1 /* 2 * linux/kernel/printk.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 * 6 * Modified to make sys_syslog() more flexible: added commands to 7 * return the last 4k of kernel messages, regardless of whether 8 * they've been read or not. Added option to suppress kernel printk's 9 * to the console. Added hook for sending the console messages 10 * elsewhere, in preparation for a serial line console (someday). 11 * Ted Ts'o, 2/11/93. 12 * Modified for sysctl support, 1/8/97, Chris Horn. 13 * Fixed SMP synchronization, 08/08/99, Manfred Spraul 14 * manfred@colorfullife.com 15 * Rewrote bits to get rid of console_lock 16 * 01Mar01 Andrew Morton 17 */ 18 19 #include <linux/kernel.h> 20 #include <linux/mm.h> 21 #include <linux/tty.h> 22 #include <linux/tty_driver.h> 23 #include <linux/console.h> 24 #include <linux/init.h> 25 #include <linux/jiffies.h> 26 #include <linux/nmi.h> 27 #include <linux/module.h> 28 #include <linux/moduleparam.h> 29 #include <linux/interrupt.h> /* For in_interrupt() */ 30 #include <linux/delay.h> 31 #include <linux/smp.h> 32 #include <linux/security.h> 33 #include <linux/bootmem.h> 34 #include <linux/memblock.h> 35 #include <linux/syscalls.h> 36 #include <linux/kexec.h> 37 #include <linux/kdb.h> 38 #include <linux/ratelimit.h> 39 #include <linux/kmsg_dump.h> 40 #include <linux/syslog.h> 41 #include <linux/cpu.h> 42 #include <linux/notifier.h> 43 #include <linux/rculist.h> 44 #include <linux/poll.h> 45 #include <linux/irq_work.h> 46 #include <linux/utsname.h> 47 #include <linux/ctype.h> 48 #include <linux/uio.h> 49 50 #include <asm/uaccess.h> 51 52 #define CREATE_TRACE_POINTS 53 #include <trace/events/printk.h> 54 55 #include "console_cmdline.h" 56 #include "braille.h" 57 58 int console_printk[4] = { 59 CONSOLE_LOGLEVEL_DEFAULT, /* console_loglevel */ 60 MESSAGE_LOGLEVEL_DEFAULT, /* default_message_loglevel */ 61 CONSOLE_LOGLEVEL_MIN, /* minimum_console_loglevel */ 62 CONSOLE_LOGLEVEL_DEFAULT, /* default_console_loglevel */ 63 }; 64 65 /* 66 * Low level drivers may need that to know if they can schedule in 67 * their unblank() callback or not. So let's export it. 68 */ 69 int oops_in_progress; 70 EXPORT_SYMBOL(oops_in_progress); 71 72 /* 73 * console_sem protects the console_drivers list, and also 74 * provides serialisation for access to the entire console 75 * driver system. 76 */ 77 static DEFINE_SEMAPHORE(console_sem); 78 struct console *console_drivers; 79 EXPORT_SYMBOL_GPL(console_drivers); 80 81 #ifdef CONFIG_LOCKDEP 82 static struct lockdep_map console_lock_dep_map = { 83 .name = "console_lock" 84 }; 85 #endif 86 87 /* 88 * Helper macros to handle lockdep when locking/unlocking console_sem. We use 89 * macros instead of functions so that _RET_IP_ contains useful information. 90 */ 91 #define down_console_sem() do { \ 92 down(&console_sem);\ 93 mutex_acquire(&console_lock_dep_map, 0, 0, _RET_IP_);\ 94 } while (0) 95 96 static int __down_trylock_console_sem(unsigned long ip) 97 { 98 if (down_trylock(&console_sem)) 99 return 1; 100 mutex_acquire(&console_lock_dep_map, 0, 1, ip); 101 return 0; 102 } 103 #define down_trylock_console_sem() __down_trylock_console_sem(_RET_IP_) 104 105 #define up_console_sem() do { \ 106 mutex_release(&console_lock_dep_map, 1, _RET_IP_);\ 107 up(&console_sem);\ 108 } while (0) 109 110 /* 111 * This is used for debugging the mess that is the VT code by 112 * keeping track if we have the console semaphore held. It's 113 * definitely not the perfect debug tool (we don't know if _WE_ 114 * hold it and are racing, but it helps tracking those weird code 115 * paths in the console code where we end up in places I want 116 * locked without the console sempahore held). 117 */ 118 static int console_locked, console_suspended; 119 120 /* 121 * If exclusive_console is non-NULL then only this console is to be printed to. 122 */ 123 static struct console *exclusive_console; 124 125 /* 126 * Array of consoles built from command line options (console=) 127 */ 128 129 #define MAX_CMDLINECONSOLES 8 130 131 static struct console_cmdline console_cmdline[MAX_CMDLINECONSOLES]; 132 133 static int selected_console = -1; 134 static int preferred_console = -1; 135 int console_set_on_cmdline; 136 EXPORT_SYMBOL(console_set_on_cmdline); 137 138 /* Flag: console code may call schedule() */ 139 static int console_may_schedule; 140 141 /* 142 * The printk log buffer consists of a chain of concatenated variable 143 * length records. Every record starts with a record header, containing 144 * the overall length of the record. 145 * 146 * The heads to the first and last entry in the buffer, as well as the 147 * sequence numbers of these entries are maintained when messages are 148 * stored. 149 * 150 * If the heads indicate available messages, the length in the header 151 * tells the start next message. A length == 0 for the next message 152 * indicates a wrap-around to the beginning of the buffer. 153 * 154 * Every record carries the monotonic timestamp in microseconds, as well as 155 * the standard userspace syslog level and syslog facility. The usual 156 * kernel messages use LOG_KERN; userspace-injected messages always carry 157 * a matching syslog facility, by default LOG_USER. The origin of every 158 * message can be reliably determined that way. 159 * 160 * The human readable log message directly follows the message header. The 161 * length of the message text is stored in the header, the stored message 162 * is not terminated. 163 * 164 * Optionally, a message can carry a dictionary of properties (key/value pairs), 165 * to provide userspace with a machine-readable message context. 166 * 167 * Examples for well-defined, commonly used property names are: 168 * DEVICE=b12:8 device identifier 169 * b12:8 block dev_t 170 * c127:3 char dev_t 171 * n8 netdev ifindex 172 * +sound:card0 subsystem:devname 173 * SUBSYSTEM=pci driver-core subsystem name 174 * 175 * Valid characters in property names are [a-zA-Z0-9.-_]. The plain text value 176 * follows directly after a '=' character. Every property is terminated by 177 * a '\0' character. The last property is not terminated. 178 * 179 * Example of a message structure: 180 * 0000 ff 8f 00 00 00 00 00 00 monotonic time in nsec 181 * 0008 34 00 record is 52 bytes long 182 * 000a 0b 00 text is 11 bytes long 183 * 000c 1f 00 dictionary is 23 bytes long 184 * 000e 03 00 LOG_KERN (facility) LOG_ERR (level) 185 * 0010 69 74 27 73 20 61 20 6c "it's a l" 186 * 69 6e 65 "ine" 187 * 001b 44 45 56 49 43 "DEVIC" 188 * 45 3d 62 38 3a 32 00 44 "E=b8:2\0D" 189 * 52 49 56 45 52 3d 62 75 "RIVER=bu" 190 * 67 "g" 191 * 0032 00 00 00 padding to next message header 192 * 193 * The 'struct printk_log' buffer header must never be directly exported to 194 * userspace, it is a kernel-private implementation detail that might 195 * need to be changed in the future, when the requirements change. 196 * 197 * /dev/kmsg exports the structured data in the following line format: 198 * "level,sequnum,timestamp;<message text>\n" 199 * 200 * The optional key/value pairs are attached as continuation lines starting 201 * with a space character and terminated by a newline. All possible 202 * non-prinatable characters are escaped in the "\xff" notation. 203 * 204 * Users of the export format should ignore possible additional values 205 * separated by ',', and find the message after the ';' character. 206 */ 207 208 enum log_flags { 209 LOG_NOCONS = 1, /* already flushed, do not print to console */ 210 LOG_NEWLINE = 2, /* text ended with a newline */ 211 LOG_PREFIX = 4, /* text started with a prefix */ 212 LOG_CONT = 8, /* text is a fragment of a continuation line */ 213 }; 214 215 struct printk_log { 216 u64 ts_nsec; /* timestamp in nanoseconds */ 217 u16 len; /* length of entire record */ 218 u16 text_len; /* length of text buffer */ 219 u16 dict_len; /* length of dictionary buffer */ 220 u8 facility; /* syslog facility */ 221 u8 flags:5; /* internal record flags */ 222 u8 level:3; /* syslog level */ 223 }; 224 225 /* 226 * The logbuf_lock protects kmsg buffer, indices, counters. This can be taken 227 * within the scheduler's rq lock. It must be released before calling 228 * console_unlock() or anything else that might wake up a process. 229 */ 230 static DEFINE_RAW_SPINLOCK(logbuf_lock); 231 232 #ifdef CONFIG_PRINTK 233 DECLARE_WAIT_QUEUE_HEAD(log_wait); 234 /* the next printk record to read by syslog(READ) or /proc/kmsg */ 235 static u64 syslog_seq; 236 static u32 syslog_idx; 237 static enum log_flags syslog_prev; 238 static size_t syslog_partial; 239 240 /* index and sequence number of the first record stored in the buffer */ 241 static u64 log_first_seq; 242 static u32 log_first_idx; 243 244 /* index and sequence number of the next record to store in the buffer */ 245 static u64 log_next_seq; 246 static u32 log_next_idx; 247 248 /* the next printk record to write to the console */ 249 static u64 console_seq; 250 static u32 console_idx; 251 static enum log_flags console_prev; 252 253 /* the next printk record to read after the last 'clear' command */ 254 static u64 clear_seq; 255 static u32 clear_idx; 256 257 #define PREFIX_MAX 32 258 #define LOG_LINE_MAX (1024 - PREFIX_MAX) 259 260 /* record buffer */ 261 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) 262 #define LOG_ALIGN 4 263 #else 264 #define LOG_ALIGN __alignof__(struct printk_log) 265 #endif 266 #define __LOG_BUF_LEN (1 << CONFIG_LOG_BUF_SHIFT) 267 static char __log_buf[__LOG_BUF_LEN] __aligned(LOG_ALIGN); 268 static char *log_buf = __log_buf; 269 static u32 log_buf_len = __LOG_BUF_LEN; 270 271 /* Return log buffer address */ 272 char *log_buf_addr_get(void) 273 { 274 return log_buf; 275 } 276 277 /* Return log buffer size */ 278 u32 log_buf_len_get(void) 279 { 280 return log_buf_len; 281 } 282 283 /* human readable text of the record */ 284 static char *log_text(const struct printk_log *msg) 285 { 286 return (char *)msg + sizeof(struct printk_log); 287 } 288 289 /* optional key/value pair dictionary attached to the record */ 290 static char *log_dict(const struct printk_log *msg) 291 { 292 return (char *)msg + sizeof(struct printk_log) + msg->text_len; 293 } 294 295 /* get record by index; idx must point to valid msg */ 296 static struct printk_log *log_from_idx(u32 idx) 297 { 298 struct printk_log *msg = (struct printk_log *)(log_buf + idx); 299 300 /* 301 * A length == 0 record is the end of buffer marker. Wrap around and 302 * read the message at the start of the buffer. 303 */ 304 if (!msg->len) 305 return (struct printk_log *)log_buf; 306 return msg; 307 } 308 309 /* get next record; idx must point to valid msg */ 310 static u32 log_next(u32 idx) 311 { 312 struct printk_log *msg = (struct printk_log *)(log_buf + idx); 313 314 /* length == 0 indicates the end of the buffer; wrap */ 315 /* 316 * A length == 0 record is the end of buffer marker. Wrap around and 317 * read the message at the start of the buffer as *this* one, and 318 * return the one after that. 319 */ 320 if (!msg->len) { 321 msg = (struct printk_log *)log_buf; 322 return msg->len; 323 } 324 return idx + msg->len; 325 } 326 327 /* 328 * Check whether there is enough free space for the given message. 