernel message dumpers.
3201  * @reason: the reason (oops, panic etc) for dumping
3202  *
3203  * Call each of the registered dumper's dump() callback, which can
3204  * retrieve the kmsg records with kmsg_dump_get_line() or
3205  * kmsg_dump_get_buffer().
3206  */
3207 void kmsg_dump(enum kmsg_dump_reason reason)
3208 {
3209 	struct kmsg_dumper *dumper;
3210 	unsigned long flags;
3211 
3212 	rcu_read_lock();
3213 	list_for_each_entry_rcu(dumper, &dump_list, list) {
3214 		enum kmsg_dump_reason max_reason = dumper->max_reason;
3215 
3216 		/*
3217 		 * If client has not provided a specific max_reason, default
3218 		 * to KMSG_DUMP_OOPS, unless always_kmsg_dump was set.
3219 		 */
3220 		if (max_reason == KMSG_DUMP_UNDEF) {
3221 			max_reason = always_kmsg_dump ? KMSG_DUMP_MAX :
3222 							KMSG_DUMP_OOPS;
3223 		}
3224 		if (reason > max_reason)
3225 			continue;
3226 
3227 		/* initialize iterator with data about the stored records */
3228 		dumper->active = true;
3229 
3230 		logbuf_lock_irqsave(flags);
3231 		dumper->cur_seq = clear_seq;
3232 		dumper->cur_idx = clear_idx;
3233 		dumper->next_seq = log_next_seq;
3234 		dumper->next_idx = log_next_idx;
3235 		logbuf_unlock_irqrestore(flags);
3236 
3237 		/* invoke dumper which will iterate over records */
3238 		dumper->dump(dumper, reason);
3239 
3240 		/* reset iterator */
3241 		dumper->active = false;
3242 	}
3243 	rcu_read_unlock();
3244 }
3245 
3246 /**
3247  * kmsg_dump_get_line_nolock - retrieve one kmsg log line (unlocked version)
3248  * @dumper: registered kmsg dumper
3249  * @syslog: include the "<4>" prefixes
3250  * @line: buffer to copy the line to
3251  * @size: maximum size of the buffer
3252  * @len: length of line placed into buffer
3253  *
3254  * Start at the beginning of the kmsg buffer, with the oldest kmsg
3255  * record, and copy one record into the provided buffer.
3256  *
3257  * Consecutive calls will return the next available record moving
3258  * towards the end of the buffer with the youngest messages.
3259  *
3260  * A return value of FALSE indicates that there are no more records to
3261  * read.
3262  *
3263  * The function is similar to kmsg_dump_get_line(), but grabs no locks.
3264  */
3265 bool kmsg_dump_get_line_nolock(struct kmsg_dumper *dumper, bool syslog,
3266 			       char *line, size_t size, size_t *len)
3267 {
3268 	struct printk_log *msg;
3269 	size_t l = 0;
3270 	bool ret = false;
3271 
3272 	if (!dumper->active)
3273 		goto out;
3274 
3275 	if (dumper->cur_seq < log_first_seq) {
3276 		/* messages are gone, move to first available one */
3277 		dumper->cur_seq = log_first_seq;
3278 		dumper->cur_idx = log_first_idx;
3279 	}
3280 
3281 	/* last entry */
3282 	if (dumper->cur_seq >= log_next_seq)
3283 		goto out;
3284 
3285 	msg = log_from_idx(dumper->cur_idx);
3286 	l = msg_print_text(msg, syslog, printk_time, line, size);
3287 
3288 	dumper->cur_idx = log_next(dumper->cur_idx);
3289 	dumper->cur_seq++;
3290 	ret = true;
3291 out:
3292 	if (len)
3293 		*len = l;
3294 	return ret;
3295 }
3296 
3297 /**
3298  * kmsg_dump_get_line - retrieve one kmsg log line
3299  * @dumper: registered kmsg dumper
3300  * @syslog: include the "<4>" prefixes
3301  * @line: buffer to copy the line to
3302  * @size: maximum size of the buffer
3303  * @len: length of line placed into buffer
3304  *
3305  * Start at the beginning of the kmsg buffer, with the oldest kmsg
3306  * record, and copy one record into the provided buffer.
3307  *
3308  * Consecutive calls will return the next available record moving
3309  * towards the end of the buffer with the youngest messages.
3310  *
3311  * A return value of FALSE indicates that there are no more records to
3312  * read.
3313  */
3314 bool kmsg_dump_get_line(struct kmsg_dumper *dumper, bool syslog,
3315 			char *line, size_t size, size_t *len)
3316 {
3317 	unsigned long flags;
3318 	bool ret;
3319 
3320 	logbuf_lock_irqsave(flags);
3321 	ret = kmsg_dump_get_line_nolock(dumper, syslog, line, size, len);
3322 	logbuf_unlock_irqrestore(flags);
3323 
3324 	return ret;
3325 }
3326 EXPORT_SYMBOL_GPL(kmsg_dump_get_line);
3327 
3328 /**
3329  * kmsg_dump_get_buffer - copy kmsg log lines
3330  * @dumper: registered kmsg dumper
3331  * @syslog: include the "<4>" prefixes
3332  * @buf: buffer to copy the line to
3333  * @size: maximum size of the buffer
3334  * @len: length of line placed into buffer
3335  *
3336  * Start at the end of the kmsg buffer and fill the provided buffer
3337  * with as many of the the *youngest* kmsg records that fit into it.