329 * 330 * The same values of first_idx and next_idx mean that the buffer 331 * is either empty or full. 332 * 333 * If the buffer is empty, we must respect the position of the indexes. 334 * They cannot be reset to the beginning of the buffer. 335 */ 336 static int logbuf_has_space(u32 msg_size, bool empty) 337 { 338 u32 free; 339 340 if (log_next_idx > log_first_idx || empty) 341 free = max(log_buf_len - log_next_idx, log_first_idx); 342 else 343 free = log_first_idx - log_next_idx; 344 345 /* 346 * We need space also for an empty header that signalizes wrapping 347 * of the buffer. 348 */ 349 return free >= msg_size + sizeof(struct printk_log); 350 } 351 352 static int log_make_free_space(u32 msg_size) 353 { 354 while (log_first_seq < log_next_seq) { 355 if (logbuf_has_space(msg_size, false)) 356 return 0; 357 /* drop old messages until we have enough contiguous space */ 358 log_first_idx = log_next(log_first_idx); 359 log_first_seq++; 360 } 361 362 /* sequence numbers are equal, so the log buffer is empty */ 363 if (logbuf_has_space(msg_size, true)) 364 return 0; 365 366 return -ENOMEM; 367 } 368 369 /* compute the message size including the padding bytes */ 370 static u32 msg_used_size(u16 text_len, u16 dict_len, u32 *pad_len) 371 { 372 u32 size; 373 374 size = sizeof(struct printk_log) + text_len + dict_len; 375 *pad_len = (-size) & (LOG_ALIGN - 1); 376 size += *pad_len; 377 378 return size; 379 } 380 381 /* 382 * Define how much of the log buffer we could take at maximum. The value 383 * must be greater than two. Note that only half of the buffer is available 384 * when the index points to the middle. 385 */ 386 #define MAX_LOG_TAKE_PART 4 387 static const char trunc_msg[] = "<truncated>"; 388 389 static u32 truncate_msg(u16 *text_len, u16 *trunc_msg_len, 390 u16 *dict_len, u32 *pad_len) 391 { 392 /* 393 * The message should not take the whole buffer. Otherwise, it might 394 * get removed too soon. 395 */ 396 u32 max_text_len = log_buf_len / MAX_LOG_TAKE_PART; 397 if (*text_len > max_text_len) 398 *text_len = max_text_len; 399 /* enable the warning message */ 400 *trunc_msg_len = strlen(trunc_msg); 401 /* disable the "dict" completely */ 402 *dict_len = 0; 403 /* compute the size again, count also the warning message */ 404 return msg_used_size(*text_len + *trunc_msg_len, 0, pad_len); 405 } 406 407 /* insert record into the buffer, discard old ones, update heads */ 408 static int log_store(int facility, int level, 409 enum log_flags flags, u64 ts_nsec, 410 const char *dict, u16 dict_len, 411 const char *text, u16 text_len) 412 { 413 struct printk_log *msg; 414 u32 size, pad_len; 415 u16 trunc_msg_len = 0; 416 417 /* number of '\0' padding bytes to next message */ 418 size = msg_used_size(text_len, dict_len, &pad_len); 419 420 if (log_make_free_space(size)) { 421 /* truncate the message if it is too long for empty buffer */ 422 size = truncate_msg(&text_len, &trunc_msg_len, 423 &dict_len, &pad_len); 424 /* survive when the log buffer is too small for trunc_msg */ 425 if (log_make_free_space(size)) 426 return 0; 427 } 428 429 if (log_next_idx + size + sizeof(struct printk_log) > log_buf_len) { 430 /* 431 * This message + an additional empty header does not fit 432 * at the end of the buffer. Add an empty header with len == 0 433 * to signify a wrap around. 434 */ 435 memset(log_buf + log_next_idx, 0, sizeof(struct printk_log)); 436 log_next_idx = 0; 437 } 438 439 /* fill message */ 440 msg = (struct printk_log *)(log_buf + log_next_idx); 441 memcpy(log_text(msg), text, text_len); 442 msg->text_len = text_len; 443 if (trunc_msg_len) { 444 memcpy(log_text(msg) + text_len, trunc_msg, trunc_msg_len); 445 msg->text_len += trunc_msg_len; 446 } 447 memcpy(log_dict(msg), dict, dict_len); 448 msg->dict_len = dict_len; 449 msg->facility = facility; 450 msg->level = level & 7; 451 msg->flags = flags & 0x1f; 452 if (ts_nsec > 0) 453 msg->ts_nsec = ts_nsec; 454 else 455 msg->ts_nsec = local_clock(); 456 memset(log_dict(msg) + dict_len, 0, pad_len); 457 msg->len = size; 458 459 /* insert message */ 460 log_next_idx += msg->len; 461 log_next_seq++; 462 463 return msg->text_len; 464 } 465 466 int dmesg_restrict = IS_ENABLED(CONFIG_SECURITY_DMESG_RESTRICT); 467 468 static int syslog_action_restricted(int type) 469 { 470 if (dmesg_restrict) 471 return 1; 472 /* 473 * Unless restricted, we allow "read all" and "get buffer size" 474 * for everybody. 475 */ 476 return type != SYSLOG_ACTION_READ_ALL && 477 type != SYSLOG_ACTION_SIZE_BUFFER; 478 } 479 480 int check_syslog_permissions(int type, bool from_file) 481 { 482 /* 483 * If this is from /proc/kmsg and we've already opened it, then we've 484 * already done the capabilities checks at open time. 485 */ 486 if (from_file && type != SYSLOG_ACTION_OPEN) 487 return 0; 488 489 if (syslog_action_restricted(type)) { 490 if (capable(CAP_SYSLOG)) 491 return 0; 492 /* 493 * For historical reasons, accept CAP_SYS_ADMIN too, with 494 * a warning. 495 */ 496 if (capable(CAP_SYS_ADMIN)) { 497 pr_warn_once("%s (%d): Attempt to access syslog with " 498 "CAP_SYS_ADMIN but no CAP_SYSLOG " 499 "(deprecated).\n", 500 current->comm, task_pid_nr(current)); 501 return 0; 502 } 503 return -EPERM; 504 } 505 return security_syslog(type); 506 } 507 508 509 /* /dev/kmsg - userspace message inject/listen interface */ 510 struct devkmsg_user { 511 u64 seq; 512 u32 idx; 513 enum log_flags prev; 514 struct mutex lock; 515 char buf[8192]; 516 }; 517 518 static ssize_t devkmsg_write(struct kiocb *iocb, struct iov_iter *from) 519 { 520 char *buf, *line; 521 int i; 522 int level = default_message_loglevel; 523 int facility = 1; /* LOG_USER */ 524 size_t len = iov_iter_count(from); 525 ssize_t ret = len; 526 527 if (len > LOG_LINE_MAX) 528 return -EINVAL; 529 buf = kmalloc(len+1, GFP_KERNEL); 530 if (buf == NULL) 531 return -ENOMEM; 532 533 buf[len] = '\0'; 534 if (copy_from_iter(buf, len, from) != len) { 535 kfree(buf); 536 return -EFAULT; 537 } 538 539 /* 540 * Extract and skip the syslog prefix <[0-9]*>. Coming from userspace 541 * the decimal value represents 32bit, the lower 3 bit are the log 542 * level, the rest are the log facility. 543 * 544 * If no prefix or no userspace facility is specified, we 545 * enforce LOG_USER, to be able to reliably distinguish 546 * kernel-generated messages from userspace-injected ones. 547 */ 548 line = buf; 549 if (line[0] == '<') { 550 char *endp = NULL; 551 552 i = simple_strtoul(line+1, &endp, 10); 553 if (endp && endp[0] == '>') { 554 level = i & 7; 555 if (i >> 3) 556 facility = i >> 3; 557 endp++; 558 len -= endp - line; 559 line = endp; 560 } 561 } 562 563 printk_emit(facility, level, NULL, 0, "%s", line); 564 kfree(buf); 565 return ret; 566 } 567 568 static ssize_t devkmsg_read(struct file *file, char __user *buf, 569 size_t count, loff_t *ppos) 570 { 571 struct devkmsg_user *user = file->private_data; 572 struct printk_log *msg; 573 u64 ts_usec; 574 size_t i; 575 char cont = '-'; 576 size_t len; 577 ssize_t ret; 578 579 if (!user) 580 return -EBADF; 581 582 ret = mutex_lock_interruptible(&user->lock); 583 if (ret) 584 return ret; 585 raw_spin_lock_irq(&logbuf_lock); 586 while (user->seq == log_next_seq) { 587 if (file->f_flags & O_NONBLOCK) { 588 ret = -EAGAIN; 589 raw_spin_unlock_irq(&logbuf_lock); 590 goto out; 591 } 592 593 raw_spin_unlock_irq(&logbuf_lock); 594 ret = wait_event_interruptible(log_wait, 595 user->seq != log_next_seq); 596 if (ret) 597 goto out; 598 raw_spin_lock_irq(&logbuf_lock); 599 } 600 601 if (user->seq < log_first_seq) { 602 /* our last seen message is gone, return error and reset */ 603 user->idx = log_first_idx; 604 user->seq = log_first_seq; 605 ret = -EPIPE; 606 raw_spin_unlock_irq(&logbuf_lock); 607 goto out; 608 } 609 610 msg = log_from_idx(user->idx); 611 ts_usec = msg->ts_nsec; 612 do_div(ts_usec, 1000); 613 614 /* 615 * If we couldn't merge continuation line fragments during the print, 616 * export the stored flags to allow an optional external merge of the 617 * records. Merging the records isn't always neccessarily correct, like 618 * when we hit a race during printing. In most cases though, it produces 619 * better readable output. 'c' in the record flags mark the first 620 * fragment of a line, '+' the following. 621 */ 622 if (msg->flags & LOG_CONT && !(user->prev & LOG_CONT)) 623 cont = 'c'; 624 else if ((msg->flags & LOG_CONT) || 625 ((user->prev & LOG_CONT) && !(msg->flags & LOG_PREFIX))) 626 cont = '+'; 627 628 len = sprintf(user->buf, "%u,%llu,%llu,%c;", 629 (msg->facility << 3) | msg->level, 630 user->seq, ts_usec, cont); 631 user->prev = msg->flags; 632 633 /* escape non-printable characters */ 634 for (i = 0; i < msg->text_len; i++) { 635 unsigned char c = log_text(msg)[i]; 636 637 if (c < ' ' || c >= 127 || c == '\\') 638 len += sprintf(user->buf + len, "\\x%02x", c); 639 else 640 user->buf[len++] = c; 641 } 642 user->buf[len++] = '\n'; 643 644 if (msg->dict_len) { 645 bool line = true; 646 647 for (i = 0; i < msg->dict_len; i++) { 648 unsigned char c = log_dict(msg)[i]; 649 650 if (line) { 651 user->buf[len++] = ' '; 652 line = false; 653 } 654 655 if (c == '\0') { 656 user->buf[len++] = '\n'; 657 line = true; 658 continue; 659 } 660 661 if (c < ' ' || c >= 127 || c == '\\') { 662 len += sprintf(user->buf + len, "\\x%02x", c); 663 continue; 664 } 665 666 user->buf[len++] = c; 667 } 668 user->buf[len++] = '\n'; 669 } 670 671 user->idx = log_next(user->idx); 672 user->seq++; 673 raw_spin_unlock_irq(&logbuf_lock); 674 675 if (len > count) { 676 ret = -EINVAL; 677 goto out; 678 } 679 680 if (copy_to_user(buf, user->buf, len)) { 681 ret = -EFAULT; 682 goto out; 683 } 684 ret = len; 685 out: 686 mutex_unlock(&user->lock); 687 return ret; 688 } 689 690 static loff_t devkmsg_llseek(struct file *file, loff_t offset, int whence) 691 { 692 struct devkmsg_user *user = file->private_data; 693 loff_t ret = 0; 694 695 if (!user) 696 return -EBADF; 697 if (offset) 698 return -ESPIPE; 699 700 raw_spin_lock_irq(&logbuf_lock); 701 switch (whence) { 702 case SEEK_SET: 703 /* the first record */ 704 user->idx = log_first_idx; 705 user->seq = log_first_seq; 706 break; 707 case SEEK_DATA: 708 /* 709 * The first record after the last SYSLOG_ACTION_CLEAR, 710 * like issued by 'dmesg -c'. Reading /dev/kmsg itself 711 * changes no global state, and does not clear anything. 712 */ 713 user->idx = clear_idx; 714 user->seq = clear_seq; 715 break; 716 case SEEK_END: 717 /* after the last record */ 718 user->idx = log_next_idx; 719 user->seq = log_next_seq; 720 break; 721 default: 722 ret = -EINVAL; 723 } 724 raw_spin_unlock_irq(&logbuf_lock); 725 return ret; 726 } 727 728 static unsigned int devkmsg_poll(struct file *file, poll_table *wait) 729 { 730 struct devkmsg_user *user = file->private_data; 731 int ret = 0; 732 733 if (!user) 734 return POLLERR|POLLNVAL; 735 736 poll_wait(file, &log_wait, wait); 737 738 raw_spin_lock_irq(&logbuf_lock); 739 if (user->seq < log_next_seq) { 740 /* return error when data has vanished underneath us */ 741 if (user->seq < log_first_seq) 742 ret = POLLIN|POLLRDNORM|POLLERR|POLLPRI; 743 else 744 ret = POLLIN|POLLRDNORM; 745 } 746 raw_spin_unlock_irq(&logbuf_lock); 747 748 return ret; 749 } 750 751 static int devkmsg_open(struct inode *inode, struct file *file) 752 { 753 struct devkmsg_user *user; 754 int err; 755 756 /* write-only does not need any file context */ 757 if ((file->f_flags & O_ACCMODE) == O_WRONLY) 758 return 0; 759 760 err = check_syslog_permissions(SYSLOG_ACTION_READ_ALL, 761 SYSLOG_FROM_READER); 762 if (err) 763 return err; 764 765 user = kmalloc(sizeof(struct devkmsg_user), GFP_KERNEL); 766 if (!user) 767 return -ENOMEM; 768 769 mutex_init(&user->lock); 770 771 raw_spin_lock_irq(&logbuf_lock); 772 user->idx = log_first_idx; 773 user->seq = log_first_seq; 774 raw_spin_unlock_irq(&logbuf_lock); 775 776 file->private_data = user; 777 return 0; 778 } 779 780 static int devkmsg_release(struct inode *inode, struct file *file) 781 { 782 struct devkmsg_user *user = file->private_data; 783 784 if (!user) 785 return 0; 786 787 mutex_destroy(&user->lock); 788 kfree(user); 789 return 0; 790 } 791 792 const struct file_operations kmsg_fops = { 793 .open = devkmsg_open, 794 .read = devkmsg_read, 795 .write_iter = devkmsg_write, 796 .llseek = devkmsg_llseek, 797 .poll = devkmsg_poll, 798 .release = devkmsg_release, 799 }; 800 801 #ifdef CONFIG_KEXEC 802 /* 803 * This appends the listed symbols to /proc/vmcore 804 * 805 * /proc/vmcore is used by various utilities, like crash and makedumpfile to 806 * obtain access to symbols that are otherwise very difficult to locate. These 807 * symbols are specifically used so that utilities can access and extract the 808 * dmesg log from a vmcore file after a crash. 809 */ 810 void log_buf_kexec_setup(void) 811 { 812 VMCOREINFO_SYMBOL(log_buf); 813 VMCOREINFO_SYMBOL(log_buf_len); 814 VMCOREINFO_SYMBOL(log_first_idx); 815 VMCOREINFO_SYMBOL(log_next_idx); 816 /* 817 * Export struct printk_log size and field offsets. User space tools can 818 * parse it and detect any changes to structure down the line. 819 */ 820 VMCOREINFO_STRUCT_SIZE(printk_log); 821 VMCOREINFO_OFFSET(printk_log, ts_nsec); 822 VMCOREINFO_OFFSET(printk_log, len); 823 VMCOREINFO_OFFSET(printk_log, text_len); 824 VMCOREINFO_OFFSET(printk_log, dict_len); 825 } 826 #endif 827 828 /* requested log_buf_len from kernel cmdline */ 829 static unsigned long __initdata new_log_buf_len; 830 831 /* we practice scaling the ring buffer by powers of 2 */ 832 static void __init log_buf_len_update(unsigned size) 833 { 834 if (size) 835 size = roundup_pow_of_two(size); 836 if (size > log_buf_len) 837 new_log_buf_len = size; 838 } 839 840 /* save requested log_buf_len since it's too early to process it */ 841 static int __init log_buf_len_setup(char *str) 842 { 843 unsigned size = memparse(str, &str); 844 845 log_buf_len_update(size); 846 847 return 0; 848 } 849 early_param("log_buf_len", log_buf_len_setup); 850 851 #ifdef CONFIG_SMP 852 #define __LOG_CPU_MAX_BUF_LEN (1 << CONFIG_LOG_CPU_MAX_BUF_SHIFT) 853 854 static void __init log_buf_add_cpu(void) 855 { 856 unsigned int cpu_extra; 857 858 /* 859 * archs should set up cpu_possible_bits properly with 860 * set_cpu_possible() after setup_arch() but just in 861 * case lets ensure this is valid. 862 */ 863 if (num_possible_cpus() == 1) 864 return; 865 866 cpu_extra = (num_possible_cpus() - 1) * __LOG_CPU_MAX_BUF_LEN; 867 868 /* by default this will only continue through for large > 64 CPUs */ 869 if (cpu_extra <= __LOG_BUF_LEN / 2) 870 return; 871 872 pr_info("log_buf_len individual max cpu contribution: %d bytes\n", 873 __LOG_CPU_MAX_BUF_LEN); 874 pr_info("log_buf_len total cpu_extra contributions: %d bytes\n", 875 cpu_extra); 876 pr_info("log_buf_len min size: %d bytes\n", __LOG_BUF_LEN); 877 878 log_buf_len_update(cpu_extra + __LOG_BUF_LEN); 879 } 880 #else /* !CONFIG_SMP */ 881 static inline void log_buf_add_cpu(void) {} 882 #endif /* CONFIG_SMP */ 883 884 void __init setup_log_buf(int early) 885 { 886 unsigned long flags; 887 char *new_log_buf; 888 int free; 889 890 if (log_buf != __log_buf) 891 return; 892 893 if (!early && !new_log_buf_len) 894 log_buf_add_cpu(); 895 896 if (!new_log_buf_len) 897 return; 898 899 if (early) { 900 new_log_buf = 901 memblock_virt_alloc(new_log_buf_len, LOG_ALIGN); 902 } else { 903 new_log_buf = memblock_virt_alloc_nopanic(new_log_buf_len, 904 LOG_ALIGN); 905 } 906 907 if (unlikely(!new_log_buf)) { 908 pr_err("log_buf_len: %ld bytes not available\n", 909 new_log_buf_len); 910 return; 911 } 912 913 raw_spin_lock_irqsave(&logbuf_lock, flags); 914 log_buf_len = new_log_buf_len; 915 log_buf = new_log_buf; 916 new_log_buf_len = 0; 917 free = __LOG_BUF_LEN - log_next_idx; 918 memcpy(log_buf, __log_buf, __LOG_BUF_LEN); 919 raw_spin_unlock_irqrestore(&logbuf_lock, flags); 920 921 pr_info("log_buf_len: %d bytes\n", log_buf_len); 922 pr_info("early log buf free: %d(%d%%)\n", 923 free, (free * 100) / __LOG_BUF_LEN); 924 } 925 926 static bool __read_mostly ignore_loglevel; 927 928 static int __init ignore_loglevel_setup(char *str) 929 { 930 ignore_loglevel = true; 931 pr_info("debug: ignoring loglevel setting.\n"); 932 933 return 0; 934 } 935 936 early_param("ignore_loglevel", ignore_loglevel_setup); 937 module_param(ignore_loglevel, bool, S_IRUGO | S_IWUSR); 938 MODULE_PARM_DESC(ignore_loglevel, 939 "ignore loglevel setting (prints all kernel messages to the console)"); 940 941 #ifdef CONFIG_BOOT_PRINTK_DELAY 942 943 static int boot_delay; /* msecs delay after each printk during bootup */ 944 static unsigned long long loops_per_msec; /* based on boot_delay */ 945 946 static int __init boot_delay_setup(char *str) 947 { 948 unsigned long lpj; 949 950 lpj = preset_lpj ? preset_lpj : 1000000; /* some guess */ 951 loops_per_msec = (unsigned long long)lpj / 1000 * HZ; 952 953 get_option(&str, &boot_delay); 954 if (boot_delay > 10 * 1000) 955 boot_delay = 0; 956 957 pr_debug("boot_delay: %u, preset_lpj: %ld, lpj: %lu, " 958 "HZ: %d, loops_per_msec: %llu\n", 959 boot_delay, preset_lpj, lpj, HZ, loops_per_msec); 960 return 0; 961 } 962 early_param("boot_delay", boot_delay_setup); 963 964 static void boot_delay_msec(int level) 965 { 966 unsigned long long k; 967 unsigned long timeout; 968 969 if ((boot_delay == 0 || system_state != SYSTEM_BOOTING) 970 || (level >= console_loglevel && !ignore_loglevel)) { 971 return; 972 } 973 974 k = (unsigned long long)loops_per_msec * boot_delay; 975 976 timeout = jiffies + msecs_to_jiffies(boot_delay); 977 while (k) { 978 k--; 979 cpu_relax(); 980 /* 981 * use (volatile) jiffies to prevent 982 * compiler reduction; loop termination via jiffies 983 * is secondary and may or may not happen. 984 */ 985 if (time_after(jiffies, timeout)) 986 break; 987 touch_nmi_watchdog(); 988 } 989 } 990 #else 991 static inline void boot_delay_msec(int level) 992 { 993 } 994 #endif 995 996 static bool printk_time = IS_ENABLED(CONFIG_PRINTK_TIME); 997 module_param_named(time, printk_time, bool, S_IRUGO | S_IWUSR); 998 999 static size_t print_time(u64 ts, char *buf) 1000 { 1001 unsigned long rem_nsec; 1002 1003 if (!printk_time) 1004 return 0; 1005 1006 rem_nsec = do_div(ts, 1000000000); 1007 1008 if (!buf) 1009 return snprintf(NULL, 0, "[%5lu.000000] ", (unsigned long)ts); 1010 1011 return sprintf(buf, "[%5lu.%06lu] ", 1012 (unsigned long)ts, rem_nsec / 1000); 1013 } 1014 1015 static size_t print_prefix(const struct printk_log *msg, bool syslog, char *buf) 1016 { 1017 size_t len = 0; 1018 unsigned int prefix = (msg->facility << 3) | msg->level; 1019 1020 if (syslog) { 1021 if (buf) { 1022 len += sprintf(buf, "<%u>", prefix); 1023 } else { 1024 len += 3; 1025 if (prefix > 999) 1026 len += 3; 1027 else if (prefix > 99) 1028 len += 2; 1029 else if (prefix > 9) 1030 len++; 1031 } 1032 } 1033 1034 len += print_time(msg->ts_nsec, buf ? buf + len : NULL); 1035 return len; 1036 } 1037 1038 static size_t msg_print_text(const struct printk_log *msg, enum log_flags prev, 1039 bool syslog, char *buf, size_t size) 1040 { 1041 const char *text = log_text(msg); 1042 size_t text_size = msg->text_len; 1043 bool prefix = true; 1044 bool newline = true; 1045 size_t len = 0; 1046 1047 if ((prev & LOG_CONT) && !(msg->flags & LOG_PREFIX)) 1048 prefix = false; 1049 1050 if (msg->flags & LOG_CONT) { 1051 if ((prev & LOG_CONT) && !(prev & LOG_NEWLINE)) 1052 prefix = false; 1053 1054 if (!(msg->flags & LOG_NEWLINE)) 1055 newline = false; 1056 } 1057 1058 do { 1059 const char *next = memchr(text, '\n', text_size); 1060 size_t text_len; 1061 1062 if (next) { 1063 text_len = next - text; 1064 next++; 1065 text_size -= next - text; 1066 } else { 1067 text_len = text_size; 1068 } 1069 1070 if (buf) { 1071 if (print_prefix(msg, syslog, NULL) + 1072 text_len + 1 >= size - len) 1073 break; 1074 1075 if (prefix) 1076 len += print_prefix(msg, syslog, buf + len); 1077 memcpy(buf + len, text, text_len); 1078 len += text_len; 1079 if (next || newline) 1080 buf[len++] = '\n'; 1081 } else { 1082 /* SYSLOG_ACTION_* buffer size only calculation */ 1083 if (prefix) 1084 len += print_prefix(msg, syslog, NULL); 1085 len += text_len; 1086 if (next || newline) 1087 len++; 1088 } 1089 1090 prefix = true; 1091 text = next; 1092 } while (text); 1093 1094 return len; 1095 } 1096 1097 static int syslog_print(char __user *buf, int size) 1098 { 1099 char *text; 1100 struct printk_log *msg; 1101 int len = 0; 1102 1103 text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL); 1104 if (!text) 1105 return -ENOMEM; 1106 1107 while (size > 0) { 1108 size_t n; 1109 size_t skip; 1110 1111 raw_spin_lock_irq(&logbuf_lock); 1112 if (syslog_seq < log_first_seq) { 1113 /* messages are gone, move to first one */ 1114 syslog_seq = log_first_seq; 1115 syslog_idx = log_first_idx; 1116 syslog_prev = 0; 1117 syslog_partial = 0; 1118 } 1119 if (syslog_seq == log_next_seq) { 1120 raw_spin_unlock_irq(&logbuf_lock); 1121 break; 1122 } 1123 1124 skip = syslog_partial; 1125 msg = log_from_idx(syslog_idx); 1126 n = msg_print_text(msg, syslog_prev, true, text, 1127 LOG_LINE_MAX + PREFIX_MAX); 1128 if (n - syslog_partial <= size) { 1129 /* message fits into buffer, move forward */ 1130 syslog_idx = log_next(syslog_idx); 1131 syslog_seq++; 1132 syslog_prev = msg->flags; 1133 n -= syslog_partial; 1134 syslog_partial = 0; 1135 } else if (!len){ 1136 /* partial read(), remember position */ 1137 n = size; 1138 syslog_partial += n; 1139 } else 1140 n = 0; 1141 raw_spin_unlock_irq(&logbuf_lock); 1142 1143 if (!n) 1144 break; 1145 1146 if (copy_to_user(buf, text + skip, n)) { 1147 if (!len) 1148 len = -EFAULT; 1149 break; 1150 } 1151 1152 len += n; 1153 size -= n; 1154 buf += n; 1155 } 1156 1157 