3338  * If the buffer is large enough, all available kmsg records will be
3339  * copied with a single call.
3340  *
3341  * Consecutive calls will fill the buffer with the next block of
3342  * available older records, not including the earlier retrieved ones.
3343  *
3344  * A return value of FALSE indicates that there are no more records to
3345  * read.
3346  */
3347 bool kmsg_dump_get_buffer(struct kmsg_dumper *dumper, bool syslog,
3348 			  char *buf, size_t size, size_t *len)
3349 {
3350 	unsigned long flags;
3351 	u64 seq;
3352 	u32 idx;
3353 	u64 next_seq;
3354 	u32 next_idx;
3355 	size_t l = 0;
3356 	bool ret = false;
3357 	bool time = printk_time;
3358 
3359 	if (!dumper->active)
3360 		goto out;
3361 
3362 	logbuf_lock_irqsave(flags);
3363 	if (dumper->cur_seq < log_first_seq) {
3364 		/* messages are gone, move to first available one */
3365 		dumper->cur_seq = log_first_seq;
3366 		dumper->cur_idx = log_first_idx;
3367 	}
3368 
3369 	/* last entry */
3370 	if (dumper->cur_seq >= dumper->next_seq) {
3371 		logbuf_unlock_irqrestore(flags);
3372 		goto out;
3373 	}
3374 
3375 	/* calculate length of entire buffer */
3376 	seq = dumper->cur_seq;
3377 	idx = dumper->cur_idx;
3378 	while (seq < dumper->next_seq) {
3379 		struct printk_log *msg = log_from_idx(idx);
3380 
3381 		l += msg_print_text(msg, true, time, NULL, 0);
3382 		idx = log_next(idx);
3383 		seq++;
3384 	}
3385 
3386 	/* move first record forward until length fits into the buffer */
3387 	seq = dumper->cur_seq;
3388 	idx = dumper->cur_idx;
3389 	while (l >= size && seq < dumper->next_seq) {
3390 		struct printk_log *msg = log_from_idx(idx);
3391 
3392 		l -= msg_print_text(msg, true, time, NULL, 0);
3393 		idx = log_next(idx);
3394 		seq++;
3395 	}
3396 
3397 	/* last message in next interation */
3398 	next_seq = seq;
3399 	next_idx = idx;
3400 
3401 	l = 0;
3402 	while (seq < dumper->next_seq) {
3403 		struct printk_log *msg = log_from_idx(idx);
3404 
3405 		l += msg_print_text(msg, syslog, time, buf + l, size - l);
3406 		idx = log_next(idx);
3407 		seq++;
3408 	}
3409 
3410 	dumper->next_seq = next_seq;
3411 	dumper->next_idx = next_idx;
3412 	ret = true;
3413 	logbuf_unlock_irqrestore(flags);
3414 out:
3415 	if (len)
3416 		*len = l;
3417 	return ret;
3418 }
3419 EXPORT_SYMBOL_GPL(kmsg_dump_get_buffer);
3420 
3421 /**
3422  * kmsg_dump_rewind_nolock - reset the iterator (unlocked version)
3423  * @dumper: registered kmsg dumper
3424  *
3425  * Reset the dumper's iterator so that kmsg_dump_get_line() and
3426  * kmsg_dump_get_buffer() can be called again and used multiple
3427  * times within the same dumper.dump() callback.
3428  *
3429  * The function is similar to kmsg_dump_rewind(), but grabs no locks.
3430  */
3431 void kmsg_dump_rewind_nolock(struct kmsg_dumper *dumper)
3432 {
3433 	dumper->cur_seq = clear_seq;
3434 	dumper->cur_idx = clear_idx;
3435 	dumper->next_seq = log_next_seq;
3436 	dumper->next_idx = log_next_idx;
3437 }
3438 
3439 /**
3440  * kmsg_dump_rewind - reset the iterator
3441  * @dumper: registered kmsg dumper
3442  *
3443  * Reset the dumper's iterator so that kmsg_dump_get_line() and
3444  * kmsg_dump_get_buffer() can be called again and used multiple
3445  * times within the same dumper.dump() callback.
3446  */
3447 void kmsg_dump_rewind(struct kmsg_dumper *dumper)
3448 {
3449 	unsigned long flags;
3450 
3451 	logbuf_lock_irqsave(flags);
3452 	kmsg_dump_rewind_nolock(dumper);
3453 	logbuf_unlock_irqrestore(flags);
3454 }
3455 EXPORT_SYMBOL_GPL(kmsg_dump_rewind);
3456 
3457 #endif
3458