kfree(text); 1158 return len; 1159 } 1160 1161 static int syslog_print_all(char __user *buf, int size, bool clear) 1162 { 1163 char *text; 1164 int len = 0; 1165 1166 text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL); 1167 if (!text) 1168 return -ENOMEM; 1169 1170 raw_spin_lock_irq(&logbuf_lock); 1171 if (buf) { 1172 u64 next_seq; 1173 u64 seq; 1174 u32 idx; 1175 enum log_flags prev; 1176 1177 if (clear_seq < log_first_seq) { 1178 /* messages are gone, move to first available one */ 1179 clear_seq = log_first_seq; 1180 clear_idx = log_first_idx; 1181 } 1182 1183 /* 1184 * Find first record that fits, including all following records, 1185 * into the user-provided buffer for this dump. 1186 */ 1187 seq = clear_seq; 1188 idx = clear_idx; 1189 prev = 0; 1190 while (seq < log_next_seq) { 1191 struct printk_log *msg = log_from_idx(idx); 1192 1193 len += msg_print_text(msg, prev, true, NULL, 0); 1194 prev = msg->flags; 1195 idx = log_next(idx); 1196 seq++; 1197 } 1198 1199 /* move first record forward until length fits into the buffer */ 1200 seq = clear_seq; 1201 idx = clear_idx; 1202 prev = 0; 1203 while (len > size && seq < log_next_seq) { 1204 struct printk_log *msg = log_from_idx(idx); 1205 1206 len -= msg_print_text(msg, prev, true, NULL, 0); 1207 prev = msg->flags; 1208 idx = log_next(idx); 1209 seq++; 1210 } 1211 1212 /* last message fitting into this dump */ 1213 next_seq = log_next_seq; 1214 1215 len = 0; 1216 while (len >= 0 && seq < next_seq) { 1217 struct printk_log *msg = log_from_idx(idx); 1218 int textlen; 1219 1220 textlen = msg_print_text(msg, prev, true, text, 1221 LOG_LINE_MAX + PREFIX_MAX); 1222 if (textlen < 0) { 1223 len = textlen; 1224 break; 1225 } 1226 idx = log_next(idx); 1227 seq++; 1228 prev = msg->flags; 1229 1230 raw_spin_unlock_irq(&logbuf_lock); 1231 if (copy_to_user(buf + len, text, textlen)) 1232 len = -EFAULT; 1233 else 1234 len += textlen; 1235 raw_spin_lock_irq(&logbuf_lock); 1236 1237 if (seq < log_first_seq) { 1238 /* messages are gone, move to next one */ 1239 seq = log_first_seq; 1240 idx = log_first_idx; 1241 prev = 0; 1242 } 1243 } 1244 } 1245 1246 if (clear) { 1247 clear_seq = log_next_seq; 1248 clear_idx = log_next_idx; 1249 } 1250 raw_spin_unlock_irq(&logbuf_lock); 1251 1252 kfree(text); 1253 return len; 1254 } 1255 1256 int do_syslog(int type, char __user *buf, int len, bool from_file) 1257 { 1258 bool clear = false; 1259 static int saved_console_loglevel = LOGLEVEL_DEFAULT; 1260 int error; 1261 1262 error = check_syslog_permissions(type, from_file); 1263 if (error) 1264 goto out; 1265 1266 error = security_syslog(type); 1267 if (error) 1268 return error; 1269 1270 switch (type) { 1271 case SYSLOG_ACTION_CLOSE: /* Close log */ 1272 break; 1273 case SYSLOG_ACTION_OPEN: /* Open log */ 1274 break; 1275 case SYSLOG_ACTION_READ: /* Read from log */ 1276 error = -EINVAL; 1277 if (!buf || len < 0) 1278 goto out; 1279 error = 0; 1280 if (!len) 1281 goto out; 1282 if (!access_ok(VERIFY_WRITE, buf, len)) { 1283 error = -EFAULT; 1284 goto out; 1285 } 1286 error = wait_event_interruptible(log_wait, 1287 syslog_seq != log_next_seq); 1288 if (error) 1289 goto out; 1290 error = syslog_print(buf, len); 1291 break; 1292 /* Read/clear last kernel messages */ 1293 case SYSLOG_ACTION_READ_CLEAR: 1294 clear = true; 1295 /* FALL THRU */ 1296 /* Read last kernel messages */ 1297 case SYSLOG_ACTION_READ_ALL: 1298 error = -EINVAL; 1299 if (!buf || len < 0) 1300 goto out; 1301 error = 0; 1302 if (!len) 1303 goto out; 1304 if (!access_ok(VERIFY_WRITE, buf, len)) { 1305 error = -EFAULT; 1306 goto out; 1307 } 1308 error = syslog_print_all(buf, len, clear); 1309 break; 1310 /* Clear ring buffer */ 1311 case SYSLOG_ACTION_CLEAR: 1312 syslog_print_all(NULL, 0, true); 1313 break; 1314 /* Disable logging to console */ 1315 case SYSLOG_ACTION_CONSOLE_OFF: 1316 if (saved_console_loglevel == LOGLEVEL_DEFAULT) 1317 saved_console_loglevel = console_loglevel; 1318 console_loglevel = minimum_console_loglevel; 1319 break; 1320 /* Enable logging to console */ 1321 case SYSLOG_ACTION_CONSOLE_ON: 1322 if (saved_console_loglevel != LOGLEVEL_DEFAULT) { 1323 console_loglevel = saved_console_loglevel; 1324 saved_console_loglevel = LOGLEVEL_DEFAULT; 1325 } 1326 break; 1327 /* Set level of messages printed to console */ 1328 case SYSLOG_ACTION_CONSOLE_LEVEL: 1329 error = -EINVAL; 1330 if (len < 1 || len > 8) 1331 goto out; 1332 if (len < minimum_console_loglevel) 1333 len = minimum_console_loglevel; 1334 console_loglevel = len; 1335 /* Implicitly re-enable logging to console */ 1336 saved_console_loglevel = LOGLEVEL_DEFAULT; 1337 error = 0; 1338 break; 1339 /* Number of chars in the log buffer */ 1340 case SYSLOG_ACTION_SIZE_UNREAD: 1341 raw_spin_lock_irq(&logbuf_lock); 1342 if (syslog_seq < log_first_seq) { 1343 /* messages are gone, move to first one */ 1344 syslog_seq = log_first_seq; 1345 syslog_idx = log_first_idx; 1346 syslog_prev = 0; 1347 syslog_partial = 0; 1348 } 1349 if (from_file) { 1350 /* 1351 * Short-cut for poll(/"proc/kmsg") which simply checks 1352 * for pending data, not the size; return the count of 1353 * records, not the length. 1354 */ 1355 error = log_next_seq - syslog_seq; 1356 } else { 1357 u64 seq = syslog_seq; 1358 u32 idx = syslog_idx; 1359 enum log_flags prev = syslog_prev; 1360 1361 error = 0; 1362 while (seq < log_next_seq) { 1363 struct printk_log *msg = log_from_idx(idx); 1364 1365 error += msg_print_text(msg, prev, true, NULL, 0); 1366 idx = log_next(idx); 1367 seq++; 1368 prev = msg->flags; 1369 } 1370 error -= syslog_partial; 1371 } 1372 raw_spin_unlock_irq(&logbuf_lock); 1373 break; 1374 /* Size of the log buffer */ 1375 case SYSLOG_ACTION_SIZE_BUFFER: 1376 error = log_buf_len; 1377 break; 1378 default: 1379 error = -EINVAL; 1380 break; 1381 } 1382 out: 1383 return error; 1384 } 1385 1386 SYSCALL_DEFINE3(syslog, int, type, char __user *, buf, int, len) 1387 { 1388 return do_syslog(type, buf, len, SYSLOG_FROM_READER); 1389 } 1390 1391 /* 1392 * Call the console drivers, asking them to write out 1393 * log_buf[start] to log_buf[end - 1]. 1394 * The console_lock must be held. 1395 */ 1396 static void call_console_drivers(int level, const char *text, size_t len) 1397 { 1398 struct console *con; 1399 1400 trace_console(text, len); 1401 1402 if (level >= console_loglevel && !ignore_loglevel) 1403 return; 1404 if (!console_drivers) 1405 return; 1406 1407 for_each_console(con) { 1408 if (exclusive_console && con != exclusive_console) 1409 continue; 1410 if (!(con->flags & CON_ENABLED)) 1411 continue; 1412 if (!con->write) 1413 continue; 1414 if (!cpu_online(smp_processor_id()) && 1415 !(con->flags & CON_ANYTIME)) 1416 continue; 1417 con->write(con, text, len); 1418 } 1419 } 1420 1421 /* 1422 * Zap console related locks when oopsing. 1423 * To leave time for slow consoles to print a full oops, 1424 * only zap at most once every 30 seconds. 1425 */ 1426 static void zap_locks(void) 1427 { 1428 static unsigned long oops_timestamp; 1429 1430 if (time_after_eq(jiffies, oops_timestamp) && 1431 !time_after(jiffies, oops_timestamp + 30 * HZ)) 1432 return; 1433 1434 oops_timestamp = jiffies; 1435 1436 debug_locks_off(); 1437 /* If a crash is occurring, make sure we can't deadlock */ 1438 raw_spin_lock_init(&logbuf_lock); 1439 /* And make sure that we print immediately */ 1440 sema_init(&console_sem, 1); 1441 } 1442 1443 /* 1444 * Check if we have any console that is capable of printing while cpu is 1445 * booting or shutting down. Requires console_sem. 1446 */ 1447 static int have_callable_console(void) 1448 { 1449 struct console *con; 1450 1451 for_each_console(con) 1452 if (con->flags & CON_ANYTIME) 1453 return 1; 1454 1455 return 0; 1456 } 1457 1458 /* 1459 * Can we actually use the console at this time on this cpu? 1460 * 1461 * Console drivers may assume that per-cpu resources have been allocated. So 1462 * unless they're explicitly marked as being able to cope (CON_ANYTIME) don't 1463 * call them until this CPU is officially up. 1464 */ 1465 static inline int can_use_console(unsigned int cpu) 1466 { 1467 return cpu_online(cpu) || have_callable_console(); 1468 } 1469 1470 /* 1471 * Try to get console ownership to actually show the kernel 1472 * messages from a 'printk'. Return true (and with the 1473 * console_lock held, and 'console_locked' set) if it 1474 * is successful, false otherwise. 1475 */ 1476 static int console_trylock_for_printk(void) 1477 { 1478 unsigned int cpu = smp_processor_id(); 1479 1480 if (!console_trylock()) 1481 return 0; 1482 /* 1483 * If we can't use the console, we need to release the console 1484 * semaphore by hand to avoid flushing the buffer. We need to hold the 1485 * console semaphore in order to do this test safely. 1486 */ 1487 if (!can_use_console(cpu)) { 1488 console_locked = 0; 1489 up_console_sem(); 1490 return 0; 1491 } 1492 return 1; 1493 } 1494 1495 int printk_delay_msec __read_mostly; 1496 1497 static inline void printk_delay(void) 1498 { 1499 if (unlikely(printk_delay_msec)) { 1500 int m = printk_delay_msec; 1501 1502 while (m--) { 1503 mdelay(1); 1504 touch_nmi_watchdog(); 1505 } 1506 } 1507 } 1508 1509 /* 1510 * Continuation lines are buffered, and not committed to the record buffer 1511 * until the line is complete, or a race forces it. The line fragments 1512 * though, are printed immediately to the consoles to ensure everything has 1513 * reached the console in case of a kernel crash. 1514 */ 1515 static struct cont { 1516 char buf[LOG_LINE_MAX]; 1517 size_t len; /* length == 0 means unused buffer */ 1518 size_t cons; /* bytes written to console */ 1519 struct task_struct *owner; /* task of first print*/ 1520 u64 ts_nsec; /* time of first print */ 1521 u8 level; /* log level of first message */ 1522 u8 facility; /* log facility of first message */ 1523 enum log_flags flags; /* prefix, newline flags */ 1524 bool flushed:1; /* buffer sealed and committed */ 1525 } cont; 1526 1527 static void cont_flush(enum log_flags flags) 1528 { 1529 if (cont.flushed) 1530 return; 1531 if (cont.len == 0) 1532 return; 1533 1534 if (cont.cons) { 1535 /* 1536 * If a fragment of this line was directly flushed to the 1537 * console; wait for the console to pick up the rest of the 1538 * line. LOG_NOCONS suppresses a duplicated output. 1539 */ 1540 log_store(cont.facility, cont.level, flags | LOG_NOCONS, 1541 cont.ts_nsec, NULL, 0, cont.buf, cont.len); 1542 cont.flags = flags; 1543 cont.flushed = true; 1544 } else { 1545 /* 1546 * If no fragment of this line ever reached the console, 1547 * just submit it to the store and free the buffer. 1548 */ 1549 log_store(cont.facility, cont.level, flags, 0, 1550 NULL, 0, cont.buf, cont.len); 1551 cont.len = 0; 1552 } 1553 } 1554 1555 static bool cont_add(int facility, int level, const char *text, size_t len) 1556 { 1557 if (cont.len && cont.flushed) 1558 return false; 1559 1560 if (cont.len + len > sizeof(cont.buf)) { 1561 /* the line gets too long, split it up in separate records */ 1562 cont_flush(LOG_CONT); 1563 return false; 1564 } 1565 1566 if (!cont.len) { 1567 cont.facility = facility; 1568 cont.level = level; 1569 cont.owner = current; 1570 cont.ts_nsec = local_clock(); 1571 cont.flags = 0; 1572 cont.cons = 0; 1573 cont.flushed = false; 1574 } 1575 1576 memcpy(cont.buf + cont.len, text, len); 1577 cont.len += len; 1578 1579 if (cont.len > (sizeof(cont.buf) * 80) / 100) 1580 cont_flush(LOG_CONT); 1581 1582 return true; 1583 } 1584 1585 static size_t cont_print_text(char *text, size_t size) 1586 { 1587 size_t textlen = 0; 1588 size_t len; 1589 1590 if (cont.cons == 0 && (console_prev & LOG_NEWLINE)) { 1591 textlen += print_time(cont.ts_nsec, text); 1592 size -= textlen; 1593 } 1594 1595 len = cont.len - cont.cons; 1596 if (len > 0) { 1597 if (len+1 > size) 1598 len = size-1; 1599 memcpy(text + textlen, cont.buf + cont.cons, len); 1600 textlen += len; 1601 cont.cons = cont.len; 1602 } 1603 1604 if (cont.flushed) { 1605 if (cont.flags & LOG_NEWLINE) 1606 text[textlen++] = '\n'; 1607 /* got everything, release buffer */ 1608 cont.len = 0; 1609 } 1610 return textlen; 1611 } 1612 1613 asmlinkage int vprintk_emit(int facility, int level, 1614 const char *dict, size_t dictlen, 1615 const char *fmt, va_list args) 1616 { 1617 static int recursion_bug; 1618 static char textbuf[LOG_LINE_MAX]; 1619 char *text = textbuf; 1620 size_t text_len = 0; 1621 enum log_flags lflags = 0; 1622 unsigned long flags; 1623 int this_cpu; 1624 int printed_len = 0; 1625 bool in_sched = false; 1626 /* cpu currently holding logbuf_lock in this function */ 1627 static unsigned int logbuf_cpu = UINT_MAX; 1628 1629 if (level == LOGLEVEL_SCHED) { 1630 level = LOGLEVEL_DEFAULT; 1631 in_sched = true; 1632 } 1633 1634 boot_delay_msec(level); 1635 printk_delay(); 1636 1637 /* This stops the holder of console_sem just where we want him */ 1638 local_irq_save(flags); 1639 this_cpu = smp_processor_id(); 1640 1641 /* 1642 * Ouch, printk recursed into itself! 1643 */ 1644 if (unlikely(logbuf_cpu == this_cpu)) { 1645 /* 1646 * If a crash is occurring during printk() on this CPU, 1647 * then try to get the crash message out but make sure 1648 * we can't deadlock. Otherwise just return to avoid the 1649 * recursion and return - but flag the recursion so that 1650 * it can be printed at the next appropriate moment: 1651 */ 1652 if (!oops_in_progress && !lockdep_recursing(current)) { 1653 recursion_bug = 1; 1654 local_irq_restore(flags); 1655 return 0; 1656 } 1657 zap_locks(); 1658 } 1659 1660 lockdep_off(); 1661 raw_spin_lock(&logbuf_lock); 1662 logbuf_cpu = this_cpu; 1663 1664 if (unlikely(recursion_bug)) { 1665 static const char recursion_msg[] = 1666 "BUG: recent printk recursion!"; 1667 1668 recursion_bug = 0; 1669 /* emit KERN_CRIT message */ 1670 printed_len += log_store(0, 2, LOG_PREFIX|LOG_NEWLINE, 0, 1671 NULL, 0, recursion_msg, 1672 strlen(recursion_msg)); 1673 } 1674 1675 /* 1676 * The printf needs to come first; we need the syslog 1677 * prefix which might be passed-in as a parameter. 1678 */ 1679 text_len = vscnprintf(text, sizeof(textbuf), fmt, args); 1680 1681 /* mark and strip a trailing newline */ 1682 if (text_len && text[text_len-1] == '\n') { 1683 text_len--; 1684 lflags |= LOG_NEWLINE; 1685 } 1686 1687 /* strip kernel syslog prefix and extract log level or control flags */ 1688 if (facility == 0) { 1689 int kern_level = printk_get_level(text); 1690 1691 if (kern_level) { 1692 const char *end_of_header = printk_skip_level(text); 1693 switch (kern_level) { 1694 case '0' ... '7': 1695 if (level == LOGLEVEL_DEFAULT) 1696 level = kern_level - '0'; 1697 /* fallthrough */ 1698 case 'd': /* KERN_DEFAULT */ 1699 lflags |= LOG_PREFIX; 1700 } 1701 /* 1702 * No need to check length here because vscnprintf 1703 * put '\0' at the end of the string. Only valid and 1704 * newly printed level is detected. 1705 */ 1706 text_len -= end_of_header - text; 1707 text = (char *)end_of_header; 1708 } 1709 } 1710 1711 if (level == LOGLEVEL_DEFAULT) 1712 level = default_message_loglevel; 1713 1714 if (dict) 1715 lflags |= LOG_PREFIX|LOG_NEWLINE; 1716 1717 if (!(lflags & LOG_NEWLINE)) { 1718 /* 1719 * Flush the conflicting buffer. An earlier newline was missing, 1720 * or another task also prints continuation lines. 1721 */ 1722 if (cont.len && (lflags & LOG_PREFIX || cont.owner != current)) 1723 cont_flush(LOG_NEWLINE); 1724 1725 /* buffer line if possible, otherwise store it right away */ 1726 if (cont_add(facility, level, text, text_len)) 1727 printed_len += text_len; 1728 else 1729 printed_len += log_store(facility, level, 1730 lflags | LOG_CONT, 0, 1731 dict, dictlen, text, text_len); 1732 } else { 1733 bool stored = false; 1734 1735 /* 1736 * If an earlier newline was missing and it was the same task, 1737 * either merge it with the current buffer and flush, or if 1738 * there was a race with interrupts (prefix == true) then just 1739 * flush it out and store this line separately. 1740 * If the preceding printk was from a different task and missed 1741 * a newline, flush and append the newline. 1742 */ 1743 if (cont.len) { 1744 if (cont.owner == current && !(lflags & LOG_PREFIX)) 1745 stored = cont_add(facility, level, text, 1746 text_len); 1747 cont_flush(LOG_NEWLINE); 1748 } 1749 1750 if (stored) 1751 printed_len += text_len; 1752 else 1753 printed_len += log_store(facility, level, lflags, 0, 1754 dict, dictlen, text, text_len); 1755 } 1756 1757 logbuf_cpu = UINT_MAX; 1758 raw_spin_unlock(&logbuf_lock); 1759 lockdep_on(); 1760 local_irq_restore(flags); 1761 1762 /* If called from the scheduler, we can not call up(). */ 1763 if (!in_sched) { 1764 lockdep_off(); 1765 /* 1766 * Disable preemption to avoid being preempted while holding 1767 * console_sem which would prevent anyone from printing to 1768 * console 1769 */ 1770 preempt_disable(); 1771 1772 /* 1773 * Try to acquire and then immediately release the console 1774 * semaphore. The release will print out buffers and wake up 1775 * /dev/kmsg and syslog() users. 1776 */ 1777 if (console_trylock_for_printk()) 1778 console_unlock(); 1779 preempt_enable(); 1780 lockdep_on(); 1781 } 1782 1783 return printed_len; 1784 } 1785 EXPORT_SYMBOL(vprintk_emit); 1786 1787 asmlinkage int vprintk(const char *fmt, va_list args) 1788 { 1789 return vprintk_emit(0, LOGLEVEL_DEFAULT, NULL, 0, fmt, args); 1790 } 1791 EXPORT_SYMBOL(vprintk); 1792 1793 asmlinkage int printk_emit(int facility, int level, 1794 const char *dict, size_t dictlen, 1795 const char *fmt, ...) 1796 { 1797 va_list args; 1798 int r; 1799 1800 va_start(args, fmt); 1801 r = vprintk_emit(facility, level, dict, dictlen, fmt, args); 1802 va_end(args); 1803 1804 return r; 1805 } 1806 EXPORT_SYMBOL(printk_emit); 1807 1808 int vprintk_default(const char *fmt, va_list args) 1809 { 1810 int r; 1811 1812 #ifdef CONFIG_KGDB_KDB 1813 if (unlikely(kdb_trap_printk)) { 1814 r = vkdb_printf(KDB_MSGSRC_PRINTK, fmt, args); 1815 return r; 1816 } 1817 #endif 1818 r = vprintk_emit(0, LOGLEVEL_DEFAULT, NULL, 0, fmt, args); 1819 1820 return r; 1821 } 1822 EXPORT_SYMBOL_GPL(vprintk_default); 1823 1824 /* 1825 * This allows printk to be diverted to another function per cpu. 1826 * This is useful for calling printk functions from within NMI 1827 * without worrying about race conditions that can lock up the 1828 * box. 1829 */ 1830 DEFINE_PER_CPU(printk_func_t, printk_func) = vprintk_default; 1831 1832 /** 1833 * printk - print a kernel message 1834 * @fmt: format string 1835 * 1836 * This is printk(). It can be called from any context. We want it to work. 1837 * 1838 * We try to grab the console_lock. If we succeed, it's easy - we log the 1839 * output and call the console drivers. If we fail to get the semaphore, we 1840 * place the output into the log buffer and return. The current holder of 1841 * the console_sem will notice the new output in console_unlock(); and will 1842 * send it to the consoles before releasing the lock. 1843 * 1844 * One effect of this deferred printing is that code which calls printk() and 1845 * then changes console_loglevel may break. This is because console_loglevel 1846 * is inspected when the actual printing occurs. 1847 * 1848 * See also: 1849 * printf(3) 1850 * 1851 * See the vsnprintf() documentation for format string extensions over C99. 1852 */ 1853 asmlinkage __visible int printk(const char *fmt, ...) 1854 { 1855 printk_func_t vprintk_func; 1856 va_list args; 1857 int r; 1858 1859 va_start(args, fmt); 1860 1861 /* 1862 * If a caller overrides the per_cpu printk_func, then it needs 1863 * to disable preemption when calling printk(). Otherwise 1864 * the printk_func should be set to the default. No need to 1865 * disable preemption here. 1866 */ 1867 vprintk_func = this_cpu_read(printk_func); 1868 r = vprintk_func(fmt, args); 1869 1870 va_end(args); 1871 1872 return r; 1873 } 1874 EXPORT_SYMBOL(printk); 1875 1876 #else /* CONFIG_PRINTK */ 1877 1878 #define LOG_LINE_MAX 0 1879 #define PREFIX_MAX 0 1880 1881 static u64 syslog_seq; 1882 static u32 syslog_idx; 1883 static u64 console_seq; 1884 static u32 console_idx; 1885 static enum log_flags syslog_prev; 1886 static u64 log_first_seq; 1887 static u32 log_first_idx; 1888 static u64 log_next_seq; 1889 static enum log_flags console_prev; 1890 static struct cont { 1891 size_t len; 1892 size_t cons; 1893 u8 level; 1894 bool flushed:1; 1895 } cont; 1896 static struct printk_log *log_from_idx(u32 idx) { return NULL; } 1897 static u32 log_next(u32 idx) { return 0; } 1898 static void call_console_drivers(int level, const char *text, size_t len) {} 1899 static size_t msg_print_text(const struct printk_log *msg, enum log_flags prev, 1900 bool syslog, char *buf, size_t size) { return 0; } 1901 static size_t cont_print_text(char *text, size_t size) { return 0; } 1902 1903 /* Still needs to be defined for users */ 1904 DEFINE_PER_CPU(printk_func_t, printk_func); 1905 1906 #endif /* CONFIG_PRINTK */ 1907 1908 #ifdef CONFIG_EARLY_PRINTK 1909 struct console *early_console; 1910 1911 asmlinkage __visible void early_printk(const char *fmt, ...) 1912 { 1913 va_list ap; 1914 char buf[512]; 1915 int n; 1916 1917 if (!early_console) 1918 return; 1919 1920 va_start(ap, fmt); 1921 n = vscnprintf(buf, sizeof(buf), fmt, ap); 1922 va_end(ap); 1923 1924 early_console->write(early_console, buf, n); 1925 } 1926 #endif 1927 1928 static int __add_preferred_console(char *name, int idx, char *options, 1929 char *brl_options) 1930 { 1931 struct console_cmdline *c; 1932 int i; 1933 1934 /* 1935 * See if this tty is not yet registered, and 1936 * if we have a slot free. 1937 */ 1938 for (i = 0, c = console_cmdline; 1939 i < MAX_CMDLINECONSOLES && c->name[0]; 1940 i++, c++) { 1941 if (strcmp(c->name, name) == 0 && c->index == idx) { 1942 if (!brl_options) 1943 selected_console = i; 1944 return 0; 1945 } 1946 } 1947 if (i == MAX_CMDLINECONSOLES) 1948 return -E2BIG; 1949 if (!brl_options) 1950 selected_console = i; 1951 strlcpy(c->name, name, sizeof(c->name)); 1952 c->options = options; 1953 braille_set_options(c, brl_options); 1954 1955 c->index = idx; 1956 return 0; 1957 } 1958 /* 1959 * Set up a console. Called via do_early_param() in init/main.c 1960 * for each "console=" parameter in the boot command line. 1961 */ 1962 static int __init console_setup(char *str) 1963 { 1964 char buf[sizeof(console_cmdline[0].name) + 4]; /* 4 for "ttyS" */ 1965 char *s, *options, *brl_options = NULL; 1966 int idx; 1967 1968 if (_braille_console_setup(&str, &brl_options)) 1969 return 1; 1970 1971 /* 1972 * Decode str into name, index, options. 1973 */ 1974 if (str[0] >= '0' && str[0] <= '9') { 1975 strcpy(buf, "ttyS"); 1976 strncpy(buf + 4, str, sizeof(buf) - 5); 1977 } else { 1978 strncpy(buf, str, sizeof(buf) - 1); 1979 } 1980 buf[sizeof(buf) - 1] = 0; 1981 options = strchr(str, ','); 1982 if (options) 1983 *(options++) = 0; 1984 #ifdef __sparc__ 1985 if (!strcmp(str, "ttya")) 1986 strcpy(buf, "ttyS0"); 1987 if (!strcmp(str, "ttyb")) 1988 strcpy(buf, "ttyS1"); 1989 #endif 1990 for (s = buf; *s; s++) 1991 if (isdigit(*s) || *s == ',') 1992 break; 1993 idx = simple_strtoul(s, NULL, 10); 1994 *s = 0; 1995 1996 __add_preferred_console(buf, idx, options, brl_options); 1997 console_set_on_cmdline = 1; 1998 return 1; 1999 } 2000 __setup("console=", console_setup); 2001 2002 /** 2003 * add_preferred_console - add a device to the list of preferred consoles. 2004 * @name: device name 2005 * @idx: device index 2006 * @options: options for this console 2007 * 2008 * The last preferred console added will be used for kernel messages 2009 * and stdin/out/err for init. Normally this is used by console_setup 2010 * above to handle user-supplied console arguments; however it can also 2011 * be used by arch-specific code either to override the user or more 2012 * commonly to provide a default console (ie from PROM variables) when 2013 * the user has not supplied one. 2014 */ 2015 int add_preferred_console(char *name, int idx, char *options) 2016 { 2017 return __add_preferred_console(name, idx, options, NULL); 2018 } 2019 2020 bool console_suspend_enabled = true; 2021 EXPORT_SYMBOL(console_suspend_enabled); 2022 2023 static int __init console_suspend_disable(char *str) 2024 { 2025 console_suspend_enabled = false; 2026 return 1; 2027 } 2028 __setup("no_console_suspend", console_suspend_disable); 2029 module_param_named(console_suspend, console_suspend_enabled, 2030 bool, S_IRUGO | S_IWUSR); 2031 MODULE_PARM_DESC(console_suspend, "suspend console during suspend" 2032 " and hibernate operations"); 2033 2034 /** 2035 * suspend_console - suspend the console subsystem 2036 * 2037 * This disables printk() while we go into suspend states 2038 */ 2039 void suspend_console(void) 2040 { 2041 if (!console_suspend_enabled) 2042 return; 2043 printk("Suspending console(s) (use no_console_suspend to debug)\n"); 2044 console_lock(); 2045 console_suspended = 1; 2046 up_console_sem(); 2047 } 2048 2049 void resume_console(void) 2050 { 2051 if (!console_suspend_enabled) 2052 return; 2053 down_console_sem(); 2054 console_suspended = 0; 2055 console_unlock(); 2056 } 2057 2058 /** 2059 * console_cpu_notify - print deferred console messages after CPU hotplug 2060 * @self: notifier struct 2061 * @action: CPU hotplug event 2062 * @hcpu: unused 2063 * 2064 * If printk() is called from a CPU that is not online yet, the messages 2065 * will be spooled but will not show up on the console. This function is 2066 * called when a new CPU comes online (or fails to come up), and ensures 2067 * that any such output gets printed. 2068 */ 2069 static int console_cpu_notify(struct notifier_block *self, 2070 unsigned long action, void *hcpu) 2071 { 2072 switch (action) { 2073 case CPU_ONLINE: 2074 case CPU_DEAD: 2075 case CPU_DOWN_FAILED: 2076 case CPU_UP_CANCELED: 2077 console_lock(); 2078 console_unlock(); 2079 } 2080 return NOTIFY_OK; 2081 } 2082 2083 /** 2084 * console_lock - lock the console system for exclusive use. 2085 * 2086 * Acquires a lock which guarantees that the caller has 2087 * exclusive access to the console system and the console_drivers list. 2088 * 2089 * Can sleep, returns nothing. 2090 */ 2091 void console_lock(void) 2092 { 2093 might_sleep(); 2094 2095 down_console_sem(); 2096 if (console_suspended) 2097 return; 2098 console_locked = 1; 2099 console_may_schedule = 1; 2100 } 2101 EXPORT_SYMBOL(console_lock); 2102 2103 /** 2104 * console_trylock - try to lock the console system for exclusive use. 2105 * 2106 * Try to acquire a lock which guarantees that the caller has exclusive 2107 * access to the console system and the console_drivers list. 2108 * 2109 * returns 1 on success, and 0 on failure to acquire the lock. 2110 */ 2111 int console_trylock(void) 2112 { 2113 if (down_trylock_console_sem()) 2114 return 0; 2115 if (console_suspended) { 2116 up_console_sem(); 2117 return 0; 2118 } 2119 console_locked = 1; 2120 console_may_schedule = 0; 2121 return 1; 2122 } 2123 EXPORT_SYMBOL(console_trylock); 2124 2125 int is_console_locked(void) 2126 { 2127 return console_locked; 2128 } 2129 2130 static void console_cont_flush(char *text, size_t size) 2131 { 2132 unsigned long flags; 2133 size_t len; 2134 2135 raw_spin_lock_irqsave(&logbuf_lock, flags); 2136 2137 if (!cont.len) 2138 goto out; 2139 2140 /* 2141 * We still queue earlier records, likely because the console was 2142 * busy. The earlier ones need to be printed before this one, we 2143 * did not flush any fragment so far, so just let it queue up. 2144 */ 2145 if (console_seq < log_next_seq && !cont.cons) 2146 goto out; 2147 2148 len = cont_print_text(text, size); 2149 raw_spin_unlock(&logbuf_lock); 2150 stop_critical_timings(); 2151 call_console_drivers(cont.level, text, len); 2152 start_critical_timings(); 2153 local_irq_restore(flags); 2154 return; 2155 out: 2156 raw_spin_unlock_irqrestore(&logbuf_lock, flags); 2157 } 2158 2159 /** 2160 * console_unlock - unlock the console system 2161 * 2162 * Releases the console_lock which the caller holds on the console system 2163 * and the console driver list. 2164 * 2165 * While the console_lock was held, console output may have been buffered 2166 * by printk(). If this is the case, console_unlock(); emits 2167 * the output prior to releasing the lock. 2168 * 2169 * If there is output waiting, we wake /dev/kmsg and syslog() users. 2170 * 2171 * console_unlock(); may be called from any context. 2172 */ 2173 void console_unlock(void) 2174 { 2175 static char text[LOG_LINE_MAX + PREFIX_MAX]; 2176 static u64 seen_seq; 2177 unsigned long flags; 2178 bool wake_klogd = false; 2179 bool retry; 2180 2181 if (console_suspended) { 2182 up_console_sem(); 2183 return; 2184 } 2185 2186 console_may_schedule = 0; 2187 2188 /* flush buffered message fragment immediately to console */ 2189 console_cont_flush(text, sizeof(text)); 2190 again: 2191 for (;;) { 2192 struct printk_log *msg; 2193 size_t len; 2194 int level; 2195 2196 raw_spin_lock_irqsave(&logbuf_lock, flags); 2197 if (seen_seq != log_next_seq) { 2198 wake_klogd = true; 2199 seen_seq = log_next_seq; 2200 } 2201 2202 if (console_seq < log_first_seq) { 2203 len = sprintf(text, "** %u printk messages dropped ** ", 2204 (unsigned)(log_first_seq - console_seq)); 2205 2206 /* messages are gone, move to first one */ 2207 console_seq = log_first_seq; 2208 console_idx = log_first_idx; 2209 console_prev = 0; 2210 } else { 2211 len = 0; 2212 } 2213 skip: 2214 if (console_seq == log_next_seq) 2215 break; 2216 2217 msg = log_from_idx(console_idx); 2218 if (msg->flags & LOG_NOCONS) { 2219 /* 2220 * Skip record we have buffered and already printed 2221 * directly to the console when we received it. 2222 */ 2223 console_idx = log_next(console_idx); 2224 console_seq++; 2225 /* 2226 * We will get here again when we register a new 2227 * CON_PRINTBUFFER console. Clear the flag so we 2228 * will properly dump everything later. 2229 */ 2230 msg->flags &= ~LOG_NOCONS; 2231 console_prev = msg->flags; 2232 goto skip; 2233 } 2234 2235 level = msg->level; 2236 len += msg_print_text(msg, console_prev, false, 2237 text + len, sizeof(text) - len); 2238 console_idx = log_next(console_idx); 2239 console_seq++; 2240 console_prev = msg->flags; 2241 raw_spin_unlock(&logbuf_lock); 2242 2243 stop_critical_timings(); /* don't trace print latency */ 2244 call_console_drivers(level, text, len); 2245 start_critical_timings(); 2246 local_irq_restore(flags); 2247 } 2248 console_locked = 0; 2249 2250 /* Release the exclusive_console once it is used */ 2251 if (unlikely(exclusive_console)) 2252 exclusive_console = NULL; 2253 2254 raw_spin_unlock(&logbuf_lock); 2255 2256 up_console_sem(); 2257 2258 /* 2259 * Someone could have filled up the buffer again, so re-check if there's 2260 * something to flush. In case we cannot trylock the console_sem again, 2261 * there's a new owner and the console_unlock() from them will do the 2262 * flush, no worries. 2263 */ 2264 raw_spin_lock(&logbuf_lock); 2265 retry = console_seq != log_next_seq; 2266 raw_spin_unlock_irqrestore(&logbuf_lock, flags); 2267 2268 if (retry && console_trylock()) 2269 goto again; 2270 2271 if (wake_klogd) 2272 wake_up_klogd(); 2273 } 2274 EXPORT_SYMBOL(console_unlock); 2275 2276 /** 2277 * console_conditional_schedule - yield the CPU if required 2278 * 2279 * If the console code is currently allowed to sleep, and 2280 * if this CPU should yield the CPU to another task, do 2281 * so here. 2282 * 2283 * Must be called within console_lock();. 2284 */ 2285 void __sched console_conditional_schedule(void) 2286 { 2287 if (console_may_schedule) 2288 cond_resched(); 2289 } 2290 EXPORT_SYMBOL(console_conditional_schedule); 2291 2292 void console_unblank(void) 2293 { 2294 struct console *c; 2295 2296 /* 2297 * console_unblank can no longer be called in interrupt context unless 2298 * oops_in_progress is set to 1.. 2299 */ 2300 if (oops_in_progress) { 2301 if (down_trylock_console_sem() != 0) 2302 return; 2303 } else 2304 console_lock(); 2305 2306 console_locked = 1; 2307 console_may_schedule = 0; 2308 for_each_console(c) 2309 if ((c->flags & CON_ENABLED) && c->unblank) 2310 c->unblank(); 2311 console_unlock(); 2312 } 2313 2314 /* 2315 * Return the console tty driver structure and its associated index 2316 */ 2317 struct tty_driver *console_device(int *index) 2318 { 2319 struct console *c; 2320 struct tty_driver *driver = NULL; 2321 2322 console_lock(); 2323 for_each_console(c) { 2324 if (!c->device) 2325 continue; 2326 driver = c->device(c, index); 2327 if (driver) 2328 break; 2329 } 2330 console_unlock(); 2331 return driver; 2332 } 2333 2334 /* 2335 * Prevent further output on the passed console device so that (for example) 2336 * serial drivers can disable console output before suspending a port, and can 2337 * re-enable output afterwards. 2338 */ 2339 void console_stop(struct console *console) 2340 { 2341 console_lock(); 2342 console->flags &= ~CON_ENABLED; 2343 console_unlock(); 2344 } 2345 EXPORT_SYMBOL(console_stop); 2346 2347 void console_start(struct console *console) 2348 { 2349 console_lock(); 2350 console->flags |= CON_ENABLED; 2351 console_unlock(); 2352 } 2353 EXPORT_SYMBOL(console_start); 2354 2355 static int __read_mostly keep_bootcon; 2356 2357 static int __init keep_bootcon_setup(char *str) 2358 { 2359 keep_bootcon = 1; 2360 pr_info("debug: skip boot console de-registration.\n"); 2361 2362 return 0; 2363 } 2364 2365 early_param("keep_bootcon", keep_bootcon_setup); 2366 2367 /* 2368 * The console driver calls this routine during kernel initialization 2369 * to register the console printing procedure with printk() and to 2370 * print any messages that were printed by the kernel before the 2371 * console driver was initialized. 2372 * 2373 * This can happen pretty early during the boot process (because of 2374 * early_printk) - sometimes before setup_arch() completes - be careful 2375 * of what kernel features are used - they may not be initialised yet. 2376 * 2377 * There are two types of consoles - bootconsoles (early_printk) and 2378 * "real" consoles (everything which is not a bootconsole) which are 2379 * handled differently. 2380 * - Any number of bootconsoles can be registered at any time. 2381 * - As soon as a "real" console is registered, all bootconsoles 2382 * will be unregistered automatically. 2383 * - Once a "real" console is registered, any attempt to register a 2384 * bootconsoles will be rejected 2385 */ 2386 void register_console(struct console *newcon) 2387 { 2388 int i; 2389 unsigned long flags; 2390 struct console *bcon = NULL; 2391 struct console_cmdline *c; 2392 2393 if (console_drivers) 2394 for_each_console(bcon) 2395 if (WARN(bcon == newcon, 2396 "console '%s%d' already registered\n", 2397 bcon->name, bcon->index)) 2398 return; 2399 2400 /* 2401 * before we register a new CON_BOOT console, make sure we don't 2402 * already have a valid console 2403 */ 2404 if (console_drivers && newcon->flags & CON_BOOT) { 2405 /* find the last or real console */ 2406 for_each_console(bcon) { 2407 if (!(bcon->flags & CON_BOOT)) { 2408 pr_info("Too late to register bootconsole %s%d\n", 2409 newcon->name, newcon->index); 2410 return; 2411 } 2412 } 2413 } 2414 2415 if (console_drivers && console_drivers->flags & CON_BOOT) 2416 bcon = console_drivers; 2417 2418 if (preferred_console < 0 || bcon || !console_drivers) 2419 preferred_console = selected_console; 2420 2421 /* 2422 * See if we want to use this console driver. If we 2423 * didn't select a console we take the first one 2424 * that registers here. 2425 */ 2426 if (preferred_console < 0) { 2427 if (newcon->index < 0) 2428 newcon->index = 0; 2429 if (newcon->setup == NULL || 2430 newcon->setup(newcon, NULL) == 0) { 2431 newcon->flags |= CON_ENABLED; 2432 if (newcon->device) { 2433 newcon->flags |= CON_CONSDEV; 2434 preferred_console = 0; 2435 } 2436 } 2437 } 2438 2439 /* 2440 * See if this console matches one we selected on 2441 * the command line. 2442 */ 2443 for (i = 0, c = console_cmdline; 2444 i < MAX_CMDLINECONSOLES && c->name[0]; 2445 i++, c++) { 2446 if (!newcon->match || 2447 newcon->match(newcon, c->name, c->index, c->options) != 0) { 2448 /* default matching */ 2449 BUILD_BUG_ON(sizeof(c->name) != sizeof(newcon->name)); 2450 if (strcmp(c->name, newcon->name) != 0) 2451 continue; 2452 if (newcon->index >= 0 && 2453 newcon->index != c->index) 2454 continue; 2455 if (newcon->index < 0) 2456 newcon->index = c->index; 2457 2458 if (_braille_register_console(newcon, c)) 2459 return; 2460 2461 if (newcon->setup && 2462 newcon->setup(newcon, c->options) != 0) 2463 break; 2464 } 2465 2466 newcon->flags |= CON_ENABLED; 2467 if (i == selected_console) { 2468 newcon->flags |= CON_CONSDEV; 2469 preferred_console = selected_console; 2470 } 2471 break; 2472 } 2473 2474 if (!(newcon->flags & CON_ENABLED)) 2475 return; 2476 2477 /* 2478 * If we have a bootconsole, and are switching to a real console, 2479 * don't print everything out again, since when the boot console, and 2480 * the real console are the same physical device, it's annoying to 2481 * see the beginning boot messages twice 2482 */ 2483 if (bcon && ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV)) 2484 newcon->flags &= ~CON_PRINTBUFFER; 2485 2486 /* 2487 * Put this console in the list - keep the 2488 * preferred driver at the head of the list. 2489 */ 2490 console_lock(); 2491 if ((newcon->flags & CON_CONSDEV) || console_drivers == NULL) { 2492 newcon->next = console_drivers; 2493 console_drivers = newcon; 2494 if (newcon->next) 2495 newcon->next->flags &= ~CON_CONSDEV; 2496 } else { 2497 newcon->next = console_drivers->next; 2498 console_drivers->next = newcon; 2499 } 2500 if (newcon->flags & CON_PRINTBUFFER) { 2501 /* 2502 * console_unlock(); will print out the buffered messages 2503 * for us. 2504 */ 2505 raw_spin_lock_irqsave(&logbuf_lock, flags); 2506 console_seq = syslog_seq; 2507 console_idx = syslog_idx; 2508 console_prev = syslog_prev; 2509 raw_spin_unlock_irqrestore(&logbuf_lock, flags); 2510 /* 2511 * We're about to replay the log buffer. Only do this to the 2512 * just-registered console to avoid excessive message spam to 2513 * the already-registered consoles. 2514 */ 2515 exclusive_console = newcon; 2516 } 2517 console_unlock(); 2518 console_sysfs_notify(); 2519 2520 /* 2521 * By unregistering the bootconsoles after we enable the real console 2522 * we get the "console xxx enabled" message on all the consoles - 2523 * boot consoles, real consoles, etc - this is to ensure that end 2524 * users know there might be something in the kernel's log buffer that 2525 * went to the bootconsole (that they do not see on the real console) 2526 */ 2527 pr_info("%sconsole [%s%d] enabled\n", 2528 (newcon->flags & CON_BOOT) ? "boot" : "" , 2529 newcon->name, newcon->index); 2530 if (bcon && 2531 ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV) && 2532 !keep_bootcon) { 2533 /* We need to iterate through all boot consoles, to make 2534 * sure we print everything out, before we unregister them. 2535 */ 2536 for_each_console(bcon) 2537 if (bcon->flags & CON_BOOT) 2538 unregister_console(bcon); 2539 } 2540 } 2541 EXPORT_SYMBOL(register_console); 2542 2543 int unregister_console(struct console *console) 2544 { 2545 struct console *a, *b; 2546 int res; 2547 2548 pr_info("%sconsole [%s%d] disabled\n", 2549 (console->flags & CON_BOOT) ? "boot" : "" , 2550 console->name, console->index); 2551 2552 res = _braille_unregister_console(console); 2553 if (res) 2554 return res; 2555 2556 res = 1; 2557 console_lock(); 2558 if (console_drivers == console) { 2559 console_drivers=console->next; 2560 res = 0; 2561 } else if (console_drivers) { 2562 for (a=console_drivers->next, b=console_drivers ; 2563 a; b=a, a=b->next) { 2564 if (a == console) { 2565 b->next = a->next; 2566 res = 0; 2567 break; 2568 } 2569 } 2570 } 2571 2572 /* 2573 * If this isn't the last console and it has CON_CONSDEV set, we 2574 * need to set it on the next preferred console. 2575 */ 2576 if (console_drivers != NULL && console->flags & CON_CONSDEV) 2577 console_drivers->flags |= CON_CONSDEV; 2578 2579 console->flags &= ~CON_ENABLED; 2580 console_unlock(); 2581 console_sysfs_notify(); 2582 return res; 2583 } 2584 EXPORT_SYMBOL(unregister_console); 2585 2586 static int __init printk_late_init(void) 2587 { 2588 struct console *con; 2589 2590 for_each_console(con) { 2591 if (!keep_bootcon && con->flags & CON_BOOT) { 2592 unregister_console(con); 2593 } 2594 } 2595 hotcpu_notifier(console_cpu_notify, 0); 2596 return 0; 2597 } 2598 late_initcall(printk_late_init); 2599 2600 #if defined CONFIG_PRINTK 2601 /* 2602 * Delayed printk version, for scheduler-internal messages: 2603 */ 2604 #define PRINTK_PENDING_WAKEUP 0x01 2605 #define PRINTK_PENDING_OUTPUT 0x02 2606 2607 static DEFINE_PER_CPU(int, printk_pending); 2608 2609 static void wake_up_klogd_work_func(struct irq_work *irq_work) 2610 { 2611 int pending = __this_cpu_xchg(printk_pending, 0); 2612 2613 if (pending & PRINTK_PENDING_OUTPUT) { 2614 /* If trylock fails, someone else is doing the printing */ 2615 if (console_trylock()) 2616 console_unlock(); 2617 } 2618 2619 if (pending & PRINTK_PENDING_WAKEUP) 2620 wake_up_interruptible(&log_wait); 2621 } 2622 2623 static DEFINE_PER_CPU(struct irq_work, wake_up_klogd_work) = { 2624 .func = wake_up_klogd_work_func, 2625 .flags = IRQ_WORK_LAZY, 2626 }; 2627 2628 void wake_up_klogd(void) 2629 { 2630 preempt_disable(); 2631 if (waitqueue_active(&log_wait)) { 2632 this_cpu_or(printk_pending, PRINTK_PENDING_WAKEUP); 2633 irq_work_queue(this_cpu_ptr(&wake_up_klogd_work)); 2634 } 2635 preempt_enable(); 2636 } 2637 2638 int printk_deferred(const char *fmt, ...) 2639 { 2640 va_list args; 2641 int r; 2642 2643 preempt_disable(); 2644 va_start(args, fmt); 2645 r = vprintk_emit(0, LOGLEVEL_SCHED, NULL, 0, fmt, args); 2646 va_end(args); 2647 2648 __this_cpu_or(printk_pending, PRINTK_PENDING_OUTPUT); 2649 irq_work_queue(this_cpu_ptr(&wake_up_klogd_work)); 2650 preempt_enable(); 2651 2652 return r; 2653 } 2654 2655 /* 2656 * printk rate limiting, lifted from the networking subsystem. 2657 * 2658 * This enforces a rate limit: not more than 10 kernel messages 2659 * every 5s to make a denial-of-service attack impossible. 2660 */ 2661 DEFINE_RATELIMIT_STATE(printk_ratelimit_state, 5 * HZ, 10); 2662 2663 int __printk_ratelimit(const char *func) 2664 { 2665 return ___ratelimit(&printk_ratelimit_state, func); 2666 } 2667 EXPORT_SYMBOL(__printk_ratelimit); 2668 2669 /** 2670 * printk_timed_ratelimit - caller-controlled printk ratelimiting 2671 * @caller_jiffies: pointer to caller's state 2672 * @interval_msecs: minimum interval between prints 2673 * 2674 * printk_timed_ratelimit() returns true if more than @interval_msecs 2675 * milliseconds have elapsed since the last time printk_timed_ratelimit() 2676 * returned true. 2677 */ 2678 bool printk_timed_ratelimit(unsigned long *caller_jiffies, 2679 unsigned int interval_msecs) 2680 { 2681 unsigned long elapsed = jiffies - *caller_jiffies; 2682 2683 if (*caller_jiffies && elapsed <= msecs_to_jiffies(interval_msecs)) 2684 return false; 2685 2686 *caller_jiffies = jiffies; 2687 return true; 2688 } 2689 EXPORT_SYMBOL(printk_timed_ratelimit); 2690 2691 static DEFINE_SPINLOCK(dump_list_lock); 2692 static LIST_HEAD(dump_list); 2693 2694 /** 2695 * kmsg_dump_register - register a kernel log dumper. 2696 * @dumper: pointer to the kmsg_dumper structure 2697 * 2698 * Adds a kernel log dumper to the system. The dump callback in the 2699 * structure will be called when the kernel oopses or panics and must be 2700 * set. Returns zero on success and %-EINVAL or %-EBUSY otherwise. 2701 */ 2702 int kmsg_dump_register(struct kmsg_dumper *dumper) 2703 { 2704 unsigned long flags; 2705 int err = -EBUSY; 2706 2707 /* The dump callback needs to be set */ 2708 if (!dumper->dump) 2709 return -EINVAL; 2710 2711 spin_lock_irqsave(&dump_list_lock, flags); 2712 /* Don't allow registering multiple times */ 2713 if (!dumper->registered) { 2714 dumper->registered = 1; 2715 list_add_tail_rcu(&dumper->list, &dump_list); 2716 err = 0; 2717 } 2718 spin_unlock_irqrestore(&dump_list_lock, flags); 2719 2720 return err; 2721 } 2722 EXPORT_SYMBOL_GPL(kmsg_dump_register); 2723 2724 /** 2725 * kmsg_dump_unregister - unregister a kmsg dumper. 2726 * @dumper: pointer to the kmsg_dumper structure 2727 * 2728 * Removes a dump device from the system. Returns zero on success and 2729 * %-EINVAL otherwise. 2730 */ 2731 int kmsg_dump_unregister(struct kmsg_dumper *dumper) 2732 { 2733 unsigned long flags; 2734 int err = -EINVAL; 2735 2736 spin_lock_irqsave(&dump_list_lock, flags); 2737 if (dumper->registered) { 2738 dumper->registered = 0; 2739 list_del_rcu(&dumper->list); 2740 err = 0; 2741 } 2742 spin_unlock_irqrestore(&dump_list_lock, flags); 2743 synchronize_rcu(); 2744 2745 return err; 2746 } 2747 EXPORT_SYMBOL_GPL(kmsg_dump_unregister); 2748 2749 static bool always_kmsg_dump; 2750 module_param_named(always_kmsg_dump, always_kmsg_dump, bool, S_IRUGO | S_IWUSR); 2751 2752 /** 2753 * kmsg_dump - dump kernel log to kernel message dumpers. 2754 * @reason: the reason (oops, panic etc) for dumping 2755 * 2756 * Call each of the registered dumper's dump() callback, which can 2757 * retrieve the kmsg records with kmsg_dump_get_line() or 2758 * kmsg_dump_get_buffer(). 2759 */ 2760 void kmsg_dump(enum kmsg_dump_reason reason) 2761 { 2762 struct kmsg_dumper *dumper; 2763 unsigned long flags; 2764 2765 if ((reason > KMSG_DUMP_OOPS) && !always_kmsg_dump) 2766 return; 2767 2768 rcu_read_lock(); 2769 list_for_each_entry_rcu(dumper, &dump_list, list) { 2770 if (dumper->max_reason && reason > dumper->max_reason) 2771 continue; 2772 2773 /* initialize iterator with data about the stored records */ 2774 dumper->active = true; 2775 2776 raw_spin_lock_irqsave(&logbuf_lock, flags); 2777 dumper->cur_seq = clear_seq; 2778 dumper->cur_idx = clear_idx; 2779 dumper->next_seq = log_next_seq; 2780 dumper->next_idx = log_next_idx; 2781 raw_spin_unlock_irqrestore(&logbuf_lock, flags); 2782 2783 /* invoke dumper which will iterate over records */ 2784 dumper->dump(dumper, reason); 2785 2786 /* reset iterator */ 2787 dumper->active = false; 2788 } 2789 rcu_read_unlock(); 2790 } 2791 2792 /** 2793 * kmsg_dump_get_line_nolock - retrieve one kmsg log line (unlocked version) 2794 * @dumper: registered kmsg dumper 2795 * @syslog: include the "<4>" prefixes 2796 * @line: buffer to copy the line to 2797 * @size: maximum size of the buffer 2798 * @len: length of line placed into buffer 2799 * 2800 * Start at the beginning of the kmsg buffer, with the oldest kmsg 2801 * record, and copy one record into the provided buffer. 2802 * 2803 * Consecutive calls will return the next available record moving 2804 * towards the end of the buffer with the youngest messages. 2805 * 2806 * A return value of FALSE indicates that there are no more records to 2807 * read. 2808 * 2809 * The function is similar to kmsg_dump_get_line(), but grabs no locks. 2810 */ 2811 bool kmsg_dump_get_line_nolock(struct kmsg_dumper *dumper, bool syslog, 2812 char *line, size_t size, size_t *len) 2813 { 2814 struct printk_log *msg; 2815 size_t l = 0; 2816 bool ret = false; 2817 2818 if (!dumper->active) 2819 goto out; 2820 2821 if (dumper->cur_seq < log_first_seq) { 2822 /* messages are gone, move to first available one */ 2823 dumper->cur_seq = log_first_seq; 2824 dumper->cur_idx = log_first_idx; 2825 } 2826 2827 /* last entry */ 2828 if (dumper->cur_seq >= log_next_seq) 2829 goto out; 2830 2831 msg = log_from_idx(dumper->cur_idx); 2832 l = msg_print_text(msg, 0, syslog, line, size); 2833 2834 dumper->cur_idx = log_next(dumper->cur_idx); 2835 dumper->cur_seq++; 2836 ret = true; 2837 out: 2838 if (len) 2839 *len = l; 2840 return ret; 2841 } 2842 2843 /** 2844 * kmsg_dump_get_line - retrieve one kmsg log line 2845 * @dumper: registered kmsg dumper 2846 * @syslog: include the "<4>" prefixes 2847 * @line: buffer to copy the line to 2848 * @size: maximum size of the buffer 2849 * @len: length of line placed into buffer 2850 * 2851 * Start at the beginning of the kmsg buffer, with the oldest kmsg 2852 * record, and copy one record into the provided buffer. 2853 * 2854 * Consecutive calls will return the next available record moving 2855 * towards the end of the buffer with the youngest messages. 2856 * 2857 * A return value of FALSE indicates that there are no more records to 2858 * read. 2859 */ 2860 bool kmsg_dump_get_line(struct kmsg_dumper *dumper, bool syslog, 2861 char *line, size_t size, size_t *len) 2862 { 2863 unsigned long flags; 2864 bool ret; 2865 2866 raw_spin_lock_irqsave(&logbuf_lock, flags); 2867 ret = kmsg_dump_get_line_nolock(dumper, syslog, line, size, len); 2868 raw_spin_unlock_irqrestore(&logbuf_lock, flags); 2869 2870 return ret; 2871 } 2872 EXPORT_SYMBOL_GPL(kmsg_dump_get_line); 2873 2874 /** 2875 * kmsg_dump_get_buffer - copy kmsg log lines 2876 * @dumper: registered kmsg dumper 2877 * @syslog: include the "<4>" prefixes 2878 * @buf: buffer to copy the line to 2879 * @size: maximum size of the buffer 2880 * @len: length of line placed into buffer 2881 * 2882 * Start at the end of the kmsg buffer and fill the provided buffer 2883 * with as many of the the *youngest* kmsg records that fit into it. 2884 * If the buffer is large enough, all available kmsg records will be 2885 * copied with a single call. 2886 * 2887 * Consecutive calls will fill the buffer with the next block of 2888 * available older records, not including the earlier retrieved ones. 2889 * 2890 * A return value of FALSE indicates that there are no more records to 2891 * read. 2892 */ 2893 bool kmsg_dump_get_buffer(struct kmsg_dumper *dumper, bool syslog, 2894 char *buf, size_t size, size_t *len) 2895 { 2896 unsigned long flags; 2897 u64 seq; 2898 u32 idx; 2899 u64 next_seq; 2900 u32 next_idx; 2901 enum log_flags prev; 2902 size_t l = 0; 2903 bool ret = false; 2904 2905 if (!dumper->active) 2906 goto out; 2907 2908 raw_spin_lock_irqsave(&logbuf_lock, flags); 2909 if (dumper->cur_seq < log_first_seq) { 2910 /* messages are gone, move to first available one */ 2911 dumper->cur_seq = log_first_seq; 2912 dumper->cur_idx = log_first_idx; 2913 } 2914 2915 /* last entry */ 2916 if (dumper->cur_seq >= dumper->next_seq) { 2917 raw_spin_unlock_irqrestore(&logbuf_lock, flags); 2918 goto out; 2919 } 2920 2921 /* calculate length of entire buffer */ 2922 seq = dumper->cur_seq; 2923 idx = dumper->cur_idx; 2924 prev = 0; 2925 while (seq < dumper->next_seq) { 2926 struct printk_log *msg = log_from_idx(idx); 2927 2928 l += msg_print_text(msg, prev, true, NULL, 0); 2929 idx = log_next(idx); 2930 seq++; 2931 prev = msg->flags; 2932 } 2933 2934 /* move first record forward until length fits into the buffer */ 2935 seq = dumper->cur_seq; 2936 idx = dumper->cur_idx; 2937 prev = 0; 2938 while (l > size && seq < dumper->next_seq) { 2939 struct printk_log *msg = log_from_idx(idx); 2940 2941 l -= msg_print_text(msg, prev, true, NULL, 0); 2942 idx = log_next(idx); 2943 seq++; 2944 prev = msg->flags; 2945 } 2946 2947 /* last message in next interation */ 2948 next_seq = seq; 2949 next_idx = idx; 2950 2951 l = 0; 2952 while (seq < dumper->next_seq) { 2953 struct printk_log *msg = log_from_idx(idx); 2954 2955 l += msg_print_text(msg, prev, syslog, buf + l, size - l); 2956 idx = log_next(idx); 2957 seq++; 2958 prev = msg->flags; 2959 } 2960 2961 dumper->next_seq = next_seq; 2962 dumper->next_idx = next_idx; 2963 ret = true; 2964 raw_spin_unlock_irqrestore(&logbuf_lock, flags); 2965 out: 2966 if (len) 2967 *len = l; 2968 return ret; 2969 } 2970 EXPORT_SYMBOL_GPL(kmsg_dump_get_buffer); 2971 2972 /** 2973 * kmsg_dump_rewind_nolock - reset the interator (unlocked version) 2974 * @dumper: registered kmsg dumper 2975 * 2976 * Reset the dumper's iterator so that kmsg_dump_get_line() and 2977 * kmsg_dump_get_buffer() can be called again and used multiple 2978 * times within the same dumper.dump() callback. 2979 * 2980 * The function is similar to kmsg_dump_rewind(), but grabs no locks. 2981 */ 2982 void kmsg_dump_rewind_nolock(struct kmsg_dumper *dumper) 2983 { 2984 dumper->cur_seq = clear_seq; 2985 dumper->cur_idx = clear_idx; 2986 dumper->next_seq = log_next_seq; 2987 dumper->next_idx = log_next_idx; 2988 } 2989 2990 /** 2991 * kmsg_dump_rewind - reset the interator 2992 * @dumper: registered kmsg dumper 2993 * 2994 * Reset the dumper's iterator so that kmsg_dump_get_line() and 2995 * kmsg_dump_get_buffer() can be called again and used multiple 2996 * times within the same dumper.dump() callback. 2997 */ 2998 void kmsg_dump_rewind(struct kmsg_dumper *dumper) 2999 { 3000 unsigned long flags; 3001 3002 raw_spin_lock_irqsave(&logbuf_lock, flags); 3003 kmsg_dump_rewind_nolock(dumper); 3004 raw_spin_unlock_irqrestore(&logbuf_lock, flags); 3005 } 3006 EXPORT_SYMBOL_GPL(kmsg_dump_rewind); 3007 3008 static char dump_stack_arch_desc_str[128]; 3009 3010 /** 3011 * dump_stack_set_arch_desc - set arch-specific str to show with task dumps 3012 * @fmt: printf-style format string 3013 * @...: arguments for the format string 3014 * 3015 * The configured string will be printed right after utsname during task 3016 * dumps. Usually used to add arch-specific system identifiers. If an 3017 * arch wants to make use of such an ID string, it should initialize this 3018 * as soon as possible during boot. 3019 */ 3020 void __init dump_stack_set_arch_desc(const char *fmt, ...) 3021 { 3022 va_list args; 3023 3024 va_start(args, fmt); 3025 vsnprintf(dump_stack_arch_desc_str, sizeof(dump_stack_arch_desc_str), 3026 fmt, args); 3027 va_end(args); 3028 } 3029 3030 /** 3031 * dump_stack_print_info - print generic debug info for dump_stack() 3032 * @log_lvl: log level 3033 * 3034 * Arch-specific dump_stack() implementations can use this function to 3035 * print out the same debug information as the generic dump_stack(). 3036 */ 3037 void dump_stack_print_info(const char *log_lvl) 3038 { 3039 printk("%sCPU: %d PID: %d Comm: %.20s %s %s %.*s\n", 3040 log_lvl, raw_smp_processor_id(), current->pid, current->comm, 3041 print_tainted(), init_utsname()->release, 3042 (int)strcspn(init_utsname()->version, " "), 3043 init_utsname()->version); 3044 3045 if (dump_stack_arch_desc_str[0] != '\0') 3046 printk("%sHardware name: %s\n", 3047 log_lvl, dump_stack_arch_desc_str); 3048 3049 print_worker_info(log_lvl, current); 3050 } 3051 3052 /** 3053 * show_regs_print_info - print generic debug info for show_regs() 3054 * @log_lvl: log level 3055 * 3056 * show_regs() implementations can use this function to print out generic 3057 * debug information. 3058 */ 3059 void show_regs_print_info(const char *log_lvl) 3060 { 3061 dump_stack_print_info(log_lvl); 3062 3063 printk("%stask: %p ti: %p task.ti: %p\n", 3064 log_lvl, current, current_thread_info(), 3065 task_thread_info(current)); 3066 } 3067 3068 #endif 3069